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Abstract

Background: Previous genome-wide association studies (GWAS) have identified 42 loci (P < 5�10�8) associated with risk of
colorectal cancer (CRC). Expanded consortium efforts facilitating the discovery of additional susceptibility loci may capture
unexplained familial risk.
Methods: We conducted a GWAS in European descent CRC cases and control subjects using a discovery–replication design,
followed by examination of novel findings in a multiethnic sample (cumulative n ¼ 163 315). In the discovery stage (36 948
case subjects/30 864 control subjects), we identified genetic variants with a minor allele frequency of 1% or greater associated
with risk of CRC using logistic regression followed by a fixed-effects inverse variance weighted meta-analysis. All novel inde-
pendent variants reaching genome-wide statistical significance (two-sided P < 5�10�8) were tested for replication in separate
European ancestry samples (12 952 case subjects/48 383 control subjects). Next, we examined the generalizability of discov-
ered variants in East Asians, African Americans, and Hispanics (12 085 case subjects/22 083 control subjects). Finally, we ex-
amined the contributions of novel risk variants to familial relative risk and examined the prediction capabilities of a poly-
genic risk score. All statistical tests were two-sided.
Results: The discovery GWAS identified 11 variants associated with CRC at P < 5�10�8, of which nine (at 4q22.2/5p15.33/
5p13.1/6p21.31/6p12.1/10q11.23/12q24.21/16q24.1/20q13.13) independently replicated at a P value of less than .05. Multiethnic
follow-up supported the generalizability of discovery findings. These results demonstrated a 14.7% increase in familial rela-
tive risk explained by common risk alleles from 10.3% (95% confidence interval [CI] ¼ 7.9% to 13.7%; known variants) to 11.9%
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(95% CI ¼ 9.2% to 15.5%; known and novel variants). A polygenic risk score identified 4.3% of the population at an odds ratio
for developing CRC of at least 2.0.
Conclusions: This study provides insight into the architecture of common genetic variation contributing to CRC etiology and
improves risk prediction for individualized screening.

Colorectal cancer (CRC) is a complex polygenetic disease, and
heritability accounts for up to 35% of the variation in risk of de-
veloping CRC (1,2). Some of this heritability is attributable to
rare high-penetrance alleles associated with cancer syndromes,
now routinely incorporated into clinical care. In addition,
genome-wide association studies (GWAS) have identified varia-
tion in numerous regulatory regions and other genomic loci
that contribute quantifiable risks for CRC development.
Specifically, GWAS have identified approximately 70 common
genetic variants across 42 regions (P < 5�10�8) associated with
risk of CRC, as larger study populations have been amassed and
racial/ethnic representation has increased (3–11). Expanded
consortium efforts facilitating the discovery of additional risk
loci may capture unexplained familial risk.

Our prior collaborative work identified six novel CRC suscep-
tibility loci based on a discovery sample of 18 299 case subjects
and 19 656 control subjects of European ancestral heritage (12).
Results from this GWAS contributed to the development of the
Illumina Infinium OncoArray-500K BeadChip (OncoArray; San
Diego, CA), a genotyping array designed to interrogate genomic
variation associated with predisposition to five of the most
common cancers (prostate, breast, colorectal, lung, and ovarian)
(13). Here, we describe results from a new discovery-replication
GWAS, including for the first time findings from the OncoArray
Project. Then, we present a follow-up evaluation of genome-
wide statistically significant (P < 5�10�8) risk alleles in individu-
als from diverse ethnic groups (East Asian, Hispanic, and
African American) to investigate if the findings generalize to
other populations. Our goal was to discover and replicate new
CRC susceptibility loci by assembling the largest international
study population to date (n ¼ 163 315).

Methods

Study Overview

This investigation included genetic data from 53 observational
studies and clinical trials (Supplementary Figure 1,
Supplementary Table 1, available online). In the discovery stage,
we combined genotype and epidemiologic data from individuals
with European ancestry from all of our consortium efforts to
date (CORECT, CCFR, and GECCO), including the new OncoArray
Project (36 948 case subjects and 30 864 control subjects)
(Supplementary Table 2, Supplementary Figures 2 and 3, avail-
able online). In the replication stage, we leveraged data from an
independent set of European descent participants (12 952 case
subjects and 48 383 control subjects) (Supplementary Table 3,
available online). In the follow-up stage to assess generalizabil-
ity of findings, we examined data from a multiethnic sample set
(12 085 case subjects and 22 083 control subjects) that included
East Asians from the OncoArray Project (Supplementary Table
4, Supplementary Figure 4, available online) and prior studies
(14,15), African Americans (15,16), and Hispanics/Latinos (17).
Details of the study populations, genotyping, quality control
(QC), and imputation for each stage of this GWAS are described
in the Supplementary Methods (available online). Participants

provided written informed consent, and the Institutional
Review Boards at each center approved the study. For more spe-
cific information on consent and study approvals at each insti-
tution, see the Supplementary Methods (available online).

Statistical Analysis

Detailed descriptions of the statistical analysis for each study
stage are described in the Supplementary Methods (available
online). Briefly, we examined the association between allelic
dosage for all autosomal variants with a minor allele frequency
(MAF) of 0.01 or greater that passed stringent imputation quality
control procedures and CRC status using logistic regression ad-
justed for appropriate study-specific covariates and principal
components (PCs) that capture global ancestry. Summary statis-
tics from European descent samples included in our prior con-
sortium efforts (Discovery Part 1) (18) and the OncoArray Project
(Discovery Part 2) were combined in a fixed-effect inverse vari-
ance–weighted meta-analysis. Consistency of odds ratios (ORs)
across studies was assessed using Cochran’s Q test of heteroge-
neity. The most statistically significantly associated variant in
each novel genome-wide statistically significant locus (two-
sided P < 5�10�8) from this discovery analysis was then exam-
ined for association with risk of CRC in the independent replica-
tion stage of European ancestry participants (Supplementary
Methods, available online). Criteria for independent replication
included a consistent direction of association and a P value of
less than .05 based on a meta-analysis of study-specific logistic
regression models. Finally, all variants reaching genome-wide
statistical significance (P < 5�10�8) in the discovery stage and a
P value of less than .05 in the replication stage were assessed for
generalizability in the multiethnic follow-up stage of East
Asians, African Americans, and Hispanics. All statistical tests
were two-sided.

Polygenic Risk Scores and Familial Relative Risk
Explained

Polygenic risk scores (PRS) in European descent replication
phase participants were calculated using previously known sus-
ceptibility variants and novel independently replicated variants
identified by this effort. PRS were categorized into percentile
categories based on a weighted sum of risk allele counts among
control subjects (<1%, 1%–10%, 10%–25%, 25%–75%, 75%–90%,
90%–99%, and >99%, with 25%–75% serving as the reference).
Weights were applied based on bias-corrected logORs from our
European descent discovery analysis. Logistic regression was
used to examine CRC risk across PRS categories (after adjusting
for age, sex, PCs, and PC*study) for known and knownþnovel
variants, respectively. We also stratified the PRS at a clinically
actionable threshold of an odds ratio of 2.0 or greater. To con-
sider the applicability of our European-derived PRS to East Asian
populations, we also examined the performance of this score in
the East Asian case subjects and control subjects genotyped on
the OncoArray. Next, the contributions to familial risk of the
knownþnovel and the known-only variants were investigated.
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Sample inclusions and methods for bias correction, PRS, and
family relative risk explained analyses are described in more de-
tail in the Supplementary Methods (available online).

In Silico Functional Follow-up

We conducted eQTL analysis in colonic mucosa from healthy
control subjects (n ¼ 50) and normal mucosa adjacent to colon
cancer (n ¼ 100) in the Colonomics study (19) as well as trans-
verse colon tissues (n ¼ 169) from the Genotype-Tissue
Expression (GTEx) project (Supplementary Methods, available
online) (20). Briefly, in Colonomics, for each variant, Pearson
partial correlation adjusted for tissue type (healthy or adjacent
to tumor) was used to explore the association of single nucleo-
tide polymorphism (SNP)/indel dosage data with gene expres-
sion for genes located within 2MB of the SNP of interest. For
GTEx, the laboratory and analytic methods have previously
been described in detail (20).

Additionally, candidate functional variants were identified
using published methods (21). Briefly, index variants and SNPs
(CEU, 1KGP, June 2014 release) in LD with each risk variant (we
report r2 � .6 except where noted as r2 � .2) were aligned with
chromatin immunoprecipitation and sequencing (ChIP-seq)
tracks for histone methylation and acetylation marks associ-
ated with enhancers H3K4me1 and H3K27ac. For this study, we
referenced Sigmoid Colon H3K27 acetylation from the Roadmap
Epigenomics Consortium (22) as well as CRC cell lines SW480
and HCT-116 H3K4 monomethylation generated in our labora-
tory (G. Casey) and by the ENCODE project, respectively (23,24).
To further characterize the novel CRC genetic risk loci, we per-
formed in silico bioinformatic functional annotation of each
region.

Results

Discovery GWAS (European Descent)

The discovery GWAS identified 11 common risk variants at
4q22.2, 5q15.33, 5p13.1, 6p21.31, 6p12.1, 10q11.23, 12q24.21,
13q13.2, 16q24.1, 20q11.22, and 20q13.13, all of which were inde-
pendent of known risk loci (>500 kb away or r2 > .2 with a previ-
ously known variant) and reached the accepted genome-wide
statistical significance threshold (P < 5�10�8) (Table 1).
Association results from the discovery stage also indicated that
62 (92.5%) of the 67 known autosomal risk variants (three out of
70 known risk variants were excluded due to MAF < 0.01, low-
quality imputation, or location on chromosome X) replicated at
a nominal level of statistical significance (P < .05)
(Supplementary Table 5, available online). A quantile–quantile
plot illustrates appropriate control for population stratification
with a k of 1.05 (sample size–adjusted k1000 ¼ 1.002)
(Supplementary Figure 5, available online). A Manhattan plot
illustrates the genomic location of novel loci in relation to previ-
ously published risk regions (Figure 1). Regional association
plots in Supplementary Figure 6 depict the 11 risk variants in
the context of their surrounding linkage disequilibrium (LD)
structures and nearby genes. The MAFs of these 11 variants in
1KGP Europeans ranged from 0.097 to 0.495, and the odds ratios
for association ranged from 0.90 to 1.08 (Table 1). Effect sizes ad-
justed for potential bias in estimation due to the winner’s curse
are summarized in Supplementary Table 6 and Supplementary
Figure 7 (available online). T
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Replication (European Descent)

The association between each of the 11 candidate susceptibility var-
iants identified in the discovery stage and risk of CRC in an indepen-
dent sample revealed consistent directions of association and
consistent effect sizes for all variants (Table 1). Also, odds ratios for
association were statistically significant for nine of 11 variants. The
remaining two loci that were identified in the discovery stage
(rs10161980 and rs2295444) demonstrated supportive but not statisti-
cally significant evidence of replication, and thus require further val-
idation in future studies. Notably, the two variants with statistical
evidence of heterogeneity in the discovery stage meta-analysis repli-
cated in this independent sample set (rs58791712 and rs2696839).

Multiethnic Follow-up

Subsequently, we examined the nine novel, replicated risk var-
iants across three diverse ethnic populations. We examined the
association between each variant and risk of CRC in East Asians
(n ¼ 21 630) (Supplementary Figure 4, available online), African
Americans (n ¼ 6597), and Hispanics (n ¼ 5941). All nine var-
iants demonstrated a consistent direction of association in
follow-up studies, except for rs62404968 and rs10994860 in
Hispanics (Table 2). Eight out of the nine variants (all but
rs10994860) were associated with risk of CRC in at least one pop-
ulation at a nominal level of statistical significance (P < .05).

Polygenic Risk Score Analysis and Familial Relative Risk
Explained

PRS analysis conducted in a subset of European descent replica-
tion phase participants revealed that the estimated odds of

developing CRC for individuals with scores in the top 1% as
compared with the 25%–75% reference category was 2.18
(Supplementary Table 7, available online). Based on the 76
known and novel variants, 4.3% of the study population could
be identified for targeted screening based on a clinically action-
able threshold of an odds ratio of 2.0 or greater (Supplementary
Table 7, available online) (25,26). This is in comparison with
1.4% of the study population that is identifiable based on previ-
ously known variants only (data not shown). The knownþnovel
PRS performed similarly in East Asians, and the cutpoint to
reach a clinically actionable odds ratio of at least 2.0 in this pop-
ulation was 99.1% (Supplementary Table 7, available online).

Overall, 76 variants explained 11.9% (95% confidence interval
[CI] ¼ 9.2% to 15.5%) of the known familial relative risk, as com-
pared with 10.3% (95% CI¼ 7.9% to 13.7%) for the previously known
variants only. This represents a 14.7% increase in familial relative
risk explained. Estimation of the proportion of explained familial
risk incorporated uncertainty in risk estimation for each variant
and uncertainty in the specification of the familial relative risk.

eQTL Analysis

Analysis of cis gene expression data for the nine novel susceptibil-
ity variants revealed several noteworthy eQTLs in Colonomics and
GTEx transverse colon samples (Supplementary Table 8, available
online). For example, rs10994860 is a statistically significant eQTL
for ASAH2 (effect size ¼ –0.61, P ¼ 5.7E�10�5). Further, in the
Colonomics data set, rs6906359 is a statistically significant eQTL
for several genes including BRPF3, showing overexpression for C/C
as compared with T/T genotypes (partial r2 ¼ .09, P ¼ 2.6�10�4).
The most statistically significant eQTLs in each region with at
least one variant associated at the P < .05 level in the Colonomics

Figure 1. Manhattan plot summarizing the discovery genome-wide association study association results (ncase ¼ 36 948, ncontrol ¼ 30 864). Green ¼ known risk loci

(within 500 kb or r2 > .2 with an index variant); red ¼ novel risk loci (outside 500 kb or r2 > .2 with an index variant).
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data set are summarized in Supplementary Figure 8 (available
online).

Discussion

This collaborative study included over 163 000 individuals for
the identification and further evaluation of 9 replicable novel
CRC genetic susceptibility loci. Nine low-penetrance risk loci
represent approximately a 21% increase from those previously
discovered to date (n ¼ 42). Nine risk variants replicated in an
independent sample of European ancestry participants, and
eight of those generalized to at least one of three other racial/
ethnic populations. Our findings contribute substantially to the
known familial relative risk explained by low-penetrance sus-
ceptibility alleles, with a 14.7% increase from 10.3% (previously
known only) to 11.9% (known þ novel reported here) explained.
Further, PRS analysis underscores the impact of common CRC
risk alleles, particularly among individuals with the highest
counts of risk variants. Our findings suggest that 4.3% of the
population could be targeted for earlier and more frequent
screening based on germline genetic profiling of all known
common CRC susceptibility variants. This supports our previ-
ous findings that GWAS have the potential to inform appropri-
ate tailoring of screening guidelines to population subgroups
(27).

The consistent direction of association for all nine novel risk
variants in East Asians and African Americans (all but two in
Hispanics) underscores the generalizability of our findings from
European ancestry individuals. However, the statistically signif-
icant association of some but not all variants with CRC risk
across the additional ethnic subgroups supports the impor-
tance of expanded sample sizes in certain populations as well
as ongoing multiethnic fine-mapping studies to identify the
strongest signals and most likely putative functional variant(s)
at particular loci in other ancestral populations.

Two of the nine risk alleles map to intragenic or coding
regions. First, rs62404968 maps to 6p12.1 and lies within an in-
tron of BMP5. BMP5 encodes bone morphogenetic protein 5,
which is part of the transforming growth factor–beta (TGF-b) su-
perfamily. Members of the BMP and TGF-b family have been im-
plicated as risk genes for CRC in previous GWAS, including
BMP2 and BMP4 on chromosomes 20 and 14, respectively (28).
The associated SNP, rs62404968, or any of the 20 SNPs in LD, do
not map to any predicted regulatory/enhancer regions based on
histone marks, suggesting that further functional follow-up is
needed to understand the functional mechanism likely acting
on the strong candidate gene BMP5. Second, rs10994860 maps
to 10q11.23 and lies within exon 1 of A1CF, representing a puta-
tive candidate functional SNP. APOBEC1 complementation fac-
tor (A1CF) is a critical component of the apolipoprotein B mRNA
editing enzyme complex. There are two SNPs (rs71457593 and
rs10994720) in LD with rs10994860 that both map to histone
peaks also suggesting potential functionality.

The remaining seven risk alleles map to intergenic regions
of the genome. SNP rs1370821 maps to 4q22.2, with the two
nearest genes being ATOH1 and SMARCAD1 (approximately 85
kb away). ATOH1 encodes atonal homolog BHLH transcription
factor 1, which belongs to the basic helix-loop-helix family of
transcription factors. SMARCAD1 encodes matrix-associated ac-
tin-dependent regulator of chromatin, a member of the SNF
subfamily of helicase proteins that plays an important role in
heterochromatin reorganization following DNA replication.
Although the associated SNP, rs1370821, does not map to anyT
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candidate regulatory regions, two SNPs (rs2510787, rs2433324)
in LD with rs1370821 lie within an intron of the gene encoding
PDZ and LIM domain protein 5 (PDLIM5), and both map to his-
tone marks. Also, rs1370821 warrants further functional charac-
terization because of its proximity to BMPR1B, a gene where
there is statistical evidence of an eQTL relationship by genotype
in the Colonomics data set and where the gene family is related
to polyposis and CRC susceptibility (17).

The indel rs58791712 (G/GT) maps to 5p13.1. The nearest
genes, PTGER4 and LINC00603, lie approximately 400 kb from the
index variant. PTGER4 encodes PGE2 receptor EP4 subtype and is
one of four receptors identified for prostaglandin E2. This indel
does not map to any histone marks, making it unlikely to be a
functional variant. However, there are three SNPs (rs72748452,
rs755989, and rs4957261) in LD with rs58791712 that overlap his-
tone peaks.

The SNP rs2735940 maps to 5p15.33 and lies adjacent to the
TERT gene. TERT encodes the telomerase catalytic subunit
protein that helps to maintain telomere ends by addition of
the telomere repeat TTAGGG. TERT has been identified
previously as a candidate risk gene in several cancers including
CRC (29–34). The SNP rs2735940 does not map to any histone
marks. However, this SNP is in LD with three SNPs (rs380145,
rs246995, and rs246994) that map to histone marks and lie
within an intron of CLPTM1L (rs380145) or the predicted gene
BC034612 (rs246995 and rs246994).

The SNP rs6906359 maps to 6p21.31, and the closest gene is
FKBP5 approximately 12 kb away. FKBP5 encodes FK506 binding
protein 5, a member of the immunophilin protein family that
plays a role in immunoregulation, protein folding, and traffick-
ing. However, rs6906359 does not overlap any histone marks. Of
the SNPs in LD with rs6906359 that overlap histone peaks, two
SNPs (rs72894781 and rs72894784) map within an intron of
TEAD3, one SNP (rs16878812) maps within an intron of FKBP5,
and one SNP is intergenic (rs45493300).

The indel rs72013726 (CACAA/C) maps to 12q24.21. The near-
est gene, MED13L, lies approximately 500 kb from rs72013726.
MED13L encodes thyroid hormone receptor–associated protein 2
and is one of many proteins that function as a transcriptional
coactivator for RNA polymerase II–transcribed genes. SNP
rs72013726 maps to a histone peak, making it a potential func-
tional SNP.

The SNP rs2696839 maps to 16q24.1 and lies 15 kb from the
predicted gene LOC146513. Although this SNP does not map to
any histone marks, all four SNPs (rs12932862, rs12149163,
rs12149501, and rs2665316) in LD with rs2696839 do. Of note,
there are several lncRNAs in this region.

The SNP rs1810502 maps to 20q13.13 near the gene PTPN1,
approximately 70 kb away. PTPN1 encodes protein-tyrosine
phosphatase 1B, a member of the protein tyrosine phosphatase
family. This SNP and 14 other SNPs in LD with rs1810502 map to
histone marks, implying the possibility that any one of these 15
SNPs could be functionally relevant to CRC etiology.

Our study design has strengths and limitations. We con-
ducted a rigorous two-stage study with discovery and indepen-
dent replication in European descent participants. Further, a
major strength is that we utilized data from the independent
replication phase to conduct PRS and familial relative risk
explained analyses. Of note, despite a 14.7% increase beyond
prior knowledge, still less than 12% of familial relative risk is
explained by GWAS-identified alleles, including our nine new
loci. Thus, additional efforts are needed to fully explain the ge-
netic architecture of this complex disease, potentially with
gene–environment interactions. Space limitations preclude

detailed descriptions of eQTL analyses for each SNP. However,
we found little or no evidence of the nine novel index SNPs in
relation to gene expression for our speculatively implicated
genes. Additional eQTL analyses in expanded normal colon tis-
sue sample sets that examine the full landscape of SNPs in LD
with the index SNP may help to elucidate the impact of germ-
line susceptibility loci on gene expression. Future studies will be
advantageous to identify rare and intermediate frequency sus-
ceptibility alleles through expanded sample size as well as in-
creased racial/ethnic minority inclusion. Multiethnic samples
will be useful for fine-mapping known and novel risk regions as
well as for identifying population-specific variation. In sum-
mary, this GWAS provides insight into the etiologies of CRC and
provides a basis for future fine-mapping, functional characteri-
zation, and risk modeling research.
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Biobanken Norr, V€asterbotten County Council.

UK Biobank: This research has been conducted using the UK
Biobank Resource under Application Number 8614.

ACCC: We thank all study participants and research staff of
all studies for their contributions and commitment to this proj-
ect, Regina Courtney for DNA preparation, and Jing He for data
processing. The Aichi Colorectal Cancer Study appreciates the
support of Cancer Bio Bank Aichi for this project.

Hispanic Colorectal Cancer Study: We are indebted to the
individuals who participated in this study. Without their assis-
tance, we could not have conducted any of our research. We
would like to thank Nathalie Nguyen, Julissa Ramirez, Yaquelin
Perez, Daniel Collin, Alicia Rivera, Lauren Gerstmann, and the
student intern staff for their assistance in logistical support and
management, interviewing patients, and data entry. Finally, we
would like to especially acknowledge Dr. Brian E. Henderson,
who passed away before this paper was submitted. Without his
mentorship and tremendous efforts in co-founding the
Multiethnic Cohort, this work would not have been possible.

Slim Initiative in Genomic Medicine for the Americas
(SIGMA): We would like to acknowledge all participants and
investigators in this study, including Teresa Tusi�e-Luna, Carlos
A. Aguilar-Salinas, Hortensia Moreno-Mac�ıas, Alicia Huerta-
Chagoya, Mar�ıa Luisa Ord�o~nez-S�anchez, Rosario Rodr�ıguez-
Guill�en, Ivette Cruz-Bautista, Maribel Rodr�ıguez-Torres, Linda
Liliana Mu~n�oz-Hern�andez, Olimpia Arellano-Campos, Donaj�ı
G�omez, Ulices Alvirde.

A
R

T
IC

LE

156 | JNCI J Natl Cancer Inst, 2019, Vol. 111, No. 2

https://cleo.whi.org/researchers/Documents&percnt;20&percnt;20Write&percnt;20a&percnt;20Paper/WHI&percnt;20Investigator&percnt;20Short20List.pdf
https://cleo.whi.org/researchers/Documents&percnt;20&percnt;20Write&percnt;20a&percnt;20Paper/WHI&percnt;20Investigator&percnt;20Short20List.pdf
https://cleo.whi.org/researchers/Documents&percnt;20&percnt;20Write&percnt;20a&percnt;20Paper/WHI&percnt;20Investigator&percnt;20Short20List.pdf
https://cleo.whi.org/researchers/Documents&percnt;20&percnt;20Write&percnt;20a&percnt;20Paper/WHI&percnt;20Investigator&percnt;20Short20List.pdf
https://cleo.whi.org/researchers/Documents&percnt;20&percnt;20Write&percnt;20a&percnt;20Paper/WHI&percnt;20Investigator&percnt;20Short20List.pdf
https://cleo.whi.org/researchers/Documents&percnt;20&percnt;20Write&percnt;20a&percnt;20Paper/WHI&percnt;20Investigator&percnt;20Short20List.pdf
https://cleo.whi.org/researchers/Documents&percnt;20&percnt;20Write&percnt;20a&percnt;20Paper/WHI&percnt;20Investigator&percnt;20Short20List.pdf


Christoph Mancao is an employee of Genentech and holds
shares/stocks from Roche/Genentech. The other authors have
no competing interests to declare.

References
1. Lichtenstein P, Holm NV, Verkasalo PK, et al. Environmental and heritable

factors in the causation of cancer—analyses of cohorts of twins from
Sweden, Denmark, and Finland. N Engl J Med. 2000;343(2):78–85.

2. Burt R. Inheritance of colorectal cancer. Drug Discov Today Dis Mech. 2007;4(4):
293–300.

3. Peters U, Bien S, Zubair N. Genetic architecture of colorectal cancer. Gut. 2015;
64(10):1623–1636.

4. Lemire M, Qu C, Loo LW, et al. A genome-wide association study for colorec-
tal cancer identifies a risk locus in 14q23.1. Hum Genet. 2015;134(11–12):
1249–1262.

5. Orlando G, Law PJ, Palin K, et al. Variation at 2q35 (PNKD and TMBIM1) influ-
ences colorectal cancer risk and identifies a pleiotropic effect with inflamma-
tory bowel disease. Hum Mol Genet. 2016;25(11):2349–2359.

6. Zeng C, Matsuda K, Jia WH, et al. Identification of susceptibility loci and genes
for colorectal cancer risk. Gastroenterology. 2016;150(7):1633–1645.

7. Gruber SB, Moreno V, Rozek LS, et al. Genetic variation in 8q24 associated
with risk of colorectal cancer. Cancer Biol Ther. 2007;6(7):1143–1147.

8. Broderick P, Carvajal-Carmona L, Pittman AM, et al. A genome-wide associa-
tion study shows that common alleles of SMAD7 influence colorectal cancer
risk. Nat Genet. 2007;39(11):1315–1317.

9. Carvajal-Carmona LG, Cazier JB, Jones AM, et al. Fine-mapping of colorectal
cancer susceptibility loci at 8q23.3, 16q22.1 and 19q13.11: Refinement of asso-
ciation signals and use of in silico analysis to suggest functional variation
and unexpected candidate target genes. Hum Mol Genet. 2011;20(14):
2879–2988.

10. Houlston RS, Cheadle J, Dobbins SE, et al. Meta-analysis of three genome-
wide association studies identifies susceptibility loci for colorectal cancer at
1q41, 3q26.2, 12q13.13 and 20q13.33. Nat Genet. 2010;42(11):973–977.

11. Houlston RS, Webb E, Broderick P, et al. Meta-analysis of genome-wide asso-
ciation data identifies four new susceptibility loci for colorectal cancer. Nat
Genet. 2008;40(12):1426–1435.

12. Schumacher FR, Schmit SL, Jiao S, et al. Genome-wide association study of
colorectal cancer identifies six new susceptibility loci. Nat Commun. 2015;6:
7138.

13. Amos CI, Dennis J, Wang Z, et al. The OncoArray Consortium: A network for
understanding the genetic architecture of common cancers. Cancer Epidemiol
Biomarkers Prev. 2017;26(1):126–135.

14. Zhang B, Jia WH, Matsuda K, et al. Large-scale genetic study in East Asians
identifies six new loci associated with colorectal cancer risk. Nat Genet. 2014;
46(6):533–542.

15. Wang H, Burnett T, Kono S, et al. Trans-ethnic genome-wide association
study of colorectal cancer identifies a new susceptibility locus in VTI1A. Nat
Commun. 2014;5:4613.

16. Wang H, Haiman CA, Burnett T, et al. Fine-mapping of genome-wide associa-
tion study-identified risk loci for colorectal cancer in African Americans. Hum
Mol Genet. 2013;22(24):5048–5055.

17. Schmit SL, Schumacher FR, Edlund CK, et al. Genome-wide association study
of colorectal cancer in Hispanics. Carcinogenesis. 2016;37(6):547–556.

18. Schumacher FR, Schmit SL, Jiao S, et al. Genome-wide association study of
colorectal cancer identifies six new susceptibility loci. Nat Commun. 2015;6:7138.

19. Closa A, Cordero D, Sanz-Pamplona R, et al. Identification of candidate sus-
ceptibility genes for colorectal cancer through eQTL analysis. Carcinogenesis.
2014;35(9):2039–2046.

20. Consortium GT. Human genomics. The Genotype-Tissue Expression (GTEx)
pilot analysis: Multitissue gene regulation in humans. Science. 2015;348(6235):
648–660.

21. Fortini BK, Tring S, Plummer SJ, et al. Multiple functional risk variants in a
SMAD7 enhancer implicate a colorectal cancer risk haplotype. PLoS One. 2014;
9(11):e111914.

22. Bernstein BE, Stamatoyannopoulos JA, Costello JF, et al. The NIH Roadmap
Epigenomics Mapping Consortium. Nat Biotechnol. 2010;28(10):1045–1048.

23. O’Geen H, Echipare L, Farnham PJ. Using ChIP-seq technology to generate
high-resolution profiles of histone modifications. Methods Mol Biol. 2011;791:
265–286.

24. ENCODE Project Consortium. The ENCODE (ENCyclopedia Of DNA Elements)
Project. Science. 2004;306(5696):636–640.

25. Tung N, Domchek SM, Stadler Z, et al. Counselling framework for moderate-
penetrance cancer-susceptibility mutations. Nat Rev Clin Oncol. 2016;13(9):
581–588.

26. National Comprehensive Cancer Network. Genetic/familial high-risk assess-
ment: Colorectal (version 2.2016). https://www.nccn.org/professionals/physi-
cian_gls/f_guidelines.asp. Accessed October 27, 2016.

27. Hsu L, Jeon J, Brenner H, et al. A model to determine colorectal cancer risk us-
ing common genetic susceptibility loci. Gastroenterology. 2015;148(7):
1330–1339, e14.

28. Houlston RS, Webb E, Broderick P, et al. Meta-analysis of genome-wide asso-
ciation data identifies four new susceptibility loci for colorectal cancer. Nat
Genet. 2008;40(12):1426–1435.

29. Karami S, Han Y, Pande M, et al. Telomere structure and maintenance gene
variants and risk of five cancer types. Int J Cancer. 2016;139(12):2655–2670.

30. Wang Z, Zhu B, Zhang M, et al. Imputation and subset-based association
analysis across different cancer types identifies multiple independent risk
loci in the TERT-CLPTM1L region on chromosome 5p15.33. Hum Mol Genet.
2014;23(24):6616–6633.

31. Walsh KM, Codd V, Smirnov IV, et al. Variants near TERT and TERC influenc-
ing telomere length are associated with high-grade glioma risk. Nat Genet.
2014;46(7):731–735.

32. Bojesen SE, Pooley KA, Johnatty SE, et al. Multiple independent variants at
the TERT locus are associated with telomere length and risks of breast and
ovarian cancer. Nat Genet. 2013;45(4):371–384, 384e1–384e2.

33. Haiman CA, Chen GK, Vachon CM, et al. A common variant at the TERT-
CLPTM1L locus is associated with estrogen receptor-negative breast cancer.
Nat Genet. 2011;43(12):1210–1214.

34. Kinnersley B, Migliorini G, Broderick P, et al. The TERT variant rs2736100 is
associated with colorectal cancer risk. Br J Cancer. 2012;107(6):1001–1008.

35. Yeager M, Orr N, Hayes RB, et al. Genome-wide association study of prostate
cancer identifies a second risk locus at 8q24. Nat Genet. 2007;39(5):645–649.

36. Amundadottir L, Kraft P, Stolzenberg-Solomon RZ, et al. Genome-wide asso-
ciation study identifies variants in the ABO locus associated with susceptibil-
ity to pancreatic cancer. Nat Genet. 2009;41(9):986–990.

37. Petersen GM, Amundadottir L, Fuchs CS, et al. A genome-wide association
study identifies pancreatic cancer susceptibility loci on chromosomes
13q22.1, 1q32.1 and 5p15.33. Nat Genet. 2010;42(3):224–228.

38. Landi MT, Chatterjee N, Yu K, et al. A genome-wide association study of lung
cancer identifies a region of chromosome 5p15 associated with risk for ade-
nocarcinoma. Am J Hum Genet. 2009;85(5):679–691.

A
R

T
IC

LE

S. L. Schmit et al. | 157

https://www.nccn.org/professionals/physician_gls/f_guidelines.asp
https://www.nccn.org/professionals/physician_gls/f_guidelines.asp

	djy099-TF1
	djy099-TF2
	djy099-TF3
	djy099-TF4
	djy099-TF5

