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Arterial enhancing local tumor 
progression detection on CT 
images using convolutional neural 
network after hepatocellular 
carcinoma ablation: a preliminary 
study
Sanghyeok Lim1,2,3, YiRang Shin1,3 & Young Han Lee1*

To evaluate the performance of a deep convolutional neural network (DCNN) in detecting local tumor 
progression (LTP) after tumor ablation for hepatocellular carcinoma (HCC) on follow-up arterial phase 
CT images. The DCNN model utilizes three-dimensional (3D) patches extracted from three-channel 
CT imaging to detect LTP. We built a pipeline to automatically produce a bounding box localization 
of pathological regions using a 3D-CNN trained for classification. The performance metrics of the 
3D-CNN prediction were analyzed in terms of accuracy, sensitivity, specificity, positive predictive 
value (PPV), area under the receiver operating characteristic curve (AUC), and average precision. We 
included 34 patients with 49 LTP lesions and randomly selected 40 patients without LTP. A total of 
74 patients were randomly divided into three sets: training (n = 48; LTP: no LTP = 21:27), validation 
(n = 10; 5:5), and test (n = 16; 8:8). When used with the test set (160 LTP positive patches, 640 LTP 
negative patches), our proposed 3D-CNN classifier demonstrated an accuracy of 97.59%, sensitivity of 
96.88%, specificity of 97.65%, and PPV of 91.18%. The AUC and precision–recall curves showed high 
average precision values of 0.992 and 0.96, respectively. LTP detection on follow-up CT images after 
tumor ablation for HCC using a DCNN demonstrated high accuracy and incorporated multichannel 
registration.

Typically, hepatocellular carcinoma (HCC) shows arterial enhancement and delayed washout on dynamic con-
trast-enhancement imaging studies, such as computed tomography (CT), magnetic resonance imaging (MRI), 
and ultrasonography (US)1. This finding enables non-invasive diagnosis without biopsy and provides reliable 
and reproducible imaging data to diagnose and detect tumor recurrence during follow-ups after treatment2.

Image-guided tumor ablation is a curative method comparable to surgery for patients with early-stage HCC3. 
The ablation zone is visualized as a hypodense or heterogeneous hyperdense region on an unenhanced CT 
without enhancement after contrast administration. Follow-up imaging study is crucial to detect recurrence 
because recurrent HCC is not a rare event4. Moreover, early detection and appropriate treatment enables effec-
tive treatment.

Deep convolutional neural networks (DCNNs) are deep learning neural networks in which multiple hidden 
layers are trained to perform particular tasks5. They have been used successfully in medical fields including 
radiology5,6. A DCNN extracts low- to high-level features from images and uses them to select the most impor-
tant features for solving a specific task, such as classification, detection, and segmentation7. We hypothesize that 
the DCNN may be able to detect small enhancing lesions on CT, that is, local tumor progression (LTP). Herein, 
we propose a novel three-dimensional (3D) multichannel DCNN framework for false positive reduction and 
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to increase the conspicuity of the region of interest. Hence, the purpose of this study was to evaluate the per-
formance of the DCNN in detecting LTP after tumor ablation for HCC on follow-up arterial phase CT images.

Results
Participants.  Among the 184 patients who underwent complete ablation for treatment-naïve single HCC, 
26 patients were excluded from the analysis owing to intrasegmental aggressive recurrence, liver transplantation 
during the follow-up period, and unavailable follow-up CT images. We recruited 34 patients with LTP (male: 
female = 29:5, age, 63.3 ± 8.1; range 45–84 years). Among the 124 patients without LTP, we randomly selected 
40 patients (male: female = 31:9; age, 65.7 ± 11.8; range 30–86). Therefore, 74 patients were enrolled (mean age, 
64.6 ± 10.3; range 30–86; 60 men [mean age, 64.0 ± 10.0; range 30–85] and 14 women [mean age, 67.3 ± 11.6; 
range 45–86]). The participants’ demographic characteristics are shown in Table 1.

Diagnostic performance of 3D CNN.  When used with the test set (160 LTP positive patches, 640 LTP 
negative patches), our proposed 3D-CNN classifier demonstrated an accuracy of 97.59%. Table 2 summarizes 
the diagnostic performance of the 3D-CNN in classifying LTP using a 3D abdominal volume with a sensitivity 
of 96.88%, specificity of 97.65%, and PPV of 91.18%. We plotted the ROC curve in Fig. 1a, where the AUC of 
the ROC curve for the 3D-CNN model was 0.922 (95% CI 0.987–0.997). In addition to evaluating the accuracy 
of the model using the ROC curves, precision–recall curves were plotted, as shown in Fig. 1b, where our model 
yielded a high average precision value of 0.96. A high area under the precision–recall curve (average precision) 
suggests a high precision (low false-positive rate) and a high recall (low false-negative rate). Therefore, our 
prediction model incorporating multichannel registration and a 3D-CNN, can accurately detect LTP and distin-
guish it from normal structures other than LTP.

Discussion
Radiologic diagnosis techniques using artificial intelligence (AI) are being widely developed and used8–10. Because 
the detection and interpretation of enhancing lesions on follow-up imaging studies are essential for diagnosing 
HCC recurrence, in the current study, we use AI to focus on the detection of arterial enhancing lesions next 
to an ablation zone and distinguish them from LTP and other possible enhancing lesions, including normal 
vasculatures or arterioportal shunts.

Our study demonstrated that 3D multichannel DCNNs can detect small enhancing lesions, which are typical 
indicators of LTP on CT images. We integrated a 3D-DCNN model with multichannel registration to classify 
LTP regions. Deep learning with 3D-DCNNs can accurately classify LTP regions on liver CT images with an 
AUC of 0.992. Considering the radiologic imaging interpretation, we applied a 3D model to the liver CT images. 
We incorporated 3D models instead of 2D models to account for intraslice information, thereby reducing false 

Table 1.   Clinical characteristics of the 74 study patients. LTP, local tumor progression; CT, computed 
tomography; NA, not applicable; HBV, hepatitis B virus; HCV, hepatitis C virus.

LTP group (n = 34) No LTP group (n = 40) p value

Sex (male:female) 29:5 31:9 0.40

Age (years) 63.3 ± 8.1 65.7 ± 11.8 0.31

LTP size (cm) 1.2 ± 0.5 NA NA

Time interval between ablation and CT (days) 255 ± 189 414 ± 90 NA

Time interval between ablation and last follow up (days) NA 734 ± 166 NA

Etiology of liver disease

HBV 25 23

0.37
HCV 1 5

Alcohol 5 6

Others 3 6

Table 2.   Model performance on test datasets for classifying LTP. LTP, local tumor progression; CI, confidence 
interval; AUC, area under receiver operating characteristic curve; PPV, positive predictive value; AP, average 
precision.

Method Value 95% CI

AUC​ 0.992 0.987–0.997

Sensitivity (%) 96.88 92.86–98.98

Specificity (%) 97.65 96.16–98.68

PPV (precision, %) 91.18 86.23–94.46

Accuracy 97.59 96.17–98.47

AP 0.96
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positive rates, such as blood vessels, ablation zone proximity, and longitudinal passing. As a 3D-DCNN model 
with full-size CT images requires high-performance computing power and more computational memory, we 
avoided memory exhaustion using a relatively small input by patch extraction. DICOM images have full pixel 
ranges of 12 bits (4,096 shades of gray per pixel), which cannot be directly input to a DCNN model in the cur-
rent technology. We transferred a CT image with a range of 12 bits with predefined window settings optimized 
for LTP pathologies to obtain an 8-bit grayscale image with enhanced conspicuity of LTP regions. To maximize 
the image contrast, we used a predefined window setting in three channels of the image: the liver, ablation, and 
tumor windows.

During classification, a prediction map was applied to generate bounding boxes to highlight the positively 
predicted regions to achieve rapid and accurate detection of LTP for users (Fig. 2). A dictionary storing (x,y,z)-
center coordinates was retrieved based on prediction probabilities above the optimal threshold value that were 
selected using sensitivity and specificity. For each slide, we report the rectangular region of interest on the axial 
slice of the whole CT scan, slide number (z), and tumor prediction probability, as well as neighboring image 
slices included in the positive-predicted patch.

Two independent radiologists reviewed two false-positive and three false-negative prediction regions within 
the liver. One false-positive case (Fig. 3) showed an enhancing nodular lesion next to the hypo-attenuating 

Figure 1.   Receiver operating characteristic curve (a) and precision–recall curve (b) of LTP classification model.

Figure 2.   Prediction map for true positive predicted LTP region. In the prediction map, we report the 
rectangular region of interest on the axial slice of the whole CT scan, slide number, tumor prediction 
probability, as well as neighboring image slices included in the positive-predicted regions. LTP was detected 
(red rectangular), and hepatic vessels including hepatic artery and portal vein (arrows) were not indicated in the 
prediction map.
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region, which was confirmed to be an unenhanced right hepatic vein next to the contrast-enhanced hepatic 
vessels, and not an ablation zone. The other lesion was confirmed to be an arterioportal shunt at the periphery 
of the ablation zone (not shown). Although the 3D DCNNs reduced the false-negative prediction of the model, 
examples of false-negative cases were primarily associated with large lesions. The mean diameter of the three 
false-negative cases on the axial images was 1.9 cm (ranging from 1.1 to 2.6 cm), which was larger than the initial 
patch size (32 × 32).

The diagnostic performance of LTP using MRI or contrast-enhanced US (CEUS) after ablation for HCC is 
higher than that using CT. However, medical resources and costs are an issue in surveillance settings. Mostly, 
patients treated for HCC have chronic liver disease, including liver cirrhosis, and must be evaluated not only for 
LTP, but also for whole abdomen metastasis and complications associated with portal hypertension, including 
varices and ascites. Thus, we used CT as a surveillance tool and used MRI or CEUS as a confirmatory tool. We 
hypothesize that it might be possible to extrapolate the current DCNN on MRI and CEUS. However, in this 
preliminary report, there were too few cases with MRI or CEUS performed. Further well-designed prospective 
studies are warranted to verify this finding.

Our study has a few limitations. First, Tour models were trained and tested on a small dataset of only 74 
patients. Therefore, to obtain a better generalizability of the proposed method, we must increase the number of 
participants, including external validation collected by case–control design, diagnostic cohort design, or multi-
institution external test in the future11. Second, in a retrospective study design, we used a two-vendor CT dataset. 
However, the effects of different CT machines would be limited because our model focused on detecting an 
enhancing nodule next to an ablation zone. We overcome these expected drawbacks using multichannel images 
comprising different window levels/widths. Subsequently, we incorporated images of different window settings, 
which were clinically used, by channel registration and then used them for LTP prediction without considering 
optimal window settings for deep learning models. Third, we extracted random patches to be used as our 3D 
DCNN input; therefore, region proposal methods or methods that identify discriminative patches should be 
investigated in the future. Finally, only the arterial-phase images were trained in our model. Although we trained 
a limited number of images, our primitive model showed the feasibility of LTP candidates in patients who had 
undergone tumor ablation. Extended models, including all image phases, should be developed to achieve better 
performances.

In conclusion, LTP detection on follow-up CT images after local ablation for HCC using a DCNN dem-
onstrated high accuracy; multichannel registration was incorporated and the 3D-CNN can accurately predict 
and differentiate LTP candidates from others, including normal vasculature. This will be a useful tool for early 
detection of possible LTP candidates on follow-up CT images by reducing the effort of finding enhancing lesions 
for radiologists and allowing only delayed washouts to be checked.

Methods
Ethical considerations.  This retrospective study from a single tertiary center was approved by the Institu-
tional Review Board of Yonsei University’s Health System (IRB No: 4–2019-1123) and was granted a waiver of 
written informed consent for use of data. All methods were performed in accordance with the relevant guide-
lines and regulations. The study was conducted in compliance with the principles of the Declaration of Helsinki. 
The authors have complete control of the data and the information submitted for publication.

Participants.  One radiologist (S Lim, a certified abdominal radiologist with more than 10 years of experi-
ence in abdominal imaging and more than 7 years of experience in image-guided tumor ablation for hepatic 
tumors) reviewed the electronic medical records as well as picture archiving and communication system records. 
We identified 358 consecutive patients who underwent 399 sessions of image-guided hepatic tumor ablation, 
including radiofrequency ablation (RFA) or microwave ablation (MWA), between July 2016 and July 2018 
(Fig. 4). Eligibility criteria were designed to include the technical success achieved in treatment-naïve single 
HCC. Technical success was defined as whether the index tumor was covered completely by the ablation zone, 

Figure 3.   Prediction map for false-positive-predicted LTP region. LTP was detected (red rectangular) on 
the prediction map. However, we discovered that the detected region was far from the ablation zone. The 
unenhanced right hepatic vein (arrows), next to the contrast-enhanced hepatic vessels, was regarded as an 
ablation zone from artificial intelligence.
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according to the protocol, and was assessed immediately following contrast-enhanced CT12. LTP was defined as 
the appearance of new tumors at the ablative margin after local eradication of all tumor cells with ablation on 
follow-up imaging studies. For the LTP group, eligibility criteria were designed to include radiologically identi-
fied LTP during the follow-up period. Patients diagnosed with intrasegmental aggressive recurrence, without 
CT follow-up data, and those who underwent liver transplantation during the follow-up period were excluded13. 
We compared the ablation zone lesion by lesion on follow-up imaging studies of each patient for two years after 
ablation. All patients underwent follow-up studies including contrast-enhanced CT or MRI examinations, chest 
radiography, and laboratory tests including serum alpha-fetoprotein (AFP) one month after initial RFA, after 
three months, and thereafter every six months during the first two years. For the no LTP group, among 124 
patients without evidence of LTP during the follow-up period, 40 patients were selected by simple random sam-
pling. No LTP was defined as the absence of lesions showing arterial enhancement and delayed washout on the 
follow-up image (one more follow-up image provided data for training and test sets); additionally, no elevation 
of tumor markers was observed. Two radiologists (S Lim and YH Lee) reviewed all CT images of both LTP and 
no-LTP groups in consensus to check whether the images of patients met the eligibility criteria.

CT image acquisition.  CT was performed using one of three 64-, 128-, or 256-channel multidetector CT 
scanners (Siemens Healthineers, Erlangen, Germany; GE Healthcare, Waukesha, WI, USA). The routine four-
phase dynamic liver CT protocol at our institution includes precontrast, late arterial, portal venous, and delayed 
phases. After precontrast scanning, patients received an intravenous injection of 2.0 mL/kg of iodinated contrast 
medium, followed by a 20 mL saline bolus at a fixed injection duration of 30 s. Using the bolus-tracking method, 
late arterial phase images were acquired 18 s after the attenuation value reached 100 HU in the abdominal aorta. 
The portal venous and delayed phases began with delay times of 30 and 150 s after the late arterial and portal 
venous phases, respectively. The scanning parameters were as follows: 120 kV; 240 mAs; rotation time, 0.5 s; 
beam pitch, 2; and slice thickness, 3–5 mm.

Image preprocessing.  We preprocessed DICOM files to extract 3D patches from the CT volume voxel to 
define candidates for LTP classification. Full-resolution CT images (512 × 512 pixels) with different predefined 
window levels and widths were spatially co-registered to obtain high LTP conspicuity images (Fig. 5). The con-
spicuity of LTP in liver RFA was maximized in three 8-bit grayscale images with different window settings and 
registration into the following RGB images: liver window (window level (WL) = 60, window width (WW) = 400) 
for the red channel, ablation window (WL = 80, WW = 60) for the green channel, and tumor window (WL = 120, 
WW = 40) for the blue channel. A multichannel registration was applied because the network learns to focus on 
the ablated zone, as ablated tissues have lower HU densities compared with the surrounding non-ablated liver 
parenchyma in CT images. Furthermore, the tumor window enhanced the appearance of LTP near the ablated 
region.

CNN model and method.  Patch extraction.  The proposed CNN model utilizes 3D patches extracted 
from three-channel CT imaging to detect LTP. Three-dimensional volumetric voxels were converted to stacked 
2D pixels (image set) to obtain the center coordinate of the LTP, p = (x,y,z), which were annotated by one radiolo-
gist (S Lim) in the right anterior superior space of the open-resource software package, 3D Slicer (Version 4.10.2, 
available: http://​www.​slicer.​org).

Figure 4.   Flow diagram of study population.

http://www.slicer.org
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For each positive candidate, a 2D axial view covering a neighborhood of 32 × 32 pixels containing the (x,y) 
coordinate in the z^th slice was obtained. A false positive reduction stage was constructed by stacking eight 
adjacent slices centered on z, resulting in a patch measuring 32 × 32 × 8 (Fig. 5). Multiple patches were resampled 
along the X and Y axes to contain p. Negative class candidates in the area outside a sphere of radius (r = 15) cen-
tered at the top were sampled with a 32 × 32 × 8 patch for patients with LTP after RFA. Patients who underwent 
RFA with no incidence of LTP were also considered to incorporate a wider spectrum of patients for LTP screen-
ing; for these cases, random 32 × 32 × 8 patches were sampled to be added to the negative candidate dataset. An 
example of the extracted patches is shown in Fig. 5.

CNN architecture.  The proposed CNN model inputs 3D patches of three-channel CT imaging for LTP detec-
tion. The proposed 3D CNN is illustrated in Fig. 6. The input of the network was a 32 × 32 × 8 patch. After the 
input layer, the next three layers were convolution layers followed by max-pooling layers (Fig. 6). For the convo-
lutional layers, we applied a 3D kernel measuring 3 × 3 × 3 and a max pooling layer measuring 2 × 2 × 2. The first 
convolutional layer comprised 16 feature maps measuring 8 × 32 × 32; the second convolutional layer comprised 
32 feature maps measuring 4 × 16 × 16, and the third convolutional layer comprised 64 feature maps measuring 
2 × 8 × 8. Each convolutional layer produced multiple 3D outputs, and the max pooling layers reduced the size 
of the patches by half in all three axes. The last two consecutive fully connected layers contained 512 and 128 

Figure 5.   Schematic representation of image preprocessing/data augmentation steps and 3D-CNN model for 
LTP classification. The system includes a pipeline of the tumor region proposal technique.

Figure 6.   Illustration of the proposed 3D-CNN architecture. The network contains three convolutional layers, 
two max-pooling layers, and two fully connected layers. The number below each layer represents the feature 
map size after convolution/pooling.
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output units, followed by a final sigmoid layer. Rectified linear units were used in the convolutional and fully 
connected layers.

Tumor region proposal network.  To identify the tumor-positive predicted region, we built a pipeline to auto-
matically produce a bounding box localization of the pathological regions using a 3D-CNN trained for clas-
sification. Before predicting the test set, the (x,y,z)-center coordinates of the generated patches were stored in a 
dictionary during the image processing phase. In the prediction stage of the test set, image patches with classifi-
cation probabilities above the optimal threshold value that were selected based on sensitivity and specificity were 
summarized. The corresponding (x,y,z) coordinates of the positively predicted image patches were retrieved 
from the coordinate dictionary, as shown in Fig.  5, where the corresponding rectangular regions of interest 
were drawn on the axial slice of the entire CT scan. Training took less than 10 min on two CPUs (Xeon E5-2630 
2.2 GHz, Intel, Santa Clara, CA) with NVIDIA Quadro P5000 GPUs (NVIDIA Corp., Santa Clara, CA).

Experimental setup.  As our method focuses on the detection of LTP from whole abdominal CT images auto-
matically, large numbers of patches (as training samples) are required to facilitate model training. Positive class 
patches were extracted such that they contained the lesion of interest; in this study, 49 LTP lesions were observed 
in 34 patients. From the 49 LTP lesions, 36, 5, and 8 center coordinates composing the tumor regions for the 
training, validation, and test sets, respectively, which were annotated by experts, were randomly selected for pos-
itive patch extraction. For the negative class, the patches were extracted at the per-patient level considering two 
situations as follows: (1) Patches extracted from LTP positive patients that were sampled from normal regions 
outside of a sphere of radius (r = 15) at the LTP center point. A total of 34 cases were randomly divided into three 
sets: training (21 cases), validation (5 cases), and test (8 cases) for normal region extraction; (2) Normal regions 
from patients who underwent RFA but had no indication of LTP. A total of 40 cases were randomly divided into 
three sets: training (27 cases), validation (5 cases), and test (8 cases). Extracted patches that composed the test 
dataset were manually reviewed by a radiologist (S Lim) for the presence or absence of LTP and to ensure data 
validation quality.

As less than 2% of the voxels belonged to the LTP, whereas more than 98% of the voxels were non-LTP regions, 
the binary classifier must manage the high data imbalance problem, where randomly selected patches can easily 
cause the model to be overwhelmed by non-LTP features. Therefore, for each tumor, 20 patches containing the 
LTP center coordinates were sampled (patch extraction method) and random augmentations, including flip-
ping, shift, sheer, zoom in/out, and rotation were applied on the axial plane. By augmenting the existing data 
samples, the generalizability of our network to the positive class can be increased. Furthermore, as the negative 
class comprised more diverse characteristics/regions (aorta, kidney, rib bone, etc.) compared with the positive 
patches, we extracted twice the number of patch samples (n = 40) for each patient case. The patient and data 
distributions are provided in Table 3.

Statistical analysis.  Statistical analysis was performed using MedCalc software (MedCalc 19.2.1; MedCalc, 
Mariakerke, Belgium). A P value less than 0.05 was considered to indicate a statistically significant difference. 
Descriptive statistics were calculated for our population. The normality of the variables was analyzed using the 
Shapiro–Wilk test. Variables were compared, as appropriate, using Student’s t-test, χ2, or Fisher’s exact test.

In our experiments, we measured the following performance metrics of the 3D-CNN prediction: accuracy, 
sensitivity (recall), specificity, positive predicted value (precision), average precision, and area under the receiver 
operating characteristic curve (AUC). The accuracy was determined for the 3D-CNN model with the optimal 
threshold that was selected based on the average sensitivity and specificity of the validation set. Furthermore, the 
receiver operating characteristic (ROC) curves and precision–recall curves were plotted. The precision–recall 
curve shows the relationship between the positive predictive value (PPV, precision) and sensitivity (recall), pro-
viding complementary information to the ROC curves, which are especially sensitive to an imbalanced dataset. 
All metrics were computed using the Scikit-learn machine-learning module (0.21.3) available in Python.

Table 3.   Patient and data distribution of 74 patients used for training and testing. LTP, local tumor 
progression.

Training Validation Test Total

LTP group (n = 34)

Tumor/LTP (positive case)

 No. of tumors 36 5 8 49

 No. of patches 720 100 160 980

Non-Tumor/LTP (Negative class)

 No. of tumors 21 5 8 34

 No. of patches 840 200 320 1360

No LTP group (n = 40)

Non-Tumor/LTP (Negative class)

 No. of tumors 27 5 8 40

 No. of patches 1080 200 320 1600
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