
Vol.:(0123456789)

SN Computer Science (2022) 3:376
https://doi.org/10.1007/s42979-022-01271-1

SN Computer Science

ORIGINAL RESEARCH

Automating the Detection of Access Control Vulnerabilities in Web
Applications

Marc Rennhard1  · Malte Kushnir1 · Olivier Favre1 · Damiano Esposito2 · Valentin Zahnd2

Received: 24 September 2021 / Accepted: 24 June 2022
© The Author(s) 2022

Abstract
The importance of automated and reproducible security testing of web applications is growing, driven by increasing secu-
rity requirements, short software development cycles, and constraints with respect to time and budget. Existing automated
security testing tools are already well suited to detect some types of vulnerabilities, e.g., SQL injection or cross-site scripting
vulnerabilities. However, other vulnerability types are much harder to uncover in an automated way. One important repre-
sentative of this type are access control vulnerabilities, which are highly relevant in practice as they can grant unauthorized
users access to security-critical data or functions in web applications. In this paper, a practical solution to automatically
detect HTTP GET request-based access control vulnerabilities in web applications is presented. The solution is based on
previously proposed ideas, which are extended with novel approaches to enable completely automated access control testing
with minimal configuration effort, which in turn enables frequent and reproducible testing. An evaluation with seven web
applications based on different technologies demonstrates the general applicability of the solution and that it can automati-
cally uncover most access control vulnerabilities while keeping the number of false positives low.

Keywords  Automated testing · Web application security testing · Access control testing · Black box security testing ·
Dynamic web application security testing

Introduction

This article is an extended and revised version of our
work published in [1]. Compared to the original paper,
our work has been improved in three main areas. First, the
overall solution approach has been adapted (see “Solution
approach”), which results in an improved vulnerability
detection performance. Second, the evaluation has been
extended (see “Evaluation”) from the original four applica-
tions and now includes seven applications. And third, the
evaluation results are discussed in much more detail, which
results in an improved understanding of both the effective-
ness and the limitations of the presented approach.

Web applications are prevalent in today’s world and are
used for a wide range of services. This includes typical
end-user services such as information portals, e-banking,
e-shopping and social networks, but web applications are
also used for many other purposes such as configuring
devices attached to the Internet (e.g., switches, routers and
Internet of Things (IoT) devices) or controlling and monitor-
ing highly complex industrial processes as part of SCADA
systems.

This article is part of the topical collection “Information Systems
Security and Privacy” guest edited by Steven Furnell and Paolo
Mori.

 *	 Marc Rennhard
	 rema@zhaw.ch

	 Malte Kushnir
	 kusn@zhaw.ch

	 Olivier Favre
	 favr@zhaw.ch

	 Damiano Esposito
	 Damiano.Esposito@scanmeter.io

	 Valentin Zahnd
	 Valentin.Zahnd@scanmeter.io

1	 School of Engineering, Zurich University of Applied
Sciences, Technikumstrasse 9, Winterthur 8401, Switzerland

2	 Scanmeter GmbH, Bellariastrasse 12, Zurich 8002,
Switzerland

http://orcid.org/0000-0001-5105-3258
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01271-1&domain=pdf

	 SN Computer Science (2022) 3:376 376   Page 2 of 24

SN Computer Science

Many web applications provide access to security-critical
(sometimes also safety-critical) data or functions and cor-
respondingly, they are often attractive targets and are fre-
quently attacked [2]. Therefore, it is of highest importance
to implement and configure them in a secure way to increase
their resistance to attacks. Ideally, this includes employing a
secure development life cycle, where security measures are
appropriately considered during all phases of the develop-
ment process. One important part of this is security testing.
Security testing can be performed in different ways, ranging
from completely manual methods (e.g., manual source code
analysis), to semi-automated methods (e.g., analyzing a web
application using an interceptor proxy), to completely auto-
mated ways (e.g., analyzing a web application using a vul-
nerability scanner). Ideally, at least parts of security testing
should be automated as this increases efficiency and enables
continuous and reproducible security tests, which is getting
more and more important in light of today’s short software
development cycles.

To automate security testing of web applications, dif-
ferent methods can be used. The most popular approaches
include static and dynamic code analysis and vulnerability
scanning. Web application vulnerability scanners test a run-
ning application “from the outside” by sending specifically
crafted requests to the target and by analyzing the received
response. Various vulnerability scanners are available as
either commercial products or open source projects (see
[3] for an overview) and while these tools have different
strengths and weaknesses [4], they are in general well suited
to detect some types of web application vulnerabilities.

Web application vulnerability scanners are especially well
suited to detect technical vulnerabilities, which include, e.g.,
SQL injection (SQLi), cross-site scripting (XSS) or cross-
site request forgery (CSRF) vulnerabilities. The reason
for this is that in the case of technical vulnerabilities, the
responses received from the web application during vul-
nerability scanning often provide good evidence to deter-
mine whether a particular vulnerability exists or not. For
instance, if the vulnerability scanner sends JavaScript code
in a parameter of a GET or POST request and if the returned
HTML response includes this JavaScript code in its original
(non-sanitized) form, then it is basically proven that the web
application is prone to a reflected XSS vulnerability.

Logical vulnerabilities, on the other hand, are much more
difficult to detect for vulnerability scanners. Among the most
prominent of these logical vulnerabilities are access control
vulnerabilities, which allow users of a web application to
access data or functions that should not be accessible for
them. At first glance, it seems to be relatively easy for a
vulnerability scanner to detect such vulnerabilities as it is
usually possible to configure the required credentials (e.g.,
usernames and passwords) of different users so that the scan-
ner can interact with the web application under test using the

provided identities. However, the vulnerability scanner will
not be able to assess whether the access control rules are
enforced correctly unless it has additional information about
how the web application should work correctly. To illustrate
this, assume an e-shop should provide the functionality to
create and modify products only to authenticated users with
the role seller. If the scanner now analyzes the e-shop using
the credentials of a user that has the role customer and if the
scanner manages to modify a product, then this is an obvious
access control vulnerability and could easily be detected by
a human. But for the scanner, it is virtually impossible to
make a correct decision because it does not understand who
is allowed to do what in the application under test.

At the same time, access control vulnerabilities are highly
relevant and critical in practice. On the newest OWASP list
of the ten most critical vulnerability types in web applica-
tions (OWASP Top 10 2021 [5]), this vulnerability type
has moved up to the first position. Consequently, there is
a strong desire for solutions that can at least partly auto-
mate the detection of access control vulnerabilities. Several
approaches have been proposed in the past (see “Related
work”), including tools to assist a manual security tester to
do access control tests more efficiently, methods to extract
access control models from the source code so it can be
verified, methods where the access control model has to be
supplied to the scanner so it can verify its correct implemen-
tation, and fully automated solutions where a scanner first
tries to determine the access control model and then tries to
verify it by interacting with the web application.

While all these proposals have their merits, they usually
have limitations that prevent their wide applicability in prac-
tice. For instance, approaches that still require lots of manual
work are simply not suited for frequent and reproducible
testing of web applications. Also, requiring a formal speci-
fication of an access control model that can be supplied to
the scanner is rarely an option as such models are usually
not available in practice. Furthermore, some approaches are
dependent on the web application technology (i.e., program-
ming language or web framework) that is used, which usu-
ally means they have to be adapted if different technologies
are used. In addition, access to the source code is not always
granted when a web application of a third party is analyzed.
And finally, most of the proposed approaches were evalu-
ated using a very limited set of web applications (often just
one), which means that there are several open questions with
respect to the general applicability and usefulness of the
approaches.

In this paper, we present a solution that overcomes the
limitations of previously proposed approaches. Our solution
is based on existing ideas, which are extended and optimized
to enable completely automated, black box-based detection
of access control vulnerabilities in the context of HTTP
GET requests. The solution is applicable with minimal

SN Computer Science (2022) 3:376 	 Page 3 of 24  376

SN Computer Science

configuration effort to a wide range of web applications
without requiring access to the source code and without
requiring the availability of a formal access control model.
Our evaluation demonstrates that the solution can indeed be
applied to various types of web applications and that it can
uncover several vulnerabilities while keeping the number
of false positives low. As a result of this, the solution can
effectively be used in various scenarios, e.g., by penetration
testers to quickly and efficiently detect access control vulner-
abilities in a web application or by companies or third-party
security testing service providers to test web applications for
access control vulnerabilities continuously and in a repro-
ducible way, both during development and operation.

The remainder of this paper is organized as follows: The
next section provides an introduction to access control vul-
nerabilities in web applications. The subsequent sections
describe our solution to detect such vulnerabilities in an
automated way and the evaluation results. Then the solu-
tion approach and the evaluation results are discussed and
directions for future work are given. The penultimate section
covers related work and the last section concludes this work.

Access Control Vulnerabilities

Access control vulnerabilities in web applications can be
divided into two main categories: function-level and object-
level vulnerabilities. Function-level access control vulner-
abilities occur if a web application does not sufficiently
check whether the current user is authorized to access a
specific function (which often corresponds to a resource in
the web application). For instance, assume that the URL
https://​www.​site.​com/​admin/​viewc​ustom​ers is intended to
be accessible only by administrators of an e-shop to view
the registered customers. In this case, the resource admin/
viewcustomers identifies the function to view customers and
if a non-administrative user of the web application manages
to successfully access this function, then this corresponds
to a function-level access control vulnerability. Object-level
access control vulnerabilities occur if a user gets unauthor-
ized access to objects within a web application. For instance,
assume that a seller in an e-shop has legitimate access to edit
his own products that the product with id=123 belongs to
him, and that the URL https://​www.​site.​com/​editp​roduc​t &​
id=​123 grants him access to edit the product. If this seller
now changes the id in this URL so that it corresponds to a
product that belongs to another seller (e.g., using id=257 so
that the resulting URL is https://​www.​site.​com/​editp​roduc​
t &​id=​257) and if access to edit the product is granted by
the web application, then this corresponds to an object-level
access control vulnerability.

There are many possible root causes for such vulnerabili-
ties, including coding mistakes (e.g., forgetting to include an
authorization check or implementing the check incorrectly),
configuration errors (e.g., Cross-Origin Resource Sharing
(CORS) misconfigurations in the case of REST APIs), and
vulnerabilities in web application server software and web
application frameworks [6]. The impact of an access con-
trol vulnerability depends on the vulnerable component and
can range from information disclosure (e.g., an e-banking
customer who can view the account details of other custom-
ers) to unauthorized manipulation of data (e.g., a user of a
web-based auctioning platform who can modify the bids of
other users) up to getting complete access to and control of
the affected web application (e.g., an attacker that manages
to get access to the function to create a new administrator
account in the web application).

While access control vulnerabilities are relatively easy
to exploit (e.g., by incrementing an object identifier), they
are often difficult to discover. There are some tools that
can assist manual penetration testers when trying to find
such vulnerabilities (see “Related work”), but these tools
have limitations, in particular in the context of large web
applications. Large web applications can contain hundreds
of functions protected by different kinds of access control
mechanisms and typically use multiple user roles and com-
plex permission management systems. The combination of
all functions and roles can quickly result in a combinato-
rial explosion which makes comprehensive manual testing
impossible. Many penetration testers, therefore, usually rely
on their experience to find access control vulnerabilities
rather than systematically testing the entire web application.
The obvious problem with this approach is that it usually
results in testing only parts of the web application, which
means that testing coverage is often low and the probabil-
ity that possibly serious vulnerabilities are missed is high.
This underlines the need for better mechanisms to automate
the detection of access control vulnerabilities as presented
in this paper, since only a high degree of automation will
make it possible to test web applications thoroughly and
repeatedly.

To further stress the significance of access control vulner-
ability testing, it is important to mention that unlike tech-
nical vulnerabilities that can often be detected by analyz-
ing requests and looking for typical attack patterns, access
control vulnerabilities cannot be detected by looking for
anomalies in a request. For instance, if a request contains a
parameter id=’ UNION SELECT Username,Password from
User--, then this can easily be identified as an SQL injection
attack due to the very typical attack pattern and correspond-
ingly, a filtering device such as a Web Application Firewall
(WAF) can be configured to block such requests. However,
with requests that try to exploit access control vulnerabili-
ties, there are no suspicious patterns visible. For instance, if

https://www.site.com/admin/viewcustomers
https://www.site.com/editproduct%20&id=123
https://www.site.com/editproduct%20&id=123
https://www.site.com/editproduct%20&id=257
https://www.site.com/editproduct%20&id=257

	 SN Computer Science (2022) 3:376 376   Page 4 of 24

SN Computer Science

a seller is allowed to access one of his own products using
a parameter id=278 but then tries to access a product of
another seller using id=315, then both request look equally
innocent and as a result, there’s no practical way to define a
general rule in a filtering device such as a WAF to identify
the second request as malicious.

Solution Approach

The solution presented in this paper focuses on automated
detection of access control vulnerabilities using a black
box approach. Black box means that the solution analyses
a running web application by interacting with it “from the
outside” and that it neither requires nor makes use of any
internal information such as the source code or access con-
trol configurations.

The solution is able to detect function-level and object-
level access control vulnerabilities in the context of HTTP
GET requests. The main reason for the current focus on GET
requests is to minimize the risk of side effects and changes in
the application state that usually happen with POST, PUT,
PATCH or DELETE requests. These request types typically
trigger changes in the data and/or state of an application and,
therefore, can alter its appearance and functionality. As a
result of this, the application state would constantly change
during testing, making it very difficult to compare applica-
tion behavior when using different users.

The fundamental idea of how our solution determines
legitimate accesses in the web application under test is based
on the assumption that in most web applications, the web
pages presented to a user contain only links, buttons and
other navigation elements that can legitimately be used by
this user. For instance, navigation elements to access admin-
istrative functions in a web application typically only show
up after an administrator has successfully logged in and are
usually not presented to users that do not have administrator
rights. Based on this assumption, web crawling can be used
to determine the content which can be legitimately accessed
by different users of a web application, as web crawlers
mainly follow navigation elements that are presented to a
user by the web application.

This basic approach is not novel and there exist publica-
tions on it or that use of parts of it (see “Related work”).
However, what separates our solution from previous work
is that it is designed to be a truly practical approach that is
easily applicable to a wide range of web applications, that it
is highly automated without requiring manual effort beyond
providing a simple configuration file, and that it aims at opti-
mizing automated detection of vulnerabilities with the goal
to maximize true positives while minimizing false positives.
This is achieved using a strict black box approach and by
integrating several novel approaches in our overall solution,

in particular by combining crawlers with different strengths
(see “Crawling”), using a sequence of several filtering steps
to remove HTTP request/response pairs that are not relevant
when doing access control tests (see “Filtering”), and using
a multi-step validation approach to determine whether a pos-
sibly detected access control vulnerability is indeed a vulner-
ability or not (see “Validating”).

Prerequisites

The solution is based on two main prerequisites. The first
prerequisite is that one has to know the authentication mech-
anism used by the web application under test. This can easily
be determined by observing the HTTP traffic while access-
ing the application with a web browser and with the help of
an interceptor proxy or developer tools that are available for
several web browsers.

Most web applications use either cookie-based authenti-
cation with session IDs or token-based authentication with
JSON Web Tokens (JWT). Authentication with session
IDs is commonly used by applications following a classic
architecture and by popular frameworks such as Django,
Jakarta EE Spring or Ruby on Rails in their default configu-
ration. Token-based authentication is often used in applica-
tions based on a modern architecture where a JavaScript
frontend framework such as Angular, React or Vue com-
municates with a REST API in the backend. The solution
presented here supports both these authentication schemes.
The second prerequisite is that for each user account which
should be included in the analysis, authenticated session IDs
or tokens can be created and captured. This can be done
using the standard sign-up and login functionality of a web
application.

Specifying the authentication mechanism and supplying
corresponding authentication information for the users that
should be included in the analysis is the minimum configu-
ration required in our solution. Additional configuration is
possible and explained later in this section together with a
full configuration example.

Overall Workflow

Figure 1 illustrates the overall workflow of the presented
solution.

As inputs, the URL of the target web application, the
authentication mechanism, and authentication information
(e.g., authenticated session IDs, JWTs) of two users, U1 and
U2 , are required. These two users can have different roles
(e.g., an administrator and a seller in an e-shop) or they can
have the same role (e.g., two sellers in an e-shop that both
offer their own products). Note that the workflow described
in this and the following subsections is always based on
two authenticated users and determines access control

SN Computer Science (2022) 3:376 	 Page 5 of 24  376

SN Computer Science

vulnerabilities where U2 can illegitimately access resources
of U1 . However, this can easily be extended to more than two
users and also works if one of the users is an anonymous
(unauthenticated) user, as will be explained in “Testing of
multiple users and roles”.

In a first step, the crawling component is used to capture
all reachable content of the target web application when
using the authentication information of the two users and
when using the anonymous user. The data collected by
the crawling component is passed to the filtering compo-
nent, which removes data points from the crawling results
of U1 that are not relevant when doing access control tests
do determine what resources of U1 can illegitimately be
accessed by U2 . The filtered crawling results are then used
as input for the replaying component, which replays requests
that were captured when crawling with U1 using the identity
of U2 . This delivers the replaying results, which are passed to
the validating component. This final component analyses the
replaying results to determine the actual access control vul-
nerabilities, i.e., the resources of U1 that can illegitimately be
accessed by U2 . The individual components of this workflow
are explained in more detail in the following subsections.

Crawling

The crawling component receives the target URL, the
authentication mechanism, and authentication informa-
tion of two users U1 and U2 as inputs and uses two custom
crawlers, built with the popular crawling frameworks Scrapy
[7] and Puppeteer [8]. The workflow of this component is
shown in Fig. 2.

Combining two crawlers has several benefits. First, cover-
age improves by merging the results of two crawlers since
their underlying detection mechanisms vary. Second, by add-
ing the custom crawler based on Puppeteer, it is possible to
capture HTTP requests and responses that are executed as
part of JavaScript code due to user interaction with naviga-
tion elements in the browser, which are often requests to a
REST API. Many applications that are based on a modern
architecture dynamically load and modify the Document
Object Model (DOM) of a web page and can therefore not
be reliably crawled with a crawler based on Scrapy that relies
on parsing HTML documents. The custom crawler based on
Puppeteer, however, allows to control a real Chrome browser
instance and waits for a page to fully load all dynamic con-
tent before processing the page for any navigation links and
action elements such as buttons.

At first glance, it seems that using the Scrapy-based
crawler is redundant to using the Puppeteer-based crawler
as everything that is found by the first one should always
be also found be the second one. In most cases, this is true.
However, the Scrapy-based crawler is much faster than the
one based on Puppeteer because the latter always has to
wait for several seconds after calling a URL or performing
an action to make sure the resulting page has completely
been processed by the Chrome browser instance before
interacting with it. Therefore, in the case of web applica-
tions that follow purely a classic architecture, it is often
sufficient to only use the Scrapy-based crawler, which is
much faster than using both. With web applications that
follow a modern architecture, however, it is always recom-
mended to use both crawlers to maximize the number of
resources that are detected during crawling.

Both crawlers are used to crawl the target application
three times: One time for each of the users U1 and U2 for
which authentication information has been provided and
once without any authentication information to capture
content that is publicly accessible. Since the solution cur-
rently focuses on GET requests, no other request types are
used during crawling. The output of the crawling compo-
nent are three lists of HTTP request and response pairs
(one for U1 , one for U2 , and one for the anonymous user)
that resulted from the three crawling runs. Note that the
HTTP responses can include different content depending
on the corresponding request, e.g., an HTML document,
JSON data received from a REST API, or binary data in
case of an image or PDF document. Duplicates created
during crawling are removed from the lists, i.e., if a URL
is used multiple times when crawling with a certain user,
e.g., U1 , the corresponding request and response pair is
included only once in the list of U1.

Fig. 1   Access control testing
workflow

�Input:�
�- Target URL
�- Authentication
� �Mechanism
�- Authentication�Infor-
� �mation of U1 and U2

FilteringCrawling ValidatingReplaying

�Output:�
�Access Control�Vulne-
�rabilities:�Resources
�of U1 that�can illegiti-
�mately�be�accessed
�by U2

Custom
Crawler
based on
Scrapy

Custom
Crawler
based on
Puppeteer

�Input:�
�- Target URL
�- Authentication
� �Mechanism
�- Authentication�Infor-
� �mation of U1 and U2

�Output:
�Crawling Results

Fig. 2   Crawling component

	 SN Computer Science (2022) 3:376 376   Page 6 of 24

SN Computer Science

Filtering

The filtering component uses a sequence of four filters to
remove HTTP requests and responses that are not relevant
when doing access control tests in the context of U1 and U2 .
These filters analyze all HTTP request and response pairs
that were collected during crawling and discard pairs that
meet specific criteria. Figure 3 depicts the steps performed
during filtering.

The first filter, the public content filter, looks for content
that is accessible without any authentication. It compares
the URLs of the requests in the crawling results of U1 with
the URLs in the crawling results when no authentication
information was used. If there is an overlap, the content is
considered public information and therefore filtered out from
the crawling results of U1.

The second filter, the other users content filter, removes
content from the crawling results of U1 that is also present in
the crawling results of U2 . To do so, it compares the URLs of
the requests in the crawling results of U1 and U2 and if there
is an overlap, the content is filtered out from the crawling
results of U1 . The rationale here is that if a URL is found dur-
ing crawling with U1 and U2 , it is assumed that both users can
legitimately access the content and consequently, it must not
be considered in the context of access control tests with the
current two users and can therefore be filtered out.

Next, the static content filter filters out static content
from the crawling results of U1 that is not relevant for access
control decisions. This applies mostly to frontend-specific
content that is served as static files, e.g., CSS files, JavaS-
cript files, image files, etc. This is a configurable filter that
can be supplied with a list of file extensions that mark static
content. The filter will then filter out all requests that point
to files with these extensions. By default, CSS files, JavaS-
cript files and image files with well-known file endings are
filtered.

Finally, the standard pages filter filters out specific stand-
ard pages from the crawling results of U1 . Many web applica-
tions contain pages like “About Us” or contact forms that are
typically not relevant in access control testing scenarios. The
filter looks for keywords in URLs that indicate such pages.
It is preconfigured with a list of common keywords and can
optionally be customized. This can be helpful if the web
framework that was used to develop the web application is
known since many frameworks have well-known paths for
standard pages.

In the original paper [1], a fifth filter was used, identified
as content similarity filter. This filter checked whether the
remaining crawling results of U1 contains HTTP responses
that are equal or very similar to each other. This filter mainly
aimed at filtering out standard content that is missed by the
previous filter. For instance, some applications do not use
HTTP status codes to indicate that a page was not found, that
a redirect occurred, or that some other error happened, but
instead respond with an HTTP 200 status code and a custom
error page. This would have been detected by this filter and
the corresponding requests and responses would have been
removed from the crawling results of U1 . However, further
analyses in the context of additional evaluations led us to
the conclusion that this filter can possibly do more harm
than good. In particular, if multiple URLs in the crawling
results point to very similar content that is access control
sensitive, such content would be filtered out as well. For
instance, assume that when crawling with U1 , two different
URLs are found (where the difference can be as small as a
query parameter for sorting that is used in one case but not in
the other) that both point to the page that shows the full list
of registered users in the application. When using the con-
tent similarity filter, both URLs would be removed from the
crawling results of U1 . However, in case there is an access
control vulnerability that allows U2 to use one of these URLs
to illegitimately access the page with all registered user, this
could no longer be detected during the subsequent replaying
and validating steps as the URL has been removed. To pre-
vent such cases, we decided to no longer use this fifth filter.

The output of the filtering component is a list of filtered
HTTP request and response pairs of U1 . Its content is a sub-
set of the original crawling results when using U1 and it con-
tains the entries that were not removed by any of the four
filters of the filtering sequence.

Replaying

The replaying component takes the filtered list of HTTP
request and response pairs of U1 from the filtering compo-
nent as input and replays each request with the identity of
U2 , as illustrated in Figure 4.

The purpose of this is to learn the behavior of the appli-
cation when URLs that were found during crawling with U1
and that were not filtered out during the previous step are
accessed by U2 . If successful access is possible, then it could
be that an access control vulnerability is associated with the

Fig. 3   Filtering component

Public
� Content

Filter
�Input:
�Crawling Results

Static
� Content

Filter

�Standard
�Pages
Filter

Filtering Sequence

Other
User

�Content
Filter

�Output:
�Filtering Results

SN Computer Science (2022) 3:376 	 Page 7 of 24  376

SN Computer Science

corresponding request, but this first has to be verified by the
following validating component. The output of the replay-
ing component are the replaying results, i.e., a list of HTTP
requests that were replayed using U2 and the resulting HTTP
responses received from the application.

Validating

The final component, the validating component, takes the
results from the replaying component and determines, for
each HTTP request that was made during replaying, whether
an access control vulnerability was detected. To do this, the
validating component uses a series of validators, as illus-
trated in Fig. 5.

First, the status code validator checks whether the HTTP
response status code indicates successful access. Everything
except HTTP 200 status codes is treated as an access denied
decision, which means that no vulnerability is detected.
In most web applications, the application replies to GET
requests that it can handle with an HTTP 200 status code.
The other status codes are used to signal a redirection (codes
starting with 3, i.e., 3xx), a client error (4xx), or a server
error (5xx). If an application strictly follows these status

code conventions, permitted and denied access decisions
could be determined from the status code alone. In such
a scenario, a permitted access would result in a 200 status
code and all other status codes would indicate denied access.
In practice, however, many applications do not follow these
conventions. For example, an application could always reply
to a request with a 200 status code and show the user a
custom error page indicating the result of a denied access.
Badly formed requests, internal server errors or expired user
sessions would, however, still lead to status codes different
from 200. To summarize, anything other than a 200 status
code is considered as an access denied decision, but a 200
status code does not directly identify a permitted access and
needs to be analyzed further.

All responses that have a 200 status code are next ana-
lyzed by the regex validator. This validator looks for spe-
cific string patterns inside the response body to decide about
permitted and denied access, e.g., custom access denied
error messages that appear when an illegitimate access
is attempted. If there is a match, this is considered as an
access denied decision and consequently, no vulnerability is
flagged. Note that this validator must be configured manu-
ally and is, therefore, not used in the default configuration.

The third validator, the U1 content similarity validator,
checks whether the content of the response of the replayed
request is similar to the response of the original request
(details about the mechanism to compare contents will fol-
low in “Content similarity”). If the contents are sufficiently
similar, the request is kept as a potential vulnerability, oth-
erwise no vulnerability is flagged. The reason for using this
validator is because even if U2 can successfully access a
resource that was found when crawling with U1 , it does not
always indicate a vulnerability. For instance, assume U1 and
U2 are two sellers in an e-shop that offer products. As sellers,
both can access a resource that lists their own products, but
let us assume that the resource was only found when crawl-
ing with U1 . During replaying, U2 can successfully access
the resource and without this validator, this would wrongly
be flagged as a vulnerability. Using this validator, however,
no vulnerability would be reported because the two sellers
offer different products so the contents of the responses are
very likely not similar enough for the validator to indicate
a vulnerability. As another example, assume that during
crawling with U1 , a list of documents is received that can be
downloaded by U1 . U2 does not have the rights to download
documents so the URL to get the list was not found when
crawling with U2 . But now assume that the application is
implemented in a way that it simply returns an empty list
during replaying, when it is attempted to access the list using
U2 . From an access control point of view, this corresponds
to correct behavior. In this case, if this validator were not
used, a vulnerability would be reported, which would again
be wrong. But using the validator, it is recognized that the

�Input:
�Filtering Results

�Output:
�Replaying Results

Replaying filtered
requests of U1 using

the identity of U2

Fig. 4   Replaying component

�Input:
�HTTP Request and
�Response when
�replaying a Request

Status Code
Validator

Regex
Validator

HTTP 200 Not HTTP 200

Not
vulnerableMatch

U1 Content
Similarity
Validator

No Match

Vulnerable

No Match
Not

vulnerable Match

Not
vulnerableU2 Content

Similarity
Validator

Match

Not
vulnerable

No Match

Fig. 5   Validators used to validate the replaying results

	 SN Computer Science (2022) 3:376 376   Page 8 of 24

SN Computer Science

contents are significantly different, and consequently, no
vulnerability is reported.

The fourth and final validator is the U2 content similarity
validator. This validator was not used in the original paper
[1], but based on further analyses in the context of additional
evaluations, we gained new insight which led us to the con-
clusion that this validator improves the overall solution. The
validator compares the content received when replaying a
request with all contents that were received in responses
when crawling with U2 , using the same approach as in the
previous validator. If the similarity is sufficiently high for
any one of the comparisons, the request is not flagged as
a vulnerability. Otherwise, if no significant similarity can
be determined, the request is marked as vulnerable. The
rationale for this validator is that if U2 can access basically
the same content as U1 when replaying a request of U1 , but
if U2 could also access this content during crawling, then U2
apparently has legitimate access to this content. Therefore,
the corresponding request should not be flagged as vulner-
able. This validator helps significantly to reduce the number
of false positives that would be reported if the output of the
third validator were used as the final verdict. For instance,
assume that U1 and U2 use different URLs during crawling to
basically access the same content, either because the URL
paths indeed differ, because they use different default query
parameters (e.g., for sorting), or because the URL includes
an anti CSRF token. In all these cases, assuming that U2 can
indeed access the same content also via the corresponding
URL found during crawling with U1 , this would result in
a false positive after the third validation step. The fourth
step, however, will recognize that the content could also be
accessed when crawling with U2 and identify the request cor-
rectly as not vulnerable. Another positive side effect of this
final validation step is that it is also very efficient at remov-
ing requests that point to standard pages, such as custom
error pages. As discussed in “Filtering”, this was a feature of
the originally used content similarity filter that we removed
due to other problems. With the fourth validation step, this
desired “filtering effect” is brought back, but without the
negative side effects of the original filter.

The output of the validating component is a list of
requests that correspond to access control vulnerabilities,
i.e., resources of U1 that can illegitimately be accessed by U2.

Content Similarity

The third and fourth validators used by the validating com-
ponent (see “Validating”) determine the similarity of con-
tents of HTTP responses.

There are different approaches to compare such con-
tents for similarity. One option is to directly compare the
contents for equality. While fast and simple, this has the
major drawback that it cannot detect even the smallest

differences between two contents. In practice, when send-
ing the same request twice, there is often no guarantee
that the responses are exactly the same because of, e.g.,
dynamic elements such as server-generated CSRF tokens
or timestamps. Therefore, a better approach is required to
cope with such differences.

The original paper [1] used fuzzy hashing to solve this.
Instead of comparing two contents directly, fuzzy hashes
of each content are computed and compared for similarity.
To do this, two different fuzzy hashing algorithms were
used, ssdeep [9] and tlsh [10]. These algorithms were cho-
sen because tlsh has been proven to perform well when
comparing HTML documents [11] while ssdeep is one
of the best known and most widely used fuzzy hashing
algorithms.

In the meantime, further analysis led us to the conclu-
sion that using fuzzy hashing is not the best way to deter-
mine the similarity of contents, for several reasons:

•	 Even if two contents differ significantly when view-
ing them in the browser, fuzzy hashing may classify
them as similar. For instance, in the case of an e-shop
application, two different products when viewed in the
browser may look very differently. However, as the
entire structure of the underlying HTML documents
that define the page layout are the same in both cases,
it may easily be that 95% of the two HTML docu-
ments are exactly the same as the content visible in the
browser is only a small portion of the entire document.
As a result of this, using fuzzy hashing, it is likely the
two contents will be classified as quite similar.

•	 Web pages often contain standard headers, footers and
navigation areas that typically do not contain sensitive
information and that are usually present on all or most
web pages within a specific web application. This fur-
ther distorts determining the similarity of HTML docu-
ments by making them more similar than they would be
if the focus were only on the relevant content.

•	 Fuzzy hashing is not robust to sorting. Assume that
the two contents to be compared are basically the same
web page with the same list of users, but the sorting
of the users is different. In this case, although the two
contents are obviously the same, fuzzy hashing likely
classifies them as quite differently.

•	 Fuzzy hashing is optimized to work well with signifi-
cant amounts of data. For instance, ssdeep returns a
warning when used with less than 4’096 bytes of data
[12]. With relatively big HTML document, this is usu-
ally not a problem. However, JSON responses often
contain relatively small amounts of data and as a result
of this, fuzzy hashing has sometimes difficulties to cope
with JSON data.

SN Computer Science (2022) 3:376 	 Page 9 of 24  376

SN Computer Science

Due to these limitations, we developed a different approach
to compare the similarity of two contents. In the case of
HTML documents, this is done as follows:

1.	 Completely remove all aside, footer, header, link, meta,
nav and script tags. The contents of these tags are usu-
ally either not visible, contain standard headers and foot-
ers at the top and bottom of the web page, or mainly
serve to navigate the web application. Optionally, it is
also possible to configure additional tags that should be
removed (see “Configuration example”).

2.	 Of the remaining document, extract all textual elements
that are visible in the browser, such as table headings,
table content, link texts, button texts, labels and values
of input fields.

To illustrate this, Fig. 6 shows a page of the Kimai web
application that will be discussed in more detail in “Test
application 3: Misago”.

After processing the corresponding HTML document
(that has a size of 34’047 bytes) as described above, 39 tex-
tual elements as illustrated in Fig. 7 remain. In mathematical
terms, this is a multiset of textual elements as elements may
be present multiple times in an HTML document.

By comparing the textual elements with the visible web
page in Fig. 6, one can easily see that they mostly corre-
spond to the elements that are visible in the right part of the
web page, which is the actual main content of the page. The
side bar on the left used for navigation has been filtered out
in the first step of the approach described above. There are
some textual elements included in Fig. 7 that are not directly

Fig. 6   Web page of Kimai as viewed in the browser

	 SN Computer Science (2022) 3:376 376   Page 10 of 24

SN Computer Science

visible in Fig. 6, e.g., Superadmin and Teamlead1, because
they are hidden behind the drop-down lists on the web page.

To determine the content similarity of two HTML docu-
ments, the two multisets that contain their textual elements
are used. It is calculated by dividing the size of the intersec-
tion of the two multisets by the size of the larger of the two
multisets. Expressed as a formula, the content similarity CS
of the two sets TE1 and TE2 that contain the textual elements
of two HTML documents is expressed as follows:

This results in a value of CS between 0 and 100. If
the two multisets are the same, then CS = 100 . If they
are disjoint, then CS = 0 . If TE1 = {a, a, b, c, d, e} and
TE2 = {a, a, b, d, e, f , g, g} , i.e., four textual elements are
present in both multisets and the larger of the two multisets
has eight elements, then CS = 50.

This new approach to determine the content similar-
ity solves the issues that existed with the previously used
method. First of all, the focus is now on the actual visible
parts of the web page while irrelevant parts of the HTML
documents such as tags and the standard content of headers,
footers and navigation areas are ignored. Second, the new
approach is insensitive to any sorting order of the relevant
elements on a web page as calculating the content similar-
ity according to (1) only considers the textual elements per
se and not any ordering. And third, unlike fuzzy hashing,
the method works well with any size of HTML documents.

In the case of JSON data, the data are processed differ-
ently. Just like with HTML documents, the goal is to have a
multiset of relevant textual elements that are included in the
JSON data. In general, JSON data contain only or mostly rel-
evant data and in particular, they usually do not contain for-
matting information such as HTML tag. Therefore, no data
is removed from the JSON data. To transform JSON data
into a multiset of textual elements, the JSON data structure
is flattened. To illustrate this, Fig. 8 shows a simple JSON
data structure received from the Misago web application
that will be discussed in more detail in “Test application 7:
Kimai”.

As one can see in Fig. 8, JSON data can include multiple
key-value pairs that have the same key. For instance, the
key id shows up three times, but each time, it identifies a
different object. The topmost id identifies a specific message

(1)CS = 100 ⋅
|TE1 ∩ TE2|

max(|TE1|, |TE2|)
.

within Misago while the other two ids identify two differ-
ent likes this message received. Therefore, when extracting
textual elements from JSON data, one should not only use
the innermost key-value pairs, but for each pair, one should
also consider the key(s) of the surrounding JSON object(s)
to clearly separate the textual elements. For instance, the
textual element resulting from the key-value pair “id”: 4
should also include the key of the surrounding JSON object,
which is last_likes.

Figure 9 shows the resulting multiset when extracting the
textual elements from the JSON data in Fig. 8, i.e., when
flattening it.

As one can see, all extracted key-value pairs also contain
the key(s) of the surrounding JSON element(s) (if there is/
are any). For instance, the key-value pair “id”: 4 within
the JSON object with key last_likes results in the textual
element last_likes_id:4. Note that double quote characters
in the JSON data are omitted when extracting the textual
elements.

To determine the content similarity of two JSON data
structures, the two multisets that contain their textual ele-
ments are used in formula (1), i.e., exactly the same formula
as with HTML documents is used.

If the content contains something else than an HTML
document or JSON data, e.g., a binary PDF document or
an image, no textual elements are extracted and the entire

Fig. 7   Textual elements
extracted from the Kimai web
page in Fig. 6

{Kimai - Time Tracking, Timesheets, Edit record, From, 2021-07-08
12:38, To, 2021-07-08 13:32, Duration, 00:54, Customer, Customer1,
Customer2, Project, Project1, Activity, Activity1, Description,
Timesheet1, Tags, User, Superadmin, Superadmin2, Teamlead1, Teamlead2,
User1, User2, Fixed rate, , 100.00, Hourly rate, , 100.00, Exported,
1, Billable, 1, Save, Back, Reset}

{
"id": 6,
"likes": 2,
"last_likes": [

{
"id": 4,
"username": "member1"

},
{

"id": 2,
"username": "moderator1"

}
],
"is_liked": true,
"detail": [

"ok"
]

}

Fig. 8   JSON data received from Misago

SN Computer Science (2022) 3:376 	 Page 11 of 24  376

SN Computer Science

content is treated as “one big textual element”. Conse-
quently, when comparing such documents, the determined
similarity can only be 100 if the contents are equal or 0 if
they are different.

One final question remains: What threshold should be
used to decide whether two contents are considered similar?
This has been determined by experimentation during the
evaluation (see “Evaluation”), which led to the following
choice of similarity thresholds:

•	 The third validator of the validating component (see
“Validating”) uses a threshold of 80. This means that if
there is an overlap of 80% or more of the textual elements
extracted from the two contents that are compared, then
they are considered similar.

•	 The fourth validator of the validating component (see
“Validating”) uses a threshold of 95, which means an
overlap of at least 95% is required for similarity. The
reason for using a higher threshold compared to the third
component is to make sure that potential vulnerabilities
identified after the third component are only filtered out
if there is an almost complete overlap of the content
received during replaying with content received when
crawling with U2.

Testing of Multiple Users and Roles

As mentioned in “Overall work”, the workflow in Fig. 1
can determine vulnerabilities where U2 can illegitimately
access resources of U1 . However, there are often more than
two users and roles that should be considered. To support
this, the workflow is simply used repeatedly for each pair

of users or roles that should be tested, where U2 can also
be the anonymous (unauthenticated) user. This can easily
be automated by writing a wrapper program that repeatedly
executes the entire workflows for all user pairs.

For example, if an application provides three user roles
administrator (A), vip user (V) and standard user (S), and if
the anonymous user (Y) should also be considered and one
wants to find vulnerabilities between each pair of distinct
users or roles, then nine runs of the entire workflow would
be done based on the pairs (A,V), (A,S), (A,Y), (V,A), (V,S),
(V,Y), (S,A), (S,V) and (S,Y). Note that if the anonymous
user is used for U2 , the entire workflow basically works as
described above, but crawling with the unauthenticated user
is omitted (as this is already done when crawling with U2 )
and consequently, the public content filter is also not used.

Configuration Example

To give an idea about the configuration that is required for
the solution to detect vulnerabilities based on two users,
Fig. 10 shows the default configuration file.

The first two sections target and auth are self-explana-
tory and must be specifically configured. As can be seen,
the required configuration effort is small. The third section
options can be adapted depending on the web application
under test, which may improve vulnerability detection. The
parameters in this section mean the following:

•	 do_not_call_pages: URLs that the crawlers should not
follow, e.g., to avoid logging themselves out.

•	 static_content_extensions: Extensions of static content
that are used by the static content filter.

Fig. 9   Textual elements
extracted from the Misago
JSON object in Fig. 8

{id:6, likes:2, last_likes_id:4, last_likes_username:member1,
last_likes_id:2, last_likes_username:moderator1, is_liked:True,
detail:ok}

Fig. 10   Configuration example target:
target_url: https://www.site.com
target_domain: site.com

auth:
auth_user_1: Cookie cookie-value-user-1
auth_user_2: Cookie cookie-value-user-2
username_user_1: userA
username_user_2: userB

options:
do_not_call_pages: logout,logoff,log-out
static_content_extensions: js,css,img,jpg,png,svg,gif
standard_pages: about.php,credits.php
regex_to_match:
tags_to_remove:
threshold_validator_3: 80
threshold_validator_4: 95

	 SN Computer Science (2022) 3:376 376   Page 12 of 24

SN Computer Science

•	 standard_pages: Standard pages that are used by the
standard pages filter.

•	 regex_to_match: The regular expression used by the
regex validator (empty per default).

•	 tags_to_remove: Additional HTML tags that should be
removed from HTML documents by the two content sim-
ilarity validators. This can be used if, e.g., an application
uses non-standard tags for navigation areas (empty per
default).

•	 threshold_validator_3/threshold_validator_4: Thresh-
olds for the third and fourth validator of the validating
component. The default values 80 and 95 have demon-
strated to work well during the evaluation.

Implementation

The described solution was implemented as a fully func-
tional prototype using Python. To capture all requests and
responses made by the crawling component, a web proxy
was built based on the proxy library mitmproxy [13]. The
proxy saves all requests and responses plus additional meta
data (e.g., which user authentication information was used
for the request and which crawler was used) to a database.
For the database, SQLite [14] is used.

The prototype implementation does not require any spe-
cial hardware. During development and evaluation, a stand-
ard Linux-based server system with 4 CPU cores and 8 GB
RAM was used.

Evaluation

To evaluate the prototype and the entire solution approach,
a set of test applications is required, each containing at least
one access control vulnerability. To create such a set, access
control vulnerabilities were added to six available web appli-
cations by modifying the application code or access control
configurations. In addition, we used one web application
with a vulnerability that has been publicly disclosed. In total,
the test set consists of seven web applications that represent
a diverse set of traditional and modern web technologies
and frameworks.

Compared to the original paper [1], the evaluation
contains three additional applications. Sections “Test
Application 1: Marketplace”–“Test Application 4: Word-
Press” include the four applications that were already
evaluated in the original paper while “Test Application
5: Magento”–“Test Application 7: Kimai” contain three
new applications. Also, the focus in the original paper was
mainly on a quantitative analysis of the filtering effective-
ness of the different stages of the filtering component, the
number of vulnerabilities that could be detected, and the
number of false positives. While this analysis served well to

demonstrate that the overall approach works in principle, it
provided limited insight why vulnerabilities were missed in
detail or why false positives occurred.

The evaluation in this paper will, therefore, not focus on
the aspects that were already discussed in the original paper.
Instead, there will be a detailed discussion of why a spe-
cific vulnerability could be detected or not, why a specific
false positive was reported, and what improvements may
further be possible to increase the vulnerability detection
performance of the solution. This will provide much deeper
insights than the evaluation in the original paper and will
significantly help to understand the true possibilities and
limitations of the solution.

Unless stated otherwise, the default options as shown in
Fig. 10 are used during the evaluation.

Test Application 1: Marketplace

The first application used for evaluation is a very simple web
shop application that is used at our university for educational
purposes. It is based on Node.js Express and uses a classic
architecture where the browser gets complete HTML docu-
ments from the server that do not include any JavaScript
code. Also, with about ten different resources (URLs), the
application is small in scope and, therefore, well suited as a
starting point to evaluate the solution. The application has
an administrative area where users with the appropriate roles
can add and delete products that are offered in the shop and
view and delete the purchases that were made in the shop.
The two relevant roles in this context are the following:

•	 Role Product Manager (P): can add and delete products.
•	 Role Sales (S): can view and delete purchases.

One access control vulnerability (identified as V1 ) was added
to the application:

•	 V1 is located in the Add Product functionality, which
should only be accessible by users with the role P. Due
to the vulnerability, every authenticated user (i.e., also
users with role S) can access this resource to add a prod-
uct. The URL to access this resource is as follows1: http://​
www.​site.​com/​admin_​produ​ct_​add

To evaluate whether V1 can be detected, a user with role P
is used as U1 and a user with role S is used as U2 as inputs
to the entire workflow and the crawling component (see
Figs. 1 and 2). After the filtering component (see Fig. 3),

1  For simplicity and for all web applications included in the evalu-
ation, we write http independent of whether http or https is used to
access the web application and www.site.com for the host name.

http://www.site.com/admin_product_add
http://www.site.com/admin_product_add

SN Computer Science (2022) 3:376 	 Page 13 of 24  376

SN Computer Science

only the vulnerable resource http://​www.​site.​com/​admin_​
produ​ct_​add is left and anything else has been filtered out.
Next, during the replaying component (see Fig. 4) this URL
is replayed with U2 , which—due to the vulnerability—works
and creates an HTTP response with status code 200. Finally,
during the validating component, it is determined whether
this URL is vulnerable or not using the four validators illus-
trated in Fig. 5:

1.	 The status code validator sees that the status code of the
response is 200, so the next validator is called.

2.	 The regex validator does nothing, as no regular expres-
sion is configured, so the next validator is called.

3.	 The U1 content similarity validator compares the HTML
document when replaying the URL with the HTML doc-
ument that was received when crawling with U1 . As both
documents are exactly the same, the content similarity
value according to (1) results in a value of 100, which is
obviously above the similarity threshold of 80. There-
fore, the next validator is called.

4.	 The U2 content similarity validator compares the HTML
document when replaying the URL with all HTML doc-
uments that were received when crawling with U2 . As all
these documents are very different from the one received
during replaying, the maximum similarity value accord-
ing to (1) is 17, which is clearly below the similarity
threshold of 95. As a result of this, the URL http://​www.​
site.​com/​admin_​produ​ct_​add is correctly identified as a
vulnerability.

As only one URL is remaining after the filtering component
no further URLs are replayed and consequently, there are
no false positives.

Overall, this first evaluation demonstrates that the solu-
tion works well with a simple application and—in this
case—delivers an optimal result: The solution could iden-
tify the vulnerability without reporting any false positives.
Table 1 summarizes the evaluation results of the Market-
place application.

Test Application 2: Bludit

Bludit [15] is a Content Management System implemented
in PHP that uses a classic architecture where most of the
logic is implemented in the backend. It contains almost

200 different URLs, so it is a much bigger application
than the first one and therefore better suited to evaluate the
effectiveness of the overall approach. It has an extensive
privileged area where authenticated user can add, modify
and delete content. The roles we are considering here are
the following:

•	 Role Author (T): create, modify and delete own content
•	 Role undefined: all permissions of T; in addition create,

modify and delete any content of any user, change the
appearance of the website, install plugins, manage user
accounts, and change numerous settings

In this application, three different access control vulnerabili-
ties V1–V3 were implemented:

•	 V1 is located in the plugin settings area, which should
only be accessible by users with role A. Due to this vul-
nerability, users with role T can access the resources
where all plugin settings can be viewed and modified.
The URL to access such a resource is, e.g., as follows:
http://​www.​site.​com/​admin/​confi​gure-​plugin/​plugi​nCate​
gories

•	 V2 is similar to V1 but affects a different resource, namely
the page where a user with role A can view and change
general website settings. The URL to access this resource
is as follows: http://​www.​site.​com/​admin/​setti​ngs

•	 V3 allows users with role T to get access to resources
where content of other users with role T can be modified.
The URL to access such a resource is, e.g., as follows:
http://​www.​site.​com/​admin/​edit-​conte​nt/​conte​nt-​of-​autho​
r1

As Bludit uses non-standard tags for the navigation area, the
tags_to_remove options (see Fig. 10) was set to ’class’:’nav
flex-column pt-4’. This allows the content similarity valida-
tors to correctly remove the navigation areas.

To evaluate whether V1 can be detected, a user with role
A is used as U1 and a user with role T is used as U2 . The
corresponding URL is found during crawling with U1 , is
not filtered out by the filtering component, and is therefore
replayed. The content similarity determined by the U1 con-
tent similarity validator is 100 (and, therefore, ≥ 80 ), so the
textual elements extracted from the HTML document during
replaying are exactly the same as the ones extracted from
the HTML document received when crawling with U1 . All
content similarities determined by the U2 content similarity
validator are 25 or lower (and therefore < 95 ). Consequently,
V1 is correctly detected.

This vulnerability serves well to illustrate why removing
navigation areas is important before the content similarity is
determined. Figure 11 shows the web pages received when
accessing the vulnerable URL http://​www.​site.​com/​admin/​

Table 1   Summary of evaluation results of Marketplace

Vuln. URL Detected

V1 http://​www.​site.​com/​admin_​produ​ct_​
add

Yes

No false positives

http://www.site.com/admin_product_add
http://www.site.com/admin_product_add
http://www.site.com/admin_product_add
http://www.site.com/admin_product_add
http://www.site.com/admin/configure-plugin/pluginCategories
http://www.site.com/admin/configure-plugin/pluginCategories
http://www.site.com/admin/settings
http://www.site.com/admin/edit-content/content-of-author1
http://www.site.com/admin/edit-content/content-of-author1
http://www.site.com/admin/configure-plugin/pluginCategories
http://www.site.com/admin_product_add
http://www.site.com/admin_product_add

	 SN Computer Science (2022) 3:376 376   Page 14 of 24

SN Computer Science

confi​gure-​plugin/​plugi​nCate​gories with users with roles A
and T.

As can easily be seen in Fig. 11, the main content is
the same in both cases. However, the navigation areas on
the left looks quite different in the two cases. The reason
is that although the resource is vulnerable, the navigation
area always corresponds to the one of the current role. If
the navigation area were not removed before extracting the
textual elements from the HTML documents, the resulting
multisets of textual elements would be quite different from
each other. In that case, also because the main content only
contains relatively few textual elements, the resulting con-
tent similarity value determined by the U1 content similarity
validator would only be about 60 and as a result of this, the
URL would wrongly be classified as not vulnerable.

To check whether V2 can be detected, the same users as
in the case of V1 are used. The result of this is that V2 cannot
be detected because the vulnerable URL is filtered out by
the other user content filter. The reason for this is a strange
application design choice: for the privileged area, the devel-
opers chose to implement two different navigation menus,
one for devices with a small and one for devices with a big-
ger screen. While the navigation links are correctly imple-
mented in one of these menus, the other one exposes all
navigation links, even those a user is not permitted to visit.
Therefore, during crawling, the vulnerable URL can also
be found by U2 (i.e., by a user with role T) and is, therefore,
filtered out. This is a case where the fundamental assump-
tion (see beginning of “Solution approach”) is not valid and,
therefore, the vulnerability cannot be detected by design.

Fig. 11   Response by Bludit when accessing http://​www.​site.​com/​admin/​confi​gure-​plugin/​plugi​nCate​gories with role Administrator (A) (top) and
Author (T) (bottom)

http://www.site.com/admin/configure-plugin/pluginCategories
http://www.site.com/admin/configure-plugin/pluginCategories

SN Computer Science (2022) 3:376 	 Page 15 of 24  376

SN Computer Science

To evaluate whether V3 can be detected, two different
users with role T are used as U1 and U2 . The correspond-
ing URL is found during crawling with U1 , is not filtered
out by the filtering component, and is, therefore, replayed.
The content similarity determined by the U1 content simi-
larity validator is 100 ( ≥ 80 ) and content similarities deter-
mined by the U2 content similarity validator are all below 95.
Therefore, V3 is correctly detected.

No false positives are reported. Note that in the original
paper, two false positives were mentioned. They occurred
with several user combinations and affected the URLs http://​
www.​site.​com/​admin/​edit-​user/​user1 and http://​www.​site.​
com/​admin/​user-​passw​ord/​user1, where user1 can be any
existing username. These URLs point to the pages to change
user settings and user passwords. During crawling, U1 finds
the URLs with its own username (e.g., user1) and U2 also
finds the URLs with its own username (e.g., user2). There-
fore, during replaying, U2 accesses the URLs with the user-
name of U1 , i.e., user1. However, the application is imple-
mented in a way that when accessing these URLs with the
username of another user, the web application returns an
HTML document as if the own username were used. This
means that if U2 requests http://​www.​site.​com/​admin/​edit-​
user/​user1, the web application delivers exactly the same
content as when accessing http://​www.​site.​com/​admin/​edit-​
user/​user2. As a result of this, the content similarity deter-
mined by the U1 content similarity validator is 100. As the
fourth and final validator of the validating component was
not used in the original paper, false positives were reported.
With the newly introduced U2 content similarity validator,
however, it is recognized that the content received during
replaying was already received when crawling with U2 , and
therefore, the URL is correctly classified as not vulnerable.
This nicely illustrates the usefulness of the newly added
fourth validator.

This second evaluation demonstrates that the solution
can also handle web applications that contain a significant
number of URLs, that it is important to remove navigation
areas before the content similarity is determined, and that
the new fourth validator can be helpful to prevent false
positives. However, it can also be seen that false negatives
( V2 in this case) may occur if the application violates the

fundamental assumptions that users can only crawl content
they can legitimately access. Table 2 summarizes the evalu-
ation results of Bludit.

Test Application 3: Misago

Misago [16] provides a web forum solution based on Django
and React. It uses a modern web application architecture,
meaning that a lot of functionality is implemented client-
side using JavaScript code while the backend provides a
REST API. For such an application, the Puppeteer-based
crawler is paramount to discover the API endpoints. Aside
from being a good test application to evaluate the crawling
component of the solution, it is also a good case study to
find out whether the content similarity validators can handle
JSON data that are mostly used by modern web application
architectures to exchange data between front- and backend.
With more than 800 URLs detected during crawling, the
application is significantly bigger than the previous ones.
The following three roles are considered in this evaluation:

•	 Role Member (M): create own threads and participate in
the threads of others

•	 Role Moderator (O): all permissions of M; in addition
moderation functions such as removing posts and ban-
ning members

•	 Role Administrator (A): all permissions of M; in addition
access to the administrator interface to do forum manage-
ment, user management, etc.

In this application, three different access control vulnerabili-
ties V1—V3 were implemented:

•	 V1 is located in the administrator interface, specifically in
the resource that lets a user with role A view and manage
users of a forum. The vulnerability allows users with role
O to view the complete list of users of the forum. The
URL to access this resource is as follows: http://​www.​
site.​com/​admin​cp/​users

•	 V2 can be found in a feature called Private Thread, which
allows users to start a private conversation with anyone
they invite to the thread. The vulnerability allows any
authenticated user to view the content of any private
thread. This vulnerability manifests itself both in the
navigation URL and in the REST API in the backend,
which serves the content of the thread. The navigation
URL to access such resources is, e.g., http://​www.​site.​
com/p/​test-​thread/5 and the corresponding URL to access
the API is, e.g., http://​www.​site.​com/​api/​priva​te-​threa​
ds/5/​posts/9/​post_​editor.

•	 V3 is present in the user profile. When trying to change
details of the own profile, a request to an API endpoint
is first made to gather the current user information. The

Table 2   Summary of evaluation results of Bludit

Vuln. URL Detected

V1 http://​www.​site.​com/​admin/​confi​
gure-​plugin/​plugi​nCate​gories

Yes

V2 http://​www.​site.​com/​admin/​setti​ngs No
V3 http://​www.​site.​com/​admin/​edit-​

conte​nt/​conte​nt-​of-​autho​r1
Yes

No false positives

http://www.site.com/admin/edit-user/user1
http://www.site.com/admin/edit-user/user1
http://www.site.com/admin/user-password/user1
http://www.site.com/admin/user-password/user1
http://www.site.com/admin/edit-user/user1
http://www.site.com/admin/edit-user/user1
http://www.site.com/admin/edit-user/user2
http://www.site.com/admin/edit-user/user2
http://www.site.com/admincp/users
http://www.site.com/admincp/users
http://www.site.com/p/test-thread/5
http://www.site.com/p/test-thread/5
http://www.site.com/api/private-threads/5/posts/9/post_editor
http://www.site.com/api/private-threads/5/posts/9/post_editor
http://www.site.com/admin/configure-plugin/pluginCategories
http://www.site.com/admin/configure-plugin/pluginCategories
http://www.site.com/admin/settings
http://www.site.com/admin/edit-content/content-of-author1
http://www.site.com/admin/edit-content/content-of-author1

	 SN Computer Science (2022) 3:376 376   Page 16 of 24

SN Computer Science

vulnerability allows all authenticated users to get the
details of any other user, except of users with role A.
This vulnerability is only present in the REST API, but
not in the navigation URL and is therefore a good test
case to see whether the solution can detect access con-
trol vulnerabilities that can only be reached directly via
JSON-based REST APIs. The URL to access the API is,
e.g., http://​www.​site.​com/​api/​users/4/​edit-​detai​ls.

To evaluate whether V1 and V2 can be detected, a user with
role A is used as U1 and a user with role O is used as U2 . In
the case of V1 , the vulnerable URL is found during crawling
with U1 , is not filtered out by the filtering component, and is
therefore replayed. The content similarity determined by the
U1 content similarity validator is 97 ( ≥ 80 ). The small dif-
ference is due to the fact that the HTML documents include
some information about the server-side processing time in
ms, which is slightly different in both cases. This shows that
it is important to not require a perfect match when compar-
ing data received from the application because as even seem-
ingly identical responses often have small differences such
as statistical information, the username of the current user,
etc. All content similarities determined by the U2 content
similarity validator are 25 or lower ( < 95 ). Consequently,
V1 is correctly detected.

In the case of V2 , both URLs are found during crawling
with U1 , are not filtered out by the filtering component, and
are therefore replayed. With URL http://​www.​site.​com/p/​
test-​thread/5, the content similarity determined by the U1
content similarity validator is 93 ( ≥ 80 ) and all content
similarities determined by the U2 content similarity valida-
tor are 61 or lower ( < 95 ). Consequently, this URL is cor-
rectly identified as vulnerable. With URL http://​www.​site.​
com/​api/​priva​te-​threa​ds/5/​posts/9/​post_​editor, the content
similarity determined by the U1 content similarity validator
is 100 ( ≥ 80 ) and all content similarities determined by the
U2 content similarity validator are 57 or lower ( < 95 ). There-
fore, this URL is also correctly identified as vulnerable.

Finally, for V3 , two different users with role M are used as
U1 and U2 . The corresponding URL is found during crawling
with U1 , is not filtered out by the filtering component, and
is therefore replayed. The content similarity determined by
the U1 content similarity validator is 100 ( ≥ 80 ) and content
similarities determined by the U2 content similarity validator
are at most 82 ( < 95 ). Therefore, V3 is correctly detected.

In the original paper, testing Misago produced several
false positives. Many of them could be removed because of
the adaptations we made to the overall solution, in particular
by adding the U2 content similarity validator. Others could
be removed using better test data. For instance, in Misago,
every user can access the profiles of all other users. How-
ever, a user only finds a link to the profile of another user if
the other user has already posted a message where the first

user has access to. This has been taken into account during
the evaluation for this paper, i.e., we made sure that every
user has posted at least one public message. Another general
recommendation with respect to test data is to make sure the
data are realistic and that data used in different instances of
the same type (e.g., different messages, different user pro-
files, etc.) is truly different. To illustrate this, let’s revisit V3 .
Initially, V3 could not be detected as the U2 content similarity
validator determined a similarity value of 98 when compar-
ing the JSON data received during replaying with the JSON
data U1 received when accessing the own profile during
crawling. The reason was that the profiles of the two users
only differed in one value of the JSON data, namely in the
actual usernames that were used (member1 and member2).
The other about 50 values included in the JSON data were
exactly the same in both cases and therefore, the similarity
of the two JSON data structures was close to 100. By config-
uring the user profiles so they are more clearly distinguish-
able (e.g., not only different user names, but also different
real names, different Skype IDs, different websites, etc.),
the content similarity gets lower (to 82) and the problem
could be fixed.

One false positive, identified as FP1 , is still detected when
using a user with role A for U1 and a user with role O for
U2 . The URL http://​www.​size.​com/​api/​usern​ame-​chang​es/?​
user=1 is crawled by U1 but not by U2 . The URL returns
JSON data containing the username changes done by U1 .
During replaying, U2 could access the URL and got exactly
the same JSON data as U1 during crawling and consequently,
the URL is flagged as a vulnerability. One could argue that
this is indeed a vulnerability as U2 cannot issue this request
by navigating the application. However, U2 can get the
same information also via http://​www.​site.​com/u/​admin/1/​
usern​ame-​histo​ry/, which is found by U2 during crawling.
This means U2 cannot learn anything new by accessing the
reported URL and, therefore, we identify this as a false posi-
tive—although it certainly is a borderline case.

This third evaluation demonstrates that the solution can
also handle web applications that follow a modern architec-
ture with a REST API in the backend and lots of JavaScript
code running in the browser. It also shows that by carefully
selecting the test data, the vulnerability detection perfor-
mance can be improved and the number of false positives
can be reduced. Table 3 summarizes the evaluation results
of Misago.

Test Application 4: WordPress

The fourth test application is a standard WordPress site
(based on PHP) with a vulnerable version of the plugin
Job Manager [17]. The plugin allows to list job offers and
lets users of the site submit job applications, and contains
a published access control vulnerability (CVE-2015-6668

http://www.site.com/api/users/4/edit-details
http://www.site.com/p/test-thread/5
http://www.site.com/p/test-thread/5
http://www.site.com/api/private-threads/5/posts/9/post_editor
http://www.site.com/api/private-threads/5/posts/9/post_editor
http://www.size.com/api/username-changes/?user=1
http://www.size.com/api/username-changes/?user=1
http://www.site.com/u/admin/1/username-history/
http://www.site.com/u/admin/1/username-history/

SN Computer Science (2022) 3:376 	 Page 17 of 24  376

SN Computer Science

[18]). About 600 URLs are found during crawling and only
one role is considered in this evaluation:

•	 Role Author (A): create job applications and view and
remove own applications

The access control vulnerability has the following
behavior:

•	 V1 exists because the plugin does not enforce any access
control checks on media files, e.g., PDF documents, that
are submitted as part of an application. Therefore, the
files can, e.g., be accessed by other users with role A. The
URL to access such a resource is, e.g., as follows: http://​
www.​site.​com/​wp-​conte​nt/​uploa​ds/​2021/​08/​cv.​pdf.

Two resources were added to the do_not_call_pages options
(Fig. 10): wp-login.php and load-scripts.php. The first is
required to prevent that the crawling component is caught
in an endless crawling loop. Such problems can easily be
detected by inspecting the logs in case crawling takes a
long time. The second is used by WordPress to load JavaS-
cript code (so it is comparable to accessing JavaScript file
directly) and is not relevant in the context of access control
vulnerabilities.

To evaluate whether V1 can be found, two different users
with role A are used. The first one is used as U1 and has cre-
ated a job application with a PDF file reachable at http://​
www.​site.​com/​wp-​conte​nt/​uploa​ds/​2021/​08/​cv.​pdf. The sec-
ond user is used as U2 . The URL to the PDF file is found dur-
ing crawling with U1 , is not filtered out by the filtering com-
ponent, and is therefore replayed, which results in receiving
exactly the same PDF document. Consequently, the content
similarity determined by the U1 content similarity valida-
tor is 100 and all content similarities determined by the U2

content similarity validator are 0. Therefore, V1 is correctly
detected. No false positives are reported.

Overall, this fourth evaluation demonstrates that the solu-
tion can also find real vulnerabilities. Table 4 summarizes
the evaluation results of the WordPress application.

Test Application 5: Magento

Magento [19] is a PHP-based e-commerce platform. It uses
a modern architecture, where lots of functionality is imple-
mented client-side using JavaScript code, and a REST API
in the backend. The crawling component finds more than
2’000 URLs, which makes Magento the largest web applica-
tion in the evaluation. Two roles are used in this evaluation:

•	 Role Administrator (A): full access to administrative
functions

•	 Role Sales (S): access to sales-related functions such as
customer management, product management, order man-
agement, etc.

Two access control vulnerabilities V1 and V2 were added to
Magento:

•	 V1 allows users with role S to view pending product
reviews. The URL to access this resource is as follows:
http://​www.​site.​com/​admin/​review/​produ​ct/​pendi​ng/

•	 V2 allows users with role S to view the page where prod-
uct reviews can be edited. The URL to access such a
resource is, e.g., as follows: http://​www.​site.​com/​admin/​
review/​produ​ct/​edit/​id/1/

To evaluate whether V1 and V2 can be detected, a user with
role A is used as U1 and a user with role S is used as U2 . In
both cases, the vulnerable URL is found during crawling

Table 3   Summary of evaluation results of Misago

Vuln. URL Detected

V1 http://​www.​site.​com/​admin​cp/​users Yes
V2 Navigation: http://​www.​site.​com/p/​test-​thread/5 Yes

API: http://​www.​site.​com/​api/​priva​te-​threa​ds/5/​posts/9/​post_​editor Yes
V3 http://​www.​site.​com/​api/​users/4/​edit-​detai​ls Yes

 False positives URL

FP1 (borderline) http://​www.​size.​com/​api/​usern​ame-​chang​es/?​user=1

Table 4   Summary of evaluation
results of WordPress

Vuln URL Detected

V1 http://​www.​site.​com/​wp-​conte​nt/​uploa​ds/​2021/​08/​cv.​pdf Yes
No false positives

http://www.site.com/wp-content/uploads/2021/08/cv.pdf
http://www.site.com/wp-content/uploads/2021/08/cv.pdf
http://www.site.com/wp-content/uploads/2021/08/cv.pdf
http://www.site.com/wp-content/uploads/2021/08/cv.pdf
http://www.site.com/admin/review/product/pending/
http://www.site.com/admin/review/product/edit/id/1/
http://www.site.com/admin/review/product/edit/id/1/
http://www.site.com/admincp/users
http://www.site.com/p/test-thread/5
http://www.site.com/api/private-threads/5/posts/9/post_editor
http://www.site.com/api/users/4/edit-details
http://www.size.com/api/username-changes/?user=1
http://www.site.com/wp-content/uploads/2021/08/cv.pdf

	 SN Computer Science (2022) 3:376 376   Page 18 of 24

SN Computer Science

with U1 , is not filtered out by the filtering component, and
is therefore replayed. With V1 , the content similarity deter-
mined by the U1 content similarity validator is 100 ( ≥ 80 )
and all content similarities determined by the U2 content
similarity validator are 37 or lower ( < 95 ). With V2 , the simi-
larity values are 100 and 8, respectively. Consequently, V1
and V2 are correctly detected.

Two false positives, identified as FP1 and FP2 , are
reported. The first one affects the URL http://​www.​site.​
com/​admin/​yotpo_​yotpo/​report/​revie​ws/, which can only
be crawled by U1 but not U2 . The received HTML document
provides instructions how a third-party marketing platform
can be connected. It is obviously not access control-relevant
and must, therefore, be classified as a false positive. This is
again a case where the fundamental assumption (see begin-
ning of Section 3) is not valid and correspondingly, FP1
occurred by design. In practice, it would easily be detected
after the first run and, based on this, one would add it to
the standard_pages options in the configuration file (see
Figure 10).

FP2 affects the URL http://​www.​site.​com/​admin/​catal​
og/​produ​ct/​edit/​id/3/ (and further IDs, but technically they
are all the same false positive). Although manually navi-
gating the application shows that these URLs can be found
by U2 , they are not detected by the crawling component. A
more detailed analysis shows that the corresponding links
are included client-side by JavaScript code. However, they
are included as < a > tags and not as < button > tags and as
the Puppeteer-based crawler in its current state cannot cope
with such dynamically inserted < a > tags, the URL is not
found. This false positive is, therefore, a technical limitation
of the current solution and it is likely that it can be fixed by
adapting the Puppeteer-based crawler.

This fifth evaluation demonstrates that the solution can
also handle very large web applications with thousands of
URLs. Reporting just two false positives corresponds to
a very small fraction of the total number of URLs, which
shows the fundamental assumption on which the entire solu-
tion is based (see “Solution approach”) seems to be sound
also in a large application such as Magento. However,
the results also show that there’s still room for improve-
ment, as FP2 was reported due to shortcomings in the

crawling component and not due to limitations in the solu-
tion approach. Table 5 summarizes the evaluation results
of Misago.

Test Application 6: Mattermost

Mattermost [20] is chat application based on a modern
architecture and uses Go for the backend and React for the
frontend. Being a pure single page application, the Scrapy-
based crawler finds only the base HTML document and all
other resources can only be detected by the Puppeteer-based
crawler. Overall, about 500 URLs were detected. One role is
used in this evaluation:

•	 Role Member (M): access to functions such as reading
and writing messages, creating private channels (that are
accessible only by members of the channel), and joining
public channels

One access control vulnerability V1 was added to Mattermost:

•	 V1 allows users with role M to view image previews of
messages that were posted in private channels where the
user is not a member. The response contains the image as
binary data. The URL to access such a resource is, e.g.,
as follows: http://​www.​site.​com/​api/​v4/​files/​1kq1e​j8x1f​
g6fye​x9ykf​6hmyyr/​previ​ew

To evaluate whether V1 can be discovered, two users with
role M are used for U1 and U2 . U1 has posted a message
including an image in a private channel and U2 is not a mem-
ber of this channel. The vulnerable URL is found during
crawling with U1 , is not filtered out by the filtering compo-
nent, and is, therefore, replayed and delivers the same binary
image data. As the images are equal, the content similarity
determined by the U1 content similarity validator is 100 and
all content similarities determined by the U2 content similar-
ity validator are 0. Consequently, V1 is correctly detected.

One false positive, identified as FP1 is reported. It con-
cerns the URL http://​www.​site.​com/​api/​v4/​users/​w1nhd​
w38it​8exxg​bo81t​urafjo/​status. Such a URL is called when
accessing the main page to get the own status, where the

Table 5   Summary of evaluation results of Magento

Vuln. URL Detected

V1 http://​www.​site.​com/​admin/​review/​produ​ct/​pendi​ng/ Yes
V2 http://​www.​site.​com/​admin/​review/​produ​ct/​edit/​id/1/ Yes

 False positives URL

FP1 http://​www.​site.​com/​admin/​yotpo_​yotpo/​report/​revie​ws/
FP2 http://​www.​site.​com/​admin/​catal​og/​produ​ct/​edit/​id/3/

http://www.site.com/admin/yotpo_yotpo/report/reviews/
http://www.site.com/admin/yotpo_yotpo/report/reviews/
http://www.site.com/admin/catalog/product/edit/id/3/
http://www.site.com/admin/catalog/product/edit/id/3/
http://www.site.com/api/v4/files/1kq1ej8x1fg6fyex9ykf6hmyyr/preview
http://www.site.com/api/v4/files/1kq1ej8x1fg6fyex9ykf6hmyyr/preview
http://www.site.com/api/v4/users/w1nhdw38it8exxgbo81turafjo/status
http://www.site.com/api/v4/users/w1nhdw38it8exxgbo81turafjo/status
http://www.site.com/admin/review/product/pending/
http://www.site.com/admin/review/product/edit/id/1/
http://www.site.com/admin/yotpo_yotpo/report/reviews/
http://www.site.com/admin/catalog/product/edit/id/3/

SN Computer Science (2022) 3:376 	 Page 19 of 24  376

SN Computer Science

the URL part w1nh ...afjo is user-specific. The response
is a small JSON data structure that contains information
such as the status of the user (e.g., online/offline) and the
timestamp of the last activity. As every user crawls its own
URL, U2 crawls a different URL than U1 , but U2 can suc-
cessfully access the URL crawled by U1 during replaying
and also gets exactly the same content. Technically, this can
be classified as a vulnerability. However, it seems that this
is implemented intentionally in this way as the application
also includes functionality where the status of other users
can be accessed by other means. Also, the received informa-
tion is not really sensitive. Consequently, this is classified
as a false positive.

Similar to Misago (see “Test Application 3: Misago”),
this sixth evaluation confirms that thanks to the Puppeteer-
based crawler, the solution can cope well with web applica-
tions that follow a modern architecture, in this case a pure
single page application approach. Table 6 summarizes the
evaluation results of Mattermost.

Test Application 7: Kimai

Kimai [21] is a time-tracking application based on PHP. It
uses a modern architecture and about 400 URLs are detected
during crawling. Two roles are used in this evaluation:

•	 Role Superadmin (S): can manage everything in Kimai,
including users, their timesheets, plugins, and system
configuration

•	 Role Teamlead (T): can manage teams and has access to
all timesheets within these teams

Two access control vulnerability V1 and V2 were added to
Kimai:

•	 V1 allows users with role T access to read the preferences
of all users, including those of users with role S. Nor-
mally, only users with role S should have access to all
profiles. The URL to access such a resource is, e.g., as
follows: http://​www.​site.​com/​en/​profi​le/​super​admin/​prefs

•	 V2 allows users with role T access the page to change
the password of other users. The URL to access such a
resource is, e.g., as follows: http://​www.​site.​com/​en/​profi​
le/​super​admin/​passw​ord

Kimai requires some additional configuration options to
make sure it can be tested with good results. First of all,
some resources must be added to the do_not_call_pages
options (see Fig. 10): working-time, week-by-user, month_
by_user, year_by_user, weekly_users_list, monthly_users_
list and yearly_users_list. Calls to these resources are pro-
vided to the users in the form of backward and forward
arrow buttons to navigate the timesheets by week, month
and year, and adding them to the do_not_call_pages prevents
that the crawling component ends up in an endless crawling
loop. As already explained in the context of the WordPress
application (see “Test Application 4: WordPress”), such
loops can usually easily be detected by inspecting the logs if
crawling takes a long time. The second configuration option
is required as Kimai uses non-standard tags for the naviga-
tion areas. Therefore, the tags_to_remove option was set to
’class’:’main-sidebar’,’class’:’box-tools’,’class’:’hidden-
xs’. This allows the content similarity validators to correctly
remove the navigation areas.

To evaluate whether V1 and V2 can be detected, a user
with role S is used as U1 and a user with role T is used as U2 .
In both cases, the vulnerable URL is found during crawling
with U1 , is not filtered out by the filtering component, and
is, therefore, replayed. With V1 , the content similarity deter-
mined by the U1 content similarity validator is 84 ( ≥ 80 ) and
all content similarities determined by the U2 content similar-
ity validator are 82 or lower ( < 95 ). With V2 , the similarity
values are 100 and 70, respectively. Consequently, V1 and V2
are correctly detected.

In particular, V1 demonstrates once more that it is impor-
tant to remove navigation areas when determining the simi-
larity value and to also classify non-perfect matches as a
similarity match. To illustrate this, Fig. 12 shows the content
when accessing the vulnerable URL with users with roles
S and T.

First of all, one can see that the navigation areas on
the left, on the right and at the top are quite different. Not
removing them would result in a similarity value signifi-
cantly below 80, and V1 would not be detected. But also
the middle parts of the web pages, which are the parts that
are actually compared after removing the navigation areas,
show some differences, as only the web page on the left side
includes the fields Hourly rate and Internal rate. So obvi-
ously, although there is indeed a vulnerability, the user with

Table 6   Summary of evaluation results of Mattermost

Vuln. URL Detected

V1 http://​www.​site.​com/​api/​v4/​files/​1kq1e​j8x1f​g6fye​x9ykf​6hmyyr/​previ​ew Yes

 False positives URL

FP1 http://​www.​site.​com/​api/​v4/​users/​w1nhd​w38it​8exxg​bo81t​urafjo/​status

http://www.site.com/en/profile/superadmin/prefs
http://www.site.com/en/profile/superadmin/password
http://www.site.com/en/profile/superadmin/password
http://www.site.com/api/v4/files/1kq1ej8x1fg6fyex9ykf6hmyyr/preview
http://www.site.com/api/v4/users/w1nhdw38it8exxgbo81turafjo/status

	 SN Computer Science (2022) 3:376 376   Page 20 of 24

SN Computer Science

role T does not get access to the complete content of the user
with role S and as a result of this, the determined similarity
value is “only” 84. If the threshold for similarity matching
were set to 100 or very close to 100, no similarity match
would occur and again, V1 would not be detected. But with
a default threshold of 80 as set in the configuration file (see
Fig. 10), the vulnerability is correctly detected.

One false positive, identified as FP1 , is reported and
affects the URL http://​www.​site.​com/​en/​expor​t/?​custo​
mers%​5B%​5D=​1 &​proje​cts%​5B%​5D=​1 &​dater​ange=​ &​
previ​ew=1. This URL is used by U1 to access a web page
that allows to select data to export. U2 crawls a very similar
URL with the same path but with different query param-
eters, and as a result of this, the URL is not filtered out.

Replaying works, the similarity determined by the U1 content
similarity validator is 92 ( ≥ 80 ), and the content similarities
determined by the U2 content similarity validator are all 92
or lower ( < 95 ). Consequently, a vulnerability is reported.
As U2 can access basically the same content when navigat-
ing the application (using the very similar URL mentioned
above), this is indeed a false positive. The highest match
of 92 by the U2 content similarity validator occurs due to a
comparison with exactly this very similar URL. Of course,
this false positive could easily be prevented by setting the
threshold of the U2 content similarity validator to, e.g., 90
instead of 95. However, 95 has demonstrated to be a good
compromise overall so far, and reducing it could introduce
other side effects such as missed true vulnerabilities.

Fig. 12   Responses by Kimai when accessing http://​www.​site.​com/​en/​profi​le/​super​admin/​prefs with role Superadmin (S) (left) and Teamlead (T)
(right)

http://www.site.com/en/export/?customers%5B%5D=1%20&projects%5B%5D=1%20&daterange=%20&preview=1
http://www.site.com/en/export/?customers%5B%5D=1%20&projects%5B%5D=1%20&daterange=%20&preview=1
http://www.site.com/en/export/?customers%5B%5D=1%20&projects%5B%5D=1%20&daterange=%20&preview=1
http://www.site.com/en/profile/superadmin/prefs

SN Computer Science (2022) 3:376 	 Page 21 of 24  376

SN Computer Science

This seventh and final evaluation shows that sometimes,
more configuration effort must be invested to make sure the
solution delivers good results as in this case, the do_not_
call_pages and tags_to_remove must be specifically set.
Also, together with all other evaluations, this evaluation
shows that the content similarity thresholds of 80 and 95
are reasonable compromises that work well in most cases,
but sometimes they are set too low or too high for a specific
application, which in this case resulted in FP1 . Table 7 sum-
marizes the evaluation results of Kimai.

Discussion and Future Work

The evaluation in “Evaluation” demonstrates that the pre-
sented solution is capable of finding access control vulner-
abilities in different types of web applications, i.e., in web
applications based on different underlying technologies and
based on both traditional and modern architectures. Overall,
across a selection of seven evaluated applications with a
total number of 4’500 detected URLs, 12 of 13 vulnerabili-
ties could be found, only one false negative occurred and
in total, five false positives were reported. Compared to the
original paper [1], the adaptations made to the overall solu-
tion approach resulted in an improved vulnerability detec-
tion performance. In particular, the number of false positives
could significantly be reduced.

One could argue that the evaluation should also have
revealed unknown vulnerabilities in these applications, but
none were found. But this is somewhat understandable as
all the evaluated applications, with the exception of the very
small Marketplace application, are well-established open
source applications where significant efforts in security test-
ing have typically already been invested and, consequently,
where possibly detected vulnerabilities have already been
fixed. Therefore, it is rather unlikely that they still contain
standard vulnerabilities such as SQL injection, cross-site
scripting or access control vulnerabilities. However, in the
context of custom web applications developed by companies
for a specific purpose (e.g., for a custom e-shop or to control
an industrial system), it is more likely such problems are
existing as they are typically less well analyzed with respect

to security. Therefore, future evaluations will also take such
applications into account.

Although we have shown that the solution approach
works to detect access control vulnerabilities, there are still
some limitations that provide a lot of potential for future
work:

Evaluation scope: With seven applications, the evaluation
scope is still limited. While using a relatively small number
of applications served well to understand in detail why vul-
nerabilities could be detected, why false negatives and true
positives occurred, and how the overall solution approach
could be fine-tuned, an important next step is to test addi-
tional web applications, in particular also custom web
applications as mentioned above. Also, the two co-authors
from scanmeter GmbH will use the solution approach in
penetration tests with customers, from which we expect to
gain further insights with regard to the true usefulness of the
solution in practice.

Fundamental assumptions: If the assumption that web
pages presented to a user contain only navigation elements
to legitimately accessible content is not valid, then vulner-
abilities can be missed (see evaluation of Bludit). Likewise,
if the crawler does not find legitimately reachable content or
links to such content are missing, there may be false posi-
tives (see evaluations of Misago, Magento, Mattermost and
Kimai). In general, after evaluating seven web application
with a total number of 4’500 URLs detected by the crawling
component which resulted in only one false negative and
five false positives, it appears that this assumption is mostly
correct. However, the general validity of the fundamental
assumption can only be demonstrated by analyzing further
web applications.

Focus on GET requests: A complete solution should also
support POST, PUT, PATCH and DELETE requests. This
poses new challenges, in particular as such requests typi-
cally change the data and/or state of the web application dur-
ing crawling and replaying. Resetting the application state
regularly can help to a certain degree, but there is still the
problem of changes that happen during the actual crawl-
ing and replaying. There are further complications such as
CSRF tokens, which are often used with requests different
from GET. We started to extend the solution so it can also
reliably support further request types and the first results are

Table 7   Summary of evaluation results of Kimai

Vuln. URL Detected

V1 http://​www.​site.​com/​en/​profi​le/​super​admin/​prefs Yes
V2 http://​www.​site.​com/​en/​profi​le/​super​admin/​passw​ord Yes

 False positives URL

FP1 http://​www.​site.​com/​en/​expor​t/?​custo​mers%​5B%​5D=​1 &​proje​cts%​5B%​5D=​1 &​dater​ange=​ &​previ​ew=1

http://www.site.com/en/profile/superadmin/prefs
http://www.site.com/en/profile/superadmin/password
http://www.site.com/en/export/?customers%5B%5D=1%20&projects%5B%5D=1%20&daterange=%20&preview=1

	 SN Computer Science (2022) 3:376 376   Page 22 of 24

SN Computer Science

promising. However, more research is required and we are
going to address this in the near future.

General improvements of the entire solution approach: In
some areas of the solution, there is still potential to improve
the vulnerability detection performance. One such area is the
Puppeteer-based crawler. For instance, the false positive FP2
reported when analyzing Magento can likely be prevented
by improving this crawler so it handles dynamically inserted
< a > tags correctly. Another area is the implementation of
the extraction of textual elements from HTML documents,
which works already reasonably well, but which sometimes
also identifies web page components as textual elements
that are not visible in the browser. These issues will also be
addressed in the near future, along with the evaluation of
further web applications.

Related Work

Manually driven approaches: A manually driven way to
detect access control vulnerabilities in web applications is
using interceptor proxies, e.g., Burp Suite [22] or OWASP
ZAP [23]. In such an approach, the security tester manually
navigates through the web application using a high-priv-
ileged user. Based on this, the proxy learns all URLs and
subsequently tries to access all URLs using less privileged
users. As a result of this, the security tester is presented
with a table that shows which user could access which
URLs, which allows the tester to verify the correctness of
the implemented access control rules. This approach is sup-
ported, e.g., in Burp Suite with the Autorize plugin [24] and
in OWASP ZAP with the Access Control Testing plugin [25].
While all these approaches are black box-based and work
well when doing manual security tests, they suffer from their
low level of automation.

Automated extraction of the access control model:
Another fundamental approach is to analyze a web appli-
cation with the goal to extract and verify the implemented
access control model. In [26], a reverse engineering approach
is used to extract a role-based access control model from the
source code of a web application, which is then checked to
verify whether it corresponds to the access control proper-
ties specified by a security engineer. Two limitations with
this approach are that the model extraction is dependent on
the source code, which means it has to be adapted for every
programming language and/or web framework to be sup-
ported and that verification of the extracted model is done
manually. In [27], the web application under test is analyzed
by crawling it using different users. This results in access
spaces for the different users and based on this, a machine
learning-based approach is employed to derive access rules
from an access space. These rules can then be compared
automatically with an existing specification, if available.

Otherwise, a human expert is involved in the assessment of
the access rules. While this approach is independent of the
source code of the tested web application, it still requires an
access control specification for complete automation.

Replaying-based approaches: Approaches that use some
form of replaying have been proposed as well. In [28], the
basic idea of crawling a web application with different users
and then trying to access all detected URLs with all users
to uncover access control vulnerabilities is described. How-
ever, the document neither provides details about the entire
process nor any evaluation results. In [29], it is stated that
the source code of a program often implicitly documents the
intended accesses of each role. Based on this, the authors
generate sitemaps for different roles from the source code
and test, by interacting with the target web application,
whether there are roles that allow access to resources that
should not be accessible based on the determined sitemaps.
In [30], the authors try to extract the access control model
from a web application by crawling it with different users. In
addition, while crawling, database accesses performed by the
web application are monitored. Based on this, the derived
access control model describes the relations between users
and permitted data accesses, which is then used to create test
cases to check whether users can access data that should not
be accessible based on this model. In [31], the authors con-
sider typical use cases in a web application (i.e., reasonable
sequences of requests instead of random sequences as typi-
cally used by crawlers) to improve vulnerability detection
accuracy. To do so, an operator first has to manually use the
web application to record typical use cases, which are repre-
sented in a graph. This graph is then used as a basis to detect
vulnerabilities when trying to access resources that should
not be accessible by non-privileged users. The approach was
applied to one JSP-based web application, where it man-
aged to uncover several vulnerabilities. Finally, in [32], a
role-based access control model for an application to be
analyzed must be defined manually as a basis. Based on this
model, test cases are generated automatically, which can be
transformed to executable code to carry out the tests. The
approach was applied to three Java programs and demon-
strated that it could automatically create a significant por-
tion of the required test code automatically and that it could
detect access control defects.

Conclusion

In this paper, we presented a practical solution that allows
completely automated black box detection of HTTP GET
request-based access control vulnerabilities in web applica-
tions. The solution approach has been enhanced compared to
the original paper [1], which results in an improved vulner-
ability detection performance. Also, the evaluation has been

SN Computer Science (2022) 3:376 	 Page 23 of 24  376

SN Computer Science

extended from four to seven test applications and the focus
of the evaluation has been shifted from a mainly quantitative
analysis to providing a better understanding why a specific
vulnerability can be detected or why a false negative or false
positive occurs.

What separates our solution from previous work is that it
is designed to be a truly practical approach that can easily be
applied to a wide range of web applications based on tradi-
tional or modern architectures, that neither requires access
to the source code nor the availability of a formal access
control model, and that requires only minimal configura-
tion. The solution was evaluated in the context of seven web
applications based on different technologies and managed
to detect almost all access control vulnerabilities (all except
one) while producing only five false positives. This demon-
strates both the effectiveness and the general applicability
of the solution approach. There exists a lot of potential for
future work, in particular in the context of further analy-
sis and fine-tuning of the solution in the context of various
real-world web applications and by extending the solution
to support additional request types. We have already started
to address these issues.

Acknowledgements  This work was partly funded by the Swiss Confed-
eration’s innovation promotion agency Innosuissse (projects 31954.1
IP-ICT and 48528.1 IP-ICT).

Funding  Open access funding provided by ZHAW Zurich University
of Applied Sciences. Partly funded by the Swiss Confederation’s inno-
vation promotion agency Innosuissse (projects 31954.1 IP-ICT and
48528.1 IP-ICT).

Availability of data and materials  Not applicable.

Declarations 

Conflict of interest  We declare that we have no conflict of interest.

Code availability  Not publicly available.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Kushnir M, Favre O, Rennhard M, Esposito D, Zahnd V. Auto-
mated Black Box Detection of HTTP GET Request-based Access
Control Vulnerabilities in Web Applications. In: Proceedings of
the 7th International Conference on Information Systems Security
and Privacy—ICISSP, Online, 2021; pp 204–216.

	 2.	 WhiteHat Security: 2019 application security statistics report
2019. https://​info.​white​hatsec.​com/​Conte​nt-​2019-​Stats​Report_​
LP.​html. Accessed 18 Sep 2021.

	 3.	 Chen S. SECTOOL Market. 2016.http://​www.​secto​olmar​ket.​com.
Accessed 18 Sep 2021.

	 4.	 Rennhard M, Esposito D, Ruf L, Wagner A. Improving the effec-
tiveness of web application vulnerability scanning. Int J Adv
Internet Technol. 2019;12(1/2):12–27.

	 5.	 OWASP. OWASP Top 10 2021. 2021. https://​owasp.​org/​Top10/.
Accessed 18 Sep 2021.

	 6.	 OWASP. OWASP Top 10—A01:2021—Broken Access Con-
trol. 2021. https://​owasp.​org/​Top10/​A01_​2021-​Broken_​Access_​
Contr​ol/. Accessed 18 Sep 2021 .

	 7.	 Scrapy: Scrapy. 2021. https://​scrapy.​org. Accessed 18 Sep 2021.
	 8.	 Puppeteer: Puppeteer. 2021. https://​pptr.​dev. Accessed 18 Sep

2021.
	 9.	 Kornblum J. Identifying almost identical files using context trig-

gered piecewise hashing. Digit Investig. 2006;3:91–7.
	10.	 Oliver J, Cheng C, Chen Y. TLSH—a Locality Sensitive Hash.

In: 2013 Fourth Cybercrime and Trustworthy Computing Work-
shop, 2013; pp 7–13.

	11.	 Oliver J, Forman S, Cheng C. Using randomization to attack
similarity digests. In: International Conference on Applications
and Techniques in Information Security, Melbourne, Australia,
2014; pp 199–210.

	12.	 Kornblum J. Source Code of ssdeep.h. 2013. https://​github.​com/​
ssdeep-​proje​ct/​ssdeep/​blob/​master/​ssdeep.h. Accessed 18 Sep
2021.

	13.	 mitmproxy: mitmproxy. 2021. https://​mitmp​roxy.​org. Accessed
18 Sep 2021.

	14.	 SQLite: SQLite. 2021. https://​www.​sqlite.​org. Accessed 18 Sep
2021.

	15.	 Bludit: Bludit. 2020. https://​www.​bludit.​com. Accessed 18 Sep
2021.

	16.	 Pitoń, R.: Misago. 2020. https://​misago-​proje​ct.​org. Accessed
18 Sep 2021.

	17.	 Townsend T. Wordpress Plugin Job Manager. 2015. https://​
wordp​ress.​org/​plugi​ns/​job-​manag​er. Accessed 18 Sep 2021.

	18.	 NIST: National Vulnerability Database, CVE-2015-6668. 2015.
https://​nvd.​nist.​gov/​vuln/​detail/​CVE-​2015-​6668. Accessed 18
Sep 2021.

	19.	 Magento Commerce Inc.: Magento. 2021. https://​magen​to.​com/​
produ​cts/​magen​to-​comme​rce. Accessed 18 Sep 2021.

	20.	 Mattermost Inc.: Mattermost. 2021. https://​matte​rmost.​com.
Accessed 18 Sep 2021.

	21.	 Papst K. Kimai. 2021. https://​www.​kimai.​org. Accessed 18 Sep
2021.

	22.	 PortSwigger: Burp Suite. 2021. https://​ports​wigger.​net/​burp.
Accessed 18 Sep 2021.

	23.	 OWASP: OWASP Zed Attack Proxy. 2020. https://​owasp.​org/​
www-​proje​ct-​zap. Accessed 18 Sep 2021.

	24.	 Tawly B. Autorize. 2020. https://​github.​com/​ports​wigger/​autor​
ize. Accessed 18 Sep 2021.

	25.	 OWASP: Access Control Testing. 2020. https://​www.​zapro​xy.​
org/​docs/​deskt​op/​addons/​access-​contr​ol-​testi​ng/. Accessed 18
Sep 2021.

	26.	 Alalfi MH, Cordy JR, Dean TR. Automated verification of role-
based access control security models recovered from dynamic

http://creativecommons.org/licenses/by/4.0/
https://info.whitehatsec.com/Content-2019-StatsReport_LP.html
https://info.whitehatsec.com/Content-2019-StatsReport_LP.html
http://www.sectoolmarket.com
https://owasp.org/Top10/
https://owasp.org/Top10/A01_2021-Broken_Access_Control/
https://owasp.org/Top10/A01_2021-Broken_Access_Control/
https://scrapy.org
https://pptr.dev
https://github.com/ssdeep-project/ssdeep/blob/master/ssdeep.h
https://github.com/ssdeep-project/ssdeep/blob/master/ssdeep.h
https://mitmproxy.org
https://www.sqlite.org
https://www.bludit.com
https://misago-project.org
https://wordpress.org/plugins/job-manager
https://wordpress.org/plugins/job-manager
https://nvd.nist.gov/vuln/detail/CVE-2015-6668
https://magento.com/products/magento-commerce
https://magento.com/products/magento-commerce
https://mattermost.com
https://www.kimai.org
https://portswigger.net/burp
https://owasp.org/www-project-zap
https://owasp.org/www-project-zap
https://github.com/portswigger/autorize
https://github.com/portswigger/autorize
https://www.zaproxy.org/docs/desktop/addons/access-control-testing/
https://www.zaproxy.org/docs/desktop/addons/access-control-testing/

	 SN Computer Science (2022) 3:376 376   Page 24 of 24

SN Computer Science

web applications. In: 2012 14th IEEE International Symposium
on Web Systems Evolution (WSE), Trento, Italy, 2012; pp 1–10.

	27.	 Le HT, Nguyen CD, Briand L, Hourte B. Automated inference
of access control policies for web applications. In: Proceedings
of the 20th ACM Symposium on Access Control Models and
Technologies. SACMAT ’15, Vienna, Austria, 2015; pp 27–37.

	28.	 Segal O. Automated testing of privilege escalation in web appli-
cations. 2006. http://​index-​of.​es/​Secur​ity/​testi​ng-​privi​lege-​escal​
ation.​pdf. Accessed 18 Sep 2021.

	29.	 Sun F, Xu L, Su Z. Static detection of access control vulnerabili-
ties in web applications. In: Proceedings of the 20th USENIX
Conference on Security. SEC’11, 2011;11. USENIX Associa-
tion, USA.

	30.	 Li X, Si X, Xue Y. Automated black-box detection of access
control vulnerabilities in web applications. In: Proceedings of

the 4th ACM Conference on Data and Application Security And
Privacy. CODASPY ’14, San Antonio, USA. 2014; pp 49–60.

	31.	 Noseevich G, Petukhov A. Detecting insufficient access control in
web applications. In: 2011 First SysSec Workshop, Amsterdam,
Netherlands, 2011; pp 11–18.

	32.	 Xu D, Kent M, Thomas L, Mouelhi T, Le Traon Y. Automated
model-based testing of role-based access control using predicate/
transition nets. IEEE Trans Comput. 2015;64(9):2490–505.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://index-of.es/Security/testing-privilege-escalation.pdf
http://index-of.es/Security/testing-privilege-escalation.pdf

	Automating the Detection of Access Control Vulnerabilities in Web Applications
	Abstract
	Introduction
	Access Control Vulnerabilities
	Solution Approach
	Prerequisites
	Overall Workflow
	Crawling
	Filtering
	Replaying
	Validating
	Content Similarity
	Testing of Multiple Users and Roles
	Configuration Example
	Implementation

	Evaluation
	Test Application 1: Marketplace
	Test Application 2: Bludit
	Test Application 3: Misago
	Test Application 4: WordPress
	Test Application 5: Magento
	Test Application 6: Mattermost
	Test Application 7: Kimai

	Discussion and Future Work
	Related Work
	Conclusion
	Acknowledgements
	References

