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ABSTRACT This paper aims to introduce a scientific Semi-Supervised Fuzzy C-Mean (SSFCM) clustering
approach for passenger cars classification based on the feature learning technique. The proposed method
is able to classify passenger vehicles in the micro, small, middle, upper middle, large and luxury classes.
The performance of the algorithm is analyzed and compared with an unsupervised fuzzy C-means (FCM)
clustering algorithm and Swiss expert classification dataset. Experiment results demonstrate that the classi-
fication of SSFCM algorithm has better correlation with expert classification than traditional unsupervised
algorithm. These results exhibit that SSFCM can reduce the sensitivity of FCM to the initial cluster centroids
with the help of labeled instances. Furthermore, SSFCM results in improved classification performance by
using the resampling technique to deal with the multi-class imbalanced problem and eliminate the irrelevant
and redundant features.

INDEX TERMS Vehicle classification, fuzzy C-means clustering, semi-supervised learning, feature

learning.

I. INTRODUCTION

During the last decades there have been major changes in
passenger vehicle sizes around the world. One of the main
functionalities of these changes is global competition, which
forces car manufacturers worldwide to quickly improve and
introduce competing vehicles. The implication is signifi-
cantly changes in the vehicle segments (increased share
of SUVs), vehicle dimensions (increased size of the vehi-
cles within each segment), and other design parameters like
powertrain type and power. To date, numerous vision-based
vehicle classification methods are available. However, illu-
mination changes, shadows, partial detections, occlusion, and
camera viewpoint changes have strong impact on these tech-
niques [1]-[6]. This complexity further increases for vehi-
cles that belong to different classes despite having similar
dimensions or have visually similar appearance but dissimilar
dimensions [7]. Furthermore, the review of related literatures
[8]-[11] shows that the growth of car models over time poses
an additional challenge to the accurate vehicle classification
based on dimensions. In fact, the most popular names of
car models have remained intact since they were developed,
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making it difficult to follow the evolution of sizes during vehi-
cle classification (Table 1). In this setting, Fig. 1 illustrates the
core challenge of vision-based vehicle classification which
is high intra-class (within the cluster of classes) variation
and relatively low inter-class (between classes of multi-class
classification) variation [12]-[14].

This issue reveals the need of using automated and efficient
classification techniques for different vehicle types for a vari-
ety of applications. For a vehicle classification system to be
useful in real-world conditions, it must be robust to inter-class
interferences in the data by considering new measurement
method based on the discriminative features.

One approach that has received much attention in recent
years is semi-supervised learning (SSL) techniques. SSL is
a branch of machine learning that aims to classify large
size of the unlabeled data using the minimal size of labeled
information set to build better learning [15]-[19]. SSL are
particularly relevant to scenarios where the input labeled set
being able to utilize the classifier during the training process
and then applied out-of-sample approaches to make predic-
tions on unlabeled data. In recent years, SSL approaches
attempt to improve the performance in sequential learning
of supervised and unsupervised learning by utilizing infor-
mation generally associated with the other and repeating the
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TABLE 1. Sample of passenger car growth.

Car Models
Percentage VW Polo I VW Golf 1 VW Passat Bl BMW E21 Mercedes-Benz W 124 Opel Corsa A
of growth VW Polo VI VW Golf Vil VW Passat B8 BMW G21 Mercedes-Benz W 213 Opel Corsa F
Length (cm) +12.50 +12.63 +11.16 +8.03 +8.37 +2.53
Width (cm) +11.46 +10.49 +13.66 +13.66 +9.77 +14.29
Height (cm) +8.96 +5.67 +7.09 +5.07 +4.90 +5.11

Source: https://de.wikipedia.org (Accessed: May 2021)
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FIGURE 1. Demonstration of two major challenges in vision-based vehicle classification: intra-class variation and inter-class similarity
(Source: https://www.automobiledimension.com/ (Accessed: May 2021)).

process until convergence [20]-[22]. SSL algorithms can be
classified into the Supervised Deep Learning using Pseudo
Labels [23], Spatio-spectral LapSVM [24], Semi-Supervised
Ladder Network [25], Temporal Ensembling with augmenta-
tion [26], Mean Teacher, weight-averaged consisting targets
[27] and semi-supervised fuzzy rough convolution neural net-
work (FRCNN) [28]. Most of these algorithms often consider
a balanced training set which may increase the overlapping
between majority and minority class instances.

This paper is an extension of previous work originally
focused on the preprocessing data technique by feature
extraction to classify data into the five different categories
as part of a multi-class vehicle classification system based
on both technical and geometric parameters using fuzzy and
non-fuzzy clustering methods [7]. However, the classification
performance metrics was found to be slightly affected with
the imbalanced problem. The problem of imbalanced dataset
appears in most traditional classification methods when the
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proportion of majority class instances across the known
classes is biased or skewed, i.e. the number of instances in
a majority class is much higher than the number of instances
in a minority class [29]-[31].

In recent literatures many different types of algorithms
and techniques are proposed to deal with the problem of
class imbalance datasets, such as random sampling, learning
algorithms, and feature selection [32]-[38]. Inspired by these
methods, we develop a new semi supervised approach which
utilizes both supervised and unsupervised data to alleviate the
multi-class imbalanced problem, eliminating the redundant
features and also exploiting hidden information during the
clustering process.

In this paper, we propose a novel Semi-Supervised Fuzzy
C-Mean (SSFCM) clustering approach based on the feature
learning technique, which is a highly useful technique for
representation learning with high dimensional datasets con-
taining high-level of uncertainties. In our approach, Fuzzy
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C-Mean (FCM) clustering use to predict labels for unsuper-
vised data. For classification, we suggest that one can use
unsupervised and supervised data along with the predicted
labels to extract the discriminative information for classifica-
tion. Following this, in order to enhance the prediction ability,
we combine feature reduction techniques (feature extraction
technique and feature selection technique using Random
oversampling (ROS)) to handle the multi-class imbalanced
problem and eliminate the irrelevant and redundant features
for improving the classification accuracy. To evaluate the per-
formance of these algorithms we use both technical and geo-
metric parameters, and apply them to a vehicle fleet dataset
that includes all new registered passenger cars in Switzerland.

This work focuses mainly on the performance of vehicle
multi-class classification and vehicle intra-class classifica-
tion. The aim of our investigation is to accurately analyze
vehicle changes enabling automated vehicle classification of
large databases. The experimental results demonstrate that
the performance metrics of proposed SSFCM approach are
on average better than those of other tested methods. Fur-
thermore, the potential of proposed approach with ROS in
improving the imbalance multi-class classification perfor-
mance on vehicle dataset increases the quality of clustering
results over FCM.

From the experimental validation, our model can achieve
acceptable accuracy (~86%) using only 10% of the labels
rate for each class. All the experiments demonstrate that the
proposed method is feasible and effective in categorizing
vehicles based on their features.

The rest of the paper is structure as follows. Section 2
briefly summarizes the main results of related research
works. In section 3 we present a detailed description concise
details of the datasets, algorithms and experiments. Lastly,
in section 4 we present the majors findings of this work and
provide recommendations for further research.

Il. RELATED WORK

A large number of works have applied machine learning
techniques for the classification of vehicles, including
unsupervised (clustering) and supervised (classification)
methods [16], [23], [24], [26], [27], [39]-[67]. Among the
unsupervised techniques, FCM clustering algorithm is the
most popular. Javadi et al. [42] applied FCM with dimension
and speed features to classify vehicles into “private car”,
“light trailer”, “lorry or bus” and “heavy trailer”’, reaching
an accuracy of 96.5% on a dataset composed of 400 vehi-
cle images. Yao et al. [43] developed an axle-based vehicle
detection and classification method using FCM to identify
and segment vehicle axle pixels from camera images. With
this vision-based approach, they reached a vehicle detection
rate of 62.8%. Saracoglu and Nemati [44] used FCM for
image segmentation based on the vehicle dimensions com-
bined with Support Vector Machine classification to classify
the vehicles as ““‘small vehicle”, “big vehicle” or “others”.
Researchers have also carried out multiple comparisons of
FCM with other methods, which demonstrated that the FCM
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algorithm is capable to overcome some of the problems faced
with noise sensitivity defect and non-linear data clustering
[45]-[47]. Velmurugun and Santhanam [48] compared the
clustering performance and effectiveness of the K-means
(KM), K-Medoids, and FCM clustering algorithms using dif-
ferent shapes to cluster arbitrarily distributed data and finding
mutual exclusion clusters. Moreover, Joyti and Kumar [49]
compared the performance of KM and FCM algorithms in
terms of computational time, while Gosh and Dubey [50]
computed the performance and clustering accuracy of these
two methods based on the efficiency of the clustering output
as well as the computational time.

In contrast, other works have applied supervised methods
for the classification of vehicles. Zhang et al. [51] developed
a length-based method for vehicle detection and classifica-
tion, reaching an accuracy of 97% for truck classification.
Arunkumar et al. [52] used a neural network classifier based
on geometrical features and appearance-based attributes to
classify passenger vehicles into brands. Moussa [53] also
used geometric-based and appearance-based features for
multi-class (“small”, “medium”, and “large size’) and
intra-class (“‘pickup”, “sport utility vehicle”, and “van’)
vehicle classification using a support-vector network mod-el.
Lastly, Cheung et al. [41] presented a vehicle classification
method based on measurements with magnetic sensors to
classify the vehicles into six types (“‘passenger vehicle”,
“SUV”, “van”, “bus’, “mini-trucks’, and “‘truck’). Their
algorithm achieved an accuracy of 80% to 90% when vehicle
length was used as a feature, compared to only 60% when the
length was not considered.

These works highlight the potential of using machine
learning techniques for feature-based vehicle classification.
However, in most cases they separate vehicles in classes that
differ greatly in appearance and size (e.g. mopeds, passenger
cars, vans trucks, buses), while separating more alike sub-
classes within these categories (e.g. the passenger car sub-
classes) poses a greater challenge, especially for vision-based
methods, and requires expert knowledge.

Lately, feature learning techniques have showed outstand-
ing performance for addressing uncertainty problem for clus-
tering and classification [24], [54]-[59]. The classification
performance highly depends on the quality of features gener-
ated from the data as input to the classifier process. However,
only a limited number of studies have been done on combine
feature learning techniques to improve classification perfor-
mance on the high dimensional and multi-class imbalanced
datasets. The classification method proposed in this paper
is a new semi-supervised clustering scheme SSFCM that
incorporates semi-supervised information in FCM algorithm
to considerably improve its effectiveness [22], [16], [23],
[26], [27], [60]-[63]. More details about the feature learning
techniques can be found in the article by Jiang et al. [64],
in which they combined several feature extraction methods
with a support vector machine classifier to group the vehi-
cles in six categories, namely ‘“‘large bus”, “passenger car”’,
“motorcycle”, “minibus”, “truck’ and “‘van’. This study
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FIGURE 2. The structure of the proposed semi-supervised deep learning process.

achieved a classification accuracy of 97.4%. Balid et al
[65] implemented a deep learning-based classification model
that uses the vehicle length as a key feature and classifies
vehicles into “passenger vehicles”, “‘single unit trucks”,
“combination trucks’, and ‘“‘multi-trailer trucks” with a
classification accuracy of 97%. Maungmai and Nuthong
[66] used a convolutional neural network method to clas-
sify the vehicle type as “small”, “medium”, *“large”, and
“unknown”’, and vehicle color as “black”, “blue”’, “white”’,
“green”, “yellow”, “red”, and ‘“‘unknown”. The convo-
lutional neural network classifier achieved an accuracy of
84.65% for the vehicle type and 75.44% for vehicle color
classification. The results comparison with utilized decision
trees, random forest, and densely deep neural network clas-
sifier show that the classification of vehicle type accuracy
increased by 1.8%, and vehicle color increased by 0.8%.
Dong et al. [67] proposed a vehicle type classification method
using a semi-supervised convolutional neural network from
high-resolution vehicle frontal view images. The algorithm
achieved 88.11% accuracy.

Ill. MATERIALS AND METHODS
A. SEMI-SUPERVISED CLUSTERING
Semi-supervised learning falls somewhere between
unsupervised learning and supervised learning, which com-
bines both labeled and unlabeled data. It solves classifica-
tion problems, such as the imbalance of data categories,
by using supervised learning algorithm that helps boost
the classification accuracy. There are three main types
of semi-supervised learning: semi-supervised classification
[56], [68]-[71], semi-supervised dimension reduction [24],
[72] and semi-supervised clustering [25], [73]-[75].
Semi-supervised classification focuses on minimizing the
square loss of predicted errors in the labeled examples,
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while part of instances is unlabeled; semi-supervised
dimensionality reduction attempts to reduce the vari-
ance of classifiers in high dimensional data or find the
low-dimensional space; semi-supervised clustering aims to
increase the accuracy of the defined clusters by identifying
better clusters than the ones obtained from unlabeled data
[19], [75]-[79]. Typically, semi-supervised clustering meth-
ods obtains worse representation results in the original feature
space. To make the semi-supervised clustering more efficient,
it is reasonable to do semi-supervised clustering with deep
feature learning [62], [63], [16], [80]. The framework of the
proposed clustering approach is depicted in Fig. 2.

Unlike the most widely used approaches, in SSFCM clus-
tering based feature extraction technique, we consider the
three types of information (diffusion label, extract core data,
and ex-tract feature vectors) in order to improving accuracy
of classification and decrease class imbalance and multi-
class overlapping problems. This framework includes two
main layers. The first layer contains the labeled (supervised)
dataset which is split into train set to create a classifier based
on the core dataset and test set to evaluate its output. The
second layer contains the combination of recordings from
train set not used for creating the classifier along with the
unlabeled dataset and provides the input for feature learning
process. The cluster centroids that are evaluated in feature
learning process are used as an input for extracting feature
vectors. Then feature selection process is implemented to
eliminate irrelevant and redundant features. Lastly, a SSFCM
model is constructed based on the selected feature vectors of
the train set and is validated using predicted labels of test set.

B. SEMI-SUPERVISED FUZZY C-MEAN CLUSTERING
Fuzzy C-means (FCM), as an overlapping clustering algo-
rithm, is one of the most popular fuzzy clustering meth-
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Algorithm 1 Fuzzy C-Means Membership and Centroid
Input: Data X whose number of elements N, A, C, m, max.
iteration number (7'), error threshold (&)
Output: uy;, v;
Sett=0
1. Initialize vj
Updatet=t+ 1
Compute uy;
Compute v;
Ift > T or |Jug — ui—1]| < € then stop; otherwise
Repeat from step 3.

AN

ods [81]. This technique is a soft clustering algorithm.
By this we mean that each data point has a probability of
belonging to each cluster with partial membership values
ranged from O to 1. However, due to the non-convexity of
its objective function, it may fall into local optimal solu-
tion during optimization. To address this issue, we propose
semi supervised fuzzy C-means clustering (SSFCM) algo-
rithm that incorporates deep feature learning in FCM to
further improve its effectiveness and eliminate redundant
information [22], [28], [75].

This method aims to minimize the objective function (J) as
follows:

. N ¢ 2
MinJ X:U V)= > Dy, (1<m<oo)
6]
c
s.t. Zi:l u =1 O=<uu <1) @
N
N
D=1 Ui
1
Ui = D\ 2D “
j=1 \ Dyja

DYy = X —vil2 = Xx —v) AL — v) (5)

where N is number of data elements, C is the number of clus-
ters; X represents the data k of X = {X1, X», X3, ..., XN}
in the i cluster; uy; represents the weighted squared errors
function known as membership function; m is a weighting
exponent that determines the degree of fuzziness; A is a
positive and symmetric (n x n) weight matrix; U is the
membership degree of data elements X into ¢ cluster; v; is
vectors of center in i cluster; K denotes the features, and
[[xx — v; ||i denotes to the Euclidean distance function and it is
computed in the A norm between j data and i cluster center.
The SSFCM algorithm comprises of the following steps:
After calculating deep FCM membership degrees and cen-
troids using the algorithm 2, we select the features (s C K)
using random oversampling (ROS) and Euclidean distance
metric techniques. The purpose of ROS approach is to main-
tain a balance between the features subsets of labeled classes
and unlabeled data elements [22], [38], [82]. The Euclidean
distances is the most applied (dis)similarity or distance metric
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Algorithm 2 The Training Strategies for Semi-Supervised
Fuzzy C-Means
Input: N data elements X = ({Xi,Xs,...,Xn},C,K,
labeled dataset (L), unlabeled dataset (UN), membership
degree (U), max. iteration number (7'), error threshold (¢)
Output: v, UyNL, ViL, VUNL
Sett=0

1. Initialize vji, VuL
Updatet=t+ 1
Compute ujr,, UUNL
Compute ViL, VUNL
Ift > T or ||J— Ji.1]] < ¢ is fulfilled for all labeled
and unlabeled objective functions separately then stop;
otherwise
6. Repeat from step 3.

DA

Algorithm 3 Semi Supervised Fuzzy C-Means Classifier
Input: N data elements X = {Xj, Xy, ..., Xn} with mini-
mum features in any subset (s), set of the centroid (V}} , V{,NL)
of selected features
Output: Predicted labeled data (Q = {qr+1,9r+2,---,
qrL+n})
SetQ=10

1. Forie {l1,...,c}do
Forje {1,...,N} do
Employ V3] to calculate max Sim;
If maximum average of max Sim; € i labeled class,
then
Append X; to i" labeled class
Update Q if a labeled class is achieved
For all V;; €V} do
Return Q

v

® N

to measure the similarity between the labeled and unla-
beled feature vectors. The outcome is the maximum average
of the maximum relevant and minimum redundant features
between the each selected feature of unlabeled data and
labeled classes [17].

max Sim;(X;, V;) = mindj;;, = min |XJ — ViSL|
(I1<i<o,XjeXunn (6)

C. PERFORMANCE MEASURE

Two methods, micro-averaging and macro-averaging, are
used to evaluate the accuracy and performance of classi-
fication [22], [83]-[85]. In selecting the best approach for
evaluating the performance of a given classifier is impor-
tant to consider the class-balance and expected outcomes.
A macro-average tend to estimate the metric for each class
separately and then compute the overall average. In contrast,
the micro-average aggregates the contributions of all classes
to estimate the average metric. One specific performance
evaluation allows assessing a classifier based on the par-
ticular perspective and frequently fails to measure others.
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FIGURE 3. Sankey diagram of the multi-class imbalanced datasets. The colors indicate the vehicle classification by
unsupervised Fuzzy C-means algorithm (right) and Swiss expert (left).

Therefore, in this study the macro-averaged accuracy (MAcc)
and micro-averaged F-Measure (MFM) are used for the vali-
dation of our approach.

The MAcc can be defined as:

TP
= — @)
TP + FP
" (Pr);
Mace = izt P (1<i<o) ®)
c
Precision and recall are defined as follows:
Pi=—T i< ©)
;= i<c
"7 TP; + FP; -
R i G<ico (10)
= — i<c
"7 TP; + FN; -
The MFM is then computed as:
2P;R;
F—Measure = ——— (11
P +R;
¢ (FM):
MFM = Lizi (FM); (12)
c

Here, Pr denotes precision in macro-average method; 7P;
(True Positives) is the proportion of the data points classified
correctly to class i; FP; (False Positives) is the proportion of
the data points that do not belong to class i but are classified to
class i incorrectly; FN; (False Negatives) is proportion of the
data points that are not classified to class i but which actually
belong to class #; n is the number of data points; and c is total
number of classes.

IV. EXPERIMENTS

A. DATA PREPARATION

In experiments, the vehicle database containing annually new
registered passenger cars, vehicle technical specifications and
vehicle expert classification data obtained from Swiss Motor
Vehicle Information System [86], Federal Office Technical
Information [87] and Vehicles Expert Partner [88] respec-
tively. In the preprocessing step we filter the database in
order to extract vehicles that do not meet the definition of
typical passenger cars, such as small pickup trucks, stan-
dard pickup trucks, vans, special purpose vehicles (SPVs),
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sports cars and multi-purpose vehicles (MPVs) [7]. By con-
sidering the goal of this paper, the dataset is separated into
two parts, training part and testing part. Training dataset
contains 275,601 passenger cars registered in Switzerland
in 2018 along with 22 parameters including geometric param-
eters such as height, length, width, wheelbase, angles of the
vehicle front and rear, etc., and technical parameters such as
power, engine capacity, energy efficiency, drivetrain, etc.

In the first step of learning process the training dataset
is considered to contain two types of patterns: unsuper-
vised (unlabeled) and supervised (labeled) dataset. For this
purpose, we used labeled dataset from the traditional unsu-
pervised algorithm, where the FCM clustering algorithm is
used in determining passenger cars multi-class classification
based on its features [7]. Fig. 3 demonstrates the benchmark
of Swiss vehicle datasets in 2018 that shows brief properties
of multi-class imbalanced datasets. The total 366 unique
samples is grouped into six classes: micro class containing
18 samples, small class containing 50 samples, middle class
containing 110 samples, upper middle class containing 84
samples, large class containing 60 samples and luxury class
containing 44 samples, where the average imbalance ratio
is 3. The average accuracy rate of unsupervised FCM clus-
tering algorithm in compare to the Swiss expert classification
was approximately 79% where the optimal number of unsu-
pervised FCM clusters is equal to five [7].

Due to the some limitations of the unsupervised FCM
clustering algorithm, the accuracy of features based clus-
tering is not very high. The main reason is that the fea-
ture of misclassified samples has a low degree of category
membership. Therefore, in this study we used the labeled
data with a membership degree greater than 0.95 as the core
dataset to extract the accurate classification of misclassified
samples and provide the basic for the later step of training.
The labeled data is divided into train set and test set. In feature
learning process, the unlabeled data and the previous labeled
along with the labels of the core dataset are used as input.
Prior to model development, new features are extracted to
reduce the number of features. In feature extraction step, the
cluster centroids learnt by using algorithm 2 and each patch
is transformed to a feature vector. In feature selection step,

VOLUME 9, 2021



N. Niroomand et al.: Robust Vehicle Classification Based on Deep Features Learning

IEEE Access

]Large and Luxury Class

I Micro Class

]Middle Class

u Small Class

Upper Middle Class

FIGURE 4. Sankey diagram shows the performance improvement with
to unsupervised Fuzzy C-means algorithm (left).

TABLE 2. Comparison of the accuracy of the SSFCM method and the traditional

SSFCMA [

SSFCMOD

SSFCM2[]

SSFCM3H

SSFCM4|

SSFCMSD

SSFCM approach (right) with labeled rate of 10% in comparison

FCM algorithm.

FCM SSFCM
Labeled rate - 10% 20% 30%
True Positive Prediction 277 311 318 333
Accuracy 0.79 0.86 0.87 0.91

Fuzzy C-Mean (FCM) and Semi-Supervised Fuzzy C-Mean (SSFCM).

resampling (ROS) technique is used in order to increase the
number of extracted features from minority groups and make
it equal to the number of features in majority groups. Finally,
algorithm 3 is used to select the best features based on the
Euclidean distance and remove redundancy from the feature
vector. After we initialized all parts, pseudo labels (PL) of
labeled data are assigned to unlabeled data. Following this, all
training data with their pseudo labels is carried out to pre-train
a SSFCM classification algorithm according to the extracted
discriminative features. Finally, new SSFCM is constructed
using only the labeled data with true labels.

To evaluate the performance of the proposed approach,
we used 10, 20, and 30 percent of the labeled samples from
each class to show the effect of the number of labeled data
and the rest are used as unlabeled samples. As essential input
arguments of unsupervised FCM, the maximum number of
iterations was set to 100, the convergence value to ¢ = le-6
and the degree of fuzziness to m = 2. The classification
performance of the SSFCM with different rates of labeled
samples on the imbalanced multi-class benchmark dataset is
presented in Table 2 and compared to the performance of the
unsupervised FCM.

The experiment results show that the use of semi-
supervised learning in fuzzy clustering algorithm can
significantly enhance the classification accuracy. Since in
the traditional FCM algorithm the initial cluster centers are
selected randomly, the algorithm can be easily trapped in
local minimum. In contrast, in our approach, the seed training
set which contains some labeled data determines the initial
centers. As a result, we get considerably better performances
(Fig. 4). When the rate of labeled data for each category
increases, the center in seed training set is more nearer to the
center in dataset. Hence, the accuracy rate slightly improves
along with the labeled rate, which remains at about 91%.
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To further demonstrate the advantage of our approach,
we compared SSFCM with other semi-supervised state-of-
the-art methods k-nearest neighbors (kNN) [23], AdaBoost
(Ada) [89], Ensemble selection for multi-class imbalanced
datasets (DES-ML) [90], Random Forest Classifier (RF) [91],
and Naive Bayes (NB) [92].

The classification accuracy results in Table 3 show that
the proposed SSFCM method achieved in most cases the
best performance on the passenger vehicle dataset for all
labeled rates (only DES-ML with a labeled rate of 10% is
slightly higher). The average accuracy over all labeled rates is
highest for the SSFCM, showing that the proposed approach
outperforms the other semi-supervised approaches.

B. PERFORMANCE MEASURE

To verify the underlying assumption that feature extraction
leads to improve classification results compared to the initial
classifier’s predictions, we use two performance measures to
investigate the classification performance of the traditional
unsupervised FCM with the original features and SSFCM
algorithm, namely MAcc and MFM.

Table 4 shows that, compared with the FCM-based classi-
fier, the performance of the SSFCM with only 10% labeled
rates is better for all vehicle classes. On average over all
classes, SSFCM reaches a MAcc of 85.58% and a MFM of
0.85, which is higher than that of traditional unsupervised
FCM. Furthermore, the visual comparison of the perfor-
mance metrics resulting from the unsupervised FCM and the
SSFCM algorithms reported in Fig. 5 (MAcc) and Fig. 6
(MFM), illustrates the superior performance of the SSFCM
in confront to the traditional FCM.

The better results of SSFCM approach show the pos-
itive impact of taking the class imbalance problem into
account for the higher classification accuracy. Therefore, the
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TABLE 3. Accuracy of semi-supervised methods on dataset with labeled rate of 10%, 20%, 30% from each class.

Accuracy
Methods 0% 20% 30% Average
kNN 0.71 0.74 0.78 0.74
Ada 0.48 0.43 0.44 0.45
DES-ML 0.87 0.81 0.88 0.85
RF 0.85 0.79 0.86 0.83
NB 0.42 0.40 0.43 0.42
SSFCM 0.86 0.87 091 0.88

k-nearest neighbors (kNN), AdaBoost (Ada), Ensemble selection for multi-class imbalanced datasets (DES-ML), Random Forest Classifier (RF), Naive Bayes

(NB), and Semi-Supervised Fuzzy C-Mean (SSFCM).

TABLE 4. Clustering performance measured by MAcc and MFM for FCM and SSFCM with a 10% labeled rate.

Classification FCM-MAcc FCM-MFM SSFCM-MAcc SSFCM-MFM
Micro Class 68.00% 0.7907 71.23% 0.8321

Small Class 75.93% 0.7810 89.24% 0.9128
Middle Class 78.85% 0.7664 83.72% 0.7897

Upper Middle Class 62.11% 0.6592 91.90% 0.8281

Large & Luxury Class 87.64% 0.8083 - -

Large Class - - 94.79% 0.8385
Luxury Class - - 82.57% 0.8857
Average 74.50% 0.7611 85.58% 0.8478

macro-averaged accuracy (MAcc), micro-averaged F-Measure (MFM), Fuzzy C-Mean (FCM), and Semi-Supervised Fuzzy C-Mean (SSFCM).

MAcc

88 85.58

74.50

Accuracy (%)
2
=

FCM SSFCM

FIGURE 5. Comparison of MAcc of FCM and SSFCM with a 10% labeled
rate.

experimental results demonstrate that the SSFCM algorithm
can extract richer information from vehicle dataset and obtain
higher discriminative recognition rates than FCM-based clas-
sifier does. This might be due to the variety in geometry
between the classes that can be trained effectively with the
feature extractor. Our proposed approach can, not only effec-
tively address the problem of multi-class imbalance data but
also improve the classification performance.

Lastly, we carried out our experiment to assess the per-
formance of our proposed vehicle classification approach for
intra-class vehicle classifications, specifically for the sepa-
ration of sport utility vehicle (SUV) from non-SUVs. The
analysis of drivetrain technologies for each segment based
on the expert classification demonstrates that more than two
third of the SUVs are four-wheel drive (4WD), while most
of the non-SUVs designs are front-wheel drive (FWD) and
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MFM

0.88
0.86
0.84
0.82

0.8478

0.78 0.7611

0.76
0.74
0.72

F-Measur€

0.68
0.66
0.64
13 0.62

FCM SSFCM

FIGURE 6. Comparison of MFM of FCM and SSFCM with a 10% labeled
rate.

rear-wheel drive (RWD) [88]. Therefore, the drivetrain tech-
nologies taken into account as an assumption of labeled
dataset for more accurate vehicle classifications, particularly
for big data analysis. Out of the total 366 unique samples
only 156 samples meet 4WD assumption. To evaluate the
performance, the supervised labeled dataset was split into two
subsets (SUV and non-SUVs passenger cars) along with their
geometrical and technical features. According to the dataset
evaluation SUV (SUVI) contains 96 samples and non-SUVs
(SUVO) contains 270 samples, respectively. Fig. 7 demon-
strates multi-class and intra-class vehicle classification based
on the SSFCM approach. Vehicles are categorized into six
main classes (micro, small, middle, upper middle, large and
luxury classes) and two sub-classes (SUV and non SUVs).
The performance of the SSFCM with only 10% labeled rates
for the intra-class vehicle classification reaches a MAcc of
87% and a MFM of 0.91.
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FIGURE 7. Sankey diagram of intra-class vehicle classifications of dataset. SSFCM classification with labeled rate of 10% (left) and

SUV/non SUV classification (right).

V. CONCLUSION

To summarize, we designed a novel SSFCM algorithm for
passenger vehicle classification, and compared an initial eval-
uation thereof with an expert segmentation to investigate
higher levels of vehicle classification. To incorporate the
unlabeled data in the training of SSFCM, we used their pre-
dicted labels generated by FCM clustering algorithm. In this
way we generate more useful features for classification and
it also helps to effectively solve the multi-class imbalance
problem.

Our SSFCM algorithm first uses a feature extraction tech-
nique and then clusters dataset based on the maximum aver-
age of the maximum similarity between the selected features.
In experiments with the new registered passenger car dataset,
the SSFCM technique was significantly more accurate than
other tested unsupervised and supervised approaches. As a
result, the average of both evaluated performance measures
(MAcc and MFM) are the highest for our proposed approach.

The proposed approach enables accurate automated
vehicle classification of large databases, which in turn facil-
itates the analysis of fleet changes. Moreover, our auto-
mated approach has several important advantages over the
expert-based segmentations, such as reduced classification
costs and training times, and elimination of subjectivity fac-
tors that often hinder the comparison of vehicle classification
databases across the world. A further area of potentially fruit-
ful research would be to investigate better ways for generating
supervised labels that are more consistent to the underly-
ing semi-supervised labels, as the quality of the supervised
labels has an effective impact on the quality of the features
extraction and the final classification performance of semi
supervised deep fuzzy approaches. The analyze time com-
plexity of targeted resampling technique will further help in
investigating the performances of the resampling techniques
on multi-class problems.
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