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a b s t r a c t

Default risk models have lately raised a great interest due to the recent world economic crisis. In spite of
many advanced techniques that have extensively been proposed, no comprehensive method incorporat-
ing a holistic perspective has hitherto been considered. Thus, the existing models for bankruptcy predic-
tion lack the whole coverage of contextual knowledge which may prevent the decision makers such as
investors and financial analysts to take the right decisions. Recently, SVM+ provides a formal way to
incorporate additional information (not only training data) onto the learning models improving general-
ization. In financial settings examples of such non-financial (though relevant) information are marketing
reports, competitors landscape, economic environment, customers screening, industry trends, etc. By
exploiting additional information able to improve classical inductive learning we propose a prediction
model where data is naturally separated into several structured groups clustered by the size and annual
turnover of the firms. Experimental results in the setting of a heterogeneous data set of French companies
demonstrated that the proposed default risk model showed better predictability performance than the
baseline SVM and multi-task learning with SVM.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The world is observing one of the most severe financial crisis
ever observed. While in the past the SME (Small and Medium
Enterprises) and micro companies had higher propensity of bank-
ruptcies in the recent past an increasing number of large bankrupt-
cies is systematically announced and the financial distress of all
type of firms across all industries is in danger. Aided by technology
and lower barriers to international capital flows, these crisis have
shown a greater tendency to spread to markets through out the
world, severely affecting the global economic activity. At the heart
of the present global recession is an inappropriate evaluation of
credit risk and most of governments were forced to implement res-
cue plans for the banking systems, including the Portuguese
Government.

Given the devastating effects of the financial distress of firms, it
is urgent that management and regulators are able to anticipate
this kind of issues. Although credit loss is a normal cost of doing
business in the case of banks, the excess of losses can be suffi-
ciently severe to threaten their own existence. The evidence in
the present situation is the need for banks to revise their models
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which evaluate the risk of each loan and the default rates of
portfolio’s loans. International rating agencies, like Moodys and
Standard & Poor’s, are also criticized for their models and
inadequacy of quantifying and predicting the risk of insolvency
of firms and banks. Moreover, these local and international rating
agencies tend to analyze the risk of large companies while the
financial system and banks, in particular, also need models for
analyzing the risk of SME’s. Banks have their own internal rating
models to quantify the risk of loans but they are still in their
infancy and rely on relatively simple mathematical methods with
inadequate assumptions.

As a consequence, there is an ever-increasing need for fast auto-
mated recognition systems for bankruptcy prediction. The extensive
recent literature shows that at the core of the business failure prob-
lem is the asymmetric information between banks and firms. Addi-
tionally, the development of analytical tools to determine which
financial information is more relevant to predict financial distress
has gained popularity along with the design of early warning
systems that predict bankruptcy (Pena, Martinez, & Abudu, 2009).

The health of firm in a highly competitive business environment
is dependent upon its capability to yield profitability and financial
solvency. This means that a firm becomes unhealthy when it loses
its competence to maintain profitability and financial solvency
(Wu, 2010). Business failure is not only common with new start-
ups but also with listed companies, and it can easily happen to firms
of any and all sizes.
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In Portugal, according to the Annual Survey of Insolvency and
Constitutions Company Coface,1 4519 companies were declared
insolvent in 2011, 1192 more than in the previous year (for the same
period) representing an increase by 35.8%, while the number of start-
ups raised only by 13.2%.

However, for this study we used a large database of French
companies. This database is very detailed containing information
on a wide set of financial ratios spawning over a period of several
years. It contains up to three thousands distressed companies and
about sixty thousand healthy ones. The financial Coface Data set
(French credit risk provider) is strongly heterogenous with regards
to the type of companies and their financial statuses. A great deal
of research has been pursued disregarding this aspect. In this paper
we focus on the improvement of financial distress decision-making
by including structured information into heterogeneous groups of
companies. We investigate the use of an advanced SVM+ approach
by Vapnik and Vashist (2009) whose rationale is to take into ac-
count additional information in a financial setting of French com-
panies. The firms are grouped by their category of large, medium
and small sizes thus clustered by the number of employees and an-
nual turnover. The properties resulting from these well-defined
profiles unveil decisive correlations among firms. Our study shows
that (a) SVM+ not only yields better prediction model than baseline
SVM but also a better model as compared to a similar approach of
Multi-Task Learning (MTL) and (b) the most salient data parame-
ters per group both in the kernel decision space and in kernel cor-
recting space are optimized, whereby the parameters and
parameter ranges that shape the various firms profiles are exposed.
The classification results demonstrate the prediction capability and
robustness of the proposed method.

The rest of the paper is organized as follows. Next section de-
scribes relevant background knowledge on bankruptcy prediction
and related work. In Section 3 we introduce SVM+ algorithm and
give its mathematical foundations. In Section 4 the proposed ap-
proach is described, and further details on comparable settings
are schematically illustrated for model comparison. In Section 5
we describe the database with information on healthy (and dis-
tressed) firms appropriately labeled for bankruptcy prediction
model design in a case study of the French Market. We also de-
scribe the preprocessing preparation phase and the performance
metrics. The experimental results including model and parameter
selection, discussion and statistical hypothesis tests are performed
in Section 6. Finally, in Section 7 we present the conclusions and
draw further lines of work.
2. Related work

The prediction of bankruptcy is a well-researched area in fi-
nance analysis and attracts much interest to creditors, auditors
and bank managers. The accurate prediction and early warning of
bankrupt events has critical impact on economics to control the
risk associated with wrong decisions, decrease the cost of monitor-
ing solvency, and shorten the time of credit assessment. Bank-
ruptcy prediction solves the important decision-making problem
that identifies the potential bankrupt company based on the anal-
ysis of historical finance characteristics.

The problem is stated as follows: given a set of parameters
(mainly of financial nature) that describe the situation of a com-
pany over a given period, predict the probability that the company
may become bankrupt during the following year. During the years,
this problem has been approached by various methods ranging
from statistics to machine learning. A review of the topic of
1 http://www.cofaceportugal.pt/CofacePortal/PT/pt_PT/pages/home/noticias
Estudos.
/

bankruptcy prediction with emphasis on neural networks (NN) is
given in Atiya (2001). Also, in Ravi Kumar and Ravi (2007) there
is a broad coverage of a wide range of other intelligent techniques
such as fuzzy set theory (FS), decision trees (DT), rough sets, case-
based reasoning (CBR), and support vector machines (SVM). More
recently, in Verikas, Kalsyte, Bacauskiene, and Gelzinis (2010) a
comprehensive review of hybrid and ensemble-based soft comput-
ing techniques applied to bankruptcy prediction is presented. De-
spite the numerous papers dealing with the problem, it is often
difficult to compare the techniques due to possible differences in
assumptions, data sets, time periods and failure definitions.

Fig. 1 illustrates the general framework of bankruptcy predic-
tion using machine learning methods, composed of feature selec-
tion, dimensionality reduction using linear (e.g., PCA/KPCA) or
nonlinear (e.g., ISOMAP/NMF) projection methods, followed by a
machine learning (through NN, SVM etc.) process. It may be no-
ticed that the additional information is helpful to attain better gen-
eralization of default risk models, which can be, for example in
SVM+, the structured information in the data.

2.1. Neural networks

Neural Networks (NNs) are particularly suited for predicting the
bankrupt probability, thus they are a strategic choice among other
methods. Likewise, their properties make them often used in finan-
cial applications because of their excellent performances of treat-
ing non-linear data with self-learning capability (Fu-yuan, 2008).
As a competitive learning neural network, self-organizing map
(SOM) is used to determine the credit class through a visual explo-
ration (Merkevicius, Garsva, & Simutis, 2004). Learning Vector
Quantization (LVQ) is a supervised variant of SOM useful for
non-linear separation problems (Kohonen, 2001). The network is
composed of two levels, in which the input level is fully connected
with the output level. The modeling technique is based on the neu-
rons representing prototype vectors and the nearest neighbor clas-
sification rule. The goal of learning is to determine the weights that
best represent the classes. LVQ has been employed to detect the
distressed companies with satisfactory performance as in Chen
and Vieira (2009) and Boyacioglu, Kara, and Baykan (2009). Carv-
alho das Neves and Vieira (2006) show that an enhanced version
of Hidden Layer Learning Vector Quantization can enhance the per-
formance of a multi-layer perceptron (MLP). In recent research ef-
forts, combined techniques have been studied to optimize the
learning models by evolutionary algorithms, in particular, Genetic
algorithm (GA) is used by Sai, Zhong, and Qu (2007) and Huang,
Kuo, and Yeh (2008) to optimize the parameters and connected
weights of back-propagation neural networks.

2.2. Support vector machines

Support Vector Machines (SVMs) transform the input vectors
nonlinearly into a high-dimensional feature space through a kernel
function so that the data can be separated by linear models. In the
literature there is an endless list of articles with SVM approaches.
Min and Lee (2005) applied a grid-search technique to find out the
optimal parameter settings of both polynomial and RBF kernel
functions and showed that SVM outperforms techniques such as
multiple discriminant analysis (MDA), logistic regression analysis
(Logit), and three-layer fully connected back-propagation neural
networks (BPNs).

More often, evolutionary algorithms including genetic algo-
rithm, annealing simulation, particle swarm optimization, ant col-
ony optimization are widely used in hybrid classification to
significantly advance both the SVM single prediction model and
feature selection (Lin, Shiue, Chen, & Cheng, 2009). Research efforts
have been directed to combine SVM with other soft computing
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http://www.cofaceportugal.pt/CofacePortal/PT/pt_PT/pages/home/noticias/Estudos


Fig. 1. Bankruptcy machine learning methods pipeline.
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tools for better performance. For example, rough set theory (RST)
serves as a useful preprocessor of SVM to reduce the redundant
variables (Yeh, Chi, & Hsu, 2010). The introduction of fuzzy mem-
bership into SVM is capable to find optimal feature subset and
parameters, and hence increase the accuracy of SVM prediction
(Chaudhuri & De, 2011).
2.3. Feature selection and projection models

Most of the prediction models use financial ratios as predictor
variables, by employing the selection of only a few financial ratios
according to a choice based criterion. Model selection of corporate
distress prediction is advisable for reducing problem complexity
and saving computational costs. Rekba Pai, Annapoorani, and Vi-
jayalakshmi Pai (2004) test a linear pre-processing stage using
principal component analysis (PCA) for dimensionality reduction
purposes. However, nonlinear projection methods (e.g. ISOMAP)
have been successfully used by Ribeiro et al. (2009b) making them
more suitable for this problem. Recently, Lin, Yeh, and Lee (2011)
also uses a hybrid manifold learning approach model (ISOMAP-
SVM) and shows the approach is better capable to predict the fail-
ure of firms. With the same goal, non-negative matrix factorization
(NMF) is performed by Ribeiro, Silva, Vieira, and Carvalho das
Neves (2009a) for extracting the most discriminative features with
promising results.
2.4. Probability models

While the forecast of bankruptcy is of paramount importance to
all stakeholders, to estimate the probability of a corporate failure
can prevent the adverse effects that such event can provoke. Ribe-
iro, Vieira, and Carvalho das Neves (2006) apply a probabilistic
framework for bankruptcy detection based on a Relevance Vector
Machine (RVM). It is shown therein that the classifier yields a deci-
sion function leading to significant reduction in the computational
complexity with regards to SVM while the prediction accuracy
compares favorably. Pena et al. (2009) use a Gaussian Process to
estimate bankruptcy probabilities.
2.5. Linear models

Although machine learning models have been widely used in
the last decades, still the pioneer statistical techniques are worth
mentioning in the modeling of corporate bankruptcy prediction
such as univariate and multivariate discriminant analysis (Altman,
1968, 1993). Classification algorithms like linear discriminant anal-
ysis (LDA) and logistic regression (LR) are also popular linear ap-
proaches. All these techniques aim at finding an optimal linear
combination of explanatory input variables, such as, e.g., solvency
and liquidity ratios, in order to analyze, model and predict corpo-
rate default risk. Unfortunately the financial ratios violate the
assumptions of (i) linear separability, (ii) multivariate normality
and (iii) independence of the predictive variables. Therefore, the
models overlook the complex nature, boundaries and interrelation-
ships of the financial ratios.

In this paper we look at a new learning paradigm SVM+ in-
vented by Vapnik and Vashist (2009) and Vapnik, Vashist, and
Pavlovitch (2009) propose a financial distress prediction model
where privileged information is taken into account by extending
our earlier work (Ribeiro, Silva, Vieira, Cunha, & Carvalho das
Neves, 2010). The additional information regarding heterogenous
financial ratios grouped by the type of firms according to the num-
ber of employees and annual turnover or global balance is incorpo-
rated in the model. In this regard the approach takes a holistic view
of the overall process enhancing the learning inductive process by
improving generalization.

3. Learning models with large margin classifiers

The rationale behind large margin classifiers intuitively lies on
how the classifier with the largest margin will give low expected
risk, and hence better generalization. Among many different ap-
proaches to the classification of data, support vector machines
use the concept of margin, a confidence parameter rather than a
raw training error, which allows the design of better algorithms
(Smola et al., 2000).

Vapnik and Vashist (2009) and Vapnik et al. (2009) discuss in
detail the extension of the new formulation of the SVM algorithm
presented formerly in Vapnik (1982, 2006) and demonstrate its
superiority toward other machine learning techniques. The new
paradigm SVM+ while upholding the main principles of SVM ex-
tends its concept, by incorporating the essence of ‘untold’ informa-
tion often not handled in a learning problem. In the scope of many
practical problems, it is showed that in terms of the capability of
transmitting privileged or hidden information, the role of a super-
visor (or even of an oracle) leverages the classification (or regres-
sion) tasks. It is a new step in machine learning paradigms which
had never been put before. Liang and Cherkassky (2008) present
a learning paradigm for multi-task learning (MTL) with several
models to deal with heterogeneous data and lateral information.
The SVM+ paradigm is then adapted to the multi-task learning
framework (SVM + MTL). The authors compare in several papers
(Cai & Cherkassky, 2009; Liang & Cherkassky, 2007, 2008) SVM+
and MTL approaches demonstrating their similarities and differ-
ences. In particular, it is therein emphasized that Vapnik’s ‘‘Learn-
ing with structured data’’ formulation is similar to the multi-task
learning in the sense that both of them try to exploit the group
information. However, they point out that in the former only one
model is set up while in MTL t models are considered. Another dif-
ference lies on group membership of new testing data which is not
required in SVM+ whereas under MTL test inputs are assumed to
have group labels (Cai & Cherkassky, 2009).

3.1. Support vector machines

Support Vector Machines (SVMs) are maximum margin classifi-
ers with low capacity and good generalization. The SVM trains a
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classifier by finding an optimal separating hyperplane which max-
imizes the margin between two classes of data in the kernel in-
duced feature space.

Suppose we are given l instances of training data. Each instance
consists of a (xi,yi) pair where xi 2 RN is a vector containing N attri-
butes of the instance i, and yi 2 {+1,�1} is the correspondent class
label. The method uses input–output training pairs from
D ¼ fðxi; yiÞ 2 X # RN � Y : 1 6 i 6 lg such that the SVM classifies
correctly unobserved data (x,y).

Each x in X is then mapped to a /(x) in the kernel-induced fea-
ture space, which is related to the kernel function K by /(x)T/
(x0) = K(x,x0) for any x;x0 2 X . SVM tries to find the optimal sepa-
rating hyperplane wT/(x) + b that has large margin and small train-
ing error.

The quadratic programing optimization problem originally pro-
posed by Cortes and Vapnik (1995) is:

min
w;b2 R;n

Uðw; b; nÞ ¼ 1
2
kwk2 þ C

Xl

i¼1

ni ð1Þ

subject to constraints

yiððwT/ðxÞÞ þ bÞP 1� ni i ¼ 1; . . . ; l

ni P 0 i ¼ 1; . . . ; l:
ð2Þ

Here n = [n1, . . . ,nl]T is the vector of slack variables upholding the er-
rors, and C is a user-defined regularization parameter that trades-
off the margin error. This problem is solved by maximizing the
function:

RðaÞ ¼
Xl

i¼1

ai �
1
2

Xl

i;j¼1

aiajyiyjKðxi;xjÞ ð3Þ

with respect to ai, under the constraints
Pl

i¼1aiyi ¼ 0 and 0 6 ai 6 C,
i = 1, . . . , l. The solution is a linear combination of the input data
points xi for which ai is different zero (the so-called the support vec-
tors (SVs)) and is given by the decision function with the form:

f ðx;aÞ ¼
Xl

i¼1

aiyiKðxi;xÞ þ b ð4Þ

with ai; b 2 R. The SVM finds the class of a given test point xj by
computing f(xj,a) and then checks which side of the hyperplane it
falls on.

3.2. SVM+

Recently, a generalization of SVM, designated by support vector
machine plus (SVM+), was proposed by Vapnik (2006) and co-
workers in Vapnik and Vashist (2009). The technique formerly
known as Learning With Structured Data (LWSD), or even Learning
Using Privileged Information (LUPI) has an SVM-based optimiza-
tion formulation whose goal is to find the best mapping function
f such that the expected loss:

RLWSD ¼
Z

Lðf ðx;wÞ; yÞPðx; yÞdxdy

is minimized. The SVM+ approach is designed to take advantage of
the structure in the training data (for example, noise present in
data, or invariants in the data). By leveraging this structure, the
SVM+ technique can lower the overall system’s VC-dimension and
hence attain better generalization.

In SVM+ the slack variables are restricted by the correcting
functions, and the correcting functions represent additional infor-
mation about the data. Vapnik uses this concept to control the
learning machine by establishing a privileged information setting
which leads to a holistic view of the whole process.
In this subsection we closely follow Liang, Cai, and Cherkassky
(2009). Suppose that training data are the union of t > 1 disjoint
groups Dr . If we denote the indice set of samples from: Dr by Tr

then

Dr ¼ fðxri
; yri
Þ 2 X # RN � Y : i 2 Trg:

To account for the group information, Vapnik (2006) proposed
to define the slack variables within each group by the so-called
‘correcting function’:

nr
i ¼ nrðxiÞ ¼ urðxi;wrÞ; i 2 Tr; r ¼ 1; . . . ; t: ð5Þ

To define the correcting function nr
i ¼ nrðxiÞ ¼ urðxi;wrÞ for group Tr

the input training vectors xi, i 2 Tr are mapped into two different
Hilbert spaces (i) the decision space and (ii) the correction space.
The former is defined by the decision functions and the latter by
the correcting functions for a given group r.

A dual-optimization technique similar to the one used before is
performed in SVM+. The main idea is to find the hyperplane in the
feature space that solves the minimization problem:

min
w;b2R;nr

Uðw; b; nrÞ ¼ 1
2
kwk2 þ c

2
kwrk2 þ C

Xt

r¼1

X
i2Tr

nr
i ð6Þ

subject to constraints

yiðwT/ðxiÞ þ bÞP 1� nr
i ; i 2 Tr; r ¼ 1; . . . ; t

nr
i P 0; i 2 Tr; r ¼ 1; . . . ; t

nr
i ¼ wT

r /rðxiÞ þ dr
� �

; i 2 Tr ; r ¼ 1; . . . ; t:

ð7Þ

It may be noticed that the capacity of a set of decision functions is
reflected by kwk and the capacity of a set of correcting functions for
group r is kwrk.

The decision function has again the form:

f ðx;aÞ ¼
Xl

i¼1

aiyiKðxi;xÞ þ b ð8Þ

where ai P 0, i = 1, . . . , l are values that maximize the function:

Rða; bÞ ¼
Xl

i¼1

ai �
1
2
aiajyiyjKðxi;xjÞ

� 1
2c
Xt

r¼1

X
i;j2Tr

ðai þ bi � CÞ aj þ bj � C
� �

Kr xr
i ;x

r
j

� �
ð9Þ

subject to constraints

Xl

i

aiyi ¼ 0

X
i2Tr

ðai þ bi � CÞ ¼ 0; r ¼ 1; . . . ; t

ai P 0; bi P 0; i ¼ 1; . . . ; l:

ð10Þ

SVM+ has two kernels which in different spaces define similarity
measures between two data points. Thus it allows to control the
learning capacity of both the decision functions and the correcting
functions. The parameters c and C have a crucial role over the learn-
ing machine that combines regularization and control of the mar-
gin, in which c adjusts the relative weight of these two capacities,
and C controls the trade-off between complexity and proportion
of sample errors. Fig. 2 illustrates the SVM+ learning procedure
and indicates in the most left block diagram the parameters with re-
spect to the four (different) models M1, M2, M3, M4 featured by the
type of kernel in each space.

From a practical point of view the SVM classifier has only one
free parameter, the parameter C, in the case of the linear SVM;
and two parameters, C and r, in the case of the RBF kernel. Regard-
ing the SVM+ classifier, the four identified models (M1, M2, M3 and



Fig. 2. SVM+ learning diagram model. Models M1, M2, M3 and M4 are selected
according to the kernels parameters for the decision space and the correcting space.
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M4) are characterized by the type of kernel in both spaces as illus-
trated in Table 1. In the case of M1 where the RBF kernel is used for
both the decision space and the correcting space, the SVM+ classi-
fier needs four parameters (C, c, r1 and r2). Meanwhile, in the case
of M3 which requires little parameter specification both kernels are
linear. In the case of M2 (or M4) where the linear kernel (or RBF ker-
nel) is chosen for the decision space and the RBF kernel (or linear
kernel) is used for the correcting space only three parameters are
required: C (as in standard linear SVM), c and r (RBF kernel width).

3.3. Multi-task learning with SVM (SVM + MTL)

In multi-task learning (MTL) framework (Liang et al., 2009) the
setting is similar to the previous learning methodology using
Table 1
Models selection.

Decision space Correcting space

Kernels type

M1 – RBF – RBF
M2 Linear – – RBF
M3 Linear – Linear –
M4 – RBF Linear –
SVM+. Likewise, the training data can be naturally separated into
several structured groups, whereby one model estimation is real-
ized for each group as a separate task, while in SVM+ the objective
is to estimate a single predictive model for all groups. The adapta-
tion of the SVM+ to MTL entails the specification of decision func-
tions for different groups and modeling the interrelationship
among the groups. It gives rise to the method SVM + MTL where
the input vectors xi 2 Tr are simultaneously mapped into two dif-
ferent Hilbert spaces: the decision space zi = /z(xi) 2 Z and the cor-
recting space zr

i ¼ /zr
ðxiÞ 2 Zr for a given group r. The goal is to find

the t decision functions:

frðxÞ ¼ ðwT/zðxÞÞ þ bþ wT
r /zr
ðxÞ

� �
þ dr; r ¼ 1; . . . ; t ð11Þ

where each decision function above involves two spaces (the deci-
sion space and the correcting space) contrasting with SVM+ which
only defines a function in the decision space. Formally, SVM + MTL
solves the following optimization problem:

min
w;b2R;nr

Uðw; b; nrÞ ¼ 1
2
kwk2 þ c

2
kwrk2 þ C

Xt

r¼1

X
i2Tr

nr
i ð12Þ

subject to constraints

yr
i ðwT/zðxiÞÞ þ bþ wT

r /zr
ðxiÞ

� �
þ dr

� �
P 1� nr

i ; i 2 Tr;

r ¼ 1; . . . ; tnr
i P 0; i 2 Tr; r ¼ 1; . . . ; t ð13Þ

Likewise in SVM+ the parameters C and c control, respectively, the
trade-off between the complexity and the proportion of non-sepa-
rable examples, and the relative weight of the decision function
and the correcting function capacity. The slack variables nr

i measure
the error that each of the final model makes on the data.

4. Proposed default risk model with SVM+

Fig. 3 presents the overall design of the proposed approach
based on SVM+ computational algorithm for an enhanced default
risk model. As indicated, the main computational stages include
data preparation and re-sampling, model selection task using the
SVM, SVM+ and SVM + MTL approaches, and finally the resulting
default risk models are statistically compared for significance
testing.

Ooghe and De Prijcker (2006) come up with a failure conceptual
model of the possible causes of bankrupt. In an earlier study the
authors group the causes of bankruptcy into five interactive facets
including general environment (economics, technology, foreign
countries, politics, and social factors), immediate environment
(customers, suppliers, competitors, banks and credit institutions,
stockholders, and misadventure), management/entrepreneur char-
acteristics (motivation, qualities, skills, and personal characteris-
tics), corporate policy (strategy and investments, commercial,
operational, personnel, finance and administration, corporate gov-
ernance), and company characteristics (size, maturity, industry,
and flexibility).

Herein, in Fig. 4 we hierarchically represent a main two-level
informative analysis involving, respectively, the firms key financial
ratios and non-financial information. In each of the next four-lev-
els, we include, in the former, financial indicators, such as, opera-
tional performance, financial liquidity, risk and return, and
sustainable growth. In the latter, non-financial (though relevant)
information comprise government policy, economic environment,
marketing reports, customers screening, industry trends, competi-
tors landscape, etc. By exploiting additional information able to
improve classical inductive learning we propose a prediction model
where data is naturally separated into several structured groups
clustered by the size and annual turnover of the firms. This is
achieved by using SVM+ where beyond control over the separation



Fig. 3. General model of SVM+ default risk model.

Fig. 4. Key financial ratios and non-financial information.
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margin, the algorithm uses appropriate correcting functions which
are able to provide supplementary information not accounted for
in the Key Performance Indicators (KPI) variables.
2 COFACE financial French risk provider.
5. Experimental setup

Based on the proposed prediction model in this section we de-
scribe the data set, present the preprocessing procedure, detail the
key performance indicators (KPI), and indicate the performance
evaluation metrics for problem assessment.

5.1. Data description

We used the Diane database2 which contains financial state-
ments of French companies for the years of 2002 to 2006. The data-
base is very complete containing information about the ratio of
distressed and healthy firms across all the years. The data set is also
very diversified by companies sector such as: construction firms, real
estate firms, manufacturing, IT firms, etc. Fig. 5 illustrates the com-
position of the main industries of the French Market, distributed
among several sectors, included in the database.

The initial sample consisted of financial ratios of about 60 000
industrial French companies (for the years of 2002 to 2006) with
at least 10 employees. From these companies, about 3000 were de-
clared bankrupted in 2007 or presented a restructuring plan to the
court for approval by the creditors. Fig. 6(a) depicts the distribution
of distressed firms in 2006 and 2007 under various conditions,
namely, large and small bankruptcies, friendly liquidation and le-
gal regulation.

Regarding their size, it varies according the number of employ-
ees: >=10 and <50 (Small), >=50 and <500 (Medium), and >=500
(Large) and includes structured and heterogeneous information
with respect to the company financial statuses. In particular, the
capital turnover which measures the firm’s efficiency in using
the capital employed to generate revenue is also taken into ac-
count. Specifically, for the years of 2007 and 2006, in Fig. 6(b) we
schematically represent the number of distressed companies com-
prising above clustered information. In this paper, we worked with
30 financial ratios extracted from the database which are detailed
in Table 2. These financial indicators allow to describe the firms in
terms of financial strength, liquidity, solvability, productivity of
labor and capital, margins, net profitability and return on invest-
ment. With linear statistical models (some of) these variables have



Fig. 5. Industry sectors in DIANE.

Fig. 6. Diane firms type samples.

Table 2
DIANE database financial ratios.

Variable description

x1 – Number of Employees last year x16 – Cashflow/Turnover
x2 – Capital Employed/Fixed Assets x17 – Working Capital/Turnover days
x3 – Financial Debt/Capital

Employed
x18 – Net Current Assets/Turnover
days

x4 – Depreciation of Tangible Assets x19 – Working Capital Needs/Turnover
x5 – Working Capital/Current Assets x20 – Export
x6 – Current Ratio x21 – Added Value per Employee EUR
x7 – Liquidity Ratio x22 – Total Assets Turnover
x8 – Stock Turnover days x23 – Operating Profit Margin
x9 – Collection Period days x24 – Net Profit Margin
x10 – Credit Period days x25 – Added Value Margin
x11 – Turnover per Employee EUR x26 – Part of Employees
x12 – Interest/Turnover x27 – Return on Capital Employed
x13 – Debt Period days x28 – Return on Total Assets
x14 – Financial Debt/Equity x29 – EBIT Margin
x15 – Financial Debt/Cashflow x30 – EBITDA Margin
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small discriminatory capabilities for default prediction, thus the
rationale with non-linear approaches is to improve the classifica-
tion accuracy without compromising generalization. The ultimate
goal is to predict the class (Distressed, Healthy) by extracting rele-
vant information contained in the financial ratios. In order to attain
better predictability group information should be included in the
model. This goal is achieved by adjusting a good (model) fitting
of the (heterogeneous) data.

5.2. Data preprocessing

In order to obtain a balanced dataset we randomly selected 600
non-default examples resulting in a set of 1200 samples of default
and non-default companies. An appropriate treatment of the data-
base to eliminate firms with missing values was pursued.

The following strategy is pursued from original financial data-
base to appropriately set up a prediction model.

� A set of 600 default companies are selected with at most 10
missing data;
� A set of 600 non-default companies is sampled randomly to

obtain a balanced data set;
� The missing values are replaced by the value of the closest

available year;
� The ratios are preprocessed by logarithmized operation to

decrease the scatter of data distribution:
y ¼
logðxþ 1Þ if x > 0
�logð1� xÞ otherwise

�
ð14Þ
� The features are then normalized for the purpose of equal influ-
ence on classification. We use the linear normalization which
transforms the maximum value to 1 and the minimum value
to 0:
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y ¼ x�minðxÞ
maxðxÞ �minðxÞ ð15Þ
� The companies are grouped by their category of large, medium
and small regarding their size according to the number of
employees and annual turnover or global balance.

5.3. Key performance indicators analysis

Fig. 7 illustrates the mean values of the financial key perfor-
mance indicators (KPI) in terms of the financial ratios presented
in Table 2 with respect to default firms and non-default firms,
respectively. It is interesting to notice that a close look into the
KPI mean values along all the indicators might heighten our under-
standing regarding the firms’ behavior. For instance, if we consider
the five important ratios such as x6 current ratio, x14 Financial
Debt/Equity, x16 Cashflow/Turnover, x20 Export, and x29 EBIT (Earns
Before Interest Rates) Margin it may be observed an opposite
Fig. 7. Diane KPI
behavior between Default and Non-Default firms. Indeed, accord-
ing to Altman (1968, 1993) these KPI indicators seem to have a
prominent role into the bankruptcy prediction problem.
5.4. Evaluation metrics

The performance metrics were evaluated based on the classifi-
cation contingency matrix defined in Table 3. Here tp, fp, tn, fn rep-
resent the usual notation for the confusion matrix in terms of true
(or false) and positive (or negative) results from the classifier.

In this classification problem, two types of misclassification
carry different weights. This is due to the fact that if a potentially
distressed (‘bad’) company is classified as financially healthy
(‘good’) then the amount of loss incurred by a stakeholder is en-
tirely different from the other type of misclassification. In our next
definitions we consider that the positive class is the distressed firm
whereas the negative class is the healthy firm. Then the two possi-
ble types of misclassification errors are defined as follows. A ‘Type I
mean values.



Table 3
Contingency matrix.

Real class Predicted class

Bankrupt Healthy Total

Bankrupt tp fn pos
Healthy fp tn neg
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error’ (or false positive rate (fpr), i.e. fp
fpþtn) indicates the misclassifi-

cation of a healthy firm as distressed. Conversely, a ‘Type II error’
(or false negative rate (fnr), i.e. fn

fnþtp) is the one in which a distressed

firm is misclassified by the predictor as viable. This error is very
important since the predictor should not make a mistake prevent-
ing the decision maker to take a wrong decision. According to
Ooghe and Spaenjers (2006) the former corresponds to a ‘commer-
cial risk’ meanwhile the latter corresponds to a ‘credit risk’. An
‘‘overall hit’’ refers to the total correct classifications for the set

tpþtn
tpþfpþfnþtn

� �
regardless of type. We also illustrate the results with

F1-score which quantifies the trade-off between Recall tp
tpþfn

� �

and Precision tp
tpþfp

� �
and is fairly indicative of the performance of

the overall algorithm. F1-score is defined as 2 Precision�Recall
PrecisionþRecall, which

reaches the best value at 1 and worst score at 0. All the results rep-
resent mean values obtained in test financial data.

Another performance metric is ROC (Receiver Operating Charac-
teristic) curve (Fawcett, 2006) which is obtained by plotting tpr
versus fpr. The curve depicts the tradeoffs between tp and fp.
ROC provides an easy and natural way to compare the performance
of different classifiers independently from the cost context and the
class distribution, able to observe if one classifier dominates an-
other, and therefore identify the optimal model.
Fig. 8. F1-score versus
6. Results and discussion

In this section we present and discuss the results. Further com-
parison with SVM baseline and multi-task learning approach
SVM + MTL demonstrate the easiness of the proposed model. The
experimental design follows two sets of experiments, namely,
model selection and parameters selection. Next, statistical signifi-
cance tests are performed for models assessment. Further discus-
sion is given for the bankruptcy prediction model.

The entire data set is divided randomly into five folds for cross-
validation, in which 4 folds are used for model training, and the
remaining is used for testing the generalization capability of the
built model. In each run the SVM, SVM+ and SVM + MTL are ap-
plied to the learning dataset. For validation, each sample of the test
data set is input to the resultant model and the class is predicted.
After the experiment is repeated 5 times, the confusion matrix is
calculated by comparing the real class and predicted class for the
entire data. Then the evaluation criteria are obtained from the con-
fusion matrix.
6.1. Model selection

In a first set of experiments we performed the runs according to
the design indicated in Fig. 3. As said above we used four models
(M1, M2, M3 and M4) according to the type of kernel chosen for
the decision and correcting spaces. We decided to run the experi-
ments with two types of kernels: the RBF kernel, since it was
shown to present the best behavior in previous empirical results
run in the same data set (Ribeiro et al., 2009b, 2009a), and the lin-
ear kernel.

The results in Fig. 8 with respect to the F1-score clearly indicate
that the best approach is SVM+ and the best models are M1 and M4
model selection.



Table 4
Mean (and standard deviations) of Performance results (a) Model 1 (M1), (b) Model 2
(M2), (c) Model 3 (M3), (d) Model 4 (M4). Three learning approaches are considered:
SVM baseline, SVM+ and SVM + MTL.

Models Performance measures

Accuracy Type I Error Type II Error F1-score

SVM
M1 88.12 ± 0.94 6.41 ± 4.96 17.19 ± 3.07 87.63 ± 0.51
M2 88.72 ± 0.00 3.82 ± 0.00 18.52 ± 0.00 88.00 ± 0.00
M3 88.72 ± 0.00 3.82 ±0.00 18.52 ± 0.00 88.00 ±0.00
M4 88.12 ± 0.94 6.41 ± 4.96 17.19 ± 3.07 87.63 ± 0.51

SVM+
M1 89.40 ± 1.71 8.55 ± 3.79 12.59 ± 0.74 89.35 ± 1.48
M2 89.10 ± 0.53 7.18 ± 2.94 14.52 ± 2.65 88.83 ± 0.59
M3 87.82 ± 1.02 8.55 ± 4.37 15.70 ± 2.64 87.55 ± 0.75
M4 88.87 ± 1.69 9.31 ± 3.83 12.89 ± 0.66 88.85 ± 1.45

SVM + MTL
M1 88.27 ± 0.72 6.41 ± 4.17 16.89 ± 2.84 87.80 ± 0.45
M2 89.10 ± 1.41 3.51 ± 0.68 18.07 ± 2.32 88.40 ± 1.59
M3 85.49 ± 0.21 8.24 ± 1.00 20.59 ± 0.97 84.74 ± 0. 27
M4 86.99 ± 0.63 6.41 ± 0.68 19.41 ± 0.62 86.28 ± 0.66

Fig. 9. (a) SVM+ Errors of Type I and II versus Models design. (b) Increase in the
relative error of Type II errors of SVM and SVM + MTL approaches w.r.t. SVM+.
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for runs where the parameters were set as illustrated in the plots. It
is interesting to notice that both models uphold an RBF kernel for
the decision space while the correcting space kernel is either an
RBF (M1) or linear (M4). As observed in Section 3.2 the slack vari-
ables in Eq. (5) are restricted by the correcting functions which
contain useful information about the data. In particular, the char-
acteristics of each firm in terms of its size and annual turnover
might convey additional capability to the learning machine facili-
tating the discriminative task between failing and non-failing
cases.

In Fig. 8 the parameters at the bottom of each plotted graph cor-
respond to the complete range of parameters used when the se-
lected model is M1. For instance in the top left graph, the whole
list of parameters is (C = 10,c = 1,r1 = 10,r2 = 10). As indicated in
Fig. 2, the configuration of parameters for the other models M1,
M2 and M3 is trivially obtained.

A more extensive analysis of the effect of the variation of model
parameters in the performance measures will be presented later.

In Table 4 several performance measures are presented, namely,
the overall hit of firms financial status, the two types of misclassi-
fication errors and the F1-score measure which is a trade-off of
precision and recall and represents fairly well the quality of the
classifier. We indicate the mean values (and standard deviations)
in percentage while the best results are highlighted in bold. We ob-
serve that F1-score for the SVM+ w.r.t. to the SVM + MTL approach
improved by 1.55% (M1), 0.43% (M2), 2.81% (M3) and 2.57% (M4)
while w.r.t. the baseline SVM the highest increase in F1-score
was observed in M1 (1.72%).

We observe in Table 4 that the significant measures F1-score
(89.35 ± 1.48), predictability accuracy (89.40 ± 1.71) and Error
Type II (12.59 ± 0.74) (in bold) have the highest values w.r.t. the
same measures in both counterpart approaches, i.e., the SVM base-
line and the SVM + MTL. As expected, the errors of type I and type II
in the SVM baseline do not change for models M2 and M3 since the
correcting functions are not taken into account in this approach.

Since the misclassification cost on the ‘bankrupt’ class is higher
(in this study as said above corresponds to type II error) the classi-
fier achieving less error type II is preferred in practice.

In Fig. 9 we illustrate in (a) Type I and Type II errors bar plots for
the SVM+ which confirm that the best model is M1 whereby the
expensive cost presents the lowest value. In (b) the increase of er-
rors of Type II in the SVM and SVM + MTL approaches w.r.t. SVM+
is depicted. It may be observed that regardless of kernel functions,
SVM+ consistently performs better than SVM + MTL. It may be ob-
served that the highest increase in the misclassification error cor-
responds to models M3 and M4 w.r.t. the SVM + MTL approach.
Interestingly the kernel is linear for the correcting space, therefore
it indicates that in multi-task learning the correcting functions
with RBF kernel seem to have a prominent influence in the learning
model regarding the ‘credit risk’.

6.2. Parameters selection

In the second run of experiments, we study how the model
parameters affect the learning model M1 and compare its variation
in all of the tested approaches. The strategy was to analyze how the
parameters C and c whose combined action is in control of the
margin and regularization influence the measures behavior.

By keeping fixed both the parameters of the kernel decision
space r1 and of the kernel correcting space r2, and parameter c,
in Fig. 10(a) we graphically illustrate with varying C, how F1-score
performs consistently better for SVM+ than the other two ap-
proaches, while baseline SVM performs better than SVM + MTL.

In a similar way, the decision (and correcting) space kernel
parameters are kept constant as well as the trade-off parameter
C. We vary c in the interval (1 ? 1000), whereby the logscale is
herein used for better visualization. It may be also noticed in the
Figure F1-score is constant for the baseline SVM since its formula-
tion does not include c. Fig. 10(b) shows the plots of F1-score
where also better performance of SVM+ is obtained in most cases
as compared to the other methods. The parameter c adjusts the rel-
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ative weights of the two machine capacities above referred. By
analyzing the results it is possible to observe that for c = 1 and
c = 10 the F1-score is identical for the SVM+ and SVM + MTL ap-
proaches, which seems to indicate that under these values SVM+
does compare favorably to SVM + MTL, although it is not better.

Considering the intended purpose of SVM+ and, moreover, the
nature of the importance of the credit risk, it has been concluded
that SVM+ has substantial advantages in comparison with other
structures. In Fig. 11 the two types of misclassification errors are
plotted. We run the experiments for the M1 model and changed
the parameter C across the indicated range. The results are fairly
indicative of the better performance of SVM+ when the default risk
cost is a concern. It may be observed that the type II error falls in
SVM+ with respect to the tested models. Thus, the likelihood of
not missing to detect a distressed company and enhancing the de-
fault risk model significantly increases.

An overall view of the classifiers performance is observed in
Fig. 12 for the three studied methods. The ROC curves depicted
provide for each cut-off value the proportion of observations incor-
rectly classified as default by the model against the proportion cor-
rectly classified as default. The plotted results demonstrate the
superiority of the SVM+ over the SVM baseline and SVM + MTL
approaches.
6.3. Significance hypothesis statistical tests

There is a heightened need for implementing effective financial
models, therefore two statistical tests were performed, first,
Fig. 10. Results of parameters variation for model M1 in SVM baseline, SVM+ and
SVM + MTL approaches.

Fig. 11. Results of misclassification errors for model M1 in SVM baseline, SVM+ and
SVM + MTL approaches.

Fig. 12. ROC curves.

Table 5
Significance Tests with statistical variable F1-score: (a) SVM, (b)
SVM+, (c) SVM + MTL.

SVM+ SVM + MTL

SVM 0.022151⁄ 0.102722
SVM+ 0.002192⁄⁄

⁄ Significance at 5% level.
⁄⁄ Significance at 1% level.



Table 6
Significance Tests with statistical variable Error of Type II: (a)
SVM, (b) SVM+, (c) SVM + MTL.

SVM+ SVM + MTL

SVM 0.0412⁄ 0.252237
SVM+ 0.024533⁄

⁄ Significance at 5% level.
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regarding the model approach and, second, with respect to the
model selection under the chosen model.

A statistical t-test was performed for the three approaches
used: SVM, SVM+ and SVM + MTL. The statistical variables chosen
were the F1-score measure and error of type II which is the expen-
sive cost in the model design.

6.3.1. Performance evaluation
Table 5 summarizes the statistical significance of the difference

between three methods by means of t-test. The significance level is
set as 5%, so that the p-value less than 5% indicates that the two
underlying methods are significantly different in the mean. As it
may be observed, the method SVM+ significantly outperforms
the SVM + MTL method in terms of F1-score, as shown by the p-va-
lue 0.002192 indicating the t-test is highly significant at signifi-
cance levels of 1%. The p-value of 0.02151 shows that SVM+ is
significantly different in the mean at the level of 5% w.r.t. the
SVM baseline.

The significance tests above are verified by the results in Table 6
whereby the statistical variable is the expensive cost error of type
II. This cost identifies the risk of missing a positive case, that is, to
detect successfully a bankrupt company. As shown, the p-value of
0.0412 indicates that at a significance level of 5% the results are
statistically significant for the SVM and SVM+, meanwhile, the p-
value of 0.024533 shows that the difference between the means
of SVM+ and SVM + MTL is statistically significant too.

6.3.2. Model selection
We observe in Table 7 that Models M1 and M4 are statistically

significant at a significance level of 1% as compared with M3. It is
interesting to notice that this occurs when the kernel in the deci-
sion space is RBF. Moreover, we observe that the better model
(M1) corresponds also to the RBF kernel for the correcting space.
7. Conclusion and future work

In response to the recent growth of the credit industry and to
the world economic crisis early planning for declaring bankruptcy
is of great importance to various stakeholders. The health of a firm
in a highly competitive business environment is dependent upon
its capability of achieving profitability and financial solvency.
Therefore, the unhealthy status come to play when the firm loses
profitability and financial solvency. As one of the most developed
techniques in bankruptcy prediction, SVMs have shown excellent
generalization performance due to many attractive features. In this
study we investigate the predictive capability of SVM+, which han-
Table 7
Significance Tests with statistical variable Error of Type II: (a) Model 1 (M1), (b) Model
2 (M2), (c) Model 3 (M3), (d) Model 4 (M4).

(b) (c) (d)

(a) 0.278571 0.003437⁄⁄ 0.495025
(b) 0.313561 0.287190
(c) 0.007897⁄⁄

⁄⁄ Significance at 1% level.
dles privileged information in the model. Business failure can eas-
ily happen to firms of any and all sizes. We use 30 financial ratios
as inputs to the corporate failure prediction model using struc-
tured and heterogeneous information grouped by the category of
large, medium, or small size according to the number of employees
and annual turnover of companies. By taking a holistic perspective
it was possible to incorporate firms additional (and useful) infor-
mation into the model. As a consequence of this approach, different
optimized parameters both in the kernel decision space and kernel
correcting space are selected, resulting in better overall-predict-
ability performance. As expected, the SVM+ model yields improve-
ment of F1-score performance measure while decreasing type II
error which quantifies the cost of missing a company in a bad sta-
tus. On one hand, the comparison with the baseline SVM and
SVM + MTL shows that regardless of the kernel functions em-
ployed, SVM+ always produces the best performance. It suggests
that by leveraging the structured information in the training data,
the model can attain better generalization and robustness predic-
tion than other approaches. On the other hand, comparable results
on different models of SVM+ show that the model using RBF kernel
function is significantly better than that of linear kernel function in
decision space, which gives some insight to select optimal models
in practical applications.

Future work will extend this study. It would be interesting
when faced with the prospect of losing solvency to take a holistic
perspective based on the differentiated activity of firms. In partic-
ular our following approach will also consider the different
branches of production connected to the industrial sectors.
Although we have compared SVM+ with the baseline SVM and
the multi-task learning approach SVM + MTL in the present work,
extensive comparisons will be conducted using more state-of-
the-art classification methods and other financial data set in the fu-
ture study.
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