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SUMMARY 

The complexity of the wine matrix makes monitoring of the winemaking process from the grapes to the final product crucial for the wine 
industry. In this context, analytical methodologies that can combine good accuracy, robustness, high sample throughput, “green 

character”, and by preference real-time analysis, are on-demand to create high-quality vitivinicultural products. In the last years, Fourier-

transform Infrared Spectroscopy (FTIR) combined with chemometric analysis has been evaluated in several studies as an effective 
analytical tool for the wine sector. Some applications of FTIR spectroscopy have been already accepted by the wine industry, mainly for 

the prediction of basic oenological parameters, using portable and non-portable instruments, but still many others are waiting to be 

thoroughly developed. This literature review aims to provide a critical synopsis of the most important studies assessing grape and wine 
quality and authenticity, and to identify possible gaps for further research, meeting the needs of the modern wine industry and the 

expectations of most demanding consumers. The FTIR studies were grouped according to the main sampling material used - 1) leaves, 

stems, and berries; 2) grape must and wine applications - along with a summary of the basic limitations and future perspectives of this 
analytical technique.  

RESUMO 

A complexidade da matriz do vinho torna a monitorização da sua produção, desde a maturação da uva até o produto final, fundamental 
para a indústria do vinho. Neste contexto, metodologias analíticas com boa exactidão, robustez, elevado rendimento de amostras, menos 

penalizadoras para o meio ambiente, e se possível capazes de fornecer resultados em tempo real, são muito importantes para a obtenção 

de produtos vitivinícolas de alta qualidade. Nos últimos anos, a Espectroscopia de Infravermelho com Transformada de Fourier (FTIR) 
combinada com a análise quimiométrica tem sido avaliada em diversos estudos por ser uma ferramenta analítica apropriada para o setor 

vitivinícola. Algumas aplicações de FTIR já foram adoptadas pela indústria do vinho, principalmente para a predição de parâmetros 

enológicos básicos, através de instrumentos portáteis e não portáteis, mas há ainda um enorme potencial de desenvolvimento a explorar. 
A presente revisão da literatura tem como objetivo fornecer uma sinopse crítica dos estudos mais importantes realizados para avaliação 

da qualidade e autenticidade do vinho e identificar possíveis lacunas para investigação futura, indo ao encontro das necessidades da 
indústria vinícola moderna e das expectativas dos consumidores mais exigentes. Os estudos sobre FTIR foram agrupados de acordo com 

o principal material de amostragem - 1) folhas, engaços e bagos; 2) mostos e vinhos - juntamente com informação sobre as limitações 

básicas e perspectivas futuras desta técnica analítica. 
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INTRODUCTION 

Wine is considered the result of multiple 

biochemical and physicochemical reactions, which 

are responsible for its complex chemical 

composition. First of all, the grape composition at 

the harvest plays an important role in the future 

quality of the wine. Therefore, careful monitoring of 

specific grape quality parameters during ripening is 

essential for the wine industry. Monitoring of grape 

ripening by winemakers is mainly based on the 

measurement of total soluble solids (TSS), reducing 

sugars, pH, and titratable acidity. Generally, wine 

grapes with a high accumulation of sugars, 

phenolics (red grapes) and aromatic compounds, 

Article available at https://www.ctv-jve-journal.org or https://doi.org/10.1051/ctv/ctv2022370179
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intense colour (red grapes) and suitable acid content 

are the main goals. However, in some cases, these 

attributes are not sufficient to assess the wine 

quality. More assessments considering the 

maturation stage of grapes, the identification of the 

vineyard plots from which the grapes come, and the 

quality assessment of the grapes when they are 

delivered to the winery are needed (Dambergs et al., 

2015). Furthermore, considering that winemaking is 

based on several techniques and technologies to 

transform grapes into wine, there is a need for 

continuous quality control during these oenological 

procedures. The first important step of the quality 

control begins with the monitoring of the 

vinification (including alcoholic fermentation when 

glucose and fructose are converted mainly to 

ethanol and carbonic gas). It also includes other 

important transformations and chemical reactions 

due to the extraction and microbial metabolism of 

grape components. Moreover, malolactic 

fermentation (MLF), which can occur 

simultaneously with primary fermentation or 

sequentially, is another important step in the 

winemaking process for some wine styles. 

Furthermore, production techniques can be different 

according to the kind of grapes (white or red grapes) 

and the desired style of wine produced. For 

example, some fortified wines can be produced with 

the addition of wine spirit to stop alcoholic 

fermentation and enhance the final alcohol content. 

Finally, after the fermentation a series of important 

steps are also carried out, which include operations 

of clarification, stabilisation, maturation/ageing and 

packaging of the wine (Waterhouse et al., 2016) 

Nowadays, several analytical techniques and 

methods used in the wine industry are considered to 

be non-environmentally friendly as they are using 

hazardous chemical solvents, or time-consuming, 

consisting of many analytical steps.  In this context, 

FTIR technique is applied in the wine industry due 

to various advantages that allow to overcome 

previous analytical limitations, namely 

practicability, of the traditional techniques. Each 

spectroscopic technique has different and limited 

frequency ranges. The Infrared (IR) region is 

between 50-14000/cm and is divided into three 

areas: near-infrared (ΝIR) (4000-14000/cm; 2500-

715 nm), mid-infrared (MIR) (400-4000/cm; 25000-

2500 nm), and far-infrared (FIR) (50-400/cm; 

200000-25000 nm) (Ferreira, 2015). FTIR is a non-

destructive, time- and cost-effective technique that 

does not use hazardous chemical reagents, is 

characterised by high degree of automation, and 

short preparation time. Most applications in the 

wine industry are based on MIR and NIR 

spectroscopy. More specifically, FTIR 

instrumentation in combination with state-of-the-art 

software, designed specifically for grape and wine 

analysis, has recently received much attention. For 

most FTIR measurements, the MIR region (400-

4000/cm) is investigated. FTIR can be used for 

qualitative and quantitative measurements, 

analysing at the same time several oenological 

parameters with a precision equal to the traditional 

techniques. Moreover, it is possible to combine 

portable and non-portable devices for monitoring 

the winemaking process in different locations 

(Ferreira, 2015). 

Many applications based on IR spectroscopy of 

portable and non-portable devices are used to assess 

the maturation stage and to make decisions for the 

appropriate harvest time (Power et al., 2019, Felix 

instruments, 2021). Furthermore, IR spectroscopy, 

and specifically FTIR, is already applied in routine 

analysis for quality control of wines by a high 

number of laboratories both from wine companies 

and control entities, such as a Portuguese one, IVDP 

(Instituto dos Vinhos do Douro e do Porto) under 

the accreditation of NP EN ISO/IEC 17025. 

Furthermore, this technique has been considered in 

an inter-laboratory essay (physicochemical and 

instrumental analysis) for laboratory performance 

assessment, involving a significant number of 

participants (Alabe-Associação dos Laboratórios de 

Enologia., 2021). However, to improve the 

technique, several validations and optimisation 

procedures took place along with the development 

of new databases for analytical calibration aims 

(Moreira et al., 2002; Ferreira et al., 2009; Brandão, 

2019). Moreover, OIV has established specific 

guidelines on infrared analysers in the oenology 

sector, concerning the exploitation of the 

characteristic absorptions of the organic compounds 

in the IR region of wines and musts for 

quantification purposes (OIV, 2010) 

In this context, this review aims to give a brief 

introduction to the basic concepts of IR 

spectroscopy chemometric tools, and recent 

applications of FTIR spectroscopy to monitor each 

step of wine production. For the literature search, 

some of the most recent references describing 

applications and developments were used. 

Moreover, some oldest scientific sources of great 

interest were analysed. Published articles on the 

web of science, science direct, and other credible 

sources were used, along with some books. 

 

FTIR: BASIC CONCEPTS 

Instrumentation  

The principle of the IR technique relies on 

recording absorption changes of IR radiation by 

molecules after vibrational and rotational modes 

due to absorption of energy. Each molecule contains 

a quantity of different functional groups (for 

example a carbonyl group or an amide group). Each 

functional group imparts a characteristic IR 

absorption at a specific frequency range. The 

https://www.alabe.pt/
https://www.alabe.pt/
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functional groups will vibrate when they will be 

exposed to IR radiation (Stuart, 2004). 

Specifically, FTIR spectroscopy is based on the 

interference of radiation between two beams that 

results in the creation of an interferogram. The 

interferogram is a signal produced according to the 

change of path length between the two beams. This 

generated signal from the interferometer can then be 

reconverted into the two domains of distance and 

frequency that form a signal, by the mathematical 

method of Fourier transformation. A typical FTIR 

spectrometer includes a source, sample cell, 

detector, amplifier, analog-to-digital (A/D) 

converter, and computer. Radiation derived from 

the sources passes through the interferometer before 

reaching the detector. An A/D converter and 

amplifier convert the signal into a digital form 

before being transferred to the computer where the 

Fourier transform is taking place (Titus et al., 

2019). The basic components of an FTIR 

spectrometer are shown in Figure 1. 

 

 

Figure 1. Schematic representation of FTIR equipment (adapted from Griffiths and De Haseth, 2007). 

 

FTIR sampling methods 

The most commonly used sampling techniques for 

Vibrational Spectroscopy are as follows: 1) 

Transmission (TR) or Reflectance; 2) Attenuated 

Total Reflection (ATR); 3) Diffuse Reflectance 

(DRIFT).  

In TR spectroscopy, the sample is placed directly 

into the (IR) beam. As the IR beam passes through 

the sample, the transmitted energy is measured and 

a spectrum is generated. The transmission technique 

can be used alone or in conjunction with accessories 

such as microscopes, and liquid or gas cells to 

analyse. Typically, in the case of liquid samples, 

fixed-length transmission cells are used. In the case 

of solids, the most common preparation is either the 

nujol mull (paraffin oil) or alkali halide (KBr) 

pellets (Mendes and Duarte, 2021). 

In ATR spectroscopy, measurement is based on the 

changes that occur in an internally reflected IR 

beam when it contacts with a sample. An IR beam is 

directed onto a high refractive index (high optical 

density) crystal at a certain angle. Most often this 

material is either diamond, Zinc selenide (ZnSe), or 

Germanium (Ge). This internal reflectance creates 

an evanescent wave that extends beyond the 

crystal’s surface and penetrates the sample. In 

regions of the IR spectrum where the sample 

absorbs energy, the evanescent wave will be 

attenuated. The detector records the attenuated IR 

beam as an interferogram signal, which can then be 

used to generate an IR spectrum (Blum and John, 

2012). 

In DRIFT, the IR energy is directed into a sample 

cup filled with a mixture of the sample and an IR 

transparent matrix (such as KBr). The IR radiation 

interacts with the particles and then reflects off their 

surfaces, causing the light to diffuse, or scatter, as it 

moves throughout the sample. The output mirror 

then directs this scattered energy to the detector in 

the spectrometer. The detector records the altered 

IR beam as an interferogram signal, which can then 

be used to generate a spectrum (Olale et al., 2017). 
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Multivariate statistical techniques 

The FTIR measurements produce multivariate 

responses and, as a result, generate a large amount 

of data. Chemometrics combined with FTIR is used 

for calibration, validation, and comparison in order 

to facilitate the analysis of such complex matrix 

interactions. Chemometrics is a discipline that uses 

mathematical and statistical methods to extract, 

represent, and display maximum chemical 

information from a sample. The chemometric 

analysis involves three main methods: Mathematical 

pre-treatments; Classification methods; Regression 

methods (Jamwal et al., 2021). 

The Mathematical spectral pre-processing 

treatments are taking place in order to improve the 

acquired spectra, enhance the signal-to-noise ratio 

and reduce irrelevant spectra information. The most 

applied methods for this purpose can be divided into 

scatter correction methods and derivation methods. 

Scatter correction methods include Multiplicative 

Signal or Scatter Correction (MSC) (extended MSC, 

inverse MSC, inverse extended MSC and de-

trending), Standard Normal Variate Scaling (SNV), 

normalisation, and baseline correction. The 

derivation methods include finite difference, 

Savitzky–Golay, and Norris–Williams (Rinnan et 

al., 2009). 

The multivariate classification methods can be 

unsupervised (exploratory data analysis) and 

supervised; the former is carried out with unknown 

data to identify the similarities and differences 

between samples by reducing the data 

dimensionality. The most widely used unsupervised 

methods are Principal Component Analysis (PCA) 

and Hierarchical Cluster Analysis (HCA). The 

supervised methods are mainly used for 

classification studies and the most widely known 

methods are Linear Discriminant Analysis (LDA), 

Soft Independent Modeling by Class Analogy 

(SIMCA), and Partial Least Squares Discriminant 

Analysis (PLS-DA) (Zhao and Liu, 2007; Jamwal et 

al., 2021). 

Finally, for quantification purposes, Regression 

methods are used. The most widely used regression 

models are Multiple Linear Regression (MLR), 

Principal Component Regression (PCR), Partial 

Least Squares Regression (PLS-R), and Orthogonal 

Partial Least Squares Regression (OPLS). All above 

are linear methods applicable to first-order data and 

suitable for Parallel Factor Analysis (PARAFAC). 

For second-order data N-way, Partial Least Squares 

Regression (N-PLS) is considered more effective 

(Guillen-Casla et al., 2011; Mendes and Duarte, 

2021). Non-linear methods can also be used, in 

which the variables show a non-linear relationship 

to the target characteristics (output variables). 

Artificial Neural Networks (ANN), Wavelet Neural 

Networks (WNN), and Support Vector Machines 

(SVM) are the most commonly used non-linear 

regression methods (Alexandidis and Zapranis, 

2013; Moldes et al., 2017; Costa et al., 2019). 

FTIR analytical calibration 

The complexity and amount of the data obtained by 

FTIR make the development of analytical 

calibration procedures very important. The 

analytical methodologies based on FTIR 

measurements are not considered absolute methods 

of analysis, and therefore the obtained calibration 

models need to be validated in comparison with 

reference methods. The analytical calibration 

procedure consists of fitting the model to the data in 

order to obtain reliable estimations. Wine samples 

can differ extremely in the origin, vintage, cultivar, 

viticulture, winemaking procedures, and wine style, 

making important the selection of the calibration 

data to be considered representative (in terms of 

concentration ranges and sample matrix). Usually, 

to determine different chemical parameters, a 

selection process of specific spectral wavelengths is 

performed. Furthermore, the validation consists of 

examining the accuracy, precision, and prediction 

ability of the model for future samples deriving 

from the same population as the calibration 

samples. To estimate realistically the performance 

of the calibration model, an independent set of 

samples is required (Bauer et al., 2008; Ferreira, 

2015). 

 

FTIR APPLICATIONS IN WINE 

PRODUCTION 

Analysis of  grapes and leaves  

Determination of basic oenological parameters 

The first important step in the winemaking 

procedure, which is illustrated in Figures 2 and 3, is 

the collection of the grapes at the appropriate time, 

when they have reached the desired maturation 

stage according to the winemaking target. At this 

stage, the most usual evaluations, strongly 

correlated with the grape quality, are the 

determination of sugar content, acidity-related 

parameters, and phenolic content (red grapes). 

These parameters, which showed variations across 

the vineyard, making an easy, quick, and precise 

determination very important for the wine industry 

(Watson, 2003). In this context, some of the most 

interesting studies are summarised in Table I and 

analysed below. 
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Figure 2. The most important steps of classical white winemaking with the identification of the most common analytical 

determinations. 

 

In a chemometric exploratory analysis, Fourier 

Transformed Mid-infrared spectroscopy (FT-MIR) 

was applied to a grape must sample from South 

Africa (Swanepoel et al., 2007). The purpose of the 

study was the simultaneous quantification of total 

soluble solids (TSS, measured as °Brix), pH, and 

titratable acidity (TA, expressed as g tartaric acid/L) 

using PCA and PLS. The spectra region used for the 

calibrations was 1474-2685/cm. The results 

obtained were satisfactory for qualification analysis, 

but the analytical accuracies were not good enough 

to quantify these oenological parameters. This fact 

was ascribed to an insufficient fit of the South 

African grape samples to the global FT-MIR 

WineScan calibrations (Swanepoel et al., 2007). In 

a similar study, FT-ΜIR in combination with PCA 

analysis was used to monitor the evolution of red 

berries from veraison to harvest. The most 

important wavenumbers associated with these 

evolutions were linked with carbohydrates. Also, 

discrimination of the geographical origin was also 

achieved for the two areas under study (Touraine 

and Anjou, France). Generally, good estimations 

values were obtained for titratable acidity and 

sugars concentration. However, the parameters΄ 

prediction was improved when only the data from 

one location were considered. These observations 

suggest the need for global calibration models 

applicable to a wider range of samples from 

different origins (Piqué et al., 2010). FT-NIR and 

ATR FT-MIR spectroscopy in combination with 

chemometrics were used to qualitatively and 

quantitatively analyse ‘Sauvignon Blanc’ grape 

berries at five distinct developmental stages: green, 

pre-véraison, véraison, post-véraison and ripe 

(harvest). MIR spectra provided more reliable 

discrimination between the berry samples from the 

different developmental stages than NIR spectra. 

ATR FT-MIR spectra from fresh homogenised 

berry samples were more discriminatory than with 

the frozen homogenised berry samples. The key to 

discrimination in between-stage variation was the 

sugar-organic acid absorption band, underlining the 

role of organic acid and sugars concentration as 

berry growth biomarkers. However, the 

discrimination of the last two stages of berry 

maturity faced more difficulties indicating the need 

for additional information deriving from the 

identification of other important compounds such as 

terpenoids (e.g., monoterpenes, sesquiterpenes, and 

carotenoids) or phenolics (e.g., flavonols, 

anthocyanins, and tannins) (Musingarabwi et al., 

2016).  
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Figure 3: The important steps of classical red winemaking with the identification of the most commons analytical 

determinations. 

 

A classification study took place using ATR FT-IR 

and ANN. Specifically, spectra derived from grape 

skins and leaves were used for the classification of 

the samples according to their variety and ripeness 

degree. Pectin (associated with a peak at 825/cm) 

present in grapes influenced that classification for 

both variety and ripeness identification, while 

fructose content was associated with the ripeness 

degree. Polyphenols did not contribute to a great 

extent to the samples’ classification (Murru et al., 

2019). 

 

Determination of phenolic compounds 

In order to enhance the spectra response, grape 

extracts were enriched with distinct phenolic 

compounds of different chemical structures 

(Fragoso et al., 2011).  In this way, FT-MIR 

spectroscopy combined with PLS regression was 

able to quantify phenolic compounds for monitoring 

the ripening process in red grapes during the harvest 

period (Fragoso et al., 2011. Indeed, this method 

allowed evaluating total phenolic compounds, total 

anthocyanins, and condensed tannins 

simultaneously. Moreover, in this study, an attempt 

of developing models for individual varieties was 

quite promising. These results suggest the possible 

application of FT-MIR by each winery to design 

specific models for the varieties they are using. In 

each case, more samples are needed to cover a 

wider range of values (Fragoso et al., 2011).  

The phenolic content of the wines depends on the 

extraction of phenolic compounds from the grapes. 

It is known that when the sugar content (degree of 

ripening) increases, the cell wall material decreases, 

affecting the phenolic compounds’ extractability 

(Ortega-Regules et al., 2008). For this reason, ATR-

FTIR and Raman spectra of grape skin have been 

recorded and linked to the extractability of phenolic 

compounds (anthocyanins, flavanols, and total 

phenolics) of the inner grape skin surface. 

Concerning the ATR-FTIR data, the spectra peaks 

showed a significant influence of the number of 

polysaccharides and the degree of methyl 

esterification of pectins on the phenolic 

extractability levels of grape skin tissue, which were 

found mainly at 3324, 1732, 1018/cm. However, 

these correlations were only possible using the 

spectra of the inner skin surface of the grapes. The 

result was assigned to possible low amounts of 

phenolic compounds on the external skin surface 

(Nogales-Bueno et al., 2017).  
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Table I 

Representative examples of FTIR analysis of grapes, and leaves 

Aim of the analysis 
Type of sample/ 

Preparation mode 

Wavenumber range 

(/cm) 

Spectral 

pre-treatment 

Statistical  

method 
Reference 

Optimisation of the 

quantification of total soluble 

solids, pH and titratable 

acidity 

Fresh homogenates 

of berries 

964-1542 

1717-2969 NM PCA, PLS Swanepoel et al. (2007) 

Assessment of grape maturity Fresh homogenates of berries 926-5012 1st derivative 

(Savitzky-Golay) 

PCA, PLS, PLS-

DA 
Piqué et al. (2010) 

Estimation of mDPs of grape 

seeds procyanidins 
Grape seeds powder 700-1800 SNV PCT-PLS, O-PLS Passos et al, (2010) 

Quantification of phenolic 

compounds 
Fresh homogenates of berries 1168-1457 NM 

PCA, PLS 

 
Fragoso et al. (2011) 

Determination of assimilable 

nitrogen 

Frozen, crushed, 

centrifugated berries 
1480-1800 NM PLS Skoutelas et al. (2011) 

Monitoring nitrogen and 

starch grapevine reserves 
Wood and root grape tissue 374–7496 

MSC, 2nd Der, MC, 

SNV, PLS 
PLS, SVR Schmidtke et al. (2012) 

Quantification of Botrytis 

bunch rot 

Frozen homogenates of 

berries 

3717-12500 

388-3984 

1stderivative 

(Savitzky-Golay) 

 

PLS Hill et al. (2013) 

Measurement of the 

concentration of nutrients in 

grapevine petioles 

Dried grape leaves petioles 375–7500 SNV PCA, PLS Smith et al. (2014) 

Analysis and discrimination of 

grape spoilage via volatiles 
Whole berries 600–4000 

Baseline correction, 

low pass filtering and 

smoothing 

PCA, SIMCA Dong et al. (2014) 

Quantification of Tannin 

mDPs and %G in Grape Seeds 

Freeze dried and ground 

grape seeds 
400-4000 2nd derivative PLS Pappas et al. (2015) 

Quantification of total 

phenolics and condensed 

tannins in grape seeds 

Freeze dried and ground 

grape seeds 
400-4000 2nd derivative PLS Kyraleou et al. (2015) 

Qualitative and quantitative 

evaluation of grape berries at 

various stages of maturity 

Fresh and frozen 

homogenates of berries 

900-3800 

5000-12000 
NM 

MVDA, PCA 

OPLS-DA, PLS 
 Musingarabwi et al. (2016) 

Determination of phenolic 

extractability 

Whole berries, frozen berry 

skin layers 
600-4000 

MSC, Baseline 

correction 
PCA Nogales-Bueno et al. (2017) 

Differentiation according to 

ripeness degree and grape 

variety 

Berry skin layer, leaves 600-4000 NM ANNs Murru et al. (2019) 

Discrimination of Aspergillus 

spp., Botrytis cinerea, and 

Penicillium expansum 

Frozen homogenates of 

berries 
375-1850 

SNV, Mean centred 

data 

PCA, SIMCA, 

SVR 

KNN, RFM 

Schmidtke et al. (2019) 

Discrimination of geographical 

origin and year of harvest, 

prediction of oenological 

parameters 

Grape homogenates, grape 

skins 
400-4000 

Normalization, 1st 

derivative 
PLS-DA, PLS Lemos et al. (2020) 

Determination of yeast 

assimilable nitrogen content 
Grape juice 

4000-12500 

600-4000 

929-4000 

4000-5011 

1st derivative, constant 

offset elimination 
PLS Petrovic et al. (2020) 

Qualitative analysis of grape 

seeds 
Freeze dried grape seeds 500-4000 NM PCA Lucarini et al. (2020) 

Characterisation of red grapes 

skin extracts 

Hydroalcoholic extracts of 

berry skin 

800-4000 

400-1700 
NM 

PCA, LDA, PC-

LDA 
Alecu et al. (2020) 

NM=Not mentioned; PCA=Principal Component Analysis; PLS=Partial Least Squares Regression; PLS-DA=Partial Least Squares-Discriminant Analysis; 

PCT-PLS=Principal Components Transform-Partial Least Squares Regression; O-PLS=Orthogonal Partial Least Squares; SNV=Standard Normal Variate; 

SVR=Support Vector Regression; MSC=Multiple Scatter Correction; MC=Mean Centering; SIMCA=Soft Independent Modeling by Class Analogy; 

MVDA=Multivariate Data Analysis; ANN=Artificial Neural Networks; OPLS-DA=Orthogonal Projections to Latent Structures Discriminant Analysis; 

KΝΝ=k-Nearest Neighbors; RFM=Recency, Frequency, and Monetary value; PC-LDA=Principal Components-Linear Discriminant Analysis; LDA=Linear 

Discriminant Analysis. 

In addition, due to an increasing interest in the full 

exploitation of the oenological by-products, 

determination of the quality parameters of grape 

seeds is important. Phenolic compounds are located 

in all the grape cluster: stems and berries (skins, 

seeds, pulp) (Sun et al., 1999). The extraction of 

phenolic compounds from the skins is faster for 

phenolic acids and anthocyanins, but for flavanols it 

requires more time. Moreover, when more extended 

maceration (red winemaking) is taking place, the 

process is more complex (Sun et al., 1999).    In this 

case, the phenolic composition of the grape seeds is 

of great interest for the winemakers. The 

quantification of total phenolic and condensed 

tannins contents of grape seeds was possible with 

the application of a chemometric analysis of FTIR 

spectra of grape seeds samples. The samples were 

lyophilised before analysis and as for the 

quantification of the phenolic content, the second 

derivative of the spectral region 1170-1560/cm was 

examined (Kyraleou et al., 2015). In the same 

context, seeds of different grapevine cultivars were 

analysed by FTIR and chemometrics to be 

discriminated according to their fatty acid and 

phenolic composition. For this purpose, lyophilised 

seed samples of three different Italian cultivars 

grown in an experimental vineyard (Lazio) were 

used. The reference values for the method 
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validation were obtained by conventional analysis 

HPLC/DAD/MS and GC/MS. The method allowed 

differentiating successfully the grape seeds from the 

different grapevine cultivars (Lucarini et al., 2020).  

Another specific factor correlated in the long term 

with wine quality is the type of proanthocyanidins΄ 

structures. Proanthocyanidins with a different mean 

degree of polymerisation (mDP; the average 

number of units in the polymer) and different 

degree of galloylation (% G; percentage of subunits 

containing gallic acid esters) correlate to different 

organoleptic properties (Vidal et al., 2003). The 

average degree of polymerisation of procyanidins 

(DPn) derived from red and white grape seeds was 

examined by FTIR and PLS regression. Before 

analysis, the samples underwent an extraction pre-

treatment process and then a fractionation step was 

carried out using methanol/chloroform. Thiolysis 

was used as pre-treatment followed by HPLC-UV 

and MS detection to obtain reference values. The 

method allowed to correlate the increase of the 

absorbance peaks at 1203-1099/cm with an increase 

of DPn, and this was ascribed to the greater 

substitution in the aromatic ring of the polymerised 

procyanidin molecules (Passos et al., 2010). DRIFT 

spectra were combined with the PLS regression in a 

quantification study of tannin mean degree of 

polymerisation and percentage of galloylation in 

grape seeds. For this purpose, seed samples from 

two different vintages, two different Greek 

grapevine varieties (‘Maurotragano’ and 

‘Xinomauro’) were used after freeze-drying. The 

developed models were compared with reference 

values from samples treated by phloroglucinolysis 

followed by HPLC-UV and LC-MS analyses. The 

second derivative of 1832-1416/cm and 918-739/cm 

spectral regions were used (values varied from 1.57 

to 11.77) for quantification of mDP, while the 

second derivative of the spectral area 1813-607/cm 

(values ranges of %G from 2.98 to 15.85) was 

examined for %G quantification (Pappas et al., 

2015). 

Determination of other quality parameters 

Usually at the reception of the grapes in the 

wineries, the basic grapes’ quality indicators (TSS, 

acidity-related parameters) are insufficient for a 

comprehensive quality control. In addition, 

phytosanitary status of the grapes influences their 

quality. Some types of fungi developing in grapes 

can lead to the formation of undesirable metabolites 

(e.g., 1-octen-3-ol and 1-octen-3-one), mycotoxins 

dangerous for human health, and wine oxidation 

through the production of laccase (Dewey et al., 

2008). As a result, it is of great importance to 

identify infected grapes in the winery’s receiving 

line.  

In this context, a differentiation study of four types 

of fungal mycelia in samples of ‘Chardonnay’ 

grapes using FTIR spectroscopy and a series of 

modelling approaches was performed. Support 

vector modelling was chosen as the best 

chemometric prediction modelling technique for 

pathogen and control samples (Schmidtke et al., 

2019). However, the developed method needs to be 

applied in samples where the pathogens have 

occurred naturally and consider a larger sample set 

(Schmidtke et al., 2019). A study of Botrytis bunch 

rot in white grapes was focused on the suitability of 

FT-NIR and MIR spectroscopy combined with PLS 

regression for quantification purposes. Interesting 

results were attained, highlighting the importance of 

7299-7937/cm region for the identification of 

important compounds produced by Botrytis cinerea. 

However, the method did not give sufficiently 

accurate results concerning the ranges that are 

relevant for quality control in the wineries. More 

wide sampling for validating similar methods 

deriving from different regions and varieties is 

required (Hill et al., 2013). Furthermore, it is known 

that specific volatile compounds, such as carbon 

dioxide, ethanol, and esters, are released from 

grapes during spoilage and their concentration can 

gradually change over storage time. Α long optical 

path FTIR and sensor arrays (carbon dioxide and 

ethanol sensors) along with chemometric tools were 

investigated as possible ways of determining grape 

spoilage. The method was evaluated positively as a 

tool for the identification of different grape spoilage 

stages based on their volatile status. In addition, 

sensor arrays allowed to discriminate between 

healthy and decayed grapes as well (Dong et al., 

2014). 

Yeast assimilable nitrogen (YAN) content, 

including the nitrogen sources [free amino nitrogen 

(FAN) and ammonia] available in the grape juice 

matrix for the yeasts, is another crucial parameter 

strongly correlated with the healthy evolution of the 

fermentation process. Some amino acids (branched-

chain and aromatic) are considered precursors of 

specific volatile compounds, influencing the quality 

of the final product Bell and Henschke, 2005). FT-

MIR combined with PLS regression was applied to 

determine assimilable nitrogen in grape juice 

derived from red and white grapevine varieties. The 

method showed good accuracy and precision, and 

the results were confirmed using the formol titration 

as reference method, highlighting its feasibility for 

quantification purposes in the wineries (Skoutelas et 

al., 2011). Contextual information derived from the 

quantification of YAN content in grape juice was 

investigated using FT-IR, FT-NIR, and ATR-MIR 

and chemometrics. The best results were attained 

through FT-IR. The study considered a large and 

variable data set, and the developed models were 

evaluated by an independent data set. The 

developed method allowed predicting the YAN 

status of samples from a new vintage, highlighting 

the feasibility of this technology for industrial scale 

usage, providing quick and useful information for 
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nutrient supplementation decisions by the 

winemakers (Petrovic et al., 2020). 

The nutritional status of the grapevine, correlated 

with mineral nutrient deficiency or toxicity, is of 

relevance for winemaking (Robinson, 1992). ATR-

FTIR spectra with chemometric tools was applied in 

order to determine the nutrient status of petioles. 

The method was successful in determining the 

macronutrients in grapevine petiole tissue with good 

accuracy, but not adequate for certain 

micronutrients (Smith et al., 2014).  

The nitrogen and starch contents in the perennial 

parts of the grapevine are correlated with the yield, 

the sugar accumulation, and the secondary 

metabolite production at the stage of berry ripening 

(Holzapfel et al., 2010). ATR-FTIR, and PLS or SV 

regression were applied to grapevine tissues to 

assess starch and nitrogen reserves. The results 

showed sufficient precision and accuracy, with 

support vector SV regression giving the best 

prediction values. The method could give useful 

information about the vine growth cycle and 

development (Schmidtke et al., 2012).  

Discrimination studies  

In addition, bearing in mind the influence of 

different spectral pre-treatments and sample 

preparation in many studies, 'Tempranillo' grape 

clones were analysed by ATR FT-MIR combined 

with multivariate analysis, resorting to different 

spectral pre-treatments (first derivative; normalised; 

normalised plus first derivative) to discriminate 

them in terms of geographical origin and year of 

harvest. At the same time, it was possible the 

prediction of the basic oenological parameters of 

interest, TSS, pH, and titratable acidity (Lemos et 

al., 2020). According to the authors, ATR FT-MIR 

combined with PLS-DA gave the most satisfactory 

results for the aforementioned discrimination. The 

better classification was obtained using the 

normalised spectra for the grape homogenates, and 

the normalised plus 1
st
 derivative spectra for the 

skins (Lemos et al., 2020). Moreover, specific 

intervals were chosen to eliminate spectral 

interferences. Regarding the spectra regions, 750-

1900/cm and 2650-3850/cm were selected for the 

homogenates, while those of 450-1900/cm and 

2600-3700/cm were selected for the skins, 

corresponding to the fundamental vibrational modes 

of interest of the compounds under study (Lemos et 

al., 2020). In another discrimination study, based on 

a chemometric analysis (PC-LDA) of FTIR and 

Raman spectra, hydroalcoholic skin extracts from 

four different red grapevine varieties and two 

different types of vineyards (conventional and 

organic) were used. According to the chemometric 

analysis of the spectra, the method was able to 

discriminate between vineyards, but not the 

antioxidant activity levels and total phenolics 

content (Alecu et al., 2020). 

Analysis of grape must under alcoholic 

fermentation 

Determination of basic oenological parameters 

Wine production is based on the biochemical 

process called alcoholic fermentation. This process 

includes the transformation of sugars (glucose and 

fructose) into ethanol and carbon dioxide, and 

usually is carried out by yeasts of the 

Saccharomyces genus. During winemaking, the 

parameters that are routinely measured daily to 

monitor the healthy evolution of the fermentation 

are sugars, total acidity, assimilable N, temperature, 

density, and pH (Ribereau-Gayon et al., 2021). 

Many studies have been focused on the 

determination of these parameters simultaneously 

using FTIR spectroscopy in combination with 

chemometrics, as shown in Table II. 

FT-NIR coupled with chemometrics was applied for 

the determination of sugars, (FAN), malic acid, 

lactic acid, and ethyl carbamate content. The 

prediction values were very good for the sugars΄ 

concentration but were not satisfactory for the 

remaining parameters. However, must samples with 

different FAN levels and wine samples with 

different organic acid and ethyl carbamate content 

could be classified when the discriminatory SIMCA 

method was applied to the spectra (Manley et al., 

2001). FTIR with chemometric tools was used to 

quantify the volatile acidity, glycerol, ethanol, 

reducing sugars, and glucose content in fermented 

natural and model  musts deriving from small-scale 

fermentations. The obtained results showed that the 

method can be considered effective in the 

simultaneous determination of these parameters. 

The prediction values for the volatile acidity 

showed the highest accuracy (Nieuwoudt et al., 

2006). FTIR modelled with two-dimensional 

correlation techniques was proven to be an efficient 

tool for monitoring physicochemical changes 

occurring during red wine fermentation (chemical 

reactions and their dynamics). The method allowed 

to show that the conversion reaction rate of glucose 

to alcohol was more rapid than the one of fructose 

(Wynne et al., 2007). FT-NIR and FTIR 

spectroscopy was applied for more detailed 

monitoring of a maceration/fermentation classical 

red winemaking process. The results after different 

chemometric treatments were quite promising. The 

method made it possible to simultaneously 

determine sugars, ethanol, glycerol, and phenolic 

content, and the samples could be classified 

according to their stage of fermentation (Di Egidio 

et al., 2010). These results were confirmed by a 

similar study in which FTIR and FT-NIR 

spectroscopy were applied again to identify 

molecular changes involved in wine fermentation. 

In addition, to combine more information for taste 

and aroma profiles of the samples, electronic tongue 

and electronic nose were used. Furthermore, the 
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chemometric analysis of the spectral, electronic 

nose and electronic tongue data was able to 

underline specific critical points during the 

fermentation process, which is useful for quality 

control of the final product (Buratti et al., 2011). 

 

Table II 

Representative examples of FTIR analysis in musts  

Aim of the analysis 
Type of sample/ 

Preparation mode 

Wavenumber 

range (/cm) 

Spectral pre-

treatment 

Statistical 

method 
Reference 

Determination of analytical 

parameters 
Musts 4000-10000 MSC 

PLS, 

SIMCA 
Manley et al. (2001) 

Authentication of white 

grape musts 
Musts 800-4000 GA PLS-DA, FDA 

Roussel et al. (2003) 

 

Monitoring of wine 

fermentation 
Frozen fermentation musts 

13514-50000 

351-7407 1st or 2nd derivative MLR, PLS Urtubia et al. (2004) 

Determination of 

compositional dynamics of 

wine fermentation 

Frozen musts 900-4000 NM 

Two-

dimensional 

correlation 

Wynne et al. (2007) 

Monitoring of red 

fermentation 
Centrifugated musts 

3600-12500 

700-4000 

SNV, MSC, 1st and 

2nd derivative 

PCA, LDA, 

One-way 

ANOVA 

Di Edigio et al., (2010) 

Monitoring of alcoholic 

fermentation 
Centrifugated musts 

3600-12500 

700-4000 

SNV, 1st derivative 

(Savitzky–Golay) 
PCA Buratti et al. (2011) 

Surface measurement of 

mannoproteins and 

β-glucans of yeast cell walls 

during wine fermentation 

Powdered natural and 

synthetic musts 
650-4000 baseline correction 

PCA, OPLS-

DA, ANOVA 
Moore et al. (2015) 

Monitoring Saccharomyces 

cerevisiae grape must 

fermentation 

Centrifugated musts 800-4000 
Mean centered, 2nd 

derivative 
PCA, SIMCA Puxeu et al. (2015) 

Determination of 

anthocyanins 

Digested, blended, 

squeezed musts 

 

926-5012 NM PCA, PLS-R 
Rasines-Perea et al. 

(2015) 

Strain typing of yeasts Musts 400-4000 NM HCA Gerhards et al. (2015) 

Study of inter-and 

intraspecific biodiversity of 

cultivable non-

Saccharomyces yeasts 

Musts 400-4000 NM HCA Grangeteau et al. (2016) 

Monitoring of wine process 

and prediction of its 

parameters 

Frozen musts and wines 650-4000 

WCS, WOSC, 

OSCW, 1st and 2nd 

derivative 

PCA, PLS Canal and Ozen, (2017) 

Determination of calcium Filtered musts 4348-9091 

SNV, MSC, 1st 

derivative 

(Savitzky-Golay) 

PLSR 

 
Véstia et al. (2019) 

Early detection of 

undesirable deviations in 

must fermentation  

Diluted musts 

 
649-3999 

Smoothing and 

normalization 

PCA, PLSR, 

PLS-DA 
Cavaglia et al. (2019) 

Monitoring wine 

fermentation deviations 

Homogenized, 

centrifugated musts 
650-4000 

1st and 2nd 

derivative, 

(Savitzky-Golay) 

smoothing, SNV 

PCA, PLSR, 

PLS-DA, SPC 
Cavaglia et al. (2020a) 

NM=Not mentioned; MSC=Multiple Scatter Correction; PLS=Partial Least Squares Regression; SIMCA=Soft Independent Modeling by Class Analogy; 

GA=Genetic Algorithms; PLS-DA=Partial Least Squares-Discriminant Analysis; FDA=Functional Data Analysis; MLR=Multiple Linear Regression; 
SNV=Standard Normal Variate; MSC=Multiple Scatter Correction; PCA=Principal Component Analysis; LDA=Linear Discriminant Analysis; 
ANOVA=Analysis of Variance; OPLS-DA=Orthogonal Projections to Latent Structures Discriminant Analysis; PLS-R=Partial-Least-Squares Regression; 

HCA=Hierarchical Cluster Analysis; WCS=Wavelet Compression of Spectra; WOSC=Orthogonal Signal Correction; OSCW=Orthogonal Signal Correction 

in Combination with Wavelet; PLSR=Partial-Least-Squares Regression; MSPC=Multivariate Statistical Process Control. 

However, when deviations occur implying sluggish 

or stuck fermentations or other unwanted 

contaminations by microorganisms, distinct time-

consuming chemical analyses are required. As a 

result, there is a growing need for real-time 

information delivered by methods, such as 

vibrational spectroscopy, for the appropriate 

readjustments to take place in a timely manner 

before the process ends. IR spectroscopy was used 

as an analytical tool to distinguish between normal 

and problematic fermentation. The developed 

calibration models showed sufficient accuracy for 

the determination of glucose, fructose, glycerol, 

ethanol, and most of the organic acids (tartaric, 

succinic, lactic, acetic, and citric) during 

fermentation of ‘Cabernet Sauvignon’ musts. The 

only exception was malic acid, for which the 

developed calibration was not good enough to 

distinguish between normal and problematic 

behaviour. When the calibration models were 

applied to the other varieties under study, the results 

were not so adequate for any of the parameters 

(Urtubia et al., 2004). ATR-FTIR spectra derived 

from a portable device were used to discriminate 

between normal fermentation and problematic in 

terms of accumulative yeast nitrogen deficiencies. 

Several models have been developed to monitor the 

evolution of fermentation and, at the same time, 

discriminate between normal and problematic 

fermentations. The outcomes showed that the 
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method could be applied in the wine industry for 

monitoring the sugar content and identifying 

nutrient deficiencies early (Cavaglia et al., 2019). 

Spectra coming from a portable ATR-MIR device 

and multivariate analysis were used to control the 

alcoholic fermentation process and detect wine 

fermentation problems. Generally, the method 

succeeded to predict density and pH in fermenting 

must samples. The spectra recorded during 

fermentations with LAB (Lactobacillus)-

inoculations (ICF) were performed showed only 

minor changes than in normal fermentation 

conditions (NFC). This fact was assigned to the 

small concentration changes involved in the 

malolactic fermentation process. In most samples, 

the deviations in L-malic acid were between 0.7 to 

0.8 g/L concentrations resulting in a small pH 

increase. The novelty of this ATR FT-MIR method 

was the detection of no NFC before the end of 

malolactic fermentation (Cavaglia et al., 2020b). In 

a different chemometric approach, detection of 

lactic bacteria spoilage during fermentation took 

place with the use of a portable ATR FT-MIR 

instrument and Multivariate Statistical Process 

Control charts (MSPC). For this purpose, samples 

from alcoholic fermentation in normal conditions 

(NOC) and alcoholic fermentation with the addition 

of lactic bacteria (MLF). MSPC charts based on Q 

residuals and Hoteling’s T2 statistics proved to be 

efficient in detecting lactic bacteria spoilage before 

the end of the alcoholic fermentation (Cavaglia et 

al., 2020a). The analysis of the cell wall 

composition of yeasts is an indirect approach for 

monitoring the fermentation. ATR FT-MIR and 

chemometrics was used to evaluate the cell wall 

composition during fermentation. Different yeast 

strains were investigated, including Saccharomyces 

(laboratory and industrial) and non-Saccharomyces 

strains. PCA analysis was able to differentiate 

Saccharomyces strains from the non-

Saccharomyces ones, and industrial wine yeast 

strains from laboratory ones. The fingerprint region 

(1768-770/cm) was associated with lipid, protein 

(including CHO and amide groups), mannans, 

nucleotide, phospholipid, and glucan functional 

groups. Mannoproteins were more abundant in 

industrial strains, whereas mannan and glucan 

polymers were more plentiful in laboratory strains 

(Moore et al., 2015). In the same context, ATR-

FTIR coupled with SIMCA was applied in 

fermented ‘Grenache Blanc’ and ‘Chardonnay’ 

musts to determine the physiological state 

(exponential and stationary) of three commercial 

strains of Saccharomyces cerevisiae (ES454, E491, 

and ES181). The different physiological states were 

possible to be identified based on the different cell 

wall components of the strains. At the exponential 

phase mainly glucans, mannoproteins, and lipids 

were identified, while at the stationary phase 

glucans and mannans were observed (Puxeu et al., 

2015). 

Determination of other quality parameters 

Moreover, during the fermentation process, other 

important quality parameters need to be determined. 

The prediction of calcium is of great importance for 

the winemakers, and especially for the sparkling 

wine industry, due to the risk of aggregation with 

alginate capsules when this technique is used. 

Usually, the calcium content is determined by 

atomic absorption spectrometry (AAS). In a 

different approach, FT-NIR was applied in 

combination with chemometrics for the prediction 

of calcium content in base wine samples and musts. 

AAS was used as a reference method, after pre-

treatment of the samples by dry ashing. High 

concentrations of of calcium were observed.. FT-

NIR–PLSR models could be used in real-time 

industrial monitoring for quantitative analysis of 

calcium in wines (Véstia et al., 2019). Another 

pivotal quality parameter is the anthocyanins 

content. FT-MIR in combination with PLS-R 

evaluated the prediction of 12 anthocyanins (five 

non-acylated, three acetylated, three p-

coumaroylated and one caffeoylated 3-O-

glucosides) in red grapes musts. Internal and 

external validation sample sets were used to confirm 

the obtained results. Unfortunately, when must 

samples from a new harvest were used the results 

were not satisfactory. However, when the model 

was built from samples derived from all the 

different consideredharvests, the prediction values 

were improved. This fact demonstrates the potential 

of the method for a quick semi-quantitative 

determination of anthocyanin content in the 

wineries but more studies are needed to improve the 

prediction values (Rasines-Perea et al., 2015).  

The final quality of the product is known to be 

influenced by the ‘terroir’, including soil, climate, 

grapevine plant, and viticultural and oenological 

practices (OIV, 2010). 

However, there is a need for information about site-

specific differences of vineyard yeasts and how they 

can influence fermentation. This topic was 

investigated by analysing spontaneous 

fermentations from six different vineyards. FTIR 

spectra were acquired from randomly isolated 

yeasts to discriminate at the strain level. The yeasts 

coming up from the vineyard were discriminated 

from those winery related. The latter showed the 

biggest influence on the spontaneous fermentation, 

without following a constant pattern (Gerhards et 

al., 2015). Similar results were attained by FT-IR 

spectra in an inter- and intra-biodiversity study of 

non-Saccharomyces yeasts. The pyrosequencing 

method was used as a reference to compare the 

obtained results. In terms of global diversity, the 

method identified efficiently seven different genera 

(Aureobasidium, Candida, Cryptococcus, 

Hanseniaspora, Issatchenkia, Metschnikowia and 

Pichia). Concerning the intraspecific analysis, 19 
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different strains from 58 isolates were identified. 

The FT-IR spectroscopy proved to be an effective 

tool for yeast strain characterisation and monitoring 

of yeast starter strains (Saccharomyces and/or non-

Saccharomyces) during fermentation (Grangeteau et 

al., 2016). 

Authentication studies 

Bearing in mind a continuous need for authenticity 

confirmation of the products of the wine industry, 

an authentication study in terms of varietal 

classification of musts was made using FTIR, 

ultraviolet spectrophotometry, and analysis by 

electronic nose. Genetic Algorithms were used as a 

pre-processing technique to improve the 

interpretation of the data. FTIR spectroscopy 

matched with multivariate chemometric techniques 

proved to be superior in comparison to ultraviolet 

spectrophotometry, and analysis by electronic nose 

(Roussel et al., 2003). 

FT-MIR spectra combined with multivariate 

analysis were used for the determination of 

chemical (ethanol, glycerol, organic acids, titratable 

acidity, 
o
Brix, sugars, total phenolics, and 

anthocyanins content) and microbiological 

parameters of red, rose and white wines during the 

whole winemaking process. Regarding the pre-

treatment of the spectra, the second derivative 

seemed to be the most appropriate option for the 

determination of most of these chemical parameters, 

except for ethanol. The results were satisfactory for 

the prediction of almost all the chemical parameters 

(except pH and organic acids). On the other hand, 

the prediction of microbiological parameters was 

not accurate enough. In addition, the method was 

able to differentiate the beginning of the 

fermentation process from the remaining 

winemaking steps (Canal and Ozen, 2017). 

Analysis of wines and wine spirits 

Determination of basic oenological parameters 

Monitoring of winemaking process is a dynamic 

task that examines continuously the wine quality 

after the fermentation, from the ageing stage to the 

bottling. The basic routine analysis includes 

determination of alcoholic strength, sulphur dioxide 

(SO2), volatile acidity, and pH. Some representative 

examples of the literature are presented in Table ΙΙΙ. 

Optimisation of a FTIR method applied for general 

analysis of wine samples from red, white, rose, and 

sparkling Portuguese wines was performed (Moreira 

et al., 2002). Global calibrations were built for the 

simultaneous determination of various oenological 

parameters (density, dry extract, total acidity, 

volatile acidity, total SO2); total sugars were 

determined through an independent calibration. The 

outcomes revealed good precision for most of the 

parameters in comparison with the reference 

methods, except for total SO2. Comparing the 

accuracy of the global calibration and the specific 

calibration for the total sugars, in the second case 

the results were more satisfactory (Moreira et al., 

2002). A series of changes in the oenological 

parameters of white wines packed in bag-in-box 

(BIB) were monitored by chemometric-based FTIR 

analysis. The developed calibration models, based 

on a PLS algorithm, successfully predicted the 

colour, free and total SO2 contents, total phenolics 

and aldehydes contents, and the storage time in bag 

in box. However, a potential optimisation of the 

method’s accuracy requires the use of a larger range 

of samples (Fu et al., 2009). FT-MIR spectroscopy 

in combination with chemometrics was used for 

determination of several quality parameters (pH, 

total phenolic content, anthocyanin content, 

titratable acidity, sugar content, electrical 

conductivity, and some colour parameters) of 

alcoholic beverages made of twice-distilled grapes 

and anise (Raki) and wine. The developed PLS 

models for wines showed good prediction values for 

total phenolics, anthocyanin contents, pH, 
o
Brix, 

and colour intensity. Concerning the Raki samples,, 

total phenolics, sugar content, and pH, were 

predicted successfully (Ozturk et al., 2012). The 

ATR-FTIR wine spectra provided contextual 

information. Some common parameters of wine 

were predicted (alcoholic content, sugars, total 

acids), while the determination of others did not 

provide satisfactory results (SO2 and volatile 

acidity) (He et al., 2013). In a similar study in 

grape-derived spirits, FTIR–ATR combined with 

chemometrics was applied for the determination of 

their alcoholic strength, methanol, acetaldehyde, 

and fusel alcohols content. Most of the parameters 

were predicted with good accuracy, except for 2-

butanol (Anjos et al., 2016). In this context, one of 

the most recent studies evaluated the feasibility of 

FTIR combined with Network analysis in an 

Eigenspace layout for wine analysis. A network can 

be defined as a collection of nodes connected 

through links. Each sample is represented by each 

node in the network. Each edge (formed by the 

links) represents the difference between the two 

connected nodes (dissimilarity weight). The FTIR 

data sets derived from different wine samples, lead 

to the creation of a networking in the Eigenspace 

layout, giving specific chemical significance to the 

positioning nodes. The method allowed to identify 

compositional differences among the samples, 

classifying them into two groups, and assessing 

their inter- and intra-group homogeneity. The wines 

were separated into two groups based on the 

differences found in the spectra region 970-

1100/cm, suggesting different levels of ethanol, 

phenolics, phosphates, phenyl derivatives, 

unsaturated lipids and saccharides (Kumar et al., 

2021). 

 



 

91 

 

Table III 

Representative examples of FTIR analysis in wines and wine spirits 

Aim of the analysis 

Type of 

sample/Preparation 

mode 

Wavenumber 

range (/cm) 

Spectral pre-

treatment 

Statistical 

method 
Reference 

Optimisation of wine 

analysis 
Degassed wines 926-5012 NM NM Moreira et al. (2002) 

Analysis of wine 

polysaccharides 

White wine 

polysaccharide extracts 

 

800-1200 

Autoscaling (Mean 

centred, 

standardized) 

centring of the data 

set by column 

PCA, CCA, 

PLS 
Coimbra et al. (2002) 

Analysis of organic acids Wines 929-5011 NM PLS 
Moreira and Santos 

(2005) 

Quantitative analysis of red 

wine tannins 
Wines purified by SPE 650-4000 

Mean-centring, 1st 

and 2nd derivatives 
PLS 

Fernández and Agosin 

(2007) 

Analysis of wine 

polysaccharides 

Red wine polysaccharide 

extracts 
950-1850 

Linear 

standardization 
PLS Boulet et al. (2007) 

Identification of spectral 

regions for the 

quantification of red wine 

tannins 

Wines 926-5012 NM PLS Jensen et al. (2008) 

Differentiation of Greek 

red wines based on the 

grapevine variety 

Phenolic extracts of red 

wines 
900-1800 

2nd derivative 

(Savitzky-Golay) 
Match value Tarantilis et al. (2008) 

Determination of 

oenological parameters 
Wines 600-4000 

Mean centre and 

baseline 

corrections 

PLS Fu et al. (2009) 

Prediction of total 

antioxidant capacity of red 

wine  

Wines 600-4400 Mean-centring PLS Versari et al. (2010) 

Discrimination of 

oenological tannins  

Solution of oenological 

tannins 
950-1500 NM NM 

Laghi et al. (2010) 

 

Authentication of Cypriot 

sweet wine 

“Commandaria“ 

Freeze-dried and 

concentrated wines under 

nitrogen flow 

400-4000 NM 

PCA, CA, 

LDA, CART, 

RDA 

Ioannou-Papayianni et 

al. (2011) 

Determination of 

anthocyanins content   
Degassed wines 4000-12500 

1st first and 2nd 

derivatives, 

Detrend, 

smoothing, MSC, 

SNV, mean 

centring 

PCA, 

PLS-DA, 

WILMA-D 

Ferrari et al. (2011) 

Direct determination of 

organic acids 

Filtered wines and wine 

derived-products 
1000-7895 NM PLS Regmi et al. (2012) 

Determination of 

anthocyanins in wine 

Filtered and thermostated 

wines 
926-5012 NM PCA, PLS 

Romera-Fernández et 

al. (2012) 

Measuring of wine routine 

parameters 
Wines 400-4000 NM PCA, PLS He et al. (2013) 

Discrimination between 

subzones inside a controlled 

Designation of Origin 

Heated Wines 4000-52632 

SNV, 2nd 

derivative 

(Savitzky-Golay) 

PCA, LDA, 

SIMCA, SVM 

Martelo-Vidal et al. 

(2013) 

Prediction of total phenolics 

and flavonoid contents and 

antioxidant capacity 

Wines 650-4000 NM PLS Silva et al. (2014) 

Quality control of grape-

derived spirits 
Grape derived spirits 400-4000 

MSC, VecNor, 

MinMax, SLS, 1st 

and 2nd derivatives 

PCA, PLS Anjos et al. (2016) 

Determination of chloride 

and sulphate 

Filtered and degassed 

wines 
1000-3050 NM PCA, PLS 

Teixeira dos Santos et 

al. (2016) 

Analysis of ash in wine NM NM 
1st derivative, 

centred average 

Multivariate 

analysis 
Jug et al. (2017) 

Characterisation of 

Marsala wines and ageing 

monitoring 

Incubated wines 350-4000 Baseline correction 
ANOVA, PCA, 

LDA 
Condurso et al. (2018) 

Discrimination of 

Romanian wines 
Centrifugated wines 400-4000 

2nd derivative 

(Savitzky-Golay) 
PCA 

Topala and Tataru, 

(2018) 

Discrimination of sweet 

wines 
NM 400-4000 

2nd derivative 

(Savitzky-Golay) 
PCA 

Topala and Tataru, 

(2019) 

Analysis of ellagitannins Wines 950-1820 

Smoothing and 

baseline correction 

(Savitzky–Golay 

polynomial filter) 

PLS Basalekou et al. (2019) 

NM=Not mentioned; PCA=Principal Component Analysis; CCA=Canonical-Correlation Analysis; PLS=Partial Least Squares Regression; 

CA=Correspondence Analysis; LDA=Linear Discriminant Analysis; CART=Classification and Regression Tree Analysis; RDA=Redundancy Analysis; 
PLS-DA=Partial Least Squares-Discriminant Analysis; WILMA-D=Α Novel Algorithm based on the Fast Wavelet Transform (FWT); MSC=Multiple 

Scatter Correction; SNV=Standard Normal Variate; SIMCA=Soft Independent Modeling by Class Analogy; SVM=Support Vector Machine; 

ANOVA=Analysis of Variance. 
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Table III (continuation) 

Representative examples of FTIR analysis in wines and wine spirits 

Aim of the analysis 

Type of 

sample/Preparation 

Mode 

Wavenumber 

Range (/cm) 

Spectral Pre-

treatment 

Statistical 

Method 
Reference 

Varietal and vintage year 

discrimination 
Filtered wines 500-4000 

SNV, 2nd derivative 

(Savitzky-Golay) 
PCA, LDA Geană et al. (2019) 

Discrimination of aging 

technologies 
Wine spirits 450-4000 NM 

ANOVA, 

FDA, 

FANOVA 

Anjos et al. (2020) 

Determination of phenolic 

content and colour 

parameters 

Wines 400-4000 NM PCA, PLS 
Garcia-Hernandez, et al. 

(2020) 

Quantification of 

polyphenols in red wine 
Wines 925-5011 NM PCA, PLS Miramont et al. (2020) 

Characterisation of the 

medium infrared spectra of 

polyphenols of red and 

white wines 

Wines purified by SPE, 

dealcoholized and 

centrifugated 

600-4400 NM 

SIMCA-P, 

Heat map of 

Pearson 

correlation 

matrix 

Scano (2021) 

Characterisation of 

sparkling wines  
Filtered wines 1285-4000 NM 

PCA, HCA, 

PLS-DA, 

ANOVA 

Izquierdo Llopart and 

Saurina (2021) 

General wine analysis Filtered wines 926-5012 Normalisation PCA Kumar et al.  (2021) 

Direct authentication and 

composition quantitation of 

red wines 

Wines 650-4000 

Normalisation, 2nd 

derivative 

(Savitzky-Golay 

polynomial fitting), 

SNV 

PCA, PLS Wang et al. (2022) 

NM=Not mentioned; PCA=Principal Component Analysis; CCA=Canonical-Correlation Analysis; PLS=Partial Least Squares Regression; 

CA=Correspondence Analysis; LDA=Linear Discriminant Analysis; CART=Classification and Regression Tree Analysis; RDA=Redundancy Analysis; 
PLS-DA=Partial Least Squares-Discriminant Analysis; WILMA-D=Α Novel Algorithm based on the Fast Wavelet Transform (FWT); MSC=Multiple 

Scatter Correction; SNV=Standard Normal Variate; SIMCA=Soft Independent Modeling by Class Analogy; SVM=Support Vector Machine; 

ANOVA=Analysis of Variance. 

As shown above, most of the studies were focused 

on the simultaneous assessment of several wine 

parameters, but often the results are not enough 

satisfactory for the prediction of all of them. Due to 

spectral interferences, the analytical calibration of 

compounds that are found in low concentrations in 

the wine matrix, in comparison with other abundant 

components like ethanol and organic acids, is facing 

difficulties. Independent studies have been 

performed on the determination of organic acids to 

achieve better performances. For this reason, FTIR 

measurements took place in samples spiked with 

known organic acid concentrations (tartaric, malic, 

lactic, acetic, and citric acids). The obtained 

recoveries for the total acidity and the individual 

organic acid concentrations (for the same spiked 

additions) were compared. Nevertheless, validation 

procedures should not be forgotten and should be 

fully performed. The estimations for total acidity 

recovery were good, but for the individual organic 

acid concentrations the recovery results revealed a 

lack of accuracy. This fact was assigned to spectral 

similarities between the organic acids (Moreira and 

Santos, 2005). In another chemometric approach, 

FTIR combined with PLS regression was used to 

build calibration models for tartaric acid, malic acid, 

lactic acid, succinic acid, citric acid, and acetic acid 

in wines, vinegars, and spirits. HPLC was used as a 

reference method for the validation of the obtained 

results. Excellent performance was observed for the 

determination of tartaric acid, malic acid, succinic 

acid, and lactic acid at high concentrations, except 

for tartaric acid in vinegar samples. The method was 

also efficient for the assessment of malic and citric 

acid at low concentrations and acetic acid in red and 

white wine and brandy samples. This fact was 

considered to be correlated with the predicting 

performance of the reference method and the 

composition of the data set. Moreover, it was not 

possible to obtain a global calibration due to the 

different nature of the samples under study (Regmi 

et al., 2012). White wines obtained from different 

maceration and pectic enzyme clarification 

procedures were used to obtain polysaccharide 

extracts in order to develop a method for monitoring 

polysaccharide composition. The samples resulting 

from wine concentration, dialysis and lyophilisation 

were fractionated by graded ethanol precipitation. 

Through chemometric analysis of the FTIR spectra, 

the wine extracts were differentiated according to 

their polysaccharide content and correlated with the 

different winemaking processes addressed. 

Moreover, a calibration model was developed 

successfully for the quantification of mannose 

(Coimbra et al., 2002). Contextual information was 

obtained in chemometric investigation of red wine 

polysaccharides with FTIR application. The 

samples were obtained from the purification of red 

wine. The information extracted from the spectral 

region 950-1850/cm, allowed to identify the 

different polysaccharide families (mannoproteins, 

arabinogalactan-proteins, RG-I, and RG-II) (Boulet 

et al., 2007).  
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Determination of phenolic compounds  

In addition to the basic monitoring analysis, other 

relevant chemical markers are needed to ensure the 

quality of the final product, such as the phenolic 

content, chloride and sulphate content, antioxidant 

capacity, and chemical age of the wine. However, 

the quantification of red wine tannins faces specific 

difficulties due to spectral interferences from other 

components of the wine matrix. To overcome these 

difficulties, some wines were purified by a Solid-

Phase extraction column before analysis. 

Furthermore, six different predictive models were 

evaluated in combination with spectral pre-

processing procedures to develop a quantification 

method for tannins with the use of FT-MIR. 

Besides, two different reference methods, protein 

precipitation, and phloroglucinolysis were examined 

as well. The best combination for tannin 

quantification and prediction of the mean degree of 

polymerisation was the one using PLS regression of 

the spectrum full range (650-4000/cm), the second 

derivative of the spectra, and phloroglucinolysis as 

the reference method. The samples used were from 

‘Carménère’ grapevine cultivar and resulting from 

two different vintages and different Chilian wineries 

(Fernández and Agosin, 2007). In another similar 

study, four different variable selection tools were 

evaluated to identify the specific FT-MIR spectra 

area for tannin quantification in order to avoid the 

time-consuming pre-treatment extraction. The two 

regions selected and identified by all the tools under 

examination were 1485-1425/cm and 1060-995/cm. 

Based on these regions, a successful calibration 

model was developed using a large data set (128 

commercial red wines from different vintages, 

grapevine varieties, and production countries) for 

the quantification of red wine tannins (Jensen et al., 

2008). 

ATR-FTIR was compared with electronic tongue in 

terms of their discrimination capability of phenolic 

content. PLS-1 was applied to the data set derived 

from both techniques and led to good estimations 

for simultaneous determination of Total Phenolics 

Index (TPI), CIELab, and Glories parameters. Both 

techniques were considered robust enough to be 

applied for a quick and efficient assessment of 

phenolic composition but electronic tongue showed 

better prediction values (higher coefficients of 

correlations and lower residual errors) (Garcia-

Hernandez et al., 2020). Determinations of twelve 

anthocyanins and three different groups of 

anthocyanins were examined with the application of 

FT-IR combined with PLS-R, and HPLC-DAD was 

used as a reference method. One hundred fifty-three 

Rioja wines (young wines of 2004 and 2005, 

“Crianza”, and “Reserva” wines) were analysed for 

the calibration model, which was evaluated by 

internal and external data sets. Unfortunately, only 

the anthocyanin content of young wines was able to 

be predicted with a low error. These results were 

assigned to the higher concentration level of 

anthocyanins in young wines than in the aged ones 

(Romera-Fernández et al., 2012). In another work, 

ATR-FTIR was used for the prediction of total 

phenolic and flavonoid contents and antioxidant 

activities (DPPH and FRAP assays) in ‘Moscatel’ 

dessert wines. Through chemometric analysis of the 

spectral region 900-1800/cm, a good determination 

capability for total phenolic and flavonoid 

composition was observed, but the results were not 

enough satisfactory regarding the determination of 

antioxidant activities. This fact was attributed to the 

poor specificity of the DPPH and FRAP methods 

and the possible influence of interferent molecules, 

not included in the study (for example 

polysaccharides) (Silva et al., 2014). Another 

research was focused more specifically on the 

determination of the total antioxidant capacity of 

red wines. FTIR matched with PLS regression was 

applied in the fingerprint region 965-1543/cm
,
 and 

the obtained results showed promising estimation 

values. However, more studies in extended data sets 

are needed for the validation of the method and its 

application in the industry (Versari et al., 2010). 

The use of FTIR spectra from samples of ‘Cabernet 

Sauvignon’ Mexican wines in combination with 

multivariable statistical analysis led to the creation 

of an optimised chemometric model for the 

determination of total bioactive phenolic 

compounds and antioxidant capacities  (ABTS and 

DPPH assays). The spectral area used was 824-

1550/cm (Grijalva-Verdugo et al., 2018). In a 

comparison study between FTIR and UV-vis 

spectroscopy, FTIR showed more accurate results 

for the prediction of tannin concentration, while 

UV-vis stood out for the prediction of anthocyanins. 

However, the analysis of some wavelengths in the 

visible region in combination with FTIR spectrum 

contributed to a better determination of anthocyanin 

content (Miramont et al., 2020). The quantification 

of hydrolysable tannins is of great importance for 

the wine industry because they are responsible for 

very important modifications in the wine's 

organoleptic characteristics (Michel et al., 2011). 

The determination capability of FTIR spectroscopy 

in combination with chemometrics was investigated 

by analysing the spectral region 950-1821/cm 

deriving for wine samples aged in different wooden 

barrels. The method was an effective tool for the 

prediction of total ellagitannins concentration in 

samples aged in different French and American oak 

barrels or being in contact with oak sticks of 

different types of oak. However, the estimations for 

samples aged in chestnut barrels were not good 

enough. This observation could be related to the 

existence of ellagic acid derivatives (Basalekou et 

al., 2019). In a more detailed study considering 

different samples derived from all the winemaking 

stages, ATR-FTIR and UV–Vis were combined to 

investigate the fingerprint region of polyphenols 

(900-1800/c
1
). For this purpose, the wine samples of 



 

94 

 

red and white varieties underwent a solid-phase 

extraction. Both spectra derived from ATR-FTIR 

and UV–Vis were analysed by a Heat Map to 

establish correlations between the spectra. The 

method was able to identify peaks correlated with 

anthocyanins and flavanols for the red wines, non-

flavonoids and flavonoidsfor the white wines, and 

glycosylated phenolics for both wines (Scano, 

2021). 

Determination of other quality parameters 

Another important analysis for certified wines to 

enter the market is the assessment of the wine ash. 

FTIR matched with multivariate analysis with 

different spectral pre-treatments was evaluated for 

its applicability in the prediction of ash content in 

wines. The use of four wavelengths and a centred 

average proved to be the most efficient solution. 

The validation of the method provided good 

estimations values and, according to the authors, 

after enlargement of the data set the method could 

be applied on an industrial scale (Jug et al., 2017). 

In addition, several other chemical elements, like 

chloride and sulphate anions, are considered 

important quality markers of the wine. FTIR 

spectroscopy combined with chemometrics was 

used successfully for the determination of chloride 

and sulphate in a wide range of Portuguese wine 

types. The calibration models were able to achieve 

quantification of the sulphate and semi-

quantification of the chloride (Teixeira-dos Santos 

et al., 2016). 

Authentication studies 

Moreover, due to the globalisation of the wine 

market and due to many cases of mislabelling and 

adulterations, a series of authentication studies have 

been carried out to guarantee the quality and 

authenticity of the final product. The related studies 

have resorted to chemical compounds that are 

considered as authentication “markers” and are 

characteristic and unique for each parameter or 

comparisons with known and authentic samples 

(Basalekou et al., 2020).  

A chemometric approach took place comparing the 

performance of FT-NIR and 
1
H NMR in 

differentiating adulterated wine samples. The 

adulterated samples derived from a blend with wine 

very rich in anthocyanins (called “Rossissimo”) or 

from the addition of anthocyanins extracted 

fromblack rice. The results achieved by NIR 

spectroscopy gave less satisfactory results than 

NMR, but still, a relationship with the anthocyanins 

content and the NIR spectra was noticeable. These 

results were ascribed to the low sensitivity of the 

method in determining low concentrations levels 

and to the possible matrix effect (Ferrari et al., 

2011). FTIR-ATR combined with the multivariate 

analysis was used for the discrimination of 

“Marsala” wine from Sicily (Italy) based on the 

grapevine cultivar, production technology, and 

ageing. The samples were differentiated according 

to their sugar concentration, and a clear 

discrimination between the high-quality samples 

(Virgin) and the remaining ones was found. 

Moreover, “Marsala” wine samples with different 

ageing times were discriminated successfully using 

the spectral area 1058-1076/cm (Condurso et al., 

2018). Successful differentiation of Greek red wines 

was performed using FT-MIR spectroscopy and 

specific software. For this purpose, extracts of wine 

phenolic components were obtained by solid-phase 

extraction with C-18 columns and elution by 

methanol. The study allowed to discriminate 

different grapevine cultivars based on the 

absorption characteristics in the fingerprint spectral 

region of 900-1800/cm, leading to the creation of 

libraries for each cultivar. The characterisation of a 

new unknown sample took place using the spectra 

bank data set (Tarantilis et al., 2008). FTIR 

Spectroscopy and chemometrics were used in order 

to distinguish between sweet wines in terms of 

sugar content, acidity, and total polyphenol content. 

Through PCA analysis of MIR spectra derived from 

some Romania wine samples, it was possible to 

discriminate the red from the white samples and the 

dry and the half-dry ones (Topala and Tataru, 

2018). In a similar study, Romanian sweet wines 

and Canadian ice wines were differentiated 

according to their MIR spectra correlated with their 

different chemical composition. The chemometric 

approach underlined the biggest differences in terms 

of sugar content due to the very high sugar 

concentration of the ice wines, while they did not 

express significant differences in terms of 

antiradical activity (Topala and Tataru, 2019). An 

identification study of oenological tannins took 

place using different analytical techniques. Among 

them, FTIR was applied and was able to identify 

five of the six samples of oenological tannins (three 

of them condensed tannins and two mixtures of 

hydrolysable tannins). The difficulties of identifying 

and quantifying the tannins under analysis were 

assigned to the different botanical origin and to the 

extraction/purification processes, and could be 

overcome with the enlargement of the database 

(Laghi et al., 2010). In the same context, two 

different analytical approaches were examined for 

red wine authentication in terms of varietal and 

vintage year identification. Through chemometric 

analysis of the data, UV-Vis spectroscopy was 

considered more appropriate for varietal 

discrimination and FTIR spectroscopy for vintage 

year discrimination. However, both multiparametric 

techniques allowed to identify red wine samples 

aged for more than six years, correlating spectral 

differences with the formation of new compounds 

during ageing (Geană et al., 2019). Moreover, 

successful differentiation of wine spirit samples 

aged through different technologies was possible 

with the use of FTIR (Anjos et al., 2020). The 
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functional data analysis (FDA) was applied to ATR-

FTIR spectra, and was proven efficient in 

discriminating the studied wine spirits. The 

observed results were confirmed with the parallel 

determination of various analytical parameters, 

including chromatic characteristics (CIELab 

method), total phenolic index, concentrations of 

furfural, ellagic acid, vanillin, and coniferaldehyde, 

and total content of low molecular weight phenolic 

compounds (HPLC). In this context, another 

discrimination study was performed using NIR 

spectra combined with UV-Vis spectra, and 

chemometrics. Samples from different subzones of 

the same Protected Designation of Origin (PDO) 

were differentiated and also samples that did not 

belong to this PDO were identified (Martelo-Vidal 

et al., 2013). The discrimination capacity of FTIR 

was evaluated in terms of authentication of sweet 

wines from Cyprus, (“Commandaria”) through 

chemometric analysis of FTIR spectra of 65 sweet 

wines. Differentiation of several types of 

Commandaria wine (non-fortified, fortified and 

homemade) from Cyprus and other countries was 

also made (Ioannou-Papayianni et al., 2011). A 

series of different analytical approaches were used 

in combination with chemometrics for the 

characterisation of sparkling wines (cava wines) 

from different grapevine cultivars, wine blends, and 

wine-making stages. FTIR spectroscopy was 

applied for the analysis of total reducing sugars, pH, 

acetic acid, total acidity, malic acid, lactic acid, and 

alcoholic strength. The models were established 

mainly depending on the polyphenol and organic 

acid content. Rosé wine samples and ‘Chardonnay’ 

wines samples showed the highest levels of 

phenolic acids. Concerning the samples underwent 

malolactic fermentation, the discrimination was 

mainly based on malic acid and lactic acid contents 

(Izquierdo-Llopart and Saurina, 2021). Tri-step IR 

spectroscopy in combination with electronic nose 

was applied for an authentication study of ‘Cabernet 

Sauvignon’ wines. Through chemometric analysis 

of the fingerprint region of ethanol and sugar dry 

wines (DW), semi-dry wines (SD), semi-sweet 

wines (SS), and sweet wines (SW), were 

discriminated Furthermore, it was possible a 

quantitative determination of ethanol and total sugar 

levels based on PLS regression (Wang et al., 2022). 

 

CONCLUDING REMARKS 

Several studies found in the literature have been 

focused on the applicability of FTIR in monitoring 

the wine production from the grapes to the final 

product. The wine industry demands constant 

product monitoring and requires process control 

from the grape ripening until bottling. ΙR 

spectroscopy is already being applied in the wine 

industry from the vineyard, assessing the grape 

maturation, during the winemaking process, in real-

time analysis of the general chemical parameters in 

musts and wines, until bottling. The measurements 

have been performed with portable and non-

portable instrumentation coupled with calibration 

models already built by the manufacturer. However, 

other IR applications combined with chemometric 

approaches could also be considered a promising 

tool for the determination of more specific 

parameters and applied widely in all the 

winemaking stages. Methodologies that depend on 

IR analysis demand minimal or zero sample 

preparation, are environmentally friendly, easy to 

use, fast, and more economical than the traditional 

techniques. As a result of all these advantages, 

FTIR measurements are already applied in the wine 

sector, but many challenges still remain. The most 

important limitations and critical aspects of the 

studies that were mentioned in the present work are 

summarised below. 

First of all, it was noticeable that the different 

preparation modes can influence the spectra and the 

determination of the desired oenological 

parameters. Therefore, careful consideration of the 

appropriate mode for each factor should be taken. 

Moreover, most of the developed methodologies 

found in the literature depend on feasibility studies 

using a limited number of samples (less than 100 in 

most cases) and the validation of the methods took 

place with the cross-validation tests. External 

validation using independent sets of samples is 

needed. Besides, developed models were not 

applied to different grapevine cultivars, harvests, 

and types of wines, and led to a poor 

representativity of the samples. Furthermore, many 

developed methods were focused on a specific 

oenological parameter or chemical compound or 

they have been applied to a specific stage of the 

winemaking process. In fact, the simultaneous 

determination of a large number of parameters was 

more challenging in most cases. Moreover, 

compounds with a concentration higher than 1 g/L 

are easier to be determined by FTIR due to their 

ability of engaging absorption phenomena.  

Finally, the complexity of the wine matrix and the 

chemical similarity of the compounds under study 

makes the interpretation of the spectra very 

difficult. In addition, the presence of water and 

ethanol leads to interference in the ΙR spectra due to 

their large absorption band. 

In the context of all these critical points, it is of 

great importance that the initial commercial 

analytical calibration be updated by each winery, 

using samples representative of those under study. 

Most applications in the wine industry consider the 

use of techniques based on FTIR for the evaluation 

of the basic chemical composition. In the future, 

more applications evaluating more specific factors 

(for example aroma compounds or tannins) or for 
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authenticity purposes would be of great interest to 

the contemporary wine industry. 

 

CONFLICTS OF INTEREST: The authors 

declare no conflict of interest. 

 

REFERENCES 

Alabe, 2021. Available at: https://www.alabe.pt (accessed 
on 17.12.2021). 

Alecu G.C., Olteanu R.L., Radulescu C., Stirbescu R. M., 

Necula C., Boboaca-Mihaescu D.Ν., 2020. Characterization 
of red grapes skin extracts using vibrational spectroscopy 

and chemometrics. J. Sci. Arts, 51, 475-490. 

Alexandridis Α.Κ., Zapranis, A.D., 2013. Wavelet neural 
networks: A practical guide. Neural Netw., 42, 1-27. 

Anjos O., Santos A.J.A., Estevinho L.M., Caldeira I., 2016. 

FTIR–ATR spectroscopy applied to quality control of grape-
derived spirits. Food Chem., 205, 28-35. 

Anjos O., Comesaña M.M., Caldeira I., Pedro S.I., Oller P 

E., Canas S., 2020. Application of functional data analysis 
and FTIR-ATR spectroscopy to discriminate wine spirits 

aging technologies. Mathematics, 8, 1-21. 

Basalekou M., Kallithraka S., Tarantilis P.A., Kotseridis Y., 
2019. Ellagitannins in wines: future prospects in methods of 

analysis using FT-IR spectroscopy. LWT, 101, 48-53. 

Basalekou M., Pappas C., Tarantilis P.A., Kallithraka S., 

2020. Wine authenticity and traceability with the use of FT-

IR. Beverages, 6, 1-13. 

Bauer R., Nieuwoudt H., Bauer F.F., Kossmann J., Koch K. 

R., Esbensen K.H., 2008. FTIR spectroscopy for grape and 

wine analysis. Anal. Chem., 80, 1371-1379. 

Bell S.J., Henschke P.A., 2005. Implications of nitrogen 

nutrition for grapes, fermentation, and wine. Aust. J. Grape 

Wine Res., 11, 242-295. 

Blum M.M., John H., 2012. Historical perspective and 

modern applications of attenuated total reflectance- Fourier 

transform infrared spectroscopy (ATR-FTIR). Drug Test. 
Anal., 4, 298-302. 

Boulet J.C., Williams P., Doco T., 2007. A Fourier 

transform infrared spectroscopy study of wine 
polysaccharides. Carbohyd. Polym., 69, 79-85. 

Brandão A.F.V.A., 2019. Aplicação de Metodologia FTIR 

para controlo de Qualidade em Vinhos e Aguardentes, 
Master thesis, Universidade do Porto. 

Buratti S., Ballabio D., Giovanelli G., Zuluanga C.M., 

Dominguez A.M., Moles A., Benedetti S., Sinelli N., 2011. 
Monitoring of alcoholic fermentation using near-infrared 

and mid-infrared spectroscopies combined with electronic 

nose and electronic tongue. Anal. Chim. Acta, 697, 67-74. 

Canal C., Ozen B., 2017. Monitoring of wine process and 

prediction of its parameters with mid-infrared spectroscopy. 

J. Food Process Eng., 40, 1-10. 

Cavaglia J., Giussani B., Mestres M., Puxeu M., Busto O., 

Ferré J., Boqué R., 2019. Early detection of undesirable 

deviations in must fermentation using a portable FTIR-ATR 
instrument and multivariate analysis. J. Chemometr., 33, 1-

11. 

Cavaglia J., Schorn-García D., Giussani B., Ferre J., Busto 
O., Acena L., Mestres M., Boque R., 2020a. Monitoring 

wine fermentation deviations using an ATR-MIR 

spectrometer and MSPC charts. Chemom. Intell. Lab. Syst., 
201, 1-7. 

Cavaglia J., Schorn-García D., Giussani B., Ferréc J., Busto 

O., Aceña L., Mestres M., Boqué R., 2020b. ATR-MIR 
spectroscopy and multivariate analysis in alcoholic 

fermentation monitoring and lactic acid bacteria spoilage 

detection. Food Control, 109, 1-7. 

Coimbra M.A., Gonçalves F., Barros A.S., Delgadillo I., 

2002. Fourier transform infrared spectroscopy and 

chemometric analysis of white wine polysaccharide extracts. 
J. Agric. Food Chem., 50, 3405-3411. 

Condurso C., Cincotta F., Tripodi G., Verzera A., 2018. 

Characterization and aging monitoring of marsala dessert 
wines by a rapid FTIR-ATR method coupled with 

multivariate analysis. Eur. Food Res. Technol., 244, 1073-

1081. 

Costa N.L., García Llobodanin L.A., Castro I.A., Barbosa 

R., 2019. Using Support Vector Machines and neural 

networks to classify Merlot wines from South America. Inf. 
Process. Agric, 6, 265-278. 

Dambergs R., Gishen M., Cozzolino D., 2015. A review of 

the state of the art, limitations, and perspectives of infrared 
spectroscopy for the analysis of wine grapes, must, and 

grapevine tissue. Appl. Spectrosc. Rev., 50, 261-278. 

Dewey F. M., Hill M., DeScenzo R., 2008. Quantification of 
Botrytis and laccase in wine grapes. Am. J. Enol. Vitic., 59, 

47–54.  

Di Egidio V., Sinelli N., Giovanelli G., Moles A., Casiraghi 
E., 2010. NIR and MIR spectroscopy as rapid methods to 

monitor red wine fermentation. Eur. Food Res. Technol., 

230, 947-955. 

Dong D., Zheng W., Wang W., Zhao X., Jiao L., Zhao C., 

2014. Analysis and discrimination of grape spoilage via 

volatiles: a comparison between long optical path Fourier-
transform-infrared spectroscopy and sensor arrays. Analyst, 

139, 5028-5034. 

Felix instruments, 2021. Available at 

https://felixinstruments.com/ (accessed on 17.12.2021) 

Fernández K., Agosin E., 2007. Quantitative analysis of red 

wine tannins using Fourier-transform mid-infrared 
spectrometry. J. Agric. Food Chem., 55, 7294-7300. 

Ferreira M.L., Costa A.M., Ribeiro N., Simões T., 2009. 

Quality control in FTIR wine analysis, acceptance of 
analytical Results. Ciência Téc. Vitivinic., 24, 47-53. 

Ferreira M.L., 2015. Automatização da análise de vinhos-

FTIR. In: Química enológica-métodos analíticos. Curvelo-
García A. S., Barros P., (ed.). Publindustria, Edições 

Técnicas, LDA., Porto. 

Ferrari E., Foca G., Vignali M., Tassi L., Ulrici A., 2011. 
Adulteration of the anthocyanin content of red wines: 

perspectives for authentication by Fourier transform-near 

infrared and 1H NMR spectroscopies. Anal. Chim. Acta, 
701, 139-151. 

Fragoso S., Acena L., Guasch J., Mestres M., Busto O., 
2011. Quantification of phenolic compounds during red 

winemaking using FT-MIR spectroscopy and PLS-

regression., J. Agric. Food Chem., 59, 10795-10802. 

Fu Y., Lim L.T., Mcnicholas P.D., 2009. Changes on 

enological parameters of white wine packaged in bag-in-box 

during secondary shelf life. J. Food Sci., 74, 608-618. 

Garcia-Hernandez C., Salvo-Comino C., Martin-Pedrosa F., 

Garcia-Cabezon C., Rodriguez-Mendez M.L., 2020. 

Analysis of red wines using an electronic tongue and 
infrared spectroscopy. Correlations with phenolic content 

and color parameters. LWT, 118, 1-8. 

https://felixinstruments.com/


 

97 

 

Geană E.Ι., Ciucure C.T., Apetrei C., Artem V., 2019. 
Application of spectroscopic UV-Vis and FT-IR screening 

techniques coupled with multivariate statistical analysis for 

red wine authentication: varietal and vintage year 
discrimination. Molecules, 24. 

Gerhards D., Büchl N., Wenning M., Scherer S., Von 

Wallbrunn C., 2015. Terroir of yeasts? application of FTIR 
spectroscopy and molecular methods for strain typing of 

yeasts. BIO Web Conf., 5, 02001. 

Grangeteau C., Gerhards D., Terrat S., Dequiedt S., 
Alexandre H., Guilloux-Benatier M., Von Wallbrunn C., 

Rousseaux S., 2016. FT-IR spectroscopy: a powerful tool for 

studying the inter-and intraspecific biodiversity of cultivable 
non-Saccharomyces yeasts isolated from grape must. J. 

Microbiol. Methods, 121, 50-58. 

Griffiths P.R., de Haseth J.A., 2007. Fourier Transform 
Infrared Spectrometry, John Wiley & Sons, Inc. 

Grijalva-Verdugo C., Hernández-Martínez M., Meza-

Márquez O.G., Gallardo-Velázquez T., Osorio-Revilla G., 
2018. FT-MIR spectroscopy and multivariate analysis for 

determination of bioactive compounds and antioxidant 

capacity in Cabernet Sauvignon wines. CYTA - J. Food, 16, 
561-569. 

Guillen-Casla V., Rosales-Conrado N., Perez-Arribas L.V., 

Polo-Díez L.M., 2011. Principal component analysis (PCA) 
and multiple linear regression (MLR) statistical tools to 

evaluate the effect of E-beam irradiation on ready-to-eat 

food. J. Food Comp.. Anal., 24, 456-464. 

He Ζ., Duan Χ., Ma Ζ., 2013. Measuring routine parameters 

of wine by ATR-MIR spectroscopy. Appl. Mech. Mater., 

397, 1749-1752. 

Hill G. N., Evans K. J., Beresford R. M., Dambergs R. G., 

2013. Near and mid-infrared spectroscopy for the 

quantification of botrytis bunch rot in white wine grapes. J. 
Near Infrared Spectrosc., 21, 467-475. 

Holzapfel B. P., Smith J. P., Field S. K., Hardie W.J., 2010. 

Dynamics of carbohydrate reserves in cultivated grapevines, 
Hort. Rev., 36, 143-211. 

Ioannou-Papayianni E., Kokkinofta R. I., Theocharis C. R., 

2011. Authenticity of Cypriot sweet wine commandaria 
using FT-IR and chemometrics. J. Food Sci., 76, 420-427. 

Izquierdo-Llopart A., Saurina J., 2021. Multi-sensor 

characterization of sparkling wines based on data fusion. 
Chemosensors, 9, 1-18. 

Jamwal R., Amit, Kumari S., Sharma S., Kelly S., Cannavan 

Α., Singh D. K., 2021. Recent trends in the use of FTIR 
spectroscopy integrated with chemometrics for the detection 

of edible oil adulteration. Vib. Spectrosc., 113, 103222. 

Jensen J. S., Egebo M., Meyr A.S., 2008. Identification of 
spectral regions for the quantification of red wine tannins 

with Fourier transform mid-infrared spectroscopy. J. Agric. 

Food Chem., 56, 3493-3499. 

Jug T., Boni S., Kosmerl T., 2017. FTIR analysis of ash in 

wine. BIO Web Conf., 9, 02023. 

Kumar K., Giehl A., Schweiggert R., Patz C.D., 2021. 

Network analysis on Fourier-transform infrared (FTIR) 

spectroscopic data sets in an Eigenspace layout: Introducing 
a novel approach for analyzing wine samples. Spectrochim. 

Acta A Mol. Biomol. Spectrosc., 251, 1-9. 

Kyraleou Μ., Pappas C., Voskidi E., Kotseridis Y., 
Basalekou M., Tarantilis P.A., Kallithraka S., 2015. Diffuse 

reflectance Fourier transform infrared spectroscopy for 

simultaneous quantification of total phenolics and 
condensed tannins contained in grape seeds. Ind. Crops 

Prod., 74, 784-791. 

Laghi L., Parpinello G.P., Del Rio D., Calani L., Mattioli A. 
U., Versari A., 2010. Fingerprint of enological tannins by 

multiple techniques approach. Food Chem., 121, 783-788. 

Lemos A.M., Machado N., Egea-Cortines M., Barros A.I., 
2020. ATR-MIR spectroscopy as a tool to assist 

‘Tempranillo’ clonal selection process: geographical origin 

and year of harvest discrimination and oenological 
parameters prediction. Food Chem., 325, 1-8. 

Lucarini M., Durazzo A., Kiefer J., Santini A., Lombardi-

Boccia G., Souto E.B., Romani A., Lampe A., Ferrari Nicoli 
S., Gabrielli P., Bevilacqua N., Campo M., Morassut M., 

Cecchini F., 2020. Grape Seeds: chromatographic profile of 

fatty acids and phenolic compounds and qualitative analysis 
by FTIR-ATR spectroscopy. Foods, 9, 1-14, 10. 

Manley M., Van Zyl A., Wolf E.H., 2001. The evaluation of 

the applicability of Fourier transforms near-infrared (FT-
NIR) spectroscopy in the measurement of analytical 

parameters in must and wine. S. Afr. J. Enol. Vitic., 22, 93-

100. 

Martelo-Vidal M.J., Domínguez-Agis F., Vázquez M., 2013. 

Ultraviolet/visible/near-infrared spectral analysis and 

chemometric tools for the discrimination of wines between 
subzones inside a controlled designation of origin: a case 

study of Rías Baixas. Aust. J. Grape Wine Res., 19, 62-67. 

Mendes E., Duarte N., 2021. Mid-infrared spectroscopy as a 
valuable tool to tackle food analysis: a literature review on 

coffee, dairies, honey, olive oil, and wine. Foods, 10, 1-32, 

477 

Michel J., Jourdes M., Silva M.A., Giordanengo T., Mourey, 

N., Teissedre P-L, 2011. Impact of concentration of 

ellagitannins in oak wood on their levels and organoleptic 
influence in red wine. J. Agric. Food Chem., 59, 5677-5683. 

Miramont C., Jourdes M., Teissedre P.L., 2020. 

Development of UV-vis and FTIR partial least squares 
models: comparison and combination of two spectroscopy 

techniques with chemometrics for polyphenols 

quantification in red wine. OENO One, 4, 779-792. 

Moore J.P., Zhang S.L., Nieuwoudt H., Divol B., Trygg J., 

Bauer F.F., 2015. J. Agric. Food Chem., 63, 10054-10063. 

Moldes O.A., Mejuto J.C., Rial-Otero R., Simal-Gándara J. 
2017. A critical review on the applications of artificial 

neural networks in winemaking technology. Crit. Rev. Food 

Sci Nutr., 57, 2896 -2908. 

Moreira J.L., Marcos A.M., Barros P., 2002. Analysis of 

Portuguese wine by Fourier transform infrared spectrometry. 

Ciência. Tec. Vitiv., 17, 27-33. 

Moreira J.L., Santos L., 2005. Analysis of organic acids in 

wines by Fourier-transform infrared spectroscopy. Anal. 

Bioanal. Chem., 382, 421–425. 

Murru C., Chimeno-Trinchet C., Díaz-García M.E., Badía-

Laíño R., Fernández-González A., 2019. Artificial neural 

network and attenuated total reflectance-fourier transform 
infrared spectroscopy to identify the chemical variables 

related to ripeness and variety classification of grapes for 
protected designation of origin wine production. Comput. 

Electron. Agric., 164, 1-6. 

Musingarabwi D.M., Nieuwoudt H.H., Young P.R., Eyéghè-
Bickong H. A., Vivier M. A. D. M., 2016. A rapid 

qualitative and quantitative evaluation of grape berries at 

various stages of development using Fourier-transform 
infrared spectroscopy and multivariate data analysis. Food 

Chem., 190, 253-262. 

Nieuwoudt Η.Η., Pretorius Ι.S., Bauer F.F., Nel D.G., Prior 
B.A.Η.Η., 2006. Rapid screening of the fermentation 

profiles of wine yeasts by Fourier transforms infrared 

spectroscopy. J. Microbiol. Methods, 67, 248-256. 



 

98 

 

Nogales-Bueno J., Baca-Bocanegra B., Rooney A., 
Hernández-Hierro J.M., José Heredia F., Byrne H.J., 2017. 

Linking ATR-FTIR and Raman features to phenolic 

extractability and other attributes in grape skin. Talanta, 
167, 44-50. 

OIV, resolution OIV/VITI 333/2010. Definition of 

vitivinicultural ‘terroir’. International organization of vine 
and wine, Paris, France. 

OIV, resolution OIV/OENO 390/2010. Guidelines on 

infrared analyzers in oenology. International organization of 
vine and wine, Paris, France. 

Olale K., Walyambillah W., Mohammed S.A., Sila A., 

Shepherd K., 2017. Application of DRIFT-FTIR 
spectroscopy for quantitative prediction of simple sugars in 

two local and two 34 Floridian mango (Mangifera indica L.) 

cultivars in Kenya. J. Anal. Sci. Technol., 8, 1-13. 

Ortega-Regules A., Ros-García J.M., Bautista-Ortín A.B., 

López-Roca J.M., Gómez-Plaza E., 2008. Changes in skin 

cell wall composition during the maturation of four premium 
wine grape varieties, J. Sci. Food Agric., 88, 420–428. 

Ozturk B., Yucesoy D., Ozen B., 2012. Application of mid-

infrared spectroscopy for the measurement of several quality 
parameters of alcoholic beverages, wine, and raki. Food 

Anal. Methods, 5, 1435-1442. 

Pappas C., Kyraleou M., Voskidi E., Kotseridis Y., Taranilis 
P.A., Kallithraka S., 2015. Direct and simultaneous 

quantification of tannin mean degree of polymerization and 

percentage of galloylation in grape seeds using diffuse 
reflectance Fourier transform-infrared Spectroscopy. J. Food 

Sci., 80, 298-306. 

Passos C., Cardoso S.M., Barros A.S., Silva C.M., Coimbra 
M.A., 2010. Application of Fourier transform infrared 

spectroscopy and orthogonal projections to latent 

structures/partial least squares regression for estimation of 
procyanidins average degree of polymerization. Anal. Chim. 

Acta, 661, 143-149. 

Petrovic G., Aleixandre-Tudo J.L., Buica A., 2020. Viability 
of IR spectroscopy for the accurate measurement of yeast 

assimilable nitrogen content of grape juice. Talanta, 206, 1-

7. 

Picque D., Lieben P., Chretien P., Beguin J., Guerin L., 

2010. Assessment of maturity of Loire valley wine grapes by 

mid-infrared spectroscopy. J. Int. Sci. Vigne Vin, 44, 219-
229. 

Power A., Truong V. K., Chapman J., Cozzolino D., 2019. 

From the laboratory to the vineyard-evolution of the 
measurement of grape composition using NIR spectroscopy 

towards high-throughput analysis. High-Throughput, 8, 1-9. 

Preserova J., Ranc V., Milde D., Kubistov V., Stavek J., 
2015. Study of phenolic profile and antioxidant activity in 

selected Moravian wines during winemaking process by FT-

IR spectroscopy. J. Food Sci. Tech.., 52, 6405-6414. 

Puxeu M., Andorra I., De Lamo-Castellví S., 2015. 

Monitoring Saccharomyces cerevisiae grape must 
fermentation process by attenuated total reflectance 

spectroscopy. Food Bioproc. Tech., 8, 637-646. 

Rasines-Perea Z., Prieto‑Perea N., Romera‑Fernández M., 
Berruet L.A., Gallo B., 2015. Fast determination of 

anthocyanins in red grape musts by Fourier transform mid-

infrared spectroscopy and partial least squares regression. 
Eur. Food Res. Technol., 240, 897–908. 

Regmi U., Palma M., Barroso C.G., 2012. Direct 

determination of organic acids in wine and wine-derived 
products by Fourier transform infrared (FT-IR) spectroscopy 

and chemometric techniques. Anal. Chim. Acta, 732, 137-

144. 

Ribereau-Gayon P., Dubourdieu D., Donèche B., Lonvaud 
A., 2021. Handbook of Enology: Volume 1: The 

Microbiology of Wine and Vinifications (3rd edition).John 

Wiley &Sons, Ltd.,Chichester. 

Rinnan A., Nørgaard L., Van den Berg, F., Thygesen J., Bro 

R., Engelsen S.B., 2009. Data Pre-processing. In: Infrared 

Spectroscopy for Food Quality Analysis and Control, Sun 
D.W. (ed.) Elsevier Inc. 

Robinson J.B., 1992. Grapevine nutrition. In: Viticulture, 

Vol. 2, Practices. 178– 208. Coombe, B.G. and Dry, P.R., 
(eds.), Winetitles: Adelaide, SA, Adelaide. 

Romera-Fernández M., Berrueta L. A., Garmón-Lobato S., 

Gallo B., Vicente F., Moreda J.M., 2012. Feasibility study 
of FT-MIR spectroscopy and PLS-R for the fast 

determination of anthocyanins in wine. Talanta, 88, 303–

310. 

Roussel S., Bellon-Maurel V., Roger J.Μ., Grenier P., 2003. 

Authenticating white grape must variety with classification 

models based on aroma sensors, FT-IR, and UV 
spectrometry. J. Food Eng., 60, 407-419. 

Scano P., 2021. Characterization of the medium infrared 

spectra of polyphenols of red and white wines by integrating 
FT IR and UV–Vis spectral data. LWT, 147, 1-6,111604. 

Schmidtke L.M., Smith J.P., Müller M.C., Holzapfel B.P., 

2012. Rapid monitoring of grapevine reserves using ATR–
FT-IR and chemometrics. Anal. Chim. Acta, 732, 16-25. 

Schmidtke L.M., Schwarz L.J., Scheuermann C., Steel C. C., 

2019. Discrimination of Aspergillus spp., Botrytis cinerea, 
and Penicillium expansum in grape berries by ATR-FTIR 

spectroscopy. Am. J. Enol. Vitic., 70, 68-76. 

Silva S. D., Feliciano R. P., Boas L.V., Bronze M.R., 2014. 
Application of FTIR-ATR to muscatel dessert wines for 

prediction of total phenolic and flavonoid contents and 

antioxidant capacity. Food Chem., 150, 489-493. 

Skoutelas D., Ricardo-Da-Silva J.M., Laureano O., 2011. 

Validation and comparison of formol and FT-IR methods for 

assimilable nitrogen in vine grapes. S Afr. J. Enol. Vitic., 32, 

262-266. 

Smith J. P., Schmidtke L.M., Muller M.C., Holzapfel B.P., 

2014. Measurement of the concentration of nutrients in 
grapevine petioles by attenuated total reflectance Fourier 

transform infrared spectroscopy and chemometrics. Aust. J. 

Grape Wine R., 20, 99-309. 

Stuart B., 2004. Experimental Methods. In: Infrared 

Spectroscopy: Fundamentals and Applications B., 15-44. 

John Wiley & Sons. 

Sun B.S., Pinto T., Leandro M.C., Ricardo-da-Silva J.M. and 

Spranger M.I., 1999. Transfer of catechins and 

proanthocyanidins from solid parts of the grape cluster into 
wine. American Journal of Enology and Viticulture. Am. J. 

Enol. Vitic., 50, 179-184. 

Swanepoel Μ., du Toit Μ., Nieuwoudt Η.Η., 2007. 
Optimization of the quantification of total soluble solids, 

pH, and titratable acidity in south African grape must using 
Fourier transform mid-infrared Spectroscopy. S Afr.J. Enol. 

Vitic., 28, 140-149. 

Tarantilis P.A., Troianou V.E., Pappas C.S., Kotseridis Y. 
S., Polissiou M.G., 2008. Differentiation of Greek red wines 

on the basis of grape variety using attenuated total 

reflectance Fourier transform infrared spectroscopy. Food 
Chem., 111, 192-196. 

Teixeira-dos Santos C.A., Páscoa R.N.M.J., Porto P.A.L. S., 

Cerdeira A.L., Lopes J.A., 2016. Application of Fourier-
transform infrared spectroscopy for the determination of 

chloride and sulfate in wines. LWT, 67, 181-186. 



 

99 

 

Titus D., Samuel J.J., Roopan S.M., 2019. Nanoparticle 
characterization techniques. In: Green synthesis, 

characterization, and applications of nanoparticles. 313-314. 

Elsevier Inc. 

Topala C.M., Tataru L.D., 2018. Rapid method for the 

discrimination of Romanian wines based on mid-infrared 

spectroscopy and chemometrics. Rev. Chim., 69, 469-473. 

Topala C.M., Tataru L.D., 2019. ATR-FTIR spectroscopy 

coupled with chemical and chemometric analysis to 

distinguish between some sweet wines. Rev. Chim., 70, 
2355-2361. 

Urtubia Α., Pérez-Correa J.R., Meurens, M., Agosin E., 

2004. Monitoring large scale wine fermentations with 
infrared spectroscopy. Talanta, 64, 778-784. 

Versari Α., Parpinello G.P., Scazzina F., Del Rio D., 2010. 

Prediction of total antioxidant capacity of red wine by 
Fourier transform infrared spectroscopy. Food Control, 21, 

786-789. 

Véstia J., Barroso J.M., Ferreira H., Gaspar L., Rato A.E., 
2019. Predicting calcium in grape must and base wine by 

FT-NIR spectroscopy. Food Chem., 276, 71-76. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vidal S., Francis L., Guyot S., Marnet N., Kwiatkowski M., 
Gawel R., 2003. The mouth‐feel properties of grape and 

apple proanthocyanidins in a wine‐like medium. J. Sci. Food 

Agric., 83, 564-573. 

Wang S., Hu X.Z., Liu Y.Y., Tao N.P., Lu Y., Wang X. C., 

Lam W., Lin L., Xu C.Η., 2022. Direct authentication and 

composition quantitation of red wines based on Tri-step 
infrared spectroscopy and multivariate data fusion. Food 

Chem., 372, 1-8. 

Waterhouse A.L., Sacks G.L., Jeffery D.W., 2016. 
Understanding Wine Chemistry, John Willey and Sons, Inc. 

Watson B., 2003. Evaluation of wine grape maturity. In: 

Oregon Viticulture. 235-245. Hellman, E., (ed.), 1233 
Oregon State University Press, Corvallis. 

Wynne L., Clark S., Adams M.J., Barnett N.W., 2007. 

Compositional dynamics of a commercial wine fermentation 
using two-dimensional FTIR correlation analysis. Vib. 

Spectrosc., 44, 394-400. 

Zhao Z., Liu H., 2007. Spectral feature selection for 
supervised and unsupervised. ICML ’07, 1151-1157. 

 

 


