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Recursive calculation of time to ruin distributions

Rui M.R. Cardoso a,b,1, Alfredo D. Egidio dos Reis c,∗,2
a CMA and Departamento de Matemática, FCT, Universidade Nova de Lisboa, Lisbon, Portugal

b Department of Actuarial Mathematics & Statistics, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, UK
c Departamento de Matemática, CEMAPRE and ISEG, Universidade Técnica de Lisboa, Rua do Quelhas 6, 1200-781 Lisbon, Portugal

Received 1 August 2001; received in revised form 1 December 2001; accepted 14 February 2002

Abstract

In this paper we present a different approach on Dickson and Waters [Astin Bulletin 21 (1991) 199] and De Vylder and
Goovaerts [Insurance: Mathematics and Economics 7 (1988) 1] methods to approximate time to ruin probabilities. By means
of Markov chain application we focus on the direct calculation of the distribution of time to ruin, and we find that the above
recursions appear to be less efficient, although giving the same approximation figures. We show some graphs of the time to
ruin distribution for some examples, comparing the different shapes of the densities for different values of the initial surplus.
Furthermore, we consider the presence of an upper absorbing barrier and apply the proposed recursion to find ruin probabilities
in this case. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this draft we present a different approach on Dickson and Waters (1991) method to approximate finite time
ruin probabilities. Their paper uses a discrete time compound Poisson model, an appropriate parameter choice and a
recursion on the initial reserve to approximate finite time and ultimate ruin probabilities in the classical risk model.
We use this approach to study the distribution of the time to ruin random variable, in particular the different shapes
of its density function in the classical model. We first consider the method by De Vylder and Goovaerts (1988)
and then its modification by Dickson and Waters (1991) giving way to a different algorithm. For their purpose the
method by Dickson and Waters (1991) is shown to be less time consuming than the one by De Vylder and Goovaerts
(1988). This is not the case for our purpose. Besides, the algorithm by the former authors has the disadvantage to
be unstable. Our model will be presented as a discrete time Markov chain, which with the appropriate parameter
choice by the former authors will be used to approximate the classical model. The quality of the approximations
is of course dependent of the discretising unit. It will be easy to understand that we get the same approximations
obtained by these authors for the finite time ruin probabilities, considering the same discretising unit. This proposed
approach appears to be a more efficient way to calculate an approximation to the distribution of the time to ruin
random variable when compared to the algorithms cited above. Furthermore, the algorithm is stable.
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Because the approximations we get are the same as those by Dickson and Waters (1991), for the same discretising
unit, we will not produce any figures. This has been widely discussed by several authors. Instead, we will produce
some graphs for some selected examples, with the approximations to the density functions of the time to ruin random
variable in the classical model and compare the different shapes of the functions for different values of the initial
surplus.

One could argue about the use of a discrete approximation. Of course there is a clear price in accuracy to pay for
the use of a discrete approximation. This can be compensated by the flexibility of the proposed method. For instance,
the Markov chain approach that will be developed in Section 3 has clear advantages over other methods, not when
the claim size distribution is not parametric, but, e.g., when it is empirical or not well behaved. By contrast, other
numerical methods may be superior for well behaved claim size distributions. However, it is known that the method
gives good approximations, besides, it fits well our purpose. We introduce a different approach over a discrete model
known to give good approximations to finite time ruin probabilities in the classical model.

In the next section we introduce the basic continuous time surplus model as well as the discrete model that
approximates the basic model, including definitions and notation. In Section 3 we present the proposed recursion in
the discrete model, based on the homogeneous and discrete Markov chain, that will allow to compute approximations
for ruin probabilities. In Section 4 we work out some examples building approximate values for the density of the
time to ruin random variable, comparing the different shapes of the densities according to different values of the
initial surplus for the classical model, by showing some graphs for the cases worked out. In Section 5 we discuss some
features for recursions presented by De Vylder and Goovaerts (1988) and Dickson and Waters (1991), including
the one introduced in Section 3. Finally, in the last section we set in the surplus model an upper absorbing barrier
and show how we can calculate ruin probabilities by using the recursion in Section 3, and show some graphs for
the density of time to ruin in this case.

2. Models and notation

Let {U(t)}t≥0 be a classic continuous time surplus process so that

U(t) = u + ct − S(t),

where u(≥ 0) is the insurer’s initial surplus, c the insurer’s rate of premium income per unit time, S(t) = ∑N(t)
i=1 Yi

the aggregate claim amount up to time t , N(t) the number of claims in the same time interval having a Poisson
(λt) distribution, and {Yi}∞i=1 a sequence of i.i.d. random variables representing the individual claim amounts. We
denote by P(x) the distribution of Yi with P(0) = 0, and by F(x, t) the distribution of S(t). If P(x) is absolutely
continuous we will denote by p(x) its density function and f (x, t) = (d/dx)F (x, t) for x > 0. We note that the
density f (x, t) has a spike at x = 0. We also assume that the mean of Yi , which we denote by p1, is finite. We set
c = (1 + θ)λp1, with θ > 0, so that θ is the insurer’s loading factor.

Without loss of generality, we make the two following assumptions: c = p1 = 1.
Time to ruin is denoted by T and defined as

T =
{

inf{t : U(t) < 0},
∞ if U(t) ≥ 0 for all t > 0,

finite time ruin probability from some initial surplus u ≥ 0 is defined as

ψ(u, t) = Pr[T ≤ t |U(0) = u]

and ultimate ruin probability ψ(u) = Pr[T < ∞|U(0) = u]. We denote by φ(u, t) as the (defective) density
function of T and let φ̃(u, t) = φ(u, t)/ψ(u).
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We are interested in computing approximations for finite time ruin probabilities, i.e., in finding an approximation
for the distribution of the random variable T . For this purpose we consider Dickson and Waters (1991) approach
considering a discrete time compound Poisson model

Ud(t) = u + t − Sd(t) (1)

for t = 1, 2, . . . , for a given initial reserve Ud(0) = u (u = 0, 1, 2, . . .). Also

• Sd(t) is the aggregate claim amount up to time t with distribution and probability function Fd(x, t) and fd(x, t),
respectively.

• Individual claims are i.i.d. random variables on the non-negative integers with mean β > 1, where β is an integer.
• Premium income per unit time is 1.
• Expected number of claims per unit time is 1/(1 + θ)β.

For simplicity we state fj = fd(j, 1) and Fj = Fd(j, 1) for j = 0, 1, 2, . . . . Notice that Sd(t) is the sum of i.i.d.
random variables, each with probability function {fj }∞j=0. If Xn denotes the aggregate claim amount from time

n − 1 until time n, then Sd(t) = ∑t
n=1 Xn and fj is the probability of Xn taking value j . The probability function

of Xn, {fj }∞j=0, can be obtained by using Panjer (1981) recursion.
Discrete time to ruin, Td, is defined as

Td =
{

min{n : Ud(n) < 0, n = 1, 2, 3, . . .},
∞ if Ud(n) ≥ 0 for n = 1, 2, 3, . . . .

Discrete and finite time ruin probability, for a given non-negative integer u is

ψd(u, t) = Pr[Td ≤ t |Ud(0) = u] =
t∑

i=1

φd(u, i),

where φd(u, t) = Pr[Td = t |Ud(0) = u], t = 1, 2, . . . , is the (defective) probability function of Td. Instead, we
will use the modified random variable

T ∗
d =

{
min{n : Ud(n) ≤ 0, n = 1, 2, 3, . . .},
∞ if Ud(n) > 0 for n = 1, 2, 3, . . .

for which

ψ∗
d (u, t) = Pr[T ∗

d ≤ t |Ud(0) = u] =
t∑

i=1

φ∗
d (u, t) (2)

with φ∗
d (u, t) = Pr[T ∗

d = t |Ud(0) = u], t = 1, 2, . . . . We underline that under this re-definition, ruin does not
occur if Ud(n) stays equal or above 1. However, if u = 0 ruin does not occur at time 0.

We will use the approximation ψ∗
d (uβ, (1 + θ)βt) for ψ(u, t), where uβ and (1 + θ)βt are integers. According

to Dickson and Waters (1991, Section 8), ψ∗
d (uβ, (1 + θ)βt) is usually a better approximation for ψ(u, t) than is

ψd(uβ, (1 + θ)βt).

3. The proposed approach

As said earlier, we propose to approximate the finite time ruin probability ψ(u, t) by ψ∗
d (uβ, (1 + θ)βt), i.e., by

using the discrete time model (1), which has shown to give good results. Dickson and Waters (1991) algorithm is
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based on De Vylder and Goovaerts (1988) formulae:

ψ∗
d (u, 1) = 1 − Fu, ψ∗

d (u, t) = 1 − Fu +
u∑

j=0

fjψ
∗
d (u + 1 − j, t − 1) for t = 2, 3, . . . (3)

and u = 0, 1, 2, . . . proposing instead the following:

ψ∗
d (0, t) = 1

t

t∑
j=1

[1 − jfd(t − j, t)] = 1

t

t−1∑
j=0

[1 − Fd(j, t)], ψ∗
d (1, t) = f−1

0 [ψ∗
d (0, t + 1) − (1 − f0)],

ψ∗
d (u, t) = f−1

0


ψ∗

d (u − 1, t + 1) − (1 − Fu−1) −
u−1∑
j=1

fjψ
∗
d (u − j, t)


 for u = 2, 3, . . . (4)

and t = 1, 2, . . . . Although unstable this recursion is shown to be less time consuming for their purpose. This is
not necessarily the case for our purpose. We want to compute ruin probabilities to compute the distribution of T ,
i.e., we want to compute ruin probabilities for a fixed initial surplus u and a varying t = 1, 2, . . . . For illustration
we reproduce (from Dickson and Waters (1991)) in Figs. 1 and 2 the combinations of ψ∗

d (i, j) that are necessary in
order to calculate ψ∗

d (u, t) using recursions (3) and (4), respectively. Now considering our purpose, the necessary
values in Fig. 1 stay unchanged for recursion (3). For recursion (4) it is a different story, we will need all the values
showed in Fig. 3.

We propose instead a third way already suggested by Dickson and Gray (1984) in a different perspective. We use
the property of the discrete time process Ud(t) being a homogeneous discrete time Markov chain, i.e., the surplus at
time t in our model can be written as Ud(t +1) = Ud(t)+1−Xt+1, where Xt+1 is distributed as Xi (i = 1, 2, . . .).
This recursion will be based on the calculation of the transition probabilities, which allow the calculation of the
probability φ∗

d (u, t), t = 1, 2, . . . and then summing up for the calculation of ψ∗
d (u, t) [see (2)].

According to the method, we note that ruin occurs at the end of period n, for 2 ≤ n ≤ t , if

1. the surplus has been positive up to time n − 1, where the surplus is j , j being a value between 1 and u + n − 1,
and

Fig. 1. Combinations of i e j for which values of ψd(i, j) are required to calculate ψ∗
d (u, t) using the method of De Vylder and Goovaerts

(1988).
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Fig. 2. Combinations of i e j for which values of ψd(i, j) are required to calculate ψ∗
d (u, t) using the method of Dickson and Waters (1991).

2. the amount of aggregate claims at the nth period is greater or equal to j + 1.

If we denote by P
(n)
i,j the n-step transition probability

P
(n)
i,j = Pr[Ud(n) = j |Ud(0) = i], n = 1, 2, . . . ,

we can write the probability of ruin at time t as

φ∗
d (u, t) = Pr[T ∗

d = t |Ud(0) = u] =
u+t−1∑
j=1

P
(t−1)
u,j (1 − Fj ), for t = 2, 3, . . .

and φ∗
d (u, 1) = 1 − Fu. Note that in the two previous formulae, due to the definition of T ∗

d , transitions from i to j

are only possible through positive intermediate states.
Fig. 4 shows the values of Ud(t) that are required to calculate φ∗

d (u, t) through transition probabilities, leading
then to ψ∗

d (u, t) from a starting and fixed value u. The diagram in this figure is the mirror image of that of Fig. 1.
This method allows to calculate the distribution of T ∗

d as you go, while De Vylder and Goovaerts (1988) calculates
more in the beginning and less in the end. The other difference is that this method uses transition probabilities
instead of ψ∗

d (u, i) for earlier periods.

Fig. 3. Combinations of i e j for which values of ψd(i, j) are required to calculate ψ∗
d (u, t) using the method of Dickson and Waters (1991)

and according to our purpose.
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Fig. 4. Values required to compute ψ(u, t) according to the method proposed.

For the recursive calculation we will need the transition probabilities

P
(1)
u,j = Pr[Ud(1) = j |Ud(0) = u] = fu+1−j (5)

for 1 ≤ j ≤ u + 1, and

P (1)
r,s = Pr[Ud(n) = s|Ud(n − 1) = r] = fr+1−s (6)

for 1 ≤ r ≤ u + n − 1, 1 ≤ s ≤ u + n and 2 ≤ n ≤ t . We have that r + 1 ≥ s because we can only go up one
position at the most. For the recursion and for the first step we need only the probabilities described in (5) since we
are starting from a fixed value, the initial surplus u. For further steps (n = 2, 3, . . .) we will need all the probabilities
in (6).

One-step transition probability matrix for the process is the following:

where state ′0′ corresponds to the event ruin, which is an absorbing state.
For the computation we do not need to specify (directly) the whole matrix, i.e., we can consider the sub-matrix

obtained by taking out the line and column corresponding to state ′0′. We will denote this sub-matrix of the transition
probabilities by P .
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To compute P
(t−1)
u,j , and subsequently φ∗

d (u, t), only the line u of the matrix P t−1 is necessary, which we denote

by P
(t−1)
u (and without the corresponding value for state ′0′). That is, for the first step we have

P (1)
u = [

fu fu−1 . . . f1 f0 0 . . .
]
,

where the vector has only the first u + 1 non-zero elements. Next, we have P
(2)
u = P

(1)
u × P , P (3)

u = P
(2)
u × P

and so on. Note that to get P (2)
u we need to only multiply by the first u + 2 columns from P , since the remaining

columns have the first u+ 1 elements equal to zero. After this operation P
(2)
u will only have the first u+ 2 non-zero

elements and the computation of P (3)
u will be done in the same manner, only using the first u+ 3 columns of P , for

the same reason above.

4. Numerical examples

We considered three different examples. For the individual claim amounts we considered Exponential with mean
1, Gamma(2, 2) and Pareto(2, 1) distributions. In all cases we set θ = 0.1 and the discretising parameter β = 20,
which we found to be adequate for the purpose.

Figs. 5–10 show approximations to the proper density φ̃(u, t), where φ(u, t) was approximated according to
the recursion in the previous section and the ultimate ruin probability ψ(u) was approximated by the algorithm by
Dickson et al. (1995). Figs. 5 and 6 relate to the exponential case, Figs. 7 and 8 to the Gamma(2, 2) case and Figs. 9
and 10 to the Pareto(2, 1) case. In all cases we see that for small values of the initial surplus u the shapes of the
densities are of the decreasing type, changing shape to have a larger mode for bigger values of u.

Fig. 5. Exponential (1) for u = 0, 2 and 4.
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Fig. 6. Exponential (1) for u = 5, 10, 15 and 20.

Fig. 7. Gamma(2, 2) for u = 0, 2 and 4.
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Fig. 8. Gamma(2, 2) for u = 5, 10, 15 and 20.

Fig. 9. Pareto(2, 1) for u = 0, 2 and 4.



228 R.M.R. Cardoso, A.D. Egidio dos Reis / Insurance: Mathematics and Economics 30 (2002) 219–230

Fig. 10. Pareto(2, 1) for u = 5, 10, 15 and 20.

5. Some remarks on the algorithms

We now try to compare the three different algorithms discussed above, which includes the approach in Section 3.
Of course they all give the same approximations for the same discretising parameter β, so that is not an issue. The
focus is on the number of iterations. Referring to the method by De Vylder and Goovaerts (1988) and Fig. 1 we
conclude that we need to compute (t − 1)(2u + t)/2 = (2u(t − 1) + t (t − 1))/2 values of ψ∗

d (i, j) to calculate
ψ∗

d (u, t). Referring to the approach in Section 3, we need the same amount of iterations, noting that we are dealing
with transition probabilities instead. In reference to the algorithm by Dickson and Waters (1991) and Fig. 3, we
conclude that we need (2ut + u(u + 1))/2 − 1 values of ψ∗

d (i, j) required to calculate ψ∗
d (u, t). Based on the

number of recursions we cannot conclude much about the efficiency of the algorithms, except that it depends on
the combination of (u, t) we set for the recursion. However, for our purpose it appears that Dickson and Waters
(1991) algorithm is less efficient. If we look at formulae (4) we see that for this latter algorithm we need to com-
pute frequently the probability function of the aggregate claims amount fd(·, t), which is done by using Panjer
(1981) recursion. We note that this is a heavy procedure. We also note that this approach has instability problems
as referred by the authors. For the purpose we set, Dickson and Waters (1991) algorithm should not be the choice
mostly.

In fact we tried different combinations of (u, t) for testing, such as (0, 10), (0, 20), (5, 5), (5, 10), (5, 20),
(10, 1), (10, 5), (10, 20), (15, 20), (20, 1), (20, 5) and (20, 20), all for the exponential case. In most cases De
Vylder and Goovaerts (1988) algorithm revealed to be less time consuming, when compared to Dickson and
Waters’ (1991). For the same combination of values the approach in Section 3 showed to be even less time con-
suming, on a smaller scale. This must have to do with the way the recursion is set concerning the computer
program.
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6. Ruin probabilities in the presence of an upper absorbing barrier

We can use the method presented in Section 3 to compute finite time ruin probabilities in the presence of an upper
absorbing barrier k > u as proposed by Dickson and Gray (1984), and build approximations for the distribution
of time to ruin with the absorbing barrier k. We will denote by T (k) and T ∗

d (k) time to ruin in the presence of the
barrier k in the classical and in the discrete model (1), respectively. In the latter we consider the modified definition
of ruin. Respective finite time ruin probabilities will be denoted as ξ(u, k, t) and ξ∗

d (u, k, t). The (defective) density
of T (k) will be denoted as χ(u, k, t) and the (defective) probability function of T ∗

d (k) will be denoted as χ∗
d (u, k, t).

Approximation for ξ(u, k, t) will be given by ξ∗
d (uβ, kβ, (1 + θ)βt).

Referring to Section 3, the matrix of the transition probabilities is now truncated due to the finite state space of
k + 1 states, where state k is an absorbing state. Following the method in Section 3 we specify a matrix P̄ as a
sub-matrix taking out the lines and columns corresponding to states ′0′ and k, so that

χ∗
d (u, k, t) = Pr[T ∗

d (k) = t |Ud(0) = u] =
min{u+t−1,k−1}∑

j=1

P̄
(t−1)
u,j (1 − Fj ) for t = 2, 3, . . .

and χ∗
d (u, k, 1) = 1 − Fu.

Figs. 11 and 12 show approximations for φ(u, t)—(1)—and χ(u, k, t)—(2)—for the following combinations of
(u, k): (5, 10), and (10, 15), respectively, in the exponential case. Note that the difference between the values of the
ruin probabilities with and without the barrier will only be effective for values of t such that βu+ β(1 + θ)t − 1 >

kβ − 1, or equivalently for t > (k − u)/(1 + θ).

Fig. 11. Exponential (1) for u = 5, k = 10.
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Fig. 12. Exponential (1) for u = 10, k = 15.
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