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Abstract 

In the classical continuous time surplus process, we allow the process to continue if the surplus falls below zero. When 
the surplus is below zero, we assume that the insurer borrows any sum of money required to pay claims, and pays interest 
on this borrowing. We use simulation to study moments and distributions of three quantities: the time to recovery to surplus 
level zero, the number of claims that occur when the surplus is below zero, and the maximum absolute value of the surplus 
process when it is below zero. We also show how simulation can be used to estimate the probability of absolute ruin. 
0 1997 Elsevier Science B.V. 
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1. Introduction and notation 

In the classical surplus process the insurer’s surplus at time I is denoted U(t) and given by 

U(f) = c4 + ct - S(l), 

where u is the insurer’s surplus at time 0, c is the insurer’s premium income per unit time, assumed to be received 
continuously, and s(t) is the aggregate claim amount up to time t. (S(t)},,o is a compound Poisson process with 
Poisson parameter A per unit time, and individual claim amounts have distribution function P(x), with kth moment 
ok, and we will assume that P(0) = 0. We will write c = (1 + @)@I where 8 > 0 is the insurer’s premium loading 
factor. 

For this process, the time to ruin, denoted T, is defined as 

inf{t: U(t) K 0}, 
00 if U(t) >_ 0 for all t > 0. 
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The probability of ultimate ruin given initial surplus u is denoted r,4 (u), and defined by e(u) = Pr( T c 00). The 
probability of survival is denoted 6(u) and defined as S(U) = 1 - I++(U). The probability that ruin occurs and that 
the deficit at the time of ruin is less than y is denoted G(u, y) and defined as 

G(u, y) = Pr(T < cc and U(T) > -y). 

We denote by g(u, y) the (defective) density associated with G(u, y) and define G(u, y) = G(u, y)/+(u) and 
g(u, y) = g(u, y)/@(u). We use the notation Y(u) to denote the deficit at ruin given that ruin occurs, so that Y(u) 
has distribution function G(u, y). 

In the following sections we shall let the surplus process continue if it falls below zero. We shall be interested in 
what happens during the time the surplus process takes to recover to zero. 

We shall introduce a modification to the surplus process if the surplus falls below zero. We shall assume that if 
the surplus process falls below zero, the insurer has to borrow any sum of money required to pay claims. The insurer 
may borrow any sum required at force of interest 6 per unit time (equivalent to an effective rate i per unit time 
where S = log( 1 + i)), and may repay amounts owed continuously over time. These repayments will be made using 
premium income. The introduction of interest into the model means that unlike in the case when 6 = 0, recovery 
to surplus level zero is no longer certain. The reason for this is that if the surplus falls below -c/S at any time, 
the insurer would be unable to repay its borrowings since the rate of repayment would exceed the rate of premium 
income. If the surplus falls below -c/S absolute ruin is said to occur. We will use the notation @A(U) to denote 
the probability of absolute ruin, and $A(u) = @A(u)/@(U) denotes the probability of absolute ruin given that ruin 
occurs. We define the survival probability for this modified process as 6~ (u) = 1 - @A(u). 

Amongst others, Dassios and Embrechts (1989) have considered this model and they describe it in the following 
way. Let ri be the time of the ith claim. Then for ri 5 s < ri+ 1, 

U(S) = U(Ti) + C(S - Ti) 

if U(ri> 1 0 and 

U(s) = 
1 

(U(S) + c/S) exp{d(s - rj)) - C/6 for s < S* 
C(S - ?i) for s > s* ’ 

if -c/6 < lJ(ri) < 0, where s* = ri + (l/6) log((c/6)/((c/S) + U(ri)). The definition of s* is such that if no 
claims occur between times ri and s* then the surplus at time ri + s* will be zero. 

Throughout this paper we will consider conditional random variables. We will condition on ruin occurring from 
initial surplus u and recovery to surplus level zero occurring (i.e. absolute ruin not occurring). We define the 
following conditional random variables: 
?? T(u) denotes the time to recovery to surplus level zero. 
?? iv’(u) denotes the number of claims that occur during the time to recovery to surplus level zero (not counting the 

claim that causes ruin). 
?? L(u) denotes the maximum absolute value of the surplus process during the time to recovery to surplus level 

zero. 
Our approach to studying these variables is to use simulation. We will illustrate some of their properties through 

the use of examples. We use two single claim amount distributions - exponential and Pareto - each scaled to have 
mean 1. For each of the examples in this paper we simulated 100000 realisations of the surplus process given 
that ruin occurs, so that the starting point for each realisation was simulation of the insurer’s deficit at the time of 
ruin given that the deficit is less than c/6. This requires simulation from a distribution with distribution function 
G(u, y>/G(u, c/6) for 0 5 y 5 c/6. In general this poses no problem when u = 0 since 

WI Y) = s y 1 - P(x) dx 

Pl . 

0 
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Similarly, there is no problem when the individual claim amount distribution is exponential since G(u, y) is inde- 
pendent of u in this case-see, for example, Bowers et al. (1986) -and hence all quantities of interest are independent 
of U. When the individual claim amount distribution is Pareto and u > 0 we simulated values of the deficit at ruin 
by first calculating G(u, y) numerically for y = 0,0.05,0.1, . . . , using the method of averaging lower and upper 
bounds for G(u, y) as described by Dickson et al. (1995, Section 4). We then assumed that G(u, y)/G(u, c/6) 
(which is the same as G(u, y)/G(u, c/6)) was a piecewise linear function over the intervals [O.O%, O.O5(k + 1)) 
fork=0,1,2 ,..., allowing simulation from this distribution by standard techniques. 

2. Preliminary remarks 

In the following sections we will study T(u), N(u) and L(U) as functions of i. In Sections 3,4 and 6 we will set 
h = 1 and allow i to vary. In Section 5, we will study a relationship which depends on h. In that section only, we 
fix i and let h vary. We will study quantities such as E (T (u)) as a function of i. As a mathematical problem, it is of 
interest to see how such quantities behave as i varies. However, some of our observations will be of limited practical 
value. For example, if h = 1 and i = 0.1, then we are saying that we expect one claim per unit of time and the 
effective rate of interest for that unit of time is 0.1. If the insurer expects, say, three claims a day, then the effective 
annual rate of interest given by our model is clearly not a realistic one. However, as we shall see in the following 

0.0 0.02 0.04 0.06 0.08 0.10 

interest rate, i 

Fig. 1. Exponential claims, 4(u). 
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sections, the features of interest in the functions we study occur for small values of i which would translate into 
realistic effective annual rates of interest for most insurance portfolios. 

In the following sections we will make remarks such as “,( T (u)) is a decreasing function of i”. What we really 
mean when we describe the behaviour of a function in such a way is that this is how the function behaves according 
to the results of our simulations. Since, with the exception of Example 1, our studies are all based on simulation, 
we believe that this abuse of language should cause no problems to the reader. 

Finally, we remark that the graphs presented in this paper are, with the exception of,Fig. 1, based on simulation. 
The values of functions obtained by simulation have all been smoothed. This smoothing has been performed by 
the statistical package S-PLUS using the “supsmu” function. We have taken somewhat of a black box approach to 
smoothing. Our aim has been to illustrate the shapes of functions. Optimal smoothing is a side issue and has not 
been a consideration. 

3. The probability of absolute ruin 

In this section we shall consider the probability of absolute ruin occurring before the surplus process can recover 
to zero given that absolute ruin does not occur at the time of ruin. Hence, we are interested in the probability of 
some period of negative surplus which results in absolute ruin rather than recovery to surplus level zero. Let us 
denote this probability by C#J (u). We can find C$ (u) as follows. We have 

c/s cc 

@A(u) = 
s 

&‘(u, y)+A(-_y) dy + 
s 

& Y) dy, 

0 c/s 

or, equivalently, 

c/a cm 

$A@) = 
s 

g(u, y)lc/A(-3’) dy + 
s 

g(u, y) dy. (3.1) 
0 cl6 

Now let y(u, y) = g(u, y)/@u, c/S) for 0 < y < c/S, so that ~(u, y) is the density of the deficit at ruin given 
that the deficit is less than c/S. Then we have 

and the integral is the probability of absolute ruin given that ruin has occurred with a deficit at ruin less than c/6. 
Since absolute ruin can occur with or without an upcrossing through surplus level zero we have 

c/6 

s 
Y(K Y)‘bA(--Y) dy = 4(U) + (1 - 4(U))+A(O) 

0 

and so, 

@l(u) = 1 - 1 - $A&) 

(1 - ~C~A(O)MU, c/s) 
(3.2) 
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0.0 0.02 0.04 0.06 0.06 0.10 

Interest rate, i 

Fig. 2. Pareto (2,l) claims and 10% loading, 4(u) 

In Examples 1 and 2 we will study the probability @J(U). In Example 1 we calculate it from a formula while 
in Example 2 we estimate it by simulation. An important consequence of estimating 4(u) by simulation is that it 
allows us to estimate 1c/A (u) by simulation as follows. From (3.2) we have 

8A(O)& c/6)(1 -d(U)> = 1 - $A@) 

and multiplying throughout by I++(U) we have 

s,(O)G(u, C/6)(1 - 4(U)) = ‘b(U) - @A(u) = AA(U) - a(U) 

and so 

aA = a(U) + JA(O)G(U, C/6)(1 - $(U>). 

Setting u = 0 we find 

aA@) = 
SUN 

1 - G(f), c/8(1 - @CO)) 

giving 

6 
A 

(u) = s(u) + s(O)G(u, c/8(1 - d(u)) 
1 - G(O, c/@(l - 4(O)) ’ 
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Interest rate, i 

Fig. 3. Exponential claims, E(T(u)). 

I I 

0.04 0.05 

Since algorithms exist to calculate the functions 6 (u) and G (u, y) (see, for example, Dickson et al. (1995)), we 
can use a mixture of calculation and simulation to estimate 84(U), or equivalently, @A(U). This is a very useful 
result as we can estimate the probability of absolute ruin in infinite time by calculating 4(u) by simulation. Since 
the purpose of this paper is to study what happens during a period of negative surplus we shall not illustrate the use 
of this result. 

Example 1. When P(X) = 1 - exp[ -ax), an explicit solution exists for @A (u) and hence for $A (u). From Dassios 
and Embrechts (1989), for u 1 0 we have 

Fig. 1 shows values of c$(u) as a function of the interest rate, i, per unit time for three values of 8, namely lo%, 
20% and 30%, when a! = I = 1. This figure has all the features we would expect: as the interest rate increases, 
4 (u) increases, and as the premium loading factor increases, 4 (u) decreases. 

In passing, we note the comment by Dassios and Embrechts (1989) that when P(X) = 1 - exp[ -ox), +A (u) = 
k+(u) where 0 < k < 1. In fact k = @A(O)/@(O). It is easy to establish this relationship by writing (3.1) as 
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Fig. 4. Exponential claims, standard deviation of T(u). 

c/s 
@A(u) = e(u) s i(u, Y)@A(-Y) dy + 

0 

Since g(u, y) is independent of u it follows that $,4(U)/+(U) = $,~(0)/+(0). Although this approach gives us 
$A (u) in terms of $A (0), it does not appear to yield a solution for @A (0). 

Example 2. Fig. 2 shows simulated values of 4(u) as a function of the interest rate when the individual claim 
amount distribution is Pareto (2,l) for u = 0,5 and 10 and 8 = 0.1 when A. = 1. This figure has the same features 
as Fig. 1. In this case 4(u) does depend on u, and increases with u. 

4. The duration of the first period of negative surplus 

In the special case when 6 = 0, the moments and distribution of T(u) are discussed by Egidio dos Reis (1993) 
and Dickson and Egidio dos Reis (1996). In this section we will consider the density function, mean and variance 
of T(u). Before considering examples, there is one important point to mention about the moments. 
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0.0 0.005 0.010 0.015 0.020 0.025 

Interest rate, i 

Fig. 5. Pareto (2,l) claims, E(T(0)). 

Egidio dos Reis (1993) shows that when 6 = 0, 

E(T(u)) = s and V(T(u)) = Ey;;;;T + $f$$. 
C C 

Thus the mean and variance of T(u) exist when 6 = 0 if the mean and variance of Y(U) exist. (We show in 
Appendix A that the first two moments of Y(u) exist if p3 < 00.) However, when 6 > 0, given that ruin occurs but 
absolute ruin does not occur at the time of ruin, the moments of tbe distribution of the deficit at ruin must be finite. 
Thus it will be possible to study the moments of T(u) when S > 0 in cases when it was not possible to study these 
moments when S = 0. 

Example 3. Consider again the case when the individual claim amount distribution is exponential and h = 1. 
Fig. 3 shows E(T(u)) as a function of the interest rate for the same three values of 8 as in Fig. 1. For a given 
value of 8, this figure shows E(T(u)) increasing with i then decreasing to a limiting value which will be 0. To 
see why this happens, let us consider the effect of a small increase in i when i is close to zero. First, there is little 
change in G(u, y)/G(u, c/6). Consequently the distribution of the deficit barely changes. Second, the probability 
of absolute ruin without recovery to surplus level 0 is also unlikely to change much due to the magnitude of c/S and 
the magnitude of claims. The main effect will be an increase in recovery time to zero caused by a higher interest 
rate. Hence the value of E(T(u)) should increase. Intuitively this increase cannot be sustained as the value of i 
increases. The reason is that as i increases, the distribution of the deficit will change, with the expected deficit 
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Interest rate, i 

Fig. 6. Pareto (2,l) claims, standard deviation of T(0). 

decreasing. Although an increase in i causes an increase in the recovery times, it also causes a decrease in c/6 and 
hence an increase in the probability of absolute ruin without recovery to surplus level zero. This latter effect seems 
to outweigh the former and so E(T(u)) must at some stage have a turning point and eventually decrease to zero as 
i becomes very large. Fig. 4 shows the standard deviation of T(u), and this figure has the same features as Fig. 3. 

Example 4. Let the individual claim amount distribution be Pareto (2,l) and let h = 1 and u = 0. In this case we 
know that Y (0) has a Pareto (1,l) distribution, and hence none of the moments of Y (0) exists. Fig. 5 shows E (T (0)) 
as a function of the interest rate for the same three values of 0 as in previous figures. We can see a different pattern 
from Fig. 3, with E(T(0)) being a decreasing function of i. In this case the explanation would appear to be that 
the deficit at ruin is responsible for the shape of E(T(0)). As i increases, the expected deficit decreases and hence 
the expected recovery time should decrease. (Note that this is different to the situation in Example 3. There, the 
expected deficit reaches a finite limiting value as i decreases to zero, but this does not occur in this example.) In 
this example the standard deviation of T (0) is a decreasing function of i, as shown in Fig. 6 which has the same 
features as Fig. 5. 

The features of these two examples are reproduced for other forms of P(X). For example, when the individual 
claim amount distribution is Pareto (4,3) the features of Example 3, rather than Example 4, were reproduced. In 
general, we found that the graph of E(T(u)) as a function of i had the same shape as in Fig. 3 whenever E (Y (u)) 
was finite. Otherwise it had the same shape as in Fig. 5. Similarly, we found that whenever E(Y (u)*> was finite, the 
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~ Exponential(l) 
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Fig. 7. Densities of T(0) when i = 0.001. 

graph of the standard deviation of T(u) had the same shape as in Fig. 4. Otherwise the standard deviation of T(u) 
was a decreasing function of i. 

We can also use simulation to construct the densities of T(u). Fig. 7 shows the densities of T(0) for the individual 
claim amount distributions from Examples 3 and 4 when h = 1, i = 0.001 and 8 = 0.1. Further experiments 
indicated that the basic shape of each density is the same for different values of i. 

5. The number of claims in the first duration of negative surplus 

When 6 = 0 Gerber (1990) considers the number of claims, denoted K, that occur during the interval (0, t), 
where t is the first passage time of the surplus process, starting from initial surplus 0, through level x, where x > 0. 
Subject to a change of scale of the individual claim amount distribution Gerber proves that 

E(K)= kc/cS(O) and V(K) = AX 
--(c2 + A*@* - P:>>. 
Cc6 (o))3 

By conditioning on the severity of ruin, we can use these results to show that 

E(N(u)) = hE(T(u)) 

and 

(5.1) 

(5.2) V(N(u)) = 1 ( '~(~)~E(T(u)) +w(T(u)) > 
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Fig. 8. Exponential claims, E(N(u)). 
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80 100 

Our main purpose in this section is to investigate whether we can apply these identities to approximate E(N(u)) 
and V(N(u)) when S > 0. 

Example 5. Let the individual claim amount distribution be exponential. Fig. 8 shows E(N(u)) as a function of A 
when i = 0.1. The solid line shows values of E(N(u)) while the dotted line shows h times the values of E(T(u)). 
Fig. 9 shows the corresponding quantities for the standard deviation of N(u). We can see from Fig. 8 that for all 
values of h, and particularly for the larger values, (5.1) gives a reasonable approximation. However, it is quite a 
different story when we consider the standard deviation of N(u). It is clear from Fig. 9 that (5.2) does not give a 
good approximation to the standard deviation of N(u) for small values of A, but gives a reasonable approximation 
for large values. (Note that the scale in Fig. 9 is very different to that in Fig. 8.) Of course, another way of interpreting 
these figures is to say that increasing h has the same effect as decreasing i. Hence, as h becomes large, i becomes 
small, and so we would expect the quality of the approximations given by (5.1) and (5.2) to improve. 

Further experiments lead us to the conclusion that formulae (5.1) and (5.2) are inappropriate for calculating the 
mean and variance of N(u) when 6 > 0 unless the value of h is very large, or, equivalently, if for a given value of h, 
the interest rate is small. Otherwise, the most reliable means of obtaining the moments (and distribution) of N(u) 
is through simulation. 
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Fig. 9. Exponential claims, standard deviation of N(u). 

6. The minimum value of the surplus process 

In this section we consider the absolute value of the minimum of the surplus process during the first period of 
negative surplus, which we denote L(U). Picard (1994) considers the distribution of L(U) and shows that when 
s=o 

pr(L(u) 5 z) = ‘(‘) - ‘(’ + ‘) 
@(u)(l - @(z>) . 

If P(x) is such that an analytical expression for +(u) exists then it is possible to derive expressions for the moments 
of L(U) when 6 = 0. Of particular interest to our study are the results when P(x) = 1 - exp( -x}. In this case we 
can show that 

E(L(u)) = (1 + e) log(1 + 6) 

and 

E(L(u)~) = 2(1 i ‘) x(1 + e)-jj-2. 

j=1 

For the remainder of this section we consider the moments of L(U) when 6 > 0. 
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Fig. 10. Exponential claims, E(L(u)) 

Example 6. Let the individual claim amount distribution be exponential with mean 1 and let h = 1. Fig. 10 shows 
E(L(u)) as a function of i for 0 = 0.1,0.2 and 0.3. We can see that for each value of 8, E(L(u)) increases from its 
value when i = 0 to a maximum value then decreases to a limiting value which will be zero. The features which 
explain the shape of E(T(u)) also explain the features of E(L(u)). Consider a realisation of the surplus process 
when i = 0 for which the surplus falls below the deficit at ruin before recovering to zero. If we increase i by a very 
small amount, then the corresponding realisation of the surplus process must have a large absolute minimum value 
since the rate of increase of the surplus process is reduced. Since absolute ruin is very unlikely for very small i, 
E (L(u)) must increase since, for all other realisations of the surplus process for which absolute ruin does not occur, 
the minimum level of the surplus process cannot be reduced by increasing the interest rate. However, as i increases, 
it is clear that the absolute ruin barrier dictates that E(L(u)) must eventually decrease as i increases. It is interesting 
to note that for each value of 8, the value of i that maximises E(T(u)) in Fig. 3 is not the value that maximises 
E(L(u)) in Fig. 10. Fig. 11 shows the standard deviation of L(u) as a function of i and this figure exhibits the same 
features as Fig. 10. 

Example 7. Let the individual claim amount distribution be Pareto (2,l). Fig. 12 shows E(L(u)) as a function of 
i when 8 = 0.2 for u = 0, 5 and 10. The figure has the same features as Fig. 5 for exactly the same reasons. 
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Fig. 11. Exponential claims, standard deviation of L(u). 

In our calculations for Section 4, we found that the shape of the mean and standard deviation of T(U) as a function 
of i respectively depended on the existence of the first two moments of Y(u). Our calculations in this section lead 
us to believe that the same is true of the mean and standard deviation of L(u). 

7. Conclusions 

Simulation provides a means of estimating the probability of absolute ruin and studying the random variables 
T(u), N(u) and L(U) when S > 0. Although it does not enable us to draw precise conclusions about these variables, 
it does allow us to see how the moments and distributions of these variables change as S increases. Our experiments 
lead us to conclude that moments of the individual claim amount distribution are determining factors for the 
behaviour of moments of these three variables as functions of 6. 

Appendix A 

In this appendix we show that the existence of E(Y (u)~) depends on the existence of ~k+i for k = 1,2. 
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Fig. 12. Pareto (2.1) claims and 20% loading, E(L(u)) 

Starting from 

P(Y+z)@(u - z)dz +g(Q u +Y) - 1cr(u)g(O, Y) , 

Dickson (1996) shows that 

u 

s v+(u -z)E[ max(0, X - z)] dz + g&(u) - @(O)E[min(Y(O), u)] . 

0 

Assuming that both u and p1 are finite, we note that both the first and third terms in parenthesis are finite. Hence 
E(Y (u)) will be finite provided p2 < 00. Otherwise E( Y (u)) does not exist. 

Similarly we have 

?Muw(Yw%$) (+-i’I y2p(y + z) dy dz + 28(u) - 1Cr(O)E[min(Y(O), uj21 

_zu F - ( m Ehin(Y@h ~11) 1 
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Assuming that IA and p2 are finite, we note that the first, third and fourth terms in parenthesis are finite. Hence 
E(Y (cJ)~) will be finite provided p3 < 00. Otherwise E(Y (u)~) does not exist. 
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