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Abstract

In this paper we consider the calculation of moments of the time to ruin and the duration of the first period of negative
surplus. We present a recursive method by considering a discrete time compound Poisson process used by Dickson et al. [Astin
Bull. 25 (2) (1995) 153]. With this method we will also be able to calculate approximations for the corresponding quantities
in the classical model. Furthermore, for the classical compound Poisson model we consider some asymptotic formulae, as
initial surplus tends to infinity, for the severity of ruin, which allow us to find explicit formulae for the moments of the time
to recovery. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper we consider recursive algorithms for the calculation of the moments of the random variables time
to ruin and the duration of the first period of negative surplus (or time to recovery). As far as the time to ruin is
concerned, much has been said in the actuarial literature about the study of the ruin probabilities, whether finite
time or ultimate. The study of some existing moments like the expected value or the variance of the time to ruin
can give another insight, although somehow limited. For practical purposes it may be useful for instance to have a
quick look at how long it takes for ruin to occur, before going into more details like computing ruin probabilities.
The proposed method is easy to implement and its outcome is easily interpreted. About the other random variable,
the duration of negative surplus has been previously discussed by Egı́dio dos Reis (1993) and Dickson and Egı́dio
dos Reis (1996). The former reference deals exclusively with the moments of this random variable only concerning
the classical model, giving closed formulae which depend on the severity of ruin related quantities. In that paper it
is also shown the relation between time to ruin and time to recovery when initial surplus is zero. This is important
in our work too by providing a starting point in the proposed recursions, as we will see later in the text.

We use a discrete model as a discrete time compound Poisson process first introduced by Dickson and Waters
(1991) and later retrieved by Dickson et al. (1995). Under this model we develop a recursion to compute moments

q Part of this work was carried out during the author’s stay at the Centre for Actuarial Studies at The University of Melbourne. Support from
FCT/PRAXIS and ISEG is gratefully acknowledged.

∗ Tel.: +351-2139-25867; fax:+351-2139-22781.
E-mail address:alfredo@iseg.utl.pt (A.D. Eǵıdio dos Reis).
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of the above quantities, particularly the first two moments, provided they exist. This proposed discrete model not
only has interest on his own but also provides numerical approximations for the corresponding quantities in the
classical model. We will focus our attention to the discrete model in a way such that it provides an approximation
to the classical continuous model.

As far as the time to ruin in the classical model is concerned, Lin and Willmot (2000) show formulae for the
computation of the moments by means of renewal equations, particularly the first two moments. With their method,
exact evaluation of the moments is straightforward when the claim size distribution is a combination of exponentials
or a mixture of Erlang distributions.

Concerning the duration of negative surplus in the classical model, its moments depend on the same quantities
of the severity of ruin as shown by Egı́dio dos Reis (1993). When initial surplus is zero the moments have a simple
formula. For positive initial surplus (and also when it is zero) again, Lin and Willmot (2000) show expressions for
the moments of the severity of ruin which will allow us to compute the moments of the time to recovery. Like in
the case for the time to ruin they show that exact evaluations can be done easily for combinations of exponentials
and mixture of Erlang claim size distributions. Furthermore, we show in this paper that we can also get a simple
expression for the asymptotic moment generating function of the severity of ruin, as the initial surplus goes to
infinity, which allows us to compute, at least numerically, moments for the severity of ruin as well as the related
random variable time to recovery.

Approximations to the duration of negative surplus quantities in the classical model can be done via the severity
of ruin using available methods, like the one presented by Dickson et al. (1995), who use the same discrete time
model. The approach we present shows how we can do it dealing in full with the discrete model. Not only does it
give exact results as far as the discrete model is concerned but it also provides the starting values (when the initial
surplus is zero) for the recursions concerning the time to ruin by enhancing the relationship between time to ruin
and time to recovery when the initial surplus is zero.

In the next section we introduce the basic continuous time surplus model as well as the discrete model that
approximates the basic model, including definitions and notation. In Section 3 we present recursions for the moments
of time to ruin for positive values of the initial surplus considering the discrete model. In Section 4 we consider
for the discrete model the recursions for the duration of a first period of negative surplus, showing the relationship
between time to recovery and severity of ruin. In Section 5 we discuss the starting values, with initial surplus equal
to zero, for the recursions in the two previous sections, based on the fact that the time to ruin and the duration of
negative surplus have the same distribution. In Section 6 we show some asymptotic formulae for the severity of ruin
and, consequently, for the time to recovery considering the classic model. Finally, in the last section we consider
a couple of examples showing the kind of approximations in the classical model we can expect to obtain from the
recursions formerly discussed. Namely, an exponential, a combination of two exponentials and an Erlang(2) claim
amount distributions.

2. Models and notation

We first introduce the classical compound Poisson model. Let{U(t)}t≥0 be a classical continuous time surplus
process, so that

U(t) = u+ ct − S(t), t ≥ 0,

whereu is the insurer’s initial surplus,c the insurer’s rate of premium income per unit time,S(t) = ∑N(t)
i=1 Xi

the aggregate claim amount up to timet , N(t) the number of claims in the same time interval having a Poisson
(λt) distribution, and{Xi}∞i=1 a sequence of i.i.d. random variables representing the individual claim amounts. We
denote byP(x) andp(x) the distribution and density function ofXi , respectively, withP(0) = 0, so that all claim
amounts are positive. We also assume that the mean ofXi , which we denote byp1 is finite. We will also assume
throughout the paper the existence of higher moments thanp1, and we denote thekth moment about the origin of
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Xi bypk. We will further assume in some parts of the paper the existence of the moment generating function ofXi ,
which we denote bym(t), and we state that clearly. We define a positive parameterθ to be such that

c = (1 + θ)λp1,

so thatθ is the insurer’s premium loading factor. Without loss of generality, we will make the following two
assumptions:c = p1 = 1. We will refer to this process as ourbasic process.

We want to produce a discrete approximation to this basic process and we will consider Dickson et al. (1995)
approach considering a discrete time Poisson process

Ud(t) = u+ t − Sd(t)

for t = 1,2, . . ., with an initial reserveu (u = 0,1,2, . . .) andUd(0) = u. Also, we have the following:
• Sd(t) is the aggregate claim amount up to timet , and we denote byF(x, t) andf (x, t) the distribution and

density function ofSd(t).
• Individual claims are i.i.d. random variables on the non-negative integers with meanβ > 0. Like in the classical

model, we will require the existence of higher moments of individual claims, and we will denote thekth moment
about the origin bybk (b1 = β).

• Premium income per unit time is 1.
• Expected number of claims per unit time isλd = λ/β.

For simplicity we statefj = fd(j,1) andFj = Fd(j,1) for j = 0,1,2, . . .. Notice thatSd(t) is the sum of
i.i.d. random variables, each with probability function{fj }∞j=0. If Xd,n denotes the aggregate claim amount from

time n − 1 until timen, thenSd(t) = ∑t
n=1Xd,n andfj is the probability ofXd,n taking valuej . Values forfj ,

j = 0,1,2, . . ., can be obtained using Panjer’s (1981) recursion.
Time to ruin in the basic process is denoted byT and defined as

T =
{

inf {t : U(t) < 0},
∞ if U(t) ≥ 0 for all t > 0,

finite time ruin probability from some initial surplusu ≥ 0 is defined as

ψ(u, t) = Pr[T ≤ t |U(0) = u],

and ultimate ruin probabilityψ(u) = Pr[T < ∞|U(0) = u]. Finite time survival probability is denoted by
δ(u, t) = 1 − ψ(u, t) and ultimate survival probability byδ(u) = 1 − ψ(u) = Pr[T = ∞|U(0) = u]. It is well
known thatψ(0) = λp1/c = 1/(1 + θ).

For the discrete time model we will use two definitions of ruin, depending on whether or not a surplus of zero,
other than at time zero, is regarded as ruin. Accordingly, we define time to ruin as

Td =
{

min{n : Ud(n) < 0, n = 1,2,3, . . .},
∞ if Ud(n) ≥ 0 forn = 1,2,3, . . . ,

T ∗
d =

{
min{n : Ud(n) ≤ 0, n = 1,2,3, . . .},
∞ if Ud(n) > 0 forn = 1,2,3, . . . .

Discrete and finite time ruin probabilities for a given non-negative integeru are

ψd(u, t) = Pr[Td ≤ t |Ud(0) = u],

ψ∗
d (u, t) = Pr[T ∗

d ≤ t |Ud(0) = u].

Ultimate ruin probabilities are defined asψd(u) = lim t→∞ψd(u, t) andψ∗
d (u) = lim t→∞ψ∗

d (u, t), with δd(u) =
1 − ψd(u) andδ∗d(u) = 1 − ψ∗

d (u), denoting the corresponding probabilities of ultimate survival. From Dickson
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and Waters (1991), we haveψ∗
d (0) = f0ψd(0) = ψ(0). We denote the probability functions ofTd andT ∗

d asφd(u, t)

andφ∗
d(u, t), respectively.

We also need to define the (defective) distributions of the severity of ruin, probability density and probability
functions, for the basic process and discrete model, respectively. Accordingly, we have foru ≥ 0 andy > 0,

G(u, y) = Pr[T < ∞ andU(T ) > −y|U(0) = u],

and foru = 0,1,2, . . . andy = 1,2,3, . . .,

Gd(u, y) = Pr[Td < ∞ andU(Td) ≥ −y|Ud(0) = u],

G∗
d(u, y) = Pr[T ∗

d < ∞ andU(T ∗
d ) > −y|Ud(0) = u].

We denote the density and probability functions byg(u, y), gd(u, y), andg∗
d(u, y), respectively. Respective asso-

ciated random variables are denoted asY , Yd andY ∗
d .

We will let the surplus process continue if it falls below zero, i.e. if ruin occurs. Given that ruin occurs, the process
is certain to recover to positive levels. Let us define this time as the recovery time or the duration of a negative
surplus. Eventually, the process will drift to infinity and the number of occasions it falls below zero can be multiple.
For more details see Dickson and Egı́dio dos Reis (1996).

Let us denote bỹT andT̃d the duration of the first period of negative surplus once ruin has occurred in the classical
and discrete time models, respectively. These random variables depend on the initial surplusu. For the discrete time
model,T̃d stands for the recovery time up to non-ruin level zero, according to the first definition of ruin. Letαd(u, t)

be the probability function of̃Td. We consider this function to be defective, i.e.αd(u, t) represents the probability
that ruin occurs from initial surplusu and the surplus takest periods to reach the level zero for the first time after
Td. Hence, we have thatt = 1,2, . . .We denote bỹT ∗

d the recovery time associated to the second definition of ruin,
andα∗

d(u, t) is its probability function. In Section 6 we use some conditional random variables, given thatT < ∞.
When this is the case we write the variables with a subscriptc.

According to Dickson et al. (1995, Section 2),ψd(uβ, βt) for some positiveβ is an approximation forψ(u, t).
Furthermore, they explain thatψ∗

d (uβ, βt) is a better approximation thanψd(uβ, βt). As far as approximations
to the basic process is concerned, we will consider the second definition of ruin in the discrete model for the
different quantities we want to compute in this paper. We will compute approximate values for the conditional
moments of time to ruin and time to recovery, given thatT < ∞, from initial surplusu, denoted byE[T k|u]/ψ(u)
andE[T̃ k|u]/ψ(u), for k = 1,2, . . . Respective approximations we consider will beβ−kE[T ∗

d
k|βu]/ψ∗

d (βu) and
β−kE[T̃ ∗

d
k|βu]/ψ∗

d (βu).

3. On the time to ruin

For the time to ruin we can retrieve de Vylder and Goovaerts’ (1988) formulae. Considering aggregate claims at
the end of the first period in the discrete time model we have

ψd(u, t) =
u+1∑
j=0

fjψd(u+ 1 − j, t − 1)+ (1 − Fu+1) for t > 1, (1)

with ψd(u,1) = φd(u,1) = 1−Fu+1. As far as the probability function is concerned, we get its respective version
for t > 1,

φd(u, t) =
u+1∑
j=0

fjφd(u+ 1 − j, t − 1). (2)
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We assume that therth moment ofTd, denoted asE[Td
r |u], exists for a given initial surplusu ≥ 0 (r = 1,2, . . .).

As far as the classical model is concerned, Delbaen (1988) shows that therth moment of the time to ruin de-
pends on the existence ofpr+1. We can use formula (2) to find a recursion forE[Td

r |u]. The computation of
E[Td

r |u] can then be used for the approximation of the corresponding quantity in the classical model. In the last
section we show examples with the kind of approximations we can make with this recursion. We use (Gerber’s
(1979) exact formulae whenP(x) is exponential. Also, we use Lin and Willmot (2000) formulae whenP(x) is
a particular combination of exponentials and an Erlang(2). Foru = 0 we can use formulae derived by Egı́dio
dos Reis (1993), since in the classical model the conditional distribution of time to recovery and time to ruin,
given ruin occurs, have the same distribution. We will consider the calculation of the expected value and variance
only.

Using (2) we have, for a given value ofu ≥ 0,

E[T rd |u] =
∞∑
i=1

irφd(u, i) = φd(u,1)+
∞∑
i=2

ir
u+1∑
j=0

fjφd(u+ 1 − j, i − 1)

= φd(u,1)+
u+1∑
j=0

fj

∞∑
i=2

irφd(u+ 1 − j, i − 1) = φd(u,1)+
u+1∑
j=0

fj

∞∑
i=1

(i + 1)rφd(u+ 1 − j, i).

Substituting

(i + 1)r =
r∑
k=0

(
r

k

)
ik

and interchanging summations we get

E[T rd |u] = φd(u,1)+
u+1∑
j=0

fj

r∑
k=0

(
r

k

) ∞∑
i=1

ikφd(u+ 1 − j, i)

= φd(u,1)+
u+1∑
j=0

fj

∞∑
i=1

φd(u+ 1 − j, i)+
u∑
j=0

fj

r∑
k=1

(
r

k

) ∞∑
i=1

ikφd(u+ 1 − j, i)

= φd(u,1)+
u+1∑
j=0

fjψd(u+ 1 − j)+
u+1∑
j=0

fj

r∑
k=1

(
r

k

)
E[T kd |u+ 1 − j ],

sinceTd is a defective random variable, i.e.
∑∞
i=1φd(u, i) = ψd(u),

E[T rd |u] = 1 − Fu+1 +
u+1∑
j=0

fjψd(u+ 1 − j)+
r∑
k=1

(
r

k

)
u+1∑
j=0

fjE[T kd |u+ 1 − j ]. (3)

For instance, if we want to compute the mean ofTd we get, solving forE[Td|u + 1] from (3) with r = 1, and
u = 0,1,2, . . .,

E[Td|u+ 1] = f−1
0


E[Td|u] −


1 − Fu+1 +

u+1∑
j=0

fjψd(u+ 1 − j)+
u+1∑
j=1

fjE[Td|u+ 1 − j ]




 . (4)
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If we want to compute the variance of the (defective) random variableTd, we will need to computeE[T 2
d |u].

From (3), we have

E[T 2
d |u] = 1 − Fu+1 +

u+1∑
j=0

fjψd(u+ 1 − j)+ 2
u+1∑
j=0

fjE[Td|u+ 1 − j ] +
u+1∑
j=0

fjE[T 2
d |u+ 1 − j ], (5)

from which we get, solving forE[T 2
d |u+ 1], for u = 0,1,2, . . .,

E[T 2
d |u+ 1] = f−1

0


E[T 2

d |u] −

1 − Fu+1 +

u+1∑
j=0

fjψd(u+ 1 − j)

+2
u+1∑
j=0

fjE[Td|u+ 1 − j ] +
u+1∑
j=1

fjE[T 2
d |u+ 1 − j ]




 . (6)

Taking a look at the recursion forE[Td|u+ 1] in (4) we see that we need all the ultimate ruin probabilitiesψd(j)

for j = 0,1, . . . , u + 1, as well as all the mean valuesE[Td|j ] for j = 0,1, . . . , u. The recursion for the second
moment, (6), will also need the same ruin probabilities as well as all the mean values up toE[Td|u + 1] and all
the previous second moment values, from 0 up tou. For the computation of the ruin probabilities we can use the
recursions by Dickson et al. (1995, formulae (3.3) and (3.8)).

We need to find a formula for the starting value, whenu = 0. We will come to this later. Let us first deal with the
computation of the moments for the duration of the first period of negative surplus, or time to recovery to positive
values after ruin has occurred. The reason for this approach is that we will pay attention to the relationship between
Td andT̃d whenu = 0.

To compute the moments ofT ∗
d , we note that Dickson and Waters (1991) explain that foru = 1,2, . . .,φ∗

d(u, t) =
φd(u− 1, t), henceE[T ∗

d
r |u] = E[T rd |u− 1].

4. On the time to recovery

We consider the discrete time model. We will let the surplus process continue if it falls below zero, i.e. if ruin
occurs. After ruin has occurred, the process is certain to recover to positive levels at some point. Eventually, the
process will drift to infinity and the number of occasions on which it falls below zero can be multiple. For more
details see Dickson and Egı́dio dos Reis (1996) who consider this discrete model. We note that the recovery time
T̃d stands for the time that the surplus after having fallen below zero recovers to level zero for the first time. Its
probability function has been defined asα(u, t) for t = 1,2, . . ..

Let us defineT̃d(x) as the time that the surplus processUd(t) starting from zero takes to reach a fixed positive
levelx (x = 1,2, . . .) for the first time. Its probability function is given by

x

t
fd(t − x, t), (7)

with t ≥ x (see Gerber (1979, p. 21)). That is, we consider

Ud(t) = t − Sd(t),

and

T̃d(x) = min{t : Ud(t) = x|Ud(0) = 0} for x = 1,2,3, . . . ,

whereSd(t) is defined as in Section 2.Sd(t) is the aggregate claim amount up to timet , so its distribution is a
discrete compound Poisson with Poisson parameterλd. We further assume that the moment generating function of
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individual claims in this discrete model exists and we denote it bymd(r). Hence, the moment generating function
of Sd(t) is

MSd(t)(r) = [MXd(r)]
t = exp{λdt (md(r)− 1)},

sinceMXd(r) = exp{λd(md(r) − 1)}. We can find the moment generating function ofT̃d(x) by means of the
martingale method used by Gerber (1990) for the corresponding compound Poisson continuous time model. In this
case we have a discrete time martingale

{exp{−f (s)Ud(t)+ st},
wheref (s) is some function ofs ≤ 0 such that

s = f (s)− λd[md(f (s))− 1].

Hence, we get that

E[esT̃ (x)] = ef (s)x .

The expression above leads to, for instance using the cumulant generating function (see Gerber, 1990)),

E[T̃ (x)] = x

(1 − λdβ)
, V [T̃ (x)] = xλdb2

(1 − λdβ)3
= xV[Xi ]

(1 − λdβ)3
. (8)

We see that, like in the continuous model, the mean ofT̃ (x) equalsx divided by the expected profit per unit time
(c is equal to 1). Getting back to our main problem with the random variableT̃d, we have that if the deficit at the
time of ruin isj, j = 1,2, . . ., then the probability that the surplus returns to zero at timeTd + t (t ≥ j ) is given
by (7). Hence,

αd(u, t) =
t∑

j=1

gd(u, j)
j

t
fd(t − j, t) for t = 1,2,3, . . . . (9)

If we want to compute therth moment ofT̃d for a givenu, we have that

E[T̃d
r |u] =

∞∑
t=1

t rαd(u, t) =
∞∑
t=1

t r
t∑

j=1

gd(u, j)
j

t
fd(t − j, t) =

∞∑
j=1

gd(u, j)

∞∑
t=j

jtr−1fd(t − j, t)

after interchanging the order of the summations. In another way,

E[T̃d
r |u] =

∞∑
j=1

gd(u, j)E[T̃ (j)r ] = E[E[T̃ (Yd)
r |Yd]|u],

where Yd denotes the severity of ruin (defective) with probability functiongd(u, y). From here we get, for
instance,

E[T̃d|u] = E[Yd|u]

(1 − λdβ)
, E[T̃d

2|u] = E[Yd|u]λdb2

(1 − λdβ)3
+ E[Yd

2|u]

(1 − λdβ)2
.

We can use the recursions in Dickson et al. (1995, Section 4) for the moments ofYd. Like its continuous analogue,
once we get the moments of the severity of ruin we will be able to compute the moments of the duration of a negative
surplus.
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We will approximate the first two moments ofT̃ by using the moments

E[T̃ ∗
d |u] = E[Y ∗

d |u]

(1 − λdβ)
, E[T̃ ∗

d
2|u] = E[Y ∗

d |u]λdb2

(1 − λdβ)3
+ E[Y ∗

d
2|u]

(1 − λdβ)2

calculating foru = 1,2, . . .,

E[Y ∗
d |u] = E[Yd|u− 1] − ψd(u− 1), E[Y ∗

d
2|u] = E[Y 2

d |u− 1] − 2E[Yd|u− 1] + ψd(u− 1).

5. Formulae for u = 0u = 0u = 0

Foru = 0 we have from (9) that

αd(0, t) =
t∑

j=1

gd(0, j)
j

t
fd(t − j, t) for t = 1,2,3, . . . ,

and Dickson and Egı́dio dos Reis (1996) have defined using the second definition of ruin in Section 2 that for
t = 1,2, . . .,

α∗
d(0, t) =

t∑
j=1

g∗
d(0, j)

j

t
fd(t − j, t),

whereg∗
d(0, y) = 1 − Fy = f0gd(0, y) (see Dickson et al., 1995)), giving fort = 1,2, . . . , α∗

d(0, t) = f0αd(0, t).
Also, Dickson and Eǵıdio dos Reis (1996) have showed thatφ∗

d(0, t + 1) = α∗
d(0, t). It is easy to show that

φ∗
d(u, t + 1) = f0φd(0, t), henceαd(0, t) = φd(0, t). This is the discrete counterpart of the relationship be-

tween time to ruin and the duration of a negative surplus in the classical model explained by Egı́dio dos Reis
(1993).

Hence, we can establish the starting values for recursions in Section 3, having for the first two moments

E[Td|0] = E[Yd|0]

(1 − λdβ)
, E[T 2

d |0] = E[Yd|0]λdb2

(1 − λdβ)3
+ E[Y 2

d |0]

(1 − λdβ)2
,

and from Dickson et al. (1995),

E[Y ∗
d |0] = 1

2(E[Sd(1)
2] − E[Sd(1)]), E[Y ∗

d
2|0] = 1

3E[Sd(1)
3] − 1

2E[Sd(1)
2] + 1

6E[Sd(1)],

with E[Y kd |0] = f−1
0 E[Y ∗

d
k|0] for k = 1,2, . . ..

6. Some further comments on the classical model

In this section we will assume that the moment generating function ofP(x) exists. Like in the discrete model, the
moments of the duration of a negative surplus rely on the existence of the corresponding moments of the severity
of ruin in the classical model. Hence we focus on the severity of ruin quantities. Foru = 0, the moments of the
severity of ruin have a simple expression. We will show that we can also have a simple expression for the asymptotic
moments, asu → ∞, which will allow us to compute easily, at least numerically, the corresponding moments of the
random variable time to recovery. For practical use the asymptotic formulae can be quite useful when the numerical
calculation reveals to be unstable, like the method by Dickson et al. (1995), giving inaccurate values for very high
values ofu.
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It is easy to show thatE[Y k|u = 0] = λpk+1/c(k + 1), k = 1,2, . . ., wheneverpk+1 exists. Ifm(t) exists, we
can also express the moment generating function ofY as

MY (0, t) = λ

ct
[m(t)− 1]

(see for instance Egı́dio dos Reis (1993)). Let us work now the asymptotic moment generating function ofY as
u → ∞.

From Gerber (1974) we have that the conditional density of the severity of ruin, given that ruin occurs, denoted
asg̃(∞, y), is given by

g̃(∞, y) = λR

cδ(0)

∫ ∞

0
eRx[1 − P(x + y)] dx, (10)

whereR is the adjustment coefficient satisfying the following equation:

λ

c

∫ ∞

0
eRx[1 − P(x)] dx = 1. (11)

Eq. (10) can be expressed as

g̃(∞, y) = λR

cδ(0)
e−Ry

∫ ∞

y

eRx[1 − P(x)] dx. (12)

Hence, the moment generating function corresponding to the above density, denoted asMYc(∞, t) becomes

MYc(∞, t) = λR

cδ(0)

∫ ∞

0
e(t−R)y

∫ ∞

y

eRx[1 − P(x)] dx,

giving for t 6= R,

MYc(∞, t) = λR

cδ(0)(t − R)

(∫ ∞

0
etx[1 − P(x)] dx − 1

)
,

interchanging the order of the integration and introducing (11). Expressing in another way we have

MYc(∞, t) = R

δ(0)(t − R)
(MY (0, t)− 1), (13)

sinceg(0, x) = λ[1 − P(x)]/c. For t = R we get Gerber’s (1974) formula, i.e

MYc(∞, R) = δ(0)−1
(
λ

c
m′(R)− 1

)
,

wherem′(R) denotes the derivative ofm(t) evaluated atR.
From expression (13), we get

E[Yc|∞] = 1

R
− E[Y |u = 0]

δ(0)
, E[Yc

2|∞] = 2

R2
− 2E[Y |u = 0]

δ(0)
− E[Y 2|u = 0]

δ(0)
.

If we take the expression forE[Yc|∞], we obtain (Gerber’s (1979), p. 128) upper bound forR, sinceE[Yc|∞] > 0.
If we express (12) as

g̃(∞, y) = R

δ(0)
e−Ry

(
1 −

∫ y

0

λ

c
eRx[1 − P(x)] dx

)
,

we see that this density can be viewed as a combination of an exponential (with mean 1/R) and some other density,
with weights 1/δ(0) and−ψ(0)/δ(0), respectively.
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Hence, we can find the asymptotic moment generating function of the duration of a negative surplus, conditional
onT < ∞,

M
T̃c
(∞, s) = MYc(∞, f (s)),

wheref (s) is some function ofs such thats = f (s)c − λ[m(f (s)) − 1] ands, f (s) ≤ 0 (see Eǵıdio dos Reis,
1993)). UsingMY (0, t) above we can expressM

T̃c
(∞, s) as

M
T̃c
(∞, s) = Rs

cδ(0)f (s)(R − f (s))
.

7. Examples

In this section we present three examples for which we considered the calculation of the first two moments of
both ruin and the recovery times.

As far as time to ruin is considered we first need to compute the first two moments of the severity of ruin when
u = 0. For the time to recovery, we need the corresponding moments of the severity of ruin for the corresponding
initial surplus. For these situations, as shown by Dickson et al. (1995), we will need the first three moments of the
individual claim amount distribution. Panjer and Lutek (1993) describe a method which provides the discretization
of the individual claim amount distribution that preserves the original moments which we have adopted. Dickson
et al. (1995) refer to some problems with this discretization method. We have used the software Mathematica for
the calculations in the discretization procedure.

In the examples we show values forE[Tc|u] andE[Tc2|u] together with the respective approximating values
β−1E[T ∗

d |βu]/ψ∗
d (βu) andβ−2E[T ∗

d
2|βu]/ψ∗

d (βu). We do not show values for the same quantities ofT̃c as it
is obvious that they depend solely on the approximations for the respective moments of the severity of ruin, and
Dickson et al. (1995) already showed examples for the severity of ruin random variable using the same discrete
model. We have setc = 1, so thatλ = 1/(1 + θ) andθ = 0.1. In all the computations below, we have used a
β = 100.

Example 1 (Exponential claim amounts). We considered exponentially distributed claim amounts, i.e.P(x) =
1 − e−αx , x ≥ 0, and we have setα = 1, so that it has a mean 1. We can find easily the required moments for both
the time to ruin and the time to recovery. Considering the time to ruin, we get from Gerber (1979) an expression for
the moment generating function ofTc, which is given by

E[esT|T < ∞] = c

λ
(α − f (s))e−(f (s)−R)u,

wheref (s) is some function ofs such that

s = f (s)c − λ[m(f (s))− 1]

for R ≤ f (s) < α andR = α − λ/c is the adjustment coefficient. We note thatf (s) is uniquely defined fors ≤ 0
fromR ≤ f (s) < α, and thatf (0) = R sinceλ+ cR= λm(R). A graph of the above function is shown by Egı́dio
dos Reis (1993). If we take the cumulant generating function, it is easy to show that

E[Tc|u] = 1 + λu/c

αc − λ
= E[Tc|0]

(
1 + λ

c
u

)

and

V [Tc|u] = αc + λ+ 2αλu

(αc − λ)3
= V [Tc|0] + 2αλ

(αc − λ)3
u,
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Table 1
First and second moments ofTc for exponential claim size

u (1) (2) (2)/(1) (4) (5) (5)/(4)

0 11 10.99500 0.99955 2662 2661.88985 0.99996
1 21 21.00500 1.00024 5402 5402.20968 1.00004
2 31 31.00499 1.00016 8342 8342.30952 1.00004
3 41 41.00499 1.00012 11482 11482.40935 1.00004
4 51 51.00499 1.00010 14822 14822.50918 1.00003
5 61 61.00499 1.00008 18362 18362.60902 1.00003
6 71 71.00499 1.00007 22102 22102.70885 1.00003
7 81 81.00499 1.00006 26042 26042.80868 1.00003
8 91 91.00499 1.00005 30182 30182.90852 1.00003
9 101 101.00499 1.00005 34522 34523.00835 1.00003

10 111 111.00499 1.00004 39062 39063.10818 1.00003
15 161 161.00499 1.00003 64762 64763.60735 1.00002
20 211 211.00499 1.00002 95462 95464.10651 1.00002
30 311 311.00499 1.00002 171862 171865.10481 1.00002
40 411 411.00499 1.00001 268262 268266.10298 1.00002
50 511 511.00499 1.00001 384662 384667.10113 1.00001

100 1011 1011.00633 1.00001 1266662 1266673.63702 1.00001

and we can compare the approximations for these moments given by using the appropriate discrete model described
earlier.

In Table 1 we show values forE[Tc|u] and E[Tc2|u] together with the respective approximating values
β−1E[T ∗

d |βu]/ψ∗
d (βu) andβ−2E[T ∗

d
2|βu]/ψ∗

d (βu) for different values of initial surplusu. The key for the table is
the following: (1) and (4) show the true values ofE[Tc|u] and E[Tc2|u], (2) and (5) show the approxima-
tions for these quantities, respectively; columns 4 and 7 of the table show the ratios (2)/(1) and (5)/(4),
respectively.

Example 2 (Combination of exponentials claim amounts). In this example we took a combination of two ex-
ponentials presented by Gerber et al. (1987, Section 5) which we rescaled to have mean 1. That isp(x) =
7 e−(7/4)x − 7 e−(7/3)x , x ≥ 0.

Following the method by Lin and Willmot (2000), and using a similar notation we getψ(u) =
−0.00952025 e−3.05264u + 0.918611 e−0.121604u, E[Tc|u] = ψ1(u)/ψ(u) andE[Tc2|u] = ψ2(u)/ψ(u), where

ψ1(u) = e−3.17424u[e0.121604u(0.8221+ 0.000996986u)+ e3.05264u(6.72892+ 9.28231u)],

ψ2(u) = e−18.8022u[93.7952 e18.6806u(0.699241+ u)(18.6476+ u)

−0.000104407 e15.7496u(−609.786+ u)(2255.98+ u)].

Table 2 shows values forE[Tc|u] and E[Tc2|u] together with the respective approximating values
β−1E[T ∗

d |βu]/ψ∗
d (βu) andβ−2E[T ∗

d
2|βu]/ψ∗

d (βu) for different values of initial surplusu. The key for this table
is the same as in Example 1.

If we look at the approximating values and compare with the previous examples we see that they show a similar
pattern, although not as good as before. It is readable that the algorithm show signs of instability for very high values
of the initial surplus.

Example 3(Erlang(2) claim amounts). In this example we consider a Gamma(2,2) claim amount distribution with
p.d.fp(x) = 4x e−2x , x ≥ 0.

From Eǵıdio dos Reis (1993) we know thatψ(u) = −0.010092 e−2.96841u + 0.919183 e−0.122502u. We com-
puted the values forE[Tc|u] andE[Tc2|u] given by Lin and Willmot (2000) formulae with the help of Mathe-
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Table 2
First and second moments ofTc for a combination of two exponentials claim size

u (1) (2) (2)/(1) (4) (5) (5)/(4)

0 8.30612 8.30112 0.99940 1503.30279 1503.21944 0.99994
1 17.48729 17.49228 1.00029 3419.11003 3419.28422 1.00005
2 27.53791 27.54290 1.00018 5691.23339 5691.50765 1.00005
3 37.63947 37.64445 1.00013 8176.60121 8176.97602 1.00005
4 47.74400 47.74899 1.00010 10866.72068 10867.19605 1.00004
5 57.84872 57.85370 1.00009 13761.08329 13761.65918 1.00004
6 67.95344 67.95842 1.00007 16859.65866 16860.33506 1.00004
7 78.05816 78.06314 1.00006 20162.44498 20163.22187 1.00004
8 88.16288 88.16786 1.00006 23669.44216 23670.31950 1.00004
9 98.26761 98.27259 1.00005 27380.65017 27381.62796 1.00004

10 108.37233 108.37731 1.00005 31296.06903 31297.14723 1.00003
15 158.89594 158.90091 1.00003 53936.32596 53937.90605 1.00003
20 209.41956 209.42450 1.00002 81681.85394 81683.93635 1.00003
30 310.46678 310.47160 1.00002 152488.72308 152491.82578 1.00002
40 411.51401 411.51840 1.00001 243716.67644 243720.91937 1.00002
50 512.56124 512.56420 1.00001 355365.71403 355371.72337 1.00002

100 1017.79737 1016.91321 0.99913 1219927.16536 1221303.49553 1.00113

Table 3
First and second moments ofTc for a Gamma(2,2) claim size

u (1) (2) (2)/(1) (4) (5) (5)/(4)

0 8.25000 8.24500 0.99939 1482.25000 1482.16735 0.99994
1 17.39325 17.39824 1.00029 3377.48192 3377.65549 1.00005
2 27.44252 27.44751 1.00018 5634.27252 5634.54637 1.00005
3 37.54960 37.55459 1.00013 8105.68849 8106.06317 1.00005
4 47.66036 47.66535 1.00010 10782.23238 10782.70795 1.00004
5 57.77136 57.77635 1.00009 13663.28456 13663.86101 1.00004
6 67.88237 67.88736 1.00007 16748.80468 16749.48201 1.00004
7 77.99338 77.99837 1.00006 20038.79012 20039.56834 1.00004
8 88.10439 88.10938 1.00006 23533.24073 23534.11983 1.00004
9 98.21541 98.22039 1.00005 27232.15649 27233.13647 1.00004

10 108.32642 108.33141 1.00005 31135.53739 31136.61826 1.00003
15 158.88148 158.88647 1.00003 53719.41914 53721.00443 1.00003
20 209.43654 209.44153 1.00002 81414.92960 81417.01931 1.00003
30 310.54667 310.55166 1.00002 152140.83665 152143.93529 1.00002
40 411.65679 411.66179 1.00001 243313.25854 243317.36726 1.00002
50 512.76692 512.77193 1.00001 354932.19526 354937.32262 1.00001

100 1018.31754 1018.38733 1.00007 1219724.60140 1219786.85688 1.00005

matica, as their expressions lead to infinite series. Table 3 shows values forE[Tc|u] andE[Tc2|u] together with
the respective approximating valuesβ−1E[T ∗

d |βu]/ψ∗
d (βu) andβ−2E[T ∗

d
2|βu]/ψ∗

d (βu), produced by the pro-
posed recursions, for different values of initial surplusu. The key for this table is the same as in the previous
examples.

The approximating figures in this case show a similar accuracy when compared with the previous examples.
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