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For actuarial aplications, we consider the Sparre–Andersen risk model when the interclaim times are Erlang(n)
distributed. We first address the problem of solving an integro-differential equation that is satisfied by the
survival probability and other probabilities, and show an alternative and improved method to solve such
equations to that presented by Li (2008).

This is done by considering the roots with positive real parts of the generalized Lundberg’s equation, and
establishing a one–one relation between them and the solutions of the integro-differential equation mentioned
before.

Afterwards, we apply our findings above in the computation of the distribution of the maximum severity
of ruin. This computation depends on the non-ruin probability and on the roots of the fundamental Lundberg’s
equation.

We illustrate and give explicit formulae for Erlang(3) interclaim arrivals with exponentially distributed
single claim amounts and Erlang(2) interclaim times with Erlang(2) claim amounts.

Finally, considering an interest force, we consider the problem of calculating the expected discounted
dividends prior to ruin, finding an integro-differential equation that they satisfy and solving it. Numerical
examples are also provided for illustration.

Keywords: Sparre–Andersen risk model; Erlang(n) interclaim times; fundamental Lundberg’s equation; gen-
eralized Lundberg’s equation; probability of reaching an upper barrier; maximum severity of ruin; expected
discounted dividends prior to ruin

1. Introduction

In the present article, we work with the Sparre–Andersen model driven by the equation

U (t) = u + ct −
N (t)∑
i=1

Xi , t ≥ 0,

where u (≥0) is the initial capital, c (≥0) is the premium income per unit time t , {Xi }∞i=1 is a
sequence of (i.i.d.) independent and identically distributed random variables, each representing
a single claim amount, with common distribution function P(x) and density p(x). Its Laplace
transform is denoted by p̂(.). Denote by μk = E[Xk

1] the k-th moment of Xi . We assume the
existence of μ1 (this is a general condition and it is crucial for setting the positive loading factor
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assumption below). In some parts of this manuscript, we will work with cases where higher
moments exist. The sequence {Xi } is independent of the counting process {N (t), t ≥ 0}, with
N (t) = max{k : W1 + W2 + · · · + Wk ≤ t} where the random variables Wi , i ∈ N

+, are i.i.d.

and Erlang(n,λ) distributed, with density kn(t),

kn(t) = λntn−1e−λt

(n − 1)! , t ≥ 0, λ > 0, n ∈ N
+

and probability distribution function

Kn(t) = 1 −
n−1∑
i=0

(λt)i e−λt

i ! .

We assume a positive loading factor, that is cE(W1) > E(X1) ⇔ cn > λμ1.
Moreover, the adjustment coefficient R > 0 is the smallest positive number such that −R is

a solution of the Lundberg equation

(
1 −

( c

λ

)
s
)n = p̂(s).

Now, we set some definitions and mathematical preliminaries regarding on main objects of
interest in the Sparre–Andersen model. Time to ruin is denoted as T = inf {t > 0 : U (t) <

0|U (0) = u}, and T = ∞ if and only if U (t) ≥ 0, ∀t > 0. The ultimate ruin probability is
defined as �(u) = Pr(T < ∞) and the corresponding non-ruin probability is �(u) = 1−�(u).

Regarding the barrier problem, which is related to the payment of dividends, we denote by
τb = inf {t > 0 : U (t) ≥ b|U (0) = u} the first time that the surplus upcrosses the level b ≥ u.
The probability that the surplus attains the level b from initial surplus u without first falling
below zero is given by

χ(u, b) = Pr(T > τb|U (0) = u),

with ξ(u, b) = 1 −χ(u, b) being the probability that ruin occurs from u before the surplus ever
reaching b.

Assuming that the surplus process continues after ruin, we denote the time of the first upcross
of the surplus through level ‘0’ after ruin occurs by T ′ = inf {t : t > T, U (t) ≥ 0}, for finite
T . In the interval of time where the surplus is at deficit, we define the maximum severity of ruin
as

Mu = sup{|U (t)| : T ≤ t ≤ T ′|U (0) = u}.
The conditional distribution function of the maximum severity of ruin, given that ruin occurs,
is given by

J (z; u) = Pr(Mu ≤ z|T < ∞), u, z ≥ 0.

The probability that ruin occurs and that the deficit at ruin is at most y is given by G(u, y) =
P(T < ∞, U (T ) ≥ −y|U (0) = u). For a given u, this is a defective distribution function,
clearly limy→∞ G(u, y) = �(u). The corresponding (defective) density is denoted as g(u, y).
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The probability that the maximum deficit occurs at ruin is defined by
Pr(Mu = |U (T )| | T < ∞). Picard (1994) showed that

P(Mu = |U (T )| | T < ∞) =
∫∞

0 g(u, y)χ(0, y)dy

�(u)
. (1.1)

We consider the problem where an insurance portfolio is used to provide dividend income
for that insurance’s company shareholders. Like before, let u denote the initial surplus and let
b ≥ u be a dividend barrier. Let the random variable Du denote, the present value at a positive
constant force of interest per unit time of dividends payable to shareholders until ruin occurs,
and denote m-th moment as Vm(u, b) = E[Dm

u ], m ≥ 0, where V0(u, b) ≡ 1. For simplicity
we will denote V1(u, b) = V (u, b). We assume the existence of Vm(u, b).

In the next section, we present some of the mathematical background on the model related to
our problem. In Sections 3 and 4, we study the integro-differential equation and show explicit
formulas for the maximum severity of ruin. Section 5 is devoted to some particular cases where
explicit expressions can easily be found. In Section 6, we give attention to the dividends problem.
Finally, in the last section we state some concluding remarks.

2. Mathematical background

In recent years, the Sparre–Andersen model has been a major point of interest in risk theory.
Many authors have done a lot of important advances in the topic. In this paper, we present some
new developments.

We know from Li & Dickson (2006) that χ(u, b) satisfies an order n integro-differential
equation with n boundary conditions that can be written in the form

B(D)v(u) =
∫ u

0
v(u − y)p(y)dy, u ≥ 0, (2.1)

where

B(D) =
(

I −
( c

λ

)
D
)n =

n∑
k=0

(−1)k
( c

λ

)k
(

n

k

)
Dk ,

and D is the differential operator. See also Li (2008). If we find n linearly independent particular
solutions v j (u), j = 1, . . . , n for this equation, then we have

χ(u, b) = −→v (u)[V (b)]−1−→e ′, (2.2)

where −→v (u) = (v1(u), . . . , vn(u)) is a 1 × n vector, V (b) is a n × n matrix with entry given by

(V (b))i j = di−1v j (u)

dui−1

∣∣∣∣∣
u=b

and −→e = (1, 0, . . . , 0) is a 1 × n vector.
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In this manuscript, we will be seeking for those solutions, which in turn depend on the roots
of the fundamental Lundberg’s equation. Recall that the fundamental Lundberg’s equation is
given by (

λ

c
− s

)n

=
(

λ

c

)n

p̂(s). (2.3)

We denote by the numbers ρ1, ρ2, . . . , ρn−1 ∈ C, the roots of this equation which have
positive real parts (there are of course other roots, among them is 0 and −R, where R > 0 is the
adjustment coefficient, see Li & Garrido (2004)).

On the other hand, the generalized Lundberg’s equation is given by

(
λ + δ

c
− s

)n

=
(

λ

c

)n

p̂(s), (2.4)

where δ is a positive constant force of interest. This equation has exactly n roots with positive
real parts and will be considered in the section of dividends. See Li & Garrido (2004).

Li (2008) finds the vector of solutions −→v (u) for the case when ρ1, ρ2, . . . , ρn−1 are all distinct
(in fact, all those roots are different, according to Ji & Zhang (2011)).

Our work start, by giving an improved version for the expressions given by Li (2008) for
the vi (u), i = 1, . . . , n. This will be given in the next section. Then, we apply our results
in order to find the corresponding expressions for the distribution of the maximum severity of
ruin. Afterwards, we deal with the dividends problem, we mean the calculation of the moments
Vm(u, b). For a Poisson model, an integro-differential equation for V (u, b) can be found in
Dickson (2005), and for Vm(u, b) in David et al. (2004). For the Erlang(n) model, we give the
respective integro-differential equations as well as a method to find their solutions.

3. Solutions for the integro-differential equation

Let us consider the relation between the roots of the fundamental Lundberg’s equation that have
positive real parts and the solutions for the integro-differential Equation (2.1). Li (2008) found
that

Theorem 3.1 If ρ1, ρ2, . . . , ρn−1 ∈ C are distinct, then we have the following expressions for
the v j (u)’s

v1(u) = �(u),

v j (u) =
j−1∑
i=1

ai, j

∫ u

0
�(u − y)eρi ydy, j = 2, 3, . . . , n,
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where ai, j = − 1∏ j−1
k=1,k �=i (ρk − ρi )

, i = 1, 2, . . . , j − 1.

Considering our developments, we propose instead a new version of Theorem 3.1, as follows:

Theorem 3.2 If ρ1, ρ2, . . . , ρn−1 ∈ C are distinct, then we have the following expressions for
the v j (u)’s

v1(u) = �(u),

v j (u) =
∫ u

0
�(u − y)eρ j−1 ydy, j = 2, 3, . . . , n.

Proof We know from Li (2008) that any solution v(u) of (2.1) has Laplace transform

v̂(s) = dv(s)

B(s) − p̂(s)
,

where

dv(s) =
n−1∑
i=0

⎛
⎝ n∑

k=i+1

(
n

k

)(−c

λ

)k

v(k−1−i)(0)

⎞
⎠ si .

Since �(u) is solution of (2.1), its Laplace transform is given by [see Li (2008)]

�̂(s) = −�(0)
( c

λ

)n
∏n−1

i=1 (ρi − s)

B(s) − p̂(s)
,

then we have

d�(s) = −�(0)
( c

λ

)n n−1∏
i=1

(ρi − s).

Now, let us see that any function v j (u) = ∫ u
0 �(u − y)eρ j−1 ydy, with j = 2, 3, . . . , n, is

solution of (2.1). We can show that

B(D)v j (u) = d�(ρ j−1)e
ρ j−1u +

∫ u

0
(B(D)�(u − t))eρ j−1t dt

and that ∫ u

0
v j (u − y)p(y)dy =

∫ u

0
(B(D)�(u − t))eρ j−1t dt.

Since d�(ρ j−1) = 0, j = 2, . . . n, we get the desired equality. It remains to prove that those
v j (u)’s are linearly independent.

Suppose that we have a linear combination such that
∑n

j=1 c jv j (u) = 0, ∀u ≥ 0. Consider
the cases (i) and (ii) below.

(i) c1 = 0:
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Let H(t) = ∑n
j=2 c j eρ j−1t , then

n∑
j=1

c jv j (u) =
n∑

j=2

c j

∫ u

0
�(u − y)eρ j−1 ydy

=
∫ u

0
�(u − y)

n∑
j=2

c j e
ρ j−1 ydy

= � ∗ H(u) = 0.

The fact that �∗ H(u) = 0, ∀u ≥ 0 with �(u) �≡ 0, implies H(u) ≡ 0 almost everywhere.
But H(t) is a continuously differentiable function, this implies that c1 = c2 = · · · = cn =0.

(ii) c1 �= 0:
Define G(t) = ∑n

j=2

(−c j/c1
)

eρ j−1t , so�∗G(u) = �(u), ∀u ≥ 0. Not all the remaining
coefficients c j ’s can be 0, otherwise G(t) ≡ 0. But then limu→+∞ G(u) = ±∞ depending
on the sign of the non zero coefficients. As �(u) is a non-decreasing non-negative function
with limu→+∞ �(u) = 1, we will have that limu→+∞ � ∗ G(u) = ±∞, which is a
contradiction.

This completes the proof. �

One advantage of Theorem 3.2, is that, since for any complex root ρ of the fundamental
Lundberg’s equation the conjugate ρ̄ is also a root, we will have that v(u) = ∫ u

0 �(u − y)eρydy
and its conjugate v(u) = ∫ u

0 �(u − y)eρ̄ydy are both solutions of (2.1).
Although Theorems 3.1 and 3.2 are equivalent, for large values of n it is better to use Theorem

3.2 for computational purposes.
It is easy to prove that in Erlang(n) model we do not have possibility of multiple roots,

following the argument provided by Ji & Zhang (2011),

Theorem 3.3 In the Sparre–Andersen risk model, with interclaim times Erlang(n) distributed,
the n roots with positive real parts of the generalized Lundberg’s Equation (2.4) are all distinct.

Proof See Ji & Zhang (2011), page 3. �

Corollary 3.1 In the Sparre–Andersen risk model, with interclaim times Erlang(n) dis-
tributed, the n − 1 roots with positive real parts of the fundamental Lundberg’s Equation (2.3)
are all distinct.

4. The maximum severity of ruin

In the previous section we showed how to obtain the solutions of the integro-differential equation.
Now we will use these results to obtain corresponding expressions for the distribution of the
maximum severity of ruin. We will find an expression for that distribution which only depends
on the non-ruin probability �(u) and the claim amounts distribution.
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If we denote by

−→
h (z, u) =

∫ z

0
g(u, y)(v1(z − y), . . . , vn(z − y))dy

=
(∫ z

0
g(u, y)v1(z − y)dy, . . . ,

∫ z

0
g(u, y)vn(z − y)dy

)
= (h1(z, u), . . . , hn(z, u)),

Then from Dickson (2005) and (2.2) we know that the distribution of the maximum severity
of ruin J (z; u) can be expressed as:

J (z; u) = 1

1 − �(u)

∫ z

0
g(u, y)(v1(z − y), . . . , vn(z − y))dy[V (z)]−1−→e ′, (4.1)

and we only have to find an expression for every component of
−→
h (z, u). Considering the case

of the Theorem 3.2 in the previous section:
In a similar way as it is done by Li (2008) we get
for j = 1:

∫ z

0
g(u, y)v1(z − y)dy = �(u + z) − �(u), (4.2)

and for j = 2, . . . , n:

∫ z

0
g(u, y)v j (z − y)dy =

∫ z

0
g(u, y)

∫ z−y

0
�(z − y − x)eρ j−1x dxdy

=
∫ z

0
eρ j−1x [�(u + (z − x)) − �(u)]dx .

5. Explicit expressions

In this section, our aim is to determine explicit expressions for the (existing) moments of the
maximum severity of ruin as well as the probability that the maximum severity occurs at ruin, for
some cases. Li (2008) considered those moments for Erlang(2) interclaim times and exponential
claims. We work here other two cases, and will be presenting formulae as well as some numerical
calculations. Namely, for cases where:

(1) Interclaim arrivals are Erlang(3,λ) and single claim amounts are Exponential(β)
distributed. For simplification, we denote this case by Erlang(3)–Exponential;

(2) Interclaim arrivals are Erlang(2,λ) and single claim amounts are Erlang(2,β) dis-
tributed. Similarly, we denote this case by Erlang(2)–Erlang(2).
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5.1. Erlang(3) – Exponential case

Considering the premium per unit time c = (1 + θ)λ/3β with safety loading coefficient θ > 0,
the fundamental Lundberg’s Equation (2.3) takes the form

(
1 −

( c

λ

)
s
)3 − β

(s + β)
= 0,

which has four roots: 0, ρ1, ρ2 and −R, where 0 < R < β is the adjustment coefficient,
ρ1, ρ2 are complex roots with positive real parts and ρ2 = ρ1. The three solutions for the
integro-differential Equation (2.1) come

�(u) = 1 −
(

1 − R

β

)
e−Ru ,

v2(u) = −1

ρ1
+ β − R

β(R + ρ1)
e−Ru + R(β + ρ1)

ρ1β(R + ρ1)
eρ1u ,

v3(u) = −1

ρ2
+ β − R

β(R + ρ2)
e−Ru + R(β + ρ2)

ρ2β(R + ρ2)
eρ2u .

5.1.1. Distribution and moments of the maximum severity

After calculating (4.1), we get the distribution of the maximum severity of ruin

1 − J (z; u) = αe−Rz

1 − γ e−(ρ1+R)z − δe−(ρ2+R)z − ηe−Rz
,

where

α = R(R + ρ1)(R + ρ2)

β(β + ρ1)(β + ρ2)
; γ = − R(β − R)(R + ρ2)

ρ1(β + ρ1)(ρ2 − ρ1)
;

δ = R(β − R)(R + ρ1)

ρ2(β + ρ2)(ρ2 − ρ1)
; η = (β − R)(R + ρ1)(R + ρ2)

βρ1ρ2
,

with 0 < α < 1, δ = γ and 0 < η = 1 − α − γ − δ. Since we work with exponential claim
amounts, note that this expression is independent from u. However, in practice, depending on
the risk aversion of the insurer, the loading factor (and therefore R) might depend on the initial
wealth u.

Consider now the moments of Mu , given that ruin occurs, the r -th moment is given by the
formula

E(Mr
u |T < ∞) = r

∫ ∞

0
zr−1(1 − J (z; u))dz

= rα

∫ ∞

0

zr−1e−Rz

1 − γ e−(ρ1+R)z − δe−(ρ2+R)z − ηe−Rz
dz, (5.1)
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Table 5.1. Expected values and standard deviations of Mu for n = 1, 2, 3; m = 1.

θ n = 1, m = 1 E(Mu ) s.d. (Mu ) n = 2, m = 1 E(Mu ) s.d. (Mu ) n = 3, m = 1 E(Mu ) s.d. (Mu )

0.05 3.197 7.324 2.474 5.532 2.236 4.933
0.1 2.638 5.007 2.063 3.805 1.875 3.404
0.15 2.342 4.015 1.848 3.069 1.687 2.754
0.2 2.150 3.443 1.709 2.646 1.567 2.381
0.25 2.012 3.064 1.611 2.368 1.481 2.136
0.3 1.906 2.792 1.536 2.169 1.416 1.962

for r ≥ 1. Since |γ e−(ρ1+R)z + δe−(ρ2+R)z + ηe−Rz | < 1 we can write

1 − J (z; u) = αe−Rz
∞∑

k=0

(γ e−(ρ1+R)z + δe−(ρ2+R)z + ηe−Rz)k .

Hence,

E(Mr
u |T < ∞) = αr !

∞∑
k=0

k∑
j=0

k− j∑
l=0

(
k

j

)(
k − j

l

)
η jγ lδk− j−l

(R(k + 1) + ρ1l + ρ2(k − j − l))r
.

Choosing β = 1, λ = 3 and c = 1+θ , we evaluate formula (5.1) for some values of θ with
r = 1 . We use the values obtained by Li (2008) for n = 2 and compare them with the values
which we computed for n = 3. The purpose of this comparison is to analyse the behaviour of
the moments of Mu as n increases. Figures are given in Table 5.1. From the table, we observe
that the mean and the standard deviation of Mu decrease as θ increases for the three cases. This
was expected since an increase in θ means an increase in the income unit c, which will give
faster growth of the surplus per unit of time. Also, we note that for fixed θ the mean and the
standard deviation of Mu decrease as n increases. Since E(Wi ) = n/λ, the claims arrive after
longer intervals of time.

5.1.2. The probability that the maximum severity occurs at ruin

Due to the memoryless property of the exponential distribution we have that g(u, y) =
�(u)p(y). Hence from (1.1)

P(Mu = |U (T )| | T < ∞) =
∫∞

0 g(u, y)χ(0, y)dy

�(u)
=
∫ ∞

0
χ(0, y)p(y)dy.

Now from (2.2) we get, for u = 0

χ(0, y) =
(

R

β

)
1 + ρ1γ

R e−(ρ1+R)y + ρ2γ
R e−(ρ2+R)y

1 − γ e−(ρ1+R)y − δe−(ρ2+R)y − ηe−Ry
,
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Table 5.2. Probability that the maximum deficit occurs at ruin, for n = 3, m = 1.

θ 0.05 0.1 0.15 0.2 0.25 0.3

p̃ 0.735 0.752 0.768 0.782 0.795 0.808

so

P(Mu = |U (T )| | T < ∞) =
(

R

β

)∫ ∞

0

1 + ρ1γ
R e−(ρ1+R)y + ρ2γ

R e−(ρ2+R)y

1 − γ e−(ρ1+R)y − δe−(ρ2+R)y − ηe−Ry
βe−βydy

=
∫ ∞

0

R + ρ1γ e−(ρ1+R)y + ρ2γ e−(ρ2+R)y

1 − γ e−(ρ1+R)y − δe−(ρ2+R)y − ηe−Ry
e−βydy. (5.2)

Choosing the same values for λ, β and θ as before, we evaluate (5.2) to get the figures in
Table 5.2, where p̃ = P(Mu = |U (T )| | T < ∞). From the table, we conclude that the
probability that the maximum deficit occurs at ruin increases as θ increases. Moreover, there is
small probability of getting a bigger deficit after ruin.

5.2. Erlang(2) – Erlang(2) case

Considering the premium c = (1 + θ)λ/β with θ > 0, the fundamental Lundberg’s Equation
(2.3) takes the form (

1 −
( c

λ

)
s
)2 − β2

(s + β)2
= 0,

which has four real roots: 0,−R1,−R2 and ρ, where 0 < R1 < β is the adjustment coefficient
and R2, ρ > β .The two solutions for the integro-differential Equation (2.1) come

�(u) = 1 − R2(β − R1)
2

β2(R2 − R1)
e−R1u − R1(β − R2)

2

β2(R1 − R2)
e−R2u,

v2(u) = − 1

ρ
+ R1 R2(β + ρ)2

β2ρ(ρ + R1)(ρ + R2)
eρu + R2(β − R1)

2

β2(R2 − R1)(ρ + R1)
e−R1u

+ R1(β − R2)
2

β2(R1 − R2)(ρ + R2)
e−R2u .

5.2.1. Distribution and moments of the maximum severity

In this case, the formula obtained from (4.1) is written in the following way

J (z; u) = 1

�(u)

[
R2(β − R1)

2

β2(R2 − R1)
e−R1u J1(z; u) + R1(β − R2)

2

β2(R1 − R2)
e−R2u J2(z; u)

]
.

So,

1− J (z; u)= 1

�(u)

[
R2(β − R1)

2

β2(R2 − R1)
e−R1u(1− J1(z; u)) + R1(β − R2)

2

β2(R1 − R2)
e−R2u(1 − J2(z; u))

]
,



42 A.I. Bergel and A.D. Egídio dos Reis

where the functions J1(z; u) and J2(z; u) are

J1(z; u) = 1 − γ1e−(ρ+R1)z − γ2e−(ρ+R2)z − (1 − γ1)e−R1z − τ1e−R2z − ω1e−(ρ+R1+R2)z

1 − γ1e−(ρ+R1)z − γ2e−(ρ+R2)z − δ1e−R1z − δ2e−R2z − ηe−(ρ+R1+R2)z
,

J2(z; u) = 1 − γ1e−(ρ+R1)z − γ2e−(ρ+R2)z − τ2e−R1z − (1 − γ2)e−R2z − ω2e−(ρ+R1+R2)z

1 − γ1e−(ρ+R1)z − γ2e−(ρ+R2)z − δ1e−R1z − δ2e−R2z − ηe−(ρ+R1+R2)z
,

and

γ1 = − R1(β − R1)
2(ρ + R2)

ρ(R2 − R1)(β + ρ)2
, γ2 = − R2(β − R2)

2(ρ + R1)

ρ(R1 − R2)(β + ρ)2
,

δ1 = R2(β − R1)
2(ρ + R1)

β2ρ(R2 − R1)
, δ2 = R1(β − R2)

2(ρ + R2)

β2ρ(R1 − R2)
,

τ1 = R1(β − R2)
2(ρ + R2)

ρ(R1 − R2)(β + ρ)2
, τ2 = R2(β − R1)

2(ρ + R1)

ρ(R2 − R1)(β + ρ)2
,

ω1 = − (β − R2)
2

(β + ρ)2
, ω2 = − (β − R1)

2

(β + ρ)2
,

η = − (β − R1)
2(β − R2)

2

β2(β + ρ)2
, α = R1 R2(ρ + R1)(ρ + R2)

β2(β + ρ)2
,

with 0 < α < 1 and η = 1 − α − γ1 − γ2 − δ1 − δ2.
In the same way, we compute the conditional moments of Mu , given that ruin occurs,

E(Mr
u |T < ∞) = r

∫ ∞

0
zr−1(1 − J (z; u))dz

= r

�(u)

[
R2(β − R1)

2

β2(R2 − R1)
e−R1u

∫ ∞

0
zr−1(1 − J1(z; u))dz

+ R1(β − R2)
2

β2(R1 − R2)
e−R2u

∫ ∞

0
zr−1(1 − J2(z; u))dz

]
, (5.3)

for r ≥ 1.
Choosing β = 1, λ = 1 and c = 1 + θ , we evaluate formula (5.3) for some values

of θ with r = 1 . We use the values obtained by Li (2008) for exponential claim amounts and
compare them with the values which we computed for Erlang(2) claim amounts. The purpose
of this comparison is to analyse the behaviour of the moments of Mu as m increases. As before,
Table 5.3 shows figures for E(Mu) and s.d.(Mu).

From Table 5.3 we observe that the mean and the standard deviation of Mu decrease as θ

increases for all the three cases. This was expected, since an increase in θ means an increase in
the premium income c, which will give faster growth of the surplus, per unit of time. Note that
for a fixed θ the mean and the standard deviation of Mu are higher in the Erlang(2) – Erlang(2)
case than in the Erlang(2) – Exponential case. Since E(Xi ) = m/β, the claims are bigger on
average.
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Table 5.3. Values of E(Mu) and s.d.(Mu) for n = 2; m = 1 and n = m = 2.

n = 2, m = 1 n = 2, m = 2
θ E(Mu ) s.d.(Mu ) E(Mu ) s.d.(Mu )

0.05 2.474 5.532 3.279 7.137
0.1 2.063 3.805 2.759 4.911
0.15 1.848 3.069 2.485 3.959
0.2 1.709 2.646 2.307 3.411
0.25 1.611 2.368 2.179 3.049
0.3 1.536 2.169 2.082 2.791

Table 5.4. Probability that the maximum deficit occurs at ruin, for n = 2, m = 2.

θ 0.05 0.1 0.15 0.2 0.25 0.3

p̃ 0.730 0.745 0.759 0.772 0.784 0.795

5.2.2. The probability that the maximum severity occurs at ruin

From (2.2) we get, for u = 0

χ(0, y) =
(

R1 R2

β2

) 1 + ργ1
R1

e−(ρ+R1)y + ργ2
R2

e−(ρ+R2)y

1 − γ1e−(ρ+R1)z − γ2e−(ρ+R2)z − δ1e−R1z − δ2e−R2z − ηe−(ρ+R1+R2)z
.

The formula for P(Mu = |U (T )| | T < ∞) is obtained in the same way as in Equation (5.2).
Choosing the same values of λ, β and θ as before we evaluate that probability to get the figures
in Table 5.4 where p̃ = P(Mu = |U (T )| | T < ∞). From the table, we conclude that the
probability that the maximum deficit occurs at ruin increases along with θ . Moreover, there is
small probability of getting a bigger deficit after ruin. Comparing Tables 5.2 and 5.4 we can see
that for higher values of n, the probability of falling to lower levels of deficit after ruin is smaller.

6. Dividends

In this section, we consider the dividends problem. We can use the method by Dickson & Waters
(2004) to generalize an equation for Vm(u, b) in Erlang(n) risk process. So, conditioning on the
time and the amount of the first claim we get, for 0 ≤ u < b

Vm(u, b) =
∫ ∞

b−u
c

kn(t)e−mδt

⎡
⎣(c s

t− b−u
c

)m

+
m∑

j=1

(
m

j

)(
c s

t− b−u
c

)m− j ∫ b

0
f (x)Vj (b − x, b)dx

⎤
⎦ dt

+
∫ b−u

c

0
e−mδt kn(t)

∫ u+ct

0
Vm(u + ct − x, b)p(x)dx dt, m ≥ 1. (6.1)
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In particular, for m = 1

V (u, b) =
∫ ∞

b−u
c

kn(t)e−δt
(

c s
t− b−u

c
+
∫ b

0
f (x)V (b − x, b)dx

)
dt

+
∫ b−u

c

0
e−δt kn(t)

∫ u+ct

0
V (u + ct − x, b)p(x)dx dt, (6.2)

where st = eδt −1
δ

in standard actuarial notation.
For an Erlang(n) risk process, the integro-differential equations satisfied by the discounted
expected dividends are

((
1 + δ

λ

)
I − c

λ
D
)n

V (u, b) =
∫ u

0
V (u − x, b)p(x)dx (6.3)

dk V (u, b)

duk

∣∣∣∣
u=b

=
(

δ

c

)k−1

, 1 ≤ k ≤ n,

and for a general m

((
1 + δ

λ

)
I − c

λ
D
)n

Vm(u, b) =
∫ u

0
Vm(u − x, b)p(x)dx (6.4)

dk Vm(u, b)

duk

∣∣∣∣
u=b

=
k∑

j=1

m!
(m − j)!

{
k

j

}(
δ

c

)k− j

Vm− j (b, b), 1 ≤ k ≤ n,

where
{k

j

} = 1
j !
∑ j

i=0(−1) j−i
( j

i

)
i k denotes the Stirling numbers of the second kind. We define

for convenience Vm− j (u, b) ≡ 0, for m < j in the formula above.

These equations generalize those proposed by Dickson (2005) and Dickson & Waters (2004)
for the classical Poisson risk model, and are the same equations as proposed by Albrecher et al.
(2005).

Following an argument originally proposed by Bühlmann (1970), Section 6.4.9 for a Poisson
risk model, we propose for an Erlang(n) risk model that V (u, b) can be written in the form

V (u, b) =
n∑

i=1

Ci e
ρi uβi (u), (6.5)

where Ci ’s are constants (that depend on the parameter b), ρi ’s are the n roots with positive real
parts of the generalized Lundberg’s Equation (2.4), and the functions βi (u) are solutions of

(λi I − cD)nβi (u) = λn
i

∫ u

0
βi (u − x)pi (x)dx (6.6)

with λi = λ p̂
1
n (ρi ) and pi (x) = e−ρi x p(x)

p̂(ρi )
.
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The constants Ci ’s are determined using the boundary conditions given in (6.3), which gives
a system of n equations with n unknowns

dk V (u, b)

duk

∣∣∣∣
u=b

=
n∑

i=1

Ci
dk(eρi uβi (u))

duk

∣∣∣∣
u=b

=
(

δ

c

)k−1

, 1 ≤ k ≤ n, (6.7)

It can be written in matrix form as

⎛
⎜⎜⎝

C1
C2
.
.
.

Cn

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d(eρ1uβ1(u))

du

∣∣∣∣
u=b

d(eρ2uβ2(u))

du

∣∣∣∣
u=b

· · · d(eρnuβn(u))

du

∣∣∣∣
u=b

d2(eρ1uβ1(u))

du2

∣∣∣∣
u=b

d2(eρ2uβ2(u))

du2

∣∣∣∣
u=b

· · · d2(eρnuβn(u))

du2

∣∣∣∣
u=b

.

.

.
.
.
.

. . .
.
.
.

dn(eρ1uβ1(u))

dun

∣∣∣∣
u=b

dn(eρ2uβ2(u))

dun

∣∣∣∣
u=b

· · · dn(eρnuβn(u))

dun

∣∣∣∣
u=b

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1 ⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1(
δ

c

)
.
.
.(

δ

c

)n−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

We summarize this in the following theorem:

Theorem 6.1 The solutions of integro-differential Equation (6.3) are of the form

V (u, b) =
n∑

i=1

Ci e
ρi uβi (u),

where ρi ’s are the roots with positive real parts of the generalized Lundberg’s Equation (2.4),
βi (u)’s are defined in (6.6) and the constants Ci ’s are defined in (6.7).

Proof The proof is straightforward and follows by taking derivatives of V (u, b) and finding
out which conditions must be satisfied by the ρi ’s and βi (u)’s to get the equality in (6.3). �

This method generalizes the results of Albrecher et al. (2005), since it works for any kind of
claim amounts distribution, and not only for the distributions with rational Laplace transforms.

Special care should be taken in the case some of the roots (ρi ’s) of the generalized Lundberg’s
equation are complex, by using standard techniques of the theory of differential equations.

The same approach can be implemented to find a general Vm(u, b), m ≥ 2, writing it in the
form (6.5) and using the corresponding boundary conditions given in (6.4).

6.1. Example

In the following example, we compute V (u, b) and V2(u, b) for the Erlang(2) risk model with
Erlang(2) claim amounts.

Let the interclaim times Wi and the claim amounts Xi be both Erlang(2,2), let the positive
loading c = 1.1 and the force of interest δ = 0.03.

• V (u, b):
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Table 6.1. Values of V (u, b) for 0 ≤ u, b ≤ 9.

b\u 0 1 2 3 4 5 6 7 8 9

0 1.064
1 0.836 1.808
2 0.856 1.847 2.846
3 0.848 1.828 2.815 3.803
4 0.801 1.728 2.661 3.597 4.574
5 0.730 1.575 2.424 3.277 4.174 5.143
6 0.648 1.397 2.151 2.908 3.705 4.575 5.538
7 0.565 1.218 1.875 2.535 3.229 3.988 4.840 5.799
8 0.486 1.049 1.615 2.184 2.782 3.436 4.170 5.010 5.967
9 0.416 0.897 1.381 1.867 2.379 2.938 3.566 4.285 5.118 6.073

We get ρ1 = 0.169, ρ2 = 2.631,

β1(u) = 1 + 0.026e−2.954u − 0.718e−0.492u,

β2(u) = 1 + 0.047e−5.235u − 0.108e−3.845u,

(
C1

C2

)
=

⎛
⎜⎜⎝

d(eρ1uβ1(u))

du

∣∣∣∣
u=b

d(eρ2uβ2(u))

du

∣∣∣∣
u=b

d2(eρ1uβ1(u))

du2

∣∣∣∣
u=b

d2(eρ2uβ2(u))

du2

∣∣∣∣
u=b

⎞
⎟⎟⎠

−1⎛
⎝ 1(

δ

c

)⎞⎠ ,

so

C1 = C1(b) = 0.323e7.123b − 0.163e8.512b + 6.849e12.358b

d(b)
,

C2 = C2(b) = −0.205e6.942b + 0.081e9.404b − 0.024e9.896b

d(b)
,

where

d(b) = 0.002e4.337b − 0.015e5.727b + 0.065e6.799b + 0.057e7.291b

−0.027e8.189b − 0.031e8.681b − 1.039e9.572b + 1.802e12.034b + 1.093e12.526b,

and

V (u, b) = C1eρ1uβ1(u) + C2eρ2uβ2(u).

The values on the Table 6.1 are identical to the ones obtained by Albrecher et al. (2005).
• V2(u, b):

We get ρ1 = 0.273, ρ2 = 2.654,

β1(u) = 1 + 0.033e−3.054u − 0.636e−0.673u,

β2(u) = 1 + 0.047e−5.256u − 0.107e−3.873u,
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Table 6.2. Values of V2(u, b) for 0 ≤ u, b ≤ 9.

b\u 0 1 2 3 4 5 6 7 8 9

0 1.709
1 2.239 5.230
2 3.512 7.865 12.910
3 4.193 9.376 15.184 21.977
4 4.192 9.375 15.176 21.870 30.042
5 3.763 8.416 13.622 19.630 26.947 36.132
6 3.163 7.075 11.452 16.503 22.656 30.410 40.300
7 2.556 5.717 9.254 13.335 18.308 24.578 32.632 42.990
8 2.017 4.511 7.302 10.522 14.445 19.393 25.754 34.008 44.669
9 1.569 3.509 5.680 8.184 11.236 15.085 20.033 26.460 34.844 45.697

(
C1

C2

)
=

⎛
⎜⎜⎝

d(eρ1uβ1(u))

du

∣∣∣∣
u=b

d(eρ2uβ2(u))

du

∣∣∣∣
u=b

d2(eρ1uβ1(u))

du2

∣∣∣∣
u=b

d2(eρ2uβ2(u))

du2

∣∣∣∣
u=b

⎞
⎟⎟⎠

−1⎛
⎝ 2V (b, b)

2 + 2

(
δ

c

)
V (b, b)

⎞
⎠ .

The expressions for C1 = C1(b) and C2 = C2(b) are obtained in the same way as those for
V (u, b).

Finally we get
V2(u, b) = C1eρ1uβ1(u) + C2eρ2uβ2(u),

and the table of values for V2(u, b) is as follows
The values on the table are identical to those obtained by Albrecher et al. (2005).

7. Some concluding remarks

In this work we have shown, based on the techniques provided by Li (2008), a new method to
find expressions for the distribution of the maximum severity of ruin in the Sparre–Andersen
model with Erlang(n) interclaim times. Those expressions depend exclusively on the non–ruin
probability and the claim amounts distribution.

In a Sparre–Andersen model with Erlang(n) distributed interclaim times, the expected times
between claims are larger for higher values of n, therefore the moments of the maximum severity
of ruin are smaller.

The probability that the maximum severity occurs at the moment of ruin is bigger for higher
values of n. If we want to obtain similar explicit formulas for higher values of n, the computations
will become quite messy. However, we can still obtain numerical results using software like
Mathematica.

In the case of Erlang(m) distributed claim amounts, the expected sizes of the claims are larger
for higher values of m, and therefore the moments of the maximum severity of ruin are also
higher.
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We generalized the results obtained by Albrecher et al. (2005) to find the expected present
value of dividends for any arbitrary claim amount distribution.
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