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ABSTRACT
The dual risk model assumes that the surplus of a company decreases
at a constant rate over time, and grows by means of upward jumps
which occur at random times with random sizes. In the present work,
we study the dual risk renewal model when the waiting times are phase-
type distributed. Using the roots of the fundamental and the generalized
Lundberg’s equations, we get expressions for the ruin probability and
the Laplace transform of the time of ruin for an arbitrary single gain
distribution. Then, we address the calculation of expected discounted
future dividends particularly when the individual common gains follow a
phase-type distribution. We further show that the optimal dividend barrier
does not depend on the initial reserve. As far as the roots of the Lundberg
equations and the time of ruin are concerned, we address the existing
formulae in the corresponding Sparre-Andersen insurance risk model for
the first hitting time, and we generalize them to cover also the situations
where we have multiple roots. We do that working a new approach and
technique, approach we also use for working the dividends, unlike others,
it can be also applied for every situation.
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1. Introduction

We consider the dual risk model where the surplus or equity of the company is commonly described
by the equation

U(t) = u − ct + S(t), t ≥ 0, u ≥ 0, with S(t) =
N(t)∑
i=0

Xi and X0 ≡ 0.

Above, u ≥ 0 is the initial surplus, c is the constant rate at which costs are paid, {Xi}∞i=1 denote the
sequence of random gains,N(t) and S(t) are the random number of gains and aggregate gains occur-
ring up to time t, respectively. Corresponding random processes are denoted by {N(t), t ≥ 0} and
{S(t), t ≥ 0}. The model is called dual as opposed to the well-known Cramér–Lundberg insurance
risk model, which consists of constant premiums instead of constant costs, and a sequence of claims
rather than a sequence of gains. We will refer this one as the primal risk model. We denote by Wi
the inter-arrival time between gains Xi−1 and Xi, i = 2, 3, . . . (W1 is the waiting time up gain X1).
We assume that {Xi}∞i=1 and {Wi}∞i=1 are sequences of i.i.d. random variables and independent from
one another. Let P(x) denote the common cumulative distribution function of the gains {Xi}∞i=1,
p(x) and p̂(s) are the corresponding density and Laplace transform evaluated at s, respectively. We
denote byK(.), k(.) and k̂(.), respectively, the common cumulative distribution, density, and Laplace
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transform of {Wi}∞i=1, which we will assume to be phase-type distributed. We assume the existence
of μ1 = E[X1] and the net profit condition, i.e.

cE(W1) < E(X1) = μ1. (1.1)

This conditionmeans that on average gains are greater than expenses, per unit time.When compared
to the primal model, the income condition is reversed.

The dual risk model has had an increasing interest in ruin theory in recent times. There are
many possible interpretations for the model. We can look at the surplus as the amount of capital
of a business engaged in research and development, where gains are random, at random instants,
and costs are certain. More precisely, the company pays expenses which occur continuously along
time for the research activity, gets occasional revenues according to a phase-type(n) distribution
and of size driven by distribution P( · ). Revenues can be interpreted as values of future gains from
an invention or discovery, the decrease of surplus can represent costs of production, payments to
employees, maintenance of equipment, etc.

Among pioneer works on the subject we can cite Cramér (1955), Takács (1967), Seal (1969),
Bühlman (1970) and Gerber (1979). Recent works include those by Avanzi et al. (2007), Albrecher et
al. (2008), Avanzi & Gerber (2008), Bayraktar & Egami (2008), Cheung & Drekic (2008), Gerber &
Smith (2008), Song et al. (2008), Yang & Zhu (2008), Avanzi (2009), Ng (2009), Ng (2010), Cheung
(2012), Afonso et al. (2013), Rodríguez-Martínez et al. (2015) and Sendova and Yang (2014). Many
published works concerning the dual model deal with the compound Poissonmodel. We particularly
reference to the work by Avanzi et al. (2007) that explains well where applications of the dual model
are appropriate. On the same reason Bayraktar & Egami (2008) used it to model capital investments.
Optimal strategies were analyzed by Avanzi et al. (2007), Avanzi & Gerber (2008) and in the review
paper of Avanzi (2009), see also references therein. There are also works considering more general
distributions. We can mention Rodríguez-Martínez et al. (2015), Wen & Yin (2012) and Sendova
and Yang (2014), who studied ruin probabilities and dividend problems for a dual risk model with
Erlang and generalized Erlang distributed inter-arrival times, respectively. We also underline the
work by Afonso et al. (2013) who, among other problems, give a different view of the dividend
problem calculation, by taking advantage of the relationship between the Cramér–Lundberg and the
dual models. Most of the works on the dual model and on the discounted dividends problem assume
that the inter-arrival times follow exponential, Erlang, or generalized Erlang distributions. We are
going to extend results to the more general phase-type case, denoted as Ph(n).

In this paper, we study the dual risk model when the waiting times are phase-type distributed,
generalizing the work of Rodríguez-Martínez et al. (2015) and extending the results presented in
Bergel & Egídio dos Reis (2014) considering the Cramér–Lundberg insurance risk model. We will
refer this as the Primal model. In this model we particularly refer to the works by Li (2008a) and Li
(2008b) who works the first hitting time to an upper barrier and has correspondence to the time to
ruin in the dual model. This correspondence has been addressed by Rodríguez-Martínez et al. (2015)
and explains that it exists irrespective of the reverse income condition of the dual model. However,
this correspondence is not full because in the Dual model both the standard and the generalized
Lundberg equations have n roots with positive real parts, whereas in the primal model only the
generalized Lundberg equation has n of those roots. The standard one has n − 1. Li (2008a) and
Li (2008b) show results, in matrix form, for the Laplace transforms of the first hitting time. There
is a correspondence to the Laplace transform of the time to ruin in the dual model. However, his
formulation is valid when all of those roots are distinct only. We develop a new formulation that is
also valid when we have multiplicity. For the Erlang(n) model there is no multiplicity, e.g. see Bergel
& Egídio dos Reis (2015), for the generalized Erlang(n) we can have double roots, see Bergel & Egídio
dos Reis (2016). In other Ph(n) models we can have higher multiplicity.

We now summarize our manuscript, as follows. In Section 2 we briefly introduce the phase-type
distribution and the notation we use further in the paper. In Section 3 we study the fundamental and
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the generalized Lundberg’s equations and the role of its solutions. Although this had been studied, we
want to introduce here equivalent equations andmethods that will be subsequently used in the newer
developments in the forthcoming sections. In Section 4 we get expressions for the ruin probability
and the Laplace transform of the time to ruin for an arbitrary individual gain distribution. We also
present some numerical analysis. Finally, in Section 5 we work on the problem of calculating the
expected discounted dividends when the individual common gains follow a phase-type distribution.
We could easily extend the methods and techniques for the computation of higher moments. We
present some numerical illustrations.

2. The phase-type distribution

Phase-type distributions are the computational vehicle of much of modern applied probability.
Typically, if a problem can be solved explicitly when the relevant distributions are exponentials,
then the problemmay admit an algorithmic solution involving a reasonable degree of computational
effort, if one allows for the more general assumption of phase-type structure, and not in other cases.
A proper knowledge of phase-type distributions seems therefore a must for anyone working in an
applied probability area like risk theory.

We say that a distribution K on (0,∞) is phase-type(n) if K is the distribution of the lifetime
of a terminating continuous time Markov process {J(t), t ≥ 0} with finitely many states and time
homogeneous transition rates. More precisely, we define a terminating Markov process {J(t), t ≥ 0}
with state space E = {1, 2, . . . , n} and intensity matrix B (n × n) as the restriction to E of a Markov
process {J̄(t), 0 ≤ t < ∞} on E0 = E ∪ {0} where 0 is some extra state which is absorbing, that is,
Pr(J̄(t) = 0|J̄(0) = i) = 1 for all i ∈ E and where all states i ∈ E are transient. This implies in
particular that the intensity matrix for {J̄(t)} can be written in block-partitioned form as(

B bT

0 0

)
. (2.1)

The (1×n) vector b = (b1, . . . , bn) is the exit rate vector, i. e., the ith component bi gives the intensity
in state i for leaving E and going to the absorbing state 0.

Note that since (2.1) is the intensity matrix of a non-terminating Markov process, the rows sums
to zero which in matrix notation can be written as bT +B1T = 0where 1 = (1, 1, . . . , 1) is the (1×n)
vector with all components equal to one. In particular we have

bT = −B1T.

The intensity matrix B is denoted by B = (bij)ni,j=1. This matrix satisfies the conditions: bii < 0,
bij ≥ 0 for i �= j, and

∑n
j=1 bij ≤ 0 for i = 1, . . . , n. The vector of entry probabilities is given by

α = (α1,α2, . . . ,αn) with αi ≥ 0 for i = 1, . . . , n, and
∑n

i=1 αi = 1, so Pr(J̄(0) = i) = αi.
Below we list expressions of most of the quantities of interest related to K , density, distribution,

Laplace transform, mean and the jth derivative of k(t) at 0:

k(t) = αeBtbT, t ≥ 0,
K(t) = 1 − αeBt1T, t ≥ 0,
k̂(s) = α(sI − B)−1bT, (2.2)

E[W1] = −αB−11T,
k(j)(0) = αBjbT, j ≥ 0,

where I is the n × n identity matrix.
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From this point on we consider K(t) to be a phase-type(n) distribution, shortly Ph(n), of the
inter-arrival times, and we call our model the phase-type(n) dual risk model. It is important to notice
that we can write the corresponding net profit condition (1.1) as

−cαB−11T < μ1. (2.3)

3. Lundberg’s equations

In this section we study the fundamental and the generalized Lundberg’s equations

E
[
e−s

(
X1−cW1

)]
= 1, E

[
e−δW1e−s

(
X1−cW1

)]
= 1, s ∈ C, δ > 0, (3.1)

see e.g. Landriault & Willmot (2008) or Rodríguez-Martínez et al. (2015). As we can see from the
works of Gerber & Shiu (2005) and Ren (2007), these equations can be expressed in the form,
respectively,

k̂(− cs)p̂(s) = 1, k̂(δ − cs)p̂(s) = 1. (3.2)

Remark 3.1: A very important result we will use in the rest of our paper is the observation that for a
phase-type(n) dual risk model the Lundberg’s equations have exactly n roots with positive real parts,
see Albrecher & Boxma (2005). Denote them by ρ1, · · · , ρn.
Remark 3.2: Unlike the generalized Lundberg’s equation, in the phase-type(n) primal risk model,
the standard one only has n− 1 roots with positive real parts. When comparing to de dual model this
is due to the reversed income condition. So that the random variable first hitting time in the primal
model has a proper distribution and the time to ruin in the dual is a defective random variable.

The roots of the Lundberg’s equations play an important role in the calculation of many quantities
that are fundamental in risk and ruin theory. Namely, the ultimate and finite time ruin probabilities,
the Laplace transform of the ruin time, the expected discounted future dividends. All those calcu-
lations depend on the nature of the roots of the Lundberg’s equation, particularly those roots with
positive real parts. A study on the multiplicity of the roots can be found in Bergel & Egídio dos Reis
(2014, 2016).

Note that in order to solve Equation (3.2) numerically we need to determine a rational expression
for the Laplace transform k̂(δ − cs). Since

k̂(δ − cs) = α((δ − cs)I − B)−1bT, (3.3)

the main difficulty is to compute the inverse matrix ((δ − cs)I − B)−1. Before we go further we give
some definitions from linear algebra.
Definition 3.1: Let A = (ai,j)ni,j=1 be a n × nmatrix. Define, for the given subindices 1 ≤ i1 < i2 <
. . . < ik ≤ n,

Mi1,i2...ik (A) = det

⎛⎜⎜⎜⎝
ai1,i1 ai1,i2 . . . ai1,ik
ai2,i1 ai2,i2 . . . ai2,ik
...

...
. . .

...

aik ,i1 aik ,i2 . . . aik ,ik

⎞⎟⎟⎟⎠ , 1 ≤ k ≤ n.

These are the minors k × k of the matrix A obtained by deleting the row and the column that meet
in aii for i /∈ {i1, i2, . . . , ik}. Then

trk(A) =
∑

1≤i1<i2<...<ik≤n

Mi1,i2...ik (A). (3.4)
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We call trk(A) the k-generalized trace of the matrix A. In particular, tr1(A) = tr(A) = trace(A),
and trn(A) = det(A).

Note that the sum in (3.4) above has
(n
k
)
summands. Using this definition enables us to express

the characteristic polynomial of the matrix B as

det(sI − B) =
n∑

i=0

(− 1)n−itrn−i(B)si.

Moreover, the inverse matrix (sI − B)−1 can be obtained as follows:
Theorem 3.1: The inverse matrix (sI − B)−1 has the expression

(sI − B)−1 = N(s,B)
det(sI − B)

,

where the matrix N(s,B) takes the form

N(s,B) =
n−1∑
i=0

⎛⎝n−1−i∑
j=0

(− 1)jtrj(B)Bn−1−i−j

⎞⎠ si.

Proof: We prove that (sI − B)−1(sI − B) = I or, equivalently, that

(sI − B)N(s,B) = det(sI − B)I.

If we denote by ai the n × nmatrix given by

ai =
n−1−i∑
j=0

(− 1)jtrj(B)Bn−1−i−j,

then

(sI − B)N(s,B) = (sI − B)
n−1∑
i=0

⎛⎝n−1−i∑
j=0

(− 1)jtrj(B)Bn−1−i−j

⎞⎠ si

= (sI − B)
n−1∑
i=0

aisi

= an−1sn +
n−1∑
i=1

(ai−1 − aiB)si − a0B.

Now we can easily verify that an−1 = I. Since

det(BI − B) =
n∑

j=0

(− 1)jtrj(B)Bn−j = 0,
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we get −a0B = (− 1)ndet(B)I, and

ai−1 − aiB =
n−i∑
j=0

(− 1)jtrj(B)Bn−i−j −
⎛⎝n−1−i∑

j=0

(− 1)jtrj(B)Bn−1−i−j

⎞⎠B

= (− 1)n−itrn−i(B)I.

Therefore,

(sI − B)N(s,B) = Isn +
n−1∑
i=1

((− 1)n−itrn−i(B)I)si + (− 1)ndet(B)I

=
n∑

i=0

((− 1)n−itrn−i(B)I)si = det(sI − B)I.

This completes the proof.

From Theorem 3.1 and (3.3) we get the rational expression for the Lundberg’s Equation (3.2). The
generalized Lundberg’s equation for the phase-type(n) dual risk model becomes

det((δ − cs)I − B)
αN(δ − cs,B)bT

= p̂(s), (3.5)

and we obtain the corresponding fundamental Lundberg’s equation by setting δ = 0 in Equation
(3.5)

det((− cs)I − B)
αN(− cs,B)bT

= p̂(s). (3.6)

Although the new expressions for the Lundberg’s equations found in (3.5) and (3.6) are already in
rational form, they are not adequate for our purposes. What we need are expressions that show a
natural connection with other parts of this manuscript. The reason for this will be clear in Section 4
whenwewill calculate quantities like the Laplace transformof the time of ruin and the ruin probability
using integro-differential equations. It turns out that these integro-differential equations can be
expressed using polynomial forms, denoted as Bδ( · ) and qδ( · ), and these polynomial forms can be
used instead to rewrite the generalized and fundamental Lundberg’s Equations (3.5) and (3.6). This
is shown next.

The generalized Lundberg’s equation can be written as

Bδ(− s) = qδ(− s)p̂(s), s ∈ C, (3.7)

where Bδ and qδ are polynomials in s given by

Bδ(s) = det(B − δI − csI)
det(B)

=
n∑

i=0

Bi
(
s + δ

c

)i

and

qδ(s) =
n−1∑
j=0

B̃j
(
s + δ

c

)j
.

The equivalent fundamental Lundberg’s equation (for δ = 0) is

B(− s) = q(− s)p̂(s), s ∈ C. (3.8)
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The coefficients Bi and B̃j of the polynomials B and q, respectively, are given by the following
expressions

Bi = (− c)i
trn−i(B)
det(B)

, B̃j =
n∑

i=j+1

Bi
(
1
c

)i−j
k(i−1−j)(0).

Theorem 3.2: Expressions (3.5) and (3.7) are equivalent forms of the generalized Lundberg’s equa-
tion. Corresponding expressions (3.6) and (3.8) represent the fundamental Lundberg’s equation.

Proof: The proof is simple and follows by rearranging and comparing the coefficients of the above-
mentioned versions of the Lundberg’s equations. Namely, we have to prove that

det((δ − cs)I − B)
αN(δ − cs,B)bT

= Bδ(− s)
qδ(− s)

. (3.9)

From the left-hand side we have

Bδ(− s) = det(B − δI + csI)
det(B)

= (− 1)n

det(B)
det((δ − cs)I − B),

and from the right-hand side:

qδ(− s) =
n−1∑
j=0

B̃j
(
δ

c
− s

)j
=

n−1∑
j=0

n∑
i=j+1

Bi
(
1
c

)i−j
k(i−1−j)(0)

(
δ

c
− s

)j

=
n−1∑
j=0

n∑
i=j+1

(− 1)ici
trn−i(B)
det(B)

(
1
c

)i
αBi−1−jbTcj

(
δ

c
− s

)j

= α

n−1∑
j=0

n−j−1∑
i=0

(− 1)n−i tri(B)
det(B)

Bn−1−i−j (δ − cs
)j bT

= (− 1)n

det(B)
αN(δ − cs,B)bT.

This proves (3.9).

Remark 3.3: Alternatively, we can write

Bδ(s) = det(B − δI − csI)
det(B)

=
n∑

i=0

Bi,δ si, (3.10)

qδ(s) =
n−1∑
j=0

B̃j,δ sj, (3.11)

where the coefficients Bi,δ and B̃j,δ are given by

Bi,δ = (− c)i
trn−i(B − δI)

det(B)
,

B̃j,δ =
n−1−j∑
i=0

B1+i+j,δ

( i∑
l=0

(
i
l

)
(− δ)lk(i−l)(0)

)(
1
c

)1+i
.

These forms are going to be used in the following section.
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4. The time to ruin and its Laplace transform

In this section we study the ruin probability and the Laplace transform of the time to ruin in the
phase-type(n) dual risk model. Let

Tu =
{
min{t > 0 : U(t) = 0 | U(0) = u}
∞ if U(t) ≥ 0 ∀t ≥ 0

be the time to ruin, ψ(u) = P(Tu < ∞) be the ultimate ruin probability and

ψ(u, δ) = E[e−δTuI(Tu < ∞) | U(0) = u]

be the Laplace transform of the time to ruin, where δ > 0 and I(.) is the indicator function. This
Laplace transform can be interpreted as the expected value of one monetary unit received at the time
of ruin discounted at the constant force of interest δ.

In particular, we can obtain the ultimate ruin probability ψ(u) as a limiting case of the Laplace
transform of the time to ruin, since

lim
δ→0

ψ(u, δ) = ψ(u). (4.1)

Conditioning on the time and the amount of the first gain, we find that the Laplace transform of the
time to ruin for the phase-type(n) dual risk model satisfies the renewal equation

ψ(u, δ) =
(
1 − K

(u
c

))
e−δ

( u
c
)
+

∫ u
c

0
k(t)e−δt

∫ ∞

0
p(x)ψ(u − ct + x, δ)dx dt.

Note that the above equation is valid for any renewal model with density k and distribution K .
Changing variables s = u − ct, we get

ψ(u, δ) =
(
1 − K

(u
c

))
e−δ

( u
c
)
+ 1

c

∫ u

0
k
(
u − s
c

)
e−δ

( u−s
c

)
Wψ(s, δ) ds, (4.2)

whereWψ(s, δ) = ∫ ∞
0 p(x)ψ(s + x, δ)dx.

Before we continue further, we state the following lemma, which will be useful in a subsequent
theorem.
Lemma 4.1: Let Bδ , qδ be the polynomials described in (3.7), Section 3 for the generalized Lundberg’s
equation, and consider the following differential operators

Bδ(D) =
n∑

i=0

Bi
(

D + δ

c

)i
=

n∑
i=0

Bi,δ Di, qδ(D) =
n−1∑
j=0

B̃j
(

D + δ

c

)j
=

n−1∑
j=0

B̃j,δ Dj. (4.3)

for D = d
du . Then the following properties hold

Bδ(D)
[
k
(
u − s
c

)
e−δ

( u−s
c

)]
= 0,

Bδ(D)
[(

1 − K
(u
c

))
e−δ

( u
c
)]

= 0.
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Proof:

Bδ(D)
[
k
(
u − s
c

)
e−δ

( u−s
c

)]
=

n∑
i=0

Bi,δDi
[
αeB(

u−s
c )bTe−δ

( u−s
c

)
I
]

= α

[ n∑
i=0

Bi,δDi(e(B−δI)( u−s
c ))

]
bT

= α

[ n∑
i=0

Bi,δ
(
1
c

)i
(B − δI)ie(B−δI)( u−s

c )

]
bT

= α

[
Bδ

(
1
c
(B − δI)

)]
e(B−δI)( u−s

c )bT

= α

[
det(B − δI − cI

( 1
c (B − δI)

)
)

det(B)

]
e(B−δI)( u−s

c )bT = 0,

Analogously, we can see Bδ(D)
[(
1 − K

(u
c
))
e−δ

( u
c
)]

= 0.

We can obtain a formula for the Laplace transform of the time of ruinψ(u, δ) solving the following
integro-differential equation with boundary conditions:
Theorem 4.1: The Laplace transform of the time of ruin ψ(u, δ) satisfies the integro-differential
equation

Bδ(D)ψ(u, δ) = qδ(D)Wψ(u, δ), (4.4)

The boundary conditions of (4.4) are given by

ψ(0, δ) = 1,

di

dui
ψ(u, δ)

∣∣∣∣
u=0

=
(

−δ
c

)i
−

i−1∑
j=0

1
ci

(
i
j

)
(− δ)jk(i−1−j)(0)

+
i−1∑
j=0

⎛⎝i−1−j∑
l=0

1
ci−j

(
i − 1 − j

l

)
(− δ)lk(i−1−j−l)(0)

⎞⎠W (j)
ψ (0, δ), (4.5)

i = 1, . . . , n − 1.

Proof: Weproceed taking successive derivatives ofψ(u, δ)using the renewal Equation (4.2).Wewant
to prove the equation Bδ(D)ψ(u, δ) = qδ(D)Wψ(u, δ). The jth derivative of ψ(u, δ) with respect to
u is given by

dj

duj
ψ(u, δ) =

⎡⎣(
−δ
c

)j (
1 − K

(u
c

))
−

j−1∑
i=0

1
cj

(
j
i

)
(− δ)ik(j−1−i)

(u
c

)⎤⎦ e−δ
( u
c
)

+
j−1∑
i=0

⎛⎝j−1−i∑
l=0

(
1
c

)j−i (j − 1 − i
l

)
(− δ)lk(j−1−i−l)(0)

⎞⎠W (i)
ψ (u, δ)

+ 1
c

∫ u

0

⎡⎣ j∑
i=0

1
cj

(
j
i

)
(− δ)ik(j−i)

(
u − s
c

)⎤⎦ e−δ
( u−s

c
)
Wψ(s, δ)ds,



770 A. I. BERGEL ET AL.

for j = 1, . . . , n − 1. Hence, we obtain

dj

duj
ψ(u, δ)

∣∣∣∣
u=0

=
(

−δ
c

)j
−

j−1∑
i=0

1
cj

(
j
i

)
(− δ)ik(j−1−i) (0)

+
j−1∑
i=0

⎛⎝j−1−i∑
l=0

(
1
c

)j−i (j − 1 − i
l

)
(− δ)lk(j−1−i−l)(0)

⎞⎠W (i)
ψ (0, δ),

for j = 1, . . . , n − 1.
Now we apply the differential operator Bδ(D) to ψ(u, δ)

Bδ(D)ψ(u, δ) = Bδ(D)
[(

1 − K
(u
c

))
e−δ

( u
c
)]

︸ ︷︷ ︸
=0

+Bδ(D)
(
1
c

∫ u

0
k
(
u − s
c

)
e−δ

( u−s
c

)
Wψ(s, δ) ds

)

=
n∑

j=0

Bj,δDj
(
1
c

∫ u

0
k
(
u − s
c

)
e−δ

( u−s
c

)
Wψ(s, δ)ds

)

=
n∑

j=0

Bj,δ

⎡⎣ j−1∑
i=0

⎛⎝j−1−i∑
l=0

(
1
c

)j−i (j − 1 − i
l

)
(− δ)lk(j−1−i−l)(0)

⎞⎠W (i)
ψ (u, δ)

+ 1
c

∫ u

0

⎛⎝ j∑
i=0

1
cj

(
j
i

)
(− δ)ik(j−i)

(
u − s
c

)⎞⎠ e−δ
( u−s

c
)
Wψ(s, δ)ds

⎤⎦
=

n∑
j=1

Bj,δ

⎡⎣ j−1∑
i=0

( i∑
l=0

(
1
c

)i+1 (i
l

)
(− δ)lk(i−l)(0)

)
W (j−1−i)
ψ (u, δ)

⎤⎦
+ 1

c

∫ u

0
Bδ(D)

[
k
(
u − s
c

)
e−δ

( u−s
c

)]
︸ ︷︷ ︸

=0

Wψ(s, δ)ds

=
n−1∑
j=0

n−1−j∑
i=0

B1+i+j,δ

( i∑
l=0

(
1
c

)i+1 (i
l

)
(− δ)lk(i−l)(0)

)
︸ ︷︷ ︸

=B̃j,δ

W (j)
ψ (u, δ)

=
n−1∑
j=0

B̃j,δW
(j)
ψ (u, δ) = qδ(D)Wψ(u, δ).

This completes the proof.

For the phase-type(n) dual risk model, we have found that the Laplace transform of the time of
ruin can be written as follows
Theorem 4.2:

ψ(u, δ) =
L∑

i=1

βi∑
j=1

aij,δu j−1e−ρiu, (4.6)

where aij,δ are some constants, ρ1, . . . , ρL are the only roots of the generalized Lundberg’s equation
which have positive real parts, and ρi has multiplicity βi , with

∑L
i=1 βi = n.
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Proof: It is very simple to verify that if ρ is a single root of the generalized Lundberg’s equation
Bδ( − s) = qδ( − s)p̂(s) then the function f (u) = e−ρu satisfies the integro-differential equation
Bδ(D)f (u) = qδ(D)Wf (u), whereWf (u) = ∫ ∞

0 p(x)f (u + x)dx.
Moreover, we can show that if ρ is a root of the generalized Lundberg’s equation with multiplicity

β ≥ 1 then the functions f (u) = uj−1e−ρu, j = 1, . . . ,β are all solutions of the same integro-
differential equation. We will prove that Bδ(D)f (u) = qδ(D)Wf (u). We have

f (k)(u) =
j−1∑
l=0

( l−1∏
m=0

(k − m)

)
(− ρ)k−l

(
j − 1
l

)
uj−1−le−ρu.

Then from the left-hand side

Bδ(D)f (u) =
n∑

k=0

Bk,δf (k)(u)

=
n∑

k=0

Bk,δ
j−1∑
l=0

( l−1∏
m=0

(k − m)

)
(− ρ)k−l

(
j − 1
l

)
uj−1−le−ρu

=
j−1∑
l=0

( n∑
k=l

Bk,δ

( l−1∏
m=0

(k − m)

)
(− ρ)k−l

)(
j − 1
l

)
uj−1−le−ρu

=
j−1∑
l=0

B(l)δ (− ρ)

(
j − 1
l

)
uj−1−le−ρu. (4.7)

From the right-hand side, we have

Wf (u) =
∫ ∞

0
f (u + x)p(x)dx =

∫ ∞

0
(u + x)j−1e−ρ(u+x)p(x)dx

=
∫ ∞

0

j−1∑
i=0

(
j − 1
i

)
uj−1−ixie−ρxe−ρup(x)dx

=
j−1∑
i=0

(
j − 1
i

)
uj−1−ie−ρu

∫ ∞

0
xie−ρxp(x)dx

=
j−1∑
i=0

(
j − 1
i

)
uj−1−ie−ρu(− 1)ip̂(i)(ρ).

Therefore,

qδ(D)Wf (u) =
n−1∑
k=0

B̃k,δW
(k)
f (u)

=
j−1∑
i=0

(
j − 1
i

)
(− 1)ip̂(i)(ρ)

n−1∑
k=0

B̃k,δ
d
dk
(uj−1−ie−ρu)

=
j−1∑
i=0

(
j − 1
i

)
(− 1)ip̂(i)(ρ)

j−1−i∑
l=0

q(l)δ (− ρ)

(
j − 1 − i

l

)
uj−1−i−le−ρu
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=
j−1∑
i=0

(
j − 1
i

)
(− 1)ip̂(i)(ρ)

j−1∑
l=i

q(l−i)
δ (− ρ)

(
j − 1 − i
l − i

)
uj−1−le−ρu

=
j−1∑
l=0

[ l∑
i=0

(− 1)i
(
l
i

)
q(l−i)
δ (− ρ)p̂(i)(ρ)

](
j − 1
l

)
uj−1−le−ρu. (4.8)

Since the root ρ has multiplicity β ≥ 1, it satisfies the equations

B(l)δ (− ρ) =
l∑

i=0

(− 1)i
(
l
i

)
q(l−i)
δ (− ρ)p̂(i)(ρ), l = 0, 1, . . . β − 1, (4.9)

which implies that expressions (4.7) and (4.8) are identical, thus proving our statement.
Since the functions uj−1e−ρiu, i = 1, . . . , L; j = 1, . . . ,βi are linearly independent, any solution

of Bδ(D)f (u) = qδ(D)Wf (u) can be expressed in the following way

f (u) =
L∑

i=1

βi∑
j=1

biju j−1e−ρiu, (4.10)

for some constants bij.
Since the Laplace transform of the time of ruin satisfies an integro-differential equation of the

same form, Bδ(D)ψ(u, δ) = qδ(D)Wψ(u, δ), it can be written as

ψ(u, δ) =
L∑

i=1

βi∑
j=1

aij,δu j−1e−ρiu.

Using the boundary conditions (4.5) we can determine the constants aij,δ that correspond to ψ(u, δ)
in the following way

ψ(0, δ) =
L∑

i=1

ai1,δ = 1,

dm

dum
ψ(u, δ)

∣∣∣∣
u=0

= dm

dum

L∑
i=1

βi∑
j=1

aij,δu j−1e−ρiu
∣∣∣∣∣∣
u=0(

−δ
c

)m
−

m−1∑
j=0

1
cm

(
m
j

)
(− δ)jk(m−1−j)(0)

+
m−1∑
j=0

⎛⎝m−1−j∑
l=0

1
cm−j

(
m − 1 − j

l

)
(− δ)lk(m−1−j−l)(0)

⎞⎠W (j)
ψ (0, δ),

m = 1, . . . , n − 1.

whereWψ(u, δ) = ∫ ∞
0 p(x)

[∑L
i=1

∑βi
j=1 aij,δ(u + x) j−1e−ρi(u+x)

]
dx.

Regardless of multiplicities, this gives a system of n equations on the n unknowns constants
aij,δ , i = 1, . . . , L; j = 1, . . . ,βi, that can be solved using standard linear algebra methods.
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Remark 4.1: If all the roots with positive real parts of the generalized Lundberg’s equation are single
(multiplicity 1), then we write the Laplace transform of the time of ruin in the following way

ψ(u, δ) =
n∑

i=1

ai,δe−ρiu,

and the constants ai,δ can be found using the boundary conditions (4.5), which is equivalent to solving
the following system of n equations on the n unknowns ai,δ :

n∑
i=1

ai,δ = 1,

and

n∑
i=1

ai,δ

⎡⎣(− ρi)
j − p̂(ρi)

j−1∑
m=0

⎛⎝j−1−m∑
l=0

1
cj−m

(
j − 1 − m

l

)
(− δ)lk(j−1−m−l)(0)

⎞⎠ (− ρi)
m

⎤⎦
=

(
−δ
c

)j
−

j−1∑
m=0

1
cj

(
j
m

)
(− δ)mk(j−1−m)(0), j = 1, . . . , n.

Example 4.1: For n = 2, the Laplace transform of the time of ruin in the phase-type(2) model has
the expression

ψ(u, δ) = ρ2 − δ
c + 1

cαb
T(p̂(ρ2)− 1)

ρ2 − ρ1 + 1
cαb

T(p̂(ρ2)− p̂(ρ1))
e−ρ1u

− ρ1 − δ
c + 1

cαb
T(p̂(ρ1)− 1)

ρ2 − ρ1 + 1
cαb

T(p̂(ρ2)− p̂(ρ1))
e−ρ2u,

where ρ1, ρ2 > 0 are real and solutions of Bδ(− s) = qδ(− s)p̂(s).

4.1. The ruin probability

The ultimate ruin probability as set in (4.1) can be obtained from Equation (4.2) calculating the limit
as δ → 0, giving

ψ(u) = 1 − K
(u
c

)
+

∫ u
c

0
k(t)

∫ ∞

0
p(x)ψ(u − ct + x)dx dt. (4.11)

In the exponential case, n = 1, we can see Afonso et al. (2013). Also, Gerber (1979) found that
ψ(u) = e−ρu, where ρ is the unique positive root of the fundamental Lundberg’s equation.

As δ → 0, the corresponding integro-differential equation and ruin probability are given by the
following corollaries
Corollary 4.1: The ruin probability ψ(u) satisfies the following integro-differential equation

B(D)ψ(u) = q(D)W(u), (4.12)

where W(u) = ∫ ∞
0 p(x)ψ(u + x)dx and B, q are the same polynomials described before for the

fundamental Lundberg’s Equation (3.8). The operator D is the differentiation with respect to u, as
before.
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The boundary conditions of (4.12) are given by

ψ(0) = 1,

dj

duj
ψ(u)

∣∣∣∣
u=0

= − 1
cj
k(j−1)(0)+

j−1∑
i=0

1
ci+1 k

(i)(0)W (j−1−i)(0), (4.13)

j = 1, . . . , n − 1.

Corollary 4.2: The ultimate ruin probability ψ(u) can be written in the general form

ψ(u) =
L∑

i=1

βi∑
j=1

aij,0u j−1e−ρiu,

where ρ1, . . . , ρL are the only roots of the Fundamental Lundberg’s equation which have positive real
parts, and ρi has multiplicity βi , with

∑L
i=1 βi = n.

Example 4.2: For n = 2, the ruin probability in the phase-type(2) model has the expression

ψ(u) = ρ2 + 1
cαb

T(p̂(ρ2)− 1)
ρ2 − ρ1 + 1

cαb
T(p̂(ρ2)− p̂(ρ1))

e−ρ1u

− ρ1 + 1
cαb

T(p̂(ρ1)− 1)
ρ2 − ρ1 + 1

cαb
T(p̂(ρ2)− p̂(ρ1))

e−ρ2u,

where ρ1, ρ2 > 0 are real and solutions of B(− s) = q(− s)p̂(s).

5. Expected discounted dividends

In this section, we consider a barrier strategy for dividend calculation in terms of a dividend barrier
b. Although we just consider results for the expected discounted future dividends we could extend
the presented methods to higher moments. Any time the regulated surplus upcrosses b the excess
is paid as a dividend. From that payment instant the process restarts from level b and that repeats
whenever it occurs in the future until ruin.

Let {Di}∞i=1 be the sequence of the dividend payments and let D(u, b) be the aggregate discounted
dividends, at force of interest δ. Let τi be the arrival time of Di, then

D(u, b) =
∑
i

e−δτiDi.

We denote by V(u, b) = E[D(u, b)], the expected value of D(u, b).
Note that

V(u, b) = E[u − b + D(b, b)] = u − b + V(b, b), u ≥ b. (5.1)

The expected discounted dividends V(u, b) satisfy the following renewal equation:

V(u, b) =
∫ u

c

0
k(t)e−δt

[∫ b−u+ct

0
V(u − ct + y, b)p(y)dy

+
∫ ∞

b−u+ct
Ṽ(u − ct + y, b)p(y)dy

]
dt, for u < b,

with
Ṽ(x, b) = E[D(x, b)] = E[x − b + D(b, b)] = x − b + V(b, b), x ≥ b.
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Differentiating the renewal equation with respect to u produces an integro-differential equation
for V(u, b).
Theorem 5.1: The expected discounted dividends V(u, b) satisfy the integro-differential equation

Bδ(D)V(u, b) = qδ(D)W(u, b), u < b, (5.2)

where

W(u, b) =
∫ b

u
V(x, b)p(x − u)dx +

∫ ∞

b
Ṽ(x, b)p(x − u)dx.

and Bδ(D), qδ(D) are defined as in (4.3). The boundary conditions of (5.2) are given by

V(0, b) = 0,

di

dui
V(u, b)

∣∣∣∣
u=0

=
i−1∑
j=0

⎛⎝i−1−j∑
l=0

1
ci−j

(
i − 1 − j

l

)
(− δ)lk(i−1−j−l)(0)

⎞⎠W (j)(0, b),

i = 1, . . . , n − 1. (5.3)

Proof: The proof follows the same methodology as that of Theorem 4.1.

Because of the additional information of a barrier level b in V(u, b), we cannot solve the equation

Bδ(D)V(u, b) = qδ(D)W(u, b), (5.4)

to find an expression for V(u, b) as we did for the Laplace transform of the time to ruin ψ(u, δ).
There, we did not need to specify a particular density function p(x) for the gain amounts, here we do
and we show this in the following remark:
Remark 5.1: Consider the conditions that must be met by ρ when we insert f (u) = e−ρu in (5.4).
On the left-hand side we have

Bδ(D)f (u) = Bδ(− ρ)e−ρu. (5.5)
On the right-hand side we get, denotingWf (u, b),

Wf (u, b) =
∫ b−u

0
f (x + u)p(x)dx +

∫ ∞

b−u
(x + u − b + f (b))p(x)dx

=
∫ b−u

0
e−ρ(x+u)p(x)dx +

∫ ∞

b−u
(x + u − b + e−ρb)p(x)dx

= e−ρup̂(ρ)+
∫ ∞

b
(x − b + e−ρb − e−ρx)p(x − u)dx,

and

qδ(D)Wf (u, b) = qδ(− ρ)p̂(ρ)e−ρu +
∫ ∞

b
(x − b + e−ρb − e−ρx)qδ(D)p(x − u)dx. (5.6)

Comparing Equations (5.5) and (5.6) we obtain

(Bδ(− ρ)− qδ(− ρ)p̂(ρ))e−ρu =
∫ ∞

b
(x − b + e−ρb − e−ρx)qδ(D)p(x − u)dx, ∀u ≥ 0. (5.7)

If ρ was a root of the generalized Lundberg’s equation Bδ(− s) = qδ(− s)p̂(s), the left-hand side of
(5.7) would be zero. On the other side, the right-hand side is not necessarily zero since qδ(D)p(x−u)
may not be zero.
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Indeed, we have to assume a particular distribution for the gain amounts. For the rest of this
manuscript, we assume that the gain amounts follow a phase-type(m) distribution and we use the
annihilator method to find V(u, b). See similar approach in Rodríguez-Martínez et al. (2015).

Following the notation in Section 2, consider the case when the gains Xi follow a phase-type(m)
distribution P(x) with representation (α′,B′, b′). Let ρ1, . . . , ρn be the roots of the generalized
Lundberg’s equation Bδ( − s) = qδ( − s)p̂(s) with positive real parts, and ρn, . . . , ρn+m be the
roots with negative real parts. For simplicity, assume that all those roots are distinct (although this is
not the case in general, see Bergel & Egídio dos Reis (2014) or Bergel & Egídio dos Reis (2016)).

Because of condition (5.1), we cannot write the solutions of (5.2) as a linear combination of n
exponential functions as we did before in the cases of the ruin probability and the Laplace transform
of the time of ruin. We will need more than n exponential functions, the exact required number
will depend on the nature of the distribution of the single gains P(x). However, we can apply the
annihilator approach known from the theory of ordinary differential equations to find the appropriate
solutions.

We can rewriteW(u, b) as

W(u, b) =
∫ b

u
V(x, b)p(x − u)dx +

∫ ∞

b
(x − b + V(b, b))p(x − u)dx (5.8)

=
∫ b

u
V(x, b)p(x − u)dx +

∫ ∞

b
Ṽ(x, b)p(x − u)dx,

with Ṽ(x, b) = x − b + V(b, b). The idea is to find a linear differential operator that will annihilate
p(x − u) (where the variable is u), so that when we apply this operator to the integro-differential
Equation (5.2) we obtain a linear homogeneous differential equation of a higher degree. We apply
the annihilator operator, denoted as A(D) = Det(ImD +B′), at both sides of the integro-differential
equation

Bδ(D)V(u, b) = qδ(D)W(u, b),

where Im is the identitym×mmatrix, and we obtain an homogeneous integro-differential equation
of degreem + n.
Theorem 5.2: When P(x) is phase-type(m) the solution of V(u, b) is of the form

V(u, b) =
n+m∑
l=1

al(b)e−ρlu, u < b, (5.9)

where ρl , l = 1, . . . , n, n + 1, . . . , n + m are the roots of the generalized Lundberg’s equation, n with
positive real parts and m with negative real parts, and the coefficients al(b), depending on b, are found
using the boundary n conditions (5.3), and the identity

α′
[n+m∑

l=1

al(b)e−ρlb
(
(ρlIm − B′)−1B′ + Im

) − B′−1
]

= 0, (5.10)

which gives another m conditions. We obtain a system of m + n equations on the m + n unknowns
al(b).

Proof: Let p(x − u) = α′eB′(x − u)b′T. The annihilator operator A(D) can be expanded as

A(D) = Det(ImD + B′) =
m∑
i=0

trm−i(B′)Di.
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This operator annihilates p(x − u)

A(D)p(x − u) =
m∑
i=0

trm−i(B′)Di
(
α′eB′(x−u)b′T)

= α′
[ m∑
i=0

trm−i(B′)DieB
′(x−u)

]
b′T

= α′

⎡⎢⎢⎢⎢⎢⎣
m∑
i=0

trm−i(B′)(− B′)i︸ ︷︷ ︸
det(B′−ImB′)=A(−B′)=0

eB
′(x−u)

⎤⎥⎥⎥⎥⎥⎦ b′T = 0.

Since

V(u, b) =
n+m∑
l=1

al(b)e−ρlu,

we will prove that V(u, b) satisfies the homogeneous integro-differential equation

A(D)[Bδ(D)V(u, b)] = A(D)[qδ(D)W(u, b)],

or equivalently,

Bδ(D)[A(D)V(u, b)] = qδ(D)[A(D)W(u, b)]. (5.11)

We have

W(u, b) =
∫ b

u
V(x, b)p(x − u)dx +

∫ ∞

b
(x − b + V(b, b))p(x − u)dx

=
n+m∑
l=1

al(b)e−ρlup̂(ρl)+
n+m∑
l=1

al(b)e−ρlbα′(ρlIm − B′)−1B′eB′(x−u)1T

− α′(B′)−1eB
′(x−u)1T + α′eB′(x−u)1T

n+m∑
l=1

al(b)e−ρlb,

so, in the right-hand side of (5.11), we have

A(D)W(u, b) =
n+m∑
l=1

al(b)A(− ρl)p̂(ρl)e−ρlu.

On the left-hand side, we have

A(D)V(u, b) = A(D)
n+m∑
l=1

al(b)e−ρlu =
n+m∑
l=1

al(b)A(− ρl)e−ρlu.
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Then,

Bδ(D)[A(D)V(u, b)] =
n+m∑
l=1

al(b)A(− ρl)Bδ(− ρl)e−ρlu,

qδ(D)[A(D)W(u, b)] =
n+m∑
l=1

al(b)A(− ρl)qδ(− ρl)p̂(ρl)e−ρlu.

This proves that V(u, b) satisfies (5.11), because Bδ( − ρl) = qδ( − ρl)p̂(ρl) for the values l =
1, . . . n + m.

Now, wewantV(u, b) to be a solution of our integro-differential Equation (5.2), as in Theorem 5.1.
Since solutions of (5.11) include those of Bδ(D)V(u, b) = qδ(D)W(u, b), we want to know which
are the extra conditions that must be satisfied by the coefficients al(b) of V(u, b) for this purpose.
Replacing V(u, b) in Bδ(D)V(u, b) = qδ(D)W(u, b) we obtain

0 =
n+m∑
l=1

al(b)[Bδ(− ρl) = qδ(− ρl)p̂(ρl)︸ ︷︷ ︸
=0

]e−ρlu

= α′
[n+m∑

l=1

al(b)e−ρlb
(
(ρlIm − B′)−1B′ + Im

) − B′−1
]
qδ(− B′)eB′(x−u)1T, ∀u ≥ 0.

This proves that the identity holds

α′
[n+m∑

l=1

al(b)e−ρlb
(
(ρlIm − B′)−1B′ + Im

) − B′−1
]

= 0.

Using this identity and the boundary conditions (5.3) we obtain a system ofm+ n equations that
allow us to find them + n coefficients al(b) in V(u, b).

Example 5.1: Assume that K(t) is Ph(2) distributed (n = 2) and P(x) is Ph(2) distributed (m = 2),
with representations (α,B, b) and (α′,B′, b′), respectively.

The net profit condition is−cαB1T < −α′B′1T and the generalized Lundberg’s equation becomes

Bδ(− s)B̄(s) = qδ(− s)q̄(s), (5.12)

where

Bδ(− s) = 1 − c
tr(B)
det(B)

(
δ

c
− s

)
+ c2

det(B)

(
δ

c
− s

)2
,

qδ(− s) = 1 + c
det(B)

αbT
(
δ

c
− s

)
,

B̄(s) = 1 − tr(B′)
det(B′)

s + 1
det(B′)

s2,

q̄(s) = 1 + 1
det(B′)

α′b′Ts.

Let

V(u, b) =
4∑

l=1

al(b)e−ρlu.
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Table 1. Values of V(u, b).

b

u 3 5 6 7 8 10 15 20

2 14.0478 18.5161 18.6277 18.2447 17.6847 16.4611 13.656 11.3231
3 15.9118 20.9727 21.0991 20.6653 20.031 18.6451 15.4678 12.8254
5 17.9118 23.5692 23.7112 23.2237 22.5109 20.9533 17.3828 14.4132
10 22.9118 28.5692 28.7183 28.1731 27.3464 25.4359 21.1015 17.4967
15 27.9118 33.5692 33.7183 33.1731 32.3464 30.4359 25.4503 21.1026
20 32.9118 38.5692 38.7183 38.1731 37.3464 35.4359 30.4503 25.4504

The exponents ρl ’s are the four roots of (5.12). Assume that ρ1, ρ2 have positive real parts and
ρ3, ρ4 have negative real parts. The coefficients al(b)’s are obtained using the corresponding boundary
conditions (5.3)

V(0, b) =
4∑

l=1

al(b) = 0,

d
du

V(u, b)
∣∣∣∣
u=0

= 1
c
k(0)W(0, b) = −

4∑
l=1

ρlal(b), or

0 =
4∑

l=1

al(b)
(
k(0)
c

p̂(ρl)+ ρl

)
,

and the additional constrains (5.10), giving

4∑
l=1

al(b)e−ρlbρlα′(ρlI2 − B′)−1 = α′B′−1, with α′ = (α′
1,α

′
2), B′ =

(
b′
11 b

′
12

b′
21 b

′
22

)
,

or

4∑
l=1

al(b)

(
e−ρlbρl(α′

1(ρl − b′
22)+ α′

2b
′
21)

det(ρlI2 − B′)

)
= α′

1b
′
22 − α′

2b
′
21

det(B′)
,

4∑
l=1

al(b)

(
e−ρlbρl(α′

1b
′
12 + α′

2(ρl − b′
11))

det(ρlI2 − B′)

)
= −α′

1b
′
12 + α′

2b
′
11

det(B′)
.

If we set the values for the parameters c = 1, δ = 0.05, and

α = (0.2, 0.8), B =
(−3 2

4 −7

)
, α′ = (0.7, 0.3), B′ =

(−2 1
5 −5

)
,

then ρ1 = 8.41055, ρ2 = 0.949785, ρ3 = −0.0374676 and ρ4 = −6.22287.
In Table 1 we show numerical values for V(u, b) for some choices of (u, b). We can observe that

for a fixed u we have a maximal V(u, b) for a value of b between 5 and 7. In the following, we devote
our study to the optimal barrier level b and show that it is independent of u.

5.1. Optimal dividends

For a given initial capitalu, let b∗ denote the optimal value of the barrier b thatmaximizes the expected
discounted dividends V(u, b). Avanzi et al. (2007) show that for a dual model with exponentially
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distributed inter-arrival times the value of b∗ is independent of u. The same situation occurs for
a dual model with phase-type(n) distributed inter-gain times and phase-type(m) distributed gain
amounts. Also, the optimal level is independent of the initial surplus.
Theorem 5.3: b∗ is independent of the initial surplus u.

Proof: For a given initial surplusu0 ≥ 0 let b∗
0 be the optimal barrier level thatmaximizes the expected

discounted dividends, V(u0, b) is maximal at b = b∗
0 and

∂

∂ b
V(u0, b)

∣∣∣∣
b=b∗

0

= 0, for u = u0.

The idea of this proof is to show that

∂

∂ b
V(u, b)

∣∣∣∣
b=b∗

0

= 0, ∀u ≥ 0.

From (5.1), we have ∀u ≥ b∗
0 that

∂

∂ b
V(u, b)

∣∣∣∣
b=b∗

0

= 0 = −1 + d
d b

V(b, b)
∣∣∣∣
b=b∗

0

⇒ d
d b

V(b, b)
∣∣∣∣
b=b∗

0

= 1.

Since we have V(0, b) ≡ 0 then clearly

∂

∂ b
V(0, b)

∣∣∣∣
b=b∗

0

= 0, for u = 0.

It only remains to show that

∂

∂ b
V(u, b)

∣∣∣∣
b=b∗

0

= 0, 0 < u < b∗
0 .

Previously in Theorem 5.1 we have found that in the phase-type(n) dual risk model the expected
discounted dividends V(u, b) satisfy the integro-differential equation

Bδ(D)V(u, b) = qδ(D)W(u, b),

where

W(u, b) =
∫ b

u
V(y, b)p(y − u)dy +

∫ ∞

b
(y − b + V(b, b))p(y − u)dy.

Moreover, assuming that the gain amounts follow another phase-type(m) distribution, with
density function p(x) = α′eB′xb′T, we were able to write an expression of V(u, b) of the form
(5.9)

V(u, b) =
n+m∑
l=1

al(b)e−ρlu.
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Since

∂

∂ b
W(u, b)

∣∣∣∣
b=b∗

0

=
∫ b∗

0

u

∂

∂ b
V(y, b)

∣∣∣∣
b=b∗

0

p(y − u)dy

+
(

−1 + d
d b

V(b, b)
∣∣∣∣
b=b∗

0

)
︸ ︷︷ ︸

=0

∫ ∞

b∗
0

p(y − u)dy

=
∫ b∗

0

u

∂

∂ b
V(y, b)

∣∣∣∣
b=b∗

0

p(y − u)dy,

then for 0 < u < b∗
0 we have that

Bδ(D) ∂

∂ b
V(u, b)

∣∣∣∣
b=b∗

0

= qδ(D) ∂

∂ b
W(u, b)

∣∣∣∣
b=b∗

0

,

or equivalently

Bδ(D) ∂

∂ b
V(u, b)

∣∣∣∣
b=b∗

0

= qδ(D)
[∫ b∗

0

u

∂

∂ b
V(y, b)

∣∣∣∣
b=b∗

0

p(y − u)dy

]
, 0 < u < b∗

0 . (5.13)

When we replace

∂

∂ b
V(u, b)

∣∣∣∣
b=b∗

0

=
n+m∑
l=1

a′
l(b

∗
0)e

−ρlu

in (5.13) we get an identity of exponential functions in terms of the coefficients a′
l(b

∗
0) which is valid

for all u in (0, b∗
0), as follows.

Let’s define the function

F(u) = ∂

∂ b
V(u, b)

∣∣∣∣
b=b∗

0

=
n+m∑
l=1

a′
l(b

∗
0)e

−ρlu.

Then (5.13) becomes

Bδ(D)F(u) = qδ(D)
[∫ b∗

0

u
F(y)p(y − u)dy

]
, 0 < u < b∗

0 . (5.14)

On the left-hand side of (5.14) we calculate Bδ(D)F(u),

Bδ(D)F(u) =
n+m∑
l=1

a′
l(b

∗
0)Bδ(D)e−ρlu =

n+m∑
l=1

a′
l(b

∗
0)Bδ(− ρl)e−ρlu . (5.15)

On the right-hand side of (5.14) we compute qδ(D)
[∫ b∗

0
u F(y)p(y − u)dy

]
.

Recall that p(y − u) = α′eB′(y−u)b′T, therefore∫ b∗
0

u
e−ρl yp(y − u)dy = e−ρlup̂(ρl)− e−ρlu

∫ ∞

b∗
0−u

e−ρl yp(y)dy
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= e−ρlup̂(ρl)− e−ρlu
∫ ∞

b∗
0−u

e−ρl yα′eB′(y)b′Tdy

= e−ρlu
[
p̂(ρl)−

∫ ∞

b∗
0−u

α′e(B′−ρlI)yb′Tdy
]

= e−ρlu
[
p̂(ρl)− α′

∫ ∞

b∗
0−u

e(B
′−ρlI)ydy b′T

]
= e−ρlu

[
p̂(ρl)+ α′(B′ − ρlI)−1e(B

′−ρlI)(b∗
0−u) b′T]

= e−ρlu
[
p̂(ρl)+ α′(B′ − ρlI)−1e(B

′−ρlI)b∗
0 e−B′u b′T] .

Hence,

qδ(D)
∫ b∗

0

u
e−ρl yp(y − u)dy = qδ(− ρl)e−ρlup̂(ρl)

+ α′(B′ − ρlI)−1e(B
′−ρlI)b∗

0qδ(− B′)e−B′u b′T,

and,

qδ(D)
∫ b∗

0

u
F(y)p(y − u)dy =

n+m∑
l=1

a′
l(b

∗
0)qδ(D)

∫ b∗
0

u
e−ρl yp(y − u)dy

=
n+m∑
l=1

a′
l(b

∗
0)qδ(− ρl)e−ρlup̂(ρl)

+
n+m∑
l=1

a′
l(b

∗
0)α

′(B′ − ρlI)−1e(B
′−ρlI)b∗

0qδ(− B′)e−B′ub′T. (5.16)

Expressions in (5.15) and (5.16) are equal,

n+m∑
l=1

a′
l(b

∗
0)Bδ(− ρl)e−ρlu =

n+m∑
l=1

a′
l(b

∗
0)qδ(− ρl)e−ρlup̂(ρl)

+
n+m∑
l=1

a′
l(b

∗
0)α

′(B′ − ρlI)−1e(B
′−ρlI)b∗

0qδ(− B′)e−B′u b′T.

So,

n+m∑
l=1

a′
l(b

∗
0)[Bδ(−ρl)−qδ(−ρl)p̂(ρl)]e−ρlu =

n+m∑
l=1

a′
l(b

∗
0)α

′(B′ −ρlI)−1e(B
′−ρlI)b∗

0qδ(−B′)e−B′u b′T.

Since ρ1, . . . , ρm+n are the roots of the generalized Lundberg’s equation then Bδ( − ρl) = qδ( −
ρl)p̂(ρl). Thus,

0 =
n+m∑
l=1

a′
l(b

∗
0)α

′(B′ − ρlI)−1e(B
′−ρlI)b∗

0qδ(− B′)e−B′u b′T
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=

⎡⎢⎢⎢⎢⎣
n+m∑
l=1

a′
l(b

∗
0)α

′(B′ − ρlI)−1e(B
′−ρlI)b∗

0

︸ ︷︷ ︸
=0

⎤⎥⎥⎥⎥⎦ qδ(− B′)e−B′u b′T, ∀ u ∈ (0, b∗
0),

since the above identity is valid for all u in the interval (0, b∗
0). For simplicity, we have assumed

that the roots ρ1, . . . , ρm+n are all distinct, then the vectors α′(B′ − ρlI)−1e(B
′−ρlI)b∗

0 are linearly
independent and we obtain

a′
l(b

∗
0) = 0, ∀ l = 1, . . . ,m + n.

This proves that
∂

∂ b
V(u, b)

∣∣∣∣
b=b∗

0

= 0, 0 < u < b∗
0 .

Therefore, we have proven that the optimal barrier level is independent of u.

Remark 5.2: The result holds if we assume multiplicities higher than 1 in the roots ρl ’s.
Example 5.2: InExample 5.1 the optimal value of the barrier level is b∗ = 5.61986,withV(b∗, b∗) =
24.3976.
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