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ABSTRACT

In this article, we use the bootstrap technique to obtain prediction errors for
different claim-reserving methods, namely, the chain ladder technique and
methods based on generalized linear models. We discuss several forms of
performing the bootstrap and illustrate the different solutions using the data
set from Taylor and Ashe (1983), which has already been used by several
authors.

INTRODUCTION

The prediction of an adequate amount to face the responsibilities assumed by an
insurance company is a major subject in actuarial science. Despite its well-known
limitations, the chain ladder technique (see for instance Taylor (2000) for a presenta-
tion of this technique) is the most widely applied claim-reserving method. Moreover,
in recent years, considerable attention has been given to the discussion of possible
relationships between the chain ladder and various stochastic models (Mack, 1993,
1994; Mack and Venter, 2000; Verrall, 1991, 2000; Renshaw and Verrall, 1994; England
and Verrall, 1999; etc.).

The bootstrap technique has proved to be a very useful tool in many fields and can
be particularly interesting to assess the variability of the claim-reserving predictions
and to construct upper limits at an adequate confidence level. Some applications of
the bootstrap technique to claim reserving can be found in Lowe (1994), England and
Verrall (1999), and Taylor (2000).

The application of the bootstrap technique to claim reserving is not straightforward
and, in our opinion, the applications found in the actuarial literature were not the
most adequate.
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FIGURE 1
Pattern of the Available Data

Origin Development Year

Year 1 2 . . . j . . . n − 1 n

1 C11 C12 . . . C1 j . . . C1,n−1 Cn

2 C21 C22 . . . C2 j . . . C2,n−1
. . . . . . . . . . . . . . .

i Ci1 Ci2 . . . Ci,n+1−i

. . .

n − 1 Cn−1,1 Cn−1,2

n Cn,1

The main issue to be treated in this article concerns the definition of the residuals to be
considered in the bootstrap procedure. We also discuss two different methodologies
of performing the bootstrap.

The problem of claim reserving can be summarized in the following way: given the
available information about the past, how can we obtain an estimate of the future pay-
ments (or the number of claims to be reported) due to claims occurred in those years?
Furthermore, we need to determine a prudential margin, which is to say, we want
to estimate an upper limit for the reserve with an adequate level of confidence.

Let Cij represent either the incremental claim amounts or the number of claims aris-
ing from accident year i and development year j and let us assume that we are
in year n and that we know all the past information, i.e., Cij (i = 1, 2, . . . , n and
j = 1, 2, . . . , n + 1 − i). The available data present a characteristic pattern, which can
be seen in Figure 1. From now on, and without loss of generality, we consider that the
Cij are the incremental claim amounts.

More than to predict the individual values, Cij (i = 2, 3, . . . , n and j = n + 2 − i,
n + 3 − i, . . . , n), we are interested in the prediction of the rows total, Ci• (i =
2, 3, . . . , n), i.e., the amounts needed to face the claims occurred in year i and especially
in the aggregate prediction, C, which represents the expected total liability. Keep in
mind that we want to obtain upper limits to the forecasts and to associate a confidence
level to those limits.

In “Generalized Linear Models and Claim-Reserving Methods” we present a brief
review of generalized linear models (GLM) and their application to claim reserving,
whereas in “The Bootstrap Technique” we discuss the application of the bootstrap
technique. In “An Application” we illustrate the two different methods presented in
“The Bootstrap Technique” section to the data set provided in Taylor and Ashe (1983),
which has already been used by several authors.

GENERALIZED LINEAR MODELS AND CLAIM-RESERVING METHODS

Following Renshaw and Verrall (1994) we can formulate most of the stochastic models
for claim reserving by means of a particular family of generalized linear models (see
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McCullagh and Nelder, 1989, for an introduction to GLM). The structure of those GLM
will be given by

Yij ∼ f (y; µij, φ) (1)

with independent Yij’s, µij = E(Yij), and where f (·), the density (probability) function
of Yij, belongs to the exponential family. φ is a scale parameter;

ηij = g(µij); (2)

and

ηij = c + αi + β j , (3)

with α1 = β1 = 0 to avoid overparameterization.

Assumption (1) requires independent incremental claim amounts. This is a crucial
assumption, which is often not fulfilled.

It is common in claim reserving to consider three possible distributions for the variable
Cij: lognormal, gamma, or Poisson. For models based on gamma or Poisson distribu-
tions, the relations (1)–(3) define a GLM with Yij = Cij denoting the incremental claim
amounts. The link function is ηij = ln(µij).

When we consider that the claim amounts follow a lognormal distribution, see Kremer
(1982), Verrall (1991), or Renshaw (1994), among others, we have that Yij = ln(Cij) has
a normal distribution and consequently the relations (1)–(3) still continue to define a
GLM for the logs of the incremental claim amounts. Now the link function is given by
ηij = µij and the scale parameter is the variance of the normal distribution, i.e., φ = σ 2.

The linear structure given by (3) implies that the estimates for some of the parameters
depend on one observation only, i.e., there is a perfect fit for these observations. If the
available data follow the pattern shown in Figure 1, it is straightforward to see that
µ̂1,n = y1,n and that µ̂n,1 = yn,1.

When we define a GLM, we can omit the distribution of Yij and specify only the vari-
ance function and estimate the parameters by maximum quasi likelihood (McCullagh
and Nelder, 1989) instead of maximum likelihood. The estimators remain consistent.
In this formulation, we replace the distributional assumption by var(Yij) = φV(µij),
where V(·) is called the variance function. As we know, for the normal distribution
V(µij) = 1, for the Poisson distribution (or “overdispersed” when φ > 1) V(µij) = µij

and for the gamma distribution V(µij) = µ2
ij.

It is well known that a GLM with the linear structure given by (3) and V(µij) = µij, i.e.,
an overdispersed Poisson distribution, gives the same predictions as those obtained
by the chain ladder technique when we use a full triangle, as is the case in this article
(see Renshaw and Verrall, 1994). However, if we use a quasi overdispersed Poisson,
it is necessary to impose the constraint that the sum of incremental claims in each
column is greater than zero. Note that a similar, but more complicated, constraint
applies to quasi gamma models and that we need a stronger constraint for lognormal,
gamma, or Poisson models.
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As we said, in claim reserving, the figures of interest will be the aggregate value
Y• = ∑n

i=2
∑n

j=n+2−i Yij and the rows total Yi• = ∑n
j=n+2−i Yij. The predicted values

will be given by µ̂• = ∑n
i=2

∑n
j=n+2−i µ̂ij and µ̂i• = ∑n

j=n+2−i µ̂ij, respectively. To obtain
these forecasts the procedure will be as follows:

� define the model,
� estimate the parameters c, αi , β j for i, j = 1, 2, . . . , n and φ,
� obtain the fitted values µ̂ij (i = 1, 2, . . . , n and j = 1, 2, . . . , n + 1 − i),
� check the model,
� obtain the “individual” forecasts µ̂ij = ĉ + α̂i + β̂ j (i = 2, . . . , n and j = n + 2 −

i, . . . , n),
� obtain the forecasts for the rows reserve µ̂i• = ∑n

j=n+2−i µ̂ij (i = 2, . . . , n), and
� obtain the forecast for the total reserve µ̂• = ∑n

i=2 µ̂i•.

Obtaining estimates for the standard error of prediction is a more difficult task.
Renshaw (1994), using first degree Taylor expansions, deduced some approximations
to the standard errors (see also England and Verrall, 1999). These values are, when
the log link function is used, given by

� Standard error for the “individual” predictions:√
E(Yij − µ̂ij)2 ∼=

√
var(Yij) + var(µ̂ij) ∼=

√
φV(µij) + µ2

ijvar(η̂ij), (4)

where V(·) is the variance function and var(η̂ij) is obtained as a function of the
covariance matrix of the estimators and is usually available from most statistical
software. The term µ2

ij is a consequence of the link function chosen.
� Standard error for the row totals:√

E(Yi• − µ̂i•)2 ∼=
√

var(Yi•) + var(µ̂i•)

∼=
√√√√∑

j

φV(µij) +
∑

j

µ2
ijvar(η̂ij) + 2

∑
j1, j2
j2> j1

µi j1µi j2 cov
(
η̂i j1 , η̂i j2

) ,
(5)

where the summations are made for the “individual” forecasts in each row.
� Standard error for the grand total:√

E(Y• − µ̂•)2 ∼=
√√√√√

∑
i, j

φV(µij) +
∑
i, j

µ2
ijvar(η̂ij) +

∑
i1, j1
i2, j2
i1, j1 	=i2, j2

µi1 j1µi2 j2 cov
(
η̂i1 j1 , η̂i2 j2

) ,
(6)

where the summations are made for all the “individual” forecasts.

Those estimates are difficult to calculate and are only approximate values, even in
the hypothesis that the model is correctly specified. This is the main reason to take
advantage of the bootstrap technique.
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THE BOOTSTRAP TECHNIQUE

The bootstrap technique is a particular resampling method used to estimate, in a
consistent way, the variability of a parameter. This resampling method replaces theo-
retical deductions in statistical analysis by repeatedly resampling the “original” data
and making inferences from the resamples.

Presentation of the bootstrap technique could be easily found in the literature (see,
for instance, Efron and Tibshirani, 1993; Shao and Tu, 1995; or Davison and Hinkley,
1997).

The bootstrap technique must be adapted to each situation. For the linear model
(“classical” or generalized) it is common to adopt one of two possible ways:

� paired bootstrap—the resampling is done directly from the observations (values
of y and the corresponding lines of the X matrix in the regression model); and

� residuals bootstrap—the resampling is applied to the residuals of the model.

Despite the fact that the paired bootstrap is more robust than the residual bootstrap,
only the latter could be implemented in the context of the claim reserving, given the
dependence between some observations and the parameter estimates.

To implement a bootstrap analysis we need to choose a model, to define an adequate
residual and to use a bootstrap prediction procedure.

To define the most adequate residuals for the bootstrap, it is important to remember
two points:

� the resampling is based on the hypothesis that the residuals are independent and
identically distributed; and

� it is indifferent to resample the residuals or the residuals multiplied by a constant,
as long as we take that fact into account in the generation of the pseudo data.

Within the framework of a GLM we could use different types of residuals (Pearson, de-
viance, Anscombe, etc.). In this article, our starting point will be the Pearson residuals
defined by

r (P)
ij = yij − µ̂ij√

v̂ar(Yij)
= yij − µ̂ij√

φ̂V(µ̂ij)
. (7)

Since φ is constant for the data set, we can take advantage of the second point and use

r (P∗)
ij = yij − µ̂ij√

V(µ̂ij)
(8)

instead of r (P)
ij in the bootstrap procedure, that is to ignore, at this stage, the scale

parameter. When using a normal model it is trivial to see that these residuals are
equivalent to the classical residuals, yij − µ̂ij, since V(µij) = 1.

However, these residuals need to be corrected since the available data combined with
the linear structure adopted in the model lead to some residuals of value 0 (as we have
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already mentioned, in the typical case, y1,n = µ̂1,n and yn,1 = µ̂n,1). These residuals
should not be considered as observations of the underlying random variable and
consequently should not be considered in the bootstrap procedure.

As in the classical linear model (see Efron and Tibshirani, 1993), it is more adequate
to work with the standardized Pearson residuals and not the Pearson residuals, since
only the former could be considered as identically distributed. It is well known the
standardized Pearson residuals are given by

r (P∗∗)
ij =

r P
ij√

1 − hij
, (9)

where the factor hij is the corresponding element of the diagonal of the “hat” matrix.
For the “classical” linear model, this matrix is given by

H = X(XT X)−1 XT

and for a GLM it can be generalized using

H = X(XT WX)−1 XT W,

where W is a diagonal matrix with generic element given by

(
V(µij)

(
∂ηij

∂µij

)2
)−1

(see McCullagh and Nelder, 1989).

Considering the structure of our models (log link and variance functions), this generic
element will be given by µ2−κ

ij , with κ = 1 for the quasi overdispersed Poisson and
κ = 2 for the quasi gamma model.

Note that similar procedures could be defined if we use another kind of residuals,
namely, the deviance residuals.

Let us now briefly discuss the bootstrap prediction procedure. To obtain an upper con-
fidence limit for the forecasts of the aggregate values we can use two approaches: the
first one takes advantage of the Central Limit Theorem and consists on approximating
the distribution of the reserve by means of a normal distribution with expected value
given by the initial forecast (with the original data) and standard deviation given
by the “standard error of prediction.” The main difference between the bootstrap
estimation of these standard errors and the theoretical approximation stated in the
“Generalized Linear Models and Claim-Reserving Methods” section is that we esti-
mate the variance of the estimator by means of a bootstrap estimate instead of using
the (approximate) theoretical expression. For a detailed presentation of this method
(in a general environment) see Efron and Tibshirani (1993). England and Verrall (1999)
use this approach in claim reserving and suggest a bias correction for the bootstrap
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estimate to allow the comparison between the bootstrap standard error of predic-
tion and the theoretical approximation presented in the “Generalized Linear Models
and Claim-Reserving Methods” section. The reason for this correction is the fact that
the variance of the residuals is smaller than the variance of the underlying random
variable. Moreover, the variance of each residual depends not only on the random
variable but also on the data structure of the model. The solution used by England
and Verrall (1999) consists in the introduction of a global correction. However, when
we use the residuals corrected by the h factor, we use a different correction for each
residual to guarantee (assuming the framework of the model) that they have the same
variance as the underlying random variable. So, the global correction should not be
used when the residuals have already been corrected by the h factor (see Moulton and
Zeger, 1991). The bootstrap standard error of prediction with bias correction will be
given by

SEPb(µ) =
√

φ̂V(µ̂) + N
N − p

(SEb(µ̂))2

=
√

φ̂
∑

µ̂κ
ij + N

N − p
(SEb(µ̂))2,

(10)

and without correction by

SEPb(µ) =
√

φ̂
∑

µ̂κ
ij + (SEb(µ̂))2, (11)

where κ = 1 for the quasi overdispersed Poisson and κ = 2 for the quasi gamma
model, µ stands for the row totals, µi (i = 2, 3, . . . , n), or the aggregate total, µi , and the
summation is done over the adequate individual predicted values. φ̂ and µ̂ are quasi-
maximum likelihood estimates of the corresponding parameters, N is the number of
observations, p is the number of parameters (usually N = n(n − 1) and p = 2n − 1),
while SEb(µ̂) is the bootstrap estimate of the standard error of the estimator µ̂, i.e.,

SEb(µ̂) =
√

1
B

∑B

k=1

(
µ∗

k − µ̂
)2,

where B is the number of bootstrap replicates and µ∗
k is the bootstrap estimate of µ

in the kth replicate (k = 1, 2, . . . , B). Note that, whereas µ̂ is obtained from the quasi-
maximum likelihood equation (using (2) and (3)), φ̂ is a moment estimator based on
the vector y − µ, i.e.,

φ̂ = 1
N − p

∑
i, j

(yij − µ̂ij)2

V(µ̂ij)
.

The second approach (see Davison and Hinkley, 1997) is more computer intensive,
since it requires two resampling procedures in the same bootstrap “iteration,” but the
results should be more robust against deviations from the hypothesis of the model.
The idea is to define an adequate “prediction error” as a function of the bootstrap
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FIGURE 2
First Bootstrap Procedure

Stage 1 – The preliminaries

• Estimation of the model parameters c, αi , β j (i, j = 1, 2, . . . , n) and φ.
• Calculation of the fitted values, µ̂ij (i = 1, 2, . . . , n and j = 1, 2, . . . , n + 1 − i).
• Calculation of the residuals rij = ψ(yij, µ̂ij).
• Forecasts with the original data µ̂ij, µ̂i•, and µ̂• (i = 2, . . . , n and j = n + 2 − i, . . . , n).

Stage 2 – Bootstrap loop (to be repeated B times)

• Resample the residuals obtained in stage 1 (original data) using replacement → r∗
ij .

• Create the pseudo data y∗
ij , solving r∗

ij = ψ(y∗
ij , µ̂ij).

• Estimate the model with the pseudo data and obtain the bootstrap forecast µ̂∗
ij, µ̂

∗
i•, and µ̂∗• .

• Keep the bootstrap forecasts µ̂
(b)
i• = µ̂∗

i• and µ̂
(b)
• = µ̂∗• , b being the index of the cycle.

Stage 3 – Bootstrap data analysis

• Obtain the bootstrap estimate for var(µ̂i•) and var(µ̂•) by means of the empirical variance of the
corresponding B bootstrap estimates. If we use the uncorrected residuals, we must correct the bias of
such estimates by multiplying them by a factor equal to N/(N − p), N being the number of observations
in the data triangle and p the number of parameters in the linear structure.

• Apply the theoretical expressions of the standard error of prediction and use those estimates.

TABLE 1
Available Data

1 2 3 4 5 6 7 8 9 10

1 357,848 766,940 610,542 482,940 527,326 574,398 146,342 139,950 227,229 67,948
2 352,118 884,021 933,894 1,183,289 445,745 320,996 527,804 266,172 425,046
3 290,507 1,001,799 926,219 1,016,654 750,816 146,923 495,992 280,405
4 310,608 1,108,250 776,189 1,562,400 272,482 352,053 206,286
5 443,160 693,190 991,983 769,488 504,851 470,639
6 396,132 937,085 847,498 805,037 705,960
7 440,832 847,631 1,131,398 1,063,269
8 359,480 1,061,648 1,443,370
9 376,686 986,608

10 344,014

estimate and a bootstrap simulation of the future reality and to record the value of
this prediction error for each bootstrap “iteration.” We use the desired percentile of
this prediction error and combine it with the initial prediction to obtain the upper
limit of the prediction interval.

Figure 2 presents the different stages of the first bootstrap procedure and Figure 3
presents the second bootstrap procedure.

AN APPLICATION

Let us consider the data from Taylor and Ashe (1983), which are presented in Table 1
in incremental form. As already said, this data set has been used by several authors
and acts as a sort of benchmark for claims reserving methods. England and Verrall
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FIGURE 3
Second Bootstrap Procedure

Stage 1 – The preliminaries

• Estimation of the model parameters c, αi , β j (i, j = 1, 2, . . . , n) and φ;
• Calculation of the fitted values, µ̂ij (i = 1, 2, . . . , n and j = 1, 2, . . . , n + 1 − i);
• Calculation of the residuals rij = ψ(yij, µ̂ij);
• Forecasts with the original data µ̂ij, µ̂i•, and µ̂• (i = 2, . . . , n and j = n + 2 − i, . . . , n).

Stage 2 – Bootstrap loop (to be repeated B times)

Sub stage 2.1 – Bootstrap estimates

• Resample the residuals obtained in stage 1 (original data) using replacement → r∗
ij .

• Create the pseudo data y∗
ij , solving r∗

ij = ψ(y∗
ij , µ̂ij).

• Estimate the model with the pseudo data and obtain the bootstrap forecast µ̂∗
ij, µ̂

∗
i•, and µ̂∗• .

• Keep the bootstrap forecasts µ̂
(b)
i• = µ̂∗

i• and µ̂
(b)
• = µ̂∗• , b being the index of the cycle.

Sub stage 2.2 – Pseudo reality

• Resample again the residuals obtained in stage 1 and select (with replacement) as many values as there
are “individual” forecasts to be done → r∗∗

ij , (i = 2, . . . , n and j = n + 2 − i, . . . , n).
• Create the pseudo reality, y∗∗

ij , solving r∗∗
ij = ψ(y∗∗

ij , µ̂ij)(i = 2, . . . , n and j = n + 2 − i, . . . , n). µ̂ij are the
predictions obtained in stage 1.

• Obtain the prediction errors r (b)
i• = ψ(y∗∗

i• , µ̂∗
i•) and r (b)

• = ψ(y∗∗• , µ̂∗•) and keep them.
• Return to the beginning of stage 2 until the B repetitions are completed.

Stage 3 – Bootstrap data analysis

• Use the percentile k% of the bootstrap observations of prediction error, for instance r∗
•,k for the grand

total, and obtain the corresponding percentile of the provisions by solving r∗
•,k = ψ(y∗

•,k , µ̂•). µ̂• is the
prediction with the original data (stage 1).

(1999) have summarized the main results obtained by those authors and they also use
bootstrap technique to evaluate the predictions standard errors related to the chain
ladder approach. For that purpose, they consider a model with a quasi overdispersed
Poisson data to define the residuals, taking advantage of the fact that this particular
GLM generates in this particular situation the same estimates as the chain ladder
technique. They use Pearson residuals without correction (given in relation (8)) and
they follow the first procedure for the bootstrap, based on the estimation of a standard
error of prediction. Despite that they use a GLM for the residual definition they obtain
the predictions by means of the chain ladder. This difference is relevant since, in that
particular example, the two methods do not agree for some pseudo data sets generated
by the bootstrap. In fact, for some pseudo data sets we could have negative values in
the northeast corner, which do not allow the use of this GLM. We will follow the same
approach as England and Verrall and will call it mixed model, since the estimates are
obtained by the chain ladder but the residuals are based on a quasi Poisson model.

Our purpose is to use this data set and analyze three issues: first, we correct the
bootstrap procedure used by England and Verrall, using the h corrected residuals.
Second, we illustrate the use of the alternative bootstrap procedure. Since the residuals,
even corrected, could inherit the skewness of the original data, the usual bootstrap
procedure could be misleading as we use an approximation of the normal distribution.
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TABLE 2
Quasi Overdispersed Poisson Model

Without Correction Corrected Residuals
Estimated

Year Reserve SEP Upper 95% SEP Upper 95%

2 94,634 108,949 273,840 110,936 277,108
3 469,511 216,284 825,266 213,571 820,804
4 709,638 258,377 1,134,631 257,996 1,134,003
5 984,889 304,002 1,484,928 301,476 1,480,772
6 1,419,459 376,754 2,039,163 370,270 2,028,499
7 2,177,641 488,362 2,980,925 498,900 2,998,258
8 3,920,301 792,406 5,223,693 771,798 5,189,795
9 4,278,972 1,081,289 6,057,533 1,029,730 5,972,726

10 4,625,811 2,034,469 7,972,214 2,039,736 7,980,877

Total 18,680,856 2,993,352 23,604,480 2,915,885 23,477,058

In such situations, it seems preferable to take advantage of the alternative bootstrap
procedure. We will illustrate this procedure and analyze the differences in the upper
limits for a confidence level of 95 percent with this data set. Third, we analyze the
consequences of the choice of an alternative model in the framework of GLM. To
illustrate this point, we consider the bootstrap predictions obtained by the gamma
model and analyze how far they are from those obtained with the Poisson model.
Notice that for this data set, the gamma model presents a clear advantage: all the
pseudo data generated by this model allow their estimation by the same model. In all
the bootstrap applications we have used B = 1000.

To discuss the first point we consider the same methodology as England and Verall,
which will be called mixed model (quasi overdispersed Poisson for the residual defi-
nition and chain ladder for the predictions) and the first bootstrap procedure. We use
the Pearson residuals without corrections and the residuals with the zeros corrected
and the factor h (see Equation (9)).

Table 2 presents the standard errors of prediction for the two situations considered
as well as the upper limits for a confidence level of 95 percent. Remember that the
estimated reserve is the same.

As we can see, the standard errors of prediction obtained with the corrected data
are not very different from those obtained with the uncorrected residuals (between
−2 and 5 percent when we compare with the corrected ones). When we look to the
upper limits the differences have the same way but the figures are necessarily smaller
(between −1.2 and 1.4 percent). This result is acceptable if we remember that, when
we use the uncorrected residuals, we apply a global correction. Note, however, that
the use of the corrected residuals is more in accordance with the bootstrap theory (see
Davison and Hinkley, 1997; Efron and Tibshirani, 1993; or Moulton and Zeger, 1991).

The second point is to compare the two bootstrap approaches. As we said before, the
residuals, even corrected, could inherit the skewness of the data and, consequently,
the second bootstrap procedure seems preferable, namely, where we face a significant
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FIGURE 4
Bootstrap Forecast for Total and Year 3 Predictions
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TABLE 3
SEP Against PPE Bootstrap Approaches—Overdispersed Poisson Model

Corrected Residuals
Estimated

Year Reserve SEP—95% PPE—95%

2 94,634 277,108
3 469,511 820,804 886,168
4 709,638 1,134,003 1,175,163
5 984,889 1,480,772 1,520,295
6 1,419,459 2,028,499 2,106,503
7 2,177,641 2,998,258 3,085,471
8 3,920,301 5,189,795 5,286,592
9 4,278,972 5,972,726 6,215,378

10 4,625,811 7,980,877 9,370,058

Total 18,680,856 23,477,058 23,678,710

skewness. In this example, the skewness is not too high (the skewness coefficient of
the corrected residuals is 0.437 with a standard error of 0.327).

To illustrate the effects of skewness, Figure 4 shows a histogram of the bootstrap
forecasts (stage 2 in Figure 2 or stage 2.1 in Figure 3) for the aggregate prediction and
for year 3 prediction. As it is expected, the skewness is much heavier in the results for
year 3 than for the aggregate values.

To analyze the differences between the two approaches, we consider again the mixed
model and obtain the upper limits using the two bootstrap procedures: SEP, that is
the approach based on the standard error of prediction, against PPE, that is the other
procedure, to obtain the adequate percentile of the prediction error. Table 3 presents
the results for the upper 95 percent limit. Since some generated pseudo data set present
negative values in the north-east corner, it is not possible to obtain the upper limit for
year 2 when using PPE bootstrap procedure.
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TABLE 4
Overdispersed Poisson Against Gamma Model—Theoretical Approximation

Overdispersed Poisson Gamma Model

Estimated Estimated
Year Reserve SEP Upper 95% Reserve SEP Upper 95%

2 94,634 110,258 275,992 93,316 46,505 169,810
3 469,511 216,265 825,235 446,504 165,315 718,423
4 709,638 261,114 1,139,132 611,145 182,889 911,971
5 984,889 303,822 1,484,632 992,023 262,013 1,422,996
6 1,419,459 375,374 2,036,894 1,453,085 361,748 2,048,107
7 2,177,641 495,911 2,993,342 2,186,161 541,888 3,077,486
8 3,920,301 791,169 5,221,658 3,665,066 969,223 5,259,294
9 4,278,972 1,048,624 6,003,804 4,122,398 1,210,801 6,113,988

10 4,625,811 1,984,733 7,890,405 4,516,073 1,716,813 7,339,978

Total 18,680,856 2,951,829 23,536,181 18,085,772 2,782,816 22,663,092

The second bootstrap procedure generates higher values for all the occurrence years.
The differences amongst the results obtained with the two bootstrap procedures are
more important for the first and the last years (namely, year 10). Note that the difference
for the overall reserve is less than 1 percent but that this difference is higher for each
individual year.

One advantage of the GLM is that we can extend this approach to other variance
functions, that is, for instance, we can assume that the variance is proportional to the
square of the mean instead of being proportional to the mean. Let us now compare the
results for the quasi overdispersed Poisson against the gamma model. Table 4 shows
the estimated reserve as well as the theoretical approximation to the standard error
of prediction given by relations (5) and (6). Combining these two estimates and using
the normal distribution we obtain the upper 95 percent confidence limits, which are
also presented.

Two main conclusions can be drawn for this data set as follows.

� In our example, the gamma model produced smaller estimated reserves but the
figures are not very different. The bigger difference is observed for year 4, where
the value obtained with the gamma model is 14 percent less than those estimated
with the overdispersed Poisson model. For the global prediction the same ratio is
−3 percent.

� However the standard errors of prediction are quite different and consequently the
estimated upper limits. These differences tend to be greater in the first years (esti-
mation based on few predictions). The upper confidence limits present smoother
differences, since they combine the standard errors of prediction with the esti-
mated reserves. The upper limit for the global prediction is 4 percent smaller with
the gamma model than with the overdispersed Poisson model.

Finally we compare the results obtained with the different models and the two boot-
strap procedures. Table 5 presents those results when the residuals are corrected.
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TABLE 5
Bootstrap Results (Corrected Residuals)

Poisson Based Gamma

Estimated Estimated
Year Reserve SEP—95% PPE—95% Reserve SEP—95% PPE—95%

2 94,634 277,108 93,316 168,108 224,222
3 469,511 820,804 886,168 446,504 712,166 797,805
4 709,638 1,134,003 1,175,163 611,145 906,906 996,543
5 984,889 1,480,772 1,520,295 992,023 1,430,559 1,522,673
6 1,419,459 2,028,499 2,106,503 1,453,085 2,041,856 2,117,230
7 2,177,641 2,998,258 3,085,471 2,186,161 3,066,776 3,240,837
8 3,920,301 5,189,795 5,286,592 3,665,066 5,285,036 5,649,816
9 4,278,972 5,972,726 6,215,378 4,122,398 6,134,969 7,063,204

10 4,625,811 7,980,877 9,370,058 4,516,073 7,364,444 9,911,301

Total 18,680,856 23,477,058 23,678,710 18,085,772 22,722,775 23,460,724

The main conclusion is that the aggregate prediction is much more influenced by the
chosen model when the SEP bootstrap procedure is used (the Poisson upper limit is 3.3
percent higher than the gamma limit for the chosen confidence level) than when the
PPE procedure is used (the difference is now 0.9 percent). This point is in accordance
with the idea that the PPE bootstrap procedure is more robust. Nevertheless the
differences are much more significant when we look at the results for each year and it
is not clear that the PPE procedure produces upper limits more similar than the SEP.
The choice of a particular model remains the main issue.
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