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Abstract

How to predict the 3D structure of a given protein starting only from its amino acid

sequenceis called the protein structure prediction (PSP) problem. Despite the rapid

development of computer techniques and the unremitting efforts of researchers, the

PSP problem remains challenging in bioinformatics and computational biology. The

two pivotal factors of a successful free modeling prediction approach are an efficient

search strategy and an effective energy function.

In my research of defending PhD, I try to model the PSP problem as a multi-

objective optimization problem and use an differential evolution search strategy to

solve the problem. In details, the PSP problem is modeled as a multiobjective opti-

mization problem, and a free modeling approach called MODE-K is proposed to solve

this problem. my efforts center on two aspects. First, a knowledge-based energy func-

tion called RWplus is used as the evaluation criterion. This function is decomposed

into two terms: an orientation-dependent energy term and a distance-dependent en-

ergy term. Second, a multiobjective differential evolution coupled with an external

archive employed to perform conformation space searching. After conformation space

searching, we introduce a cluster method to select the final predicted structure from

series of decoy structures. The performance of the method was verified with eighteen

test proteins. The experimental results demonstrate the effectiveness of the proposed

method and indicate that incorporating knowledge-based energy functions into mul-

tiobjective approaches to solve the PSP problem is promising.

The contribution of this thesis is fourfold: first, the PSP problem is modeled as a

multiobjective optimization problem and two knowledge-based energy terms are used

to construct the energy function. Second, a new MODE algorithm that interacts
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with an external archive is proposed. Third, an integral work flow is provided. The

clustering method which called MUFOLD-CL is used to identify the final predicted

structure from a set of decoy structures that are stored in the archive. Fourth,

eighteen test proteins categorized into three structural classes are used to evaluate the

proposed method. More investigation of the experimental results provides evidence

of the superior performance of the proposed approach.

The remainder of this thesis is organized as follows. Chapter 1 presents the in-

troduction of the PSP problem. Chapter 2 presents the related works that are based

on evolutionary algorithms for solving the PSP problem. Chapter 3 presents three

important concepts, i.e., protein structure, canonical differential evolution, and mul-

tiobjective optimization. Chapter 4 presents the details of the proposed approach.

Chapter 5 presents the experimental results and discussion. Finally, the conclusion

of this study is drawn in Chapter 6.
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structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



1

Chapter 1

Introduction

Proteins are complex large organic macromolecules that are composed of one or more

chains of 20 different amino acids in specific orders. Many fundamental biological

functions in organisms are performed by proteins, such as structural support, material

transport, and regulation functions. Since the structure of a protein determines its bi-

ological functions [1], knowledge of its native structures is essential for understanding

its role in life activities [2]. Three experimental methods, i.e., X-ray crystallography,

NMR spectroscopy, and cryo-electron microscopy, are commonly used to perform pro-

tein structure determination. However, all of these experimental methods are costly

and waste much of time [3, 4]. On the other hand, since the three-dimensional (3D)

structure of a protein is determined by its amino acid sequence, it is very meaning-

ful for researchers to obtain the three-dimensional structure of the protein from its

sequence by calculation methods [5].

The problem, i.e., predicting the 3D structure of a given protein starting only

from its amino acid sequence, is called the protein structure prediction problem.

This problem was first proposed by Nobel Laureate Anfinsen in the 1970s [6]. The

high theoretical value and practical significance make the research of this problem

necessary and promising. However, despite the unremitting efforts of researchers over

the past half century, this problem remains challenging in computational biology and

bioinformatics [5].

Numerous approaches have been proposed to solve the PSP problem [7]. These

approaches can be roughly grouped into two categories: template-based modeling
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(TBM) and free modeling (FM). TBM is based on the assumption that similar se-

quences lead to similar structures. If the similar structures of a target protein are

identified in the PDB [8], the target model can be constructed according to these

“templates”. At present, I-TASSER [9] and SwissModel [10] are considered the most

successful methods among the TBM approaches. Although TBMs can yield predic-

tion models that have a higher accuracy than FMs, they seem to give us little insight

into the principle of protein folding. In contrast, if there is no similar structure in

the PDB, then use FM. In fact, successful FM approaches can help us investigate

the intrinsic mechanism of proteins. Moreover, they rely little on a priori knowledge.

The most successful FM approaches are those based on fragment assembly, such as

Rosetta [11] and QUARK [12]. In recent years, the incorporation of deep learning

technology into FM has attracted the interest of many researchers [13, 14].

All FM approaches follow the thermodynamic hypothesis that a native protein

structure remains stable at the lowest Gibbs free energy [6]. This hypothesis indicates

the basic paradigm for solving the PSP problem: computing the free energy of every

possible conformation and identifying the one with the lowest free energy as the final

result. Therefore, as suggested in [15], the two key factors of a successful FM approach

are an effective energy function and an efficient search strategy.

Protein energy functions are used to select more native-like conformations dur-

ing the process of protein folding. The existing protein energy functions can be

roughly classified into two groups [16]: physics-based energy functions (PBEFs) and

knowledge-based energy functions (KBEFs). The PBEFs, such as CHARMM [17]

and OPLS [18], are based on the analysis of the forces between the particles and are

derived from the laws of physics. The KBEFs, e.g., dDFIRE [19], GOAP [20], and

OPUS-DOSP [16], refer to the statistical energy, which are derived from the statistics

of known 3D protein structures. The KBEFs can be further divided into three cat-

egories: contact potentials [21], distance-dependent potentials [22], and orientation-

dependent potentials [23]. In general, it is well accepted that KBEFs are more effective

and more accurate than PBEFs in the field of PSP [24, 19, 25, 16].

Since the conformation search space is very large, an exhaustive search strategy
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is infeasible under normal circumstances. A successful FM must employee efficient

search strategies to find the global minimum of a given energy function. The most

common conformation search method employed in FMs is the Monte Carlo (MC) algo-

rithm or its variations [26, 12]. However, MC sampling seems to fall easily into a local

minimum of a rugged energy function [27, 28]. Recently, employing evolutionary com-

putation techniques as the search strategy in FMs has attracted researchers’ interest

[27, 29, 30, 31, 4], and considerable success has been achieved. These works suggest

that the strong search capacity of evolutionary algorithms (EAs) [32, 33, 34, 35] for

solving a large set of real-world problems [36, 37, 38, 39, 40, 41, 42]. Specifically,

the differential evolution (DE) algorithm [43] has emerged as one of the most pow-

erful algorithms in the field of evolutionary computation [44]. The variants of DE

have outperformed other optimization algorithms in almost all the CEC competi-

tions [45]. Recent research has shown its efficiency for diverse optimization problems

[46, 47, 48, 49, 50, 51, 52]. These works drive us to use the most advanced optimization

technique to address the PSP problem.

In recent years, modeling the PSP problem as a multiobjective optimization prob-

lem (MOOP) provides a new direction for solving it [53, 54, 55, 56, 57, 58, 59]. Not

only the energy function but also the search scheme in multiobjective approaches is

different from that of the single-objective approaches. In multiobjective approaches,

the solution path is not fixed, and more adaptability is provided. More importantly,

the multiobjective approaches seem to be capable of finding more fruitful solutions

around the bottom of the funnel-shaped energy landscape [44, 60], owing to the

Pareto dominance concept. These works based on multiobjective optimization have

intensifiled the advantage of modeling the PSP problem as a MOOP. However, too

much attention is given to the PBEFs in these works although KBEFs are considered

more accurate and more effective than PBEFs [24, 25]. As far as the author knows,

adopting a pure KBEF in a multiobjective approach to address the PSP problem has

not been well explored.

In this study, an FM approach called MODE-K is proposed to solve the PSP

problem. This approach follows the framework of common FM approaches. We use
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the KBEF RWplus [25] as the energy function. Considering the distance-dependent

potentials and the orientation-dependent potentials describe the different interactions

of a protein conformation, we decompose RWplus into two terms as the multiobjec-

tive function: a distance-dependent energy term and an orientation-dependent term.

Moreover, a multiobjective differential evolution (MODE) algorithm is employed as

the search strategy to explore the conformation space. The MODE algorithm is cou-

pled with an archive to maintain the optimal solutions. The external archive is based

on nondominated sorting and is capable of properly addressing slightly worse solu-

tions. The contribution of this paper is fourfold: first, we model the PSP problem as a

MOOP and use two knowledge-based energy terms to construct the energy function.

Second, a new MODE algorithm that interacts with an external archive is proposed.

Third, an integral work flow is provided. We use the clustering method MUFOLD-

CL to distinguish the final predicted structure from a series of decoy structures that

are stored in the archive. Fourth, eighteen test proteins categorized into three struc-

tural classes are used to evaluate the proposed approach. More investigation of the

experimental results provides evidence of the superior performance of the proposed

approach.
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Chapter 2

Related works

Most FM approaches treat the PSP problem as a single-objective optimization prob-

lem (SOOP), in which a conformational search is executed under the guidance of a

single-objective energy function [61, 30, 62, 4]. For example, Borguesan et al. pro-

posed an angle probability list knowledge-based prediction method called GA-APL

to solve the PSP problem [61], where the search strategy is a single-objective genetic

algorithm (GA) and the energy function is the Rosetta scoring function. Correa et

al. employed the Rosetta scoring function as the energy function and presented a

memetic algorithm to solve the PSP problem [30]. In additon, Zhang et al. proposed

an improved single-objective DE called SCDE for solving the PSP problem [62]. The

contact of amino acid residue and secondary structure prediction message are used

to construct the energy function in their work. In [4], Zhou et al. proposed a coop-

erative DE and applied it to PSP. The Rosetta score3 energy function was employed

to evaluate conformation in their work.

Since the multiobjective optimization approaches give new perspectives for solv-

ing the PSP problem, numerous approaches based on multiobjective EA have been

proposed in recent years. For example, Cutello et al. proposed a multiobjective evo-

lutionary strategy called I-PAES [63] to solve the PSP problem. The CHARMM27

energy function was splited into bond and nonbond energy terms as the fitness func-

tion in I-PAES. A similar idea was adopted in ADEMO/D [54] where the search

strategy is an adaptive DE algorithm. In addition, Gao et al. proposed a multiobjec-

tive EA called MO3 [56] and its variant AIMOES [57] for solving the PSP problem.
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In their works, coupled with CHARMM22 energy function, solvent terms were incor-

porated as the third objective to implicitly reflect the effect of solvent. Moreover,

Song et al. combined CHARMM22 and dDFIRE as the compound multiobjective

energy function and used a multiobjective particle swarm optimization (MOPSO) to

solve the PSP problem [58]. In [55], Rocha et al. proposed a multiobjective GA,

which insert co-evolution information from contact maps to solve the PSP problem.

In [59], Zaman and Shehu proposed a memetic EA called Evo-Diverse to control de-

coy diversity in conformation sampling. This approach served as a complementary

approach of Rosetta, and the Rosetta score4 energy function was decomposed into

three terms as the evaluation criterion. These works have shown the advantage of

modeling the PSP problem as a MOOP. However, adopting a pure KBEF in a multi-

objective approach to address the PSP problem has not been well explored in these

works, though KBEFs are considered more accurate and more effective than PBEFs

[24, 25].
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Chapter 3

Materials

3.1 Protein structures and their representations

The structures of proteins are very complex. Briefly, protein structures are distin-

guished into four levels: primary structure, secondary structure, tertiary structure,

and quaternary structure. The protein primary structure is the linear sequence of

amino acids, which are held together by peptide bonds. Twenty categories of amino

acids compose natural proteins. Usually, the sequence of a protein is reported as a

character string. The secondary structures of a protein are the local segments held

together by hydrogen bonds [64]. Two common and important types of secondary

structures are α-helices and β-sheets [65]. Tertiary structure is also called the 3D

structure of a protein. Normally, a native protein has a unique 3D structure in a

cellular environment. In addition, the function of a protein is determined by its 3D

structure. Several tertiary structures consist of a quaternary structure, and they work

as a single functional unit.

The digitization to construct a protein is the first step to solve the PSP problem.

The representation of full-atom torsion angles is used in this study, and all kinds of

atoms in a protein are considered. The torsion angles of a protein consist of back-

bond torsion angles φ (N-Cα bond), ψ (Cα-C bond), and ω (C-N bond), and side-chain

torsion angles χi (i ∈ {0, 1, 2, 3, 4}). We use Table 3.1 to represent the numbers of

the side-chain torsion angles. These angles are all limited from −180◦ to 180◦. In

addition, the bond length and bond angles of the conformation of a protein have been
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Table 3.1: Number of χi angles in each amino acid.

Amino acid number of χi angles

ALA, GLY, PRO 0
CYS, SER, THR, VAL 1
ASN, ASP, HIS, ILE, LEU, 2
PHE, TRP, TYR
MET, GLN, GLU 3
ARG, LYS 4

set to ideal value. In this way, the number of degrees of freedom is reduced greatly

when compared with the representation of Cartesian space. Sequentially, all torsion

angles constitute a vector, which can uniquely determine a protein conformation,

as shown in Fig. 3.1. Since the energy calculation of a protein is based on its 3D

structure, the representation of the torsion angles of the protein is decoded as its

representation of Cartesian space in the evaluation process. It is worth noting that

all changes in a protein conformation occur in the torsion angle space during the

process of a conformation space search.
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3.2 Canonical DE

Inspired by the natural behavior [66, 67], computational intelligence has shown its

powerful capabilities for solving many practical problems [68, 69, 70, 71, 72, 73, 74].

The evolutionary computation is a promising technique in computational intelligence.

The differential evolution (DE) algorithm [43] is a very powerful algorithm in the

field of evolutionary computation [44]. Intrinsically, it is a stochastic optimization

algorithms [44]. The canonical DE algorithm was first proposed by Storn and Price

in the 1990s [43]. DE solves a problem by mutating a set of candidate solutions

with scaled differences, which are extracted from the current population. Given a

practical problem, a candidate solution is encoded like a vector in DE. DE maintains

a population of NP solutions (individuals) and evolves them in the search space. A

candidate individual in DE is represented as follows:

X(i)(t) = (x
(i)(t)
1 , x

(i)(t)
2 , ..., x

(i)(t)
d ), (3.1)

where d is the number of dimensions of the search space, and X(i)(t) showes the ith so-

lution in the NP -size population at iteration t. Usually, the search space of a practical

problem is restricted within a hypercube. The prescribed minimum and maximum

bounds of these individuals are described as Xmin = (xmin,1, xmin,2, ..., xmin,d) and

Xmax = (xmax,1, xmax,2, ..., xmax,d), respectively.

The regular DE algorithm follows the normal constitution of EAs and makes up

of four mainly constitution: initialization, mutation, crossover, and selection. We use

Algorithm 1 to show the pseudo-code of the regular DE, and the four main components

are described as follows.

Initialization: the population is initialized to cover the search space uniformly as:

x
(i)(0)
j = xmin,j + ru(xmax,j − xmin,j), (3.2)

where x
(i)(0)
j is the jth element of ith individual X(i)(0). ru is a unified distributed

random number in [0, 1] and has the same meaning in the following context.
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Algorithm 1: The pseudo-code of the canonical DE.

begin
/* Initialization. */

Initialize the population {X(i)(t)|i ∈ 1, 2, ..., NP}.
Evaluate all X(i)(t)s.
while Stopping criterion is not met. do

for i in {1, 2, ..., NP} do
/* Mutation. */

Create the donor vector V(i)(t) .
/* Crossover. */

Create the trial vector U(i)(t) .

Evaluate U(i)(t).
/* Selection. */

X(i)(t+1) ← Select(X(i)(t),U(i)(t)).

Output result.

Mutation: For each individual X(i)(t) (also called the target vector) in the current

population, a corresponding donor vector V(i)(t) = (v
(i)(t)
1 , v

(i)(t)
2 , ..., v

(i)(t)
d ) is produced

by a mutation strategy [44]. The most common strategy, “DE/rand/1”, is shown as

follows:

V(i)(t) = X(r1)(t) + F (X(r2)(t) −X(r3)(t)), (3.3)

where F is the scale factor, which commandes the scaled difference. r1, r2, and r3

are three different random integers, ranging in [1, NP ]. Thus, X(r1)(t), X(r2)(t), and

X(r3)(t) are three different vectors randomly selected from the current population.

Crossover : A trial vector U(i)(t) = (u
(i)(t)
1 , u

(i)(t)
2 , ..., u

(i)(t)
d ) is generated from its

corresponding target vector X(i)(t) and donor vector V(i)(t). Binomial crossover is

commonly employed in DE to exchange the components between the target vector

and the donor vector. It is expressed as follows:

u
(i)(t)
j =

v
(i)(t)
j , if (ru ≤ Cr or j = jr),

x
(i)(t)
j , otherwise,

(3.4)

where u
(i)(t)
j is the jth element of U(i)(t) and ru is a random number as mentioned
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above. Cr is called the crossover velocity. jr is a random integer in [1, d] and ensures

the difference between U(i)(t) and X(i)(t).

Selection: The target vector X(i)(t) competes with the trial vector U(i)(t) for sur-

viving to the next generation. An individual is updated as follows:

X(i)(t+1) =

U(i)(t), if (f(U(i)(t)) ≤ f(X(i)(t))),

X(i)(t), otherwise.

(3.5)

3.3 Multiobjective optimization

Multiobjective optimization problems arise frequently when solving real-world prob-

lems. In contrast to the more general SOOPs, in MOOPs, there exists more than

one objective function that need optimization at the same time. These objectives

are in conflict in normal cases. Mathematically, a MOOP (for minimization) can be

formulated as follows:

minimize f(x) = (f1(x), f2(x), ..., fm(x)),

subject to x = (x1, x2, ..., xn) ∈ Ω,
(3.6)

where x is called the decision vector with n dimensions and Ω is the decision space.

f : Ω → Rm is the objective vector, consisting of m (m ≥ 2) objective functions:

f1, f2, ..., fm.

Due to the conflicts among these objectives in MOOPs, the comparison between

two feasible solutions refers to the concept of Pareto dominance. Use a and b be two

feasible solutions in Ω, a is better than b; that is, a dominates b (denoted by a ≺ b

[75]) if

1) ∀i ∈ {1, 2, ...,m}, fi(a) ≤ fi(b) and

2) ∃j ∈ {1, 2, ...,m}, fj(a) < fj(b).
(3.7)

A solution x∗ ∈ Ω is the Pareto optimal solution if there exists no solution x′ ∈ Ω

that dominates x∗. All Pareto optimal solutions make up a Pareto optimal set P ,

and the image of the Pareto optimal set is called a Pareto front PF [76]. Fig. 3.2
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f2

f1

Pareto front

Pareto optimal 
solution

Figure 3.2: An example of the Pareto Front of a two-objective optimization problem.

shows an example of the Pareto Front of a two-objective optimization problem. P

and PF are defined as follows:

P = {x∗ ∈ Ω |¬∃ x′ ∈ Ω,x′ ≺ x∗},

PF = {f(x) | x ∈ P}.
(3.8)

In reality, there exist many or infinite Pareto optimal solutions for a practical

MOOP, which delegate different trade-offs among the objectives. However, only one

or a small number of preferred solutions are eventually selected by the decision maker.

Thus, the key issue of an optimization method is how to obtain a perfect approxi-

mation of the real Pareto front of a MOOP. Usually, the quality of a approximated
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Pareto front to a real one is mainly assessed according to its convergence and diversity

[77, 78].

Recently, the adoption of EAs to solve MOOPs has sparked the interest of re-

searchers. These methods based on EAs are classified as multiobjective evolutionary

algorithms (MOEAs) [76, 77, 78, 79, 80, 81, 82]. One of the significant differences

between MOEAs and the EAs is how to compare two candidate solutions. It is easy

to differentiate two candidate solutions in a SOOP because a complete order between

them can be obtained by the single-objective fitness function. However, in MOOPs,

the Pareto dominance relationship only delimites a partial order because two feasible

solutions may be nondominated. Thus, designing an additional strategy to assist in

Pareto dominance is a crucial issue in MOEAs [78, 83, 84, 85].

This study follows the widely used two-stage strategy [86] to assign the complete

order to series of feasible solutions. Considering the condition of continuous optimiza-

tion and given a set of feasible solutions, first, every solution will be distributed a rank

value by counting the number of solutions that dominates it in the solution set. It is

easily concluded that the solutions with smaller ranks are preferred, and the solutions

of rank 0 constitute the Pareto optimal set. Then, the solutions with the same rank

are further assigned a density value. The common-used density estimation methods

are crowding distance [77] and gridding [78]. The solutions with a lower density value

(in the lower crowded region) are preferred. Therefore, a feasible solution a is said to

be better than b if

1)ranka < rankb or

2)ranka = rankb and densitya < densityb.
(3.9)

In addition, the solutions with the same rank are nondominated. This inference

is vital for the scheme of nondominated sorting in MOEAs, as shown later in Section

4.3. This inference can be proven briefly through a proof by contradiction as follows.
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proof Step 1 : it is easily concluded that Pareto dominance is a transitive relation

from Eq. 3.7, and is expressed as follows:

a ≺ b and b ≺ c ⇒ a ≺ c, (3.10)

where a, b, and c are three feasible solutions in Ω.

Step 2 : considering two feasible solutions p,q ∈ Ω with the same rank r, if

they are not nondominated, one will dominate the other. Without loss of generality,

we suppose that p dominates q. Since rankp = r, there are r solutions in Ω that

dominate p. Because Pareto dominance is transitive and p ≺ q, there are at least

(r + 1) solutions in Ω that dominate q. Hence, rankq >= r + 1, which leads to a

contradiction because rankq = r in the proposition. Therefore, the solutions with

the same rank are nondominated.
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Chapter 4

Method

This chapter presents the details of the proposed MODE-K approach. MODE-K fol-

lows the general procedure of FM approaches and includes of three main steps. First,

some preprocessing is performed after inputing a query protein sequence. Then, the

MODE algorithm is used to perform conformational space searching to obtain series

of decoy structures. Finally, the decoy selection method MUFOLD-CL is executed to

choose the final predicted structure from the set of decoy structures. Fig. 4.1 shows

the flowchart of MODE-K. As followed, more details of MODE-K are explained.
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4.1 Protein energy function

In this study, the KBEF RWplus potential [25] is used to assess the conformation of a

protein during simulation. This protein energy function consists of two energy terms

and has the following form:

ERWplus = ERW + wEori, (4.1)

where ERW is a distance-dependent energy term, Eori is an orientation-dependent

term. w is a weight constant and is set to 0.1 [25].

The distance-dependent energy ERW is a pair-wise energy term, and the construc-

tion of this energy term follows the inverse of Boltzmann’s law:

ERW =
∑
α,β

u(α, β,R) =
∑
α,β

−kT lnPobs(α, β,R)

Pexp(α, β,R)

≈
∑
α,β

−kT lnNobs(α, β,R)

Nexp(α, β,R)
,

(4.2)

where k is the Boltzmann constant and T is the temperature. R is the distance

between two atoms α and β that are with specific atom types. Pobs(α, β,R) and

Pexp(α, β,R) are the observed probability and the expected probability, respectively,

within a distance shell R+ ∆R. Nobs(α, β,R) and Nexp(α, β,R) are the observed and

the excepted number of atom pairs (α and β) in the same distance shell. The calcu-

lation of Nobs(α, β,R) is similar among most KBEFs [19], and the major difference

is the calculation of Nexp(α, β,R). To calculate Nobs(α, β,R), the classic KBEFs are

based on a noninteracting ideal gas reference state, such as DOPE [87] and DFIRE

[88]. In contrast, the RW potential uses a random-walk reference state constructed

by a freely jointed chain model [89]. This state reflects and counteracts the inherent

chain connectivity effect. As a result, the effectiveness of the RW is improved.

The orientation-dependent energy term Eori is used to specify the side-chain pack-
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ing orientation and is expressed as follows:

Eori =
∑
A,B

δ(A,B)u(A,B,OAB)

=
∑
A,B

−δ(A,B)kT ln
Pobs(A,B,OAB)

Pexp(A,B,OAB)

≈
∑
A,B

−δ(A,B)kT ln
Nobs(A,B,OAB)

Nexp(A,B,OAB)
,

(4.3)

where A is a vector pair used to describe the side-chain packing orientation of a residue

and B is another vector pair. δ(A,B) is 1 when the distance between vector pairs A

and B is within a given value; otherwise, it is 0. The definitions of Pobs(A,B,OAB),

Pexp(A,B,OAB), Nobs(A,B,OAB), and Nexp(A,B,OAB) are similar to those for the

terms in Eq. 4.2.

Since the distance-dependent potentials [22, 88] and the orientation-dependent po-

tentials [23] describe the different types of interactions of a protein conformation and

act collectively, combining them into a mixed potential to improve the performance

of the potential has peaked researchers’ interest [25, 20, 16]. In fact, the orientation-

dependent and distance-dependent contributions vary in different ranges of the con-

tact distance [20, 16]. The distance-dependent potentials can capture the feature

of local interactions more effectively than the orientation-dependent potentials. The

orientation-dependent potentials can reflect the effect of no-bonded interactions, such

as hydrogen bonding and salt bridges [20]. The different characteristics suggest that

concurrently taking these two contributions into account is reasonable and promising.

Although a linear combination of different energy terms is widely adopted in most

energy functions [27, 90], optimizing the weight parameter of these energy function

terms is not easy [16, 91]. On the other hand, multiobjectization provides another

perspective from which to address this problem. The methods of splitting an energy

function into a short-range term and a long-range term have aroused the interest of

researchers [60, 54, 59]. More importantly, the shape of multiobjective energy func-

tions is steady and is not sensitive to these weights. These characteristics benefit the
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conformation search of a prediction system.

In this work, the RWplus potential is decomposed into two energy terms: the

distance-dependent energy term and the orientation-dependent energy term. The

abovementioned reasons provide evidence for allowing us to separate them. A more

detailed discussion about the conflict between the two energy terms is summarized

later in Section 5.4. The two objective functions for optimization are defined as

follows:  f1 = ERW ,

f2 = wEori,

(4.4)

where f1 is the first objective function and f2 is the second objective function. ERW ,

w, and Eori have the same definitions as mentioned above.

4.2 Multiobjective differential evolution

Briefly, comparing the algorithm components in the EAs and the components in

MOEAs, the biggest difference between them is the scheme in the selection procedure

[86]. It is difficult to compare two nondominated solutions in MOEAs. In this study,

we modify the selection procedure of the canonical DE and extend it as MODE.

The abovementioned two-stage strategy is incorporated into the selection procedure

to assign complete order to two possible solutions. On the other hand, the goal of

MOEAs is to obtain series of nondominated solutions. Maintaining a second pop-

ulation, also called an external archive, storing these solutions is common and wise

[78, 92]. We follow this idea and maintain an external archive to interact with the

current population.

The proposed MODE algorithm follows the framework of the canonical DE. How-

ever, the two main differences are the selection procedure and the external archive.

To explain the details of the proposed MODE algorithm, the pseudo-code is shown

in Algorithm 2.

Initially, the iteration counter t is set to 0. Within the constrained search space,

all the target vectors X(i)(t)s in the current population are initialized, as described
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in Section 3.2. Subsequently, the multiobjective function of each target vectors is

evaluated. Later, all the target vectors are directly added to the empty external

archive A. From this point, the main loop starts. For each target vector X(i)(t),

the mutation operator, crossover operator, and selection operator are executed in

Algorithm 2: The main procedure of the proposed MODE algorithm.

begin
/* Initialization. */

t← 0.

Initialize the population {X(i)(t)|i ∈ {1, 2, ..., NP}}.
Evaluate all target vectors X(i)(t)s by multiobjective energy function.

Add all X(i)(t)s into the empty archive A directly.
while t < Tmax do

for i in {1, 2, ..., NP} do
/* Mutation. */

Generate a new scale factor F as described in Section 4.4.

Select a optimal solution from A as a best solution X(best)(t).

Create the donor vector V(i)(t) according to Eq. 4.5.
/* Crossover. */

Generate a new crossover rate Cr according to Eq. 4.6.

Create the trial vector U(i)(t) according to Eq. 3.4.

Evaluate U(i)(t) by multiobjective energy function.
/* Selection. */

if U(i)(t) ≺ X(i)(t) then
X(i)(t+1) ← U(i)(t)

else if X(i)(t) ≺ U(i)(t) then
X(i)(t+1) ← X(i)(t)

else
/* X(i)(t), U(i)(t) are non-dominated. */

Calculate the rank of X(i)(t) and U(i)(t) referring to archive A.
if rankU ≤ rankX then

X(i)(t+1) ← U(i)(t)

else
X(i)(t+1) ← X(i)(t)

Fetch all U(i)(t)s and add them into archive A.
Update archive A as described in Section 4.3.
t← t+ 1

Output result.
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turn to generate a new offspring. Compared with the canonical DE, the proposed

MODE algorithm has several improvements. First, the parameters F and Cr are not

fixed but change dynamically. This scheme is explained in the next section. Second,

the “DE/best/1” strategy is employed in the mutation procedure to generate donor

vectors as follows:

V(i)(t) = X(rbest)(t) + F (X(r2)(t) −X(r3)(t)), (4.5)

where X(rbest)(t) is an optimal solution selected randomly from the solutions of rank 0

in archive A.

The selection procedure of the MODE is modified greatly from the canonical DE

because the dominance relationship between X(i)(t) and U(i)(t) has two conditions. If

one of them administrates the other, the better one is choosen as the new offspring. If

they are nondominated, we refer to archive A to determine which is better. The rank

of X(i)(t) or U(i)(t) is calculated by counting the number of solutions that dominate

it in archive A. The solution with lower rank is preferred. The trail vector U(i)(t)

substitutes the target vector X(i)(t) when it is of lower rank. Next, all the trail vectors

are added to archive A if the addition criterion is met. The updating strategy for

archive A is shown in Section 4.3. Finally, the algorithm terminates and outputs the

result.
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4.3 The archive based on nondominated sorting

Figure 4.2: The crowding distance of a solution is defined as the perimeter of the
rectangle determined by its two neighbors in the same rank.

It is an effective way to maintain an external archive to store nondominated so-

lutions along with evolution in many MOEAs [78, 92]. An external archive with a

bound size NA is also maintained in the proposed MODE algorithm. Inspired by pre-

vious works [11, 12, 58], this archive A not only stores the nondominated solutions in

the Pareto front but also other suboptimal solutions with slightly worse energy. The

method of assigning complete order over all solutions is as discussed in Section 3.3.

The updating strategy for archive A is shown in Fig. 4.3. At each iteration, if the

archive is not full, all the trail vectors U(i)(t)s are directly added into A. On the other
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hand, if A is full, nondominated sorting is used. First, all the trail vectors U(i)(t)s are

appended to A. A new set A∪U of size (NA+NP ) is generated. Next, each solution

is assigned a rank value, and the solutions with the same rank value are collected

into a subset. Then, these solution subsets are sorted in ascending order by the rank

value. Next, the triming operation is implemented backward on A ∪ U to delete the

worse solutions (with higher rank values). To keep the size of A equal to NA, the last

deleted set, “Rank k”, is sorted according to density. In fact, these solutions in “Rank

k” are nondominated. This inference has been proven in Section 3.3. The density of

each solution in “Rank k” is estimated by the crowding distance, as calculated in the

NSGA-II algorithm [77]. Fig. 4.2 shows an example of how to calculate the crowding

distance of a solution. The solutions with a larger crowding distance are considered

in sparse regions and are preferred. According to the crowding distance values, All

of these solutions in “Rank k” are sorted in descending order. The triming operation

is then implemented backward on “Rank k” to delete the worse solutions. Finally,

archive A is updated.
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It is worth noting that the solutions of rank 0 in archive A consist of the Pareto

optimal set, which are so far reached by MODE. In extreme cases, archive A is full

of nondominated solutions, which are all assigned a rank of 0. The diversity of the

Pareto front is ensured by the utilization of the crowding distance. In addition, since

updating archive A is time consuming, we update it after updating all of the current

population. Only at the beginning of updating archive A, all newly generated trail

vectors U(i)(t)s are added into archive A. Thus, the proposed MODE is considered a

synchronous DE [45].

4.4 Parameter controlling

There are two main control parameters in DE: the mutation scale factor F , and the

crossover rate Cr. The performance of DE is highly associated with these parameters

[45]. Inspired by the work of saDE [93], the mutation scale factor F in MODE fits a

Gaussian distribution with mean µ = 0.5 and standard deviation σ = 0.3. A new F is

generated and applied to each target vector in the mutation, as shown in Algorithm 2.

In this way, both exploitation (with small values) and exploration (with large values)

are balanced throughout evolution. This setting satisfies the characteristics of the

PSP problem. On the other hand, in the classic Rosetta approach [26, 11] the protein

conformation is modified by inserting a 9-residue fragment in the beginning stage and

a 3-residue fragment in the ending stage. It suggests that the crossover rate Cr in

the proposed MODE changes throughout the evolution process as follows:

Cr =
40

d
exp(− t

Tmax
), (4.6)

where d is the number of dimensions, i.e., the number of torsion angles of a protein. t is

the iteration counter, and Tmax is the maximum number of iterations. In this way, the

number of modified torsion angles changes from approximately 40 to 14 throughout

the evolution procedure. In other words, the equivalent number of modified residues

changes from approximately 9 to 3 throughout evolution.
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4.5 Complexity analysis

Compared with the canonical DE, the additional complexity of the proposed MODE

mainly depends on updating the archive A. We make an analysis of the time complex-

ity of updating the archive A as follows. For two solutions with m objective values,

O(m) comparisons are required to determine the dominance relationship. Then, to

allocate a rank value to each solution in A ∪ U , O((NA + NP )(NA + NP − 1)/2)

Pareto dominance comparisons are required. Later, the crowding distance of each

solution in “Rank k” is calculated, and according to the crowding distance valuse,

these solutions are sorted. The complexity of these two processes is far less than

O(NA + NP ) + O((NA + NP )(NA + NP − 1)/2). Finally, the complexity of the

pruning operation is less than O(NA + NP ). Thus, the complexity of updating the

archive A can be calculated as follows:

≤ O(m)O((NA +NP )(NA +NP − 1)/2) +O(NA +NP )

+O((NA +NP )(NA +NP − 1)/2) +O(NA +NP )

= O((m+ 1)(NA +NP )(NA +NP − 1)/2) + 2O(NA +NP )

≈ O(m(NA +NP )2),

(4.7)

Since the archiveA is updated at every iteration, the additional complexity isO(m(NA+

NP )2Tmax). Considering the complexity of the canonical DE [44] is O(NP · dTmax),

the overall complexity of the proposed MODE is O((NP · d+m(NA +NP )2)Tmax).

4.6 Implementation of MODE in PSP

We model the PSP problem as a MOOP and use the MODE algorithm to solve it. As

shown in Fig. 4.1, the proposed MODE algorithm plays a central role in MODE-K.

To accomplish the MODE algorithm to solve the PSP problem, the knowledge-based

energy function RWplus is employed as the fitness function to assess a solution in

MODE. Specifically, the representation of the Cartesian space of a protein is generated

from the representation of torsion angles for the purpose of evaluating energy.
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Table 4.1: Constraints of the secondary structure for torsion angles φ and ψ.

φ ψ
α-helix [−67◦,−47◦] [−57◦,−37◦]
β-sheet [−130◦,−110◦] [110◦, 130◦]
coil [−180◦, 180◦] [−180◦, 180◦]

The variation range of each torsion angle is [−180◦, 180◦]. Additional restrictions

are set on these torsion angles to narrow the search space. In fact, the search space

sampled by FM approaches is usually limited in some way [94]. A secondary structure

prediction method PSIPRED [64] is used to predict the secondary structure of a query

protein. Each residue of the query sequence is distributed one type: α-helix, β-sheet,

or coil. Then, the torsion angles φ and ψ of each type are restricted, as shown in Table

4.1. Moreover, all ω are set to 180◦, which fits the observation that ω is very close

to 180◦ in most natural proteins [95]. Furthermore, all side-chain torsion angles are

limited in the constraints that are extracted from the Rotamer library [96]. Finally,

the minimum and maximum bounds of MODE, i.e., Xmin and Xmax, are set according

to these constraints.

4.7 Decoy selection

Usually, a large-size set of decoy structures is generated by a typical FM approach

before the final decision is made. The selection of the final predicted structure from

these decoys is an important issue in the PSP field [97]. The process of decoy selection

is essential for an integrated FM approach because it is not meaningful if we can

not pick out one or a few correct structures from series of decoy structures after

conformation space searching. The methods based on clustering [98] are commonly

used in decoy selection [99, 97]. The clustering methods are effective because they

can make use of the consensus information extracted from the set of decoy structures.

In this study, we use the fast model clustering method, called MUFOLD-CL [100], to
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select the best near-native model from series of decoy structures. After clustering all

of the solutions in archive A, the cluster centroid with a large cluster size is selected

as the final predicted structure.
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Chapter 5

Experimental studies

In this chapter, we present the experiments to evaluate the performance of the pro-

posed MODE-K approach. We report the results obtained by MODE-K and compare

them to the results of other works.

5.1 Experimental setup

We use the most common metric, the root-mean-square deviation (RMSD), to mea-

sure the similarity between two structures. The RMSD is calculated as follows:

RMSD(s1,s2) =

√∑n
i=1 d

2
i

n
, (5.1)

where two structures s1 and s2 have been superimposed optimally by using the Kabsch

rotation matrix. n is the number of matching atoms, and di is the distance between

the ith atom in s1 and the matched ith atom in s2. When a predicted structure

is compared with the native structure, the smaller the value of RMSD is, the more

accurate the predicted structure. Usually, the Cα atoms in the backbone are only

considered for calculating the RMSD in real-world applications.

Eighteen proteins are used as the test instances to verify the performance of

MODE-K. The sequences the test proteins are listed in Table 5.1. Detailed infor-

mation about them is listed in Table 5.2. The structural classification of the test

proteins contain α, β, and α/β. Table 5.2 also shows that the degrees of freedom of
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Table 5.1: The sequences of test proteins.
PDB ID Sequence
1AB1 TTCCPSIVARSNFNVCRLPGTSEAICATYTGCIIIPGATC

PGDYAN
1BDD TADNKFNKEQQNAFYEILHLPNLNEEQRNGFIQSLKDDPS

QSANLLAEAKKLNDAQAPKA
1DFN DCYCRIPACIAGERRYGTCIYQGRLWAFCC
1E0G DSITYRVRKGDSLSSIAKRHGVNIKDVMRWNSDTANLQPG

DKLTLFVK
1E0M SMGLPPGWDEYKTHNGKTYYYNHNTKTSTWTDPRMSS
1ENH RPRTAFSSEQLARLKREFNENRYLTERRRQQLSSELGLNE

AQIKIWFQNKRAKI
1I6C KLPPGWEKRMSRSSGRVYYFNHITNASQWERPSGNSSSG
1K36 VSITKCSSDMNGYCLHGQCIYLVDMSQNYCRCEVGYTGVR

CEHFFL
1ROP MTKQEKTALNMARFIRSQTLTLLEKLNELDADEQADICES

LHDHADELYRSCLARF
1SXD GSHMAALEGYRKEQERLGIPYDPIHWSTDQVLHWVVWVMK

EFSMTDIDLTTLNISGRELCSLNQEDFFQRVPRGEILWSH
LELLRKYVLAS

1ZDD FNMQCQRRFYEALHDPNLNEEQRNAKIKSIRDDC
2GB1 MTYKLILNGKTLKGETTTEAVDAATAEKVFKQYANDNGVD

GEWTYDDATKTFTVTE
2KDL TTYKLILNLKQAKEEAIKELVDAGTAEKYIKLIANAKTVE

GVWTLKDEIKTFTVTE
2M7T GCPQGRGDWAPTSCSQDSDCLAGCVCGPNGFCG
2P6J MKQWSENVEEKLKEFVKRHQRITQEELHQYAQRLGLNEEA

IRQFFEEFEQRK
2P81 AKREFNENRYLTERRRQQLSSELGLNEAQIKIWFQNKRAK

IKKS
3DF8 SNAMLRYGDTEICIDPSESVLHLLGKKYTMLIISVLGNGS

TRQNFNDIRSSIPGISSTILSRRIKDLIDSGLVERRSGQI
TTYALTEKGMNVRNSLMPLLQYISVLDRN

3NRW RPSLSPREARDRYLAHRQTDAADASIKSFRYRLKHFVEWA
EERDITAMRELTGWKLDEYETFRRGSDVSPATLNGEMQTL
KNWLEYLARIDVVDEDLPEKVHVP

the prediction system is reduced significantly by using the representation of torsion

angles.

All algorithms are carried out in C and Python. They are executed on a Linux

64-bit system with Core-i5 CPU, 3.4 GHz, and 8 GB memory. As followed, the



32

Table 5.2: Details of the test proteins.

PDB ID Length (Number Structural Number of Number of
of amino acids) class torsion angles atoms

1AB1 46 α/β 192 645
1BDD 60 α 297 942
1DFN 30 β 139 471
1E0G 48 α/β 236 777
1E0M 37 β 174 586
1ENH 54 α 289 947
1I6C 39 β 185 613
1K36 46 β 218 708
1ROP 56 α 284 905
1SXD 91 α 448 1501
1ZDD 34 α 180 570
2GB1 56 α/β 264 855
2KDL 56 α 278 920
2M7T 33 α/β 134 414
2P6J 52 α 289 921
2P81 44 α 241 780
3DF8 109 α/β 529 1733
3NRW 104 α 517 1714

parameters of the MODE are set. The population size NP is set to 50, the archive

size NA is set to 2000, and the maximum iteration Tmax is set to 2000. As a result,

the cost budget for one prediction at a time is 100, 000 evaluations. Normally, it takes

about 20 hours to run a structure prediction.
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5.2 Optimization results
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Figure 5.1: The optimization results for 1BDD and 1DFN. The solutions of rank 0
(Pareto front) in A are marked in black, and other solutions are marked in red.

We applied the proposed MODE-K approach to these test proteins. For each test

protein, series of optimal solutions stored in archive A are generated after optimiza-
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(b) 1E0M

Figure 5.2: The optimization results for 1E0G and 1E0M. The solutions of rank 0
(Pareto front) in A are marked in black, and other solutions are marked in red.

tion. The solutions of each test protein in the objective space are plotted in Fig. 5.1 ∼

Fig. 5.8, and Fig. 5.15 ∼ Fig. 5.17 (a). Moreover, the Pareto optimal solutions (i.e.,

the solutions of rank 0 in archive A) are marked in black points. It is clear that the
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Figure 5.3: The optimization results for 1ENH and 1I6C. The solutions of rank 0
(Pareto front) in A are marked in black, and other solutions are marked in red.

solutions of different test proteins form different images in the objective space. This

finding indicates that the landscapes of energy functions of these test proteins have

different characteristics. Moreover, these solutions in archive A are considered diverse
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(b) 1SXD

Figure 5.4: The optimization results for 1K36 and 1SXD. The solutions of rank 0
(Pareto front) in A are marked in black, and other solutions are marked in red.

because they are distributed along the Pareto front in each figure. It strengthens the

advantages of the proposed MODE algorithm, where the scheme of nondominated

sorting to ensure diversity in the solutions is employed.
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Figure 5.5: The optimization results for 1ZDD and 2GB1. The solutions of rank 0
(Pareto front) in A are marked in black, and other solutions are marked in red.

The solutions of protein 1K36 and 2GB1 exhibit uncustomary images in the ob-

jective space, where the Pareto fronts form long tails. The second objective of these

solutions in the long tail is optimized and sufficiently small. We investigate the
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Figure 5.6: The optimization results for 2KDL and 2M7T. The solutions of rank 0
(Pareto front) in A are marked in black, and other solutions are marked in red.

RMSDs of these solutions. They have poor accuracies, and their RMSD values are

near 30 Å. In brief, the search algorithm falls into the local optima of the rugged

energy functions. However, there are still many solutions with high accuracy main-
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Figure 5.7: The optimization results for 2P6J and 3DF8. The solutions of rank 0
(Pareto front) in A are marked in black, and other solutions are marked in red.

tained in archive A. These solutions are more likely to cluster in the basins of the

energy functions. Hence, the decoy selection method cannot be easily misled by the

worse solutions. These findings strengthen the necessity of retaining the solutions
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(a) 3NRW

Figure 5.8: The optimization results for 3NRW. The solutions of rank 0 (Pareto front)
in A are marked in black, and other solutions are marked in red.

with slightly worse energy, and the updating strategy for archive A is considered

appropriate.
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5.3 The evolution of archive A
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Figure 5.9: For 1BDD (α), the dynamics of the solutions in archive A at iterations 500,
1000, 1500, and 2000 are exhibited in subfigures (a). The corresponding cumulative
distribution of the RMSD values for all solutions in archive A are plotted in subfigures
(b).

To investigate the relationship between the multiobjective energy and the con-
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Figure 5.10: For 1E0G (α/β), the dynamics of the solutions in archive A at itera-
tions 500, 1000, 1500, and 2000 are exhibited in subfigures (a). The corresponding
cumulative distribution of the RMSD values for all solutions in archive A are plotted
in subfigures (b).

formation accuracy, we consider all the solutions in archive A during evolution. For

three typical proteins, 1BDD (α), 1E0G (α/β), and 1E0M (β), Fig. 5.9 ∼ Fig. 5.11

shows the dynamics of these solutions in archive A at iterations of 500, 1000, 1500,
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Figure 5.11: For 1E0M (β), the dynamics of the solutions in archive A at iterations
500, 1000, 1500, and 2000 are exhibited in subfigures (a). The corresponding cumu-
lative distribution of the RMSD values for all solutions in archive A are plotted in
subfigures (b).

and 2000. The two objective energy functions of them are shown in Fig. 5.9 ∼ Fig.

5.11 (a), respectively. The corresponding cumulative distribution functions of RMSD

values are shown in Fig. 5.9 ∼ Fig. 5.11 (b), respectively. From Fig. 5.9 ∼ Fig. 5.11
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(a), it is clear that the solutions in archive A shift entirely to the lower region of both

objective energy functions. Moreover, their quality improved gradually because the

percentage of solutions with a high accuracy increased, as shown in Fig. 5.9 ∼ Fig.

5.11 (b). For the rest of the test proteins, they also got similar results. These results

show that the solutions with lower energies correspond to a roughly more accurate

structure, even for the multiobjective energy function.
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5.4 Investigating the conflicts

The conflicts among different objectives is a typical characteristic of a MOOP [101].

In this study, we constitute the bi-objective energy function by decomposing the

knowledge-based energy function RWplus into two energy terms: the distance-dependent

energy term and the orientation-dependent energy term. Since there is no ceremo-

nial definition of conflicts among objectives in the field of MOOPs, we provide some

insights about the conflict between the two objectives experimentally.

To investigate the conflict between the two objectives, we trace the optimization

process of the test proteins during the iterations of the MODE algorithm. Six typical

test proteins with three different structural classes are investigated. The simple intu-

itions for six test proteins are displayed in Fig. 5.12 ∼ 5.14. For each test protein, the

two objective functions of a common individual during the iterations of MODE are

plotted. The remaining test proteins have similar intuitions. In Fig. 5.12 ∼ Fig. 5.14,

we add to the number of iterations, the two objective functions gradually decrease.

This phenomenon is due to the powerful optimization performance of the proposed

MODE algorithm. From another aspect, two functions compete with each other for

minimization. It’s obviouslly that the two objective functions are in conflict because

in general, one function increases as the other function decreases.

These findings can also be explained from the viewpoint of structural biology.

Given two blocks in a protein conformation, the physical contact distance between

them plays a leading role in close distances; thus, the distance-dependent contri-

butions are more sensitive than the orientation-dependent contributions in this case.

When the contact distance between the two squares is large, the orientation-dependent

contributions are more sensitive because nonbonded interactions depend on specific

angles. On the other hand, a protein conformation is considered a collection of

blocks. The optimization process of the protein energy function is considered as

a protein folding process. A perturbation of the protein conformation can locally

decrease the distance-dependent contributions and globally increase the orientation-

dependent contributions, and vice versa. As a result, two objective functions are in
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(b) 1ROP (α)

Figure 5.12: For two typical α proteins, the conflict between the two objective func-
tions of common individuals during the iterations of MODE are investigated. Gener-
ally, one function increases as the other function decreases.

conflict during the optimization process.



47

� ��� ��� ���� ���� ����
��	��
��

�����

�����

�����

����

�

���
f 1

f1

����

����

����

����

����

����

����

f 2

f2

(a) 1DFN (β)

� ��� ��� ���� ���� ����
��	��
��

�����

�����

�����

����

�

���

����

f 1

f1

����

����

����

����

����

����

f 2
f2

(b) 1E0M (β)

Figure 5.13: For two typical β proteins, the conflict between the two objective func-
tions of common individuals during the iterations of MODE are investigated. Gener-
ally, one function increases as the other function decreases.
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Figure 5.14: For two typical α/β proteins, the conflict between the two objective
functions of common individuals during the iterations of MODE are investigated.
Generally, one function increases as the other function decreases.
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5.5 Energy versus accuracy
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Figure 5.15: For protein 1AB1, the image of the solutions of archive A in the objective
space are shown in subfigure (a). The correlation of the energy versus the RMSD are
shown in subfigure (b).

The correlation between the accuracy and the original energy RWplus (f1 + f2)
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Figure 5.16: For protein 1ROP, the image of the solutions of archive A in the objective
space are shown in subfigure (a). The correlation of the energy versus the RMSD are
shown in subfigure (b).

of the predicted structures is also investigated. Three typical energy landscapes are

displayed in Fig. 5.15 ∼ Fig. 5.15 (b), where the RMSD values of the solutions in

archive A are plotted along with their RWplus energy. Overall, the RWplus energy
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Figure 5.17: For protein 2P81, the image of the solutions of archive A in the objective
space are shown in subfigure (a). The correlation of the energy versus the RMSD are
shown in subfigure (b).

has an obvious positive correlation with the RMSD because the values of the Pearson

correlation coefficient (PCC) for the three proteins are all much larger than zero.

This finding means that the solutions (structures) with lower energy have roughly
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a more native-like structure. This result also suggests that minimizing the RWplus

energy of a conformation drives it toward the true structure. However, these solutions

are grouped into different numbers of clusters. This finding seems to have a deep

connection with the image formed by these solutions in the objective space. In the

case of 1AB1, the image of the solutions in the objective space are smooth, as shown

in Fig. 5.15 (a). The solutions cluster into one group, as shown in Fig. 5.15 (b).

However, there exists an inflexion point in the image for 1ROP, as shown in Fig.

5.16 (a). This inflexion point divides the solutions into two groups with different

accuracies, as shown in Fig. 5.16 (b). Moreover, there are at least three inflexion

points in Fig. 5.17 (a). As a result, more than three clusters are shown in Fig. 5.17

(b). This phenomenon indicates that the proposed MODE algorithm can achieve a

high sampling rate on different regions of the conformation space. Moreover, this

phenomenon also indicates that the proposed MODE algorithm does not easily fall

into a local optimum.
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5.6 Prediction results

Table 5.3: The summary of the final prediction results (1).
PDB ID f1 f2 RMSD(Å) TM-score GDT TS
1AB1 Native a -5.43E+03 -3.57E+02 - - -

Predicted b -3.56E+03 -2.80E+02 7.38 0.2352 38.04
Average c -5.34E+02 -4.16E+02 8.81 0.2397 36.22

1BDD Native -6.66E+03 -5.72E+02 - - -
Predicted -5.84E+03 -6.97E+02 4.98 0.4325 52.08
Average -1.47E+03 -8.86E+02 9.37 0.2903 38.28

1DFN Native -6.66E+03 -5.72E+02 - - -
Predicted -2.34E+03 -2.33E+02 7.00 0.2432 46.67
Average -1.82E+03 -2.32E+02 6.83 0.2447 47.86

1E0G Native -5.54E+03 -5.11E+02 - - -
Predicted -2.84E+03 -4.77E+02 8.10 0.2583 38.54
Average 4.25E+02 -5.68E+02 9.08 0.2336 35.17

1E0M Native -3.45E+03 -3.31E+02 - - -
Predicted -7.30E+02 -3.41E+02 6.49 0.3076 45.95
Average -2.70E+02 -3.09E+02 8.12 0.2239 39.13

1ENH Native -8.79E+03 -4.89E+02 - - -
Predicted -7.90E+02 -1.01E+03 7.80 0.2890 42.13
Average -1.67E+03 -9.37E+02 8.62 0.3180 42.04

1I6C Native -3.24E+03 -2.62E+02 - - -
Predicted 7.82E+02 -3.32E+02 7.76 0.1979 37.18
Average -4.82E+02 -3.01E+02 8.77 0.1974 35.84

1K36 Native -4.69E+03 -3.65E+02 - - -
Predicted -2.47E+03 -3.24E+02 8.34 0.2415 40.22
Average -1.37E+03 -4.21E+02 12.22 0.1970 30.95

1ROP Native -8.13E+03 -5.83E+02 - - -
Predicted -6.00E+03 -1.01E+03 3.01 0.4902 66.07
Average -4.81E+03 -1.06E+03 9.14 0.4287 54.11

a Native structure.
b Final predicted solution, which is selected by MUFOLD-CL.
c The average value of the solutions stored in archive A.

After generating series of solutions (decoy structures) in archiveA, we use MUFOLD-

CL to select a solution as the predicted structure finally for each test protein. Table

5.3 and Table 5.4 report the prediction results for the eighteen test proteins, where

the RMSD values and the two objective energy functions of these predicted structures

are summarized. In addition, the values of two widely-used metrics TM-score [102]
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Table 5.4: The summary of the final prediction results (2).
PDB ID f1 f2 RMSD(Å) TM-score GDT TS
1AB1 Native a -5.43E+03 -3.57E+02 - - -

Predicted b -3.56E+03 -2.80E+02 7.38 0.2352 38.04
Average c -5.34E+02 -4.16E+02 8.81 0.2397 36.22

1BDD Native -6.66E+03 -5.72E+02 - - -
Predicted -5.84E+03 -6.97E+02 4.98 0.4325 52.08
Average -1.47E+03 -8.86E+02 9.37 0.2903 38.28

1DFN Native -6.66E+03 -5.72E+02 - - -
Predicted -2.34E+03 -2.33E+02 7.00 0.2432 46.67
Average -1.82E+03 -2.32E+02 6.83 0.2447 47.86

1E0G Native -5.54E+03 -5.11E+02 - - -
Predicted -2.84E+03 -4.77E+02 8.10 0.2583 38.54
Average 4.25E+02 -5.68E+02 9.08 0.2336 35.17

1E0M Native -3.45E+03 -3.31E+02 - - -
Predicted -7.30E+02 -3.41E+02 6.49 0.3076 45.95
Average -2.70E+02 -3.09E+02 8.12 0.2239 39.13

1ENH Native -8.79E+03 -4.89E+02 - - -
Predicted -7.90E+02 -1.01E+03 7.80 0.2890 42.13
Average -1.67E+03 -9.37E+02 8.62 0.3180 42.04

1I6C Native -3.24E+03 -2.62E+02 - - -
Predicted 7.82E+02 -3.32E+02 7.76 0.1979 37.18
Average -4.82E+02 -3.01E+02 8.77 0.1974 35.84

1K36 Native -4.69E+03 -3.65E+02 - - -
Predicted -2.47E+03 -3.24E+02 8.34 0.2415 40.22
Average -1.37E+03 -4.21E+02 12.22 0.1970 30.95

1ROP Native -8.13E+03 -5.83E+02 - - -
Predicted -6.00E+03 -1.01E+03 3.01 0.4902 66.07
Average -4.81E+03 -1.06E+03 9.14 0.4287 54.11

a Native structure.
b Final predicted solution, which is selected by MUFOLD-CL.
c The average value of the solutions stored in archive A.

and GDT TS [103] on the prediction results are also shown in Table 5.3 and Table 5.4.

It can be proved that the RMSDs of the predicted structures are all less than 10 Å,

except for three long proteins (i.e., 1SXD, 3DF8, and 3NRW). It indicates that longer

sequences remains challenging for our proposed approach. Moreover, the superposi-

tion of the native structure and the predicted structure (selected by MUFOLD-CL)

is exhibited in Fig. 5.18. These figures show the high performance of the proposed

MODE-K approach because the structures with considerable accuracy are reached.
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In addition, from Fig. 5.18, we can see that the accuracy of a predicted structure is

dependent on its sequence length and structural class.
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5.7 Comparison with other works based on EAs

By comparing the results obtained from the proposed MODE-K approach with seven

works based on EAs in the literature. These works have been introduced in Section

2, including I-PAES [63], GA-APL [61], ADEMO/D [54], MO3 [56], AIMOES [57],

SCDE [62] and MOPSO [58]. The impressive works [53, 104, 30, 105, 59], that pay

more attention to decoy generation and do not contain final decoy selection methods,

are not compared in this section. In these works, only the best predicted structures

with the lowest RMSD value among series of generated decoy structures are reported.

The results of the seven compared approaches come from the corresponding pub-

lished papers. Table 5.5 summarizes the RMSD values of the structures (after decoy

selection) predicted by each approach. For each test protein, the best results of all

methods are marked in bold. From Table 5.5, we can see that MODE-K achieves

the best performance on 8 out of 16 test proteins in comparison with the other ap-

proaches. It suggests that the proposed MODE-K approach can provide a better

or very competitive result compared with these approaches based on EAs. More-

over, MODE-K is the only approach that uses a pure multiobjective knowledge-based

energy function. The comparison result indicates that incorporating KBEFs into a

multiobjective approach contributes to solving the PSP problem.



58

T
ab

le
5.

5:
C

om
p
ar

is
on

of
th

e
p
re

d
ic

ti
on

re
su

lt
s

am
on

g
ei

gh
t

ap
p
ro

ac
h
es

.
E

ac
h

ce
ll

co
n
ta

in
s

th
e

R
M

S
D

va
lu

e
(Å
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5.8 Qualitative comparison with other works based

on EAs

We also contrast the results inferred from the proposed MODE-K approach with other

recent works based on EAs. Specifically, these works are considered integral because

the final decoy selection methods are used to select the final predicted structures. In

this section, it is worth emphasizing that the accuracies of the final predicted struc-

tures are compared rather than the best structure in the generated decoy structures.

The characteristics of all of these methods are summarized in Table 5.6. Note that

the test proteins with lengths smaller than 30 have been removed from the compar-

isons for a realistic comparison. From Table 5.6, we can see that MODE-K is the

only method to use a pure multiobjective knowledge-based energy function.

Since the test proteins are different in these methods, a direct comparison among

them is not easy to carry out. Inspired by a previous study [106], we execute a

qualitative comparison based on a logarithmic regression analysis, as shown in Fig.

5.19. The fitted function is defined as

y = alnx+ b (5.2)

where a and b are the parameters to fit. A point represents a prediction result of a test

protein and is located by the length and the RMSD. Then, the logarithmic regression

lines for all methods are plotted according to these points. According to the tendency

of the regression lines, it is clear that MODE-K achieves the highest performance

and provides competitive results compared with the other methods. These results

strengthen the idea that using KBEFs as a multiobjective function contributes to

solving the PSP problem.

To make a direct comparison among these methods, we calculated the average

backbone RMSD100 [106], rather than an ordinary RMSD, of the prediction results

obtained by these methods. The RMSD100 is a protein-size normalized RMSD of the

backbone coordinates. This metric can approximatively compare the accuracy of the
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predicted structure with different lengths. We summarize the comparison results in

Table 5.7. From Table 5.7, it is easy to show that the proposed MODE-K approach

achieves the second-best performance in terms of the average RMSD100. Although

ADEMO/D obtained the smallest average RMSD100 value, there were only 4 test

proteins, and the test proteins did not contain the α/β structural class. Overall,

the proposed MODE-K approach can provide a better or very competitive result

compared with other methods based on EAs.
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5.9 Comparison with two state-of-the-art approaches

For further testing and verifying the performance of the proposed MODE-K approach,

we also compare the prediction results obtained by MODE-K and two state-of-the-

art approaches, i.e., QUARK and Rosetta, that are recognized as ones of the most

top-performing FM approaches in the PSP area [107]. Table 5.8 summarizes the

RMSD values of the predicted results gotten from the three approaches for all test

proteins. From Table 5.8, we can see that there is no one approach which is always

superior to the others on all test proteins. However, we should admit that the per-

formance of MODE-K is worse than QUARK and Rosetta, especially for the larger

test proteins (i.e., 1SXD, 3DF8, and 3NRW). MODE-K achieves better results than

QUARK only on three test proteins (i.e., 2KDL, 2P6J, and 2P81), and achieves bet-

ter results than Rosetta only on two proteins (i.e., 1K36 and 2P81). In addition, it

can also be said that MODE-K can usually provide satisfactory solutions for several

proteins (e.g., 1BDD, 1DFN, 1E0M, and 1ROP). Finally, we note that QUARK and

Rosetta are two FM approaches based on the fragment-assembly technique [26, 12],

where a predicted structure is built by integrating the fragments derived from exist-

ing protein structures. These fragment-assembly approaches is successful because of

the sophisticated fragment generation and the well-designed folding strategy. Since

the fragment-assembly technique is not incorporated into MODE-K, the proposed

MODE-K approach is considered more straightforward and nearer to the ab initio

prediction [94]. Taking advantage of this technique to enhance our approaches de-

serves our future investigation.



65

T
ab

le
5.

8:
C

om
p
ar

in
g

M
O

D
E

-K
w

it
h

tw
o

st
at

e-
of

-t
h
e-

ar
t

ap
p
ro

ac
h
es

Q
U

A
R

K
an

d
R

os
et

ta
.

E
ac

h
ce

ll
co

n
ta

in
s

th
e

R
M

S
D

va
lu

e
(Å
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Chapter 6

Conclusion

Despite the rapid development of computer techniques and the unremitting efforts

of researchers, the protein structure prediction (PSP) problem remains challenging

in bioinformatics and computational biology. An efficient search strategy and an ef-

fective energy function are the two pivotal factors for solving the protein structure

prediction problem. In this study, we modeled the PSP problem as a MOOP and

proposed an integrated FM approach called MODE-K to solve this problem. Con-

sidering the reality that KBEFs are usually more effective than PBEFs, we used the

KBEF RWplus as the energy function. We decomposed RWplus into an orientation-

dependent term and a distance-dependent energy term to develop the multiobjective

energy function. Since DE algorithm is can be said one of the most powerful stochastic

optimization techniques, we adopted DE algorithm as the search strategy and pro-

posed a MODE algorithm to sample the conformation space. In addition, an external

archive based on nondominated sorting was maintained to store the optimal solutions

during evaluation. Finally,we introduce the clustering method MUFOLD-CL to select

the final predicted structure from series of decoy structures.

The performance of the proposed MODE-K approach was verified by testing eigh-

teen proteins. The experimental results and the comparison results demonstrated that

MODE-K is effective in solving the PSP problem. Specifically, the energy function of

the MODE-K approach is an two-objective KBEF. This handing way is considered

novel because limited efforts are made to this aspect. In addtion, since the search

strategy and the energy function were both improved in this study, a new point for
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solving the PSP problem was given in this paper.

In future studies, we will continue to improve our multiobjective approaches to

address the PSP problem. We insist that the adoption of multiobjective approaches

is a high-performing alternative for solving this problem. In addition, the contact

prediction technique [1, 14] has become more compelling in the field of PSP in re-

cent years. Combining this technique with multiobjective approaches is worth future

studies.
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