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1. Introduction

Inspired by the important studies given by Minsky (1975, 1982) and Shiller
(1981), Dohtani and Matsuyama (2022) constructed a simple three-dimensional (3D)
business cycles model that gives an extension of the IS-LM model. The dynamic model
demonstrates that speculation leads us to business fluctuations.

Using a Hopf bifurcation theorem, Dohtani and Matsuyama (2022) provided a
local nonlinear analysis near the equilibrium point. In this paper, we provide a global
analysis of the extended IS-LM model. Since the extended IS-LM model is 3D, it is
difficult to perform the global analysis of the extended IS-LM model. So, by assuming
an instant adjustment of interest rates (i.e., assuming that the money market instantly
balances), we reduce the number of variables in the model to two and transform this
two-dimensional (2D) model into the so-called Liénard system. By using the Liénard
system, we perform the global analysis of the 2D model. Various results on Liénard
system have been obtained so far. Especially among them, in this paper, we use two
results on the existence of limit cycle and demonstrate the occurrence of business
fluctuations in the extended IS-LM model.

2. Brief Explanation of the 3D Model

In this section, we briefly explain the extended IS-LM model, which given by
Dohtani and Matsuyama (2022) (abbreviated by D-M). In the extended IS-LM model,
money demand depends on the rate of change in expected income (abbreviated by
RCEI). Throughout this study, all functions are assumed to be continuously
differentiable and all parameters are assumed to be positive. We denote income,
expected income, interest rate, price level, money supply, investment, and consumption
by Y, Ye, R, P, M, |, and C, respectively.

D-M considers the following investment and consumption function: | =1(Y,R),
and C=C(Y). D-M assumes 0Ol/dY >0, o0l/0R <0 and dC/dY > 0. For
simplicity, D-M defines the aggregate demand function:

H(Y,R) = I(Y,R)+C(Y).

D-M next considers the money demand function. Based on the findings of Shiller
(1981), D-M assumes that money demand correlates negatively with the change in

expectation regarding the future income and considers the following money demand
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function:

L=L(Y,R) = I"(Y,).

The L —function denotes the usual money demand function. As usual, oL/dY >0 and
oL /0R < 0 are assumed. On the other hand, to take the above-mentioned speculation
into consideration, the 7~ _ function is incorporated. Moreover, D-M assumes the

following:
Assumption 1: 77(0)=0, 7'(u)>0 forany ueR!, and sup{/'(u):ue Rl} <400,

For a detailed economic implication of Assumption 1, see D-M.

D-M assumes that expected income is adaptively adjusted: Y.e =%(Y —Yg). For
the adaptive adjustment, see Section 3 of D-M. Under the assumption, the following
extended IS-LM model is obtained:

Y. =a{HY,R)-Y},
0 F.Qzﬂ{L(Y,R)—FoT(Y—Ye)—M/P},

Ye = 5U(Y _YE)a

D-M provides System (2 in which the ideas of Minsky (1975, 1982) and Shiller
(1981) are incorporated. The following usual IS-LM is obtained as the subsystem of
System (2 :

Y =a{H(Y,R)-Y},
Qs 4L {H(Y,R) =Y}

r=B{L(Y,R)—M /P}.

D-M calls System (2jg_ v the IS-LM subsystem. D-M works under the following

assumptions:

Assumption 2: 1>0H /Y forany (Y,R)e R2.
Assumption 3: ¥(0)=0, ¥'(z)>0, and sup{¥'(z):zeR'} < +o.



Assumption 3 is clear. For the economic implications of Assumption 2, see D-M. The

following result is obvious.

Lemma 1: System (2 has equilibrium points for income and the interest rate if and
only if System (2js_;p has them. Moreover, for two systems, the equilibrium points

of income and the interest rate are the same.m
Proof: The proof'is clear.m

To stress the instability that is caused by the dependence of money demand on RCEI,
D-M considers the case where the IS-LM subsystem is globally stable. Assumption 2
guarantees the global stability of the IS-LM subsystem.

Lemma 2: Suppose that the IS-LM subsystem (25_|\ possesses an equilibrium
point and that Assumption 2 is satisfied. Then System 25_ |y 1s globally
asymptotically stable.m

Proof: See Appendix of D-M.m

4. Global Dynamics of the Reduced 2D Model

Using a Hopf bifurcation theorem, D-M demonstrated the occurrence of Hopf
cycle in the extended IS-LM model that is 3D. Such a result is local in the sense that
works merely in a neighborhood of the equilibrium point. In this paper, we try to
perform a global analysis of the extended IS-LM model. To do so, D-M considers two
simplifications: dimension reduction and linear approximations of some functions.
Firstly, by assuming that the money market reaches equilibrium instantly, D-M reduces
the number of variables in the model (2. D-M assumes that the IS-LM subsystem is
linear. In this case, it is shown soon after that the main nonlinearity of the IS-LM

subsystem is included in the dependence of money demand on RCEI. We set
L=LY,R)-I'(Ye)=h)Y —LbR-T ¥ -Y.), H(Y,R)=hY -h,R+B

The solution of L =M /P forR is given by



R lly _To¥(Y-Y) M
1 1 1,P

b

where we define
I=L/l,, A=M/1,P and A(u)=7"(u)/l,.
Then, we have
H(Y,R)=hY -hR+B=(h; —h)Y +hy Ao ¥ (Y -Ys)+hyA+B.

Assumption 2 yields h; € (0,1). Then, the extended IS-LM model becomes

of | Y =alhy =Ml =DY +hAe¥(Y -Ye) +hyA+ B},

Yo =#(Y —Y,).

The equilibrium point of System % is given by

h2A+B h2A+B
1+h2| _hl ’1+h2| _hl

(Y*,¥e) = ( ).

It should be noted here that Assumption 2 yields 1+hyl—h; >1—h; =1-0H/8Y >0.
In this case, the goods market system Q2% is givenas Y =(h; —h,l-=1)Y +h, A+ B. It

should be also noted here that since h; —h,I =1 <0, we obtain that System 2% in this

case is globally asymptotically stable and therefore, as we demonstrate in the following,

the source of instability is included in the A —function that is closely related to the

speculative behavior. To transform to a Liénard system, we define the affine

transformation
X 1/as —-1/as||Y —K/s
= , SEl+h2|—h1, KEh2A+B,
y 0 -1 |Yo—K/s

Then, we have X=(Y —Yp)/as and y=-Y, +K/s. This yields
Y =asx+K/s—y.

Therefore, we have

S _Y=Ye _al-SY +hyAo ¥ (Y =Ye) + KI-¥ (Y —Ye)
as as




+5+ thoY/(asx)s—Yf(asx)/a Y- {asx— thoW(asx)S—W(asx)/a

—-y

L

y=-Ye =¥ (asx).

We now define

hy Ao ¥ (asx)—¥ (asX)/
» .

@D (X) = asX —

Then, we have the Liénard system:

X=Yy—d(X),
oL y-&(x)

;/: —¥ (asX).

In the following, we analyze the Liénard system (2 . It should be noted here that the
qualitative properties of the dynamics of System (2| ; are the same as those of System
Q7% For example, the existence, uniqueness and stability of the equilibria and limit

cycles in System (2; are inherited from 7. We have the following lemma.

Lemma 3: Suppose that Assumptions 1 and 3 are satisfied. Then, the origin is the

unique equilibrium point of the Liénard System (2| .m
Proof: See Appendix.m

Through System (2, we consider the global dynamic behavior of the extended
IS-LM in which the money demand depends on RCEI. We start from a local stability
analysis of the equilibrium. The Jacobean matrix of (2; that is estimated at the

equilibrium is given by

J- -@'(0) 1
|—a?'0) of
Therefore, as stated above, the equilibrium point of 2|; (therefore, %) is

completely unstable in the sense that all real parts of the eigenvalues of J are positive:

Lemma 4: Suppose Assumptions 1 to 3 and the following condition are satisfied. Then,
the equilibrium point of the extended IS-LM model is completely unstable.



s+¥'(0)/a _

C.1)  A0)> 0

>0.m

Proof: Assumptions 1 to 3 and (C.1) vyield that detJ =a¥%'(0)>0 and
tr) =-@'(0)=-Ss+hy, A'(0) e #'(0) —¥"'(0)/ @ > 0. This completes the proof.m

Condition (C.1) is satisfied, provided that A'(0) (the sensitivity of money demand to
RCEI) is sufficiently large. Lemmas 2 and 4 demonstrate that the extended IS-LM
model, in which the money demand depends on RCEI, possesses a new instability
source that does not appear in the original IS-LM model. See for example Torre (1977),
Schinasi (1982), Gabisch and Lorenz (1987) and Lorenz (1993). It should be noted that
the instability source in this paper is purely monetary and related to speculation.

By using a version of the Hopf bifurcation theorem, Torre (1977) proved the
existence of a limit cycle in the IS-LM subsystem in (2. It should be note that, unlike
Torre (1977), the IS-LM subsystem of our model is globally stable. Although, like Torre
(1977), we later provide a result about the existence of a Hopf bifurcation, it is a local
result. In the following, we will provide more important global results.

The chief reason that by slightly discarding generality (i.e. the above assumption
of the money market clearing) we take the trouble to derive the Liénard system is to
utilize two useful mathematical results about the existence and the unique existence of a

stable limit cycle, which are given as follows.

Dragilév Theorem': Consider the Liénard system:

S e

=7- h(W)a

N o

==g(w).

System X possesses at least one stable limit cycle under the following conditions:

(C.2) wg(w)>0 forany w=0 and limy_,4+,, G(W)=+00, where

W
G(w)=Ig(u)du;
0

' The Dragilév Theorem was proved by Dragilév (1952). A simpler proof of this theorem is
provided by Yangian et al. (1986, Theorem 5.1); see also Nemytskii and Stepanov (1989,
pp.140-146).



(C.3) wh(w)<0 when w#0 and |W| is sufficiently small;
(C.4) There are constants M >0 and K > K' suchthat h(w)>K forany w>M
and h(w) <K' forany w<-M.m

Proof: See Yanqgian (1986, Theorem 5.1).m

A zero X of a differentiable function f :U - R' 5 R! is said to be transversal if
fr(x")#0.

Carletti—Villari Theorem: System 2 of Class c! possesses a unique stable limit
cycle under the following conditions:

(C.5) The h—function has only three real transversal zeros, located at wy =0 and
W, <0< wy. Moreover, the h— function is monotone increasing outside the
interval [W,,W3];

(C.6) h'(0)<0;

(C.7) Thereexistsa 6 >0 suchthat h'(w)>0 for |W| >0,

(C.8) wg(w)>0 forany w=#0;

(C.9)  limsupy_, oo|G(W) +h(w)

(C.10) G(w)=G(—w).m

=+o00 and limsupw_>_oo|G(W) - h(w)| = +o0;

Proof: See Carletti and Villari (2005).m

Utilizing these two results, we prove the existence and the unique existence of a stable
limit cycle in System €2, .

Theorem 1: System (2|; (therefore, %) possesses at least one stable limit cycle

under Assumptions 1 to 3, (C.1), and one of the following assumptions:

(C.IL.1)  lim;_y4, ¥ (2) =720 and limy_ 4, 7' (U)=0,
(C.11.2)  lim; 44, ¥'(2)=0.m

Proof: See Appendix.m



We make one remark about Condition (C.11). As a typical ¥ —function that satisfies
the first half of Condition (C.11.1), we have ¥(z)=z (y >0). In this sense, the first
half of Condition (C.11.1) is natural. Since the explanation of Condition (C.11.2) is
almost the same as that of the latter half of Condition (C.11.1), we only explain the
latter half of Condition (C.11.1). Since we assume /'(u)>0 in Assumption 1, a
typical 7/ — function that satisfies Condition (C.11.1) incorporates a sigmoid
nonlinearity into System £2| .

Lemma 2 and Theorem 1 prove that the dependence of money demand on RCEI
makes the system unstable and yields business cycles. Moreover, by adding some
considerably restrictive conditions to the conditions in Theorem 1, we have a result

showing the unique existence of a stable limit cycle:

Theorem 2: System (2| (therefore, £2%) possesses a unique stable limit cycle under
Assumptions 1 to 3, (C.1), one of (C.11), and the following conditions:

(C.12)  P(a)=px (y>0),
(C13) 7IM(uwu<0 forany u=0.m

Proof: See Appendix.m

Example 1: We set

a=1, hy=08, hy =100, 1=0.0032, ¥(asx)=0.2X,
and A(U) =mArctan(0.1u),

where the parameter m displays the intensity of the dependence of money demand on
RCEL This represents the intensity of speculation. See D-M. Assumptions 1 to 3 are

satisfied. Under these settings, we have
$=0.52 and 7°(u)=Il,mArctan(0.1u).
If m>0.36, then we obtain
A'(0)=0.1Im> Ay =(0.52+0.2)/(0.2x100) = 0.036.

Then, all the conditions of Theorem 1 are satisfied. Therefore, we see that System (2|



with these parameters possesses a stable limit cycle. Moreover,

0.0002l,mu?

I"(uwu=-
) (0.01u? +1)2

<0 forany u=0.

The conditions of Theorem 2 are also satisfied. Therefore, we also see that the stable
limit cycle is uniquely yielded. The dynamic behavior of System (2| is described in
Figure 1. The paths in Figure 1 rotate clockwise. The blue closed curves of Part 1 and
the inside blue closed curve of Part 2 in Figure 1 are the same and describe a stable limit
cycle of System £2j with m=1. On the other hand, the black curves of Part 1 in
Figure 1 are paths starting at the interior and exterior points of the limit cycle. Moreover,
the outside blue closed curve of Part 2 in Figure 1 describes the limit cycle of System
Q); with m=1.2. Part 2 demonstrates that as the intensity of speculation becomes

large, the amplitude of the emerging limit cycle becomes large.m
Figure 1 about here.

Next, we consider the globally asymptotic stability of System (2| ;. By using the
Olech Theorem (see Appendix 7), we obtain the following result.

Theorem 3: System (2| (therefore, 2% ) is globally asymptotically stable under
Assumptions 2 and 3, and the following condition:

s+inf{¥'(asx)/a : x e R}
h, esup{#'(asxX): x € R!}

(C.14) > A'(u) forany ueR!.m

Proof: See Appendix.m

Lemma 5 and Theorem 3 show that as A'(u) is small, the market economy becomes
globally asymptotically stable. The largeness of A'(U) represents the intensity of
speculation, for example, as shown by the parameter m in Example 1. Therefore, we
see that as the intensity of speculation is small, the market economy becomes globally

asymptotically stable. In the following, we provide such a numerical example.

Example 2: We set A(U) = Arctan(0.03u). Then, Assumptions 2 and 3 are satisfied.

Moreover, the ¥ —function and the other parameters are the same as those of Example
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1. Then, we have

AU)=0.03< Ay = 222702 _ 4036 forany ueR!.
0.2x100
Therefore, all the conditions of Theorem 3 are satisfied. Thus, we see that System (2| ;
is globally asymptotically stable. The dynamic behavior of System (2|; 1is described in

Figure 2. The black path in Figure 2 rotates clockwise and tends to the equilibrium.m

Figure 2 about here.

6. Conclusion and Final Remarks

In this paper, by assuming that the money market instantly balances, we reduce
the number of variables in the model to two and transform this two-dimensional model
into the so-called Liénard system. By using the Liénard system, we demonstrate the
occurrence of limit cycles (i.e. business fluctuations) in the extended IS-LM model.
Using the extended IS-LM model, D-M analytically demonstrated that speculation
(Shiller (1981)) and high substitutability between money and stocks (Minsky (1975,
1982)) and Shiller (1981) are “purely” monetary causes of business cycles. Although the
result of D-M is local, our result is global. Thus, our result reinforces the local result of
D-M.

We expect that the extended IS-LM 3D model with a liquidity trap generates

strange attractors. Researches in such a direction must remain in the future.

7. Appendix

In this appendix, we prove Lemma 3 and Theorems 1 to 3.

Proof of Lemma 3: Suppose that System (2jg_|m possesses more than one
equilibrium. Then, there is an e=#0 such that 0=%(0)=%(e). Without loss of
generality, we here assume e>0. Then, from the mean value theorem there is an
ve[0,e] such that ¥'(v)=0. This contradicts Assumption 3. The contradiction

proves that the solution of #(X) =0 is only zero. Then, we have
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y = ®(0) = —{hy Ao ¥(0)— ¥ (0)}/s = 0.

This completes the proof.m

Proof of Theorem 1: Defining h(x)=@(x) and g(X)=¥(asx), we prove that all the
conditions of the Dragilév Theorem are satisfied. The first part of (C.2) of the Dragilév
Theorem follows from Assumption 3. Moreover, from Assumption 3, there exists an
Xe Rl ={Xe R1:X>O} and a E>O0 such that g(X)>E for any Xx>X and
g(x)<—-E forany X< —X. Then, we have

X
g(u)du > E(x-X)=E(X-X) forany x>X,
X

e X —-X
g(u)du = —jg(u)du >E(-X-X)=E(X-X) forany Xx<-X

J—X X

X
Therefore, defining G(X) = J‘ g(u)du, we have
0

X X X

(AL G =|gwdu+ | gudu> | guydu+E(x|-X)  forany x>X,
J0 J¥X J0
o—X o X e—X

(A12)  G(X)=|gudu+ | gudu> | gudu+E(x-X)  forany Xx<-X,
J( oJ—X J(

The last part of (C.2) of the Dragilév Theorem follows directly from (A.1). We now
prove (C.3) and (C.4) of the Dragilév Theorem. We have

h'(0) = as — ah, A'(0)#'(0) + #'(0).
Condition (C.1) yields
(A.2) h'(0) < 0.
Then, we have
h'(x) <0 when |X| is sufficiently small.

From Assumption 3, we have

11



AP (0)-¥(0)/a _
S

0.

(A.3) h(0)=@(0) =
Therefore, we obtain

xh(x) <0 when x#0 and |X| is sufficiently small.

This proves (C.3). We now prove (C.4). We first consider the case where (C.11.1) is
satisfied. We see from (C.11.1) that

limy 400 A'(U) =limy_y4o0 7' (U) /15 =0.
(C.11.1) yield limy_, 4, #(asx) == and we have
(A.4) limy_y4., A'(¥(asx)) =0.

Moreover, since g(X) =% (asX), Assumption 3 yields
(A.5) sup{g'(x): x e R'} =sup{as ¥'(asx): x e R'} < +o0,

From Assumption 3, we see @'(X)>0 for any Xe R Therefore, it follows from
(A.4) and (A.5) that there exists U >0 and W >0 such that for any |x|>W

(A.6) h'(X) = as — ah, A'(¥ (asX)) ¥ ' (asX) + ' (asX)
> as — ahy A' (¥ (asx))¥ ' (asx) > U.

This implies that there are constants M >0 and K >0> K" such that

(A.7) h(x) >K forany x>M and h(x)<K' forany Xx<-M.

This proves (C.4). We next consider the case where (C.11.2) is satisfied. It follows
directly from Assumption 1 that sup{A'(¥(asx)):Xe Rl} <+oo. Therefore, from
Condition (C.11.2), we obtain limy_,;, hh A'(¥ (asX))¥'(asX) =0. Thus, we obtain

(A.6). The same argument as above proves (C.4). Thus, we complete the proof.m

Proof of Theorem 2: We define h(x)=@(Xx), g(X)=¥(asx)=x. We prove that all
the conditions of the Carletti—Villari Theorem are satisfied. Since the conditions of

Theorem 1 are satisfied under those of Theorem 2, we can use the proof of Theorem 1.
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Condition (C.5) is proved at the end. Conditions (C.6) and (C.7) of the Carletti—Villari
Theorem follow directly from (A.2) and (A.6), respectively. Moreover, it follows from
(C.12) that G(x) is an even function. Therefore, (C.10) of he Carletti—Villari Theorem
1s satisfied. On the other hand, (C.8) follows directly from (C.12). We now prove (C.9).
It follows from (A.3) and (A.6) that

e X oW
h(x)= | h'(u)du> | h'(u)du+U(x-W) forany x>W,
J0 J0

X o—\W
h(x)= | h'(uWdu < | h'(u)du+U (x+W) forany x < -W.
.0 00

This yields limy_, 4. h(X) = 2. Therefore, it follows from (C.2) that

limsupy_s+40 = +o0.

X
Ig(u)du + h(X)

0

This proves (C.9). Finally, we prove (C.5). First, we consider the case of X > 0. Then,
(C.13) implies A"(x)=17"(X)/l, <0, so that noting ¥ (asX) =X we have

(A.8) h"(X) = —hyy 2 A" () / 5 > 0.

Thus, h'(X) is strictly monotonically increasing. Therefore, (A.2) and (A.6) show that
h'(X) has a unique zero in X > 0. We denote the zero by X; >0. Then, it follows from
(A.2) and (A.8) that

(A.9) h'(x;))=0, h'(x)<0 forany xe(0,%) and h'(x)>0 forany
X € (X],+0).

From (A.3) and (A.9), we see that h(X;) <0. On the other hand, (A.6) shows that there
isa X, €(X,+%) such that h(x,)>0. Therefore, there is an X" €(X|,X,) such that
h(x*) = 0. Moreover, it follows from (A.9),

(A.10) #{x € (0,4+0) : h(x) = 0} = {x*}.

See Figure 3. Next, we consider the case of Xx<O0 . (C.13) implies
A"(xX)=1"(x)/l >0, so that noting ¥ (asX)= X we have

13



h'"'(x) = —hyy2A" () /s < 0.

Thus, h'(x) is strictly monotonically decreasing. Therefore, (A.2) and (A.6) show that
h'(X) has a unique zero in X < 0. We denote the zero by X3 <0. In the similar way as

above, we obtain that

(A.11) h'(x3)=0, h'(X)<0 forany xe(x3,0) and h'(x)>0 forany
X € (—00,X3).

From (A.3) and (A.11), we see that h(x3)>0. On the other hand, (A.6) shows that
there is a X4 € (—0,X3) such that h(x4)<0. Therefore, there is an X e (X4,X3)
such that h(x™)=0. Moreover, it follows from (A.11),

(A.12) #1X € (=0,0) : h(X) = 0} = {x**}.

Thus, from (A.3), (A.10) and (A.13) we see that h(x) has exactly three real transversal

ZCros:

#{x e Rl :h(x) =0} = {x™,0,x™}.
This proves (C.5). Thus, we complete the proof.m
Figure 3 about here.

In proving Theorem 3, we use the following theorem:

Olech Theorem: Suppose that the following system possesses an equilibrium point.

w=F(w,z),

;=G(W,Z).

)

The equilibrium point is globally asymptotically stable (i.e., the equilibrium point is

stable and any path converges to the equilibrium point), under the following conditions:

(C.17) OF /ow+8G /6z <0 forany (W,z)eR2;

14



(C.18) OF /OwedG /0z —OF /970G /ow >0 forany (W,z)eR2;
(C.19) OF /owedG /dz#0 or 6F /62e0G/ow =0 forany (W,z)eR2.m

Proof: See Olech (1963).m

Proof of Theorem 3: Define
F(X,y)=y-@(x), G(X,y)=-¥(sx).
From Condition (C.14), we see that
OF /0X=-@'(X), 0G/0x=-S¥'(sX)<0, oF/oy=1, 0G/oy=0.

Condition (C.14) yields

L (s < SHI (@) [ x e R} _S+P e/
h, esup{#"'(asx): x R} h,#'(asx)

This yields that
S>hhA'(Y(asx)¥ ' (asx)—¥'(asx)/a. T

Therefore, we obtain

ashy A'(¥ (asx))¥ ' (asx) —as V' (asx) / a

S
=as — {ahy A'(¥ (asX))¥ ' (asx) — ' (asx) }
=a[s— {mA' (¥ (asx))¥'(asx) —¥'(asX)/a}] >0

D'(X) = 05—

Therefore, we have OF /6x<0 forany X e R1.Itis now easy to see that System (2| ;
satisfies all conditions of the Olech Theorem. Theorem 3 follows from the Olech

Theorem.m
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Figure Captions

Figure 1. Stable limit cycles of System (2| ;: (1) a typical stable limit cycle; (2) the

amplitude of limit cycle that becomes larger parallel to the intensity of speculation m.
Figure 2. Global stability.

Figure 3. The h-function
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