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Abstract

In this Thesis we examine how machine learning techniques can be utilized in sign lan-

guage recognition. Sign languages are expressed through manual articulation in combination

with non-manual elements such as movements of the body, hands, mouth, cheeks, eyes etc.

to convey linguistic information. There exist various sign language categories, each with its

own purpose and functionality. In this Thesis we focus specifically on fingerspelling, which

employs manual articulations alone (hand and finger arrangements and movements) to spell

words that lack dedicated signs, forming a visual representation of their sequence of letters.

Wewill be using the frame sequences from online videos, provided by the ChicagoFSWild

dataset. The videos depict people facing a camera and performing fingerspelling in the Amer-

ican sign language. We focus mainly on the hand and finger motion and try to distinguish the

signing hand. To track the hands we use MediaPipe and OpenPose, two multipurpose object

tracking libraries. They are able to produce 3D and 2D skeleton coordinates of specified body

parts such as hands, body, head etc. We proceed by comparing the performance of these li-

braries and then use the provided coordinates to determine the signing hand. Both 2D and 3D

skeleton coordinates are used as input to our machine learning models in various combina-

tions. The models use the aforementioned coordinates within a bidirectional recurrent neural

network. Our architectures are able to recognize the fingerspelled words with satisfactory

accuracy.
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Περίληψη

Στην παρούσα διπλωματική εργασία θα εξετάσουμε πως τεχνικές μηχανικής μάθησης

μπορούν να χρησιμοποιηθούν για την αναγνώριση νοηματικής γλώσσας. Οι νοηματικές γλώσ-

σες εκφράζονται με κίνησεις των χεριών σε συνδυασμό με κινήσεις του σώματος, του προσώ-

που, των ματιών κλπ. έτσι ώστε να αποδώσουν διάφορες κατηγορίες πληροφοριών. Υπάρ-

χουν διάφορες υποκατηγορίες νοηματικών γλωσσών, η καθεμία με το δικό της σκοπό και

λειτουργικότητα. Στην παρούσα διπλωματική θα ασχοληθούμε συγκεκριμένα με τον δακτυ-

λοσυλλαβισμό, ο οποίος χρησιμοποιεί μόνο κινησιακά μέσα (κινήσεις και διατάξεις των χε-

ριών και των δακτύλων) ώστε να αποδώσει λέξεις που δεν έχουν καθορισμένα νοήματα,

σχηματίζοντας μια οπτική αναπαράσταση των γραμμάτων τους.

Θα χρησιμοποιήσουμε τις ακολουθίες καρέ από βίντεο στο διαδίκτυο, που μας παρέ-

χει το σύνολο δεδομένων ChicagoFSWild. Τα βίντεο απεικονίζουν ανθρώπους να εκτελούν

δακτυλο-συλλαβισμό στην Αμερικανική νοηματική γλώσσα μπροστά σε μια κάμερα. Εστιά-

ζουμε κυρίως στην κίνηση των χεριών και των δακτύλων και προσπαθούμε να ξεχωρίσουμε

το χέρι που νοηματίζει. Για να ανιχνεύσουμε τα χέρια χρησιμοποιούμε τα εργαλεία Media-

Pipe και OpenPose, δύο βιβλιοθήκες ανίχνευσης αντικειμένων πολλαπλών σκοπών. Είναι

ικανές να παράγουν τρισδιάστατες και δισδιάστατες συντεταγμένες σκελετών για συγκε-

κριμένα μέρη του σώματος όπως χέρια, κορμός, κεφάλι κλπ. Στη συνέχεια εξετάζουμε πόσο

αποδοτικές είναι οι βιβλιοθήκες αυτές και χρησιμοποιούμε τις συντεταγμένες που μας δίνουν

ώστε να προσδιορίσουμε το χέρι που νοηματίζει. Τόσο οι δισδιάστατες όσο και οι τρισδιά-

στατες συντεταγμένες των σκελετών χρησιμοποιούνται σαν είσοδος στα μοντέλα μηχανι-

κής μάθησης σε διάφορους συνδυασμούς. Τα μοντέλα χρησιμοποιούν τις προαναφερθείσες

συντεταγμένες σε ένα αμφίδρομο επαναλαμβανόμενο νευρωνικό δίκτυο. Οι αρχιτεκτονικές

αναγνωρίζουν δακτυλο-συλλαβισμένες λέξεις με ικανοποιητική ακρίβεια.
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Chapter 1

Introduction

Sign languages are a visual method of communication mostly common between deaf

people, employing hand gestures, facial expressions, and body movements. Nowadays there

exist over 300 sign languages in use. In this Thesis we focus on fingerspelling in the American

sign language (ASL). It is relatively simpler to perform, as it only uses hand gestures and in

most occasions only one hand is needed. Nevertheless it still comprises a significant part of

ASL, covering words that lack dedicated signs.

1.1 Thesis Focus

In the past decades, there has been significant progress in machine learning (ML) both

in the theoretical field as well as in practical applications. An area of increasing interest is

recognition of human communication, such as speech recognition or handwritten text recog-

nition. Another problem that falls in this category is sign language recognition (SLR). Al-

though a bit overlooked in comparison to its counterparts, SLR has caught the attention of

many researchers over the last few years. With its popularity growing recently, many have

started developing applications and models able to translate sign language to text. This task

has proven to be a challenging one though. The sheer number of sign language types and

variations, along with the fact that each signer performs hand gestures in a unique style, add

complexity to the problem.

SLR requires two main modules. The first one concerns the extraction of informative

features from the video frames. This necessitates the detection of the manual articulators. In

our case these are the hands of the signers. For this purpose, in this Thesis we exploit some

1



2 Chapter 1. Introduction

state-of-the-art object tracking tools, trained for body part recognition, that will provide us

with the required information. Based on this, we obtain skeleton points of the signing hands

and use them in our models as our main features. The second SLR module concerns the se-

quence learning approach, namely how to produce text from the feature sequence. Recurrent

neural networks (RNNs) have proven quite capable in such problems, hence we utilize them

in our work.

1.2 Related Work

Overall there exists a significant number of works on fingerspelling recognition in the lit-

erature. One of the earliest solutions proposed [7] dates back to 1995. There, hidden Markov

models (HMMs) were used to make predictions on a set of randomly generated five word

ASL sentences following a predetermined grammatical structure. Other studies that relied

upon the abilities of HMMs are [8, 9, 10]. In their research, Kim et al. [8] proposed that

an HMM recognizer be used in tandem with multilayer perceptron (MLP) classifiers. The

MLPs use seven features representing the ASL hand shapes and make predictions both on

fingerspelled letters as well as phonological features of fingerspelling. The predictions are

then fed as observations to the HMM-based recognizer. In an alternative approach, [9] pro-

poses a semi-Markov conditional random field. The difference of a typical generative HMM

lies in the fact that the labels are predicted by maximizing the conditional probability of the

label sequence with the visual observations sequence. In other work, [10] utilizes the finger-

spelling recognizers from [8] and [9], but tries to also mitigate issues like limited training data

and signer dependence. Researchers there adjust deep neural network adaptation techniques,

borrowed from speech recognition, to the fingerspelling recognition problem.

In more recent years though, artificial neural networks (ANNs) have drawn a significant

amount of attention. Problems such as SLR and hand gesture recognition use ANNs increas-

ingly. Since SLR inevitably requires ASL images or videos, convolutional neural networks

(CNNs) appear to be ideal for such a task. RNNs have also been utilized to cover the tem-

poral aspect of the problem presented by many corpora with videos. Such models have been

used in [11, 12, 13]. In [11] researchers propose a hand detection mechanism that crops the

hand region of interest (ROI) from the original frame. The cropped ROIs are then used as

input to a CNN to extract the visual features. The sequence of features is finally fed to a long
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short-term memory (LSTM) network. Shi et al. [12] later proposed an attention model based

on a convolutional recurrent architecture, where they apply a fully convolutional network to

compute an attention map. This attention map represents the importance of features at dif-

ferent spatial locations to the letter sequence. The frames are then processed by an RNN that

unveils the temporal relationships between them. Apart from the translation side of the prob-

lem, researchers in [14] noticed the significance of a detection module. This detection module

finds intervals corresponding to fingerspelling in the frame sequence, classifying each frame

as positive (fingerspelling) or negative (non-fingerspelling). It is interesting to mention here

that even though CNNs are great at extracting image features, simpler methods can still be

used. In [13] instead of CNNs, a vanilla encoder consisting of MLPs has been constructed in

order to extract the hand features.

Another significant issue many researchers might face in SLR is what kind of input data

to choose for their models or how to acquire them. In [12] and [15] the input is raw im-

ages, which are processed by the network itself to extract important features. Another typical

approach is to use as features the skeletal coordinates of the manual articulators via object

tracking libraries. For example in [16] OpenPose is used to extract body part skeletons, and

their coordinates are fed as features to the ML system. In [17] the authors propose a novel

method to create both real and synthetic images generated on the basis of a 3D hand model.

In subsequent research [18], the authors test their synthetic images as input to a CNN for a

Japanese fingerspelling recognition task.

1.3 Our Contribution

As already indicated, our work lies along two axes. The first concerns the use of object

tracking tools to drive our feature extraction process. These are MediaPipe [1] and OpenPose

[19], two powerful multipurpose object tracking libraries. To our knowledge, MediaPipe has

not been tested to such an extent as OpenPose in fingerspelling. Specifically we focus on:

1. Describing the two tools we chose for our experiments.

2. Using these tools to extract hand skeletons and ROIs from the image sequences.

3. Treating cases where hand detection fails.

4. Deciding automatically on the signing hand.
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5. Discarding false detections.

6. Comparing the performance of the two tools.

Our second axis of work concerns sequence modeling. Specifically we focus on:

1. Describing the ML models and tools we will be using.

2. Developing a series of models using various combinations of hand skeleton data within

a RNN architecture.

3. Presenting our results and conclusions.

1.4 Thesis Structure

The rest of this Thesis is structured as follows:

• Chapter 2 describes the ChicagoFSWild dataset, presenting its structure along with

statistics.

• Chapter 3 includes a detailed description of MediaPipe and OpenPose along with the

other algorithms we developed.

• Chapter 4 provides analytics on the performance of MediaPipe and OpenPose as well

as the hand classification algorithms from Chapter 3.

• Chapter 5 describes the 2D and 3D coordinates used as visual features along with nor-

malization schemes.

• Chapter 6 describes the ML modules and techniques.

• Chapter 7 presents our recognition results.

• Chapter 8 draws our conclusions.



Chapter 2

Dataset

In this Thesis we employ the ChicagoFSWild dataset [20]. This corpus contains finger-

spelling video sequences in ASL obtained from online videos, where sign language is nat-

urally performed. This means that no professional equipment has been used to record these

videos and signers perform the sign language gestures as they personally deem better, pro-

viding natural and diverse data in the wild.

2.1 Database Description

The size of the dataset is about 14.6 Gigabytes, making it one of the largest available. It

contains the online ASL videos, stored as video frame sequences. Figure 2.1 includes part of

such a sequence so we can observe the movement of the signer’s right hand.

Figure 2.1: The initial frames of a video of the ChicagoFSWild dataset

The corpus consists of 7034 ASL fingerspelling videos performed by 160 different peo-

ple. In our experiments we also use a subset of this dataset, named BBox, that includes the

annotated bounding boxes of the ROI around the signer’s hands and a label designating the

signing hand(s). This subset contains:

1. 150 videos.

2. 1871 jpeg images.

5



6 Chapter 2. Dataset

3. 1919 signing hands.

4. 1870 signing hands (if one of the hands in videos where both hands sign is excluded).

5. 4 videos with 2 signing hands.

6. 7 videos with more than one person in the frame.

7. A folder of annotated hand bounding boxes.

The ChicagoFSWild.csv spreadsheet is also included, annotating the translation of each video

to English text. These are the target labels that helped us train and evaluate our neural net-

works. Regarding the lexicon of the target labels, it consists of 8692 English words in total,

with a vocabulary of 3551 unique words. We also performed a character level search and dis-

covered that apart from the 26 alphabet letters, the characters “@&’.” also occur in a small

percentage of target labels.

2.2 Some Interesting Statistics

We observed that sequence lengths vary in size, as some sequences can have fewer than

10 frames, while others reach a few hundreds. A distribution of the different lengths is shown

in the graph of Figure 2.2. Clearly the vast majority of videos are less than 50 frames, which

is reasonable since we are dealing with individual words or small phrases.

Sequences vs Frames per Sequence
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Figure 2.2: Video length histogram in the ChicagoFSWild dataset

When examining the dataset we noticed that apart from various sequence lengths, the

frame resolutions also vary from video to video. Different resolutions should be taken under
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consideration when computer vision tools are used in the experiments. Figure 2.3 gives us

an idea of the image resolution variety in the data with their frequency. Frames with a size of

640x360 pixels appeared to be the most dominant.
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Figure 2.3: Video resolutions in the ChicagoFSWild dataset

Finally in Figure 2.4 we display the number of occurrences of the ten most frequent fin-

gerspelled words in the dataset.
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Figure 2.4: The ten most common words in the ChicagoFSWild dataset with their number of

appearances





Chapter 3

Signing Hand Keypoint Detection

In this chapter we present the two computer vision libraries that we employ to detect the

hand and body pose keypoints. We describe their abilities and the way each library performs

detection. Both libraries extract similar keypoints, i.e. skeleton coordinates of humans, both

from videos and static pictures.

(a) (b)

Figure 3.1: Examples of generated keypoints on a sample frame of the ChicagoFSWild

dataset, employing (a) OpenPose and (b) MediaPipe

Such body parts help us determine the body and more significantly the hand position of

the signers. In Figure 3.1 we display the skeletons generated by the libraries. It is obvious

that they both focus on similar body parts, such as eyes, shoulders etc. When it comes to

the hand skeletons, that we are specifically interested in, the choice of keypoints is identical.

After we acquire those we make use of certain algorithms to extract and refine information.

The most important issue we faced was deciding on the signing hand among the pair of

hands returned by the library. Another issue was discontinuities of hand skeletons between

frames, meaning that in some cases a library failed to return a hand skeleton. Finally we had

9
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to mitigate erroneous skeleton detections produced primarily by OpenPose.

3.1 MediaPipe

MediaPipe [21] has been developed by Google and provides a variety of different solu-

tions regarding object recognition and detection such as hand detection, body pose detection,

object tracking etc. It has become very popular in recent years mainly due to the fact that it is

easy to set up and can run on a variety of operating systems such as Android, macOS, Win-

dows etc. Furthermore, it supports Python, C++, and Javascript, while it does not necessarily

require a GPU or a Cuda environment to run on.

As mentioned, MediaPipe offers many solutions to object tracking problems. Here, we

choose to proceed with the holistic pipeline that integrates three separate models to track

pose, face and hand landmarks. According to the library developers [1] this is not an easy

task as the input of one model might not be compatible to another, because each one requires

a different resolution. Thus, the tracking task takes place in three different stages correspond-

ing to the three different models. More specifically, the body pose is estimated first and then

the inferred landmarks help the algorithm determine ROIs around the hands and the face.

The ROIs are then cropped from the original image to be fed to the hand and face MediaPipe

modules. One interesting characteristic of MediaPipe is that it uses estimation from the pre-

vious frame as a guide to the object region at the current one. Therefore the whole tracking

process becomes faster. In case a hand moves significantly from one frame to another it will

be noticed, because of the fact that pose is the first to be determined at every frame.We depict

part of the multistage process in Figure 3.2.

The pipeline is implemented as aMediaPipe graph that uses a holistic landmark sub-graph

from the holistic landmark module and renders using a dedicated holistic renderer sub-graph.

The holistic landmark sub-graph internally uses a pose landmark module, a hand landmark

module and a face landmark module.

MediaPipe generates (if body parts are not occluded):

• 33 body pose landmarks.

• 468 face landmarks.

• 21 hand landmarks per hand.
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Figure 3.2: Body, hands and face fed to the MediaPipe holistic pipeline separately and re-

combined to form a complete detection (image taken from MediaPipe website [1])

We mostly care about the hand and pose landmarks, because these are most relevant to

our problem. All inferred landmarks are 4-dimensional and consist of x, y, z and visibility

values, where:

• x represents the landmark horizontal coordinate and it is normalized between [0.0, 1.0].

• y represents the landmark vertical coordinate and it is normalized between [0.0, 1.0].

• z represents the landmark depth with the wrist considered as origin for the hand land-

marks. Note that the smaller the value of z, the closer the landmark is to the origin. The

z coordinate also exists for the pose landmarks but creators advice against using it, as

it needs further training.

• visibility is a value between [0.0, 1.0] indicating the likelihood of the landmark being

visible in the image. Note that we chose not to use that value.

The depth coordinate z is particularly interesting, as it is quite challenging to reproduce

a depth estimate without requiring auxiliary aid, such as depth sensors, and only using RGB

video as input. In Figure 3.3 we depict the 3D skeleton of the right hand of the signer in

Figure 3.1b. Comparing it against the hand of that frame, it appears that MediaPipe managed

to accurately capture the depth of each skeletal landmark.
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Figure 3.3: 3D hand skeleton (x, y and z coordinates are scaled) of the right hand of the signer

in Figure 3.1b

The holistic solution of MediaPipe also offers a variety of configuration options. These

options are set according to the input given to the pipeline, the detection quality we want to

achieve, the computational cost etc. The configurations described by the developers [1] are:

• Static image mode: If set to false, MediaPipe treats the input images as a video stream.

It will try to detect the most prominent person in the initial image and upon success

it further localizes the hand landmarks. Then, in subsequent images it simply tracks

these landmarks without invoking another detection until it loses track of them. If set

to true, person detection runs on every input image.

• Model complexity: There are three levels of model complexity (0, 1, 2). Landmark

accuracy as well as inference latency generally increase for higher values of model

complexity.

• Minimumdetection confidence: This designates theminimum confidence value (within

[0.0, 1.0]) of the person detection model for the detection to be considered successful.

• Minimum tracking confidence: This designates the minimum confidence value (within
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[0.0, 1.0]) of the landmark tracking model for the pose landmarks to be considered

tracked successfully, or otherwise person detection will be invoked automatically at

the next input image. Setting it at higher values can increase robustness of the solution

at the expense of a higher latency.

We must note though that MediaPipe has its limitations. The most significant is the fact

that it can not track more than one person simultaneously.

3.2 OpenPose

OpenPose was developed by the Perceptual Computing Laboratory at Carnegie Mellon

University and has been the first real-time multi-person system to jointly detect human body,

hand, facial, and foot keypoints. In total, it provides up to 135 keypoints for every person

detected in single images or videos.

OpenPose also utilizes a multi-stage pipeline to filter the input images, although it works

in a different way from MediaPipe [2]. As depicted in Figure 3.4a, an RGB image is fed as

input into a two-branch multi-stage CNN, each producing two different outputs. Multi-stage

simply means that the networks are stacked one on top of the other at every stage. This step

is analogous to simply increasing the depth of the neural network in order to capture more

refined outputs towards the later stages.

More specifically, the top branch predicts the confidence maps (Figure 3.4b) of the loca-

tion of different body parts such as the right eye, left eye, right elbow and others. The bottom

branch, predicts the affinity fields (Figure 3.4c), which represent a degree of association be-

tween different body parts.

Concerning their multi-stage nature, at the first stage, the network produces an initial

set of detection confidence maps and a set of part affinity fields. Then, at each subsequent

stage, the predictions from both branches of the previous stage, along with the original image

features, are concatenated and used to produce more refined predictions. At the final stage

the confidence maps and affinity fields are processed by greedy inference (Figure 3.4d) to

output the 2D keypoints for all persons in the image (Figure 3.4e).

According to its documentation [19] OpenPose provides:

• 15, 18 or 25 2D body keypoints, including 6 foot keypoints.

• 21 2D hand keypoints, for each hand.
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• 70 2D face keypoints.

Figure 3.4: OpenPose pipeline (image taken from [2])

The produced keypoints are enclosed in a JSON file. More specifically, the contents of

the JSON file are:

• Person id: Set automatically to -1.

• Pose, face and hand keypoints in separate lists of 2D keypoints representing the hori-

zontal and vertical coordinate with a confidence.

• 3D keypoints: In future updates, OpenPose will be able to also produce 3D coordinates.

(a) (b)

Figure 3.5: (a) Keypoints returned by OpenPose with high confidence; (b) all OpenPose de-

rived keypoints, regardless of their confidence

In OpenPose the horizontal and vertical coordinates are not normalized as in MediaPipe.

The confidence score coordinate expresses how confident the library is for a certain keypoint

and ranges between [0.0, 1.0]. If it is less than 0.2, the keypoint will not be rendered on

the image. We observed though that a number of keypoints with scores below 0.2 were not

far from truth, so we decided to ignore the confidence factor. The image in Figure 3.5a is

rendered automatically by OpenPose with low-score keypoints missing. In Figure 3.5b those
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keypoints are coloured with green and even though some are clearly off, others correctly form

the hand skeleton.

OpenPose unlike MediaPipe has the ability to track multiple human skeletons, but that

ability also turned out to be a hindrance sometimes. By being eager to find human poses the

library is prone to mistakes, meaning it will make detections on objects that might not be

human but merely resemble a body. These can be objects in the background, animals, or even

body parts of the real human.

3.3 Elimination of Falsely Detected Skeletons

We have already mentioned that it is possible for OpenPose to detect multiple persons

simultaneously. Our dataset includes such frame sequences (Figure 3.7), where we need to

track all the people and decide which one is the most probable signer. Besides detecting peo-

ple, OpenPose can invoke body pose detections on random background objects, or body parts

that are definitely not a human. The reason behind this can be image background, bizarre body

positions etc. Figures 3.6a and 3.6b depict such examples, where the eagerness of the library

to extract body keypoints produced erroneous results. Such detections can be problematic

in the ML stage. This forces us to develop an algorithm to detect and eliminate additional

skeletons, either them being real people not signing or objects misclassified as humans.

(a) (b)

Figure 3.6: Erroneous skeletons on body part (a) and random background object (b)

Our algorithm works by using spatial characteristics of the body and hand skeletons.

Generally false detections tend to have smaller skeletons, because the signer covers the largest

part of the image most of the times. Furthermore, false skeletons typically do not have hands.

Finally, when more than one person are present the signer’s hands tend to rise higher than the
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Figure 3.7: Frame of a sequence with a signer (left) and another person remaining idle (right)

non-signer’s. These led us to develop the following algorithm. For each person in a frame,

we extract the following info:

• Person’s id: A unique number given to each detected skeleton.

• Maximum height of hand: This is the height of the hand’s higher keypoint. If a hand

does not exist, it is set to a large number (e.g. 10000).

• Skeleton height: We calculate it by subtracting the body skeleton’s highest and lowest

point. We then express it as a percentage of the image height, so that we can use a

global threshold.

• Skeleton area: This is the total area that a skeleton covers. We calculate it as the area

of the rectangle defined by the highest and lowest points along with the left-most and

right-most points of the skeleton.

To decide on which person signs, we pass all of our detected skeletons through a number

of filters. Initially, we check the frame area each detection covers. We can safely assume that

in most cases the skeleton with the largest area probably belongs to the signer. Having that

in mind we can eliminate false detections with smaller skeletons. Since we know the largest

area, we then need to calculate the ratios of the other detected skeleton areas to this area.

If this ratio is above 30%, we keep the skeleton for further evaluation. If not we discard it

as disproportional, meaning that most likely it is a false detection. We then sort the list of

remaining skeletons based on the maximum height of their hands from highest to lowest.

Subsequently, we check the skeleton heights to estimate if a skeleton is above the threshold.

Here we set that threshold at 40%, meaning that a legitimate skeleton’s height should cover
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more than 40% of the image height. Keep inmind though, sometimes skeletons can be smaller

than the threshold resulting in zero eliminations. This can happen as the number of people in

the image increases. In both cases the first skeleton in the final list is the one we designate as

the signer. In our subset we encounter 206 cases of images with multiple skeletons, many of

them being false detections. Our algorithm succeeds in finding the correct skeleton 100% of

the times.

3.4 MediaPipe and OpenPose Collaboration

Here we suggest a collaborative way to use the libraries. We set MediaPipe as our main

tracking library, with OpenPose having the role to supplement the former in frame sequences

with multiple people. That means OpenPose needs to first estimate how many people to ex-

pect and MediaPipe will then process the frames of the video. After we have counted the

number of people in every frame and stored these values in a list, we calculate which value

has the most appearances. This is the most probable number of people. This is necessary, if

we want to eliminate sporadic false detections by OpenPose:

• If the most probable number of people in a sequence equals one, we can rely onMedia-

Pipe.

• If that number is higher than one, we must consult OpenPose.

If the second case holds, we need to first determine the most probable signer of the spe-

cific frame. We find the signer with the help of our false skeleton elimination algorithm. It

was observed that in some cases with more than one person MediaPipe will invoke a detec-

tion on the right person for part or even for the whole frame sequence. If that is the case,

we check whether MediaPipe’s detection matches the most probable signer returned by the

aforementioned algorithm. To do that we rely on the intersection over union (IoU) metric,

described in Section 4.1.1. Initially, we create bounding boxes for the two body skeletons,

using their body pose keypoints for the IoU calculation. If the score is above the threshold of

40%, we are confident that the skeletons belong to the same person and proceed with Media-

Pipe’s result. If this is not the case, we rely on OpenPose. In the BBox dataset OpenPose

supplemented MediaPipe in 31 images.
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3.5 Signing Hand Classification Algorithm

A fundamental part of this Thesis is the signing hand classification algorithm, which

determines the hand performing the fingerspelling. Our dataset includes videos where signers

use only one or both of their hands to sign. Moreover, one video may include multiple people

but always a single signer. When our signers perform gestures with one hand the other can

remain still or move arbitrarily inside the frame. We also came upon cases, where signers use

both hands. We observed though that their movement and positioning is almost identical and

concluded one hand is enough for our problem.

To determine if a hand signs, we propose an algorithm that uses both spatial and temporal

characteristics of the hand skeleton sequence. We start with the fact that the overall motion of

the fingers in a signing hand is larger throughout the video. Furthermore, the signing hands

tend to be higher in the frame than non-signing hands. To calculate the height of each hand

we take the average sum of the hand centroid’s heights:

Average_Hand_Height =
1

N
·
N−1∑
n=0

hand_height(n)

Tomeasure the total finger motion we use the distance between each pair of neighbouring

fingertips. This means we calculate the distance between thumb and index, index and middle,

middle and ring, ring and pinkie fingers for N frames. To decide the amount of finger motion,

we need a way to determine how much each distance fluctuates through the frame sequence.

The need of a fluctuation metric led us to consider linear regression. By performing linear

regression on each distance we obtain a line that best fits the finger distances of the frames.

If fingers constantly change positions the mean square error (MSE) of the regression will be

higher, because the line will not be able to fit the data. If fingers remain stable through the

video, their distances will form an almost linear curve and their MSE significantly decreases.

We calculate the MSE for a finger in a sequence of M frames using the equation below,

where Y(m) is the value of the actual fingertip distance and Y’(m) is the value returned by

linear regression:

MSE =
1

M
·
M−1∑
m=0

(Y (m)− Y ′(m))2

Based on the above, the approach to detect the signing hand is shown as Algorithm 3.1,

below. First and foremost, we need to check the total MSE value for both hands. The total
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MSE is calculated by summing the MSEs of the fingers. If the total MSE of a hand equals

zero, we can safely assume that only one hand is present in the video. This makes the final

decision obvious. If that is not the case, we need to check the ratio of the total right and left

MSEs. If the ratio is above a certain threshold, we choose based on a hand’s total MSE only. If

that same ratio is below that threshold, we assume that the hands move similarly, enhancing

the possibility of two signing hands. As a final check we use the height difference. In the

event of the absolute difference being below a threshold, we conclude that both hands sign,

if not we choose the one with the highest MSE.

Algorithm 3.1: Hand classification algorithm

1 i f r ight_hand_MSE = 0 :

2 Mark t h e l e f t hand as s i g n i n g

3 e l s e i f le f t_hand_MSE = 0 :

4 Mark t h e r i g h t hand as s i g n i n g

5 e l s e :

6 max_MSE = max ( r ight_hand_MSE , lef t_hand_MSE )

7 min_MSE = min ( r ight_hand_MSE , lef t_hand_MSE )

8 i f max_MSE /min_MSE < 2 . 5 :

9 C a l c u l a t e t h e h e i g h t _ d i f f e r e n c e

10 i f h e i g h t _ d i f f e r e n c e < 50 :

11 P robab l y bo th hands s i g n

12 e l s e :

13 i f r ight_hand_MSE > lef t_hand_MSE :

14 P robab l y t h e r i g h t hand s i g n s

15 e l s e :

16 P robab l y t h e l e f t hand s i g n s

17 e l s e :

18 i f r ight_hand_MSE > lef t_hand_MSE :

19 P robab l y t h e r i g h t hand s i g n s

20 e l s e :

21 P robab l y t h e l e f t hand s i g n s

In the following examples we applied our algorithm on two frame sequences. In the first

sequence (case of Figure 3.8) the signer uses only the right hand to fingerspell, while in the
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second (case of Figure 3.9) both hands are used. In the graphs below we have:

• The distance between thumb and index in red.

• The distance between index and middle in green.

• The distance between middle and ring in black.

• The distance between ring and pinky in blue.
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Figure 3.8: Right (a) and left hand distances (b) with the lines that best fit them in a case

where the signer uses only the right hand to fingerspell
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Figure 3.9: Right (a) and left hand distances (b) with the lines that best fit them in a case

where the signer uses both hands to fingerspell

Figures 3.8a and 3.8b demonstrate how much distances diverge from their best fitting

lines. It becomes obvious that the right hand produced larger MSEs, leading us to believe it

is signing. The right hand’s MSE of 444.32 in comparison with the left’s 49.59 confirms our
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speculation. If we run our algorithm on these results, the calculated ratio is much higher than

the threshold, leading to a decision based on the two MSEs alone.

In the second example, where both hands sign, we notice some similarity between the

graphs of Figure 3.9a and 3.9b. The total MSE is 698.85 for the right hand and 919.99 for the

left hand. The calculated ratio is smaller than 2.5, leading to the case of two possible signing

hands. We also confirmed that their height difference is below 50, leading us to decide that

this is a two signing hand scenario.

3.6 Missing Hand Recovery

Sometimes an object tracking library might fail to detect the hand skeleton in a frame.

This phenomenon can be caused due to image noise, motion blur, poor video resolution,

background color being almost identical with skin color or unusual hand positioning (hands

being too close to the camera). There is not much to be done, if the library fails in consecutive

frames, although we are able to calculate isolated missing hands. We do that by averaging the

horizontal, vertical and depth coordinates of each hand skeleton keypoint from the previous

and the next frame.

(a) (b)

(c)

Figure 3.10: Right hand skeleton in frame (c) is calculated by averaging skeletons in frames

(a) and (b)

We demonstrate our technique in the frame of Figure 3.10c, where MediaPipe failed to
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return the right hand skeleton. The keypoints drawn on Figure 3.10c represent the missing

right hand skeleton accurately enough. They seem to fit the hand shape well, reaching an IoU

of 0.78 with their respective ground truth bounding box.

3.7 Region Of Interest Extraction

In order to proceed to the next chapter, we need to explain how the detected hand’s ROI is

extracted. The ROI represents the image area that contains the detected hand. Usually ROIs

are enclosed in bounding boxes, which are essentially rectangular areas that determine the

boundaries of the ROI. In Figure 3.10 the green rectangles are such boxes. In order to deter-

mine the rectangular area around the detected hand we begin by organizing the vertical and

horizontal coordinates of its keypoints in separate lists. We now need to pinpoint the starting

corner of the rectangle. Our starting corner is the point located on the lowest horizontal and

vertical coordinate (min_x, min_y). Subsequently, we calculate the width and height of our

bounding box. The width is calculated by subtracting min_x from the maximum horizontal

coordinate. We perform the same action with the vertical coordinates and min_y to calculate

the height. The starting corner along with the width and height values enables us to draw the

bounding box. To be certain that the bounding box contains the whole hand, we expand it by

a certain margin.



Chapter 4

Performance Evaluation of Hand

Detection Algorithms

In this chapter we report the results of MediaPipe and OpenPose on the BBox subset of

the ChicagoFSWild dataset and we determine which one works better for our problem. We

also display results on the efficiency of the hand classification algorithm. It should be noted

that OpenPose has been available for a longer time than MediaPipe and has already been

tested in experiments similar to ours [16]. MediaPipe on the other hand has not been tested

much on our problem, so it is of interest to provide a comparison between the two.

4.1 Performance Metrics

To draw concluions on the performance of MediaPipe and OpenPose in hand tracking,

we need to decide on the best configuration for each. After this is determined, we proceed

by making the final comparison between the two based on the scores of each library. These

scores are drawn from the following metrics: IoU, recall, precision and F1-Score. Te be more

efficient in our work we organize the library results in a hand dictionary containing informa-

tion about:

• The keypoint list, arranging the 21 3D or 2D coordinates in a list.

• The hand bounding box, storing the starting corner, the width and the height needed to

draw the rectangular ROI.

• The hand centroid, that is the center of the bounding box.

23
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• The hand type, categorized by the library as right or left.

• The signing value, originally set as 0. The signing hand decision algorithm later sets it

to 1 for signing or 2 for non-signing.

It is also important to note that the hand keypoints and ROIs were scaled to a resolution

of 640x360 after the detection. The ground truth bounding boxes also correspond to this

resolution.

4.1.1 Intersection Over Union

The IoU is an evaluation metric used to measure the accuracy of an object detector, rang-

ing from 0.0 to 1.0. It uses the ground truth bounding box, which is normally annotated by

the creators of the dataset and a bounding box inferred by an algorithm. IoU is calculated as

a ratio between the overlapping area and the total area of the two bounding boxes:

IoU =
Area_Of_Overlap

Area_Of_Union

(a) (b)

Figure 4.1: Signer image with the predicted hand skeletons, bounding boxes and IoU value

for MediaPipe (a) and OpenPose (b)

In Figure 4.1a and Figure 4.1b we display the bounding boxes and their IoU scores. The

ground truth bounding boxes are colored in red, while the green ones are those estimated by

the library keypoints. In each figure we see the calculated IoU on the top right corner of the

bounding box. After we have determined the bounding box of the signing hand, we choose

the ground truth bounding box annotated with one and calculate their IoU. The total IoU of

the dataset is calculated as the average of the IoUs of every frame.
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4.1.2 Precision, Recall and F1-Score

In order to understand precision and recall we need to explain how we use the terms true

positive, false positive and false negative. In general, a positive prediction is when we classify

a hand as a signing one. A true positive is when the IoU between the predicted bounding box

and ground truth bounding box is above 0.5, on the other hand a false positive is when the

IoU is less than 0.5. A false negative represents the failure to invoke any detection, where

there should be one. In Figure 4.2 we demonstrate two false positive cases. In the first image

(Figure 4.2a) the false positive was caused because of inaccurate detection results, resulting

in IoU less than 0.5. In Figure 4.2b we have accurate bounding boxes for both hands but still

get an IoU of 0.0. The problem here is that the algorithm classifying the signing hand did not

make a correct decision, marking the wrong hand as signing.

(a) (b)

Figure 4.2: Cases of false positives with a low IoU (a) and false hand classification (b)

To generate scores for our metrics we count the cases of false positives, true positives and

false negatives. The first metric we calculate is precision. Precision deduces how many, out

of all the predictions that our model terms positive, are actually positive:

Precision =
True_Positives

True_Positives + False_Positives

Precision represents the detection quality of MediaPipe and OpenPose. An increased number

of true positives means more accurate hand skeletons. Precision can give us an idea of how

adept our signing hand classification algorithm is, but recall is more appropriate for that

purpose. Recall deduces out of all the positive cases, how many positive cases the algorithm

was able to identify:

Recall =
True_Positives

True_Positives + False_Negatives
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For the above reason, it is preferable to use recall to later check how efficient we are in

determining the signing hand. Finally, the F1-Score is the weighted average of precision and

recall:

F1−Score =
2 · Recall · Precision
Recall + Precision

Alongwith the total IoU, F1-Score is a cumulative indicator for the efficiency of both libraries

and algorithms.

4.2 Hand Classification Performance

To measure the performance of the signing hand classification algorithm on the BBox

subset, we use the recall statistic. We found a total recall of 89.73%, something not repre-

sentative of the algorithm’s efficiency. The reason behind this are poor detection results or

no detections at all accumulating false negative and false positive cases. This raises the need

of a different evaluation approach. We decided to rely on the recall of each individual frame

sequence. If a recall is above a certain threshold, we consider the hand classification to be

successful. For our experiments we set the threshold at 0.6 and found eleven sequences with

a recall less than 0.6. In eight of these sequences, only one hand is present making the final

classification obvious. Out of the three remaining two-hand cases, it is worth discussing two

videos.

(a) (b)

Figure 4.3: Atypical frames found in the ChicagoFSWild dataset

The first is a ten-frame sequence with nine false negatives and one false positive, which

collectively result to a recall of 0. The false positive frame is shown in Figure 4.3a. It is im-

portant to notice here that both libraries failed when processing this sequence. The second

sequence is again a case not representative of our dataset. From Figure 4.3b it becomes ob-
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vious that the video contains approximately fourteen people and the signer stands far from

the camera. These factors challenge both the object tracking libraries and the classification

algorithm. In conclusion, the algorithm fails completely in detecting the correct signing hand

in 3 occasions, which means it succeeds in 98% of the frame sequences.

4.3 MediaPipe and OpenPose Performance Comparison

In this section we present our results and conclusions for MediaPipe and OpenPose. Me-

diaPipe has many configuration options and since it has not been tested much in datasets

like ChicagoFSWild, we had to check different combinations to be certain about our results.

This included tuning the model’s complexity, minimum detection confidence and minimum

tracking confidence.
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Figure 4.4: MediaPipe results with model complexity 1 (a) versus model complexity 2 (b)

In Figures 4.4a and 4.4b we display how MediaPipe performed on the BBox dataset. We

have concluded that the two most influential parameters are minimum detection confidence

and model complexity. Regarding minimum tracking confidence, it was observed that it is

not as influential, yielding no significant changes in the final results. It has become obvious

that by gradually increasing the minimum detection confidence all of our metrics deteriorate.

Thus, it is preferable to keep its default value of 0.5. Model complexity does not induce

the same amount of change, but still setting it to 2 results in improvements. Furthermore,

MediaPipe’s static image mode should be set to false, as in this case more detections are

produced. Since setting image mode to false implies that MediaPipe should expect a video

input, we are concerned on how to warn MediaPipe for the end of the video. The reason
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behind this concern is that the model will not invoke another detection until it loses track

of the current keypoints. This could cost us a detection, if it occurred in the first frame of

the next sequence. So, after each sequence of frames has been processed, we present a black

image to the model. By adding the black image, we force this event and prepare the library

for the new frame sequence.

OpenPose also offers a wide variety of configurations, but with a more standard setup

that we could not tune much. The OpenPose configuration and variables of our choice were:

• –model_pose_BODY_25: The fastest model for CUDA version with high accuracy,

also including foot keypoints.

• –image_dir: The sequence frame directory.

• –hand: To enable hand keypoint detection.

• –write_json: To write OpenPose output in JSON format.

• –write_images: Directory to write the rendered frames.

Table 4.1: Performance of the MediaPipe and OpenPose libraries on the BBox set of the

ChicagoFSWild dataset

Library IoU Precision Recall F1-Score

MediaPipe 68.50% 95.96% 88.93% 92.31%

OpenPose 45.19% 82.00% 56.00% 66.55%

MediaPipe and OpenPose 69.22% 95.55% 89.73% 92.53%

Table 4.1 shows thatMediaPipe produced better results. The final row demonstrates how a

collaborative effort between the two, described in Section 3.4, leads to further improvements.
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Feature Extraction

In this chapter we describe the postprocessing of the landmarks returned by MediaPipe

and OpenPose. We explain how we convert these landmarks into feature vectors, which are

subsequently fed to our ML models. We then list the different types of feature vectors as well

as their dimensions. The second part of this chapter includes the normalization schemes we

have selected for our input vectors.

5.1 Extracted Features

Webase our visual features on the 2D and 3D coordinates extracted fromMediaPipe’s and

OpenPose’s hand skeletons. We use the algorithms from Chapter 3 to create a pipeline which

processes these hand skeletons in order to produce visual feature sequences. Our pipeline is

shown below:

1. Extract the 2D and 3D coordinates from the hand skeletons in each frame. Organize

them in right and left hand sequences.

2. Apply the collaborative algorithm between MediaPipe and OpenPose to mitigate mul-

tiple people and false detections. This step is not necessary, if we only use MediaPipe.

3. Recover any isolated discontinuities (missing detections) in the hand sequences.

4. Use the hand classification algorithm to determine which hand performs the finger-

spelling.

5. Return the final right, left and signing hand sequences.
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We can now create the feature vectors from each hand sequence. Based on the hand se-

quence as well as the library used, we can distinguish the following types:

• Feature vectors containing the 2D and 3D MediaPipe coordinates of the signing hand

sequence.

• Feature vectors containing the 2D and 3DMediaPipe coordinates of both right and left

hand sequences.

• Feature vectors containing the 2D coordinates of the signing hand sequence produced

by the collaborative effort between MediaPipe and OpenPose.

• Feature vectors containing the 2D coordinates of both right and left hand sequences

produced by the collaborative effort between MediaPipe and OpenPose.

As mentioned before, MediaPipe produces 21 3D keypoints for each hand. For each time

step of the sequence we create a feature vector by flattening the hand keypoints into a 63-

dimensional vector. If we now discard the depth coordinate from our keypoints, what re-

mains are the 2D coordinates. This results in dimensionality reduction and we now have

42-dimensional feature vectors. We also performed experiments, where the feature vectors

were a product of MediaPipe’s and OpenPose’s collaboration. OpenPose also extracts 21 3D

keypoints for each hand, only this time the third coordinate represents visibility instead of

depth. So, during the collaboration phase we are forced to work exclusively with the hor-

izontal and vertical coordinates. This results again in 42-dimensional feature vectors. It is

worth mentioning here that both libraries order the hand keypoints the same way, making

unnecessary any reordering by our part.

5.2 Normalization Schemes

One final operation on the feature vectors before they are used as input to the ML stage

is to normalize them. By applying normalization schemes we expect to develop better fitting

models as well as more accurate results. In this Thesis we test three normalization techniques.

We also consider the case where no normalization is applied.
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5.2.1 Wrist Normalization

Inspired by other work [16], we normalize every hand skeleton keypoint based on the

wrist keypoint. This means that we consider the wrist as the respective origin for the whole

hand. We apply this normalization technique by subtracting the wrist keypoint’s values from

the other keypoints. This action occurs at the frame level, so that every feature vector begins

with the origin.

5.2.2 Min-Max Scaling

Another normalization technique we test is Min-Max scaling. The idea behind this tech-

nique is to scale all our input data into the range [0.0, 1.0]. This type of scaling is mainly used

when variables that are measured at different scales do not contribute equally to the model

fitting. This situation could end up creating a bias. Although this does not apply much to

our hand coordinates, we still thought it would be interesting to test this type of scaling. To

perform the scaling we apply the following formula to our coordinates:

coordinate_sc =
coordinate−min_coordinate

max_coordinate−min_coordinate

Themin_coordinate andmax_coordinate are acquired at the sequence level wheremax_coordinate

is the largest coordinate in the whole feature vector sequence andmin_coordinate the lowest.

5.2.3 Hand Size Normalization

Finally, we decided it would be interesting to try and scale the feature vectors in a se-

quence with the average hand size of that sequence. We estimate the hand size by employing

the distances between the wrist and the four keypoints of the hand where the main fingers

start. The average of the sum of these distances gives us an idea of the hand’s size in a frame.

To apply this rationale in a sequence of N frames we use the formula:

sc_svalue =
∑N−1

n=0 sum_of_hand_distances(n)
4 ·N

We divide the values of our feature vectors with the sc_value. This technique is used in ad-

dition to wrist normalization.





Chapter 6

Recognition Module: Basic Neural

Network Components and Adopted

Architecture

In this chapter we describe the ANN components we use in our ML models. We have

already established in previous chapters that our input data are sequential. Due to their effi-

ciency with this type of data, we decided to use RNNs as our core architectural component.

We also explain the rationale behind choosing connectionist temporal classification (CTC) as

the loss function for our problem, and we describe how we handle the output of RNNs using

CTC. Finally, we present the adopted architecture of our model.

6.1 Recurrent Neural Networks

RNNs specialize in temporal and ordinal problems that usually include sequential or time

series data. Fields such as speech recognition, language translation and natural language pro-

cessing are already using RNN models in numerous applications. The unique characteristic

that makes them excel in such fields is their ability to take information from prior inputs

to influence the current output by employing hidden states. The hidden state is propagated

forward through time to help the network decide which characteristics of the input sequence

should be kept. Another unique feature of RNNs is the fact that they share parameters across

each layer of the network. These parameters are still adjusted by backpropagating gradients,

only this time the algorithm differs a little. The difference lies in the fact that backpropaga-
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tion in RNNs sums errors at each time step therefore calling the algorithm backpropagation

through time.

Figure 6.1: Consecutive time steps of a simple RNN (image taken from [3])

In Figure 6.1 we display three time steps of a typical RNN architecture. The repeating

modules have a simple structure with only one tanh layer. Notice how in each time step the

hidden state ht is both the current output and the input to the next time step. The number of

input and output features also determines the network type. We can categorize RNNs in four

different types:

• One to one, where a single output is inferred from a single input.

• One to many, where multiple outputs are inferred from a single input.

• Many to one, where a single output is inferred from multiple inputs.

• Many to many, where multiple outputs are inferred from multiple inputs.

For example our problem is a case of “many to many”, since our input is composed of

multiple feature vectors and our output includes sentences containing multiple alphabetical

characters.

6.1.1 Bidirectional Recurrent Neural Networks

In this Thesis we select a more advanced type of RNN, namely the bidirectional RNN

(BRNN). The typical RNN relies only on past and present events to make predictions, how-

ever many real world problems also rely on future events. For example in many language

prediction problems the meaning of a sentence is not complete without looking or waiting for

future events. These events could be words at the end of the sentence that complete its mean-

ing. These linguistic dependencies are very common in spoken and written speech, making
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Figure 6.2: Example of the forward and backward RNN structure (image taken from [4])

capturing and analyzing both past and future events very helpful. BRNNs are able to capture

these time dependencies by combining two separate RNNs. The first RNN moves forward

through time, beginning from the start of the data sequence while the second RNN moves

backwards in time, beginning from the end of the data sequence. Each RNN works as an

individual layer producing outputs for the forward and backward pass. The outputs are then

concatenated to form a single output as shown in Figure 6.2.

6.1.2 Long Short-Term Memory and Gated Recurrent Unit Models

RNNs have proven very competent in capturing the dependencies between sequential

data, but the length of an input sequence could affect their performance. To counter this, a

special kind of cell was devised and integrated to RNNs, yielding the LSTM networks [22]

– see also Figure 6.3.

Figure 6.3: Layer architecture of LSTM cell (image taken from [5])

More recently, the gated recurrent unit (GRU)was introduced by Cho et al. [23], as a mod-

ification to the LSTM. It was discovered that the results produced by the newly introduced
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GRU architecture were comparable to the already established LSTM. Since then, GRUs have

been used extensively in many practical applications where they proved very competent in

solving the vanishing gradient problem introduced by simple RNN cells. They do not differ

much from their LSTM counterparts, although they use a simpler design (see also Figure

6.4).

Figure 6.4: Layer architecture of GRU cell (image taken from [3])

6.1.3 Layer Normalization

Another type of layer we tested in our RNN architectures is the normalization layer. In-

troduced by Hinton et al. [24], layer normalization is inspired by batch normalization. Batch

normalization computes a mean and a variance by using a distribution of the summed input

to a neuron over a mini-batch of training cases. The mean and variance of each training case

are used to normalize the summed input to that neuron. Because of its batch dependency this

type of normalization is rather impractical for RNNs. So, instead of computing mean and

variance over a batch, layer normalization calculates them using the summed inputs to the

neurons in a layer. Layer normalization is said to reduce training time, as well as making the

RNN more stable.

6.2 Connectionist Temporal Classification

We next describe the loss function we used in our experiments. Problems like ours are

similar to speech recognition or hand writing symbol recognition and in general situations

where the input and output alignment is ambiguous. Our problem’s dataset comprises of video

frame sequences and corresponding transcripts, but there is no alignment rule to match a
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character to certain frames. Devising some alignment rule for the data, e.g. a slice of the

video frames to correspond to an output character could be a solution. Keep in mind though

that applying such a strict rule to videos with different frame rates and different fingerspelling

rates could lead to unpredictable results.

6.2.1 Alignment

CTC [6] provides us with an alternative for problems where input and output alignment is

unclear. To give a better understanding of CTC we rely on a simple recognition problem with

no alignment rules. There, we map the input sequences X = [x1, x2, . . . , xN ] to corresponding

output sequences Y = [y1, y2, . . . , yM ], i.e. transcripts. The obstacles lying ahead are:

• X and Y usually have various lengths.

• The ratio of lengths between the input X and the corresponding output Y varies.

• The possibility of an accurate alignment rule between X and Y is low.

When it comes to the alignment of input X and output Y, the input length will probably

be longer or equal than the corresponding transcript’s. This forces the algorithm to produce

an output sequence equal to the input in length. Consider an input X of length 6 and the target

word is “cat”, Y = [c,a,t]. A naive approach is to assign one output character to each input

step and collapse repeating characters in the output to acquire the desired word.

Input x1 x2 x3 x4 x5 x6

Alignment c c a a a t

Output c a t

Table 6.1: Naive alignment rule between input and output sequence

Table 6.1 demonstrates this technique where the output Y = “ccaaat” collapses to the word

“cat”. Although this approach worked here, it is rather simplistic for real world applications

mainly due to the following reasons:

• In many cases forcing every input step to align to some output is not realistic. Long

stretches of silence are such a case. Usually these parts of speech do not correspond to

some output.
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• Many words contain repeating characters, such as “hello” or “soon”. Our initial ap-

proach will therefore delete correct characters.

Figure 6.5: Example of the CTC alignment technique (image taken from [6])

To overcome such difficulties, the CTC algorithm introduces a new token to the possible

output characters. This token is called the blank token and is represented by the letter ϵ. It

corresponds to nothing, so we simply discard it from the output sequence. That characteristic

also solves the repeating character problem because in order to have a valid alignment there

must be a blank token between the repeating characters. Figure 6.5 demonstrates how the

blank token contributes to the alignment method, dealing with cases of long stretches of

silence as well as repeating characters.

6.2.2 Loss Function

RNNs using CTC as a loss function produce a probability distribution matrix, containing

the probabilities of each possible element at every time step. The possible elements are pre-

determined and in our case are alphabetical characters. Acquiring this distribution enables us

to infer a likely output or to assess the probability of a given output. Our current goal is to

train the model to maximize the probability it assigns to the right answer, namely a character

alignment. To do this, we need to calculate the conditional probability p(Y|X) of the possible

alignments for a number of T time steps:

p(Y |X) =
T−1∏
t=0

pt(at|X)

where pt(at|X) expresses the per time step probability of a possible output character. A straight-

forward approach would be to calculate the probability of every possible alignment between

all elements over the entire sequence and keep the one with the highest probability. Despite
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returning a correct result this method is computationally expensive. The problem is the sheer

number of possible alignments that could end up slowing the whole process. That is why a

cost effective method is needed when calculating the CTC loss. Dynamic programming al-

gorithms are a good practice for such problems where the goal is to maximize the probability

of the labelling given a sequence.

6.3 Output Decoding

It has become clear from the previous section that an efficient way of decoding the output

in order to get the alignment with the maximum probability is crucial. We already mentioned

dynamic programming algorithms as a solution to these types of problems. However since dy-

namic programming covers a wide variety of algorithms, there is no standard decoder for this

purpose. We will later observe that different decoders produce different results for the same

output, therefore affecting the final accuracy of our models. In our applications we tested two

of the most popular decoders for such problems. Initially, we tested the more straightforward

greedy decoder and then proceeded with the more complex beam search decoder. The greedy

decoder algorithm performs the following steps:

1. Find and keep the maximum probability element at each time step.

2. Collapse blanks and all repeating characters not separated by blank.

3. Remove blanks from the sequence.

4. Concatenate the remaining elements.

The greedy approach has the advantage of being fast and computationally inexpensive.

Despite its advantages, greedy decoder is adept at overlooking alignments that could possibly

produce a higher probability. Beam search might not be as simple and fast, but it can produce

more sophisticated alignments.

The beam search algorithm creates possible character alignments or beams and calculates

their total probabilities. A beam is a character sequence with a corresponding probability

score. The higher the score the higher the possibility we have located a good character align-

ment. The biggest difference between the two decoders lies in the fact that beam search is

able to score multiple alignments per time step. Essentially beam search resembles the greedy



40 Chapter 6. Recognition Module

decoder when we force it to only check one alignment per time step. Furthermore, in beam

search if more than one beams are equal, they are merged and their probabilities are added.

For example both a beam containing the text “aϵ” and the beam containing “ϵa” produce “a”.

Our beam search implementation follows the methodology used in [25].

6.4 Adopted Model Architecture

In this section we present the two neural network architectures we developed for the

purposes of this Thesis. Figure 6.6 displays the complete pipelines with their main blocks.

The difference between the two lies in the kind of input they accept. The pipeline in Figure

6.6a uses the signing hand feature vectors as input, whereas the pipeline in Figure 6.6b accepts

feature vectors from both right and left hand. The data for the two hands are fed separately

into the model. Other than that, both pipelines use the same building blocks and output the

same type of probability distribution.

1. The first blocks of the pipelines are embedding layers. They are essentially fully con-

nected layers and their functionality is to increase the dimension of the input feature

vectors before they proceed to the next block. The pipeline in Figure 6.6b yields two

embedding layers, one for each hand. Their respective outputs are then concatenated

in a single vector.

2. The recurrent layers are the core component of our models. We rely on them to capture

the temporal dependencies of the sequential data. They are comprised of a normaliza-

tion layer and a BRNN layer. We tested both GRUs and LSTMs in our BRNNs.

3. The time distributed layer is constructed by a number of stacked fully connected layers.

We use the term “time distributed” because we apply the same fully connected layers to

every temporal slice of the input. This layer produces the final probability distribution

of the possible characters.

4. The dropout layers between the main layers are used to improve model generalization.
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(a) (b)

Figure 6.6: The pipelines of the neural network architectures and their building blocks.
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Another important part of Figure 6.6 is the dimensions of the building blocks:

• The input feature vector is a 3-dimensional vector of dimensions [batch_size, n_frames,

n_feats]. The batch_size determines the number of sequences inside a mini-batch,

while n_frames is the number of frames in a sequence. Finally, n_feats expresses the

size of the feature vector, which is either 63 or 42 depending on the input data.

• Since we decided to generate batches for our sequences, we must ensure that each

sequence inside the batch has the same number of n_frames. We accomplish that by

padding the sequences inside the batch based on the length of the longest sequence.

The padding is done by appending feature vectors filled with zeros to the sequence.

• Each block includes the dimensions of its input vector and the dimensions of the vector

it outputs. We can observe that these dimensions are affected by n_feats. By using

n_feats to determine the output of each layer, we force the whole architecture to adjust

to the input.

• In the recurrent layers block there exist two categories of input and output vectors. This

happens because we wanted to cover the case of stacked recurrent layers. In that case,

the first recurrent layer accepts its input from the embedding layer, whereas the rest

from the recurrent layers before them.

• The output probability distribution at each time step is a vector of size n_class, which

in our case is 28. We assigned the alphabetical characters to integers, i.e. space is 0,

characters between [a,z] correspond to integers 1 to 26 and the blank character is 27.

Finally, we use the CTC loss function in all our tests. The CTC blank character is expected

to deal with areas of silence and padded parts in the input sequence. We should note here that

the target character sequence should not exceed the input sequence in length, otherwise CTC

might behave unpredictably. Furthermore, we provide CTC with the lengths of the input

and target sequences apart from the sequences themselves. Since we created and trained our

models with Pytorch, we also used the default CTC loss function offered by the Pytorch

neural network solutions.
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Fingerspelling Recognition Results

We now proceed with our fingerspelling recognition experiments. We first describe the

accuracy metric we use, followed by a categorization of the different types of experiments we

conducted and the setup of the neural network training and testing phase. We then present the

results of our experiments, including information on the accuracy, the architectural variations,

normalization schemes etc.

7.1 Accuracy Metric

In order to determine the performance of ourmodels in SLRwe needed an accuracymetric

suited to our problem. In our case this is the Levenshtein distance that reveals how different

two character sequences are. More specifically, the Levenshtein distance is the number of

edits required to transform one word into another. The possible edits are to insert, delete or

substitute a character and each of these operations increases the number of edits by one.

Having the Levenshtein distance at our disposal allows us to estimate the character error

rate (CER). The CER can be calculated for a dataset of N predictions and sequences as:

CER =
1

N
·
N−1∑
n=0

edit_distance(n)
sequence_length(n)

The CER should gradually drop during the training phase of the ANN models, as more

characters are predicted correctly and the edit distance therefore decreases.
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7.2 Experimental Overview and Setup

We organize the experiments and their results based on the input data we used. The input

data also determine the architecture we choose for each case. Based on the type of feature

vectors we can distinguish the following types of experiments with:

1. Feature vectors containing the 3D and 2D coordinates of the signing hand produced by

MediaPipe.

2. Feature vectors containing the 3D and 2D coordinates of both right and left hand pro-

duced by MediaPipe.

3. Feature vectors containing the 2D coordinates of the signing hand or the 2D coordinates

of both right and left hand. This time the coordinates result from the synergy of both

MediaPipe and OpenPose.

We also tested different normalization schemes, presented in Chapter 5, on our input data.

Furthermore, all of our experiments had a batch size of 5 and a network learning rate of 1e-4.

All of our models use the Adam optimizer during the training phase and more specifically the

AdamW variation [26]. Apart from the optimizer we also set a cycling learning rate scheduler

that accelerates the training of the network. This effect is called super-convergence [27]. To

apply the scheduling technique we need to set an initial maximum learning rate, in our case

1e-4. Over the course of a training epoch, the learning rate will be inversely scaled from a very

low value to its maximum value and then back to a learning rate much lower than the initial

during the end of the epoch. We choose the one-cycle variation, where the cyclic process is

applied over one epoch and the learning rate changes after every batch. During the training

phase we used our greedy decoder to observe the CER behaviour. We tested both beam search

and greedy decoders during the testing phase and acquired their respective CERs. Our beam

search algorithm used a beam width of 3. The models were trained on 5451 video sequences

and tested on 867 sequences.
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7.3 Experiment 1: Signing Hand MediaPipe Landmarks

In this section we present the results from the experiments where we used the 3D (Tables

7.1 and 7.2) and 2D coordinates (Tables 7.3 and 7.4) of the signing hand as input to our model.

The model uses the architecture of Figure 6.6a.

Table 7.1: Experiment 1 – Results for the 3D coordinates of the signing hand

BRNN FCs Normalization Epochs Train

Loss

Test

Loss

CER

Greedy

CER

Beam

2 BGRU 3 Wrist 130 0.9562 2.0411 42.70 41.38

2 BLSTM 2 Wrist 130 0.6516 2.3505 43.85 45.07

2 BGRU 3 Wrist & Min-Max 130 1.1742 1.9067 43.82 42.91

2 BLSTM 3 Wrist & Min-Max 130 1.0768 2.0915 45.56 46.42

2 BGRU 3 Wrist & Hand size 130 0.9332 2.0648 42.44 42.14

2 BLSTM 2 Wrist & Hand size 130 0.6450 2.3051 44.03 44.38

2 BGRU 3 None 130 1.2490 1.8750 45.01 44.58

2 BLSTM 2 None 130 0.9706 1.9737 45.66 45.07

Table 7.2: Experiment 1 – Results for the 3D coordinates of the signing hand without layer

normalization

BRNN FCs Normalization Epochs Train

Loss

Test

Loss

CER

Greedy

CER

Beam

2 BGRU 2 Wrist 130 1.1005 2.1537 51.42 55.46

2 BLSTM 3 Wrist 130 1.2484 2.1847 53.38 52.98
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Table 7.3: Experiment 1 – Results for the 2D coordinates of the signing hand

BRNN FCs Normalization Epochs Train

Loss

Test

Loss

CER

Greedy

CER

Beam

2 BGRU 2 Wrist 130 1.2305 1.8165 43.81 43.26

2 BLSTM 2 Wrist 130 1.1593 1.8949 45.35 44.22

2 BGRU 2 Wrist & Min-Max 130 1.3714 1.7975 46.25 44.31

2 BLSTM 2 Wrist & Min-Max 130 1.3248 1.8819 46.55 45.91

2 BGRU 2 None 130 1.5029 1.7827 48.24 45.42

2 BLSTM 2 None 130 1.5249 1.8238 49.99 47.46

Table 7.4: Experiment 1 – Results for the 2D coordinates of the signing hand without layer

normalization

BRNN FCs Normalization Epochs Train

Loss

Test

Loss

CER

Greedy

CER

Beam

2 BGRU 2 Wrist 130 1.5067 2.0689 61.50 57.42

2 BLSTM 2 Wrist 130 1.5271 2.1801 64.24 57.92

We observe that by using 3D coordinates the models were able to produce better re-

sults. Discarding the depth coordinate did not inflict dramatic changes to the accuracy scores

though. Regarding the choice of the neural network layers, the models with the bidirectional

GRU layer performed better than their LSTM counterparts. Tables 7.2 and 7.4 reveal how

much the normalization layer improved accuracy. When it comes to normalization schemes

on the input data, the wrist normalization and the wrist with hand size normalization schemes

produced the best scores. Finally, the beam search decoder appears to have an advantage over

the greedy decoder.
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7.4 Experiment 2: MediaPipe Landmarks of Both Hands

In this section we present the results from the experiments where we used the 3D (Table

7.5) and 2D (Table 7.6) coordinates of both right and left hand as input. The model uses the

architecture of Figure 6.6b.

Table 7.5: Experiment 2 – Results for the 3D coordinates of both hands

BRNN FCs Normalization Epochs Train

Loss

Test

Loss

CER

Greedy

CER

Beam

2 BGRU 3 Wrist 50 0.8524 2.0406 45.65 44.67

2 BLSTM 3 Wrist 50 0.7329 2.3499 46.44 47.38

2 BGRU 3 Wrist & Min-Max 70 0.7901 2.1421 46.62 46.55

2 BLSTM 2 Wrist & Min-Max 70 0.4972 2.6152 48.78 53.62

2 BGRU 3 Wrist & Hand size 50 0.8928 2.0672 47.58 46.50

2 BLSTM 3 Wrist & Hand size 50 0.7599 2.4326 48.57 47.24

2 BGRU 3 None 50 1.4221 1.9658 51.42 50.84

2 BLSTM 3 None 50 1.6645 2.1473 60.66 57.14

Table 7.6: Experiment 2 – Results for the 2D coordinates of both hands

BRNN FCs Normalization Epochs Train

Loss

Test

Loss

CER

Greedy

CER

Beam

2 BGRU 2 Wrist 50 0.7145 2.2711 46.01 46.25

2 BLSTM 2 Wrist 50 1.0788 1.9365 47.72 46.69

2 BGRU 2 Wrist & Min-Max 70 1.0634 1.9597 49.32 49.02

2 BLSTM 2 Wrist & Min-Max 70 1.0127 2.0904 49.04 47.31

2 BGRU 2 None 50 1.7165 1.9713 56.93 53.38

2 BLSTM 2 None 50 1.9058 2.0897 65.70 59.25

When it comes to coordinate dimensions, neural network layers, normalization schemes

and decoding, we observe the same trend as with the signing hand experiments. In comparison

to Experiment 1, the CER degrades. This could imply that idle or arbitrarily moving hands

inside the images insert noise to the models.
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7.5 Experiment 3:MediaPipe andOpenPose SynergyLand-

marks

In this section we present the results from the experiments where we used the 2D coor-

dinates of the signing hand (Table 7.7) and both right and left hand (Table 7.8) as input. The

coordinates were produced by the collaboration of MediaPipe and OpenPose and our models

again use the architecture of Figure 6.6a for the signing hand and of Figure 6.6b for the two

hand case.

Table 7.7: Experiment 3 – Results for the 2D coordinates of the signing hand

BRNN FCs Normalization Epochs Train

Loss

Test

Loss

CER

Greedy

CER

Beam

2 BGRU 2 Wrist 130 1.2087 1.6738 41.44 40.51

2 BLSTM 2 Wrist 130 1.1556 1.7725 42.45 41.28

2 BGRU 2 Wrist & Min-Max 130 1.3623 1.7005 42.58 41.22

2 BLSTM 2 Wrist & Min-Max 130 1.3152 1.7734 44.59 43.33

Table 7.8: Experiment 3 – Results for the 2D coordinates of both hands

BRNN FCs Normalization Epochs Train

Loss

Test

Loss

CER

Greedy

CER

Beam

2 BGRU 3 Wrist 70 0.8453 1.8893 44.08 43.07

2 BLSTM 3 Wrist 70 1.0155 2.0451 45.95 46.09

2 BGRU 3 Wrist & Min-Max 70 1.2810 1.8493 46.42 45.22

2 BLSTM 3 Wrist & Min-Max 70 1.2849 2.0797 50.37 50.44

Once more, neural network layers, normalization schemes and decoding algorithms have

the same effect on the error rates. Unfortunately, we cannot make a comparison between 2D

and 3D coordinates for this type of experiment. We can compare the current results with the

respective results from MediaPipe experiments though and observe that 2D coordinates are

able to produce better results this time.
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7.6 Summary of Best Results

In Table 7.9 and Figure 7.1 we provide a summary of the best results of each experiment.

As we have already shown, CER is affected by a variety of different factors. The origin and

type of input feature vectors are the most decisive. In MediaPipe experiments we observed

that models using 3D coordinates could produce better scores than those using 2D coordi-

nates. It is interesting though that 2D coordinates from the MediaPipe and OpenPose synergy

resulted in the best scores overall, with a CER of 40.51%. This could be attributed to the more

accurate hand sequences produced by this approach. Furthermore, we observe that our most

successful experiments were those with the signing hand.

Table 7.9 also demonstrates how GRUs surpassed LSTMs overall. The number of fully

connected layers in the time distributed block was not a very decisive factor, as it varied

between 2 or 3 stacked layers. When it comes to normalization schemes, plain wrist nor-

malization was the most effective. Finally, beam search decoding helped to slightly improve

CERs in most of Table 7.9’s experiments.

Table 7.9: Cumulative table of the most successful experiments.

Index Library Input BRNN FCs Normalization CER

Greedy

CER

Beam

1 MediaPipe 2D-2 Hands 2 BGRU 2 Wrist 46.01 46.25

2 MediaPipe 3D-2 Hands 2 BGRU 3 Wrist 45.65 44.67

3 MediaPipe &

OpenPose

2D-2 Hands 2 BGRU 3 Wrist 44.08 43.07

4 MediaPipe 2D-Signing 2 BGRU 2 Wrist 43.81 43.26

5 MediaPipe 3D-Signing 2 BGRU 3 Wrist 42.70 41.38

6 MediaPipe &

OpenPose

2D-Signing 2 BGRU 2 Wrist 41.44 40.51



50 Chapter 7. Fingerspelling Recognition Results

1 2 3 4 5 6
Type of Input Data

36

38

40

42

44

46

48

50
Ch

ar
ac

te
r E

rro
r R

at
e

Cumulative graph of the most successful experiments.
CER Greedy
CER Beam

Figure 7.1: The CERs of each experiment from Table 7.9
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Conclusions

In this Thesis we tackled the problem of fingerspelling recognition from ASL videos.

Since fingerspelling signers use their hands, we focused on how to extract the hand features

from the video frames. For that purpose we resorted to object tracking tools, more specifically

MediaPipe and OpenPose. Despite MediaPipe not being very widely used in SLR tasks, it

managed to surpass OpenPose by invoking superior hand detection.

TheMLmodels in this Thesis relied heavily on the postprocessing of the input features in

order to produce better error rates. Regarding the models based on MediaPipe landmarks, the

depth coordinate improved their accuracy. Models using the signing hand as input produced

lower error rates than those using both hands. This might be due to the hand classification

algorithm discarding the possibly useless information of the idle hands. Despite that, the error

rates with both hands as input were not much higher. This possibly indicates our models’

ability to learn and distinguish the signing hand on their own.

We performed the experiments with the signing hand and both hands again, but this time

the visual features were generated by the collaboration of both MediaPipe and OpenPose.

We only used 2D coordinates, and again models using the signing hand performed better

than those using both hands. Despite not having the depth coordinate we managed to develop

our best model yet with a CER of 40.51%. We attribute this score to the improved hand

detection produced by the collaboration between the two libraries.

Regarding the normalization schemes, wrist normalization was the most effective. Ap-

plying hand size normalization along with wrist normalization is also promising for further

research. Min-Max scaling generally increased CERs by a small percentage, thus indicating

that it is not well suited for our problem. In the experiments where no normalization scheme

51
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was applied the CERs increased.

Finally, when it came to the ANN components, the only ones that significantly affected

our accuracy were the BRNN and normalization layers. It was made clear that GRUs always

performed better than LSTMs, with the latter contributing to increased error rates in many

occasions. The absence of the normalization layer dramatically increased CERs. We also

believe that beam search is worth testing in problems using CTC, as it improved CER in

many of our experiments. Unfortunately, we did not have time to develop other variations of

beam search and test different beam widths. Generally, we are satisfied with the models we

developed, although we would have liked to achieve even lower CERs.
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