
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΥΠΟΛΟΓΙΣΤΙΚΗ ΒΙΟΙΑΤΡΙΚΗ

Μία Μελέτη των Αποδείξεων Μηδενικής Γνώσης και οι Εφαρμογές τους στις

Βάσεις Δεδομένων

Σταύρος Κασαράς

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Επιβλέπων

Γεώργιος Δημητρίου

Λαμία, 31 Μαΐου 2022

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

UNIVERSITY OF THESSALY

SCHOOL OF SCIENCE

INFORMATICS AND COMPUTATIONAL BIOMEDICINE

A Study on Zero-knowledge Proofs and their Applications on Databases

Stavros KASSARAS

Master Thesis

Supervisor
Dr. Dimitriou GEORGIOS

Lamia, May 31, 2022

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΔΙΑΤΜΗΜΑΤΙΚΟ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ

ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΥΠΟΛΟΓΙΣΤΙΚΗ ΒΙΟΙΑΤΡΙΚΗ

ΚΑΤΕΥΘΥΝΣΗ:

«ΠΛΗΡΟΦΟΡΙΚΗ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗΝ ΑΣΦΑΛΕΙΑ, ΔΙΑΧΕΙΡΙΣΗ

ΜΕΓΑΛΟΥ ΟΓΚΟΥ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΠΡΟΣΟΜΟΙΩΣΗ»

Μία Μελέτη των Αποδείξεων Μηδενικής Γνώσης και οι Εφαρμογές τους στις

Βάσεις Δεδομένων

Σταύρος Κασαράς

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Επιβλέπων

Γεώργιος Δημητρίου

Λαμία, 31 Μαΐου 2022

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

v

«Υπεύθυνη Δήλωση μη λογοκλοπής και ανάληψης προσωπικής ευθύνης»

Με πλήρη επίγνωση των συνεπειών του νόμου περί πνευματικών δικαιωμάτων, και γνω-

ρίζοντας τις συνέπειες της λογοκλοπής, δηλώνω υπεύθυνα και ενυπογράφως ότι η παρο-

ύσα εργασία με τίτλο «Μία Μελέτη των Αποδείξεων Μηδενικής Γνώσης και οι Εφαρμογές

τους στις Βάσεις Δεδομένων» αποτελεί προϊόν αυστηρά προσωπικής εργασίας και όλες

οι πηγές από τις οποίες χρησιμοποίησα δεδομένα, ιδέες, φράσεις, προτάσεις ή λέξεις, είτε

επακριβώς (όπως υπάρχουν στο πρωτότυπο ή μεταφρασμένες) είτε με παράφραση, έχουν

δηλωθεί κατάλληλα και ευδιάκριτα στο κείμενο με την κατάλληλη παραπομπή και η σχε-

τική αναφορά περιλαμβάνεται στο τμήμα βιβλιογραφικών αναφορών με πλήρη περιγραφή.

Αναλαμβάνω πλήρως, ατομικά και προσωπικά, όλες τις νομικές και διοικητικές συνέπειες

που δύναται να προκύψουν στην περίπτωση κατά την οποία αποδειχθεί, διαχρονικά, ότι η

εργασία αυτή ή τμήμα της δεν μου ανήκει διότι είναι προϊόν λογοκλοπής.

Ο ΔΗΛΩΝ

Σταύρος Κασαράς

Ημερομηνία

31 Μαΐου 2022

Υπογραφή

Μία Μελέτη των Αποδείξεων Μηδενικής Γνώσης και οι Εφαρμογές τους στις

Βάσεις Δεδομένων

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

vi

Σταύρος Κασαράς

Τριμελής Επιτροπή:

1. Γεώργιος Δημητρίου

2. Αντώνιος Δαδαλιάρης

3. Νικόλαος Τζιρίτας

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

vii

UNIVERSITY OF THESSALY

Abstract
Informatics and Computational Biomedicine

School of Science

Master of Science

A Study on Zero-knowledge Proofs and their Applications on Databases

by Stavros KASSARAS

In 1985 Goldwasser, Micali and Rackoff conceived first the notion of zero-knowledge
proofs in their paper “The Knowledge Complexity of Interactive-Proof Systems” [GMR85].
Since then, there have been important advances but, anyone coming around the
ideas of ZKPs meets a view of nebulousness and abstractness. The reason is, the
topic of ZKPs is orders of magnitude more complex than usual cryptographic prim-
itives. The purpose of this thesis is twofold. One, to introduce in a graduate (and
undergraduate) level the student to the notions of ZKPs. The present treatment here
is best described as informal in the language used but nonetheless the math notation
(in definitions, theorems and proofs) is formal. Secondly, we use zero-knowledge
databases as a long example of presenting in practice the concepts treated in the
previous chapters. There are of course modern protocols (such as zk-SNARKs and
Bulletproofs), but we think such complex examples can discourage the student’s task
of learning a new cryptographic primitive. We further contribute in this thesis the
zero-knowledge aspect of a graph database in contrast to an elementary database.

This work is organized in 5 chapters. The first Chapter is introductory. In this
chapter the style is conversational, communicating the motivation behind the formal
definitions of ZKPs. In Chapter 2, we present the definitions of interactive proof sys-
tems and zero-knowledge property along with the example protocol of Quadratic
Residuosity. In Chapter 3, we treat an important class of zero-knowledge protocols
called Sigma Protocols which offer a smooth introduction to the notion of Proofs
of Knowledge. In Chapter 4, we discuss additional topics such as composition of
proofs, commitment schemes and non interactivity for constructing ZKPs, conclud-
ing the chapter with the famous result that anyNP-statement can be proven in zero-
knowledge. In Chapter 5, we couple the notions learned in the foregoing chapters
with the implementation of elementary databases. In Chapter 6 we present our con-
tribution of zero-knowledge graph databases. Appendix A presents an unrestricted
model of ZKPs allowing individual local inputs. We placed the proof of Schnorr’s
protocol in Appendix B so these technicalities do not cause discontinuity with the
theory. Last, in Appendix C, we included relevant number theory facts and pseudo
algorithms to support the examples presented in the thesis.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

HTTPS://WWW.UTH.GR/
http://icb.sci.uth.gr/
http://www.sci.uth.gr/

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

ix

Contents

Abstract vii

Preface 1

1 Introduction to Zero-knowledge Proofs 3
1.1 Graphical examples . 4

1.1.1 Ali Baba’s Cave . 4
1.1.2 Where’s Waldo? . 6

1.2 Deeper in the Ali Baba’s Cave . 6
1.2.1 Not a Math Proof, Yet a Proof . 6
1.2.2 Completeness and Soundness . 7
1.2.3 Proofs and Complexity . 7
1.2.4 What about Zero-knowledgeness? 7
1.2.5 Putting it all Together . 8

1.3 An Example Protocol . 8
1.3.1 Quadratic Residue . 8
1.3.2 Modular Arithmetic . 8
1.3.3 Protocol Description . 9

2 Formal Definition of Zero Knowledge Proofs 11
2.1 Preliminaries . 11

2.1.1 Elementary Algebra . 11
2.1.2 Mathematical Notation . 12
2.1.3 Big-O notation . 12

2.2 Interactive Proof Systems . 12
2.2.1 Formal Definition . 13
2.2.2 Quadratic Residue Revisited . 16

2.3 Zero-knowledge Definitions . 17
2.3.1 Perfect Zero-knowledge . 17
2.3.2 Computational Zero-knowledge 19
2.3.3 Statistical Zero-knowledge . 20

3 Σ-Protocols 25
3.1 The Discrete Logarithm problem in Cryptography 25
3.2 DLP for ZKPs . 26

3.2.1 Definitions . 27
3.2.2 Proofs of knowledge . 28

3.3 AND and OR Compositions . 34
3.3.1 Conjunction Composition PAND 34
3.3.2 Disjunction Composition POR . 34

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

x

4 Additional Topics on Zero-knowledge Proofs 37
4.1 Composition of Zero-knowledge Proof Systems 37

4.1.1 Sequential Composition . 37
4.1.2 Parallel Composition . 38
4.1.3 Witness Indistinguishability (WI) 39
4.1.4 Concurrent Composition . 40

4.2 Commitment Schemes . 40
4.2.1 The 3-Coloring Problem . 40
4.2.2 Defining Commitment Schemes 42

4.3 Non-Interactive proofs . 43
4.3.1 Walkthrough of an Illustrated NIZK (Sudoku Protocol) 43
4.3.2 From Examples to Practice . 44

4.4 NP Problems and ZKP Results . 46

5 Zero-knowledge Databases 49
5.1 Key-value Databases . 49
5.2 Building Blocks . 49

5.2.1 Elementary Databases . 50
5.2.2 Zero-knowledge EDBs (ZK-EDBs) 50
5.2.3 Pedersen’s Commitment Scheme 51
5.2.4 Binary Trees . 51

5.3 Construction . 52
5.3.1 Merkle Tree (Committing steps) 53

5.4 Proving Database Values . 54
5.4.1 Proof Construction of D(x) = y 54
5.4.2 Proof Verification of D(x) = y 55
5.4.3 The case D(x) = ⊥ . 56
5.4.4 Dealing with Collisions . 56

5.5 On Soundness and Zero-knowledge . 57
5.6 The Necessity for Zero-knowledge Databases 57
5.7 Recent Advances in ZK-EDBs . 58

6 Zero-knowledge Graph Databases 61
6.1 Graph Databases . 61

6.1.1 Comparison with Relational Databases 62
6.1.2 The Necessity for Zero-knowledge Graph Databases 62

6.2 Towards Zero-knowledge Graphs . 62
6.2.1 Querying Graph Databases . 63
6.2.2 Directed and Undirected Graphs 63
6.2.3 Preliminaries . 63

6.3 Construction - Undirected Case . 64
6.3.1 Complete Graphs . 65
6.3.2 Edge Commitment Schemes . 66
6.3.3 Committing up to an Edge . 67

6.4 Zero-Knowledge Graph Databases . 68
6.5 An example of ZK-GD . 69

6.5.1 Contraction and Committing Steps 69
6.5.2 Proving Graph Relations . 73

6.6 The Case of Bipartite Graphs . 74
6.6.1 Bipartite Committing . 74

6.7 On Soundness and Zero-Knowledge . 76

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

xi

6.8 Communication Complexity . 76
6.9 Directed Case . 76

7 Conclusions and Open Problems 77
7.1 Open Questions . 77

A Augmented Model 79

B Schnorr’s Protocol: Proof of Sigma Protocol 81

C Computational Number Theory and Algorithms 83
C.1 Prime Numbers . 83
C.2 On Quadratic Residues . 83
C.3 On Discrete Logarithm . 84

C.3.1 Computing ϕ(n) . 85
C.3.2 Computing Primitive Roots . 86

Bibliography 89

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

xiii

List of Figures

1.1 Peggy chooses randomly a path between A and B, while Victor is
standing outside. 4

1.2 Victor chooses randomly an exit path A or B. 5
1.3 Peggy appears at Victor’s requested path. 5

4.1 Information leakage from parallel composition. 38
4.2 An example of a 3-colored graph. 41
4.3 An instance of a standard Sudoku problem and its solution. 43

5.1 An example of a key-value pair. 50
5.2 An example of a T3 complete labeled binary tree. 51
5.3 Nodes of H[D]. 52
5.4 The light shaded vertices compromise the subtree T′. 52
5.5 The light and darkly shaded vertices together compromise the subtree

T. 53
5.6 Subtree T with associated values mx. 53
5.7 Subtree T with associated values hu. 54
5.8 Merkle Tree of T. 54
5.9 Authentication path of H(x). 55
5.10 The recursive verification of proof πx. 55
5.11 Anti-pradigm of u betraying D’s support. 56

6.1 An example of a Graph Database. 61
6.14 An example of a Bipartite Graph. 74

C.1 Non-interactive proof of discrete logarithm. 88

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

xv

List of Algorithms

1 Prime Root Test . 84
2 Extended Euclidean Algorithm (Recursive) 85
3 Euler’s Totient Function . 86
4 Primitive Root Algorithm . 87

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

1

Preface

In cryptography we are concerned with the construction of security schemes that can
withstand any kind of abuse. When building a security system we should neither
limit it by its environment of operation nor make it impenetrable to a specific class of
attacks. There are no utopian cryptographic schemes that can ever satisfy both un-
typical environment states and hold up against the strategies of an adversary. There-
fore, the only assumptions we allowed to have concern the computational abilities
of the adversary. More precisely, we care whether or not an adversary can efficiently
extract information over insecure media.

Aside from adversaries, security protocols are based on trusted users. Modern
cryptography has past the point of encryption schemes operating with equal en-
cryption and decryption keys to the abstract point which in every security problem
we wish to limit the effects of dishonest users. Simultaneity problems, that is, the
simultaneous exchange of secrets, require the participation of an external party or
the existence of a fully trusted party. The problem of secure implementation of func-
tionalities transforms to the problem of implementing a secure party. The foregoing
fault-tolerant protocols make sense only with honest parties, or in other words, with
parties that follow exactly a protocol.

Here is where Zero-knowledge proofs come forth. Zero-knowledge proofs (ZKPs
for short) is a cryptographic tool that forces the users to follow a given protocol prop-
erly. Almost everywhere in bibliography ZKPs are presented as a security scheme
in which one party, called the Prover, can convince another party, called the Verifier,
that some assertion is true without revealing nothing else than the validity of the
assertion. Even if both the parties are distrustful to one another, ZKPs provide the
means to disclosing specific pieces of information.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

3

Chapter 1

Introduction to Zero-knowledge
Proofs

Zero-knowledge proofs definition is seemingly contradictory in nature; they have
the bizarre property of convincing about the validity of an assertion and at the same
time yielding nothing more than the fact of its validity. In general, ZKPs fall under
a cryptographic domain of privacy-preserving communication protocols; protocols in
which the exchange of information between distressful parties is guaranteed to be
computed in conformity with a predetermined operation while concealing any se-
cret knowledge.

There are several privacy-preserving protocols that have been studied. Amongst
them, the most well known is Shamir’s threshold scheme [Sha79]. In this scheme
we partition the data D into n pieces so any k pieces form the initial data D, but
fewer than k pieces reveal totally no information about D. This scheme is called
a (k, n) threshold scheme, since k minimum pieces are required to reconstruct D.
This permits a mutual sharing of ownership of a singe secret to different parties,
each one of them owning a different piece (or share) of the secret. Each individual’s
share is useless on its own but to reconstruct the original message, even if all parties
have conflicted interests, they must cooperate. Additionally, the threshold scheme is
information-theoretic secure, even an adversary with unlimited computational power
would not be able to break the encrypted secret.

The concept of a fuzzy vault was developed by Juels and Sudan [JS02] to conceal
a secret value. A party lays a secret value k in a fuzzy vault and secures it in terms
of elements of a set A chosen from a public universe U (e.g., generating a cyphertext
CA representing an encryption of κ under the set A). Another party can “unlock”
the vault by using a set B of the same length and obtain k only if A and B have a
narrow gap, i.e., B covers in great extend the set A. This scheme is secure against a
computationally unbounded adversary.

Another privacy-preserving scheme is k-anonymity. k-anonymity, likewise (k,n)
threshold scheme, averts re-identification of data to fewer than k data items and ad-
ditionally the data produced by two sources are not exposed to each other. In [JC06]
is presented a two party framework that maintains the benefits of partitioning data
while integrates k-anonymous data that does not violates privacy through disclosure
to the data holders.

In [McL90] is developed a security model that is based purely on information
flow rather than an information sharing based theory. In the information based-
model the information flows from low-level objects to high-level object and not vice-
versa (where “object” is used in its broadest sense including e.g., files, programs,
etc.) - an upward only flow of information.

We choose in introduction not to procced directly to the formal definition of ZKPs,

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

4 Chapter 1. Introduction to Zero-knowledge Proofs

but rather we adopt a constructive way. We start with the abstract idea of a Zero-
knowledge proof and we will meet an “informal” definition (the formal presentation
will follow in Chapter 2). The reason for this naive approach is that ZKPs combine a
number of notions together - regarded as a body of notions - some of which justify
their use but others do not make obvious their working. The informal style points
on being more conversational, to familiarize the reader with several notions until
the rigorous presentation.

1.1 Graphical examples

Although the formal definition of a Zero-knowledge Proof requires a lot of mathe-
matical toil, before we procced we will introduce some illustrative examples for a
smooth transition from a simple presentation of the ideas behind ZKPs to the rigor-
ous formal foundations.

1.1.1 Ali Baba’s Cave

The following example is useful in presenting the fundamental ideas of zero-knowledge
proofs and will be used as a first analysis and introduction [Qui+90].

Imagine a cave whose entry is separated into two paths, one to the left and the
other one to the right. Both passages are connected with a door which opens with a
secret word that you enter in a numerical pad. A party named Peggy knows the se-
cret word, but Victor, another party, being suspicious wants to devise an experiment
that proves whether Peggy admittedly knows the word or not (Peggy and Victor are
characters used respectively for the Prover and Verifier of the statement in a zero-
knowledge proof). At the same time Peggy wishes not to disclose the secret word to
Victor neither the fact of her knowledge of such secret word to anyone else.

Victor thinks of the following strategy: Initially, both Victor and Peggy are out-
side of the cave. Victor tells Peggy to go alone in the cave and randomly down to
one of the passages A or B while Victor’s view is restrained from the path she took.

FIGURE 1.1: Peggy chooses randomly a path between A and B, while
Victor is standing outside.

Then, Victor enters the cave only as far as the two paths start and he flips a coin.
If the coin comes up with heads, Peggy is instructed to come out from the right path
otherwise she comes out from the left path.

Peggy could get lucky if Victor call her to come out from the same passage she
entered. So Victor decides to repeat the experiment several times, say 20 times in a
row. With each new test the chances of success for someone to come out from the

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

1.1. Graphical examples 5

FIGURE 1.2: Victor chooses randomly an exit path A or B.

passage Victor calls, are divided by two. In other words, the chances for someone to
come out each time by the required exit are becoming vanishingly small, in our case
about one in a million!

Hence, if Peggy constantly appears at the required exit after all Victor’s requests,
then, with high probability, Peggy really does in fact knows the hidden word and
Victor accepts her claim.

FIGURE 1.3: Peggy appears at Victor’s requested path.

So far Peggy has proved to Victor that she knows the secret word, but as we
stated in the beginning she wishes not to reveal the fact of her knowledge to the
world.

Peggy uses a camera to record the experiment. All the camera is recording is
Victor being at the fork of the cave, flipping a coin, calling Peggy to come out from
one of the passages according to the coin’s outcome and Peggy appearing at the exit
requested by Victor. Such recording is trivial for someone to fake. She could hire
an actor that looks like her and record the same experiment. It is obvious that the
actor does not know the secret word and so about half of the repetitions are failed
since the actor does not make it to come out of the requested passage. This is not a
problem since Peggy can edit the tape as many times are required and keep only the
successful outcomes.

Notice now that you cannot tell apart the two recordings, that is, you cannot dis-
tinguish between the genuine tape and the simulated one. Since you do not convey

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

6 Chapter 1. Introduction to Zero-knowledge Proofs

any knowledge of the secret from the simulated tape, the same is true for the gen-
uine tape. So you can not pass the fact of Peggy’s knowledge of the secret word,
thus no one can be convinced of her knowledge.

1.1.2 Where’s Waldo?

Imagine that you are a software developer and you have made an algorithm that
takes as input a picture from a Where’s Waldo? book and outputs Waldo’s position in
the picture.

A company being interested in a Where’s Waldo? solver program comes to you
with an offer to buy your program, but first they ask for a demonstration that proves
your code actually works. At the same time you don’t want necessary to do unpaid
work for them. Both the company and you are willing to mutually benefit from each
other but there is still mistrust between both parties. Fortunately, there is a way
without doing free work to prove your algorithm works as it supposes to.

You take a picture from the Where’s Waldo? book and tell the company’s repre-
sentatives to step out from the room. Then, you use a cardboard which in the center
of it is a small cut and you place it on top of the picture so only Waldo’s figure is
visible from the cut and the cardboard is large enough so it doesn’t give away the
position of the book. You now ask the company’s representatives to come back in
the room so they can observe the Waldo’s picture and at the same time they cannot
determine the position of him in the picture.

1.2 Deeper in the Ali Baba’s Cave

1.2.1 Not a Math Proof, Yet a Proof

In the cave example, Peggy was able to prove Victor she knows the secret word.
When we hear about a “proof” the first thing that comes to our mind is the con-
ventional mathematical proof, a statement that is inferred by previously established
statements or original assumptions, called axioms, in a logical way. This view is
somewhat strict, “static”. The interaction between Peggy and Victor is anything but
a math proof, yet Peggy was able to convince Victor about her knowledge of the
secret word.

This is the same as proving someone’s innocence in a court trial or proving a
philosophical statement to someone or a political statement. All these proofs are in-
teractive in nature, that is, they use a dynamic process to establish the truth of a state-
ment via an interaction, an exchange of information. This dynamic interpretation of
proof is more suitable for practical implementation in cryptographic protocols and
it is central to the non-triviality of ZKPs. The interaction is a verification procedure
that merely verifies the validity of a statement. Specifically in our example, Victor’s
verdict to accept or reject Peggy’s claim is probabilistic. Victor can repeat the proce-
dure many times so the probability error can be decreased to be negligible.

In cryptography, interactive proofs are presented in specific ways. One of them is
descriptive like below:

• Initially Peggy goes into the cave to the branching point while Victor waits
outside.

• Peggy randomly selects path A or B and goes to the door.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

1.2. Deeper in the Ali Baba’s Cave 7

• Victor goes into the cave to the branching point.

• Victor flips a coin and according to the result he calls the path where Peggy
should come out.

• Victor accepts when Peggy appears at the exit he called, otherwise he rejects.

1.2.2 Completeness and Soundness

If Peggy did not have the secret word, she would have to try really hard by any
means to convince Victor that she knows the secret. In other words, Victor the ver-
ifier has the ability to protect himself from being convinced of false statements. On
the contrary, when Peggy knows the secret word she can convince Victor for her
claim. These two properties, false statements are not accepted and the prover be-
ing able to convince the verifier for true statements, are two basic notions regarding
every interactive proof and are respectively called soundness and completeness.

Completeness means the prover is able to generate proofs for valid statements.
Soundness means there cannot exist interactive proofs for false statements, or in
other words, if a statement can be proved then it is valid.

1.2.3 Proofs and Complexity

Completeness and soundness are two “computational” tasks that suggest the exis-
tence of two parties, the prover and the verifier. We must note there is an asymmetry
in complexity between prover and verifier. The interactive proofs we encounter in
practice are based on arithmetic problems where a sort of computational difficulty
exists (e.g., is difficult to find for a large number N a factor smaller than a number
k, but is relative easy to find it if we know beforehand the factorisation of N). The
prover is able to generate a proof for a solution on a “hard” problem and the verifier
is the party capable of verifying it. Since the burden of computation is placed on the
prover, we assume he has unlimited complexity.

On the contrary, the verification task is easier. So, in every interactive proof we
focus in the verification complexity. “Easy” in complexity tasks means whatever can
be efficiently verified. In complexity theory we usually associate efficient computation
with deterministic polynomial-time computation which is captured by the complex-
ity class NP . Since in an interactive process coin tosses are allowed and the veri-
fier’s verdict of the result is statistical in nature, either accepts or rejects, probabilis-
tic polynomial-time (PP) computations are reflecting (in interactive proofs) efficient
computations as a formalization of whatever can be efficiently verified.

1.2.4 What about Zero-knowledgeness?

At the start we mentioned the verifier, Victor, does not gain any knowledge about
the secret word. We will elaborate a bit more what we mean when we say “gaining
no knowledge”. Imagine the secret word is very simple, lets say “Abc”. If Victor wants
to learn the secret word on his own, he could just go to the numerical pad and try
different combinations until he finds the secret word. Because “Abc” is a very simple
combination, he will find it in short time. If the word is more complicated in nature,
lets say “2357OpenSesame1113@!”, Victor will have a very difficult time to find it if
he uses a brute-force technique.

In the first case, “Abc”, Victor determined the word by himself. Even if he engage
in a conversation with Peggy, he will gain nothing more that he could not compute

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

8 Chapter 1. Introduction to Zero-knowledge Proofs

by himself, his computational power will not increase. In other words, if whatever
the verifier can efficiently compute after interacting with the verifier he can also com-
pute by himself we say that he has gained no knowledge. At the second case, Victor
cannot efficiently learn anything about the word. In general, the verifier gains infor-
mation if after interacting with the prover his computational ability has increased,
e.g. if Victor in some way learns that the first part of the secret word is “2357OpenS-
esame”, then he can easily compute the rest part of the word, whilst he could not
compute it before.

1.2.5 Putting it all Together

We are ready now to present an informal definition of Zero-knowledge proof con-
taining all the aforementioned properties.

Definition 1.2.1. A zero-knowledge proof is an interactive proof of a statement in-
volving a Prover and Verifier referring explicitly to the following three computa-
tional tasks

• Completeness: if the statement is true, an honest Verifier (that is, one following the
protocol properly) will be convinced of the truth of the statement by an honest Prover.

• Soundness: if the statement is false, no cheating Prover can convince an honest Veri-
fier that it is true, except with some small probability.

• Zero-knowledge: if the statement is true, no Verifier gains any additional knowledge
other than the fact that the statement is true.

So far we view ZKPs as an interactive proof system - completeness and sound-
ness together, stacking next to it the zero-knowledge property. Another view of
ZKPs is pushing aside the notion of interactive proof system and look at the above
three properties all together independently from other notions. Completeness states
if both the Prover and the Verifier are honest, the protocol will result in success.
On the other hand, soundness and zero-knowledge together state if at least one of
them is dishonest the protocol fails. We can say that if both parties want to result in
success, even if they are distrustful to one another, they have no other way than to
follow exactly the protocol or in other words, the protocol “forces” them to follow it
properly in order to convince one another.

1.3 An Example Protocol

1.3.1 Quadratic Residue

At this point we will present a famous and simple zero-knowledge proof proto-
col, also known as Fiat-Shamir identification protocol [FFS88], which uses quadratic
residuosity.

Before describing the protocol we will review the necessary mathematical back-
ground.

1.3.2 Modular Arithmetic

Definition 1.3.1. Let a, b and n > 1 be integers such that they differ by an integer
multiple of n, i.e. a− b = kn for some k ∈ Z. Then, we write

a ≡ b (mod n)

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

1.3. An Example Protocol 9

and we say that a, b are congruent modulo n (n is called the modulus).

For any pair of integers a and n > 1 there is a unique integer r in {0, ..., r − 1},
called the residue, such that a ≡ r mod n. Obviously, if a ≡ b (mod m) and b ≡ c
(mod m) then a ≡ c (mod m).

Many of the rules of arithmetic apply to modular arithmetic as well. In particular,
if a ≡ b (mod n) and c ≡ d (mod n), then a + c ≡ b + d (mod n) and ac ≡ bd
(mod n).

Definition 1.3.2. Zm := {0, 1, . . . , m − 1}. For a, b ∈ Zm we define a ⊕ b to be the
residue of (a + b) modulo m. Similarly, we define a ⊗ b to be the residue of (a ·
b) modulo m.

Definition 1.3.3. An integer q is called quadratic residue modulo n if it is congruent to
a perfect square modulo n i.e., if there exists an integer x such that: x2 ≡ q (mod n).

The quadratic residue protocol is: given the product of two primes, prove that
an integer is a quadratic residue modulo this number. We select two prime numbers
p and q and calculate their product n = p · q, this n is used as modulo. The protocol
assumes that the extracting of square root of a quadratic residue modulo n is a hard
problem without the knowledge of its prime factors.

1.3.3 Protocol Description

A secret number s is selected and we compute its square υ = s2, υ represents the
public key. The prover keeps the secret key s while the verifier gets only the public
key υ. The prover does not want to reveal his secret number but only prove its pos-
session.

Protocol conversation:
Statement: υ is a quadratic residue mod n. Public input: υ, n. Prover’s private

input: s.

• Prover randomly chooses r ← Z∗n and sends α = r2 to the verifier.

• Verifier chooses random β← {0, 1} and sends it to the prover.

• Prover computes γ = rsβ and sends it back.

Verification: The verifier accepts by checking if the equality γ2 = αυβ holds.

Another way to demonstrate the protocol other than descriptive as above, is using a
code block like the one below:

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

10 Chapter 1. Introduction to Zero-knowledge Proofs

Prover Verifier

s ∈ Z∗n υ = s2

r ← Z∗n

α = r2

β← {0, 1}

β

γ = rsβ

γ
?
= αυβ

Before we go on to the next chapter try to prove that the described protocol has all
three necessary properties, namely completeness, soundness and zero-knowledge.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

11

Chapter 2

Formal Definition of Zero
Knowledge Proofs

So far we have derived an informal definition of ZKPs but reaching a definition it
does not mean that it can be met. The way to demonstrate that our definition is
viable is to construct an actual example. The fact that we can convince a party for
the validity of a statement and at the same time gain nothing, is counter-intuitive
and thus is not clear that such proofs even exist.

In this chapter we will demonstrate the existence of such proof, the Quadratic
Residuosity, which is based on the assumption that is difficult to extract squared
roots modulo a positive integer.

2.1 Preliminaries

2.1.1 Elementary Algebra

These notes cover basic notions in algebra which we will be needed for discussing
several topics of this thesis.

Groups

Given a set G and a binary operation ∗, if each element in the set obeys the following
4 properties, then the set and its operation (G, ∗) is called a group:

• Closure. If a, b ∈ G, then a ∗ b ∈ G.

• Associativity. (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G.

• Existence of identity element. There is an element e ∈ G, such that a ∗ e = e ∗ a
for all a ∈ G.

• Inverse. For every a ∈ G, there exists an a−1 ∈ G such that a ∗ a−1 = a−1 ∗ a = e.

If, in addition each pair of elements a, b ∈ G satisfies the commutative property,
a ∗ b = b ∗ a, then the group (G, ∗) is called a Abelian.

Fields

Given a set F and binary operations ∗ and +, (F, ∗,+) is called a field if the following
properties hold:

• (F,+) is an Abelian group with identity element 0.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

12 Chapter 2. Formal Definition of Zero Knowledge Proofs

• (F− {0}, ∗) is an Abelian group with identity element 1 ̸= 0.

• Distributive property. For all a, b, c ∈ F, a ∗ (b + c) = (a ∗ b) + (a ∗ c).

According to the above definitions we have that (Zm,⊕) is a group, and when m
is a prime number, (Zm − {0},⊗) is also a group.

This way of writing groups and other structures using symbols like ⊕ and ⊗ is
getting cumbersome. To make math notation lighter, we will prefer (Zm,+) instead
of (Zm,⊕) and (Zm−{0}, ·) instead of (Zm−{0},⊗). Expressions like (a⊕ b)⊕ c =
a ⊕ (b ⊕ c) and (a ⊗ b) ⊗ c = a ⊗ (b ⊗ c) will become (a + b) + c = a + (b + c)
and (ab)c = a(bc) respectively and will mean the former ones. We will keep this
convention and whenever there is a confusion in notation we will state it differently.

2.1.2 Mathematical Notation

We will use the letter Σ to denote an alphabet, i.e. a finite set of symbols. Commonly
used alphabets are the decimal {0, 1, . . . , 9} and the binary alphabet {0, 1}; especially
for the binary alphabet an element x ∈ {0, 1} is named as a bit. An ordered sequence
of elements from Σ is a called a string (or word), and the empty word is often denoted
with e. For a string σ, |σ| denotes the length of the string and with Σk the set of
all strings of length k. The union of all sets Σ∗,

⋃
k≥0 Σk denotes all finite length

strings over the specified alphabet. With L we denote a subset of strings and call it a
language.

2.1.3 Big-O notation

Let f , g : N→ R be functions. We say that:

• f (n) = O(g(n)) if there exist c > 0 and integer n0 such that for all n ≥
n0, f (n) ≤ cg(n)

• f (n) = Ω(g(n)) if there exist c > 0 and integer n0 such that for all n ≥
n0, f (n) ≥ cg(n)

• f (n) = Θ(g(n)) if there exist c1, c2 > 0 and integer n0 such that for all n ≥
n0, c1g(n) ≤ f (n) ≤ c2g(n)

• f (n) = o(g(n)) if, for all ϵ > 0, there exists integer n0 such that for all n ≥
n0, f (n) ≤ ϵg(n)

• f (n) = ω(g(n)) if, for all ϵ > 0, there exists integer n0 such that for all n ≥
n0, g(n) ≤ ϵ f (n)

If f (n) is a polynomial of degree k, we have f (n) = Θ(kn), f (n) = ω(kn−1) and
f (n) = o(kn+1). We will write “ f (n) = poly(n)” as a shorthand for “ f (n) = O(kn)
for some k”.

2.2 Interactive Proof Systems

In this chapter we will dive deep into the nuts and bolds of Zero-knowledge proofs.
The road to define ZKPs goes through interactive proof systems. We will note here
that interactive proofs are interesting in their own sake but we will not extend more
but only to some prerequisites.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

2.2. Interactive Proof Systems 13

2.2.1 Formal Definition

As we described in the introduction every interactive proof system is related explic-
itly with two parties and their computational tasks respectively, these are the prover,
the one who produces the proof, and the verifier, the one who verifies the validity
of the proof. The two parties interaction is based on a protocol. A protocol will mean
the exchange of messages between two interactive algorithms (will be defined below)
according to a system of rules which describe the sequence of messages and the syn-
tax of these messages. A move in a protocol is composed by the exchange of a single
message from one algorithm to the other. Protocols that are executed within two
or more moves are called interactive protocols, while those comprising only of one
move are called non-interactive protocols.

To express mathematically the concepts of prover and verifier, we will use the
Turing machine as a model of computation. The interaction between prover and
verifier is parametrized by a common input, the statement to be proved (e.g., in the
case of QR protocol this statement is: “υ is a quadratic residue mod n”. Thus, both the
Turing machines (prover and verifier) must have a tape from which they read the
input. Since the input is common these tapes are shared. After the input, prover and
verifier start interacting by means of exchanging messages. The messages sent by
one machine need a tape to be written. Upon received by the second machine, this
machine will only read them from the same tape. Thus, two more tapes are needed,
both acting as write only and read only, both shared and used by alternating the roles
of the machines, that is, every machine use one tape as the sender and the other tape
as the receiver of messages.

Each machine individually needs a read and write tape for their inner compu-
tations. While one machine is busy with inner calculations, the other machine does
not halt until receiving a new message, but becomes idle. An additional shared, read
and write tape with a single cell, 0 or 1, can express the fact that while the active
machine becomes idle, the content of this tape is switched and the other machine,
having opposite content, becomes active.

In the cave example and the QR protocol a degree of randomness is involved. In
QR the prover chooses randomly an element of Z∗n and the verifier an element of
{0, 1}. So it is essential both the machines individually have a random tape. This
tape contains a possible outcome for a sequence of internal coin tosses. We can pic-
ture this sequence as supplied to the machine by an external coin-tossing device,
which corresponds to as having a machine containing a random tape with internal
coin tosses. Finally, when the machines halt, they both need individually a tape to
write their output (e.g., in QR the verifier at the end of the protocol needs to write if
he accepts or rejects the validity of the proof) adding to one more write tape.

The above discussion leads naturally to the following definitions of Interactive Tur-
ing Machines and Joint Computation (interaction between two such machines):

Definition 2.2.1 (An Interactive Machine).

• An interactive Turing machine (ITM) is a (deterministic) multi-tape Turing ma-
chine. The tapes are a read-only input tape, a read-only random tape, a read-and-write
work tape, a write-only output tape, a pair of communication tapes, and a read-and-
write switch tape consisting of a single cell. One communication tape is read-only, and
the other is write-only.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

14 Chapter 2. Formal Definition of Zero Knowledge Proofs

• Each ITM is associated a single bit σ ∈ {0, 1}, called its identity. An ITM is said
to be active, in a configuration, if the content of its switch tape equals the machine’s
identity. Otherwise the machine is said to be idle. While being idle, the state of the
machine, the locations of its heads on the various tapes, and the contents of the writable
tapes of the ITM are not modified.

• The content of the input tape is called input, the content of the random tape is called
random input, and the content of the output tape at termination is called output.
The content written on the write-only communication tape during a (time) period in
which the machine is active is called the message sent at that period. Likewise, the
content read from the read-only communication tape during an active period is called
the message received (at that period).

Definition 2.2.2 (Joint Computation of Two ITMs).

• Two interactive machines are said to be linked if they have opposite identities, their
input tapes coincide, their switch tapes coincide, and the read-only communication
tape of one machine coincides with the write-only communication tape of the other
machine, and vice versa.

• The joint computation of a linked pair of ITMs, on a common input x, is a sequence of
pairs representing the local configurations of both machines. That is, each pair consists
of two strings, each representing the local configuration of one of the machines. In
each such pair of local configurations, one machine (not necessarily the same one) is
active, while the other machine is idle. The first pair in the sequence consists of initial
configurations corresponding to the common input x, with the content of the switch
tape set to zero.

• If one machine halts while the switch tape still holds its identity, then we say that both
machines have halted. The outputs of both machines are determined at that time.

Notation: We use the letters P and V - free of subscripts and superscripts - to de-
note honest Provers and Verifiers (i.e., not-cheating/following the protocol instruc-
tions). We indicate the private and public inputs as well as the random coin tosses
used with subscripts. With an added asterisk, P∗ (V∗) we will mean that the prover
(verifier) is potentially dishonest, without excluding the possibility that he is honest.

To indicate that two interactive algorithms executing a protocol, we use angle
brackets ⟨A, B⟩. We also use the following notations:

• outA⟨A, B⟩ - the output of A after this interaction is finished. Similarly we
define outB⟨A, B⟩.

• viewA⟨A, B⟩ - the view of A during the interaction: all the messages it received.

For example, in QR outV⟨P, Vυ,β⟩ gives the output of the Verifier after interacting
with the Prover with public input υ and private input β.

Because this notation is somewhat cumbersome we will use, until specified differ-
ently, a lighter definition by dropping the prefix outa and use ⟨A, B⟩(x) to denote the
local output of B on common input x when interacting with machine A. Hence, he
random variable ⟨A, B⟩(x) accounts for B’s output.

As we see Turing machines are a basic tool needed in our formulation of interactive

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

2.2. Interactive Proof Systems 15

proofs and ZKPs. It is natural to consider the time complexity of such interactive
machines as a function of their input length. The following definition is needed:

Definition 2.2.3 (The Complexity of an Interactive Machine). We say that an interac-
tive machine A has time-complexity t : N → N if for every interactive machine B and
every string x, it holds that when interacting with machine B, on common input x, machine
A always (i. e., regardless of the content of its random tape and B′s random tape) halts within
t(|x|) steps. In particular, we say that A is polynomial-time if there exists a polynomial p
such that A has time-complexity p.

We emphasize that t(·) is an upper bound for all the messages arriving at the in-
teractive machine. That is, the machine’s complexity does not depend on the content
of the messages it receives.

We are now in position to give formally the definition of an interactive proof sys-
tem. In the subsequent definitions, examples and protocols, the verifier’s output
is its decision on whether to accept or reject the proof on the common input. By
convention we use as output 1 to represent "accept" and 0 for "reject".

Definition 2.2.4 (Interactive Proof System). Let P and V be interactive Turing machines
with P (called the Prover) computationally unbounded and V (called the Verifier) having
probabilistic polynomial-time complexity. Let L be a language, we call the pair (P, V) an
interactive proof system for language L if the following two properties are satisfied:

• Completeness: For every x ∈ L,

Pr[⟨P, V⟩(x) = 1] ≥ 2
3

• Soundness: For every x /∈ L and every interactive machine B,

Pr[⟨B, V⟩(x) = 1] ≤ 1
3

Comments: Soundness statement applies to all provers, honest and dishonest.
This guarantees that the verifier is sound against all possible provers that may cheat
or not. On the contrary, for completeness we require the honesty of both the Prover
and the Verifier. Note that the Prover is not strictly computationally bounded as the
Verifier. As we have mentioned, this is because the weight of the proof lies on the
verification process.

In practice, an error probability of 1/3 might not be acceptable, the choice 1/3 in the
definition is arbitrary, remember Victor in the cave example can decide how many
times to repeat the experiment to reduce the error probability. We can modify the
definition as in the case of BPP so the error probability can be made exponentially
small between 0 and 1/2 in place of 1/3, by repeating the interaction (polynomially)
many times.

In general, the completeness and soundness bounds do not even have to be
constant. We can replace them with two functions c, s : N → [0, 1] satisfying
c(n) < 1− 2−poly(n), s(n) < 2−poly(n) and c(n) > s(n) + 1

poly(n) .

Namely, we consider the following generalization of Interactive Proof Systems:

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

16 Chapter 2. Formal Definition of Zero Knowledge Proofs

Definition 2.2.5 (Generalized Interactive Proof). Let c, s : N→ R be functions satisfy-
ing c(n) > s(n) + 1

p(n) for some polynomial p(·). An interactive pair (P, V), as defined in
2.2.4, is called a (generalized) interactive proof system for the language L, with complete-
ness bound c(·) and soundness bound s(·), if:

• Completeness: For every x ∈ L,

Pr[⟨P, V⟩(x) = 1] ≥ c(|x|)

• Soundness: For every x /∈ L and every interactive machine B,

Pr[⟨B, V⟩(x) = 1] ≤ s(|x|)

2.2.2 Quadratic Residue Revisited

We will now treat the QR protocol formally and prove it is an Interactive Proof Sys-
tem. First, we find the language L in which our statement belongs. Since our state-
ment is “υ is a quadratic residue modulo n” the language we are referring to is:

L = QR(Z∗n) = {x ∈ Z∗n : (∃s ∈ Z∗n)(s
2 = x mod n)}

the set of all quadratic residues modulo n. So our statement more formally be-
comes υ ∈ QR(Z∗n). We note that QR(Z∗n) is a group with respect to multiplication
of quadratic residues modulo n.

Completeness: This means if we have an honest prover, his proof we always be
accepted by the Verifier, that is, Verifier checks if γ2 = αυβ is equivalent with γ2 =
r2s2β. Since P is honest, he sends γ = rsβ, so γ2 = r2s2β = r2(s2)β = αυβ ⇒ γ2 =
αυβ.

Soundness: This means if υ is not a quadratic residue, then regardless of what the
Prover does, the Verifier will reject the proof, specifically for our protocol, he will
reject with probability at least 1/2.

We assume a dishonest prover P∗, we will prove Pr[⟨P∗, V⟩(x) = 1] ≤ 1
2 . We dis-

tinguish two cases, α ∈ QR(Z∗n) and α /∈ QR(Z∗n). First we prove the following
lemma:

Lemma 2.2.1. Product of a quadratic residue and a quadratic non-residue is a quadratic
non-residue.

Proof. Let x ∈ QR(Z∗n) and y /∈ QR(Z∗n) and assume in contrary that z = xy ∈
QR(Z∗n). Since QR(Z∗n) is a group we have: xy = z (mod n)⇒ y = zx−1 (mod n).
Since z, x−1 are group elements, the right side product is quadratic residue but y is a
quadratic non-residue, this is a contradiction, thus z is not a quadratic residue.

Proof of soundness.
Case 1. α ∈ QR(Z∗n) We have the next two possible cases with same probabilities of
1/2 (since there are only two options for β with the same probability):

• Let assume the verifier sends β = 1. In this case the proof will fail since γ2 =
αυ1 = αυ and γ2 ∈ QR(Z∗n) but from the above lemma αυ /∈ QR(Z∗n).

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

2.3. Zero-knowledge Definitions 17

• Let assume the verifier sends β = 0. Then we have γ2 = αυ0 = α. Obviously
γ2 ∈ QR(Z∗n) and α ∈ QR(Z∗n). The prover can just send the r he posses for
the γ and the verifier will find γ2 = r2 = α which holds.

Thus the verifier will reject with probability ≥ 1/2.

Case 2. α /∈ QR(Z∗n) We have the next two possible cases with same probabilities of
1/2:

• If the verifier sends β = 1 the proof might succeed. We have γ2 = αυ1 = αυ,
the left most side is in QR(Z∗n) but the right most side it is not. The prover can
choose γ and precompute γ2 before sending α and then send γ2/υ for α. So
the verifier might get convinced as on the both sides of equality γ2 = αυ are
quadratic residues.

• If the verifier sends β = 0 the proof fails. γ2 = αυ0, but γ2 ∈ QR(Z∗n) and
α /∈ QR(Z∗n).

2.3 Zero-knowledge Definitions

We saw that soundness is a property of the prescribed verifier to protect himself
against any malicious prover. Zero-knowledge property in contrast, favors the pre-
scribed prover in case of a dishonest verifier, it captures prover’s robustness against
attempts to gain knowledge by interacting with him.

In this section we will introduce the most important aspect of ZKPs, the zero-
knowledge property. We will go gradually from the simplest definition (perfect zero-
knowledge) to more advanced definitions.

2.3.1 Perfect Zero-knowledge

Let us go back to our informal definition 1.2.1 of zero-knowledge. After our conver-
sation in 1.2.4 we will choose the more precise but still informal definition:

Definition 2.3.1. An interactive proof system (P, V) for a language L is zero-knowledge if
whatever can be efficiently computed after interacting with P on input x ∈ L, can also be
efficiently computed from x (without any interaction).

We use the remarks we did in the cave example to motivate us for a rigorous
approach to a formal definition. Recall that there Peggy made two tapes, the original
one and a staged recording that no one could distinguish one from the other. Even
if Peggy would show the original tape to a third person, she could be easily accused
of faking the tape and could do nothing to convince anyone otherwise.

We call the staged tape a simulator. Imagine now an interaction of a prover P
and a verifier V, and a simulator of their interaction. Note that when P interacting
with V, he makes explicitly use of knowledge that he only posses. In the cave ex-
ample is the secret word itself, in QR is the secret key s, while the simulator does
not make use of this knowledge but is only given the public input. The simulator
will create a transcript that “looks” like an interaction of P and V. Lets consider also
a transcript produced by the real interaction of prover and verifier. This transcript
must leak as much information as the simulated one, otherwise both would be dis-
tinguishable and we would not talk about simulation. Since the simulated protocol

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

18 Chapter 2. Formal Definition of Zero Knowledge Proofs

transcript does not make use of any knowledge, like the key s, and only make use
of the public input, it leaks no information at all about private knowledge (accord-
ing to our informal definition so far). This means that the simulated transcript is in
zero-knowledge. The conclusion is that the real protocol transcript, being indistin-
guishable from the simulated one or in other words being as good as the real one,
also leaks no information as well.

The concept of simulation helps us define the zero-knowledge property in a prac-
tical way since our informal definition is somewhat abstract. All in all we have to do
to assure that an interactive protocol is in zero-knowledge is to prove the existence
of a simulator which generates fake transcripts, without access to the prover’s secret
knowledge, that are “indistinguishable” from a genuine proof.

Our new formal definition follows:

Definition 2.3.2. [Gol01b] Let P be an interactive Turing machine and L a language. We
say that P is perfect zero-knowledge if, for every probabilistic polynomial-time interactive
verifier V∗, there exists a probabilistic polynomial-time algorithm M∗ such that the following
two random variables are identically distributed 1:

• {⟨P, V∗⟩(x)}x∈L (i.e., the output of the interactive machine V∗ after interacting with
P on common input x)

• {M∗(x)}x∈L (i.e., the output of machine M∗ on input x)

The machine M∗ is called a simulator for the interaction of V∗ and P. The first
random variable represents an actual execution of the protocol with the pair (P, V∗).
The second variable is a separate procedure, it does not interact with any algorithm.

We mention that the existence of a simulator is not obligatory to achieve zero knowl-
edge. We could have a zero-knowledge interaction without the use of simulator.
Conceptually, it is difficult to support the notion of "no real gain" with a well-formed
definition, simulation is an indirect approach which nonetheless serves the purpose
of zero-knowledge.

So far, the above definition is too tight for non-trivial cases. We can loosen up the
definition and allow the simulator to fail with bounded probability and produce an
interaction. This is the same as the staged tape Peggy made. There, almost half of
the tries were unsuccessful since the actor came out from the wrong path, so Peggy
had to edit out these tries.

Definition 2.3.3 (Perfect Zero-knowledge). [Gol01b] Let P be an interactive Turing ma-
chine and L a language. We say that P is perfect zero-knowledge if, for every probabilistic
polynomial-time interactive verifier V∗, there exists a probabilistic polynomial-time algo-
rithm M∗ such that the following two conditions hold:

1. With probability at most 1
2 , on input x, machine M∗ outputs a special symbol denoted

⊥ (i.e., Pr[M∗(x) = ⊥] ≤ 1
2).

2. Let m∗(x) be a random variable describing the distribution of M∗(x) conditioned on
M∗(x) ̸= ⊥ (i.e., Pr[m∗(x) = a] = Pr[M∗(x) = a|M∗(x) ̸= ⊥] for every a ∈
{0, 1}∗). Then the following random variables are identically distributed:

1Identically distributed meaning the cumulative distribution functions of ⟨P, V∗⟩(x) and M(x) are
equal.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

2.3. Zero-knowledge Definitions 19

• ⟨P, V∗⟩(x) (i.e., the output of the interactive machine V∗ after interacting with
P on common input x)

• m∗(x) (i.e., the output of machine M∗ on input x, conditioned on not being ⊥)

We could modify the first condition by requiring the machine M∗ output ⊥ with
probability at most a polynomial-time computable function b(·). Then, the statis-
tical difference between the interactive pair (P, V∗) and the simulator M∗ becomes
negligible. In this case, there is an extremely small error between whatever a verifier
can efficiently compute (after interacting with the prover) and the simulator (for the
same computation).

The notion of “computational indistinguishability” will be our basis for the next def-
inition of zero-knowledge.

2.3.2 Computational Zero-knowledge

In computational complexity, we consider objects to be computationally indistin-
guishable if the differences between the objects cannot be observed by any efficient
procedure. The objects themselves are considered as infinite sequences of strings.
Hence, if for two sequences {xn}n∈N and {yn}n∈N there is no efficient algorithm D
that can accept infinitely many xn’s while rejecting their y counterparts, then are said
to be computationally indistinguishable.

This view of indistinguishability is not strict to sequences of strings but can ex-
tend naturally to the probabilistic settings. We can talk about computationally indis-
tinguishable distributions when there is no efficient algorithm D that can tell apart
the probability to accept strings chosen from these distributions. These strings are
infinite sequences of distributions called probability ensembles, rather than fixed dis-
tributions.

Definition 2.3.4 (Probability Ensemble). [Gol01a] Let I be a countable index set. An
ensemble indexed by I is a sequence of random variables indexed by I. Namely, any X =
{Xi}i∈I , where each Xi is a random variable, is an ensemble indexed by I.

The ensembles can be indexed also by strings from a language L.

Definition 2.3.5 (Computational Indistinguishability). [Gol01a] Let X
de f
= {Xn}n∈N

and Y
de f
= {Yn}n∈N be two probability ensembles. We say {Xn}n∈N and {Yn}n∈N are

computationally indistinguishable (or indistinguishable in polynomial time) if for
every probabilistic polynomial-time algorithm D, every positive polynomial p(·), and all
sufficient large n’s,

|Prt←Xn [D(t) = 1]− Prt←Yn [D(t) = 1]| < 1
p(n)

Prt←Xn [D(t) = 1] (similar notation as Pr[D(Xt) = 1]) denotes the probability the
algorithm D outputs 1 on input Xt.

The discussion on indistinguishability motivates us to a new definition of zero-
knowledge. In practise if very difficult to construct a “perfect” simulation for the
output of V∗. Actually, it suffices to generate a probability distribution that is com-
putationally indistinguishable from the output of V∗ after it interacts with P.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

20 Chapter 2. Formal Definition of Zero Knowledge Proofs

Definition 2.3.6 (Computational Zero-knowledge). [Gol01b] Let P be an interactive
Turing machine and L a language. We say that P is computational zero-knowledge
(or just zero-knowledge) if, for every probabilistic polynomial-time interactive verifier V∗,
there exists a probabilistic polynomial-time algorithm M∗ such that the following two en-
sembles are computationally indistinguishable:

• {⟨P, V∗⟩(x)}x∈L (i.e., the output of the interactive machine V∗ after interacting with
P on common input x)

• {M∗(x)}x∈L (i.e., the output of machine M∗ on input x)

Think of the algorithm D as a procedure of distinguishing a distribution based
on a sample and D’s verdict of accepting the sample drawn from this distribution
as 1. When the relation of computational indistinguishability is satisfied, it simply
means that D accepts the sample coming from the first distribution as much as com-
ing from the second distribution. In other words, D cannot efficiently determine the
origin distribution of the sample.

As in perfect zero-knowledge, we can adopt an alternative definition considering
the conditional output distribution of the simulator as in Definition 2.3.3 which does
not increase the power of computational zero-knowledge.

There is an alternative option of simulation which appeals more naturally in our
working of zero-knowledge and takes into account the verifier’s view, that is, the
complete sequence of its local configurations during the interaction with the prover.
This is equal to the content of the random tape and the messages he received during
the protocol’s execution since its inner configuration depends on these data.

Definition 2.3.7 (Alternative formulation of Zero-knowledge). [Gol01b] Let (P, V)
be an interactive proof system for some language L. We denote by viewP

V∗(x) a random
variable describing the content of the random tape of V∗ and the messages V∗ receives from
P during a joint computation on common input x. We say that (P, V) is zero-knowledge
if for every probabilistic polynomial-time interactive machine V∗ there exists a probabilistic
polynomial-time algorithm M∗ such that the ensembles {viewP

V∗(x)}x∈L and {M∗(x)}x∈L
are computationally indistinguishable.

Although the alternative definition is equivalent with definition 2.3.6, the for-
mer is more convenient to work with. Note that we can also obtain a perfect zero-
knowledge definition by considering the view of the verifier instead of his output.

2.3.3 Statistical Zero-knowledge

A relaxed version of perfect zero-knowledge is the following:

Definition 2.3.8 (Almost-Perfect (Statistical) Zero-knowledge). [Gol01b] Let P be an
interactive Turing machine and L a language. We say that P is almost-perfect zero-
knowledge (or statistical zero-knowledge) if, for every probabilistic polynomial-time in-
teractive verifier V∗, there exists a probabilistic polynomial-time algorithm M∗ such that the
following two ensembles are statistically close as functions of |x|:

• {⟨P, V∗⟩(x)}x∈L (i.e., the output of the interactive machine V∗ after interacting with
P on common input x)

• {M∗(x)}x∈L (i.e., the output of machine M∗ on input x)

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

2.3. Zero-knowledge Definitions 21

Two statistical ensembles X
de f
= {Xn}n∈N and Y

de f
= {Yn}n∈N are statistically close

if their statistical difference is negligible2 where the statistical difference between
two distributions X and Y over a finite domain D is defined as the function:

∆(X, Y) =
1
2 ∑

a∈D
|Pr[X = a]− Pr[Y = a]|

That is, the statistical difference between ⟨P, V∗⟩(x) and M∗(x) is negligible in
terms of |x|.

There is a weak notion of zero-knowledge, called honest-verifier zero-knowledge,
which as the name suggests requires simulatability of only the prescribed (or hon-
est) verifier’s view and not any possible verifier. This notion of zero-knowledge
is interesting for the following special reason: public coin protocols that are zero-
knowledge with respect to the honest verifier imply similar protocols that are zero-
knowledge in general [GSV98].

Definition 2.3.9 (Zero-knowledge with respect to an honest verifier). [Gol01b] Let
(P, V), L and viewP

V(x) be as in definition 2.3.7. We say that (P, V) is honest-verifier
zero-knowledge if there exists a probabilistic polynomial time algorithm M such that the
ensembles {viewP

V(x)}x∈L and {M(x)}x∈L are computationally indistinguishable.

Quadratic Residue protocol satisfies Statistical Zero-knowledge
We note here that QR in general is consider to be hard to compute. In [MA78] is

proved that this problem is NP-complete for solutions within a limit parameter. In
[Rab79] Rabin showed that finding square roots modulo n is equivalent to factoring
n.

Let V∗ be a verifier. The simulator S will do the following:

1. Input: υ, n such that υ ∈ QR(Z∗n). Note that the simulator does not get s such
that υ = s2 (mod n).

2. Choose β′ ← {0, 1} (guess the challenge of the verifier).

3. Choose γ← Z∗n.

4. Compute α = γ2

υβ′

5. Invoke V∗ on the message α to obtain a bit β.

6. If β ̸= β′ HALT.

7. Output γ.

We will prove that the described simulator S with probability 1/2 simulates the
QR protocol.

We call transcript a set of messages exchanged during the conversation between
parties and denote it with tr = (α, β, γ) where α, β, γ are the messages exchanged.
Note that creating a simulator, the order of how messages are exchanged is not im-
portant.

Lemma 2.3.1. The transcripts (α, β, γ) as outputs from the conversations A1 and A2
defined as below have the same probability distributions.

2a function µ : N → R is called negligible if for every positive polynomial p(·) there exists an N
such that for all n > N, µ(n) < 1

p(n)

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

22 Chapter 2. Formal Definition of Zero Knowledge Proofs

A1

r ← Z∗n

α← r2

β← {0, 1}
γ← rsβ

return (α, β, γ)

A2

β← {0, 1}
γ← Z∗n

α =
γ2

υβ

return (α, β, γ)

Proof. We will prove the equality of the following probabilities:

Pr[r ← Z∗n, α← r2, β← {0, 1}, γ← rsβ : α, β, γ] (2.1)

Pr[β← {0, 1}, γ← Z∗n, α =
γ2

υβ
, : α, β, γ] (2.2)

Since β ranges over {0, 1}we can use conditional probabilities. Thus the left side
of (2.1) becomes:

Pr[r ← Z∗n, α← r2, β← {0, 1}, γ← rsβ : α, β, γ]=

Pr[β← {0, 1} : β = 0] · Pr[r ← Z∗n, α← r2, γ← r : α, γ]+

Pr[β← {0, 1} : β = 1] · Pr[r ← Z∗n, α← r2, γ← rs : α, γ]=
1
2
· Pr[r ← Z∗n : r = γ] · Pr[α← Z∗n : α = γ2]+

1
2
· Pr[r ← Z∗n : r = γs−1] · Pr[α← Z∗n : α = γ2s−2]

Since s is invertible and r, γ are uniquely determined by α, the last sum of prob-
abilities equals:

1
2
(

1
ϕ(n)

+
1

ϕ(n)
) =

1
ϕ(n)

whenever αυβ = γ2 and 0 otherwise (ϕ(n) is the number of elements in Z∗n).
The left side of (2.2) becomes:

Pr[β← {0, 1}, γ← Z∗n, α =
γ2

υβ
, : α, β, γ]=

Pr[β← {0, 1} : β = 0] · Pr[γ← Z∗n, α = γ2 : α, γ]+

Pr[β← {0, 1} : β = 1] · Pr[γ← Z∗n, α =
γ2

υ
: α, γ]=

1
2
· Pr[γ← Z∗n, α = γ2 : α, γ] +

1
2
· Pr[γ← Z∗n, α =

γ2

υ
: α, γ]

Since υ is invertible and γ is uniquely determined by α, the last sum of probabil-
ities equals:

1
2
(

1
ϕ(n)

+
1

ϕ(n)
) =

1
ϕ(n)

whenever αυβ = γ2 and 0 otherwise.
Thus probabilities (2.1) and (2.2) are equal which shows that transcripts (α, β, γ)

as outputs from A1 and A2 have the same probability distributions.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

2.3. Zero-knowledge Definitions 23

Lemma 2.3.2. The QR protocol satisfies statistical zero-knowledge.

Proof. The communication between prover and verifier looks like below:

VP(ϕ)

r ← Z∗n

α← r2

β← {0, 1}
γ← rsβ

return V(ϕ)

We wonder how much different is the simulator’s transcript from VP.

SV

β′ ← {0, 1}
γ← Z∗n

α← γ2

υβ′

β← V(α)

i f β ̸= β′thenHALT
return V(γ)

Using lemma 2.3.1 we can replace part of SV which is equal to A2 with that of
A1 getting:

RV

r ← Z∗n

α← r2

β′ ← {0, 1}

γ← rsβ′

β← V(α)

i f β ̸= β′thenHALT
return V(γ)

In RV we notice that β depends only on α, so we can move the assign β ← V(α)
up after the occurrence of α transforming RV like this:

RV

r ← Z∗n

α← r2

β← V(α)

β′ ← {0, 1}

γ← rsβ′

i f β ̸= β′thenHALT
return V(γ)

Let us analyze the behaviour of RV . First note that Pr[RV = HALT] = 1
2 , since it

equals the probability β′ will not much β. This means that if we run the procedure
for k steps, we will halt with very high (1− 2−k) probability.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

24 Chapter 2. Formal Definition of Zero Knowledge Proofs

If we denote the output of VP as ψ we have:
Pr[RV = ψ|RV ̸= HALT] = Pr[V(γ) = ψ|β = β′] = Pr[VP = ψ].
This shows statistical probability distribution equality of SV and RV which means

that the described simulator S with probability 1/2 simulates the QR protocol.

The simulator algorithm has small probability of running for a long time. To
make into an algorithm that at the worst case makes at most |x| invocations of V∗,
we can just stop and output an arbitrary value after more than |x| iterations. We’ll
introduce at most 2|x| statistical distance this way.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

25

Chapter 3

Σ-Protocols

In this Chapter we will present an important class of zero-knowledge protocols
called Sigma Protocols. Sigma Protocols (or Σ-Protocols) are interesting in their own
sake. Lot of cryptographic schemes are actually Sigma protocols e.g., knowledge
of discrete logarithm, equality of discrete logarithm, knowledge of message and
randomness in a Pedersen commitment. Another virtue is that we can build upon
Sigma protocols new such protocols and so on. Additionally, they give us the chance
to present an important notion of interactive proofs, this of “Proof of Knowledge”.

3.1 The Discrete Logarithm problem in Cryptography

In its most standard form, the discrete logarithm problem (DLP) in a finite Group G can
be stated as follows1:

Given α ∈ G and β ∈ ⟨α⟩, where ⟨α⟩ is the subgroup generated by α, find the least positive
integer x such that β = αx.

We call x the discrete logarithm of β with respect to the base α and denote it as
logα β. A slightly stronger version of the problem formulates as follows:

Given α, β ∈ G, compute logα β if β ∈ ⟨α⟩ and otherwise report that β /∈ ⟨α⟩.

This could be orders more difficult problem and that is because if we are lucky,
we could find an algorithm that outputs efficiently logα β when the case is that β lies
in ⟨α⟩, otherwise, such an algorithm could be hard to find or even it could be hard
tell if β does not lie in ⟨α⟩. On the other hand, with a deterministic algorithm, we
can unequivocally determine whether β lies in ⟨α⟩ or not.

There is a generalisation called the extended discrete problem:

Given α, β ∈ G, determine the least positive integer y such that βy ∈ ⟨α⟩, and then output
the pair (x, y) where x = logα βy.

This yields positive integers x and y satisfying βy = αx, where we minimize y
first and x second. Note that there is always a solution: in the worst case x = |α| and
y = |β|, the orders of α and β.

Finally, we can consider a vector form of the discrete logarithm problem:

Given α1, . . . , αr ∈ G and n1, . . . , nr ∈ Z such that every β ∈ G can be written uniquely
as β = αe1

1 · · · α
er
r with ei ∈ [1, ni], compute the exponent vector (e1, . . . , er) associated to a

given β.

1https://math.mit.edu/classes/18.783/2021/LectureNotes9.pdf

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

https://math.mit.edu/classes/18.783/2021/LectureNotes9.pdf

26 Chapter 3. Σ-Protocols

Observe that in all the statements of the DLP we use multiplicative terminology
and notation. This stems from the fact that most of the early work on discrete log-
arithms focused on multiplicative groups of a finite field. In additive notation we
have - for the initial statement of DLP - xα = β. Look below in example 2 for an
additive case.

Examples:

1. Suppose G = Z∗101, then log3 37 = 24 since 324 ≡ mod101.

2. Suppose G = Z+
101, then log3 37 = 46 since 46 · 3 ≡ mod101.

In the above examples we have respectively group orders of 100 = 22 · 55 and
101, which is prime. In both cases it is easy to compute the discrete logarithm but
not due to the order of the groups but for different reasons. In the multiplicative
case, although 100 is composite, is smooth (i.e. product of small primes), in this
case it is easy to compute discrete logarithms. While 101 is prime which in terms of
groups structure represents the hardest case, it turns out to be very easy to compute
discrete logarithms in the additive group of a finite field. We observe that x · 3 =
37 ⇒ x = 37 · 3−1, thus, all we need to do is to compute the multiplicative inverse
of 3 mod 101, which is 34, and multiply by 37.

In the additive case, even if the field size is very large, we can “cheat” in a sense
and use the extended Euclidean algorithm to compute multiplicative inverses in fast
times. The cheating has to do with the fact that in a Euclidian domain we are allowed
to use multiplication beside the standard group addition. Thus, the hardness of DLP
does not really depends on the group’s order, but on the group’s representation. Z+

101
as every Z/pZ group of prime order, is a Euclidian domain and every prime order p
group is isomorphic to it. Computing the discrete logarithm amounts to computing
this isomorphism.

In the multiplicative case DLP is believed to be much harder. There are sub-
exponential time algorithms, whereas in the generic setting only exponential time
algorithms exist. An extended survey on discrete logarithms and their computation
can be found here [JOP14].

3.2 DLP for ZKPs

This hardness hypothesis of the discrete logarithm problem is the foundation for the
security of a large variety of public key systems and protocols. The most famous
of them being the Diffie-Hellman key exchange [DH76] which have been published
more than four decades ago. Since then, there have been substantial algorithmic
advances in the computation of discrete logarithms. However, the DLP in general
is still considered to be hard both for multiplicative groups of finite fields and the
additive group of a general elliptic curve.

The discrete logarithm problem is not used only for the Diffie-Hellman key ex-
change, but since the invention of the RSA cryptosystems it is used for encryption
and signatures. No wonder the DLP made it in to the zero-knowledge proof proto-
cols. Schnorr in [Sch90] gave an identification protocol based on an alternative ZKP
protocol called zero-knowledge proof of knowledge of a discrete logarithm.

Let p be a prime and q a prime divisor of p − 1. Let g be an element of order q
in Z∗p. From the fundamental theorem of cyclic groups there is only one subgroup

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

3.2. DLP for ZKPs 27

of order q in Z∗p and this is ⟨g⟩. Suppose a prover chooses w ∈ Zq and publishes
h = gw mod p - automatically this means that h ∈ ⟨g⟩. A verifier who gets p, q, g, h
can check that p, q are primes and that g, h have order q. Since h ∈ ⟨g⟩ the verifier
can tell that there exists w such that h = gw but he is not sure that the prover knows
such a w.

Schnorr suggested the following interaction as an efficient way to convince a
verifier:

1. P chooses r at random in Zq and sends a = gr mod p to V.

2. V chooses a challenge e at random in Z2t , where t is fixed such that 2t < q, and
sends it to P.

3. P sends z = r + ew mod q to V who accepts if and only if gz = ahe mod p.

P(w, h = gw) V(h = gw)

r ← Zq

a = gr

a

e← Z2t

2t < q

e

z← r + ew

z

gz ?
= ahe

Note the three movement form. Later we will prove that Schnorr’s protocol is
a zero-knowledge proof protocol. Additionally to this, the protocol belongs to a
special kind of protocols called Σ-protocols which as we will see have their own in-
terest. Σ-protocols primitive where first introduced as an abstract notion by Cramer
[CRA96]. The following definitions capture the essential properties of these proto-
cols.

3.2.1 Definitions

LetR be a binary relation in {0, 1}∗× {0, 1}∗ such that if (x, w) ∈ R, then the length
of w is at most p(|x|), for some polynomial p(·) (we say that R is polynomially
bounded). We can think of x as an instance of some computational problem and w
as a witness; a solution to that instance. For the DLP this relation is R = {(h, w) ∈
Zq ×Zq : gw = h}. So, R contains all the discrete logarithm problems in Zq and
their solutions.

Let R(x) = {w : (x, w) ∈ R} and LR = {x : ∃w s.t. (x, w) ∈ R} (the domain of
the binary relation). We say that R is an NP-relation if it is polynomially bounded
and, in addition, there exists a polynomial-time algorithm for deciding membership
inR, indeed, it follows that LR ∈ NP .

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

28 Chapter 3. Σ-Protocols

The form of the Schnorr protocol can be abstractly stated as follows: P, V are
probabilistic polynomial time machines, (x, w) belongs to a relation R where x is
common input to P and V, w is private input to P and the interaction between them
is described as:

1. P sends a message a.

2. V sends a random t-bit string e.

3. P generates and sends a response z, and V decides to accept or reject based on
the data he has seen, namely x, a, e, z.

We define V(x, a, e, z) = true if and only if the verifier accepts, otherwise he
rejects.

Definition 3.2.1. A protocol P is said to be a Σ-protocol for relationR if:

• P is of the above 3-move form. The Greek letter Σ visualizes the flow of the protocol.

• Perfect Completeness: If P, V follow the protocol on input x and private input w to
P where (x, w) ∈ R, the verifier always accepts.

• Special Soundness: From any x and any pair of accepting conversations on input
x, (a, e, z,), (a, e′, z′) where e ̸= e′, one can efficiently compute w such that (x, w) ∈
R.

• P is Honest-Verifier Zero-Knowledge (HVZK)

Some results from the definition are the following:

Lemma 3.2.1. The properties of Σ-protocols are invariant under parallel composition, for
instance repeating a Σ-protocol forR twice in parallel produces a new Σ-protocol forR with
challenge length 2t.

Look at Section 4.1 for parallel composition.

Lemma 3.2.2. If a Σ-protocol for R exists, then for any t, there exists a Σ-protocol for R
with challenge length t.

3.2.2 Proofs of knowledge

We will introduce now a notion of proof systems known as Proofs of Knowledge (PoK).
Although there are many approaches on defining PoKs, most of them often mislead
new researchers. In this thesis we will start with a naive approach and interpretation
along with formal definition(s).

In the definition of interactive proofs 2.2.1 the prover P is computationally unbounded.
Suppose now P wants to to prove a statement x ∈ L for a language L in NP . Since
P is unbounded he can just do this, to establish easily by computation that x is in
L and send the appropriate messages to the verifier. This is merely an assertion for
existence of a witness (since the fact that "x ∈ L" provides the existence of a witness
w for this x). Nonetheless, is often important a prover to demonstrate not only that
x ∈ L but also that “knows” a witness w for this x, which is a much stronger require-
ment. We need a notion which makes the distinction between a proof of language
membership and a proof of knowledge.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

3.2. DLP for ZKPs 29

Proof of knowledge is a two party protocol in which whenever one party (the ver-
ifier) is “convinced” then the other party (the prover) indeed “knows” something (i.e.,
the prover asserts knowledge of some object and not merely its existence) [BG93].
For the formalization of PoKs we are going to pay attention to the word “knows”.
Particularly, what is meant by saying that a machine knows something?

The above question is an indication of the difficulty to a straightforward defi-
nition of this new notion. As a behaviour, knowing something means there is the
ability to “write” down this information. In the context of interactive machines, how
a machine write this information? Should it appear in the memory of the machine at
some point (since the interactive aspect of a machine is its input-output behaviour)?
If so, the machine does not necessarily spit out this information or in other words: if
we can pull the information out of the machine, it must somehow have been there.
Pulling out this information means that the machine can be easily modified to com-
pute this information. More precisely, there exists an efficient algorithm, called the
knowledge extractor, that using the machine as an oracle, extracts this knowledge.

Suppose a prover and verifier interacting on common input x. With more clarity
and less sophistication we require that the probability the verifier accepts the com-
mon input is inversely proportional to the difficulty of extracting a witness w of x
when using the prover as a black box. Namely, the extractor given access to a func-
tion specifying prover’s behaviour, its running time is inversely related (by a factor
polynomial in |x|) to the probability that prover convinces the verifier on accepting
x.

Definition 3.2.2 (Message-Specification Function). Denote by Px,y,r(m) the message
sent by machine P on common input x, auxiliary input y and random input r after receiving
messages m. The function Px,y,r is called the message-specification function of machine P
with common input x, auxiliary input y and random input r.

As we note in the definition of Px,y,r we included, except from the prover’s pro-
gram, its auxiliary and random input. This is because auxiliary as much as random
input could enable the prover to “know” and prove more.

Comments on notation m: As we have said, the interaction between prover and
verifier consists of a sequence of moves in each of which one party sends a message
to the other. In this interaction the prover or the verifier may move first, let us for
simplicity assume the prover moves first and the verifier last. We denote by ai (resp.
bi) the message sent be the prover (resp. verifier) in the i-th move. We consider with
m any prefix of conversation, a unique description of messages been sent from both
parties so far, i.e., m = a1b1 . . . ai−1bi−1. Then each message is specified by Px,y,r as
follows: ai = Px,y,r(a1b1 . . . ai−1bi−1)

The extractor, K, is an algorithm favored with additional properties, these are: its
ability to get responses the prover generates in arbitrary messages he gets from K
and the ability to rewind the prover to a prior state. We say that K has rewind black
box oracle access to the prover or that K is an oracle machine and denote it also as
KPx,y,r .

Definition 3.2.3 (System for Proofs of Knowledge). Let R be a binary relation and
k : N → [0, 1]. We say that an interactive function V is a knowledge verifier for the
relationR with knowledge error k if the following two conditions hold:

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

30 Chapter 3. Σ-Protocols

• Non-triviality: There exists an interactive machine P such that for every (x, y) ∈ R
all possible interactions of V and P on common input x and auxiliary input y are
accepting.

• Validity (with error k): There exists a polynomial q(·) and a probabilistic oracle ma-
chine K such that for every interactive function P, x ∈ LR and every y, r ∈ {0, 1}∗,
machine K satisfies the following condition:

Denote by p(x, y, r) the probability that the interactive machine V accepts, on input
x, when interacting with the prover specified by Px,y,r. If p(x, y, r) > k(|x|), then, on
input x and with access to oracle Px,y,r, machine K outputs a solution w ∈ R(x)
within an accepted number of steps bounded by

q(|x|)
p(x, y, r)− k(|x|) (3.1)

The oracle machine K is called a universal knowledge extractor.

We can think of the error k(·) as the probability that one can convince the verifier
without knowing a correct witness w. Being better than that requires some ability to
actually compute the witness. Since p(·) is the probability the prover convinces the
verifier to accept on input x, p(|x|)− k(|x|) is the probability the verifier accepts and
the prover really knows the witness. When the difference of these probabilities get
larger, we expect to be able to perform the extraction with fewer queries.

The above definition might be somewhat an inconvenient view of validity seen as
expected running time. We will present and prove an alternative definition seen as
success probability. Instead of requiring the knowledge extractor to output a solu-
tion within an expected time inversely proportional to the probability that prover
convinces verifier on accepting x, that is, proportional to p(x, y, r) − k(|x|), the al-
ternative definition requires the extractor to run in expected polynomial time and
output a solution with probability at least p(x, y, r)− k(|x|).

Definition 3.2.4 (Validity with error k, Alternative Formulation). Let V, Px,y,r (with
x ∈ LR), and p(x, y, r) be as in Definition 3.2.3. We say that V satisfies the alternative
validity condition with error k if there exists a probabilistic oracle machine K and a pos-
itive polynomial q such that on input x and with access to oracle Px,y,r, machine K runs in
expected polynomial time and outputs a solution w ∈ R(x) with probability at least

p(x, y, r)− k(|x|)
q(|x|) (3.2)

Proposition. Let R be an NP-relation, and let V be an interactive machine. Refer-
ring to this relation R, machine V satisfies (with error k) the validity condition of
Definition 3.2.3 if and only if V satisfies (with error k) the alternative validity condi-
tion of Definition 3.2.4.

Proof Sketch. Suppose that V satisfies the alternative formulation (with error k), and
let K be an adequate extractor and q an adequate polynomial. Using the hypothesis
thatR is anNP-relation, it follows that when invoking K we can determine whether
or not K has succeeded. Thus, we can iteratively invoke K until it succeeds. If K
succeeds with probability s(x, y, r) ≥ (p(x, y, r)− k(|x|))/q(|x|), then the expected
number of invocations is 1/s(x, y, r), which is as required.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

3.2. DLP for ZKPs 31

Suppose that V satisfies (with error k) the validity requirement of Definition 3.2.3,
and let K be an adequate extractor and q an adequate polynomial (such that K runs
in expected time q(|x|)/(p(x, y, r) − k(|x|))). Let p be a polynomial bounding the
length of solutions of R (i.e., (x, w) ∈ R implies |w| ≤ p(|x|)), the existence of p
follows from the hypothesis thatR is an NP-relation.

Then we proceed with up to p(|x|) iterations as follows to extract w: in the ith
iteration we run KPx,y,r(x) until the time limit of 2i+1 · q(|x|).

1stiteration︸ ︷︷ ︸
duration 4·q(|x|)

, 2nditeration︸ ︷︷ ︸
duration 8·q(|x|)

, . . . , p(|x|)thiteration︸ ︷︷ ︸
duration 2p(|x|)+1·q(|x|)

If the ith iteration succeeds with solution w, we halt and output the solution.
If it does not succeed, with probability 1

2 we move to the next iteration, else (with
probability 1

2) we halt and output a special symbol for failure (e.g., ⊥). So far K is
expected to run in time:

1 · 4 · q(|x|)︸ ︷︷ ︸
1strun

+ 2−1 · 8 · q(|x|)︸ ︷︷ ︸
2ndrun

+ . . . + 2−(p(|x|)−1) · 2p(|x|)+1 · q(|x|)︸ ︷︷ ︸
p(|x|)thrun

In case these iterations fail to provide a solution we continue by exhausting all
possible solutions. Since our solution is bounded by p(|x|), there are 2p(|x|) many
possible solutions and thus 2p(|x|) · poly(|x|) time needed to try, at worst case, all of
them. So, as before, with probability 1

2 we move on to exhaustive search. Adding
this search time to the above summation, the expected time is:

p(|x|)

∑
i=1

2−(i−1) · (2i+1 · q(|x|)) + 2−p(|x|) · (2p(|x|) · poly(|x|))

= 4 · p(|x|) · q(|x|) + poly(|x|)

To evaluate the success probability of the new extractor, note that the proba-
bility that KPx,y,r(x) will run for more than twice its expected running time (i.e.,
twice q(|x|)/(p(x, y, r) − k(|x|))) is less than 1

2 . Also observe that in iteration i′ =
− log2(p(x, y, r)− k(|x|)) we emulate these many steps (i.e., 2i′+1 · q(|x|) = 2q(|x|)/(p(x, y, r)−
k(|x|)) steps). Thus, the probability that we can extract a solution in one of the first
i iterations is at least 1

2 · 2−(i
′−1) = p(x, y, r) − k(|x|), as required in the alternative

formulation.

Theorem 3.2.3. Let P be a Σ-protocol for relation R with challenge length t. Then P is a
proof of knowledge with knowledge error 2−t. [HL10]

Proof. Non-triviality is clear by definition.
For validity, let H be the matrix containing only 0s and 1s with a row for each

possible set of random choices ρ by P∗, and one column for each possible challenge
value e. An entry Hρ,e is 1 if V accepts with this random choice and challenge, and 0
otherwise. Using P∗ as a black-box and choosing a random challenge, we can probe
a random entry in H. By rewinding P∗, we can probe a random entry in the same
row, i.e., where P∗ uses the same internal random coins as before. Our goal is to find
two 1’s in the same row; using special soundness the resulting two conversations
give us sufficient information to compute a witness w for x efficiently.

All we know is that ϵ := ϵ(x) equals the fraction of 1-entries in H. Note that this
gives no guarantees about the distribution of 1’s in a given row. For instance, if we

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

32 Chapter 3. Σ-Protocols

stumbled across a row with a single 1, we will never finish if we keep looking in that
same row.

We can however make the following observation about this distribution. Define
a row to be heavy if the fraction of 1’s along the row is at least ϵ/2. By a simple
counting argument, we see that more than half of the 1’s are located in heave rows.
Indeed, let H′ be the sub-matrix of H consisting of all rows that are not heavy, and
write h′ for the total number of entries in H′ and h for those in H. By assumption,
the number of 1’s in H is hϵ and the number of 1’s in H′ is smaller than h′ϵ/2. Then
the number g of 1’s in heavy rows satisfies

g > hϵ− h′ϵ/2 ≥ hϵ− hϵ/2 = hϵ/2.

Assume for the moment that

ϵ ≥ 2−t+2,

so that a heavy row contains at least two 1’s. In this case, we will show that we
can find two 1’s in the same row in expected time O(1/ϵ). This will be more than
efficient, since 1/ϵ is less than required by the definition, namely 1/(ϵ− 2−t).

Our approach will be to first repeatedly probe H at random, until we find a 1
entry, a “first hit”. This happens after an expected number of 1/ϵtries.

By the observation above, with probability greater than 1/2, the first hit lies in
a heavy row. Now, if it does (but note that we cannot check if it does), and if we
continue probing at random along this row, the probability of finding another 1 in
one attempt is ϵ/2·2t−1

2t (2t are all the entries in a row, times this with ϵ/2 we get the
least number of 1’s in this heavy row, minus 1 for the first hit we get the least number
of 1’s remaining), and therefore the expected number T of tries to find the second hit
satisfies

T =
2t

ϵ/2 · 2t − 1
≤ 4/ϵ

tries. The inequality follows from the assumption on ϵ we made above. We
would therefore be done in O(1/ϵ) tries, which is good enough, as argued above.

However, with some probability smaller than 1/2, the first hit is not in a heavy
row. In that case we might spend too much time finding another 1 (if it exists at
all!). To remedy this, we include an “emergency break”, resulting in the following
algorithm:

1. Probe random entries in H until the first 1 is found (the first hit).

2. Then start the following two processes in parallel, and stop when either one
stops:

Pr1 Probe random entries in the row in which we found a 1 before, until an-
other 1-entry is found (the second hit).

Pr2 Repeatedly flip a coin that comes out head with probability ϵ/d, for some
constant d (we show how to choose d below), until you get heads. This can be
done by probing a random entry in H and choosing a random number among
1, 2, . . . , d - you output heads if the entry was a 1 and the number was 1.

Since d is constant, this algorithm certainly runs in expected time O(1/ϵ). But of
course, what we really want is that Pr1 finishes first since this will give us the result

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

3.2. DLP for ZKPs 33

we want. So we have to make sure that Pr1 gets enough time to finish before Pr2, if
indeed the first hit is in a heavy row.

The probability that Pr2 finishes after k attempts is ϵ/d · (1− ϵ/d)k−1. Using the
(crude) estimate (1− ϵ/d)k−1 ≤ 1, we get that the probability of finishing after k or
fewer attempts is at most kϵ/d. For k = d/(2ϵ), this bound is 1/2, so we conclude
that the probability that Pr2 needs more than d/(2ϵ) trials to finish is at least 1/2.
Now choose d “large”, say d = 16. This will mean that with probability at least 1/2,
Pr2 finishes after more than 8/ϵ tries.

As before, if indeed the first hit is in a heavy row, then with probability at least
1/2, Pr1 is done after fewer than 2T ≤ 8/ϵ tries2.

Therefore, with probability greater than 1/2 · 1/2 = 1/4, Pr1 finishes before Pr2
in this case.

Overall, this procedure finds two 1’s along the same row if we hit a heavy row
and the right process finishes first, which happens with probability greater than 1/2 ·
1/4 = 1/8, and it runs in expected time O(1/ϵ).

The required knowledge extractor now repeats the above algorithm until we
have success. Since the expected number of repetitions is constant (at most 8), we
obtain an algorithm that achieves its goal in expected time O(1/ϵ), as desired.

So what if 2−t < ϵ < 2−t+2? We treat this case by a separate algorithm, using
the fact that when ϵ is so small, we are in fact allowed time enough to probe an
entire row. The algorithm we describe then simply runs in in parallel with the above
algorithm.

Define δ by ϵ = (1 + δ)2−t; so that 0 < δ < 3. Let R be the number of rows in H.
Then we have at least (1 + δ)R 1’s among the R2t entries. At most R of these can be
alone in a row, thus at least δR of them must be in rows with at least two 1’s. Such a
row is called semi-heavy. The algorithm now does the following:

1. Probe random entries until a 1 is found.

2. Search the entire row for another 1 entry. If no such entry was found, go to
step 1.

To analyze this, note that the fraction of ones in semi-heavy rows is δR/(1 +
δ)R = δ/(1+ δ) among all ones and δR/R2t = δ/2t among all entries. The expected
number of probes to find a 1 is 1/ϵ = 2t/(1 + δ). The expected number of probes to
find a 1 in a semi-heavy row is 2t/δ. So we except to find a one in a semi-heavy row
after finding (1 + δ)/δ 1’s. For each 1 we find, we try the entire row, so we spend
O(2t(1 + δ)/δ) probes on this. In addition, we spend O(2t/δ) probes on finding 1’s
in step 1, so altogether we spend

2t(
1
δ
+

1 + δ

δ
) = 2t 2 + δ

δ

which is certainly O(2t/δ). But this is no more than the time we are allowed:

1
ϵ− k

≥ 1
ϵ− 2−t =

1
(1 + δ)2−t − 2−t = 2t/δ

2This follows from Markov’s inequality: a non-negative random variable is less than twice its ex-
pectation with probability at least 1/2

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

34 Chapter 3. Σ-Protocols

3.3 AND and OR Compositions

We now formulate two Sigma protocols for proving knowledge of multiple indepen-
dent witnesses, the AND composition, and proving knowledge for one out of a set
of witnesses, the OR composition.

3.3.1 Conjunction Composition PAND

We define a new relation RAND (or R∧) given two relations R0 and R1, and their
respected Sigma protocols P0 and P1 as follows:

RAND = {((x0, x1), (w0, w1)) : (x0, w0) ∈ R0 ∧ (x1, w1) ∈ R1}

The steps of the protocol PAND are:

1. Prover’s first step:

a. The prover sets w := (w0, w1) and x := (x0, x1).

b. He computes a0 and a1 respectively from their protocols P0 and P1.

c. Sends to the verifier a = (a0, a1).

2. Verifier sends random t-bit string s to the prover.

3. Prover’s next step:

a. Computes z0 and z1 respectively from protocols P0 and P1.

b. Sets z := (z0, z1) and sends it to the verifier.

4. The verifier outputs VAND(x, a, s, z) := V0(x0, a0, s, z0) ∧V1(x1, a1, s, z1).

3.3.2 Disjunction Composition POR

This construction allows us to prove that given two inputs x0 and x1, from two dif-
ferent in general relations R0 and R1 we know a witness for one of them without
revealing which one is.

The OR construction is somewhat more demanding than the PAND protocol. The
provers is asked to prove one instance for each relation (or two if we use the same
relation twice). We can prove one instance, for the witness we know, but for other
instance we do not have such witness. We can use nevertheless the simulator Sim for
this relation.

We define a new relation ROR (or R∨) given two relations R0 and R1, and their
respected Sigma protocols P0 and P1 as follows:

ROR = {((x0, x1), (w0, w1)) : (x0, w0) ∈ R0 ∨ (x1, w1) ∈ R1}

In the following protocol POR we consider j to be such that wj is known to the
prover, whereas without loss of generality w1−j is assumed to be unknown to the
prover.

The steps of the protocol POR are:

1. Prover’s first step:

a. The prover sets w := (w0, w1), x := (x0, x1), and w1−j = ⊥, since it is
unknown.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

3.3. AND and OR Compositions 35

b. He computes aj from protocol Pj.

c. He computes a simulated transcript for the unknown witness by choosing
a random c1−j and sets Sim1−j(x1−j, c1−j) = (a1−j, c1−j, z1−j).

d. Sends to the verifier a = (a0, a1).

2. Verifier sends random t-bit string c to the prover.

3. Prover’s next step:

a. He sets cj = c − c1−j and computes zj according to Pj using cj (as chal-
lenge), xj, aj and w as inputs.

b. Sends to the verifier c0, z0, c1, z1.

4. The verifier:

a. Checks c = cj + c1−j.

b. Outputs VOR(x, a, s, z) := V0(x0, a0, c0, z0) ∧V1(x1, a1, c1, z1).

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

37

Chapter 4

Additional Topics on
Zero-knowledge Proofs

4.1 Composition of Zero-knowledge Proof Systems

Zero-knowledge Proofs are widely applicable as subroutines in cryptographic proto-
cols and one may require the repetition of the proof subroutine to strengthen the pro-
tocol. So, it is natural from a theoretical point of view to question whether the zero-
knowledge property is preserved under composition of zero-knowledge proofs.

There are three types of compositions we may consider, namely sequential, parallel
and concurrent. In the sequential composition we invoke polynomially many times
our protocol, where each invocation follows the termination of the previous one. In
parallel composition polynomial (in time) instances of he protocol are invoked at the
same pace. That is, all the executions are totally synchronized so that the ith message
in all instances is sent exactly or approximately at the same time.

Concurrent composition is a generalisation of the foregoing cases. Here, polyno-
mial instances of protocols are invoked at arbitrary times and procced at arbitrary pace.
This is an asynchronous rather than synchronous model of communication.

Remarks: In the composition of proof systems we assume that the honest users
follow the specified protocol description, that is, the actions of honest users in each
execution are independent of the messages they received in other executions. We
cannot assume the same for an adversary for his actions in an execution may de-
pend on messages received in other executions. In other words, we require the bare
minimum from the honest side in a protocol composition. The reason for this is that
in practice, coordination of honest users is typically difficult, keeping track of exe-
cutions is likely not achievable e.g., between employees in a big cooperation, but an
adversary can get in the extra trouble to coordinate its movements.

4.1.1 Sequential Composition

The simplified version of Zero-knowledge proofs (without auxiliary inputs) is not
closed under sequential composition [GK96]. Nonetheless, the augmented model
(see Appendix A) is closed under sequential composition. Specifically we have the
following theorem:

Theorem 4.1.1. Let P be a prover that is zero-knowledge with respect to auxiliary input on
some language L. Suppose that the last message sent by P, on input x, bears a special end-of-
proof symbol. Let Q(·) be a polynomial, and let PQ be an interactive machine that on common
input x, proceeds in Q(|x|) phases, each of them consisting of running P on common input

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

38 Chapter 4. Additional Topics on Zero-knowledge Proofs

x. Then PQ is zero-knowledge (with respect to auxiliary input) on L. Furthermore, if P is
perfect zero-knowledge (with respect to auxiliary input), then so is PQ.

4.1.2 Parallel Composition

Unfortunately, parallel composition does not enjoy the same level of freedom as in
the sequential composition theorem.

A Counter-Example for Closeness Under Parallel Repetition

We present a protocol that is zero-knowledge but lucks this property under parallel
repetition[Gol02b].

Assume P a prover who posses a secret random function f : {0, 1}2n → {0, 1}n.
Let V be a verifier and both participating in the following protocol:

The verifier is supposed to send P a binary value u ∈ {0, 1}. According to u they
execute the following cases:

• For u = 0 the prover P selects uniformly α ∈ {0, 1}n and sends it to V which
is supposed to reply with a pair of n-bit long strings (β, γ). Upon receiving
the strings P checks whether or not f (αβ) = γ. If the equality is satisfied, the
prover sends verifier a secret information.

• For u = 1 the verifier is supposed to uniformly select α ∈ {0, 1}n and sends it
to P, which selects uniformly β ∈ {0, 1}n ad replies with the pair (β, f (αβ).

The protocol is in zero-knowledge. Observe that in case u = 0, it is infeasible
for the verifier to guess a passing pair (β, γ) with respect to the message α received.
Thus, the verifier does not obtain anything from the interaction. In case u = 1, the
verifier receives a pair that is indistinguishable from any other pair of n-bit strings
which are selected uniformly by the prover, since β is selected uniformly and f (αβ)
is random.

The verifier conducts two concurrent executions of the protocol with the prover.
In the first session the verifier sends u = 0 and u = 1 in the other. When V receives
prover’s message α in the first session, sends α as its own message in the second ses-
sion, which in return obtains a pair (β, f (αβ) from prover’s execution in this second
session. Then, V sends the pair (β, f (αβ) as answer to the first session of the prover
this time, which satisfy the equality f (αβ) = γ and eventually the verifier gets the
secret information.

u=0 u=1

P α→ V dummy step

dummy step P α← V

dummy step P
(β, f (αβ)→ V

P
(β,γ)← V

P secret→ V(f (αβ) = γ)

FIGURE 4.1: Information leakage from parallel composition.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

4.1. Composition of Zero-knowledge Proof Systems 39

In figure 4.1 we can see the time scheduling the verifier must achieve to gain the
secret information. If it is needed, the verifier might send dummy messages in both
sessions to make the timing perfect.

The non-closure behaviour of parallel composition is conceptually annoying but in
practise we should not be bothered, since in general, cryptographic schemes exbibit
more complex issues under parallel than sequential compositions and so ZKPs are
not an exception to this behaviour. So, what can we state for the parallel composi-
tion about zero-knowledge? Goldreich and Krawczyk in [Gol02a] proved that under
intractability assumptions there exist constant number round zero-knowledge pro-
tocols for NP that are closed under parallel composition.

If we let ourselves to be less docile on privacy criteria we can preserve parallel com-
position.

4.1.3 Witness Indistinguishability (WI)

Witness indistinguishability is a weaker notion than zero-knowledge that suffices
for a parallel application. Loosely speaking, WI means that the view of any verifier
is “computationally independent” of the witness that is used by the honest prover
as auxiliary private input.

Here we will contain the definition of WI in auxiliary inputs asNP-witnesses to
the common input. As in the spirit of computational zero-knowledge 2.3.6, “compu-
tationally independent” will translate in the definition as computationally indistin-
guishable, that is, for every two choices of witnesses, the resulting views are compu-
tationally indistinguishable. Thus, the following definition:

Definition 4.1.1 (Witness Indistinguishability). Let (P, V), L ∈ NP and V∗ be as
in the augmented definition [add reference], and let RL be a fixed witness relation for the
language L. We say that (P, V) is witness-indistinguishable for RL if for every probabilis-
tic polynomial-time interactive machine V∗ and every two sequences W1 = {w1

x}x∈L and
W2 = {w2

x}x∈L, such that w1
x, w2

x ∈ RL(x), the following two ensembles are computation-
ally indistinguishable:

• {⟨P(w1
x), V∗(z)⟩(x)}x∈L,z∈{0,1}∗

• {⟨P(w2
x), V∗(z)⟩(x)}x∈L,z∈{0,1}∗

Note that witness indistinguishability does not imply zero-knowledge.
WI proofs offer the same robustness in parallel composition as the sequential

version. Namely we have the following theorem:

Theorem 4.1.2 (Parallel Composition for WI). Let L ∈ NP and RL be as in the WI
definition and suppose that P is probabilistic polynomial-time and (P, V) is witness indis-
tinguishable for RL. Let Q(·) be a polynomial, and let PQ denote a program that on common
input x1, . . . , xQ(n) ∈ {0, 1}n and auxiliary input w1, . . . , wQ(n) ∈ {0, 1}∗ invokes P in
parallel Q(n) times, so that in the ith copy P is invoked on common input xi and auxiliary

input wi. Then PQ is witness indistinguishable for RQ
L

def
= {(x, w) : ∀i(xi, wi) ∈ RL}, where

x = (x1, . . . , xm) and x = (w1, . . . , wm), so that m = Q(n) and |xi| = n for each i.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

40 Chapter 4. Additional Topics on Zero-knowledge Proofs

4.1.4 Concurrent Composition

Cryptographic protocols, according to their environment of application, might ex-
tend to multi-party computations. In this environments many instances of the pro-
tocol are invoked at different times and proceeded in different pace. This allows one
or more adversaries to engage in many proofs with a prover in a coordinated way
to gain information for an attack to other protocols. They can interleave messages
arbitrarily by running protocols in different times.

There are two models of concurrent composition, the purely asynchronous model
and the asynchronous model with timing. The pure asynchronous model requires no as-
sumptions about the underlying communication channels. At a first glance it seems
quite hard to construct a zero-knowledge protocol in this model and one can won-
der if such protocols even exist. This question has resolved in [RK99] under standard
intractability assumptions but regarding the round complexity of concurrent com-
positions is still an open problem.

The timing model could be stated simply as a “time control” model. In this model
the actual time of events is meaningful and we try to control it by introducing time-
driven operations. Each party holds a local clock and its rate is bounded by a global
bound. All parties know a bound on message delivery time. The time-driven opera-
tions are time-out of in-coming messages and delay of out-going messages. Within
the timing model we get the benefit of having constructions of concurrent composi-
tions [DNS98].

4.2 Commitment Schemes

Commitment schemes is an essential tool for zero-knowledge protocols mainly for
two purposes. One, they allow a verifier to specify his choices ahead of time. An
example protocol of this usage follows below. This has an additional advantage
of composing proofs in parallel without revealing additional information to the
prover[GK96]. Secondly, they allow a prover to “cut and stich” a part of a proof that
matches a choice of the verifier than sending the whole proof, which is a much more
tedious labour computationally. An example of this usage is presented in Chapter 5.

4.2.1 The 3-Coloring Problem

We introduce commitment schemes through a concrete example of a zero-knowledge
proof system concerning the 3-coloring graph problem.

A graph G is 3-colorable if its vertices can be coloured with only three colours, such that no
two vertices of the same colour are connected by an edge.

Formally, a graph G = (V, E)1 is 3-colorable if there exists a mapping ϕ : V →
{1, 2, 3} such that ϕ(u) ̸= ϕ(υ) for every u, υ ∈ E. The language of all 3-coloring
graphs is denoted with G3C.

What makes the notion of 3-coloring interesting is that, for some graphs, it can
be quite hard to find a solution of coloring or even to determine if a solution even
exists. The 3-coloring problem (decide if a graph is 3-colorable) is known to be in
the class NP-complete, thus it is natural to wonder if someone can prove in zero-
knowledge that he posses a graph that is 3-colorable.

1For a definition of a Graph look at Chapter 6

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

4.2. Commitment Schemes 41

FIGURE 4.2: An example of a 3-colored graph.

We start with the following protocol:

1. Let G be a 3-coloring graph, denoted with ϕ the 3-coloring map (this is the auxiliary
input for the prover).

2. The Prover randomly selects a permutation π over {1, 2, 3} and sets ψ(u) = π(ϕ(u)) =
π(ϕu)) for each u ∈ V.

3. The Verifier chooses a random (i, j) from E and sends this choice to the prover.

4. The Prover then reveals to the Verifier the permuted colors of vertices i and j, namely
π(ϕi) and π(ϕj).

If the colors of the revealed vertices are different the verifier is “convinced” (if
it is needed the challenge (i, j) is repeated, picking each time a new random edge).
Obviously there is a catch. The Prover, knowing the protocol, might be lying and
each time he is asked to response with the colored vertices he just sends two different
colored vertices.

Fortunately, there is a clever way to go around this problem. What we need is
a mechanism that forces the prover to commit to his choice and no longer changed
it at his will, but only he is obligated to reveal it whenever he is asked to. This is a
concept known in cryptography as a commitment scheme.

We can view the commitment as a box that inside it is placed a secret and then
it is locked. The box is given to the verifier and whenever he wishes he can get the
key from the prover, open the box and see the secret.

Utilizing a commitment scheme we can coerce the Prover, after the permutation
of the vertices, to commit the color of all vertices and send them to the Verifier. Then,
the Verifier chooses his random edge, asks for the keys of the respected vertices of
that edge, unlocks the respected boxes containing the vertices, and their colors are
revealed. The “locking” allows the verifier to accept the result since the prover can-
not tricked him in sending a false coloring of this edge. Additionally, the prover is
safe sending the locked vertices since the verifier is unable to open them without a
key and thus gaining nothing in respect to the full graph.

There are two basic properties for this “box-locking” scheme which are essential
to any commitment scheme. When a locked box (with a message in it) is given to
the verifier, the prover cannot anymore change its content. Hence, when the verifier
gets the key and unlocks the box, the revealed message is what the prover commit-
ted to originally. This property is called commitment binding. Moreover, the prover is

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

42 Chapter 4. Additional Topics on Zero-knowledge Proofs

reassured that the content of the box stays locked as long as the key is not given to
the verifier. This latter property is called commitment hiding.

4.2.2 Defining Commitment Schemes

Formal definitions of commitment schemes vary strongly in notation and in flavour.
For this thesis we present the subsequent definition (an alternative definition con-
siders bit commitments schemes). The flavour relates to the security of the binding
and hiding properties.

A commitment scheme is a triple (G, commit, verify) of algorithms which satisfy
the following:

• G is a probabilistic polynomial time algorithm called the generator. It takes
as input 1k (unary representation) and outputs a string pk, called the public
key (or public parameter) of the commitment scheme that must be authentically
transferred to all participants.

• The scheme defines for every pubic key pk a function commitpk(m) = (c, d). It
takes in a plaintext and outputs a corresponding commitment (or digest) c and a
decommitment (or opening) string d.

• The verification algorithm verify(c, d, m, pk) takes a commitment c, an open-
ing d, a message m and a key pk and outputs 1 or 0 respectively if m is the
original committed message or not2.

The security properties of commitment schemes can be unconditional, that is,
holding against computationally unbounded adversaries, or computational, that
is, polynomial time adversaries. Note that no commitment scheme is possible to
achieve unconditional (resp. computational) security for both binding and hiding.
We distinguish two flavours of security:

1. • Computational Binding: Means that unless you have “very large” com-
puting resources, then the chances of an adversary being able to change
the committed message are extremely small. A more precise formula-
tion is the following: Let A be a probabilistic polynomial time adver-
sary who takes as input the public key pk (on input 1k). For outputs c, c′

and d, d′ of increasing length k, the probability that verify(c, d, m, pk) =
verify(c′, d′, m, pk) is a negligible function in k.

• Unconditional Hiding: Means that an infinite computing power adver-
sary cannot reveal a commitment c with no additional information. That
is, the probability ensembles {commitG(1k)(m)}k∈N, {commitG(1k)(m

′)}k∈N

are equal or statistically close.

2. • Unconditional Binding: Means that an infinitely powerful adversary can-
not change a message after committing to it. That is, m is uniquely deter-
mined from commitpk(m).

• Computational Hiding: Means that an adversary who is in probabilistic
polynomial time will have a very hard time guessing what is inside a
commitment. Formally, over the uniform choice of pk ← G(1k), for two
messages m0 ̸= m1 and commitpk(m0) = (c0, d0), commitpk(m1) = (c1, d1)
the distributions of c0 and c1 are indistinguishable.

2An alternative notation\definition is verifypk(c, d) = m, thus verifypk(commitpk(m)) = m.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

4.3. Non-Interactive proofs 43

We will encounter an example of commitment scheme called Pedersen’s Com-
mitment in the next chapter.

Note that if we bake in the 3-coloring protocol a commitment scheme, we will
end up with a zero-knowledge proof.

4.3 Non-Interactive proofs

Interactive protocols compromising from just one move are called non-interactive zero
knowledge proofs also known as NIZKs. Obviously, the movement consists of the
prover sending at once all the proof and the verifier just following the verification
process.

We will present an example of non-interactivity and then we will proceed with
some examples built on previous ones.

4.3.1 Walkthrough of an Illustrated NIZK (Sudoku Protocol)

Sudoku is a puzzle consisting of a 9× 9 grid which is divided into 3× 3 sub grids.
The puzzle is given with some of its cells already filled with numbers between 1 to
9. The goal is to fill all the empty cells with numbers so that each row, each column
and each sub grid contains all the numbers from 1 to 9, as in the figure below.

We will present a protocol that allows a prover to convince a verifier that there
is a solution to the Sudoku puzzle and the prover knows it without revealing any
information about the solution.

FIGURE 4.3: An instance of a standard Sudoku problem and its solu-
tion.

This protocol utilizes physical cards, the face side of each of which has one num-
ber between 1 and 9, and all the back sides are identical with a question mark (?).

The protocol proceeds as follows:

1. The prover places three face-up cards to each cell with an existing value and
three face-down cards on each cell according to the Sudoku solution.

2. Starting with each row, the verifier picks one card randomly from each cell
to make a packet of 9 cards corresponding to the row. The same procedure
is applied for each column and each sub grid. In total, the verifier makes 27
packets and passes them to the prover.

3. The prover randomly shuffles the cards in each packet and returns them to the
verifier.

4. The verifier flips the cards over and verifies that each packet contains all the
numbers from 1 to 9.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

44 Chapter 4. Additional Topics on Zero-knowledge Proofs

The above protocol satisfies the three properties of zero knowledge protocols.
This protocol can be converting into a non-interactive one. We can imagine a “tamper-
proof” machine that picks all the 27 packets of the prover, shuffles them and gives
them back to the verifier for checking. This way the prover can generate the proof at
once and the verifier can respond at a later time. Such non-interactive proof let any
party use the machine to verify prover’s claim. Prover does not have to be present
to be challenged.

Notes: The Sudoku protocol belongs to a wider set of ZKPs also know as physical
zero-knowledge proof protocols which are restricted to everyday items for their execu-
tion. The above protocol can be extended to a generalized version with a grid of
n× n cells and sub grids of k× k cells with n = k2 [Sas+20]. Previous attempts to the
Sudoku puzzle but with an extractability error can be found here [Gra+09] (unlike
in Sasaki, Miyahara, Mizuki and Sone above, they present three different protocols
with zero extractability error).

4.3.2 From Examples to Practice

The question is if we can move from an example to practical computational prac-
tises. Once again we will choose a constructive way. Consider the zero-knowledge
definition. This implies the existence of a simulator, namely M(x), that can simu-
late a message indistinguishable from the real conversation for every x ∈ L, and for
every x /∈ L, by soundness the proof of M(x) is rejected by the verifier. Therefore
V(M(x)) = 1⇐⇒ x ∈ L, that is, we get an efficient algorithm to decide L in a single
message from the prover to the verifier. But this is a trivial case which nevertheless
gives us an indication on how to construct a non-interactive proof.

So we will run the protocol with a simulator, more accurately, with an impartial
version of the prover. At first, it seems like a dead end to use a simulator since both
the simulator and the prover stands on equal grounds. But we want the simulator
to have “verifier capabilities”, that is to choose random challenges and in this case
random points out to the random oracle model (ROM). If we have a hash function
that is really a random oracle, we can use it to issue the challenges. The prover
cannot guess its output and that is where security comes from.

In the random oracle model both the prover and the verifier have access to a hash
function modeled as a random oracle. The simulator for the non-interactive proof
can program the random oracle, so if an adversary tries to distinguish between a real
and a simulated transcript, can make calls to the oracle but the simulator chooses the
responses as well.

In this direction of a non-interactive ZKP the Fiat-Shamir heuristic [FS87] comes
in play. Their technique converts an interactive proof of knowledge to a non-interactive
proof in the random oracle model, even more it can induce a digital signature based
on it.

Below we give the programs for the non-interactive prover, the non-interactive
verifier and the simulator respectively for the non-interactive Schnorr identification
protocol (with H we denote the hash function):

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

4.3. Non-Interactive proofs 45

P(g, w, h = gw) :

r ← Zq

a← gr

e← H(g, h, a)
z← r + ew
output π = (a, e, z)

V(g, h = gw, π = (a, e, z)) :

c ?
= H(g, h, a)

gw ?
= a · he

S(g, h) :

z← Zq

e← Zq

a← gw

he

Program H(g, h, a) to be c
output (a, e, z)

Let us see the behaviour of the protocol definitions in the non-interactive case:

The Completeness is the same as in the interactive Schnorr protocol. The Proof of
knowledge is similar to the original extractor, but now when rewinding the prover,
the extractor changes the value of the random oracle to obtain two different tran-
scripts with the same commitment. Zero-knowledge proceeds the same only that the
challenge is not a message from the verifier, but rather a value of the hash function.
The simulator programs the random oracle to have the value e it has chosen at the
point (g, h, a).

Comments: On one hand, the Fiat-Shamir heuristic is proved to be secure against
chosen attack messages [PS96], and this in case random oracles exist. On the con-
trary, if random oracles do not exist, the Fiat-Shamir heuristic has been proven inse-
cure [GK03]. This is one of the many reasons some researchers have a strong distrust
against the ROM.

Random oracles are used as an ideal version of cryptographic hash functions
in schemes where strong randomness assumptions are needed. Such schemes are
proved secure since they require by an attacker an unintended behaviour from the
oracle (which does not happen since it is ideal) or to solve some mathematical prob-
lem believed to be hard in order to break it.

There are two main problems raised here. The first is assuming that we have
access to ideal hash functions, we can emulate a random unpredictable choice of
the verifier. Since the hash function is deterministic, we cannot change the value
without changing the previous interactions. So, if a prover is able to cheat with a
certain probability, then he can just try different commitments if he does not like the
result of the hash function.

The other one turns out to be that random oracles are very difficult to build.
The best candidates we have are hash functions and the most common of them are
SHA-256 and SHA-512. They suffer from the “length extension attack”. Based on
H(string1) and the length of string1, this attack allows to compute a valid hash for
string1|string2, where |means the concatenation of string1 and string2, where string2
is a string produced by us. This proves that SHA-256 is not an ideal random oracle.
Yet, it preserves the most important property for our work, its resistance to colli-
sions or preimages. Also, it is proven that there are secure schemes in the random
oracle model for which any implementation by cryptographic hash functions results
in insecure schemes [CGH00].

In general, proofs in the ROM are fine, but are never complete enough to cover
a practical implementation. An attacker could make use of some interesting prop-
erty of the hash function to break the protocol, which justify the mistrust of some
researchers in using them. So we rely our hopes of security in that parts of the hash
functions that do not actual impact security.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

46 Chapter 4. Additional Topics on Zero-knowledge Proofs

If the random oracle model seems inadequate, the alternative is the Common Ref-
erence String (CRS) model. The CRS model is a public string that was generated
through a trusted setup in which all parties have access to the same string taken
from some distribution. The common reference string may have an arbitrary dis-
tribution, it is a generalization of the Common Random String model, in which the
distribution of bit strings is uniform. The main difference between ROM and CRS
is that the later does not rely on heuristic belief system that the real protocol uses a
standard hash function is secure.

In [BFM88] it is shown the first result of a public key cryptosystem using a
common reference string shared between the prover and the verifier sufficiently to
achieve zero-knowledge without requiring interaction. In [Blu+91] theNP-language
of satisfiability is proved to posses non-interactive zero-knowledge proofs using
short random strings shared beforehand between prover and verifier.

The CRS model has a main disadvantage. In order to have a string we need to
generate it under a trusted setup. This setup is often a multi-party computation (MPC)
protocol, a method for parties to jointly compute a function over their inputs while
keeping those inputs private . As long as we believe that not all the participants
colluded, then we can trust the system from that point on. Zcash, a cryptocurrency
which provide enhanced privacy for its users, is a well known example for using an
MPC protocol [Zca19].

4.4 NP Problems and ZKP Results

Let us consider again the 3-coloring graph ZKP protocol. The frequent occurrence of
this protocol, for anyone studying ZKPs, is due to its importance as a link between
the NP class and Zero-knowledge proofs. Specifically, the NP-complete problem
of 3-coloring can be used to present a zero-knowledge proof system for every lan-
guage in NP , this is probably the most celebrated result of Zero-knowledge Proofs
theory proved by Goldreich, Micali and Wigderson in [GMW91].

Let us recall first some conventions and facts from computational complexity the-
ory to build the necessary background before presenting this famous result.

Definition 4.4.1 (NP Class). A language L is inNP if there exists a binary relation RL ⊆
{0, 1}∗ × {0, 1}∗ and a polynomial p(·) such that RL can be recognized in (deterministic)
polynomial time, and x ∈ L if and only if there exist a y such that |y| ≤ p(|x|) and
(x, y) ∈ RL. Such y is called a witness of x in L.

The NP class can simply stated as the collection of all problems for which is
difficult to find a solution but once given a solution we can efficiently test its validity.

Definition 4.4.2 (Polynomial Reduction). We say that the language (problem)A is poly-
nomial time reducible to language (problem) B if there exists an algorithm for deciding A
in a time that would be polynomial if we could decide arbitrary instances of language B at
unit cost.

In polynomial time reduction we transform (reduce) one problem to a different
problem that we know how to solve to show an algorithm that solves the former one
or to show that we cannot find algorithms for some problems.

Definition 4.4.3 (NP-Complete Problems). A language (problem) is NP-complete if
it is in NP and every language in NP is polynomially reducible to it.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

4.4. NP Problems and ZKP Results 47

An NP-complete problem A means that, since it is included in NP class, it can
be used to simulate every other problem in it.

With the above definitions we can sketch now the original result of [GMW91]. Let x
be a string for which the prover wants to prove that is in L, where L is in NP . So, x
will be given as a common input to both prover and verifier. Since the prover knows
that x ∈ L he uses a corresponding witness w as auxiliary input. We know that L
is polynomial reducible (via Karp’s reduction [Kar72]) to G3C and x to a graph G
in G3C. Additionally, this reduction has the property that reduces the witness w in
polynomial time to a witness w′ for 3-colorability of G. The verifier upon receiving
x reduces it to the same G (via the same reduction). Then, both the parties invoke a
zero-knowledge proof with the common input G while the prover enters the proof
with auxiliary input w′.

The above result is succeeded with the help of commitment schemes which is
a form of secure encryption function. Commitments schemes are implemented by
using any one-way function, but the existence of such functions is still an open con-
jecture. Thus, the (GMW) theorem assumes the existence of one-way function, that
is, it is satisfied if and only if there exist one-way functions.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

49

Chapter 5

Zero-knowledge Databases

In this chapter we introduce Zero-knowledge Databases, an application of Zero-
knowledge methods in Databases. That is, for a database D, the verifier queries
an x and only learns the corresponding database value D(x) in a provable zero-
knowledge way.

5.1 Key-value Databases

Key value databases is a special and simpler type of databases where the data are
stored in the form “key-value”, see figure below, and are optimized to read and
write data of this form, which justifies also the name key value stores. A single key,
or several keys are used to fetch the data that are associated with them. The values
of these data can be of scalar data types like numbers and strings or more complex
objects such as lists, JSON or even a key-value pair. Operations and queries in a key
value database are based on keys to insert (or update or delete) values or to retrieve
values.

Key value stores are present in most programming paradigms as dictionaries
(or arrays or maps), but they are stored in a persistent way. They are managed
by Database Management Systems (DBMS) and in comparison with other types of
databases they allow horizontal scaling in greater magnitudes. They use compact,
efficient index structures to be able to quickly and reliably locate a value by its key,
making them ideal for systems that need to be able to find and retrieve data in con-
stant time.

Zero-knowledge Databases are applied to key-value databases through the notion
of Elementary Databases (EDBs). More precisely, a key value database can induce
a Zero-knowledge Elementary Database (ZK-EDBs) cryptographic scheme that al-
lows a prover to commit to an EDB D so as to be able to prove statements such as “x
belongs in D and the value of x is y (D(x) = y)”.

The construction we will present here is due to Micali, Rabin and Kilian in [MRK03].
and is based on the discrete logarithm assumption (look Chapter 3).

5.2 Building Blocks

We will present natural numbers in their binary expansion whenever are given as an
input to an algorithm.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

50 Chapter 5. Zero-knowledge Databases

FIGURE 5.1: An example of a key-value pair.

5.2.1 Elementary Databases

By an elementary database we mean a partial1 function D mapping a (sub)set of keys
into values. Obviously, an EDB has only an elementary functionality, the operation
of querying D with a key x and obtain in response the only value D(x) associated
with x, either the symbol ⊥ if no value is associated with x.

More precisely, an EDB D is a function D : {0, 1}∗ → {0, 1}∗, that is D ⊆
{0, 1}∗ × {0, 1}∗. D being a function means that if (x, υ1) ∈ D and (x, υ2) ∈ D,
then υ1 = υ2, not two pairs have equal first entries but different second entries.

We denote with [D] the support of D, that is, the set of finite binary strings x for
which, there exists an υ ∈ {0, 1}∗ such that (x, υ) ∈ D. Some keys will not assign to
any value, for these xs not in the support of D we write D(x) = ⊥2.

5.2.2 Zero-knowledge EDBs (ZK-EDBs)

The construction of zero-knowledge elementary databases starts with the owner of
the database D who “pins down” the database in the form of a commitment but leaks
nothing, not even its size, and publishes it. Then, the owner acts as a prover. On
querying x, the prover provides proof of D(x) = y or that x lies outside D, while
still not revealing any further information about the database.

ZK-EDBs enjoy completeness, soundness and zero-knowledge. Here soundness re-
quires the infeasibility, in polynomial-time, of proving two distinct values υ1, υ2 for

1A function which is not defined for some inputs of the right type, that is, for some of a domain.
2Actually, an EDB is a function D : {0, 1}∗ → {0, 1}∗ ∪ {⊥} and [D] = D−1({0, 1}∗).

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

5.2. Building Blocks 51

any given x or the infeasibility D(x) = y and D(x) = ⊥. Zero-knowledge is shown
by a simulator that produces in polynomial-time a transcript (of a sequence of proofs
for the value of D on querying strings x) distributed identically to that of the real
prover knowing only D(x) = y or D(x) = ⊥.

5.2.3 Pedersen’s Commitment Scheme

We form a public quadruple (p, q, g, h), where p and q are prime, q|p− 1 and g, h are
generators for G, the cyclic subgroup of Z∗p of order q. All operations are performed
modulo p.

1. The committer (or sender) decides (or is given) a secret message m taken in
some public message space with at least two elements.

2. Decides a random r ∈ Z∗q .

3. Produces a commitment Ped_Commit((p, q, g, h), m) = (c, r), where c = gmhr

and a verification algorithm Ped_Verify.

4. Makes c public.

5. At a later time reveals m and r.

6. The verifier (or receiver) checks if c = gmhr, Ped_Verify((p, q, g, h), c, m, r) =
accept; else reject.

If someone is able to find in polynomial-time the same commitment to two dif-
ferent messages, implies the ability to compute efficiently the discrete logarithm of
h in base g.

Note: The Pedersen commitment scheme can induce collision intractable hash
functions H from {0, 1}∗ to {0, 1}k, for some k.

5.2.4 Binary Trees

We denote by Tk to be the complete binary tree with 2k leaves. The level of a vertex is
defined as the number of edges along the unique path between it and the root node.
We label each of the 2i nodes of Tk of level i with an i-bit string such that the vertex
label u has children labeled u0 and u1, the root node is labeled e.

e

0

00

000 001

01

010 011

1

10

100 101

11

110 111

FIGURE 5.2: An example of a T3 complete labeled binary tree.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

52 Chapter 5. Zero-knowledge Databases

5.3 Construction

We start with a public random reference string σ which is polynomially long in k, the
security parameter controlling the probability of error or successful cheating. From
σ we can “extract” a quadruple (p, q, g, h), thus inducing Pedersen’s commitment
scheme and from this to induce a collision-free hash function H : {0, 1}∗ → {0, 1}k.
The mathematical nature of this extraction (commitment scheme plus hash func-
tion) can be omitted, what matters the most is that the extraction step is achieved in
polynomial-time.

Then, we consider the complete binary tree Tk. In this tree we will place the database
D as a tree T as follows:

1. We form the set H[D], this is the set of hashes of all keys x in our database
which have a value y ̸= ⊥, that is, H(x) ∈ H[D] with D(x) = y. We put the
elements of H[D] to the respective nodes of the tree.

e

0

00

H(x1) 001

01

H(x2) 011

1

10

100 101

11

110 H(x3)

FIGURE 5.3: Nodes of H[D].

2. We construct the subtree T′ = Tree(H[D]). This is the union of all the paths
from the root to the leaves in H[D].

e

0

00

H(x1) 001

01

H(x2) 011

1

10

100 101

11

110 H(x3)

FIGURE 5.4: The light shaded vertices compromise the subtree T′.

3. We obtain T by adding to T′ all the nodes of Tk whose parents are in T′.

In the tree Tk we call a node full if it is the ancestor of at least one leaf in T′; else
we call it empty.

Next, we will associate and store various quantities in T’s nodes. We start with T’s
leaves. We associate a value mx as follows: if x ∈ H[D], that is, D(x) = y for some
y ∈ {0, 1}∗, we associate the leaf H(x) with mx = H(y) = H(D(x)); else, mx = 0.
We procced to the nodes of T.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

5.3. Construction 53

e

0

00

H(x1) 001

01

H(x2) 011

1

10

100 101

11

110 H(x3)

FIGURE 5.5: The light and darkly shaded vertices together compro-
mise the subtree T.

e

0

00

H(x1)

H(D(x1))

001

0

01

H(x2)

H(D(x2))

011

0

1

10 0 11

110

0

H(x3)

H(D(x3))

FIGURE 5.6: Subtree T with associated values mx.

We procced to the nodes u of T. We associate a random exponent eu of G∗q (Z∗q)
and store in u the value hu as follows: if u ∈ T′, then hu = heu ; else, hu = geu .

Note that the leaves of T are populated with mx values as well as hu values.

5.3.1 Merkle Tree (Committing steps)

We will store in every leaf u of T a Pedersen commitment cu as follows: We first asso-
ciate a random element ru in Z∗q and then store in u the value cu = gmu hru

u (mod p).
We continue by populating the internal nodes respectively with mu values and

commitments cu in a recursive way starting with the leaves and moving upwards.

1. If an internal node u whose left child u0 and right child u1 (note that ev-
ery internal node has a left and right child since we added in T′ all nodes
whose parent is in it) are already committed, we store in u the value mu =
H(cu0, hu0, cu1, hu1).

2. Then, we continue to the commitment of u at the same fashion as we did with
the leaves, that is, cu = gmu hru

u .

We end up with the commitment cD to the database D which consist of the com-
mitment ce and the generator he stored in the root.

Remarks: When the quadruple (p, q, g, h) is formed, the discrete logarithm of h in
base g modulo p, logg h, is not known to anyone, including the one committing Ped-
ersen’s scheme. Thus, the committer does not know logg hu for any full node u but

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

54 Chapter 5. Zero-knowledge Databases

e
hee

0

he0

00

he00

H(x1)

h
eH(D(x1))

001

ge001

01

he01

H(x2)

h
eH(D(x2))

011

ge011

1

he1

10

ge10

11

he11

110

ge110

H(x3)

h
eH(D(x3))

FIGURE 5.7: Subtree T with associated values hu.

ce, he

c0, h0

c00, h00

cH(x1)

h
eH(D(x1))

c001, h001

c01, h01

cH(x2)

h
eH(D(x2))

c011, h011

c1, h1

c10, h10 c11, h11

c110, h110 cH(x3)

h
eH(D(x3))

FIGURE 5.8: Merkle Tree of T.

does know it for empty nodes u (hu = geu). For the same reason full leaves have gen-
uine commitments cu, that is, the committer cannot decommit cu to any string other
than mu. On the contrary, empty leaves have fake commitments, the committer can
decommit cu to any string he wishes (logg hu = logg geu).

We named the resulted tree 5.8 a Merkle Tree because it satisfies a Merkle-tree
like property, that is, every internal node is labeled with the hash of its child nodes’
hashes. This allows an efficient and secure verification that a leaf is part of the tree
by computing the sequence of values stored in the siblings of the nodes along the
path from the root to the leaf.

5.4 Proving Database Values

There are different proof steps for D(x) = y and D(x) = ⊥. We start with the case
D(x) = y and we later move on to the later case.

5.4.1 Proof Construction of D(x) = y

Let PH(x) be the path from the leaf H(x) to the root. The prover constructs a proof
πx which for every node u along the path PH(x) consists of:

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

5.4. Proving Database Values 55

• The values mu, eu, hu, ru and cu except for u = e,

• The values cυ and hυ for u’s sibling υ.

The sequence of associated and stored values in the siblings of the nodes along
the path PH(x) is called the authentication path of H(x).

ce, he

c0, h0

c00, h00

cH(x1)

h
eH(D(x1))

c001, h001

c01, h01

c1, h1

FIGURE 5.9: Authentication path of H(x).

5.4.2 Proof Verification of D(x) = y

The verifier:

• Checks mH(x) = H(y) for the leaf of PH(x),

• Checks recursively, for every other node of PH(x), that mu = H(cu0, hu0, cu1, hu1),

• Check for every u in PH(x) that hu = heu and cu = gmu hru
u (mod p),

• Verifies that cD consists of ce, he.

ce, he

c0, h0

c00, h00

cH(x1)

h
eH(D(x1))

c001, h001

c01, h01

c1, h1

FIGURE 5.10: The recursive verification of proof πx.

Remember that H is collision resistance, meaning that a malicious prover cannot
find two distinct strings with the same hash. Additionally, he cannot decommit any
of the values cu since Pedersen’s commitment is computationally binding. Thus, the
generated proof πx is convincing.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

56 Chapter 5. Zero-knowledge Databases

5.4.3 The case D(x) = ⊥
We first compute H(x) and then, in the tree Tk, we move from the root down towards
the leaf H(x) until we find the last node u that also belongs to the subtree T. In our
minimal example, see figure 5.5, this node might be u = 10 in case of H(x) = 100
(or 101) or u is the same leaf H(x) in the case u = 110 (in any case, since u is the last
node belonging in T we have that mu = 0).

There is a catch here, if we follow the same procedure of generating a proof for
x that D(x) = ⊥ would result decommitting cu to 0, which in return would reveal
additional knowledge: under u we fall outside D’s support, that is, we would give
away the size (or some of it) of our database. In figure 5.11 imagine that node 6 is
the one with D(6) = ⊥, node 4 is our u and H(6) falls on node 20 associated with 0.
Then, a verifier will learn that “under” and “left” from u there are at most 5 hashes
H(x) with valid values y giving away the size of [D]. We have to find a way and
pass smoothly u into our tree T.

0

1

3

7

15 16

8

17 18

4

9

19 20

10

21

2

5

11 12

6

13 14

FIGURE 5.11: Anti-pradigm of u betraying D’s support.

We form a subtree Tu rooted at u which consists of the subpath from u to H(x)
along with the siblings of the nodes in this subpath (except the root u). Our goal is
to weld Tu into the old T.

First, we will act on the tree Tu at the same fashion as with T on committing. In
each new node v of Tu we choose random ev in Z∗q and we set hv = gev modulo p. For
each leaf v in Tu we choose random rv in Z∗q and we set mv = 0 and cv = gmv hrv

v =

g0hrv
v modulo p. As before, we move recursively from bottom up to the root of Tu

filing the internal nodes with the rest of the values mv and cv.
Observe that for the root u, we know the discrete logarithm of hu in base g. So,

we can decommit cu to the new value mu by choosing a new ru such that cu = gmu hru
u

(mod p), thus, “welding” Tu into T.
The proof π′x of D(x) = ⊥ is the same as in the case D(x) = y with the difference

of producing only x. The verification moves in the same fashion but this time we
check mH(x) = 0.

5.4.4 Dealing with Collisions

We have almost done with the proof cases, but we should beware for collision pit-
falls. Let (x1, y1), (x2, y2) ∈ D. If H(x1) ̸= H(x2), then we can have two distinct
proofs πx1 and πx2 for D(x1) = y1 and D(x2) = y2 respectively. But what would
happened if the two hashes fall under the same leaf, that is H(x1) = H(x2) = x?

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

5.5. On Soundness and Zero-knowledge 57

One solution is to degrade our zero-knowledge and provide only one proof, ei-
ther mx = H(y1) or mx = H(y2). If we desire to keep the zero- knowledge perfect
we can choose longer keys (avoiding collisions) to address the leaves. Thus, store
H(y1) in leaf P(x1), where P(·) adds a prefix to x. This way, we win in security but
losing in efficiency.

We are fortunate enough that H and commit are correlated. The commitment
scheme is trapdoor, that is, with an additional information, it allows us to over-
come the binding property and to open a commitment ambiguously. The correlation
here is that if an H-collision is found, we can decommit arbitrarily strings generated
by commit. Furthermore, the discrete logarithm assumption provides very efficient
constructs of such “hash-commitment” pairs.

So, assume that we have the above collision H(x1) = H(x2) = x. Without loss of
generality lets process first (x1, y1), compute mx = H(y1) and produce the proof πx
for D(x1) = y1. For D(x2) = y2 we go on with the same proof πx except we follow
different way for the values mx and rx. We use the trapdoor to compute r′x for cx to
decommit to H(y2) and we set mx = H(y2) and rx = r′x.

5.5 On Soundness and Zero-knowledge

We argued that for soundness is infeasible for a dishonest prover to provide for two
distinct values u ̸= u′ proofs πx, πx′ with the same key x or to find both a proof of
D(x) = y and D(x) = ⊥.

Each proof πx consists of values mu, hu, ru, cu and eu and sibling values cv and hv.
Let u be the honest value and u′ the cheating value. Note that whatever cheating
strategy the prover uses he must discipline to the root commitment cD to achieve
his success. Thus, in path PH(x) along the way from the cheating leaf to the root,
the values might be different from the “honest” ones but there is a node v (this can
even be the leaf node) for which (and the ones above it) cv = cv′ and hv = hv′ and
for v’s child v0 (resp. u1) in the path PH(x) we have (cv0, hv0) ̸= (c′v0, h′v0). Then,
one case is mv = mv′ which means the prover has found a collision for H because
mv = H(cv0, hv0, cv1, hv1) and mv′ = H(c′v0, h′v0, c′v1, h′v1). The other possible case
is mv ̸= mv′ . This means that the prover has included in the proof the value of
logg hv. This, per se, may not be hard to find but the value logh hv is also included in
the proof, and given the former value is easy to compute logg h, which violates the
discrete logarithm assumption (since h is not chosen by the prover). Eventually, the
cheating prover has to compute something infeasible thus the soundness is satisfied.

Note that we can construct syntactically identical proofs for queries on D(x) = y
or queries on D(x) = ⊥ inversely, that is, from the root commitment down to the
leaves. We start with a value PK′ as our database commitment and we use trapdoor
commitment to generate nodes from the top to the leaves. For x ∈ D we can cre-
ate real commitments to the verifier and for x /∈ D we can tease commitments to
decommit in any values we want.

5.6 The Necessity for Zero-knowledge Databases

Security in ZK-EDBs refers to belonging, that is, provides privacy of “membership”
information. Zero knowledge databases can be used as a service to end users in
such a way that no one except the user himself can access the data, not even the

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

58 Chapter 5. Zero-knowledge Databases

hosting provider or the database administrator3. For example, a user of a database
(x ∈ D) is the only one able to see his record D[x]. Moreover, it is impossible to
prove portions of a record D[x], meaning that we can separate information in the
record, like financial and medical information.

A zero-knowledge database decouples the provider from the data stored in the
server. The provider neither can release the data nor can be held responsible for the
content is stored.

We can additionally increase security by encrypted the data in client’s side be-
fore sent to the database as a ciphertext. Hence, the data as a ciphertext is free of
indexing and calculations.

Disadvantages of ZK databases: When the client has to encrypt all the data it means
that all the processing has to be done client- side. As the client server acts only as
storage, useful techniques such as de-duplication and compression are not applica-
ble to encrypted data. Even with encryption some meta-data could easily leaked,
such as file names, file types and access permissions.

5.7 Recent Advances in ZK-EDBs

Pedersen’s commitments can be viewed as an instance of a more general commit-
ment construction named Mercurial Commitments. This result was proved be Chase
et al. in [Cha+05]. Mercurial Commitments are two-tiered: they allow a partial open-
ing and a true opening. A sender can create a commitment that can be “teased” to
any value of his choice. As an example think the proof case of D(x) = ⊥. There, we
weld the new subtree Tu in T by “teasing” the cu in the value mu with a suitable ru.
On the contrary, a true opening is binding in the traditional sense, the sender cannot
come up with two different opening values for the same commitment.

Good news for efficiency as a “Mercurial” database requires O(k · |D|) commit-
ments. A proof has length O(k2) and the verifier needs only O(k) mercurial decom-
mitments to accept proof’s validity.

Mercurial Commitments spurred further development in ZK-EDBs. One is the Up-
datable Zero-knowledge Databases [Lis05].

So far a ZK-EDB is “static”, once committed one cannot arbitrarily update it. An
updatable ZK database allows the update of proofs while maintaining the secrecy
of the respected update. For example, a database of people under investigation for
criminal activities would be a critical part of a system.

A simple solution would be to commit to a new version of the updatable database
from scratch. This would be a tiresome procedure in running time and the holder
of the database would have to reissue new proofs for the rest of the keys at an addi-
tional expense.

Mercurial Commitments offer an efficient way of updating for both the database
owner and the user. More precisely, if an owner wants to update n pairs simultane-
ously he will have to update O(n(k− log n)k nodes in time O(nk2).

In 2019 Libert et al. in [Lib+19] proved richer commitments using Mercurial com-
mitments. ZK databases enable range queries over keys and values. Specifically,
we allow queries of the form “Give me all database records (x, y) ∈ D whose keys
x lie within the range [ax, bx]” or range queries over values “Send me all records

3See this Github.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

https://gist.github.com/thiloplanz/e1136a04b26c138c8225

5.7. Recent Advances in ZK-EDBs 59

(x, y) ∈ D with values y in the interval [ay, by]” or analogously of D(x) = ⊥ we can
prove statements like “No key x is assigned the value y” or “y occurs in D with keys
in D−1(y)”. We can, in general, query records in rectangles [ax, bx]× [ay, by].

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

61

Chapter 6

Zero-knowledge Graph Databases

Motivated from elementary databases we will research in this chapter the zero-
knowledge aspect of graph databases. We start with a presentation of the Graph
database notion and the necessity of a zero-knowledge construction. Then, we give
basic preliminaries and definitions, and move on in a general construction applica-
ble to any graph database.

6.1 Graph Databases

It turns out that elementary databases handle elements poorly. There are collections
of data in which the data itself is of lower priority than the relationships between
these data. The data in this case are represented with nodes and edges forming a
graph structure where the edges portray the relationship between nodes.

FIGURE 6.1: An example of a Graph Database.

As an example we can think of a social network graph. We can visualize people
as nodes and the edges between them as the “friendship” attribute. The nodes can
even be businesses, records or documents. The edges can be directed or undirected.
Undirected edges are simpler and have a unique meaning while in directed graphs
edges have different meaning based on their direction. The “friendship” relationship
is an example of undirected edges. As a directed graph we can think of a set of nodes
where each node is an algorithm or a program. An edge from an algorithm to a

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

62 Chapter 6. Zero-knowledge Graph Databases

program is the relationship of the algorithm included to the program and an inverse
edge is a feedback relation of this program back to the algorithm.

6.1.1 Comparison with Relational Databases

Relational databases are composed strictly in tables to offer flexible row-by-row ac-
cess. This means that the data are recorded in a predefined model, thus operating
much faster on large number of records. This schema though comes with a cost, re-
lational databases are not inherently equipped with a concept of relationship. One
example to form complex relations between tables is join operations with several
characteristics spanning over (or across) multiple tables. Another is using a foreign
key to model a relationship which means spending an additional table as a relation-
ship table. Since the database lucks the concept of relation, this table is stored as user
data and thus favored explicitly to the user’s motivation and authority.

In a nutshell, relational databases treat data as sets - set oriented databases.
Meaning that when expressing relations, the query latency increases rapidly to-
gether with the memory.

On the contrary, graph databases are hardwired with the notion of relationship
between data. We can create a relation for data on the spot without the bulk of
foreign keys or complex logics. Relationships are stored consistently in the database
bypassing the need of additional tables, thus data and relations are obtained in one
operation. Additionally, the absent of special tables with keys makes the transition
from one entity to the next and so on more straightforward, in constant time.

We can say that graph databases are more path oriented. The query latency cor-
responds directly to the graph size we query.

6.1.2 The Necessity for Zero-knowledge Graph Databases

Relations exist in all areas where a network is present, from simple chat applications,
social networks and remote collaborations to businesses and even the banking sector.
In social networks relations are first class citizens which address new challenges in
security in contrast with the security issues concerning only data.

One such challenge is to hide deep hierarchies. In a remote collaboration for
software development, decisions of sensitive parts of the development are left on
administrators and thus a malicious adversary is possible to target them in order to
steal part of the code before its final release. In this situation we wish to hide this
higher level relations where most nodes end up. Moreover, distinct groups of devel-
opers specialise in certain parts of the code. These groups form inner relationships
in the whole network, yet another sensitive part that we wish to keep hidden.

In social networks one might be connected with a user not directly but through a
chain of relationships no matter how distant the relations might be. Most users want
to have the option of hiding not only the direct connections but distant connections
as well.

6.2 Towards Zero-knowledge Graphs

In elementary databases we were interested in securing individual data with the
form of a commitment. In graph databases we are interested mainly in securing
individual relations between data. First, let us define the queries in a graph database.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

6.2. Towards Zero-knowledge Graphs 63

6.2.1 Querying Graph Databases

A query on a graph database can be of the form “does x relates to y” or “for which
y (maybe more than one y), x relates to” or “what is the shortest path between x
and y”. Except the first query, the other ones might be more complicated to tackle
since they deal with more than one relations. So, we will constrain ourselves for the
moment to queries of the form “x relates to y”.

6.2.2 Directed and Undirected Graphs

We will examine separately directed and undirected graph databases. We will not
cover mixed graphs (part of them directed and part of them undirected). We will
start with undirected graphs and move on to directed ones.

In all approaches we try to give a general construction of securing a graph database
and then we will move on to special cases. Furthermore, as in elementary databases
we cared for the most trivial database (key-value form), in graph databases we will
care for only one relation between nodes (either this is directed or undirected rela-
tion).

6.2.3 Preliminaries

Undirected Graph
An undirected graph G is defined as an ordered pair G = (V, E), where V is the
set of vertices and E is a set of unordered pairs of vertices, E ⊆ {{x, y} : x, y ∈
V and x ̸= y}.

A

B C

FIGURE 6.2: An uniderected graph example.

Directed Graph
The directed graph is defined with the same terms as undirected ones with the dis-
tinction of its edges being oriented, that is, E ⊆ {(x, y) : x, y ∈ V2 and x ̸= y}.

A

B C

FIGURE 6.3: A directed graph example.

We call the elements of V vertices or nodes. The pairs of E are called edges or
links in case of undirected graph and directed edges or directed links in the case of

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

64 Chapter 6. Zero-knowledge Graph Databases

directed graph. When two vertices x, y are connected with an edge (resp. directed
edge), they are called adjacent.

Graph homomorphism
A homomorphism f between two graphs G = (VG, EG) and H = (VH, EH) is an
edge-preserving mapping from G’s vertices to H’s vertices, that is, the mapping is a
function from VG to VH such that if {u, v} ∈ EG, then { f (u), f (v)} ∈ EH, for all edges
{u, v} in G. If such f exists we say that the graphs are homomorphic and we write
f : G → H. If f is a bijection and the inverse map is also a graph homomorphism,
then it is called graph isomorphism.

In other words, graph homomorphism is a structure-preserving map.
In the directed case the definition is analogous (if (u, v) ∈ EG, then (f (u), f (v)) ∈

EH).

Matching of a Graph
Let G = (V, E) be an undirected graph. A matching M is a subset of G’s edges such
that every two edges have no common vertex.

If a path starts and ends with unmatched vertices, and alternates between matched
and unmatched edges (between E \M and M), it is called an augmented path.

6.3 Construction - Undirected Case

Our goal is more or less in the same spirit of ZK-EDBs, we try to build a commitment
such that we can answer queries of the form “x relates to y” or “x does not relate to
y” using only the “edge” characteristic and leak nothing else, not even the size of the
graph (its number of nodes and relations).

One solution to secure a graph would be to write the graph in an elementary
database notation and transform the problem to an elementary database. This is
impossible since databases do not behave as functions, there are many-to-many re-
lations. In figure 6.2 we have that B relates to A and A relates to C, so we could
write in database style that D(B) = A and D(A) = C. However, we also have that
D(B) = C which crumbles the D function property and thus we cannot commit in
an elementary database fashion.

A different solution would be to use the adjacent matrix of the graph. The adjacent
matrix of a graph is a square matrix A where each ij-element is 1 when the vertices
i, j are adjacent, otherwise is 0. The adjacent matrix of the above undirected graph
is:

A =

 0 1 1
1 0 1
1 1 0

Now we can turn this matrix to an elementary database notation as follows: We

associate to each ij-element its value in the matrix, that is, D(ij-element) = 1 or 0
respectively for adjacent vertices i, j or non-adjacent vertices i, j. We are able to build
a commitment for D but now one can query for relations among vertices that are
actually “outside” of the graph. One could query if there exists a relation for e.g.,
the vertices i = 4, j = 7. The answer will be negative, but since it is known that D
is actually shaped by a square matrix, one could find after more queries with high
probability the size of the matrix, thus the number of nodes.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

6.3. Construction - Undirected Case 65

0

1

2

3 4

5

6

FIGURE 6.4: Graph K7.

In general, we try to avert from elementary database constructions. Even if an
EDB modification of a graph induces a zero-knowledge result this is merely a feasi-
bility result. We aim our construction, as much possible, to be in graph terms rather
in EDB terms to mirror the graph structure. In practice, such resemblance issues a
suitable implementation and faster proofs in a database which includes explicitly
the notion of relationship.

6.3.1 Complete Graphs

The first step in our construction is to obscure the graph structure of our database.
That is, we want to place our graph in a “wider” graph structure in such way that
the relationships between nodes are blurred in the same way someone places keys
of an EDB to the leaves of a binary tree and hides the cardinality and the values of
the database.

A candidate for a graph structure that can act as a substrate to carry our graph
is a complete graph. A graph where each distinct pair of vertices is connected with
a unique edge is called a completed graph. A complete graph with n vertices is
denoted as Kn. The next step after we place our database on the complete graph is
to commit in an upward fashion the graph. Before we explain what we mean by
“commit” in a graph database we will explore more what we mean when we say
“upward”.

We need to “contract” the graph in a smaller one of the same characteristics, that
is, to contract it to a new complete graph with fewer edges. There are various ways
we can form a new graph H given a graph G. These are by removing edges and
vertices and by contracting edges.

Removing edges and vertices is self-explanatory. Edge contraction is an opera-
tion of merging two adjacent vertices into one.

Definition 6.3.1 (Edge Contraction). Let G = (V, E) be an undirected graph and e =
{u, v} an edge we wish to contract. Let G′ = (V ′, E′) be the graph such that V ′ =
(V\{u, v}) ∪ {w} and E′ = E\{e}. Edge contraction is a function f mapping V ′ to
itself such that for every vertex z in V, its image vertex z′ = f (z) in V ′ is incident to an
edge e′ in E′ if and only if, the corresponding edge, e in E is incident to z in G.

The above definition is analogous for directed graphs. Note that after an edge
contraction we might end up with a multigraph, a graph that has multiple edges

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

66 Chapter 6. Zero-knowledge Graph Databases

FIGURE 6.5: An edge contraction from K7 to K5.

c(A)

c(B) c(C)

that join the same two vertices. With an “edge remove” operation we scratch away
one of the edges to satisfy our undirected graph definition.

6.3.2 Edge Commitment Schemes

We introduce here a form of edge committing scheme. Informally, by edge committing
we mean a procedure of opaquing the real position of an edge in the graph as we do
with data when hiding their real value until open in some time later. Committing
data is easy since data are of scalar quantity, they can be represented by a single
number (or by a single binary string), whereas edges are unordered pairs {u, v}
(resp. ordered pairs (u, v) for the directed case). These pairs are made up by two
numbers (or binary strings), thus we could just commit the vertices of an edge but
this creates a pathological situation.

Let c(·) be a commitment algorithm. If we try to commit the simple graph 6.2
we have the following: The edges {A, B}, {B, C}, {A, C} will commit to c({A, B}),
c({B, C}), c({A, C}):={c(A), c(B)}, {c(B), c(C)}, {c(A), c(C)}. This way of commit-
ting does not betray where each vertex A, B, C is coming from but keeps unaltered
the structure of the graph, we still end up with a graph similar to the original.

To treat this situation we can just “break” the joints of the graph. Breaking the
joints means to split each node into two new nodes, where the new nodes are ad-
jacent to the vertices the former nodes were and form a new edge between them.
Breaking blurs the edges position so we have to keep track of the original edges
when we need to go backwards and find them on our graph. This construction
of a new graph is troublesome and computationally expensive to track the original

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

6.3. Construction - Undirected Case 67

edges. There is another way to commit this “backwards” movement and open the
original position of the edges.

We can represent the “edgeness” of the graph by interchanging the roles of ver-
tices and edges using the line graph1. This view of the graph G means that we could
commit the nodes of its line graph instead of committing the edges as they are orig-
inally. Even better, we do not need to construct the line graph but only label the
edges of G as we would labeled them as nodes in the line graph.

There are various ways we can label the edges; one is just to concatenate the
adjacent nodes of each edge {u, v} and get the label u|v. After we have labeled the
edges we can use a commitment scheme to commit the label (e.g., the string u|v) and
open this commitment at a later time as usual.

Definition 6.3.2 (Edge Commitment Scheme). An edge commitment scheme in-
cludes the following:

An edge labeling function, f : EG → {0, 1}∗ and a triple Setup, Com, Ver of a
commitment scheme which acts on the labeled edges.

6.3.3 Committing up to an Edge

So far we have labeled the edges of our graph and committed them. We need now
to place our graph, by means of hashing its vertices, on a complete graph Kn. This
is the same as placing the keys of an EDB into the leafs of a binary tree. We do not
hash each vertex as it is, since we will end up with the same graph as we discussed
above when examining the edge commitments. Instead, we can indirectly “label”
our nodes.

Let u, v, w be three nodes such that u, v and v, w are adjacent. Let H be a hash
function. Consider the strings H(u|v), H(v|u), H(v|w) and H(w|u), and the edges
{H(u|v), H(v|u)} and {H(v|w), H(w|v)}. Apparently these edges are not adjacent
as the edges {u, v} and {v, w}, and thus we can place them without harm on the
complete graph. Note that this hashing of vertices is not strict, one can use any way
of hashing he finds meaningful.

All we have to do now is to commit upwards. In a binary tree this was easy, the
tree itself was pointing to the manner of committing: sibling nodes are committed
up to their parent node; while in a complete graph there is no clear way how to
commit upwards.

More precisely, after we identify edges of Kn with the edges of G with hashed
vertices, we wish to contract the edges of Kn to a new complete graph Kn′ , with
n > n′, and then store commitments of the previous contracted edges to new edges.
There are many ways to partition a complete graph (here we mean partition of the
edge set) and contract the edges accordingly to each partition (contract the edges in
each subset of the partition).

This should not be of surprised since we could face the same problem with an
EDB. One could place the keys of an EDB to a tree structure in general where the
committing phase would not be as clear as in a binary tree (seen as a Merkle tree).

We give a definition of an upward construction that encapsulates all possible ways
of an upward commitment.

Definition 6.3.3 (Committing Graph Contraction). Let G = (V, E) be a graph and
PG an edge partition of this graph:

1A line graph L(G) of a graph G had as vertices the edges of G and two vertices in L(G) are con-
nected only when as edges in G they have a common node.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

68 Chapter 6. Zero-knowledge Graph Databases

• ∅ /∈ PG

•
⋃

A∈PG
A = E

• ∀A, B ∈ PG with A ̸= B, then A ∩ B = ∅

Let { f1, f2, . . . , fn}n≤|PG | be an indexed family of homomorphisms from Ai ∈ PG
to a graph G′, with |EG| < |EG′ |, |VG| < |VG′ | and | fi(Ai)| = 1, with fi(Ai)∩ f j(Aj) =
∅ for i ̸= j and i, j < n, and fn is an injective homomorphism, that is, each fi maps
its respective subset of edges to a unique edge in G′ except fn that maps distinct
vertices to distinct vertices. We say that G′ is a committing contraction of G under
the indexed family { fi}i≤|PG |.

Remarks: In practice, we partition the graph G and then we can apply vertex
and edge operations in each subset of the partition until we end up to a unique
edge. The way we contract the partition’s subsets is various and is left on us to find
a meaningful way of contracting a subset according to our computational needs.
After forming the graph G′ we can continue on the next contraction G′′ and so on
with each graph having its own indexed family { f ′i }.

6.4 Zero-Knowledge Graph Databases

We describe here formally the notion of a graph database system and then we de-
fine zero-knowledge graph databases (ZK-GD). Our protocol is non-interactive and
relies on a public random string σ.

Let G = (V, E) be an undirected graph, 1k a unary string called the security parameter
(the longer the k parameter the smaller the probability of successful cheating) and σ
a reference string polynomially long in k. Let P1, P2, V probabilistic polynomial-time
algorithms defined as follows:

• P1 algorithm takes as input the triple (G, 1k, σ) and outputs the public key PK
and the secret key SK.

• P2 algorithm takes as input the above triple together with the public and secret
key along with two vertices u, v and outputs a string πu,v as the proof.

• V algorithm takes as input the triple (1k, σ, PK) and the proof πu,v together
with the corresponding vertices and outputs: 1 when accepts the proof, 0 when
rejects the proof and ⊥ when there is not a relation between u and v.

The triple (P1, P2, V) is called a Graph Database System.

The above algorithms are executed with the order they are presented here. P1 and
P2 may coincide and act as one algorithm P (at first committing the graph and sub-
sequently creating the proofs).

Definition 6.4.1 (Zero-knowledge Graph Database). Let (P1, P2, V) be a graph database
system. We say that (P1, P2, V) is a Zero-knowledge Graph Database if there exists a pos-
itive constant c that satisfies the following:

1. Perfect Completeness: For every graph database G = (V, E) and ∀{u, v} ∈ E,

Pr
{

σ← {0, 1}kc
; (PK, SK)← P1(G, 1k, σ); πu,v ← P2({u, v}, SK) :

V(1k, σ, PK, {u, v}, πu,v) = 1

}
= 1

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

6.5. An example of ZK-GD 69

2. Soundness: ∀{u, v} ∈ {0, 1}∗ × {0, 1}∗ and for every efficient algorithm P′ the
following probability is negligible function:

Pr

σ← {0, 1}kc

; (PK′, π′u,v, π′s,t)← P′(1k, σ) :
V(1k, σ, PK′, {u, v}, π′u,v), V(1k, σ, PK′, {s, t}, π′s,t) ̸= 0 ∧

V(1k, σ, PK′, {u, v}, π′u,v) ̸= V(1k, σ, PK′, {s, t}, π′s,t)

3. Zero-knowledge: There exists an efficient (probabilistic polynomial-time) algo-

rithm SIM called the simulator such that for every - possibly dishonest - veri-
fier Adv (the adversary), for every k ∈ N and for every graph database G the
following views are equal, statistical closed or computational indistinguish-
able:

view(k) =
{σ← {0, 1}kc

; (PK, SK)← P1(G, 1k, σ);
({u1, v1}, s1)← Adv(1k, σ, PK);
πu1,v1 ← P2({u1, v1}, SK);
({u2, v2}, s2)← Adv(1k, σ, PK, s1, πu1,v1);
πu2,v2 ← P2({u2, v2}, SK);
...
: PK, {u1, v1}, πu1,v1 , {u2, v2}, πu2,v2 , . . .}

view′(k) =
{(σ′, PK′, SK′)← SIM(1k);
({u1, v1}, s1)← Adv(1k, σ, PK);
π′u1,v1

← SIM({u1, v1}, SK′);
({u2, v2}, s2)← Adv(1k, σ, PK, s1, πu1,v1);
π′u2,v2

← SIM({u2, v2}, SK′);
...
: PK′, {u1, v1}, π′u1,v1

, {u2, v2}, π′u2,v2
, . . .}

The SIM algorithm is given oracle access to the graph database; it calls the
database on the pair {u, v} ∈ {0, 1}∗ × {0, 1}∗ and receives 1 if there is a relation
for this pair and 0 otherwise. Before SIM makes oracle calls it outputs σ′, PK′ and
SK′, these are the “fake” strings of σ, PK, and SK.

Note that for the zero-knowledge property both the commitment on the graph
and a sequence of proofs are simulated. The sequence of proofs starts with the ad-
versary sending the asked pair of vertices {u1, v1}, after seeing the proof πu1,v1 sends
the next pair {u1, v1} and so on. The first view is the computation of public and se-
cret keys given a reference string σ by the prover, and the proofs πu1,v1 , πu2,v2 , . . . the
prover produces respectively for the verifier’s queries {u1, v1}, {u2, v2}, . . . The sec-
ond view is the computation of fake public and secret keys with a reference string
σ′, and (after the SIM is told the “edgeness” of the pairs {u1, v1}, {u2, v2}, . . .) the
proofs π′u1,v1

, π′u2,v2
, . . . it produces.

The above definitions are analogous for directed graphs.

6.5 An example of ZK-GD

We will now give a trivial example, going through all steps of constructing a zero-
knowledge graph database for the graph G in figure 6.2. To make notation more
readable we change the vertices as a1, a2, a3.

We start with a common reference string σ polynomially long in k.

6.5.1 Contraction and Committing Steps

Step 1. Edge Labeling and Committing

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

70 Chapter 6. Zero-knowledge Graph Databases

As in elementary databases, we calculate from σ a quadruple (p, q, g, h) and we in-
duce a Pedersen commitment and a hash function H : {0, 1}∗ → {0, 1}k.

a0|a1 a0|a2

a1|a2

a1

a2 a3

FIGURE 6.6: Edge-Labaled Graph.

We label the edges and committing them in the natural way: {ai, aj} 7→ ai|aj (see
figure 6.6) and ai|aj 7→ ci,j = gai |aj hri,j , where ri,j is a random number in Zq (see figure
6.7).

c(a0|a1) c(a0|a2)

c(a1|a2)

a1

a2 a3

FIGURE 6.7: Committed Labels.

Step 2. Graph Placing
We will place the labeled graph G on a complete graph Kn, where n could be equal
to k or substantially longer than k, at least polynomially long in k.

Using the induced hash function, we place our vertices in the following way: we
take advantage of the natural order of positive numbers. Let ai be a vertex, for every
edge {ai, aj}, with i > j adjacent to ai, we hash the vertices as ai 7→ Hi,j = H(ai|aj)
and aj 7→ Hj,i = H(aj|ai) on the complete graph. At this point and for the rest of this
example, we will identify the graph G with the graph K7 unless specified differently.

Step 3. Graph Contraction
We will construct a graph contraction G′ of G. We start by forming an edge partition
PG.

1. We choose at random a hashed edge Hi,j = {H(ai|aj), H(aj|ai)}.

2. We find a matching Mi,j for the edges EG \ {Hi,j} such that Hi,j ⊆ ⋃
Mi,j (the

vertices of Hi,j are adjacent in edges of the matching).

3. We find an augmented path pi,j between Mi,j and EG \Mi,j which includes Hi,j

and |pi,j| = 3.

4. We form the set A1 = pi,j.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

6.5. An example of ZK-GD 71

c1,2

c1,3

c2,3

H1,2

H1,3

H3,1

H2,3 H2,1

5

H3,2

FIGURE 6.8: Committed edges of G placed on the complete graph K7.

We continue recursively with the set E1 = EG \ A1 forming the next set A2 and
so on until we exhaust our labeled edges and what is left together with the sets Ak
form an edge partition of G.

In figure 6.8 with dashed lines we represent an augmented path for the edge H1,2.
Note that edge H2,3 will have a different path even if the previous path can be also
considered augmented for this edge.

Next, we build homeomorphisms fi for our partition. For our next graph G′ we use
the complete graph K5 (two vertices smaller than the previous one). This selection is
only for our visual aid in our example.

For each set Ai, except A|PG |, we contract its edges to one edge and place it in K5

at random e.g., with a new hash function H : {0, 1}∗ → {0, 1}5 at the same fashion
as we mapped the edges of G in K7. Note that we translate this procedure, contrac-
tion - hashing, to a homomorphism fi to match our definition of graph contracting.

Step 4. Upwards Committing
At this point our labeled edges together with their augmented path is a partition that
looks like the one in figure 6.9 (the non-adjacent vertices might both contain hashes
of vertices or no hashes at all). The dashed edges we call them sibling edges.

ci,j

n Hi,j

Hj,i Hk,l

FIGURE 6.9: An augmented path together with a labeled edge as a
partition.

In each partition we want to commit in a natural way the labeled edge up to the
edge homomorphic to this partition. Since we have pairs of vertices (dashed edges)
we will imitate the binary tree commitment.

Committing Steps

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

72 Chapter 6. Zero-knowledge Graph Databases

1. We associate in each vertex n a value mn as follows: for hashed vertices we set
mn = H(ci,j), otherwise we set mn = 0.

ci,j

n Hi,j

Hj,i Hk,l

0 H(ci,j)

H(ci,j) H(ck,l)

FIGURE 6.10: Associated values mn.

2. We associate a random exponent en of Z∗q in each vertex n and we store in it
the value hn as follows: if the vertex is hashed we store hn = hen ; else, hn = gen .

ci,j

n Hi,j

Hj,i Hk,l

gen h
eHi,j

h
eHj,i heHk,l

FIGURE 6.11: Associated values hn.

3. We store commitments cn in each vertex: we get random rn ∈ Z∗q and store
cn = gmn hrn

n modulo p.

ci,j

cn cHi,j

cHj,i cHk,l

hn h
eHi,j

h
eHj,i heHk,l

FIGURE 6.12: Stored values cn.

4. We commit the edges of the upper graph G′. More precisely, we commit the
edge homomorphic to the partition below it. The mapping can be constructed
in terms of contracting the dashed edges to the upper vertices of the new edge.
Then, we store in each new vertex the value mn′1

= H(cn, hn, cHi,j , hHi,j) and

mn′2
= H(cHj,i , hHj,i , cHk,l , hHk,l) respectively, and commitments cn′1

= g
mn′1 h

rn′1
n′1

and cn′2
= g

mn′2 h
rn′2
n′2

respectively.

It is apparent that we create a finite sequence of graphs {G, G′, G′′, . . . , Ga}, for
some a ∈ N, with each graph having its own partition and finite family of homo-
morphic functions. In our example, we form all the partitions and functions after
G such that the only requirement is every partition be of cardinality 3. Hence, each
new partition can carry as much as two committed edges. We will end up with
a commitment CG = {cG, hG} of the graph database stored in a graph as a single
vertex.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

6.5. An example of ZK-GD 73

cn′1
cn′2hn′1

hn′2

FIGURE 6.13: Upper graph edge commitment.

When committing an edge and place it to its new graph, it is certain that at some
point the partitions will contain a committed edge as a sibling edge or two commit-
ted edges as sibling edges. The prover has in memory the graphs and all values in
vertices and edges that are associated with and stored, and thus he can keep track of
the path the committed edge travels.

6.5.2 Proving Graph Relations

We construct the proof for the query “x relates to y”.

Let Pcx,y be the sequence of edges starting from the labeled edge cx,y in G and travel-
ing up to the vertex commitment CG.

The proof πx,y consists of:

• The values cx,y and rx,y,

• The values mn1 , mn2 , en1 , en2 , hn1 , hn2 , rn1 , rn2 and cn1 , cn2 of all the committed
edges in the sequence of Pcx,y ,

• The values hn3 , hn4 and cn3 , cn4 of the sibling edges in each respected partition
of the edges in Pcx,y .

The verification of the proof consists of:

• Checking that mHx,y = mHy,x = H(cx,y),

• Checking recursively that mn′1
= H(cn1 , hn1 , cn3 , hn3) and mn′2

= H(cn2 , hn2 , cn4 , hn4)
for every committed edge in the partitions (of the upper graphs edges),

• Checking for every committed edge in the partitions that hn1 = hen1 , hn2 = hen2

and cn1 = gmn1 h
rn1
n1 , cn2 = gmn2 h

rn2
n2 ,

• Verifying that CG = {cG, hG}.

Proof construction for queries of the form “x does not relate to y”.

The proof here is analogous to the case of keys that are not in the support of an
EDB (that is D(x) = ⊥).

We consider a “fake” relation between x and y, {x, y} and place this edge on
the graph G but we set mHx,y = mHy,x = 0 and we start to commit upwards as usual.
While the vertices of this edge travel upwards the graph sequence {G, G′, G′′, . . . , Ga}
they will meet at some point vertices ni, nj with values mni = mnj = 0. As in the EDB
case we will weld the vertices by teasing their decommitment and provide a proof of
“no relation” by checking that mHx,y = mHy,x = 0 instead of mHx,y = mHy,x = H(cx,y).

Comments: There is the possibility a committed edge does not left with sibling
edges. This is in case we exhaust all the edges of the graph taking place in partitions
except one, the edge we want to commit. Lets count the edges in our construction

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

74 Chapter 6. Zero-knowledge Graph Databases

in this case: We have a number m of this partitions and 1 edge left committed by the
graph under it. Every partition has 3 edges, in total we have 3m+ 1 edges occupying
the new graph. Let k be the vertices of this complete graph, this means k(k−1)

2 edges.
Hence, this committed edge is left “single” in case where the next equality holds:

k2 − k
2

= 3m + 1

If we increase the graph by one node we will get k additional edges.
In case where the committed edge is left only with one edge, missing an addi-

tional edge to create a partition, the same reasoning leads to the same result. In all
cases, with an additional node we can have a suitable complete graph to create all
the partitions we need. We could also decrease by a node and to a complete graph
but we risk to decrease the soundness of the proof.

Queries where there is no relation between two vertices, if there is need for addi-
tional vertices, we can always increase our graph while keeping the other partitions
and committed edges as they are.

6.6 The Case of Bipartite Graphs

We will consider as a special case of graphs the bipartite graphs and present a dif-
ferent construction of proofs less abstract from the foregoing example.

A bipartite graph G = (V, E) is a graph whose vertices can be partitioned into two
disjoint sets X and Y, written also as G = (X ∪ Y, E) (or G = (X + Y, E)), such that
every edge connects a vertex in X with a vertex in Y.

FIGURE 6.14: An example of a Bipartite Graph.

The reason for considering graphs of this type is that there are realistic cases
where distinct groups of parties, apart from their inner relations, wish to coordinate
their actions together, such as groups of programmers joining their apps develop-
ment. We can think of a layer where each group has its own graph databases and
a different layer at top of this where both groups cooperate as a bipartite graph
database.

Bipartite graphs have a predefined form, their adjacent vertices spread among
two disjoint sets. Hence, we could think of a specific construction, other than com-
plete graphs, as a substrate to commit their edges. Naturally, a complete bipartite
graph comes in mind as a candidate. In a complete bipartite graph every vertex of one
disjoint set is adjacent to every vertex of the second disjoint set. We only have to
consider how to place a bipartite graph and commit its edges.

6.6.1 Bipartite Committing

Let G = (X ∪ Y, E) be a bipartite graph, σ a common reference string polynomially
long in k the security parameter.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

6.6. The Case of Bipartite Graphs 75

FIGURE 6.15: A Complete Bipartite Graph with hashed vertices in
red.

Hi,j n1

Hj,i n2

FIGURE 6.16: An example of a labeled-unlabeled edge pair.

We stat by labeling and committing its edges at the same fashion as in our first
example. Then, we will place G in a complete bipartite graph H = (HV , HE), with
HV = HX + HY of order k, where order is the number of vertices, i.e., |HV | = k.

We could arbitrarily place the edges on H as we did in our example, but this
could cause edges with vertices in the same disjoint set. To avoid this problem we
choose a different process.

At first, for every disjoint set of G we hash its vertices and place them to a dis-
joint set i.e., every disjoint set is hashed to a disjoint set. Then, we complete these
sets with vertices up to order k as follows: We place every vertex (in lexicographi-
cal order) in one disjoint set, starting with vertex 1, until we meet the first hashed
vertex. When we encounter such hashed vertex we randomly move to the other set
or we move on placing vertices in front of the hashed vertex. We continue at the
same fashion until we reach order k. Next, we create the respected labeled edges
over the hashed vertices and we fill with with empty edges the non-hashed vertices
and hashed vertices until we have a complete bipartite graph H.

At this point we have a bipartite graph as the one in figure 6.15. In this form we
can have a more meaningful and less complicated upward committing construc-
tion. More precisely, we can couple every labeled edge with hashed vertices, with
an unlabeled edge with empty vertices, see figure 6.16 or with another labeled edge
and hashed vertices, see figure 6.17. Then, commit in a bottom-up fashion pairs of
hashed-non hashed vertices belonging on the same disjoint set to a new vertex (resp.
two hashed vertices for two labeled edges) and create a new edge. We end up with
a number of new edges for which we can repeat the same process, place them in a
new complete graph H′ with order k′ < k and commit upwards. This will result on a
single edge where we commit both of its vertices into a single vertex with associated
values CG = {cG, hG} as in our example. We can now create proofs πx,y of relations
{x, y} as usual.

We distinguish two cases for queries of non-relations. Let {x, y} be the fake re-
lation between two non-adjacent vertices x, y. The hashed vertices could exist in
disjoint sets. In this case we can start constructing the proof as usual until we meet a
committed edge and weld the proof on it. The second case is where the hashed ver-
tices belong to the same disjoint set. Here, we choose two empty vertices adjacent to
the hashed vertices of {x, y} and commit according to them.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

76 Chapter 6. Zero-knowledge Graph Databases

Hi,j Hk,l

Hj,i Hl,k

FIGURE 6.17: An example of two labeled edges.

6.7 On Soundness and Zero-Knowledge

A dishonest prover is an adversary who tries to prove the existence of a relation
between vertices which does not exist in our graph or tries to prove the absence of
a relation for two adjacent vertices. As in EDBs, the adversary must be able to find
discrete logarithms or collisions for the hash function H. In any case both are hard
to find (negligible probability) hence, the soundness.

Zero-knowledge is also analogous to the ZK-EDBs zero-knowledge.

6.8 Communication Complexity

We analyze the size of the proof our construction requires. So, for each query for
relations we commit by performing at most 4d hashes and 12d modular exponenti-
ations, where d is the number of graphs we use to commit upwards to a vertex. It
should be noted here that d ≤ k since the construction of these graphs is arbitrary
and is left on the way we construct the partitions and how many edges we contract
in each partition. In our case we contract 3 adjacent edges, that is, 4 vertices. Hence,
we have 4 hashes and 3 times 4 exponentiations (one for hr1 , one for (hr1)r2 and one
for gm for each vertex). A proof of non-relation requires usually less than 4d hashes
and 12d exponentiations since these proofs are constructed by welding them to ex-
isting committed edges. Verification of proofs require the same operations.

6.9 Directed Case

There are several solutions to handle directed graphs. One is to use different labels
for both directions. A label ai|aj defined for one direction and the inverse aj|ai for
the second direction. This means that every edge has to carry two committed labels
and thus twice as many proofs.

The other choice is a pair of hashed vertex and committed label. We can denote
each edge (ai, aj), (aj, ai) as one value which corresponds to a committed label, that
is, a function f : {0, 1}k → {0, 1}∗, where f (H(ai|aj)) = c(ai|aj) and f (H(aj|ai)) =

c(aj|ai). Hence, we can commit as we would commit a database to a binary tree2.

2Here f has the role of D.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

77

Chapter 7

Conclusions and Open Problems

This thesis presents the notion of zero-knowledge proofs and zero knowledge tech-
niques in constructing proofs with an emphasis in elementary databases and a con-
tribution in graph databases. We believe the first goal achieves to provide a solid
theoretical foundation. To this aim, we made extensive use of the basic definition
of interactive proofs and zero-knowledge without auxiliary inputs. The number
theoretic tools provided in Appendix C encourage to test and experiment with sim-
ple protocols. Additionally, in zero-knowledge definition we selected the simpler
variant which includes probabilistic polynomial-time distinguisher D rather than
non-uniform polynomial-size circuits. In theory, zero-knowledge under the former
distinguisher implies zero-knowledge under the latter distinguisher and as an intro-
ductory notion it is easier to digest than a non-uniform treatment.

Concerning elementary databases, there have been improvements with the adap-
tation of mercurial commitments in updatable EDBs and expressive queries. Most
recent improvements include proving in zero knowledge that a value has been read
or written in a specific position in the database [CDR21].

7.1 Open Questions

Our work in graph databases aims to provide zero knowledge of relations as well
as the order of a graph which upon we query these relations. Still, there is room for
more complex queries and efficient constructions.

Question 1 Is it possible to construct a zero-knowledge graph database with less compu-
tational overhead?

In our constructions, for general graphs and bipartite graphs, we have a com-
putational cost (for proofs and verifications) of 4 hashes and 12 modular exponenti-
ations with a factor of d the number of upward graphs taking place in building the
commitment PK. We could use only one hash for the vertices of a relation as in the
case of directed graphs (considering the undirected edge as one direction only) but
then we would have a proof of length k ≥ d. Another possibility would be a con-
struction which utilizes three instead of four vertices to commit upwards to an edge.
In this case we would have a d′ between d and k (d ≤ d′ ≤ k) but fewer hashing
and exponent operations. So, it is natural to wonder is there is a construction with
lower additional cost, or if there is a class of graphs that accepts less computational
overhead in contrast with other classes of graphs.

Question 2 Is it possible to keep invariant the commitment of a zero-knowledge graph under
updates?

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

78 Chapter 7. Conclusions and Open Problems

Here, the term update responds to creating a new edge between two vertices
or removing an edge. We question if under these updates we can keep the commit-
ment PK unchangeable as well as the proofs of the other relations invariant without
having to issue new ones.

Question 3 Is it possible to combine key-value pairs and relations into one zero-knowledge
protocol scheme in an efficient way?

The Pedersen Commitment (or Mercurial Commitments in general) are used in
constructing EDBs and Graph Databases in zero-knowledge. We wonder if the same
commitment scheme can associate data as well as their relations and create provable
queries in zero knowledge such as “what are the values of all y that x is related with?”
or “give the values for all records in the rectangle [ai, bi]× [aj, bj] which are connected with
a path of distance 2 or with degree 1”.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

79

Appendix A

Augmented Model

Interactive proofs are not stand alone concepts, they may be used as sub-protocols
inside larger protocols in which case they do not presented “as is” but rather need
additional private inputs associated with the local configurations of the machines
before entering the sub-protocol. In the following augmented definitions of interac-
tive proof systems we allow each of the parties to have a private input in addition to
the common input.

Augmented definitions of 2.2.1, 2.2.3, 2.2.4 and notation 2.2.1:

Definition A.0.1 (Augmented Interactive Machine). The interactive machine is defined
as before except that has an additional read-only tape called the auxiliary-input tape. The
content of this tape is called auxiliary input.

The complexity of such an interactive machine is still measured as a function of the
(common) input length.

We denote by ⟨A(y), B(z)⟩(x) the random variable representing the (local) out-
put of B when interacting with machine A on common input x, when the random
input to each machine is uniformly independently chosen, and A (resp., B) had aux-
iliary input y (resp., z).

Definition A.0.2 (Augmented Interactive Proof System). Let P and V be interactive
Turing machines with P (called the Prover) computationally unbounded and V (called the
Verifier) having probabilistic polynomial-time complexity. Let L be a language, we call the
pair (P, V) an interactive proof system for language L if the following two properties are
satisfied:

• Completeness: For every x ∈ L, there exists a string y such that for every z ∈
{0, 1}∗,

Pr[⟨P(y), V(z)⟩(x) = 1] ≥ 1− |x|−c (c > 0)

• Soundness: For every x /∈ L, every interactive machine B, and every y, z ∈ {0, 1}∗,

Pr[⟨B(y), V(z)⟩(x) = 0] ≤ 1− |x|−c (c > 0)

As with interactive proofs, zero-knowledge proofs can also be used as sub-protocols.
Thus, it is natural to consider a situation where the verifier when interacting with the
prover on common input x, may have some additional a priori information, encoded
by a string z, that assist him in extracting knowledge from the prover. What we need
is an augmented definition of zero-knowledge. In the spirit of our initial informal
statement in page 17 of knowledge we require that whatever can be efficiently com-
puted from x and z after interacting with the prover on any common input x, can be
efficiently computed from x and z without any interaction with the prover.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

80 Appendix A. Augmented Model

Naturally, we have the following definition:

Definition A.0.3 (Zero-knowledge, Revisited). Let (P, V) be an interactive proof for
a language L as defined above. Denote by PL(x) the set of strings y satisfying the com-
pleteness condition with respect to x ∈ L. We say that (P, V) is zero-knowledge with
respect to auxiliary input (or is auxiliary-input zero-knowledge) if for every proba-
bilistic polynomial-time interactive machine V∗ there exists a probabilistic (noninteractive)
algorithm M∗, running in time polynomial in the length of its first input, such that the fol-
lowing two ensembles are computationally indistinguishable (when the distinguishing gap
is considered as a function of |x|):

• {⟨P(yx), V∗(z)⟩(x)}x∈L,z∈{0,1}∗ for arbitrary yx ∈ PL(x)

• {M∗(x, z)}x∈L,z∈{0,1}∗

Namely, for every probabilistic algorithm D with running time polynomial in the length
of the first input, for every polynomial p(·), and for all sufficient long x ∈ L, all yx ∈ PL(x)
and z ∈ {0, 1}∗, it holds that:

|Pr[D(x, z, ⟨P(y), V∗(z)⟩(x)) = 1]− Pr[D(x, z, M∗(x, z)) = 1]| < 1
p(|x|)

It follows that this definition produces output that is indistinguishable from the
real interactions also by non-uniform polynomial-size circuits. Namely, for every
non-uniform polynomial-size circuit family {Cn}n∈N, every polynomial p(·), all suf-
ficient large n’s, all x ∈ L ∩ {0, 1}n, all y ∈ PL(x) and z ∈ {0, 1}∗:

|Pr[Cn(x, z, ⟨P(y), V∗(z)⟩(x)) = 1]− Pr[Cn(x, z, M∗(x, z)) = 1]| < 1
p(|x|)

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

81

Appendix B

Schnorr’s Protocol: Proof of Sigma
Protocol

Completeness: if z = r + we, then gz = gr+we = gr · (gw)e = a · he.
Proof of Knowledge: Let P∗ be a (possibly malicious) prover that convinces the

honest verifier with probability δ = 1. We construct the extractor as follows:

KP∗(h) :

1 : Run the prover P∗ to obtain an initial message a.
2 : Send a random challenge e1 ← Zq to P∗ and get a response z1.

3 : Rewind the prover P∗ to its state after the first message.
4 : Send it another random challenge e2 ← Zq and get a response z2.

5 : Compute and output x =
z1 − z2

e1 − e2
∈ Zq.

Since P∗ succeeds with probability 1, we know that:

gz1 = a · he1 and gz2 = a · he2

Therefore:

gz1

he1
=

gz2

he2
⇒ gz1−z2 = he1−e2 ⇒ h = g

z1−z2
e1−e2 ⇒ w =

z1 − z2

e1 − e2
.

Note that the extraction fails if e1 = e2, which happens with probability 1/q.
Therefore, the knowledge error here is ϵ = 1/q.

Honest-verifier Zero-knowledge (HVZK): For every g, h ∈ Zqm, the output of
the simulator needs to be indistinguishable from the distribution of the transcripts

{viewV(P(w, h))↔ V(h)} = {gr, e, r+we : r, e← Zq} = {(a, e, z) : e, z← Zq, gz = a · he}

We construct a simulator that outputs the same distribution by running the pro-
tocol in “reverse”:

M(h) :

z← Zq

e← Zq

a← gz

he

output (a, e, z)

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

82 Appendix B. Schnorr’s Protocol: Proof of Sigma Protocol

Since z is chosen at random, then the resulting a is random, and the output is
distributed identically as the real transcript.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

83

Appendix C

Computational Number Theory
and Algorithms

We will present the minimum theory needed for the examples presented in this the-
sis, namely the Quadratic Residuosity and Discrete Logarithm, along with pseu-
docodes for practical construction. A full fledged implementation of the aforemen-
tioned examples requires an advanced treatment of number theoretic results that can
be found in graduate level textbooks of number theory.

Before continue reading recall first the definitions introduced in Chapter 1 and 2.

C.1 Prime Numbers

Cryptography is full of prime numbers. One will often find himself to search for
a large prime number or check if a number n is prime or not (primality testing).
A method for testing is checking for factors, just divide n with all the numbers a
smaller than n/2 and if we find a perfect division we conclude that n is not prime.
This process is obviously cumbersome, especially for large numbers. A faster way
of checking is provided by the following theorem.

Theorem C.1.1 (Root Primality Test). Every composite number has a proper factor less
than or equal to its square root.

Proof. Suppose n is composite. Then, we can write n = ab, where a and b are both
between 1 and n. If both a and b satisfy a >

√
n, b >

√
n, then ab >

√
n
√

n⇒ ab > n,
which contradicts our assumption of n = ab. Hence, at least one of a, b is less than
or equal to

√
n. That is, if n is composite, then n has a prime factor p ≤ n.

So, it suffices to check for factors less than or equal to the square root of n.

C.2 On Quadratic Residues

When making the simulator algorithm of the Quadratic Residue protocol we will
need to find the multiplicative inverse x of a congruence class a modulo a number n
with respect to this modulus, that is, to find x such that:

ax ≡ 1 (mod n)

But ax ≡ 1 (mod n) implies there exists an integer k ∈ Z such that ax − 1 =
kn ⇔ ax− kn = 1. So, we reduce the problem of finding a multiplicative inverse to
the problem of finding integers x, y such that ax + by = 1.

We will need at first the help of the following lemma:

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

84 Appendix C. Computational Number Theory and Algorithms

Algorithm 1: Prime Root Test
input : A number n
output: Flag 1 in case of prime. Flag 0 in case of composite.

1 flag←− 1;
2 i←− 2;
3 while i ≤

√
n do

4 if (n = 0 mod i) then
5 flag←− 0;
6 break;
7 end
8 i←− i + 1;
9 end

Lemma C.2.1 (Bezout’s Identity). Let a and b be integers with greatest common divisor
d. Then there exist integers x and y such that ax + by = d. Moreover, the integers of the
form ax′ + by′ are exactly the multipliers of d.

Since we have the relation ax + by = 1 this means that there is no other greatest
common divisor for a and b than 1 and thus there is a solution x, y. To find such x, y
we use the venerable Extended Euclidean Algorithm.

For a recursive algorithm we work backwards up the recursive calls. We start
with a trivial solution. Assume, without loss of generality, that a = d and b = 0.
Then, x = 1 and y = 0. We have to figure the new coefficients x, y for the transition
from (a, b) to (b, moda).

The coefficients x1, y1 in the transition (b, moda) will satisfy:

b · x1 + (a mod b) · y1 = g

and we want to find x, y such that:

a · x + b · y = g

We can represent a mod b as a− ⌊ a
b⌋ · b, thus:

g = b · x1 + (a mod b) · y1 = b · x1 + (a− ⌊ a
b
⌋ · b) · y1

After rearranging g = a · y1 + b · (x1 − y1 · ⌊ a
b⌋), we get the values x = y1 and

y = x1 − y1 · ⌊ a
b⌋1.

C.3 On Discrete Logarithm

For an example implementation we fix a group G and a generator g of this group
and prove for an element a ∈ G that there exists a least positive integer k such that
gk = a.

Definition C.3.1 (Primitive Roots). A number g is called a primitive root modulo n if
every number a coprime to n is congruent to a power of g modulo n. That is, there exists the
discrete logarithm k for every a coprime to n.

1See here too.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
https://cp-algorithms.com/algebra/extended-euclid-algorithm.html

C.3. On Discrete Logarithm 85

Algorithm 2: Extended Euclidean Algorithm (Recursive)
input : Integers a and b
output: x and y such that ax + by = gcd(a, b) = d

1 ee-algo (int a, int b, int x, int y)
2 if (b = 0) then
3 x ←− 1;
4 y←− 0;
5 return x, y;
6 ee-algo (int b, int ⌊ a

b⌋, int x1, int x2);

7 x ←− y1;
8 y←− x1 − y1⌊ a

b⌋;
9 return x, y;

10 end

Let n be a positive integer. Then, all the integers between 0 and n − 1 form a
group with respect to multiplication modulo n and is denoted as Zx

n. This group is
cyclic if and only if n = 2, 4, pk, 2pk where p is an odd prime number. In the case of
cyclic group, the generator g of this group is a primitive root modulo n.

To find the number of elements in Zx
n we need to find the number of positive in-

tegers coprime to n. This is given by Euler’s totient function (or Euler’s phi function)
ϕ(n).

Euler’s Theorem. If n and a are coprime positive integers, then:

aϕ(n) = 1 (mod n)

When there is an integer k for which ak = 1 (mod n) and k is the small integer
with this property, then is called the multiplicative order of a.

Lets assume now that we have found an a ∈ Zx
n such that aϕ(n) = 1 (mod n).

This means that the powers of a run over all the elements of Zx
n until it reaches 1.

Hence, this a is a generator for the group, that is, a primitive root. So to find a
primitive root, we just have to find an a for which the Euler’s theorem holds and
ϕ(n) is its order.

C.3.1 Computing ϕ(n)

Euler’s totient function has a number of properties making easy its computation.

1. If p is prime number, then:
ϕ(p) = p− 1

2. If p is a prime number and k ≥ 1, then:

ϕ(pk) = pk − pk−1

3. If a and b are relative prime, then:

ϕ(ab) = ϕ(a) · ϕ(b)

With these properties we can compute ϕ(n) through the factorization of n. Let
n = pa1

1 · p
a2
2 . . . · pak

k , where pi are the prime factors of n. Then:

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

86 Appendix C. Computational Number Theory and Algorithms

ϕ(n) = ϕ(pa1
1) · ϕ(pa2

2) . . . · ϕ(pak
k)

= (pa1
1 − pa1−1

1) · (pa2
2 − pa2−1

2) · . . . · (pak
k − pak−1

k)

= pa1
1 · (1−

1
p1

) · pa2
2 · (1−

1
p2

) · . . . · pak
k · (1−

1
pk
)

= n · (1− 1
p1

) · (1− 1
p2

) · . . . · (1− 1
pk
)

From the last equality we can build an algorithm where n passes from paren-
thesis to parenthesis and each parenthesis “absorbs” each distinct prime factor from
n.

Algorithm 3: Euler’s Totient Function
input : integer n
output: ϕ(n)

1 ϕ←− n;
2 for (i← 2, i2 ≤ n) do
3 if (n = 0 mod i) then
4 while (n = 0 mod i) do
5 n←− n/i;
6 end
7 ϕ←− ϕ− ϕ/i;
8 end
9 i←− i + 1;

10 end
11 if (n > 1) then
12 ϕ←− ϕ− ϕ/n;
13 end
14 return ϕ;

Comments: Line 7 is the passing from the parenthesis (1− 1
pi
). The while loop

exhausts the rest of ai − 1 primes pi so we can move to the next prime. Note that
when n reaches the last parenthesis, the for loop will include the condition p2

k ≤ n.
At this point all the primes of n have been exhausted except the last one pk for which
n might included in a power less than 2, thus it will not be counted in the for loop
and a necessary if statement is issued in line 10.

C.3.2 Computing Primitive Roots

In general there is not a known simple general formula to compute primitive roots
modulo n. However, there is something we can do to remedy this situation. Let us
compute ϕ(n) for the group Zx

n. Let p1, . . . , pk be the different prime factors of ϕ(n).
Now, suppose the d is a divisor of ϕ(n). If we consider the factorization of ϕ(n),
there is k such that d · k = ϕ(n)

pi
for some prime factor pi of ϕ(n). If for this d and an

element g in the group we have gd ≡ 1 (mod n), then:

g
ϕ(n)

pi = gd·k = (gd)k = 1k = 1 (mod n)

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

C.3. On Discrete Logarithm 87

Hence, if get twice the same result for an element g with two different powers
ϕ(n)

pi
, ϕ(n)

pk
, where i ̸= j, then, this g fails as a primitive root candidate. So, if a g has

these k results different from 1, it is a primitive root.

Algorithm 4: Primitive Root Algorithm
input : integer n
output: primitive root of n

1 flag←− 1;
2 m←− ϕ(n);
3 // for ϕ(n) we can subroutine the previous algorithm

4 for (a← 2, a < n) do
5 flag←− 1;
6 m←− ϕ(n);
7 for (j← 2, j2 ≤ ϕ(n)) do
8 if (m = 0 (mod j)) then
9 if (aϕ(n)/j = 1 (mod n)) then

10 flag←− 0;
11 break;
12 end
13 if (m = 0 (mod j)) then
14 while (m = 0 (mod j)) do
15 m←− m/j;
16 end
17 end
18 end
19 j←− j + 1;
20 end
21 if (flag= 1) then
22 break;
23 end
24 a←− a + 1;
25 end
26 if (m > 1) then
27 go to line 8;
28 end
29 return a;

Comments: The first for loop checks each element of Zx
n, from the smaller to the

largest, if it is a primitive root. The second for loop checks a if all powers ϕ(n)
pi

are
different from 1. The break statement breaks the for loop for which is nested in. As
in Euler’s phi algorithm while loop serves the purpose of moving to the next prime,
and the line 27 moves in line 8 and tests if the last prime remained in the factors of
ϕ(n).

Note that this algorithm finds the smallest primitive root.

With the above algorithms we made two programs in C for the Schnorr non-interactive
sequential protocol. The first program, acting as the prover, creates the proof and the
second program, as the verifier, tests its validity. We choose as n a prime number to
guarantee the existence of a generator. For the non-interactive behaviour we choose

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

88 Appendix C. Computational Number Theory and Algorithms

FIGURE C.1: Non-interactive proof of discrete logarithm.

the Random Oracle Model according to the Fiat-Shamir heuristic and a sequence of
10 repetitions.

The triples the proof sends to the verifier were represented for ease in hexadeci-
mal and separated by an underscore.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

89

Bibliography

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. “Non-Interactive Zero-
Knowledge and Its Applications”. In: Proceedings of the Twentieth Annual
ACM Symposium on Theory of Computing. STOC ’88. New York, NY, USA:
Association for Computing Machinery, Jan. 1988, pp. 103–112. ISBN: 978-
0-89791-264-8. DOI: 10.1145/62212.62222.

[BG93] Mihir Bellare and Oded Goldreich. “On Defining Proofs of Knowledge”.
In: Advances in Cryptology — CRYPTO’ 92. Ed. by Ernest F. Brickell. Lec-
ture Notes in Computer Science. Berlin, Heidelberg: Springer, 1993, pp. 390–
420. ISBN: 978-3-540-48071-6. DOI: 10.1007/3-540-48071-4_28.

[Blu+91] Manuel Blum et al. “Noninteractive Zero-Knowledge”. In: SIAM Journal
on Computing 20.6 (Dec. 1991), pp. 1084–1118. ISSN: 0097-5397. DOI: 10.
1137/0220068.

[CDR21] Jan Camenisch, Maria Dubovitskaya, and Alfredo Rial. “Concise UC Zero-
Knowledge Proofs for Oblivious Updatable Databases”. In: 2021 IEEE
34th Computer Security Foundations Symposium (CSF). June 2021, pp. 1–16.
DOI: 10.1109/CSF51468.2021.00008.

[CGH00] Ran Canetti, Oded Goldreich, and Shai Halevi. “The Random Oracle
Methodology, Revisited”. In: arXiv:cs/0010019 (Oct. 2000). arXiv: cs/0010019.

[Cha+05] Melissa Chase et al. “Mercurial Commitments with Applications to Zero-
Knowledge Sets”. In: Advances in Cryptology – EUROCRYPT 2005. Ed.
by Ronald Cramer. Lecture Notes in Computer Science. Berlin, Heidel-
berg: Springer, 2005, pp. 422–439. ISBN: 978-3-540-32055-5. DOI: 10.1007/
11426639_25.

[CRA96] R. CRAMER. “Modular Design of Secure yet Practical Cryptographic
Protocols”. In: Ph. D. Thesis, CWI and University of Amsterdam (1996).

[DH76] W. Diffie and M. Hellman. “New Directions in Cryptography”. In: IEEE
Transactions on Information Theory 22.6 (Nov. 1976), pp. 644–654. ISSN:
1557-9654. DOI: 10.1109/TIT.1976.1055638.

[DNS98] Cynthia Dwork, Moni Naor, and Amit Sahai. “Concurrent Zero-Knowledge”.
In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Com-
puting. STOC ’98. New York, NY, USA: Association for Computing Ma-
chinery, Feb. 1998, pp. 409–418. ISBN: 978-0-89791-962-3. DOI: 10.1145/
276698.276853.

[FFS88] Uriel Feige, Amos Fiat, and Adi Shamir. “Zero-Knowledge Proofs of
Identity”. en. In: Journal of Cryptology 1.2 (June 1988), pp. 77–94. ISSN:
1432-1378. DOI: 10.1007/BF02351717.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

https://doi.org/10.1145/62212.62222
https://doi.org/10.1007/3-540-48071-4_28
https://doi.org/10.1137/0220068
https://doi.org/10.1137/0220068
https://doi.org/10.1109/CSF51468.2021.00008
https://arxiv.org/abs/cs/0010019
https://doi.org/10.1007/11426639_25
https://doi.org/10.1007/11426639_25
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1145/276698.276853
https://doi.org/10.1145/276698.276853
https://doi.org/10.1007/BF02351717

90 Bibliography

[FS87] Amos Fiat and Adi Shamir. “How To Prove Yourself: Practical Solutions
to Identification and Signature Problems”. In: Advances in Cryptology —
CRYPTO’ 86. Ed. by Andrew M. Odlyzko. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 1987, pp. 186–194. ISBN: 978-3-540-
47721-1. DOI: 10.1007/3-540-47721-7_12.

[GK03] S. Goldwasser and Y.T. Kalai. “On the (In)Security of the Fiat-Shamir
Paradigm”. In: 44th Annual IEEE Symposium on Foundations of Computer
Science, 2003. Proceedings. Oct. 2003, pp. 102–113. DOI: 10.1109/SFCS.
2003.1238185.

[GK96] Oded Goldreich and Hugo Krawczyk. “On the Composition of Zero-
Knowledge Proof Systems”. In: SIAM Journal on Computing 25.1 (Feb.
1996), pp. 169–192. ISSN: 0097-5397. DOI: 10.1137/S0097539791220688.

[GMR85] S Goldwasser, S Micali, and C Rackoff. “The Knowledge Complexity of
Interactive Proof-Systems”. In: Proceedings of the Seventeenth Annual ACM
Symposium on Theory of Computing. STOC ’85. New York, NY, USA: As-
sociation for Computing Machinery, Dec. 1985, pp. 291–304. ISBN: 978-0-
89791-151-1. DOI: 10.1145/22145.22178.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. “Proofs That Yield
Nothing but Their Validity or All Languages in NP Have Zero-Knowledge
Proof Systems”. In: Journal of the ACM 38.3 (Apr. 1991), pp. 690–728. ISSN:
0004-5411. DOI: 10.1145/116825.116852.

[Gol01a] “Pseudorandom Generators”. In: Foundations of Cryptography: Volume 1:
Basic Tools. Ed. by Oded Goldreich. Vol. 1. Cambridge: Cambridge Uni-
versity Press, 2001, pp. 101–183. ISBN: 978-0-521-03536-1. DOI: 10.1017/
CBO9780511546891.004.

[Gol01b] “Zero-Knowledge Proof Systems”. In: Foundations of Cryptography: Vol-
ume 1: Basic Tools. Ed. by Oded Goldreich. Vol. 1. Cambridge: Cambridge
University Press, 2001, pp. 184–330. ISBN: 978-0-521-03536-1. DOI: 10.
1017/CBO9780511546891.005.

[Gol02a] Oded Goldreich. “Concurrent Zero-Knowledge with Timing, Revisited”.
In: Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of
Computing. STOC ’02. New York, NY, USA: Association for Comput-
ing Machinery, Feb. 2002, pp. 332–340. ISBN: 978-1-58113-495-7. DOI: 10.
1145/509907.509959.

[Gol02b] Oded Goldreich. Zero-Knowledge Twenty Years after Its Invention. Tech. rep.
186. 2002.

[Gra+09] Ronen Gradwohl et al. “Cryptographic and Physical Zero-Knowledge
Proof Systems for Solutions of Sudoku Puzzles”. In: Theory of Computing
Systems 44.2 (Feb. 2009), pp. 245–268. ISSN: 1433-0490. DOI: 10.1007/
s00224-008-9119-9.

[GSV98] Oded Goldreich, Amit Sahai, and Salil Vadhan. “Honest-Verifier Statis-
tical Zero-Knowledge Equals General Statistical Zero-Knowledge”. In:
Proceedings of the Thirtieth Annual ACM Symposium on Theory of Comput-
ing. STOC ’98. New York, NY, USA: Association for Computing Ma-
chinery, Feb. 1998, pp. 399–408. ISBN: 978-0-89791-962-3. DOI: 10.1145/
276698.276852.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1109/SFCS.2003.1238185
https://doi.org/10.1109/SFCS.2003.1238185
https://doi.org/10.1137/S0097539791220688
https://doi.org/10.1145/22145.22178
https://doi.org/10.1145/116825.116852
https://doi.org/10.1017/CBO9780511546891.004
https://doi.org/10.1017/CBO9780511546891.004
https://doi.org/10.1017/CBO9780511546891.005
https://doi.org/10.1017/CBO9780511546891.005
https://doi.org/10.1145/509907.509959
https://doi.org/10.1145/509907.509959
https://doi.org/10.1007/s00224-008-9119-9
https://doi.org/10.1007/s00224-008-9119-9
https://doi.org/10.1145/276698.276852
https://doi.org/10.1145/276698.276852

Bibliography 91

[HL10] Carmit Hazay and Yehuda Lindell. “Sigma Protocols and Efficient Zero-
Knowledge1”. In: Efficient Secure Two-Party Protocols: Techniques and Con-
structions. Ed. by Carmit Hazay and Yehuda Lindell. Information Secu-
rity and Cryptography. Berlin, Heidelberg: Springer, 2010, pp. 147–175.
ISBN: 978-3-642-14303-8. DOI: 10.1007/978-3-642-14303-8_6.

[JC06] Wei Jiang and Chris Clifton. “A Secure Distributed Framework for Achiev-
ing K-Anonymity”. In: The VLDB Journal — The International Journal on
Very Large Data Bases 15.4 (Nov. 2006), pp. 316–333. ISSN: 1066-8888. DOI:
10.1007/s00778-006-0008-z.

[JOP14] Antoine Joux, Andrew Odlyzko, and Cécile Pierrot. “The Past, Evolving
Present, and Future of the Discrete Logarithm”. In: Nov. 2014, pp. 5–36.
ISBN: 978-3-319-10682-3. DOI: 10.1007/978-3-319-10683-0_2.

[JS02] A. Juels and M. Sudan. “A Fuzzy Vault Scheme”. In: Proceedings IEEE
International Symposium on Information Theory, June 2002, pp. 408–. DOI:
10.1109/ISIT.2002.1023680.

[Kar72] Richard M. Karp. “Reducibility among Combinatorial Problems”. In: Com-
plexity of Computer Computations: Proceedings of a Symposium on the Com-
plexity of Computer Computations, Held March 20–22, 1972, at the IBM Thomas
J. Watson Research Center, Yorktown Heights, New York, and Sponsored by
the Office of Naval Research, Mathematics Program, IBM World Trade Cor-
poration, and the IBM Research Mathematical Sciences Department. Ed. by
Raymond E. Miller, James W. Thatcher, and Jean D. Bohlinger. The IBM
Research Symposia Series. Boston, MA: Springer US, 1972, pp. 85–103.
ISBN: 978-1-4684-2001-2. DOI: 10.1007/978-1-4684-2001-2_9.

[Lib+19] Benoît Libert et al. “Zero-Knowledge Elementary Databases with More
Expressive Queries”. In: Public-Key Cryptography – PKC 2019. Ed. by Dong-
dai Lin and Kazue Sako. Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2019, pp. 255–285. ISBN: 978-3-030-
17253-4. DOI: 10.1007/978-3-030-17253-4_9.

[Lis05] Moses Liskov. “Updatable Zero-Knowledge Databases”. In: Advances in
Cryptology - ASIACRYPT 2005. Ed. by Bimal Roy. Lecture Notes in Com-
puter Science. Berlin, Heidelberg: Springer, 2005, pp. 174–198. ISBN: 978-
3-540-32267-2. DOI: 10.1007/11593447_10.

[MA78] Kenneth L. Manders and Leonard Adleman. “NP-Complete Decision
Problems for Binary Quadratics”. In: Journal of Computer and System Sci-
ences 16.2 (Apr. 1978), pp. 168–184. ISSN: 0022-0000. DOI: 10.1016/0022-
0000(78)90044-2.

[McL90] J. McLean. “Security Models and Information Flow”. In: Proceedings. 1990
IEEE Computer Society Symposium on Research in Security and Privacy. May
1990, pp. 180–187. DOI: 10.1109/RISP.1990.63849.

[MRK03] S. Micali, M. Rabin, and J. Kilian. “Zero-Knowledge Sets”. In: 44th An-
nual IEEE Symposium on Foundations of Computer Science, 2003. Proceed-
ings. Oct. 2003, pp. 80–91. DOI: 10.1109/SFCS.2003.1238183.

[PS96] David Pointcheval and Jacques Stern. “Security Proofs for Signature Schemes”.
In: Advances in Cryptology — EUROCRYPT ’96. Ed. by Ueli Maurer. Lec-
ture Notes in Computer Science. Berlin, Heidelberg: Springer, 1996, pp. 387–
398. ISBN: 978-3-540-68339-1. DOI: 10.1007/3-540-68339-9_33.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

https://doi.org/10.1007/978-3-642-14303-8_6
https://doi.org/10.1007/s00778-006-0008-z
https://doi.org/10.1007/978-3-319-10683-0_2
https://doi.org/10.1109/ISIT.2002.1023680
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-3-030-17253-4_9
https://doi.org/10.1007/11593447_10
https://doi.org/10.1016/0022-0000(78)90044-2
https://doi.org/10.1016/0022-0000(78)90044-2
https://doi.org/10.1109/RISP.1990.63849
https://doi.org/10.1109/SFCS.2003.1238183
https://doi.org/10.1007/3-540-68339-9_33

92 Bibliography

[Qui+90] Jean-Jacques Quisquater et al. “How to Explain Zero-Knowledge Pro-
tocols to Your Children”. en. In: Advances in Cryptology — CRYPTO’ 89
Proceedings. Ed. by Gilles Brassard. Lecture Notes in Computer Science.
New York, NY: Springer, 1990, pp. 628–631. ISBN: 978-0-387-34805-6. DOI:
10.1007/0-387-34805-0_60.

[Rab79] M. O. Rabin. DIGITALIZED SIGNATURES AND PUBLIC-KEY FUNC-
TIONS AS INTRACTABLE AS FACTORIZATION. Technical Report. USA:
Massachusetts Institute of Technology, 1979.

[RK99] Ransom Richardson and Joe Kilian. “On the Concurrent Composition of
Zero-Knowledge Proofs”. In: Advances in Cryptology — EUROCRYPT ’99.
Ed. by Jacques Stern. Lecture Notes in Computer Science. Berlin, Heidel-
berg: Springer, 1999, pp. 415–431. ISBN: 978-3-540-48910-8. DOI: 10.1007/
3-540-48910-X_29.

[Sas+20] Tatsuya Sasaki et al. “Efficient Card-Based Zero-Knowledge Proof for Su-
doku”. In: Theoretical Computer Science 839 (Nov. 2020), pp. 135–142. ISSN:
0304-3975. DOI: 10.1016/j.tcs.2020.05.036.

[Sch90] C. P. Schnorr. “Efficient Identification and Signatures for Smart Cards”.
In: Advances in Cryptology — CRYPTO’ 89 Proceedings. Ed. by Gilles Bras-
sard. Lecture Notes in Computer Science. New York, NY: Springer, 1990,
pp. 239–252. ISBN: 978-0-387-34805-6. DOI: 10.1007/0-387-34805-0_22.

[Sha79] Adi Shamir. “How to Share a Secret”. In: Communications of the ACM
22.11 (Nov. 1979), pp. 612–613. ISSN: 0001-0782. DOI: 10.1145/359168.
359176.

[Zca19] Zcash. Parameter Generation. Aug. 2019. URL: https://z.cash/technology/
paramgen/.

Institutional Repository - Library & Information Centre - University of Thessaly
13/02/2023 10:25:48 EET - 137.108.70.14

https://doi.org/10.1007/0-387-34805-0_60
https://doi.org/10.1007/3-540-48910-X_29
https://doi.org/10.1007/3-540-48910-X_29
https://doi.org/10.1016/j.tcs.2020.05.036
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://z.cash/technology/paramgen/
https://z.cash/technology/paramgen/

	Abstract
	Preface
	Introduction to Zero-knowledge Proofs
	Graphical examples
	Ali Baba's Cave
	Where's Waldo?

	Deeper in the Ali Baba's Cave
	Not a Math Proof, Yet a Proof
	Completeness and Soundness
	Proofs and Complexity
	What about Zero-knowledgeness?
	Putting it all Together

	An Example Protocol
	Quadratic Residue
	Modular Arithmetic
	Protocol Description

	Formal Definition of Zero Knowledge Proofs
	Preliminaries
	Elementary Algebra
	Mathematical Notation
	Big-O notation

	Interactive Proof Systems
	Formal Definition
	Quadratic Residue Revisited

	Zero-knowledge Definitions
	Perfect Zero-knowledge
	Computational Zero-knowledge
	Statistical Zero-knowledge

	TEXT-Protocols
	The Discrete Logarithm problem in Cryptography
	DLP for ZKPs
	Definitions
	Proofs of knowledge

	TEXT and TEXT Compositions
	Conjunction Composition TEXT
	Disjunction Composition TEXT

	Additional Topics on Zero-knowledge Proofs
	Composition of Zero-knowledge Proof Systems
	Sequential Composition
	Parallel Composition
	Witness Indistinguishability (WI)
	Concurrent Composition

	Commitment Schemes
	The TEXT-Coloring Problem
	Defining Commitment Schemes

	Non-Interactive proofs
	Walkthrough of an Illustrated NIZK (Sudoku Protocol)
	From Examples to Practice

	TEXT Problems and TEXT Results

	Zero-knowledge Databases
	Key-value Databases
	Building Blocks
	Elementary Databases
	Zero-knowledge EDBs (ZK-EDBs)
	Pedersen's Commitment Scheme
	Binary Trees

	Construction
	Merkle Tree (Committing steps)

	Proving Database Values
	Proof Construction of TEXT
	Proof Verification of TEXT
	The case TEXT
	Dealing with Collisions

	On Soundness and Zero-knowledge
	The Necessity for Zero-knowledge Databases
	Recent Advances in ZK-EDBs

	Zero-knowledge Graph Databases
	Graph Databases
	Comparison with Relational Databases
	The Necessity for Zero-knowledge Graph Databases

	Towards Zero-knowledge Graphs
	Querying Graph Databases
	Directed and Undirected Graphs
	Preliminaries

	Construction - Undirected Case
	Complete Graphs
	Edge Commitment Schemes
	Committing up to an Edge

	Zero-Knowledge Graph Databases
	An example of ZK-GD
	Contraction and Committing Steps
	Proving Graph Relations

	The Case of Bipartite Graphs
	Bipartite Committing

	On Soundness and Zero-Knowledge
	Communication Complexity
	Directed Case

	Conclusions and Open Problems
	Open Questions

	Augmented Model
	Schnorr's Protocol: Proof of Sigma Protocol
	Computational Number Theory and Algorithms
	Prime Numbers
	On Quadratic Residues
	On Discrete Logarithm
	Computing TEXT
	Computing Primitive Roots

	Bibliography

