
Enumerative perspectives on chord
diagrams

by

Lukas Nabergall

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2022

© Lukas Nabergall 2022

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Sergi Elizalde
Professor, Dept. of Mathematics,
Dartmouth College

Supervisor: Karen Yeats
Associate Professor, Dept. of Combinatorics and Optimization,
University of Waterloo

Internal Member: David Wagner
Professor, Dept. of Combinatorics and Optimization,
University of Waterloo

Internal Member: Kevin Purbhoo
Associate Professor, Dept. of Combinatorics and Optimization,
University of Waterloo

Internal-External Member: Jason Bell
Professor, Dept. of Pure Mathematics,
University of Waterloo

ii

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

Section 3.1 of this thesis is based on joint work with Ali Assem Mahmoud. The rest of the
thesis is the sole work of Lukas Nabergall.

iv

Abstract

The topic of this thesis is enumerating certain classes of chord diagrams, perfect match-
ings of the interval {1, 2, . . . , 2n}. We consider hereditary classes of chord diagrams that
are restricted to satisfy one of several connectedness properties: connectivity, 1-terminality,
and 1-sym-terminality (in order of increasing restrictedness). Such classes are defined by a
set of minimal forbidden subdiagrams or patterns, and we focus on forbidding graphically-
defined subdiagrams, in particular those whose intersection graph is isomorphic to a cycle.
There are exactly two cycle diagrams of size n: the top cycle Tn and bottom cycle Bn.
The class D(T⩾3) of diagrams avoiding a top cycle of size three or greater was previously

shown to be equinumerous with the class of -free diagrams by Jeĺınek, while the
connected version of this class was put in bijection with planar bridgeless combinatorial
maps by Courtiel, Yeats, and Zeilberger.

We begin by extending the recently developed automated enumeration framework Com-
binatorial Exploration of Albert, Baen, Claesson, Nadeau, Pantone, and Ulfarsson for enu-
merating combinatorial classes to chord diagrams. This framework algorithmically searches
for a combinatorial specification for a given class by decomposing the class using a fixed set
of decomposition strategies. Building off of their work, we construct a geometric version of
chord diagrams amenable to Combinatorial Exploration and then describe a series of de-
composition strategies for these geometric chord diagram classes. Most of these strategies
are based on those developed for permutation classes by Albert, Baen, Claesson, Nadeau,
Pantone, and Ulfarsson, but several appear to be new.

We then manually apply this framework to successfully enumerate a handful of diagram
classes, including C(,), C(T⩾3, B⩾3), D(, ,),
C(B⩾3), and T (B⩾3). All but the second class have not previously been enumerated,
and we give explicit closed-form formulas for each of them. As a corollary it follows
that the number |Cn+1(B⩾3)| of bottom-cycle-free diagrams of size n + 1 is equal to

|Dn(,)|, while |Cn+1(T⩾3, B⩾3)| = |Dn(, ,)|.
This appears to be a universal offset phenomenon—where connected classes are enumera-
tively equivalent to not-necessarily connected classes, the counting sequences are offset by
1. This points to a general map Cn+1 → Dn restricting to bijections on these connected
classes.

The restriction ψ of such a map can be explicitly obtained between 1-terminal diagrams
Tn+1 of size n + 1 and diagrams Dn of size n, and we give a novel description ψ, prove
that it is a bijection, and show that it restricts to a bijection between 1-terminal tree
diagrams T (T⩾3) = T (T⩾3, B⩾3) and noncrossing diagrams D(), thereby counting

v

the former. We then investigate the relationship between the map ψ and notion of higher
terminality analogous to higher connectivity, as well as relate it to increasing trees and
Stirling permutations. Finally, we obtain a characterization of closure under subdiagram
avoidance for ψ and its inverse, giving bijections for an infinite set of pairs of restricted
hereditary classes. We then obtain related results in a short study of 1-sym-terminal
classes.

Diagram classes defined by forbidding top cycles require alternative methods to those
used above. For this, we construct a novel tree-like decomposition for connected chord
diagrams. This gives a recurrence relation for the number of connected diagrams counted
by size and the index of the first so-called terminal chord in a total order known as the
intersection order. Applying the decomposition to connected top-cycle-free diagrams gives
a similar recurrence. We then use this decomposition to construct recursive bijections
between between C(T⩾3) and the class of connected -free diagrams, as well as
triangulations of a disk. Via prior work of Brown, the latter leads to an explicit formula
for the counting sequence of these diagram classes.

The recurrence relation for connected chord diagrams was previously implicitly obtained
in work of Marie and Yeats giving chord diagram expansion solutions to certain Dyson-
Schwinger equations from quantum field theory. Their proof was technically complex
and passed to certain recursively-defined binary trees. We generalize this work using our
connected diagram decomposition to solve a larger family of Dyson-Schwinger equations
via weighted generating functions for weighted connected chord diagrams. We then discuss
several conjectures towards obtaining similar solutions for more general and physically-
realistic Dyson-Schwinger equations.

vi

Acknowledgements

There’s an old Polish proverb that says, “It’s harder for the spider to catch the fly, than
for the fly to catch the horse.” Relatedly, it takes a village to write a PhD thesis. I’d like
to take the time to acknowledge all the members of that wonderful village.

I owe much to my supervisor Karen Yeats. She provided a great deal of the foundation
upon which this thesis rests, as well as steadfast guidance and the freedom to branch out
into those bits of combinatorics that most interested me. I’d also like to thank the rest of
the research group, especially Nick Olson-Harris, Ali Assem Mahmoud, William Dugan,
and Iain Crump. Nick in particular for useful and fun discussions during the writing of
the main paper this thesis is based on, and Ali for a fruitful collaboration and interesting
recent conversations. May terminal chords live on forever.

While the math was excellent, the friends I met along the way were even better. In
the antichain order, thanks to James Davies, Santiago Estupiñán, Soffıa Árnadóttir, Va-
lerie Gilchrist, Tina Chen, Andrew Jena, Weston Ford, Aristotelis Chaniotis, Shannon
Veitch, Madison Van Dyk, Ben Moore, Martin Pei, Matthew Kroeker, Benjamin Anderson-
Sackaney, Rose McCarty, Leah Cousins, Ali Assem Mahmoud, David Alemán Espinosa,
Luke MacLean, Evelyne Esserre, Nathan Benedetto Proenca, Alan Wong, Fernanda Rivera
Omana, Kazuhiro Nomoto, Spencer Wilson, Abbas Abou Daya, Nick Olson-Harris, Sean
Kafer, Bethany Gunter, Tim Miller, Dmitry Sayutin, Ronen Wdowinski, Josh Gunter,
Daniel Oliveira, Kelvin Chan, Iain Crump, Josephine Reynes, Hidde Koerts, Jason Qu,
Naomi Graham, Sabrina Lato, Everett Patterson, Prerna Angrish, Evan Haithcock, and
Mathieu Rundström. For the absurd conversations, the incomprehensible inside jokes, the
rad parties, the strats, the late night escapades, and just being awesome.

Special thanks also go to friends gained away from Waterloo, whether in Florida or
virtually. Firstly, Alejandro Navas, the best friend I could hope for throughout this journey.
Mark Steele, who may have sent more links to random things of interest than most people
experience in a lifetime. Micaela Newman, who made visits to Florida extra fun. And
Eric Winsberg, Sudha Lakshmi, and Michael Alcorn, for bringing many doses of sanity
and humor that were much needed amidst the historic and paradigm-shattering event that
is the COVID-19 pandemic.

Further special thanks to my family, including my mom Jette, dad Scott, and brother
Bjorn. Your unwavering support was vital, especially in the many calls enjoying so many
excellent series together. Also, thanks to Oliver; even though you don’t work your enthu-
siasm is unmatched.

vii

Finally, I would also like to thank all members of the committee for reading this thesis,
especially Kevin Purbhoo, who provided a most valuable critique, and I would like to thank
the rest of the faculty and staff of the Combinatorics and Optimization department.

viii

Table of Contents

List of Figures xi

List of Tables xiv

1 Introduction 1

1.1 Set partitions and chord diagrams . 3

1.2 Graphical features of diagrams . 7

1.3 Ordered features of diagrams . 10

1.4 Restricted hereditary classes and pattern avoidance 14

1.4.1 Permutations . 14

1.4.2 Partitions and diagrams . 16

1.5 Overview . 18

1.6 Notation . 18

2 A structural enumeration framework 19

2.1 Gridding and tiling diagrams . 24

2.1.1 Visualizing gridded objects . 26

2.2 Combinatorial strategies . 30

2.2.1 Linkage deletion . 33

2.2.2 Linkage inferral . 34

2.2.3 Point and chord placement . 35

ix

2.2.4 Generalized factorization . 38

2.2.5 Additional strategies . 41

2.3 Example applications . 41

2.3.1 Structural trees . 45

3 Enumerating chord diagram classes 48

3.1 Avoiding bottom cycles . 53

3.2 Avoiding top cycles . 61

3.2.1 Grouping and tracing . 62

3.2.2 A recursive bijection . 64

3.2.3 Triangulations, maps, and other friends 72

3.3 The map ψ : Tn+1 → Dn . 77

3.3.1 Higher terminality . 80

3.3.2 Relationship with other double factorial objects 82

3.3.3 Closure under subdiagram avoidance 84

3.4 A primer on 1-sym-terminal classes . 90

4 Dyson-Schwinger generating equations 95

4.1 Solving tree-like equations . 98

4.1.1 A differential equation for the binomial 1-cocycle property 104

4.2 Towards generalizing DSEs . 109

4.2.1 Analytic Dyson-Schwinger equations, briefly 110

4.2.2 Solving generalized tree-like systems 112

5 Conjectures, speculations, and conclusions 115

References 118

APPENDICES 127

A Proof tree for the class C(B⩾3) 128

x

List of Figures

1.1 A chord diagram of size 6 with two indecomposable components. 6

1.2 A connected diagram of size 7. 8

1.3 Top: top and bottom cycles, the only diagrams whose intersection graph
form an induced cycle. Bottom: the unique diagram whose intersection
graph forms a nonnesting induced path. 9

1.4 A connected diagram C with three terminal chords with indices 4, 5, and 6
in the intersection order, which differs from the standard order on C. . . . 11

1.5 A 1-terminal diagram. The red chord is the unique terminal chord, and
there is no nonnesting path between the two blue chords. 12

2.1 A tiling with obstructions, requirements, and linkages depicted using shortcuts. 30

2.2 Column separation with c = 1 and S = (1, 3) is used to isolate nonempty
cells (1, 1) and (1, 3) from one another in a proof tree for noncrossing dia-
grams (see Section 2.3). 32

2.3 Starting with the leftmost tiling, we apply point placement withR = (11, (0, 0)),
ℓ = 1, and d =← to obtain the second tiling from the left. The third tiling is
then obtained by further applying point placement to the second point of the
requirement in cell (1, 2). This sequence of point placements is equivalent to
applying the chord placement strategy with R = (11, (0, 0)), ℓ1 = 1, ℓ2 = 2,
and d =←. Applying obstruction deletions and removing empty rows and
columns then gives the rightmost tiling. This strategy chain occurs in the
proof tree for noncrossing diagrams (see Section 2.3). 37

2.4 A visual representation of the proof tree for noncrossing diagrams D(). 42

2.5 A proof tree for the class C(,). We save space by using
the symbol ≈ to denote the two obstructions in the root tiling T1. 44

xi

2.6 A structural tree for the class D(). 46

2.7 A structural tree for the class C(,). 47

3.1 A structural tree for the class C(T⩾3, B⩾3). 49

3.2 A proof tree for the class C(T⩾3, B⩾3) of tree diagrams. 50

3.3 A structural tree for the class D(, ,). 52

3.4 A structural tree for the class C(B⩾3) of connected bottom-cycle-free diagrams. 54

3.5 A structural tree for the class D(,). 57

3.6 A proof tree for the class D(,). The symbol ≈ denotes
the two obstructions in the root tiling T1. 58

3.7 A structural tree for the class T (B⩾3) of 1-terminal bottom-cycle-free dia-
grams. 60

3.8 A representative visualization of the source-sink group, indicated by the grey
bracket, of a chord c in a connected diagram of valency m. 62

3.9 Above: a 1-terminal diagram with the traced subdiagram of the rightmost
red chord indicated in red. Below: another 1-terminal diagram with the
traced subdiagrams of the neighbors of the terminal chord colored. 63

3.10 A connected diagram and its permuted decomposition defining the maps α
and β. The source-sink groups used in the construction of β are indicated
by the brackets below the three diagrams on the bottom of the figure. . . . 65

3.11 A top-cycle-free diagram and its decomposition defining the maps α and β. 69

3.12 A -free diagram and its decomposition defining the maps α and β. . 71

3.13 The recursive construction of a triangulation and its image chord diagram
under the bijection ω. The exterior vertex labels are taken from the decom-
position map γ. 74

3.14 An example of a 1-terminal diagram and its image diagram under the bijec-
tion ψ. The source-sink groups “flipped” into sink-source groups by ψ are
indicated by the horizontal brackets, with the “flip axes” indicated by the
dotted lines, and the sources and terminal chord of T are indicated in red. 78

3.15 A Stirling permutation σ such that ζ−1(σ) ̸= (ψ ◦ θ ◦ η−1)(σ). 84

3.16 The five types of great non-permutation diagrams. The grey section of each
diagram indicates the permutation part of the diagram. 88

xii

3.17 The two types of near permutation diagrams. 89

3.18 An example of a 1-sym-terminal diagram and its image diagram under the
map χ. The root and terminal chords are indicated in red and the left and
right point groups and their reverses are indicated by the horizontal brackets. 94

4.1 The root-share decomposition (C1, C2) of C, with the insertion index sup-
pressed. 106

A.1 The first part of a proof tree for the class C(B⩾3) of connected bottom-cycle-
free diagrams. 129

A.1 The second part of a proof tree for the class C(B⩾3) of connected bottom-
cycle-free diagrams. 130

xiii

List of Tables

5.1 A sampling of diagram sets and their conjectured counting sequences. . . . 116

xiv

Chapter 1

Introduction

A combinatorial class, or simply class, A is a countable set of objects equipped with a
size function | · | : A → Z⩾0 such that there are a finite number of objects a ∈ A of a
given non-negative integer size |a|. Most unlabelled objects and objects labelled with a
fixed set of labels studied in combinatorics form combinatorial classes; examples include
permutations, graphs, integer partitions, set partitions, standard Young tableaux, words
on a finite alphabet, and many others.

The most basic question one can ask about combinatorial classes is the enumeration
problem: how many objects of a given size are there, that is, what is the cardinality of
the finite set An of objects of size n in a class A? An answer to this question ideally
comes in the form of an explicit closed-form formula for the number |An|, a closed-form

expression for the ordinary or exponential generating functions
∑

a∈A x
|a| and

∑
a∈A

x|a|

|a|! ,
or a size-preserving bijection from A to some other class B about which we have more
information. Failing this, we may also obtain enumerative information in the form of e.g.
a recurrence for the counting sequence (|An|)n∈Z+ , a recursion for a generating function of
A, or an asymptotic for |An|. See the reference texts [95, 43, 5] for further details on this
general context.

Solutions to the enumeration problem such as these can often be attained when the
combinatorial class is structured in some sufficiently nice way. For many classes A, the
objects of A are equipped with a notion of subobjects; informally speaking, a ∈ A contains
b ∈ A as a subobject if |b| ⩽ |a| and there is a way of identifying a ‘part’ of a with b.
Typically, a and b are sets with some structure and identification occurs via a suitably
defined homomorphism from b to a. Examples include patterns in permutations, subgraphs
and minors of a graph, and subwords of a word. A class A is hereditary if it is closed under

1

taking subobjects, that is, for a ∈ A and a subobject b of a, we have b ∈ A. Many of
the most commonly studied classes in combinatorics are hereditary, including all of the
above examples as well as, most notably, permutations avoiding a given set of patterns
and minor-closed classes of graphs. Hereditary classes are uniquely defined by a set X of
minimal subobjects not contained in any object of the class; we refer to these as theminimal
forbidden subobjects of a hereditary class. Given a binary property p : A → {True, False}
on a class A, we call a subclass B of A such that p(b) = True for all b ∈ B a restricted
class. Restricted hereditary classes defined by taking a restricted subclass of a hereditary
class capture even more of the combinatorial classes studied in literature, including e.g.
connected graphs, involutions, alternating Baxter permutations [27], set partitions with
every block of a fixed size, etc.

In this thesis, we study the class D of chord diagrams. A chord diagram of size n
is a perfect matching of the set [2n] := {1, 2, , 2n} whose elements are called chords.
Such objects have also been called matchings [58, 23], complete pairings [97], and interval
systems [32], and can be viewed as set partitions with every block of size 2; we leave formal
definitions and further details to Section 1.1 and later sections of this chapter. Here chord
diagrams are rooted at the chord containing 1, but the term has also been used to refer to
the unrooted object obtained after modding out by cyclic permutations of [2n]. For brevity,
we will use the shortened term ‘diagram’ to refer to chord diagrams. The enumeration
problem for D is easy to solve: by removing the root chord and considering all possible ways
of reinserting it we can show that there are (2n−1)!! = (2n−1)(2n−3) · · · 3 ·1 diagrams of
size n. Other objects counted by double factorials include double occurrence words, fixed-
point-free involutions, ternary trees, increasing ordered trees, and Stirling permutations
[50]. In the literature, chord diagrams seemed to have been first studied by Touchard
[101]. Since then there has been much focus on the enumeration of various subclasses of
chord diagrams by size as well as other statistics (e.g. [87, 97, 98, 81, 42, 58, 24, 85, 9, 30]).

The standard subobject notion for chord diagrams is that of a subdiagram. Roughly, a
diagram D′ is a subdiagram of a diagram D if D′ can be obtained by removing a subset of
the chords of D and standardizing the ground set of the resulting diagram to [2|D′|]. We
review the study of hereditary classes of chord diagrams with subdiagrams as the notion
of subobject in Section 1.4, as well as related hereditary classes involving other types of
objects. One of the most prominent and natural types of diagrams studied in the literature
are connected diagrams, which are those diagrams C for which there is no proper interval
of [2n] that is the ground set of a subdiagram of C. Connectivity can also be defined via
the intersection graph of a diagram C, the directed graph on the chords of C formed by
adding an edge (c, c′) if c′ crosses c on the right; C is connected if and only if its intersection
graph is weakly connected. Undirected intersection graphs of diagrams, known as circle

2

graphs, have been studied as pure graph objects (e.g. [80, 32]) and in particular play a
major role in vertex minor theory [13]. We formally define and discuss connectivity for
diagrams as well as related graphical features in Section 1.2.

Outside of enumerative combinatorics and graph theory, chord diagrams have also ap-
peared in diverse areas such as knot theory [10], bioinformatics [55] and, most relevantly
for the present purposes, physics. In 2013, Marie and Yeats [75] solved a certain Dyson-
Schwinger equation from quantum field theory. Dyson-Schwinger equations are the equa-
tions of motion for quantum fields; see Chapter 4 and references mentioned therein for
further details. The particular equation studied by Marie and Yeats has a recursive form
similar to standard functional equations for the generating function of rooted trees. The
solution of Marie and Yeats came as a series expansion indexed by connected diagrams
and weighted by coefficients indexed by certain novel parameters of those diagrams. We
define and further motivate the study of these parameters in Section 1.3. Hihn and Yeats
[54] generalized their approach and obtained a chord diagram expansion solving a more
general family of Dyson-Schwinger equations.

We will principally be interested in the enumeration and structure of restricted hered-
itary classes of diagrams defined by possibly imposing a connectedness property. Beyond
connectivity itself, additional connectedness properties of interest are introduced in Sec-
tion 1.3, partially motivated by the physics work introduced above.

After formally introducing the objects we will be working with, as well as all relevant
properties, features, and basic enumerative and structural facts, we overview the principal
body of literature on restricted hereditary classes and pattern avoidance in Section 1.4.
We then summarize our results and contributions in Section 1.5, as well as give a roadmap
of the organization of the thesis.

1.1 Set partitions and chord diagrams

We now turn to formally introducing the objects we will be working with. We begin
in this section with set partitions, an important object across the field of combinatorics.
Since we will not be dealing with integer partitions in this document, we use the generic
term ‘partition’ to refer to set partitions. For further information than discussed here,
Mansour [73] offers an extensive reference text on set partitions. We leave discussion on
the enumeration of classes of partitions and diagrams to Section 1.4.

Definition 1.1.1. A partition P of a set X is a set of non-empty subsets of X such that
each element of X is in exactly one subset in P . The elements of X are called points, the

3

subsets in P are called blocks or parts, and |X| is the size of P . A point contained in a
block of size one is called isolated. The partition P is uniform if every block of P has the
same size and k-uniform if that size is k. A 2-uniform partition is also known as a perfect
matching, while a partition with every block having size at most 2 is known as a matching.

When X is a set endowed with a total order then it is standard to index the blocks
B1, . . . , Bk of P according to the order of their smallest points, that is, i < j if and
only if minBi < minBj. In the sequel, unless otherwise stated, we assume all partitions
are on totally ordered sets and index the blocks of a partition in this way, and we write
B1 < · · · < Bk. For brevity we write blocks as strings of points and P = B1/B2/ · · · /Bk.
We write [x]P for the block of P containing a point x. Every partition P of X can be
identified with the equivalence relation ∼P such that for any x, y ∈ X we have x ∼P y if
and only if [x]P = [y]P . An example of a partition of the set [7] is given below:

13/257/4/6

Partitions P are typically depicted visually by drawing the points of P abstractly as dots
aligned horizontally and connecting consecutive points in a block by an overarching arc;
e.g. the above example becomes

The arcs of a partition may cross (as the leftmost two do here) or nest. Such config-
urations were studied as an early example of pattern avoidance in set partitions [101, 87,
64, 23, 17, 95].

Definition 1.1.2. For a partition P , a set of four points w < x < y < z not all in the
same block forms a crossing if w ∼P y and x ∼P z and a nesting if w ∼P z and x ∼P y.
A k-crossing is a set of 2k points x1 < · · · < xk < y1 < · · · < yk such that for any
1 ⩽ i < j ⩽ k the points xi, xj, yi, yj form a crossing. Similarly, a k-nesting is a set of
2k points x1 < · · · < xk < yk < · · · < y1 such that for any 1 ⩽ i < j ⩽ k the points
xi, xj, yj, yi form a nesting. The partition P is k-noncrossing (resp. k-nonnesting) if it
has no k-crossings (resp. no k-nestings); if k = 2 we simply refer to it as noncrossing or
nonnesting, respectively.

Noncrossing partitions in particular appear in a surprisingly large number of contexts
[76], including most prominently free probability theory [94].

A partition P of a set X = {x1 < . . . < xn} can also be represented by the word
w(P) = w1 · · ·wn with wi = j if xi ∈ Bj. These words are called restricted growth functions
because the growth of their letters from start to end is in a certain sense ‘restricted’. In
particular, they are defined by the conditions

4

1. w1 = 1,

2. for i ⩾ 2, we have wi ⩽ 1 + maxj<iwj.

Classes of restricted growth functions have been studied by Sagan [90] and Campbell,
Dahlberg, Dorward, Gerhard, Grubb, Purcell, and Sagan [20]. There are two natural
notions of containment of set partitions commonly considered in the literature.

Definition 1.1.3. A partition obtained by removing points from the blocks of P is a
subpartition of P .1 A homomorphism between two partitions P and Q of sets X and Y
is a map f : X → Y such that f(B) is a subset of a block of Q for all B ∈ P . It is
an isomorphism if f has an inverse that is also a homomorphism. For totally ordered
X and Y the map f is order-preserving if f(x) < f(y) whenever x < y. The partition
P is said to contain Q if there exists an order-preserving map f between Q and P that
restricts to an isomorphism onto the image f(Q), in which case f(Q) is an occurrence of
Q in P . The partition P is said to r-contain Q if P has a subpartition P ′ = {B′

1, . . . , B
′
ℓ}

order-isomorphic to Q such that

B′
1 < · · · < B′

ℓ and [minB′
1]P < · · · < [minB′

ℓ]P ,

in which case P ′ is an r-occurrence of Q in P . The partition P avoids Q, or is Q-free, if it
does not contain Q, and r-avoids Q if it does not r-contain Q.

A partition Q such that there exists a bijective order-preserving homomorphism Q→ P
is commonly known as a refinement of P . This notion generates a partial order on the set
Pn of partitions of size n of [n], making it not only a poset but a lattice (see e.g. [7] for
further information).

Observe that a partition P is k-noncrossing if and only if it avoids 1(k + 1)/2(k +
2)/ · · · /k(2k) and k-nonnesting if and only if avoids 1(2k)/2(2k − 1)/ · · · /k(k + 1). Note
that r-containment is stronger than containment, e.g. 145/23 contains 12/34 but does not
r-contain it. The former containment notion is more naturally defined via restricted growth
functions: P r-contains Q if and only if there is a subword of w(P) order-isomorphic to
w(Q). This motivates generalizing containment of partitions to a containment relation
between partitions and words.

Definition 1.1.4. Let u and w be words on totally ordered alphabets Σ1 and Σ2. A
word obtained by removing letters from w is a subword of w. A homomorphism between

1Note that the ground set changes.

5

Figure 1.1: A chord diagram of size 6 with two indecomposable components.

w = w1 · · ·wn and u is a map f : Σ2 → Σ1 such that f(w1) · · · f(wn) is a subword of u.
The word w contains u if there exists an order-preserving homomorphism f between u and
w. Then a partition P contains the word u if w(P) contains u.

This allows for a more general notion of a pattern in a partition, as we will use in
Chapter 2.

We now focus on a special kind of partition, the main object of this document: chord
diagrams.

Definition 1.1.5. A chord diagramD of size n is a perfect matching of [2n] = {1, 2, . . . , 2n}.
The blocks of D are referred to as chords. Chord diagrams are rooted objects with the
chord containing 1 as the root of D. Note that the empty set ∅ is the diagram of size 0.
By convention, the chords of D are written as ordered pairs (x, y) with x < y; x and y are
called the source and sink, respectively, of chord (x, y).

Sources have also been referred to as first endpoints or openers, while sinks have cor-
respondingly been called second endpoints or closers (e.g. [8]). Figure 1.1 displays a
representative example of a chord diagram.

Definition 1.1.6. For a diagram D, a subset C ⊆ D is a subdiagram of D.

Note that this is distinct from the notion of a subpartition of a diagram; in particular,
there are such subpartitions that are not subdiagrams, namely those that contain isolated
points. If a diagram D contains an occurrence C of diagram D′ we often treat C and D′ as
interchangeable as appropriate. Observe that while containment and r-containment differ
with a chord diagram only as the parent partition (e.g. 14/23 contains 12/3 but does not
r-contain it), they agree when a chord diagram is both the parent and child.

Definition 1.1.7. Let D be a diagram. Two chords c1 = (x1, y1) and c2 = (x2, y2) of D
with x1 < x2 are said to cross if x2 < y1 < y2 and nest if y2 < y1. The pair (c1, c2) then
forms a crossing or nesting, respectively. In the former case c2 is a right neighbor of c1
and c1 is a left neighbor of c2, while in the latter case c1 is the top chord and c2 is the
bottom chord of the nesting. The (directed) intersection graph G(D) of D has the chords
as vertices and two chords c1 and c2 joined by a directed edge c1c2 if c2 is a right neighbor
of c1. The circle graph of D is obtained by dropping directions from G(D).

6

We extend the notion of nesting to subdiagrams in the obvious way: C ′ ⊆ D is nested
under C ⊆ D if each chord of C ′ is nested under every chord of C. Note that the crossing
and nesting notions on diagrams and partitions agree. Correspondingly, k-crossings, k-
nestings, k-noncrossing, k-nonnesting, etc. also apply to diagrams; e.g. a diagram is called
nonnesting (resp. noncrossing) if it contains no nestings (resp. no crossings).

There are several notions of reducibility for chord diagrams that are both useful for
solving enumeration problems and interesting features in and of themselves (see e.g. [3]
for further information on reducibility in a more general context). The most basic is
decomposability.

Definition 1.1.8. Let D1 and D2 be diagrams. The concatenation of D1 and D2 is the
diagram D1D2 of size |D1| + |D2| that restricts to D1 on the first 2|D1| points and to D2

on the remaining 2|D2| points. A diagram D is decomposable if it can be expressed as the
concatenation of two strictly smaller diagrams and indecomposable otherwise.

By iteration we can of course speak of concatenating more than two diagrams. Then
the central fact is that chord diagrams can be uniquely decomposed into indecomposable
pieces, matching the language.

Lemma 1.1.9. Every diagram can be uniquely expressed as the concatenation of a sequence
of indecomposable diagrams.

Proof. For a diagram D, let D1 be the maximal indecomposable subdiagram of D contain-
ing the root chord of D and D′ = D −D1. Inductively we get the unique decomposition
D2 · · ·Dk of D′ into indecomposable diagrams, so D = D1D2 · · ·Dk. This decomposition
of D is clearly unique.

The indecomposable subdiagrams provided by this lemma are referred to as the inde-
composable components of the diagram, the maximal non-empty indecomposable subdia-
grams.

1.2 Graphical features of diagrams

In this section we introduce a number of features and properties of chord diagrams moti-
vated by graph theory.

7

Figure 1.2: A connected diagram of size 7.

Definition 1.2.1. The vertex connectivity κ(C), or simply connectivity, of a diagram C is
the vertex connectivity κ(G(C)) of its circle graph, that is, one more than the maximum
number of vertices whose removal cannot disconnect G(C). The edge connectivity λ(C) of
C is defined analogously by removing edges instead of vertices. A diagram C is k-connected
if κ(C) ⩾ k; in particular, it is connected if it is 1-connected. We consider the empty graph
and, therefore, the empty diagram to be disconnected.

A disconnected diagram can be equivalently defined as one which can be partitioned
into two nonempty subdiagrams with no crossings between them. If we also exclude nest-
ings between the subdiagrams we get the stronger notion of decomposability from Defi-
nition 1.1.8. The diagram in Figure 1.1 is disconnected, while Figure 1.2 illustrates an
example of a connected diagram. Connectivity was of primary interest from the beginning
of the study of chord diagrams by Touchard [101] and Stein and Everett [97, 98]. There
are two basic facts we will require about connected diagrams.

Lemma 1.2.2. The diagram obtained by removing the root chord of a connected diagram
can be uniquely expressed as a sequence of pairwise nested connected diagrams; in particu-
lar, it is indecomposable.

Proof. For a connected diagram C, let C ′ be the diagram obtained by removing the root
chord c of C. If C ′ cannot be expressed as a sequence of nested connected diagrams then
there are maximal connected subdiagrams C1 and C2 of C ′ such that all the chords of
C1 lie to the left of all the chords of C2. But then in C the root chord c cannot cross a
chord of both C1 and C2, implying that C is disconnected, a contradiction. This gives the
decomposition; uniqueness is apparent.

Riordan [87] was the first to use this decomposition in the following useful form: every
connected diagram C can be decomposed into the topmost connected subdiagram C1 guar-
anteed by Lemma 1.2.2 and the connected subdiagram C − C1 containing the root chord.
This decomposition has been referred to as the root-share decomposition [75].

Lemma 1.2.3. Every diagram can be uniquely decomposed into the following:

8

Figure 1.3: Top: top and bottom cycles, the only diagrams whose intersection graph form
an induced cycle. Bottom: the unique diagram whose intersection graph forms a nonnesting
induced path.

• a noncrossing partition of [2n] into even-sized blocks, and

• a sequence of connected diagrams.

Proof. For a noncrossing partition P of [2n] into even-sized blocks B1/B2/ · · · /Bk and a
sequence (C1, . . . , Ck) of connected diagrams, clearly replacing each block Bi by perfect
matching Ci on the ground set Bi gives a chord diagram. In the other direction, for a
diagram D let C1, . . . , Ck be the maximal connected subdiagrams of D ordered by their
first sources. Then define Bi to be the ground set of Ci in D. Then clearly B1/B2/ · · · /Bk

is a noncrossing partition of [2n] into even-sized blocks, as required.

The connected diagrams returned by this lemma are the connected components of the
diagram, the maximal non-empty connected subdiagrams.

There is an important theorem in graph theory characterizing k-connectivity in graphs
in terms of the existence of certain subgraphs, induced paths. Recall that a subgraph H
of a graph G is induced if H can be obtained from G by removing vertices of G.

Theorem 1.2.4 (Menger [77]). A graph is k-connected if and only if it contains k internally-
disjoint induced paths between any two vertices.

This theorem applies to chord diagrams by way of their intersection graphs. While
there are many diagrams of size n whose intersection graph is a path, the number of such
diagrams reduces to one if we further require that the diagram be nonnesting; see Figure 1.3.
There are many other types of graphs prominently studied in graph theory, especially
as subgraphs; most notably among them, cycles. We also have a near representation
uniqueness property for cycles in diagrams.

9

Lemma 1.2.5 (Bouchet [13]). There are exactly two diagrams whose undirected intersec-
tion graph is isomorphic to a cycle of size n, the top cycle diagram Tn and bottom cycle
diagram Bn.

Figure 1.3 depicts these diagrams. They are named “top cycle” and “bottom cycle”
because moving the top (i.e. rightmost) point of the top cycle to the bottom (i.e. root) of
the diagram transforms it into a bottom cycle. Top cycle diagrams have appeared at least
three times in the literature, including in a paper of Jeĺınek on certain hereditary classes of
diagrams [58] and the work of Courtiel, Yeats, and Zeilberger [30] relating chord diagrams
to certain combinatorial maps. In neither of these cases were they introduced from the
graph-theoretic perspective.

We will often refer to chord diagrams by the graphical features of their intersection
graphs, especially as it relates to excluding certain cycle diagrams. In this way we can
speak of e.g. triangle-free diagrams, tree diagrams, bipartite diagrams, etc.

1.3 Ordered features of diagrams

We now turn to introducing order-based features of chord diagrams, some of which relate to
the graphical features described previously. While the definitions in the previous sections
are largely standard in the combinatorics literature, the following are more unique to our
context and most of them first appeared in the paper of Marie and Yeats [75] (see also
[54, 28, 30, 29]).

The directed intersection graph is acyclic, so it induces a partial order on the chords by
reachability. We define several different total orders on the chords of a diagram D which
extend this partial order.

Definition 1.3.1. The standard order < of D is given by the order of the sources of the
chords of D. For connected D, the intersection order ≺ is defined recursively as follows:
starting with 1, label the root chord of C with the next available label, then remove the
root and label the resulting connected components recursively in order of the standard
order of their roots. The labels determine the intersection order.

The standard order will be used as the default order on a chord diagram unless stated
otherwise. Note that the standard order and intersection order generally differ substantially
(see Figure 1.4). If we replace ‘connected’ with ‘indecomposable’ and label the components
in order of the reverse standard order of their roots then we get the peeling order, which

10

Figure 1.4: A connected diagram C with three terminal chords with indices 4, 5, and 6 in
the intersection order, which differs from the standard order on C.

for some purposes is in fact equivalent to the intersection order (see [30] for details). We
are interested in certain special chords which are the maximal elements in the reachability
poset defined by the intersection graph.

Definition 1.3.2. Let D be a chord diagram. For k ∈ N, a chord c ∈ C is k-terminal
if it is incident to at most k − 1 outgoing edges in G(D), that is, it has at most k − 1
right neighbors. We refer to 1-terminal chords as simply terminal; these are the maximal
elements in the reachability poset. We extend this language in an opposing direction to
diagrams: D is k-terminal if there is no j-terminal chord before the jth-to-last2 chord
for all 1 ⩽ j ⩽ k. Furthermore, the terminality of D is k if D is k-terminal but not
(k + 1)-terminal.

See Figure 1.4 for an example of terminal chords in a diagram and Figure 1.5 for
an example of a 1-terminal diagram. Since the chord with rightmost sink in each con-
nected component is necessarily terminal, it follows immediately from the definition that
k-terminal diagrams are connected and the last k + 1 chords form a clique; in particular,
there are exactly j j-terminal chords for all 1 ⩽ j ⩽ k. Furthermore, clearly k-terminal
diagrams are also j-terminal for 1 ⩽ j < k, while k-terminal chords are also ℓ-terminal
for ℓ > k. While, as indicated above, this makes k-terminality a kind of mirrored notion
for diagrams relative to the notion for chords, the fact that restrictions on (⩽ k)-terminal
chords define k-terminality in diagrams motivates the shared terminology.

The indices of the terminal chords will play an important role in Chapters 3 and 4.
Accordingly, we will denote the index of the jth terminal chord in the intersection order
of a connected diagram C by tj(C). We now record a series of basic facts about these
orders and 1-terminal objects, most of which have not appeared in the existing literature.
For the rest of this section, let C be a connected diagram of size n with t1(C) = k and
c1 ≺ c2 ≺ · · · ≺ cn be the chords of C in the intersection order. Note that if t1(C) = 1,

2Referring, as always unless otherwise indicated, to the standard order.

11

Figure 1.5: A 1-terminal diagram. The red chord is the unique terminal chord, and there
is no nonnesting path between the two blue chords.

that is, the root chord is terminal, then it is the only chord of C, while if t1(C) = n then
C is 1-terminal.

Lemma 1.3.3. In the standard order, we have c1 < c2 < · · · < ck; that is, the intersection
order and standard order agree in a relative sense up to the first terminal chord in the
intersection order, which is the chord with rightmost sink, that is, containing 2n.

Proof. Note that the root chord comes first in the standard order and if we remove it to
obtain an indecomposable diagram C ′, ck is also the first terminal chord in the outermost
connected component of C ′. With these facts the result follows by applying induction to
the outermost component.

The second part of this lemma was observed by Courtiel and Yeats [28] in their work
on terminal chords. As a consequence, the intersection order and standard order are
equivalent on 1-terminal diagrams. The other direction does not hold; there are diagrams
with multiple terminal chords in which the two orders agree (e.g. take a root crossing a
set of terminal chords which all pairwise nest).

Lemma 1.3.4. The indecomposable components C1, C2, . . . , Cm remaining after removing
c1, c2, . . . , ck have no right neighbors in C.

Proof. Since the intersection order extends the partial order on chords induced by the
directed intersection graph, the chords c1, . . . , ck can only cross chords in C1 ∪ · · · ∪ Cm

on the left. Since these chords are the only neighbors of C1, . . . , Cm by specification, the
statement follows.

We have the following result, which leads to an analogue of Menger’s theorem for 1-
terminality.

Lemma 1.3.5. There exists a nonnesting induced path in {c1, c2, . . . , ck} from cj to ck for
all 1 ⩽ j ⩽ k. In particular, the chords c1, c2, . . . , ck induce a 1-terminal subdiagram.

12

Proof. If n = 1, the result holds trivially. Otherwise, remove the root and consider the
outermost component D of the resulting indecomposable diagram. Inductively, for all
2 ⩽ j ⩽ k there is a nonnesting induced path Pj ⊆ {c2, . . . , ck} from cj to ck in D. Since
C is connected, by the order extension property the source of c2 lies before the sink of c1.
Furthermore, ck either crosses the root or its source lies after the sink of the root. Thus
some chord in P2 crosses c1; choose such a chord ci with i maximum and let P ′

2 be the
subpath of P2 beginning at ci. Then {c1} ∪ P ′

2 is a nonnesting induced path from c1 to ck
in C.

One can check that this proof actually implicitly constructs nonnesting induced paths
to the first terminal chord defined by the property that the (i + 1)th chord of the path is
the rightmost neighbor in {c1, c2, . . . , ck} of the ith chord. It also gives a characterization
of 1-terminality.

Corollary 1.3.6. The following are equivalent.

(i) C is 1-terminal.

(ii) C − c1 is 1-terminal.

(iii) There exists a nonnesting induced path from c to cn for all c ∈ C.

Proof. Lemma 1.3.5 gives the equivalence of (i) and (iii), while the fact that the root
c1 is not a right neighbor of any chord straightforwardly implies that (i) and (ii) are
equivalent.

The above results begin to illustrate how 1-terminality can be thought of as a more well-
behaved notion of ‘ordered’ connectivity. In particular, for vertex connectivity, a version
of (ii) no longer applies and we drop “nonnesting” to get a version of (iii). We will see
further evidence for this view later in the thesis. Note that top cycles are 1-terminal and
bottom cycles are not. Figure 1.5 illustrates a 1-terminal diagram with two chords that
are not mutually contained in a nonnesting induced path, indicating that Corollary 1.3.6
cannot be strengthened to get such a path between e.g. any two nonnesting chords absent
a stronger hypothesis.

One can also symmetrize the notion of 1-terminal. Let DR be the diagram obtained
by reversing the order of the points of D. Define a diagram D to be 1-sym-terminal if D
and DR are 1-terminal. A symmetric version of Corollary 1.3.6 holds for 1-sym-terminal
diagrams.

13

Lemma 1.3.7. The following are equivalent.

(i) C is 1-sym-terminal.

(ii) There exists a nonnesting induced path from c to both c1 and cn for all c ∈ C.

1.4 Restricted hereditary classes and pattern avoid-

ance

In this section we review much of the existing literature on pattern avoidance in permuta-
tions, set partitions, and chord diagrams. Pattern avoidance is the primary language used
to frame and describe restricted hereditary classes in enumerative combinatorics. The lit-
erature on this subject is so vast that we will only touch on a small fraction of it. See the
survey of Kitaev and Mansour [63] and reference text of Kitaev [62] for further information
and references.

Recall that hereditary classes are uniquely defined by a set of minimal forbidden sub-
objects. For a class A equipped with a subobject notion, we write A(X) for the hereditary
class with minimal forbidden subjects X.

1.4.1 Permutations

Let S be the class of permutations. As is the case for most of the commonly-studied classes
in combinatorics, the enumeration problem for S is trivial: there are n! permutations of
size n, that is, |Sn| = n!. In the enumerative context, the principal notion of subobject for
permutations is that of a pattern. A permutation σ ∈ Sn has an occurrence of the pattern
τ ∈ Sk if there exist 1 ⩽ i1 < i2 < · · · < ik ⩽ n such that there is an order-preserving
isomorphism between σ(i1)σ(i2) · · ·σ(ik) and τ . Beyond S itself, there have been thousands
of hereditary classes S(T) defined by avoiding a given set T of patterns enumerated over
the last seventy years. We give a brief overview of some of the most prominent results.

A classic theorem of Erdős and Szekeres [40] states that any permutation of size (r −
1)(s− 1) + 1 contains one of the patterns 12 · · · r or s · · · 21. It follows that the number of
permutations avoiding both of these patterns is finite for any given r, s ⩾ 1. Furthermore,
it is trivial to see that Sr(21) = {12 · · · r} and Sr(12) = {r · · · 21}. Following Hammersley’s

14

[53] enumeration of S(321), Knuth [67] showed that for any τ ∈ S3, we have |Sn(τ)| = Cn,
where

Cn =
1

n+ 1

(
2n

n

)
is the nth Catalan number (see [93, A000108]), which has the algebraic generating function
1−

√
1−4x
2x

. Sets of patterns that generate hereditary classes with the same counting sequence
are typically called Wilf-equivalent, meaning that they are in the same Wilf-equivalence
class,3 so above result shows that the patterns of size three are all Wilf-equivalent. Simion
and Schmidt [92] completed the enumeration of all permutation classes avoiding sets of
patterns of length three, finding that there are ten Wilf-equivalence classes and they all
have counting sequence formulas even simpler than than the Catalan numbers. Later,
focus turned to enumerating classes Sn(τ) with τ ∈ S4. There are three Wilf-equivalence
classes: {1234, 1243, 1432, 2143}, {1342, 2413}, and {1324}.4 Gessel [51] obtained formulas
for |Sn(1234)| and its nonalgebraic, holonomic generating function. Bona [11] then found
formulas for |Sn(1342)| and its algebraic generating function. It remains a notoriously
difficult open problem to enumerate the remaining Wilf-equivalence class, {1324}.

For going beyond these small number of classes excluding a single permutation of size 4,
there has been much work on developing automatable methods for solving the enumeration
problem that take advantage of the growing computation power available to researchers and
the structured nature of hereditary permutation classes. Early algorithmic enumeration
frameworks of this type include Zeilberger’s [114] and Vatter’s [104] finite enumeration
schemes and Vatter’s implementation of the regular insertion encoding [105]. Many of these
methods are subsumed by the recently developed Combinatorial Exploration framework
developed by Albert, Bean, Claesson, Nadeau, Pantone, and Ulfarsson [1]. There have
been many frameworks for describing the structure of a combinatorial class developed in
the literature, including the combinatorial specifications of Flajolet and Sedgewick [43],
generating trees of Chung, Graham, Hoggatt, and Kleiman [25], combinatorial species of
Joyal [61, 60], Bergeron, Labelle, and Leroux [4], and Pivoteau, Salvy, and Soria [86],
and the ECO method of Barcucci, Lungo, Pergola, an Pinzani [2]. To be used, all of these
require prior knowledge of the structure of a combinatorial class. In contrast, Combinatorial
Exploration provides decomposition strategies that can be applied in an algorithmic fashion
to automatically discover a structural description of a given combinatorial class, which can

3Note that we will occasionally use “class” to instead refer to equivalence classes of an equivalence
relation.

4This lists the permutations of S4 up to the reverse, complement, and inverse symmetries, which
preserve Wilf-equivalence.

15

then be translated into an often solvable system of equations for the generating function
of the input class. Albert, Bean, Claesson, Nadeau, Pantone, and Ulfarsson [1] applied
Combinatorial Exploration to the enumeration of hereditary permutation classes. They
were able to rediscover almost all known results from literature and either enumerate or
obtain a combinatorial specification for numerous new classes. Most notably, they were
able to enumerate all of the classes avoiding two or more distinct patterns of length four.
We describe their method in more detail in Chapter 2, where we extend it to chord diagram
classes.

1.4.2 Partitions and diagrams

Recall that D is the class of chord diagrams and write P for the class of set partitions. As
previously mentioned, it can be easily shown that |Dn| = (2n− 1)!! and the corresponding
generating function is given by the differential equation D(x) = 1 + xD(x) + 2x2D′(x).
The number of set partitions is well known to be given by the Bell numbers defined by the
recurrence bn =

∑n
k=0

(
n
k

)
bk whose exponential generating function is given by ee

x−1. Note
that D is not a hereditary subclass of P .

Although not as thoroughly studied as permutation classes, there has been a large body
of work on proper hereditary classes of partitions and diagrams. A permutation diagram
is a diagram where all sinks lie to the right of all sources; the order σ of the sinks uniquely
specifies a permutation diagram, which we denote by Dσ. Clearly permutation diagrams
form the class D() given by excluding two concatenated chords and |Dn()| =
n!. Furthermore, if a hereditary class of either partitions or diagrams, respectively, does
not exclude a permutation diagram then it necessarily contains at least n! objects of size
2n or size n, respectively. Consequently, most focus has tended to remain on enumerating
hereditary classes that do exclude at least one permutation diagram.

It is well known (see [95]) that the partitions and diagrams that are either noncrossing or
nonnesting, that is, the classes P(), P(), D(), and D(), are counted
by the Catalan numbers. In other words, such classes avoiding permutation diagrams of
size two are enumeratively analogous to permutation classes avoiding patterns of size three.
While for noncrossing classes this can be obtained using a simple decomposition by the
root chord, for nonnesting classes it is generally necessary to pass through bijections to
other Catalan objects or apply the well known correspondence involving standard Young
tableaux and permutations of Robinson [88] and Schensted [91]. Gouyou-Beauschamps

[52] studied the enumeration of -free diagrams via involutions with no decreasing
sequence of length 6, essentially giving a bijection between such diagrams and pairs of

16

noncrossing Dyck paths. Chen, Deng, Du, Stanley, and Yan [23] then extended these
results to k-crossings and k-nestings of both diagrams and partitions, proving that their
maximum size in a diagram or partition defines a pair of symmetrically distributed statistics
and therefore |Dn(Kk)| = |Dn(Nk)|, where Kk is a diagram of k pairwise crossing chords
and Nk is a diagram of k pairwise nesting chords. In particular, via a bijection between
partitions and vacillating tableaux underlying their results they obtained the following.

Theorem 1.4.1 (Chen, Deng, Du, Stanley, and Yan [23, Corollary 12]). The numbers of
Kk-free and Nk-free diagrams of size n are equal to the number of closed lattice paths of
length 2n in the set

{(a1, a2, . . . , ak−1) | a1 ⩾ a2 ⩾ · · · ⩾ ak−1 ⩾ 0, ai ∈ Z}

from the origin to itself with units steps in any coordinate direction or its negative.

Corollary 1.4.2 (Gouyou-Beauchamps [52]). There is a bijection between Dn(K3) and
pairs of noncrossing Dyck paths, so both have cardinality CnCn+2 − C2

n+1.

We now record a number of other notable enumerative results obtained more recently,
some of which closely relate to the classes we enumerate in this thesis.

Theorem 1.4.3. The following hold.

• [58] |Dn()| = |Dn()| = |Dn()| = CnCn+2 − C2
n+1.

• [8] The generating function for D() is 54x
1+36x−(1−12x)3/2

.

• [8] There are seven Wilf-equivalence classes for pairs of permutation diagrams of size
3, and we can obtain a functional equation or explicit formula for the generating
function of all but {D321, D231} and {D231, D123}.

• [21] The generating function of the classes D(, ,) and

D(, ,) is

1

1− xC(x)C(C(x)− 1)
,

where C(x) is the generating function of the Catalan numbers.

• [21] |Dn(,)| = 1
2n+1

(
3n
n

)
.

17

1.5 Overview

In Chapter 2, we develop an extension of the automatable enumeration framework Com-
binatorial Exploration of Albert, Bean, Claesson, Nadeau, Pantone, and Ulfarsson [1] to
chord diagrams. In Chapter 3, we apply this framework and other novel decomposition
methods to enumerating a variety of restricted hereditary classes of chord diagrams. In
Chapter 4, we describe an application of some of the results of Chapter 3 to Dyson-
Schwinger equations from quantum field theory, generalizing prior work. In Chapter 5, we
briefly discuss further conjectures and conclusions.

1.6 Notation

In this section, we list for quick reference important notation that will be used throughout
the document.

Cn: Catalan numbers 1
n+1

(
2n
n

)
t1(C): index of the first terminal chord of a connected diagram C in the intersection
order

1-terminal: a diagram with exactly one terminal chord

1-sym-terminal: a diagram D such that D and its reverse are 1-terminal

Dn(X): set of (chord) diagrams of size n with no subdiagram in X

Cn(X): set of connected X -free diagrams of size n

Tn(X): set of 1-terminal X -free diagrams of size n

ST n(X): set of 1-sym-terminal X -free diagrams of size n

Tk, Bk: top cycle and bottom cycle diagrams, respectively, of size k; note that T3 = B3 =
K3

18

Chapter 2

A structural enumeration framework

We begin by extending the powerful enumeration framework of Albert, Bean, Claesson,
Nadeau, Pantone, and Ulfarsson [1],1 Combinatorial Exploration, to chord diagrams. To-
wards that aim we first formally define the framework.

Consider a combinatorial class A. When successful, Combinatorial Exploration on A
outputs a proof tree fully describing A, that is, completely and uniquely specifying its
counting sequence (|A0|, |A1|, |A2|, . . .). A proof tree for a class A is a rooted ordered
tree whose vertices v index classes B(v), where the root represents A. Each vertex v
with children u1, . . . , um represents how the parent class B(v) can be decomposed into the
simpler child classes B(u1), . . . ,B(um) or, conversely, how B(u1), . . . ,B(um) can be combined to
reconstruct B(v). ABCNPU [1] formalized these decomposition relationships using so-called
combinatorial strategies.

Definition 2.0.1. Let Z be the collection of all combinatorial classes and m ∈ N. An m-
ary combinatorial strategy S is a tuple (dS, rS, (cS,(n))n∈N) consisting of three components.

1. A decomposition function dS : Z → Zm ∪ {DNA} that takes in a class A (the parent
class) as input and outputs either an m-tuple of classes (B(1), . . . ,B(m)) (the child
classes) or the symbol DNA; the latter, short for “does not apply”, indicates that S
cannot be applied to A.

2. A reliance profile function rS : N→ Zm that outputs an m-tuple (r
(1)
S (n), . . . , r

(m)
S (n))

of integers for each input natural number n.

1The group which hereafter will be referred to as ABCNPU.

19

3. An infinite sequence of counting functions cS,(n) : ND1 × · · · × NDm → N indexed
by n ∈ N that outputs a natural number for every m-tuple of tuples of integers
w(1), . . . , w(m), where Di = max{0, r(i)S (n)}. The counting functions must have the
property that if dS(A) = (B(1), . . . ,B(m)), then we have

cS,(n)(w
(1)(n), . . . , w(m)(n)) = |An|

for w(i)(n) = (|B(i)
0 |, . . . , |B

(i)

r
(i)
S (n)
|).

Combinatorial strategies exactly get at the notion of a class A decomposing into simpler
classes B(u1), . . . ,B(um): if strategy S applies to A and dS(A) = (B(u1), . . . ,B(um)), then
using the reliance profile function and counting functions we can calculate the number of
objects in A of size n from the number of objects in B(i) of various sizes which are a function
of n. In particular the calculation does not depend on the nature of the objects in the
child classes, only their counts. This restricts the power of the Combinatorial Exploration
framework by design, making it applicable to a broad universe of combinatorial classes.

As its name suggests, the reliance profile function encodes how objects in the parent
class A rely on objects in the child classes B(u1), . . . ,B(um). In particular, we say that An

relies on B(i)
j if j ⩽ r

(i)
S (n), in which case the number of objects of size j in B(i) is formally

required to compute the number of objects of size n in A.
When a strategy applies it produces a combinatorial rule

A S←− (B(1), . . . ,B(m)),

formally a tuple (A, (B(1), . . . ,B(m)), S). For example, consider the following strategy Prod:

– dProd(A) = (B(1),B(2)) if every object in A can be uniquely obtained as the concate-
nation of a pair of nonempty objects in B(1) × B(2), while dProd(A) = DNA otherwise,

– rProd(n) = (n− 1, n− 1), and

– for all n,

cProd,(n)((b
(1)
1 , . . . , b

(1)
n−1), (b

(2)
1 , . . . , b

(2)
n−1)) =

n−1∑
i=1

|b(1)i ||b
(2)
n−i|.

This corresponds to the usual product rule for generating functions [95], combinatorial
classes [42], or species [5]. It assumes a suitably defined concatenation operation on

20

B(1) × B(2). This strategy applies to the class I(2) of chord diagrams with at least two
indecomposable components and yields, for example, the combinatorial rule

I(2) Prod←−− (I,D+),

where I is the class of indecomposable diagrams and D+ is the class of nonempty diagrams.
This follows by decomposing a diagram in I(2) into the first indecomposable component
(containing the root chord) and the rest of the diagram.

Observe that there is a special kind of combinatorial rule produced by a 0-ary strategy.
Following ABCNPU [1], we call such a strategy a verification strategy because it indicates
that the counting sequence of the input class has already been verified by an independent
method. For each such class A we can define a verification strategy VA:

– dVA(A) = () and dVA(A′) = DNA for all A′ ̸= A,

– rVA(n) = (), and

– for all n, cVA,(n) is a 0-ary function that outputs |An|.

Returning to proof trees, each parent-children pair of a proof tree corresponds to a com-
binatorial rule. In particular, each non-leaf vertex v with children u1, . . . , um corresponds
to a combinatorial rule

B(v) S←− (B(u1), . . . ,B(um)),

while each leaf w corresponds to either a verification rule

B(w) V←− ()

or the set B(w) already appears as a non-leaf vertex in the tree. As ABCNPU [1] discuss,
this makes proof trees largely equivalent to the combinatorial specifications developed by
Flajolet and Sedgewick [43] in their symbolic combinatorial framework, with the combi-
natorial rules making up a proof tree forming as a set a combinatorial specification. See
ABCNPU [1] for further discussion on the similarities and differences between the two
notions, which can generally be used interchangeably. Note that a proof tree may contain
rules produced by many different strategies, as is usually the case in practice.

Not all proof trees as we have defined them necessarily allow one to uniquely solve for the
counting sequence of the root class. Consider possibly the simplest example combinatorial

21

specification

A S1←− B

B S1←− A
(2.1)

where S1 is a strategy identifying that |An| = |Bn|. Then this reduces to the system of
recurrences

|An| = |Bn|
|Bn| = |An|,

which of course yields no information about the counting sequences of either class A or B.
Generalizing this situation leads to the following definition.

Definition 2.0.2. A proof tree involving N combinatorial classes and its corresponding
combinatorial specification are called productive if the infinite system of equations produced
by the counting functions has a unique solution in (CN)N . Otherwise the proof tree is trivial.

Clearly productive proof trees are what we seek. The key discovery of ABCNPU [1]
that enables Combinatorial Exploration to efficiently discover productive proof trees is
that productivity can be ensured by a local property of a proof tree. In particular, as the
above example suggests, placing certain restrictions on the allowed size and count relations
generated by any strategy in the proof tree guarantees productivity.

Definition 2.0.3. An m-ary strategy S is productive if the following two conditions hold
for all combinatorial rules

A S←− (B(1), . . . ,B(m))

and all i ∈ [m].

1. For all N ∈ N, if AN relies on B(i)
j then j ⩽ N .

2. If AN relies on B(i)
N for some N ∈ N, then

(a) |An| ⩾ |B(i)
n | for all n ∈ N, and

(b) |Aℓ| > |B(i)
ℓ | for some ℓ ∈ N.

22

In a nutshell, an object in class A either relies only on strictly smaller objects, or it
relies on objects of the same size, in which case the containing child class cannot be larger
than A at any size and must be strictly smaller for at least one size. Enumeratively, these
conditions match the informal notion of one class “decomposing” into “simpler” classes,
and they are satisfied by many natural strategies.

Theorem 2.0.4 (ABCNPU [1]). If a proof tree is composed entirely of rules derived from
productive strategies then it is productive.

While the strategy used in (2.1) fails Condition 2 of Definition 2.0.3 and therefore is not
productive, ensuring it cannot on its own yield enumerative information, such equivalence
strategies identifying two classes as equinumerous are still immensely useful for enumer-
ating combinatorial classes. In particular they can be used to transform a class into an
equivalent form which is structured in a way more amenable to decomposition via produc-
tive strategies. Formally, S is an equivalence strategy if dS(A) = B implies that |An| = |Bn|
for all n. The reliance profile function of an equivalence strategy can be assumed to be
rS(n) = (n).

To deal with the fact that equivalence strategies are not productive ABCNPU [1] pro-
pose grouping combinatorial classes into equivalence classes. We say that class A is related

to class B if A = B or there is an equivalence strategy S that produces the rule A S←− B
or the rule B S←− A. Taking the transitive closure of this relation produces an equivalence
relation R such that any two combinatorial classes in the same equivalence class are guar-
anteed to be equinumerous. We then generalize our notion of proof trees (or combinatorial
specifications) to allow the vertices to represent these equivalence classes while combina-
torial rules between parent-children pairs are reserved for those generated by productive
strategies. We may identify two combinatorial classes as related during the construction
of a proof tree in a way that enables us to terminate the search process much earlier than
otherwise, leading to smaller proof trees and more success in finding them.

The process of Combinatorial Exploration involves searching for a productive proof
tree for a given combinatorial class A by iteratively applying productive strategies and
equivalence strategies from a pool of strategies. ABCNPU [1] describe efficient algorithms
for executing this process on a computer and identifying when a productive proof tree has
been obtained. It can of course also be executed by hand, potentially letting the user’s
intuition speed up the search process.

23

2.1 Gridding and tiling diagrams

It is not convenient to work directly with chord diagrams. There is in particular no ob-
vious way to uniformly and compactly talk about the structure of the classes that arise
when decomposing diagrams in certain natural ways. Building on previous work of Murphy
and Vatter [78], ABCNPU [1] choose to solve this problem for permutations by endow-
ing them with additional geometric structure called a gridding, leading to gridded classes.
Such classes more naturally lead to effective decomposition strategies that are easier to
describe, while preserving the content of the original objects. ABCNPU [1] also use this
same geometric flavoring when informally discussing preliminary work on applying Com-
binatorial Exploration to the domains of alternating sign matrices, polynominoes, and set
partitions. Since chord diagrams are a particular kind of set partition we base our definition
of griddings for chord diagrams on the latter.

To produce more powerful and easily applicable decomposition strategies we take a gen-
eral view on patterns in chord diagrams, wherein any word can be a pattern. Accordingly,
we begin by gridding words. Henceforth assume, unless otherwise stated, that all words
are on the alphabet N and all partitions of size n are partitions of the set [n]. Each word
w = w1 · · ·wn can be associated with the plot of the points {(wi, i)}ni=1 in the Cartesian
plane.

Definition 2.1.1. A gridded word of size n is a pair (w,E), where w is a word of length
n called the underlying word and E = (e1, . . . , en) for ei ∈ N2 is the tuple of positions.
The positions represent a placement of w onto R2

+ where the point corresponding to (wi, i)
with ei = (x, y) has been drawn in the square [x, x + 1) × [y, y + 1). The positions must
be consistent with the word: for any direction d ∈ {↑,↗,→,↘, ↓,↙,←,↖}, ei is weakly
in the dth direction relative to ej if and only if (wi, i) is in the dth direction relative to
(wj, j); e.g. for d =↗,

xi ⩾ xj and yi ⩾ yj ⇐⇒ wi ⩾ wj and i ⩾ j,

where ei = (xi, yi) and ej = (xj, yj).

See the next section for an example of a gridded word. When all the points of a gridded
word have the same position e we simply write (w, e) in place of (w, (e, . . . , e)). A square
[x, x + 1) × [y, y + 1) and corresponding position (x, y) are both referred to as a cell. For
a gridded word g and index i we write g(i) for the point ((wi, i), ei) of g. Gridded words
inherit the containment relation of their underlying words.

24

Definition 2.1.2. A gridded word g = (w, (e1, . . . , en)) contains another gridded word
h = (u, (f1, . . . , fk)) if w contains u and fj = eij for all 1 ⩽ j ⩽ k, where i1, . . . , ik are the
indices of an occurrence of u in w; otherwise g avoids h. We call h a gridded subword of
g and (wi1 · · ·wik , (ei1 , . . . , eik)) an occurrence of h in g, and say that positions ei1 , . . . , eik
induce h.

For clarity we typically refer to gridded words whose containment is being considered
as patterns. We transfer griddings on words to griddings on partitions and chord diagrams
via their restricted growth functions. All the associated language is carried over, while
properties alter as appropriate; e.g. a gridded (chord) diagram of size n is a gridded word
of size 2n such that the underlying word is the restricted growth function of a chord
diagram, and a gridded subword of a gridded diagram that is itself a gridded diagram
is referred to as a gridded subdiagram. Gridded objects, in particular gridded diagrams,
inherit all previously defined properties of the underlying ungridded object. For example,
a gridded diagram (D,E) is connected if D is connected. We further extend this notion
and define gridded words in which some letter appears exactly once to be disconnected.
This closes the connectedness notion on gridded diagrams under taking gridded subwords.

Definition 2.1.3. A gridded diagram G avoids a set of gridded patterns O if it avoids
every gridded pattern in O and we define Av(O) to be the set of gridded diagrams avoiding
O. In contrast, the gridded diagram G contains a set of gridded patterns R if it does not
avoid R and we define Co(R) to be the set of gridded diagrams containing R.

Let GW be the set of all gridded words and GW(t,u) be the set of gridded words whose
positions lie within the rectangle [0, t)×[0, u). Furthermore, let G and G(t,u) be the maximal
subsets of GW and GW(t,u), respectively, containing only gridded diagrams.

Definition 2.1.4. A tiling is a tuple T = ((t, u),O,R,L) where t, u are positive integers,
O is a set of gridded patterns of GW(t,u) called obstructions, R = {R1,R2, . . . ,Rk} is a
set of sets of gridded patterns of GW(t,u) called requirements with each set Ri referred to
as a requirement list, and L = {L1, . . . , Lm} is a set of sets of points of [0, t)× [0, u) called
linkages. A tiling T represents the set of gridded diagrams G ∈ G(t,u) such that G avoids
O, G contains Ri for all 1 ⩽ i ⩽ k, and the gridded subword of G induced by positions Lℓ

is connected for all 1 ⩽ ℓ ⩽ m. Denote this set by G(T).

Given a tiling T , a cell e is called empty if it contains the obstruction of size 1, that
is, there is an obstruction of T consisting of a single point placed in e. It is nonempty
otherwise. A requirement in a requirement list of size 1 is called a singleton requirement.

25

Given any (ungridded) diagram class D(X), define the tiling TD(X) to be the 1 × 1 tiling
with no requirements or linkages and obstructions formed by gridding the diagrams in X ,

TD(X) = ((1, 1), {(M, (0, 0)) :M ∈ X}, ∅, ∅).

Similarly, for a connected diagram class C(X), define

TC(X) = ((1, 1), {(M, (0, 0)) :M ∈ X}, ∅, {{(0, 0)}}).

The map D → (D, (0, 0)) from D(X) (C(X) resp.) to G(TD(X)) (G(TC(X)) resp.) is a size-
preserving bijection, so we can enumerate classes D(X) and C(X) by instead enumerating
TD(X) and TC(X), respectively.

2.1.1 Visualizing gridded objects

Gridded words and tilings can be quite difficult to understand when written out, so it
is useful to have a more digestible way to convey their content. For this we adapt the
same type of graphical visualizations used by ABCNPU [1]. The entries of a gridded
word are drawn as points on a rectangular grid, with each point placed in the cell in-
dicated by its corresponding position. For example, the following depicts the gridded
word (1231453425, ((0, 0), (1, 0), (1, 1), (0, 1), (3, 2), (4, 2), (1, 2), (3, 3), (1, 3), (4, 3))), which
also happens to be a gridded diagram:

When multiple gridded words are drawn on a single grid, as is often the case with
tilings, we draw lines connecting points of a gridded word with the same letter (that is,
same x coordinate of their position) and lines connecting the highest point of a given letter
to the lowest point of the next letter. This makes it clear which points belong to which
gridded words, in particular for gridded patterns in a tiling. While we avoid aligning points
of separate gridded patterns horizontally or vertically to prevent confusion, their precise

26

geometric layout relative to one another should not be regarded as significant. The fol-
lowing displays a representative example with the gridded words (121, ((0, 0), (1, 0), (2, 0)))
and (123123, ((1, 1), (2, 2), (2, 2), (1, 2), (2, 3), (2, 3))) depicted on a common grid.

For tilings, obstructions are drawn in red with solid lines and solid circular points,
while requirements are drawn in blue with dotted lines and hollow square points. To
accommodate many obstructions and requirements in a single grid or even a single cell,
we use smaller points and thinner lines than depicted above. All requirements should be
interpreted as singletons, that is, in a requirement list of size 1, unless otherwise specified.
As an example, we depict the tiling ((2, 3),O,R, ∅) with obstructions

O = {(11, ((0, 0), (0, 2))), (21, ((0, 2), (0, 1))), (1, (1, 0)),
(123231, ((1, 1), (1, 1), (1, 2), (1, 2), (1, 2), (1, 2)))}

and requirements R = {{(11, ((0, 0), (0, 1)))}}:

We will also work with tilings with larger, in fact infinite, requirement lists and obstruc-
tion sets. This is difficult to depict visually in full granularity, so instead we use a more
compact shorthand notation that loses no information, taking advantage of the fact that
we will only be dealing with certain infinite sets of gridded patterns. Letting GX denote
the set of gridded diagrams obtained by gridding a diagram in X , there are seven such sets
that will feature in our work:

• Gridded cycles G{T⩾3,B⩾3} ,

27

• Gridded top cycles GT⩾3
,

• Gridded bottom cycles GB⩾3
,

• Gridded diagrams formed by removing the root chord of a gridded top cycle GT ′⩾3
,2

• Gridded diagrams formed by removing the first chord of a gridded bottom cycle GB′⩾3

,3

• Gridded diagrams formed by removing exactly one of the root chord or last chord of

a gridded top cycle G{T ′⩾3,B
′
⩾3} , and

• Gridded nonnesting paths GP⩾1
,

where T ′
⩾3 and B′

⩾3 are the ungridded equivalents of GT ′⩾3
and GB′⩾3

and we depict the line
style used in our visualizations for each of the seven sets. We refer to the diagrams of
these latter two ungridded sets as partial top cycles and partial bottom cycles, respectively.
We specifically use subsets of these seven gridded sets where points may only lie in certain
cells on a finite grid. For a given set of gridded words H and cells e1 < . . . < ek ordered
lexicographically, define He1,...,ek to be the subset of H containing all gridded words with
points lying only in e1, . . . , ek, the first point lying in e1, and the last point lying in ek.
When H is an exceptional set GT ′⩾3

, GB′⩾3
, and G{T ′⩾3,B

′
⩾3} we further require that the second

point of a gridded partial top cycle lies in e1 and the second-to-last point of a gridded
partial bottom cycle lies in ek. When H is one of the seven sets defined above we visualize
He1,...,ek using the corresponding line style indicated in the above list. These are drawn in
red and blue for requirements and obstructions, respectively. Intermediate cells e2, . . . , ek−1

are indicated by hollow circles in each of those cells along the line.

For example, consider the following tiling ((2, 3),O′,R′, ∅) with obstructions O′ =
{(GB′⩾3

)(0,0),(0,1), (11, ((0, 0), (0, 2))))} and requirementsR′ = {(GP⩾1
)(0,0),(0,2),(1,2), (11, (1, 1))}.

We include both finite and infinite patterns in this example for contrast.

2Or, equivalently, removing the last chord of a bottom cycle.
3Equivalently, removing the last chord of a top cycle.

28

For linkages, we draw dashed boxes outlining adjacent cells in a linkage. Cells in the
same linkage receive outlines of a common color.

Like ABCNPU [1], we apply additional shortcuts to commonly occurring features in
order to simplify tiling visualizations. Empty cells are left blank, forgoing depicting the
commonly occurring obstruction of size 1. This does not introduce ambiguity with cells
devoid of obstructions and requirements because we will not be working with tilings that
contain any such cells. Cells that must contain exactly one point are drawn with a single
large black dot; this occurs when the cell contains the single point requirement and the
obstructions 12, 21, and 11. If both endpoints of a chord are isolated to their own cells
in this way, we join them by a black line to indicate the isolation of an entire chord.
Furthermore, we add an asterisk at the bottom of each column containing exactly one chord
and at the side of each row containing exactly one point. Here we demonstrate applying
the shortcuts, as well as an example of a tiling consisting of a single chord isolated across
two cells.

Combining all of the above visualization techniques, we display in Figure 2.1 the tiling
T = ((3, 4),O,R,L), where

O =
{
(1, (0, 3)), (1, (1, 0)), (1, (1, 2)), (1, (2, 0)), (1, (2, 3)), (11, (1, 1)), (12, (1, 1)),

(21, (1, 1)), (11, (1, 3)), (12, (1, 3)), (21, (1, 3)), (11, ((0, 0), (0, 2))), (GB′⩾3
)(0,0),(0,1),

(21, ((0, 1), (0, 2))), (123231, ((2, 1), (2, 1), (2, 2), (2, 2), (2, 2), (2, 2)))
}
,

R = {(1, (1, 1)), (1, (1, 3)), (GP⩾1
)(0,0),(0,2),(2,2), (11, (2, 1))}, and

L = {([0, 1]× [0, 3])− {(2, 0), (2, 1), (2, 2), (2, 3)}}.

The gridded permutations in G(T) are those contained in G(3,4) that

29

Figure 2.1: A tiling with obstructions, requirements, and linkages depicted using shortcuts.

– have no points in cells (0, 3), (1, 0), (1, 2), (2, 0), and (2, 3),

– have a single chord spanning cells (1, 1) and (1, 3) and no other points in those cells,

– have a nonnesting path that starts in cell (0, 0), intersects cell (0, 2), and ends in cell
(2, 2),

– have a chord in cell (2, 1),

– do not have a chord spanning cells (0, 0) and (0, 2),

– do not have a gridded partial bottom cycle spanning cells (0, 0) and (0, 1),

– avoid the pattern 21 with the first point in cell (0, 2) and the second point in cell
(0, 1),

– avoid the pattern 123231 with the first two points in cell (2, 1) and the last four
points in cell (2, 2), and

– for which the gridded subdiagram induced by the first two columns is connected.

2.2 Combinatorial strategies

To enumerate the diagram classes D(X) and C(X) for a given X , we work with the gridded
equivalents TD(X) and TC(X) and apply strategies that decompose classes of the form G(T)
for a tiling T . We define these strategies in this section. While they actually act on gridded
diagram classes, our definitions are all written in terms of the tilings themselves.

30

There are six main strategies: requirement insertion, obstruction/requirement/requirement
list/linkage deletion, point/chord placement, row and column separation, obstruction/linkage
inferral, and generalized factorization. While we view them each as single strategies they
are all formally collections of strategies, with one strategy corresponding to each possible
set of values of a group of parameters defining the strategy. All are equivalence strategies
except the first and last, which are productive. Furthermore, all but linkage deletion, chord
placement, linkage inferral, and generalized factorization were first defined in ABCNPU
[1]. While these were only formally defined for permutations they are sufficiently close to
identical to their versions for diagrams that we keep our descriptions of them brief and
informal. The proofs that they are equivalence strategies or productive strategies also
carry over. We formally define the remaining strategies that are specific to the chord di-
agram context over the next several subsections and provide appropriate proofs of their
equivalency or productivity. Also, for each productive strategy, we give the correspond-
ing equation for the generating functions T (x) associated to every tiling T involved in a
combinatorial rule produced by that strategy. For equivalence strategies these generating
functions are equal.

For a set Z of gridded patterns, the Requirement Insertion strategy ReqInsZ returns
two tilings

TO = ((t, u),O ∪ Z,R,L), TR = ((t, u),O,R∪ {Z},L)

for each applicable tiling T = ((t, u),O,R,L). This partitions G(T) into disjoint classes
G(TO) and G(TR) containing those diagrams that avoid Z and those diagrams that con-
tain Z, respectively. Correspondingly |G(T)n| = |G(TO)n|+ |G(TR)n| for all n, so defining
dReqInsZ (T) = DNA whenever TO or TR is empty makes Requirement Insertion a productive
strategy. This is usually the workhorse starting strategy for decomposing any combina-
torial class, whether diagrams or permutations—tiling TO is often substantially simpler
to decompose or directly enumerate than T itself, while tiling TR introduces via the new
requirement list Z some structure to further decompose on. The generating function equa-
tion corresponding to this strategy is

T (x) = TO(x) + TR(x).

The three simplification strategies Obstruction Deletion ObsDelM , Requirement Dele-
tion ReqDelM,i, and Requirement List Deletion ReqListDeli each delete a condition when-
ever the condition is redundant, that is, deleting it leaves the set of gridded diagrams
unchanged. In particular, for a tiling T = ((t, u),O,R,L):

31

Figure 2.2: Column separation with c = 1 and S = (1, 3) is used to isolate nonempty cells
(1, 1) and (1, 3) from one another in a proof tree for noncrossing diagrams (see Section 2.3).

• for any gridded pattern g, ObsDelg returns the tiling T ′ = ((t, u),O − {g},R,L) if
and only if G(T) = G(T ′).

• for any gridded pattern g and index i, ReqDelg,i returns the tiling

T ′ = ((t, u),O, {R1, . . . ,Ri−1,Ri − {g},Ri+1, . . . ,Rk})

if and only if G(T) = G(T ′).

• for any index i, ReqListDeli returns the tiling

T ′ = ((t, u),O, {R1, . . . ,Ri−1,Ri+1, . . . ,Rk})

if and only if G(T) = G(T ′).

Each of these are equivalence strategies by definition. ABCNPU [1] identify straightforward
conditions in which each simplification strategy applies.

For a tiling T , consider a row r and nonempty subset S of the nonempty cells in row
r and let S ′ be the remaining nonempty cells in row r. The Row Separation strategy
RowSepr,S returns a tiling T ′ obtained from T by

– inserting a new row below row r,

– deleting all obstructions between cells in S and S
′
, and

– moving the content of cells in S from row r to the new row while preserving column
location.

32

In other words, Row Separation splits row r into two adjacent rows in a way that isolates
cells in S from cells in S ′. This is possible if no gridded diagram in G(T) has a point in a cell
in S whose value is larger than a point in a cell in S ′, which is guaranteed by the following
condition: for all pairs of cells (e, e′) ∈ S × S ′, if e lies to the right of e′ then T contains
the obstruction (12, (e′, e)), while if e lies to the left of e′ then T contains the obstruction
(21, (e, e′)). The Column Separation strategy ColSepc,S is defined analogously for a column
c and nonempty subset S of the nonempty cells in column c, with an analogous obstruction
containment condition ensuring column separability. Figure 2.2 displays a simple example
of applying the column separation strategy. ABCNPU [1] prove that both Row Separation
and Column Separation are equivalence strategies.

For a gridded pattern g, the Obstruction Inferral strategy ObsInfg adds an obstruc-
tion g whenever the addition of g does not change the underlying set of gridded dia-
grams. In particular, for a tiling T = ((t, u),O,R,L), ObsInfg returns the tiling T ′ =
((t, u),O ∪ {g},R,L) whenever G(T) = G(T ′). It is an equivalence strategy by definition.
ABCNPU [1] describe two conditions, one more limited but computationally easy to ver-
ify and another fully general but computationally expensive, that largely transfer over to
the diagram version. The one significant difference is that the restricted growth function
property can also be used to infer obstructions.

It is also important to include verification strategies in our decomposition repertoire.
From our previous definition of a verification strategy VA for a class A we in particular get
a verification strategy for each class B = {G} containing a single gridded diagram G, with
associated generating function B(x) = x|G|.

2.2.1 Linkage deletion

As with obstructions and requirements, we define a strategy Linkage Deletion that removes
a linkage if its removal does not change the underlying set of gridded diagrams. For a set
X of pairs of integers, define the equivalence strategy LinkDelX as follows.

– If T = ((t, u),O,R,L) is a tiling and X ∈ L, define T ′ = ((t, u),O,R,L − {X}). If
G(T) = G(T ′), then we define dLinkDelX (T) = T ′. Otherwise dLinkDelX (T) = DNA.

– The reliance profile function is rLinkDelX (n) = (n).

– The counting functions are cLinkDelX ,(n)((a0, . . . , an)) = an.

Since it applies only when the underlying gridded diagrams do not change, Linkage
Deletion is an equivalence strategy by definition. This leaves open the question of when

33

the strategy applies. While not obviously always determinable due to the inclusion of
requirements, there are at least three easily detectable sufficient conditions for when a
linkage can be deleted, the former two based on a distinct connectivity notion for the
linkages themselves and the latter based on directly detecting a priori connectedness:

• Suppose a tiling T has distinct linkages L1, . . . , Li that induce a connected hyper-
graph and L =

⋃i
j=1 Lj is a linkage of T . Then for every gridded diagram such

that the gridded subdiagrams on position sets L1, . . . , Li are connected, the gridded
subdiagram induced by positions L is also connected. So in this case we may apply
the strategy LinkDelL to tiling T .

• Suppose a tiling T has distinct linkages L1, . . . , Li such that each row intersects
at most one linkage, the partition of the represented rows induced by the linkages
L1, . . . , Li is connected, and L =

⋃i
j=1 Lj is a linkage of T . Then we may similarly

observe that connectedness on each of L1, . . . , Li guarantees connectedness on L, so
in this case we may also apply the strategy LinkDelL to tiling T .

• Suppose a tiling T has a linkage L such that amongst gridded diagrams in G(T ′)
there are only finitely many gridded subwords induced by positions L and they are
all connected. Then we may apply the strategy LinkDelL to T .

Note that each of these conditions can be easily computed for all candidate linkages of
a tiling.

2.2.2 Linkage inferral

We now define an inferral strategy for linkages that plays the same role as the inferral
strategy for obstructions. In particular, it is often possible to add an additional linkage to
a tiling without changing the underlying set of gridded diagrams. For a set of X of pairs
of integers, the strategy LinkInfX is defined as follows.

– If T = ((t, u),O,R,L) is a tiling and X /∈ L, define T ′ = ((t, u),O,R,L ∪ {X}). If
G(T) = G(T ′), then define dLinkInfX (T) = T ′. Otherwise dLinkInfX (T) = DNA.

– The reliance profile function is rLinkInfX (n) = (n).

– The counting functions are cLinkInfX ,(n)((a0, . . . , an)) = (an).

34

As with several previous strategies, Linkage Inferral does not change the underlying set
of gridded diagrams, so it is by definition an equivalence strategy. To construct concrete
computable conditions for when the strategy can be applied we make a simple observation:
if a linkage can be deleted, it can also be added. In particular we can flip the role of T
and T ′ in each of the three linkage deletion conditions to obtain three cases when Linkage
Inferral may be applied. Although this may seem odd, it is difficult to know beforehand
whether it is more effective for finding a proof tree to include or not include a redundant
linkage; including such a linkage could, for example, allow one to remove other linkages
and thereby unlock an eventual proof tree.

2.2.3 Point and chord placement

Point placement is an equivalence strategy that acts on a tiling T by isolating one point
of a singleton requirement in a cell of its own. Picking out an arbitrary instance of such
a point usually does not reveal much useful structure, so we further specify a direction
d ∈ {↓, ↑,←,→} in which the isolated point will be the most extreme instance of such a
point in an occurrence of the given singleton requirement. In other words, the directions
represent placing specifically the bottommost, topmost, leftmost, or rightmost instance of
that point. There are two meaningful differences between point placement for gridded
diagrams and point placement for gridded permutations: 1) for certain points, namely
isolated points and sources, bottommost and leftmost (resp. topmost and rightmost) are
equivalent, and 2) the column of the new cell is shared with one other point. Despite these
differences the strategy is defined nearly identically so we will keep our description less
than fully formal. For reference, see Figure 2.3 for a representative example.

Consider a tiling T = ((t, u),O,R,L) with R = {R1, . . . ,Rk} and L = {L1, . . . , Lm}.
Suppose T contains a singleton requirement list R1 = {R} and let 1 ⩽ ℓ ⩽ |R| be an index
and d ∈ {↓, ↑,←,→} be a direction. Write e = (ex, ey) for the cell containing the placed
point R(ℓ). Construct a new tiling T ′ as follows. For a gridded word g, let Me(g) be the
set of all possible gridded words obtained by splitting row ey and column ex into three rows
and three columns, with cell e becoming nine cells and the points of g partitioned in all
possible ways between the nine cells while maintaining their relative positions. Pictorially,
Me(g) can be generated by simply adding two horizontal lines in row ey and two vertical
lines in column ex in all possible locations with the constraint that the lines do not intersect
any of the points of g. LetMe(S) =

⋃
g∈S Me(g) for a set S of gridded words. Furthermore,

35

define the map

µe : (x, y) 7→



{(x, y)} if x < ex or y < ey,

{(x, y + 2)} if x < ex or y > ey,

{(x+ i, x+ j) : (i, j) ∈ [2]2} if x = ex and y = ey,

{(x+ 2, y)} if x > ex or y < ey,

{(x+ 2, y + 2)} if x > ex or y > ey,

and set µe(A) =
⋃

a∈A µe(a). Then define O′ = Me(O), R′
i = Me(Ri) for 2 ⩽ i ⩽ k, and

L′
j = µe(Lj) for 1 ⩽ j ⩽ m. To ensure that cell (ex + 1, ey + 1) contains exactly one point,

we add additional obstructions A = {(11, (ex + 1, ey + 1)), (12, (ex + 1, ey + 1)), (21, (ex +
1, ey+1))} and an additional requirement list B = {(1, (ex+1, ey+1))}. To ensure that no
other cells in row ey + 1 have entries and only one other cell in column ex + 1 has entries,
we add more obstructions

A1 = {(1, (i, ey + 1)) : 0 ⩽ i < t, i ̸= ex + 1},
A2 = {(11, (ex + 1, j)) : 0 ⩽ j < u, j ̸= ey + 1},
A′

2 = {(12, (ex + 1, j)) : 0 ⩽ j < u, j ̸= ey + 1}, and
A′′

2 = {(21, (ex + 1, j)) : 0 ⩽ j < u, j ̸= ey + 1}.

To guarantee that the isolated point in cell (ex+1, ey+1) is the ℓ’th point in an occurrence
of R, we add the requirement listR′

1 containing the unique gridded word ofMe(R) isolating
point R(ℓ). Finally we include new obstructions to ensure that the isolated point in any
gridded gridded is the most extreme point in the d direction that plays the role of R(ℓ)
in any occurrence of R. In particular, we add the set D of gridded words of Me(R) that
isolate a point in cell (ex + 1, ey + 1) and have their ℓ’th points occurrence further in the
d direction than cell e. Combining all of the above, we have

T ′ = ((t+ 2, u+ 2),O′ ∪ A ∪ A1 ∪ A2 ∪ A′
2 ∪ A′′

2 ∪D, {R′
1, . . . ,R′

k, B}, {L′
1, . . . , L

′
m}).

With this we now define the point placement strategy.

– If T contains a singleton requirement list R1 = {R}, ℓ is an index with 1 ⩽ ℓ ⩽ |R|,
and d ∈ {↓, ↑,←,→} is a direction, then we define

dPointPlR,ℓ,d
(T) = T ′.

Otherwise we set dPointPlR,ℓ,d
(T) = DNA.

36

Figure 2.3: Starting with the leftmost tiling, we apply point placement with R =
(11, (0, 0)), ℓ = 1, and d =← to obtain the second tiling from the left. The third tiling
is then obtained by further applying point placement to the second point of the require-
ment in cell (1, 2). This sequence of point placements is equivalent to applying the chord
placement strategy with R = (11, (0, 0)), ℓ1 = 1, ℓ2 = 2, and d =←. Applying obstruction
deletions and removing empty rows and columns then gives the rightmost tiling. This
strategy chain occurs in the proof tree for noncrossing diagrams (see Section 2.3).

– The reliance profile function is rPointPlR,ℓ,d
(n) = (n).

– The counting functions are cPointPlR,ℓ,d,(n)((a0, . . . , an)) = an.

The proof that point placement for gridded diagrams is an equivalence strategy is
similar enough to the proof for gridded permutation point placement that we omit it (see
[1]).

Theorem 2.2.1. There is a size-preserving bijection between G(T) and G(T ′), implying
that Point Placement is an equivalence strategy.

Since every diagram is either empty or contains a chord it is often the case that we can
use several point placements to isolate a designated chord in a class of gridded diagrams.
Since this method will prove fruitful in finding proof trees, for compactness and ease of
search we define a separate Chord Placement strategy as the composition of two point
placements. In this case, by varying the order of placement, we get four truly distinct
strategies, one for each coordinate direction: right and left place the chord source first,
while up and down place the chord sink first. This matches the fact that the highest source
in a tiling is in the rightmost chord.

37

– If T contains a singleton requirement list R1 = {R}, ℓ1, ℓ2 are indices with 1 ⩽ ℓ1 <
ℓ2 ⩽ |R| such that R(ℓ1) and R(ℓ2) form a chord, and d ∈ {↓, ↑,←,→}, then we
define

dChordPlR,ℓ1,ℓ2,d
(T) =

{
dPointPlR,ℓ2,d

(dPointPlR,ℓ1,d
(T)) for d ∈ {←,→},

dPointPlR,ℓ1,d
(dPointPlR,ℓ2,d

(T)) for d ∈ {↓, ↑}.

Otherwise dChordPlR,ℓ1,ℓ2,d
(T) = DNA.

– The reliance profile function is rChordPlR,ℓ1,ℓ2,d
(n) = (n).

– The counting functions are cChordPlR,ℓ1,ℓ2,d
,(n)((a0, . . . , an)) = an.

Figure 2.3 depicts a simple example of chord placement.

2.2.4 Generalized factorization

Generalized factorization is a strategy that identifies when parts of a tiling can be split into
several subtilings in a way that allows for recovering the original tiling. It straightforwardly
generalizes the factorization strategy of ABCNPU [1] by allowing the subtilings to possibly
share a common gridded subdiagram.

We say that two subsets S1 and S2 of cells of a tiling are weakly non-interacting if there
is no obstruction, requirement list, or linkage involving cells in both S1 and S2. The subsets
are further (strongly) non-interacting if they are weakly non-interacting and no cell of S1

shares a row or column with any cell of S2.

Consider a tiling T = ((t, u),O,R,L). A cover Q = {A1, . . . , Aℓ} of the nonempty cells
of T is factorizable if, for all 1 ⩽ i ⩽ ℓ, Ai−

⋃
j ̸=iAj is nonempty and non-interacting with

all nonempty cells not in Ai, all pairs of nonempty sets Ai ∩ Aj and Ai ∩ Ah for j, h ̸= i
are either equal or disjoint, and each such intersection set is weakly non-interacting with
all other cells and strongly non-interacting with all parts of Q that do not contain it.

Suppose T factors in this way into two tilings V(1) and V(2) which intersect on the
subtiling U . The non-interactivity conditions imply that each gridded diagram G of size n
that can be drawn on T can be formed uniquely from a pair H1, H2 where H1 can be drawn
on V(1), H2 can be drawn on V(2), H1 and H2 share a common gridded subdiagram F that
can be drawn on U , and |H1|+ |H2| − |F | = n. For fixed F , write V(1)[F] and V(2)[F] for
the sets of all such H1 and H2, respectively. For our applications U should typically define
a simpler set of gridded matchings than either V(1) or V(2), which will either themselves

38

pick out relatively simple classes or ones that have appeared before in a proof tree. So
we may allow the cardinalities |Ui| in our data and aim to be able to compute |Tn| from
{|V(1)

i |, |V
(2)
i |, |Ui|}ni=0. If U contains more than one gridded diagram we have

|Tn| =
∑
F∈U

n∑
i=|F |

|V(1)
i [F]||V(2)

n−i+|F |[F]|,

and it is clearly not in general possible to remove the dependency on F . On the other
hand, if |U| = 1 then every gridded diagram in V(1) and V(2) contains the unique element
F of U and the above expression simplifies to

|Tn| =
n∑

i=|F |

|V(1)
i ||V

(2)
n−i+|F ||

=
n∑

i=f

|V(1)
i ||V

(2)
n−i+f |,

where f = min{j : |Uj| = 1} = |F |, as desired. We could redo this example for the simpler
case where V(1) and V(2) are disjoint and get the same result with f = 0. We now generalize
this and formally define the factorization strategy, splitting a tiling along non-interacting
pieces that pairwise intersect in at most a single fixed gridded diagram.

– Let Q be a factorizable cover of T with the parts A1, . . . , Aℓ indexed in increasing
order by their lexicographically smallest cell, with ties broken lexicographically. Write
V(1), . . . ,V(ℓ) for the subtilings induced by the parts of Q and, for all 1 ⩽ i ̸= j ⩽ ℓ,
write U (ij) for the subtiling induced by the intersection Ai ∩ Aj. Assume that each
subtiling V(i) contains at least one gridded diagram of size at least 1 and there
is a gridded diagram in V(i) that is not in U (ij) for all j. Furthermore, assume
that |U (ij)| ∈ {0, 1} and let (x1, y1), . . . , (xp, yp) be the lexicographically smallest
cells that respectively intersect each of the unique gridded diagrams in a nonempty
subtiling U (ij). Let n1, . . . , np be the sizes of these gridded diagrams and define
Iq = {i : (xq, yq) ∈ Ai} for all 1 ⩽ q ⩽ p. Define

N =
(∑

{nq : i ∈ Iq and i ̸= min Iq}
)ℓ
i=1

,

S = {i ∈ [ℓ] : |V(j)
Nj
| = 0 for some j ̸= i},

and

dFactorQ,N,S
(T) = (V(1), . . . ,V(ℓ)).

39

If either Q, N , or S is incompatible or one of the above assumptions is violated, we
set

dFactorQ,N,S
(T) = DNA.

– The reliance profile function is

rFactorQ,N,S
(n) = (r(1)(n), . . . , r(ℓ)(n)),

where

r(i)(n) =

{
n− 1 if i ∈ S,
n else.

– Writing

v(i) =

{
(v

(i)
0 , . . . , v

(i)
n−1) if i ∈ S,

(v
(i)
0 , . . . , v

(i)
n) else,

and

I = {(i1, . . . , iℓ) ∈
ℓ∏

i=1

[Ni, n+Ni] : i1 −N1 + · · ·+ iℓ −Nℓ = n and ij ̸= n if j ∈ S},

the counting functions are

cFactorQ,N,S ,(n)(v
(1), . . . , v(ℓ)) =

∑
(i1,...,iℓ)∈I

v
(1)
i1
· · · v(1)i1

.

The generating function equation corresponding to the strategy FactorQ,N,S is

T (x) =
ℓ∏

i=1

V (i)(x)

xNi
.

The key properties are the following, the proofs of which are sufficiently similar to those
for the factorization strategy in [1] that we omit them.

Lemma 2.2.2. Factor is a combinatorial strategy.

Theorem 2.2.3. The Factor strategy is productive.

40

2.2.5 Additional strategies

We will require several other equivalence strategies that we briefly describe here. See [1]
and the associated PermPal database for related strategies.

Requirement Inferral is an equivalence strategy similar to Obstruction Inferral that
adds a requirement whenever the requirement is redundant. Cell Shuffling is an equivalence
strategy that moves a set of cells (and all requirements, obstructions, and linkages) across
a tiling whenever it does not change the counting sequence of the underlying set of gridded
diagrams. Cell Splitting is an equivalence strategy that splits a cell in two and moves all
cells above and to the right up and to the right by one cell. This is applicable whenever
there is a gridded nonnesting paths GP⩾1

obstruction with at least one point in the cell and
such a point is not the first or last point of the path obstruction.

2.3 Example applications

We now perform a preliminary demonstration applying this framework to enumerate two
simple diagram classes, D() and C(,). Both of these classes are
counted by the Catalan numbers, which we prove here using the Combinatorial Exploration
framework. While this is a classical result for the former [95], as far as we know neither the
latter nor a verification of its counting sequence has appeared previously in the literature.
We give a proof tree for each class, describe every combinatorial rule involved in the tree,
and then derive the generating function for the Catalan numbers from the resulting system
of equations. Since verifying that a proof tree is correct simply involves a (usually lengthy)
calculation ensuring that each strategy was applied correctly and that the tree is indeed a
valid proof tree, in the sequel we omit the extended description of each rule.

Figure 2.4 exhibits a proof tree for D(). It closely tracks the proof tree for
noncrossing set partitions given by ABCNPU [1] and formalizes the standard decomposition
for noncrossing diagrams. The root tiling T1 is TD(). We insert the single chord
requirement G = {(12, (0, 0))} into T1, generating the rule

T1
ReqInsG←−−−− (T2, T3).

The tiling T2 represents the set of all gridded diagrams with no chords, that is, only the
empty gridded diagram of size 0. This is a class whose counting sequence is trivially
known; in particular, we apply the verification strategy VT2 defined previously to get the

rule T2
VT2←−− (). The tiling T3 represents all the nonempty diagrams of G(T1) and to it we

41

T1
T2

T3

T ′
3 T ′′

3 T ′′′
3

T4 T1 T1

Figure 2.4: A visual representation of the proof tree for noncrossing diagrams D().

apply a series of equivalence strategies. Placing the single chord requirement as far left as
possible yields the rule

T3
ChordPlG,1,2,←←−−−−−−−− T ′

3 .

We then notice that the restricted growth function property and obstruction (12, ((1, 1), (1, 3)))
together infer the additional obstruction H = (21, ((1, 1), (1, 3))), generating the rule

T ′
3

ObsInfH←−−−−− T ′′
3 , from which we can then separate column 1 on the nonempty cells, fur-

ther producing the rule

T ′′
3

ColSep1,{(1,1)}←−−−−−−−− T ′′′
3 .

We factor the resulting tiling T ′′′
3 to get the rule

T ′′′
3

FactorQ,(0,0,0),{2,3}←−−−−−−−−−−− (T4, T1, T1),
where Q = {{(0, 0), (0, 2)}, {(1, 1)}, {(2, 3)}}, and tilings T4 and T1. The former tiling
represents only the single chord, which has a trivially verified counting function:

T4
VT4←−− ().

42

Since the latter tiling appears previously in the proof tree this completes the specification.
Merging T3, T ′

3 , T ′′
3 , and T ′′′

3 into one equivalence class E3 gives the following specification4

and corresponding system of equations for the associated generating series.

T1 ← (T2, E3) T1(x) = T2(x) + E3(x)

T2 ← () T2(x) = 1

E3 ← (T4, T1, T1) E3(x) = T4(x)T1(x)
2

T4 ← () T4(x) = x.

This straightforwardly reduces to the equation T1 = 1 + xT1(x)
2, from which the Catalan

generating function follows:

T1(x) =
1−
√
1− 4x

2x
.

Turning now to our second example, Figure 2.5 shows a proof tree for C(,),

connected diagrams avoiding and . The root tiling T1 = TC(,)

must include at least one chord by connectedness, so we infer the single chord requirement
and place it as far left as possible to obtain the tiling T ′

2 and equivalence rules

T1
ReqListInf{G}←−−−−−−−− T2 and T2

ChordPlG,1,2,←←−−−−−−−− T ′
2 .

We then insert a single chord requirement G′ = {(12, ((1, 1), (1, 3)))} into the non-isolated
cells, generating the rule

T ′
2

ReqInsG′←−−−−− (T3, T4).

If such a chord does not exist then the linkage across the whole tiling allows us to infer that
cells (1, 1) and (1, 3) are empty, reducing T3 to the single chord tiling T ′

3 whose counting
sequence is known and therefore verifiable as in the previous proof tree. On the other
hand, to tiling T4 we place the required chord leftmost and perform linkage simplification,
producing the rule

T4
ChordPlG′,1,2,←←−−−−−−−−− T ′

4 .

We then factor T ′
4, partitioning it into the first chord and the rest of the tiling:

T4′
FactorQ1,(0,0),{1}←−−−−−−−−−− (T5, T ′

3),

4Written without the strategy labels for compactness.

43

T1 T2 T ′
2

T3

T ′
3 T4

T ′
4

T ′
3

T5

T ′
5

T ′
2 T6

T2

Figure 2.5: A proof tree for the class C(,). We save space by using the
symbol ≈ to denote the two obstructions in the root tiling T1.

44

whereQ1 = {{(1, 1), (1, 3), (2, 2), (2, 6), (3, 3), (3, 5), (3, 7)}, {(0, 0), (0, 4)}}. While we could
have applied the chord placement and factorization steps in reverse order, this would not
have allowed for adding and simplifying several obstructions generated during the chord
placement—for example, the single chord obstructions between some nonempty cell pairs
in the last column are obtained when performing chord placement before factorization, but
not vice versa. This illustrates a difficulty with finding proof trees. These single chord
obstructions then prove useful, allowing us to perform row separation on the last column
after inferring additional obstructions from the restricted growth function property. The
resulting tiling T ′

5 can then be factored on the isolated chord in the second column, giving
our first application of generalized factorization that actually uses the generalization:

T ′
5

FactorQ2,(0,1),∅←−−−−−−−−− (T ′
2 , T6).

While we could have factored along a partition, not sharing the isolated chord, this would
have necessarily generated a tiling that had not appeared before in the proof tree and may
not have been prouctively decomposable using the collection of strategies available to us.
Instead we get the tiling T ′

2 that has already appeared in the tree and the tiling T6; observe
that the latter can be obtained from T2 by placing the required chord as far up as possible.
Writing E1, E3, E4, and E5 for the equivalence classes containing tilings T1, T3, T4, and
T5, respectively, we obtain the following specification and system of generating function
equations.

E1 ← (E3, E4) E1(x) = E3(x) + E4(x)

E3 ← () E3(x) = x

E4 ← (E5, E3) E4(x) = E5(x)E3(x)

E5 ← (E1, E1) E5(x) =
1

x
E1(x)E1(x).

This reduces to E1(x) = x+ E1(x)
2, and solving implies that

T1(x) = E1(x) =
1−
√
1− 4x

2
=
C(x)

x
.

We thereby also obtain our first instance of the offset phenomenon for connected classes.

2.3.1 Structural trees

It may have become obvious to the reader at this point that visualizations of proof trees
for chord diagram classes can become quite complex and dense, even for the relatively

45

Figure 2.6: A structural tree for the class D().

simple Catalan class C(,). While these graphics have the advantage of
conveying all the data contained in the tree, often even without accompanying strategy
labels, it would be useful to have a heuristic depiction to at-a-glance communicate the
most important structural information on a class captured by a proof tree.

We informally encapsulate this idea in the form of what we call a structural tree. The
vertices of a structural tree roughly correspond to the equivalence classes of a proof tree.
For an equivalence class E of tilings in a given proof tree, a corresponding vertex in an
associated structural tree depicts the ungridded structure of a diagram in G(T) based on
the obstructions, requirements, and linkages of some T ∈ E . Points and chords are drawn
in the usual way for a diagram, while other parts of a diagram are drawn as grey half ovals,
emphasizing how their structure is “undiscovered”.

Figure 2.6 depicts a structural tree for the class D() corresponding to the previ-
ously given proof tree. Note how in this example in particular the structural tree closely
reflects the proof tree itself and matches the standard decomposition of a noncrossing di-
agram. This is a general feature—structural trees essentially emulate how a human might
discover a proof tree when decomposing a diagram class by hand.

Figure 2.7 displays a structural tree for the class C(,) which also
corresponds to the previously given proof tree for this class. Here the utility of structural
trees starts to become apparent. While the proof tree significantly grows in complexity
from the previous class to this one, with many more obstructions that are difficult to
distinguish when visualized, the structural tree does not, mainly only increasing in size as

46

Figure 2.7: A structural tree for the class C(,).

a tree.

We will use structural trees to both aid understanding of a proof tree and, when the
proof tree is too large to be displayed in an effective manner, provide a proxy for it in a
proof.

47

Chapter 3

Enumerating chord diagram classes

In this chapter we enumerate a variety of classes of the form D(X), C(X), T (X), and
ST (X), each defined by forbidding a set of diagrams X as subdiagrams and possibly
imposing one of the three connectedness notions: connectivity, 1-terminality, and 1-sym-
terminality. Roughly speaking, we begin by considering classes amenable to the structural
decomposition framework developed in Chapter 2. We then transition to studying classes
that either require other enumeration techniques or for which explicit bijections can be
obtained in addition to a closed-form expression for the counting sequence or generating
series.

The class C(T⩾3, B⩾3) of tree diagrams was first counted by Leroux and Miloudi [71]
and, shortly thereafter, by Dulucq and Penaud [38]. We begin by reproving their result
using Combinatorial Exploration, primarily as an initial demonstration of the framework
applied to a class avoiding an infinite set of diagrams. Unlike their approaches, our method
has the advantage of working directly on the diagrams, in particular avoiding passing to
other objects or employing sophisticated algebraic enumeration techniques.1 Stoimenow
[99] also obtained this result directly using a closely related chord diagram decomposition.

Proposition 3.0.1 (Leroux and Miloudi [71], Dulucq and Penaud [38]). The generating
series and counting sequence of C(T⩾3, B⩾3) are

A(x)
3
√
18

+
3
√

2/3x

A(x)
and

1

2n− 1

(
3n− 3

n− 1

)
, (3.1)

where A(x) =
3
√√

3
√
27x4 − 4x3 − 9x2.

48

Figure 3.1: A structural tree for the class C(T⩾3, B⩾3).

Proof. In Figures 3.2 and 3.1 we give a proof tree and corresponding structural tree for
Cn+1(T⩾3, B⩾3). Writing E1, E3, an E4 for the equivalence classes containing tilings T1,
T3, and T4, we have the following combinatorial specification and corresponding system of
generating function equations:

E1
ReqIns←−−−− (E3, E4) E1(x) = E3(x) + E4(x)

E3
VE3←−− () E3(x) = x

E4
Factor←−−−− (E1, E1, E1) E4(x) =

1

x
E1(x)

3

We indicate the combinatorial strategies corresponding to each rule but omit the param-
eters, which are derivable from the proof tree. We briefly note though that transforming
tiling T ′

4 into the usefully factorable tiling T ′′′
4 involves our first two applications of the cell

1In particular, Pólya theory in the case of Leroux and Miloudi [71].

49

Figure 3.2: A proof tree for the class C(T⩾3, B⩾3) of tree diagrams.

50

splitting strategy. From the system of equations it follows that

T1(x) = x+
1

x
T1(x)

3.

It is well known and verifiable using any computer algebra system that solving this gives
the desired generating series and counting sequence.

Dulucq and Penaud [38] first proved this result by exhibiting a bijection between tree
diagrams and ternary trees, which can easily be obtained recursively from our decompo-
sition or by directly mapping each crossing to an internal vertex and (all but the initial)
point to a leaf. Many other combinatorial objects also have the same counting sequence
(see [93, A001764]). Kreweras [69] first defined the well-known lattice LK

n of noncross-
ing partitions of size n ordered by refinement and showed that the cardinality of its set
Int(LK

n) of intervals is given by (3.1), with n replaced by n+1. In 2020, Colin Defant [35]
proved that Kreweras intervals are in bijection with certain pattern-avoiding permutations
constructed from West’s stack-sorting map s, a variant of the stack-sorting algorithm intro-
duced by Knuth [67] and studied extensively in West’s Ph.D. thesis [107]. There has been
considerable interest in this map, especially with regards to permutations σ with positive
fertility, that is, |s−1(σ)|, the number of preimages of σ under s. Such permutations are
referred to as sorted, and they are uniquely sorted if the fertility is 1. Let Un denote the
set of uniquely sorted permutation in Sn; it was proved in [36] that Un is empty if n is
even. Defant proved that Int(LK

n) is in bijection with permutations of U2n+1 that avoid the
patterns 312 and 1342.

We summarize these relations in the following corollary. Together with the next result,
this shows that the offset phenomenon applies to the class of tree diagrams.

Corollary 3.0.2 (Dulucq and Penaud [38], Kreweras [69], Defant [36]). Tree diagrams of
size n+ 1 are equinumerous with

• complete ternary trees with n internal vertices,

• intervals of the nth Kreweras lattice of size n, and

• (312, 1342)-avoiding uniquely sorted permutations of length 2n+ 1.

It remains an open problem to find bijections between tree diagrams and the latter two
combinatorial objects. There is at least one other diagram class which is equinumerous
with C(T⩾3) and enumerable using our strategy pool.

51

Figure 3.3: A structural tree for the class D(, ,).

Theorem 3.0.3. The generating series and counting sequence of

D(, ,)

are

A(x)
3
√
18x

+
3
√

2/3

A(x)
and

1

2n+ 1

(
3n

n

)
,

where A(x) is as defined previously.

Proof. We display in Figure 3.3 a structural tree for this class. For brevity, we omit the
corresponding proof tree composed of tiling equivalence classes E1, E2, E3, E4, E5, and E6; the
correspondence between the two trees is closely analogous to the correspondence between
previous pairs of proof trees and their structural proxies. Nevertheless, the combinatorial
specification and corresponding set of generating function equations are as follows:

E1
ReqIns←−−−− (E2, E3) E1(x) = E2(x) + E3(x)

E2
VE2←−− () E2(x) = 1

52

E3
ReqIns←−−−− (E4, E6) E3(x) = E4(x) + E6(x)

E4
Factor←−−−− (E1, E5, E1) E4(x) = E5(x)E1(x)

2

E5
VE5←−− () E5(x) = x

E6
Factor←−−−− (E5, E1, E1, E3) E6(x) = E5(x)E1(x)

2E3(x)

This reduces to the system

E1(x) = 1 + E3(x)

E3(x) = xE1(x)
2 + xE1(x)

2E3(x),

which can be solved with a computer algebra system to infer the result.

Corollary 3.0.4. The sets Cn+1(T⩾3) and Dn(, ,) are equinu-
merous.

3.1 Avoiding bottom cycles

This section is based on unpublished joint work with Ali Assem Mahmoud. In this section,
we explicitly enumerate the class C(B⩾3) of connected bottom-cycle-free diagrams using
the Combinatorial Exploration framework.

Theorem 3.1.1. The generating function of C(B⩾3) is

3x− x
√
1− 8x

2(x+ 1)
,

implying that

|Cn+1(B⩾3)| =
1

n

n−1∑
k=0

(
2n

n− 1− k

)(
n− 1 + k

k

)
,

the nth generalized Catalan number Ĉn.

Proof. Figure 3.4 gives a structural tree for this class. We also include the corresponding
proof tree in Figure A.1 of Appendix A; it is too large to reasonably display within this
section. Writing E1, E3, E4, E5, E7, E8, and E10 for the equivalence classes of the tilings in

53

Figure 3.4: A structural tree for the class C(B⩾3) of connected bottom-cycle-free diagrams.

the proof tree, the combinatorial specification and corresponding set of generating function
equations are as follows:

E1
ReqIns←−−−− (E3, E4) E1(x) = E3(x) + E4(x)

E3
VE3←−− () E3(x) = x

54

E4
ReqIns←−−−− (E5, E7) E4(x) = E5(x) + E7(x)

E5
Factor←−−−− (E1, E1, E1) E5(x) =

1

x
E1(x)

3

E7
Factor←−−−− (E8, E4) E7(x) =

1

x
E8(x)E4(x)

E8
Subtract←−−−−− (E1, E3, E10) E8(x) = E1(x)− E3(x)− E10(x)

E10
Factor←−−−− (E1, E1) E10(x) = E1(x)

2

Here we see our first application of the cell shuffling strategy enabling converting tiling T 9

to the equivalent T ′′
4 (in the structural tree, compare the the seventh internal vertex to its

second child); structurally, it is used to detach the subdiagram attached to the source of
the root and reattach it to the source of its first neighbor.

The proof tree presented here uses a new subtraction strategy, Subtract, whose general
definition we leave to later work. This strategy relates to the extensive literature on defining
a combinatorial operation of subtraction, especially in the context of species. A full solution
of this problem was obtained by Joyal [61, 60] and Yeh [112, 113] using virtual species. In
this case, the strategy expresses tiling T8 as the subtraction of tilings T ′

3 and T10 from the
supertiling T ′

2 . That is, after applying certain transforming equivalence strategies, every
gridded diagram in G(T ′

2) can be realized as a gridded diagram in either G(T8), G(T ′
3), or

G(T10); in particular, modulo tiling equivalence,

G(T8) = G(T ′
2)− (G(T ′

3) ⊔ G(T10)),

where ⊔ denotes disjoint union. While this strategy does not satisfy the definition of
productivity because |Gn(T ′

2)| ⩾ |Gn(T8)| for all n, it nevertheless produces a productive
proof tree in this case.2 This follows from the fact that the above system of generating
function equations has a unique solution, as we now observe. In particular, the system
straightforwardly reduces by substitution to the pair of equations

E1(x) = x+ E4(x)

E4(x) =
1

x
E1(x)

3 +
1

x
E4(x)(E1(x)− x− E1(x)

2),

and a computer algebra system solves this for the desired generating function.

2For species this case corresponds to subtracting subspecies, for which it is much easier to show that
it is a suitably well-behaved operation on species compatible with generating functions and combinatorial
specifications.

55

See [93, A064062] for further information on the generalized Catalan numbers. Note
that these numbers also count (2413, 3142)-avoiding Dumont permutations [18]; see [39] for
a definition of these kind of permutations. Bloom and Elizalde [8] proved that this sequence
also counts most of the classes obtained by excluding a pair of permutation diagrams of size
three. Bloom and Elizalde obtained this result by passing to rook placements on Ferrers
boards and counting these objects by size and another parameter. Here, we reprove their
result for the class

D(,)

directly on the level of diagrams3 using a compact decomposition obtained in the Combi-
natorial Exploration framework. Unlike for the class C(B⩾3) it does not require the cell
splitting or cell shuffling strategies, nor a subtraction strategy.

Theorem 3.1.2 (Bloom and Elizalde [8]). Fix

(σ, τ) ∈ {(123, 213), (123, 132), (321, 312), (231, 312),
(231, 213), (231, 132), (312, 213), (312, 132), (213, 132)} .

Then the generating function of D(Dσ, Dτ) is

3−
√
1− 8x

2(x+ 1)
,

implying that |Dn(Dσ, Dτ)| = Ĉn.

Proof for σ = 123 and τ = 132. Figures 3.6 and 3.5 show a proof tree and corresponding
structural tree for the class D(,). The corresponding combinatorial
specification and system of generating function equations is as follows:

E1
ReqIns←−−−− (E2, E3) E1(x) = E2(x) + E3(x)

E2
VE2←−− () E2(x) = 1

E3
ReqIns←−−−− (E4, E6) E3(x) = E4(x) + E6(x)

E4
Factor←−−−− (E5, E1, E1) E4(x) = E5(x)E1(x)

2

E5
VE5←−− () E5(x) = x

3Or, really, gridded diagrams.

56

Figure 3.5: A structural tree for the class D(,).

E6
Factor←−−−− (E7, E5) E6(x) = E7(x)E5(x)

E7
Factor←−−−− (E3, E3) E7(x) =

1

x
E3(x)

2

This reduces to the pair of equations

E1(x) = 1 + E3(x)

E3(x) = xE1(x)
2 + E3(x)

2,

and applying a computer algebra system gives the desired generating function solution.

Corollary 3.1.3. The sets Cn+1(B⩾3) and Dn(,) are equinumerous.

As is universally the case thus far, this implies that C(B⩾3) is another connected class
exhibiting the offset phenomenon. We have thus far been unable to obtain a bijection ex-
plaining the enumerative equivalence between these two classes, although we will comment
further on this possibility in later sections.

We now preview applying Combinatorial Exploration to 1-terminal diagram classes by
using it to enumerate the class T (B⩾3) of 1-terminal bottom-cycle-free diagrams. In later

57

Figure 3.6: A proof tree for the class D(,). The symbol ≈ denotes the
two obstructions in the root tiling T1.

58

work we will formally extend Combinatorial Exploration to 1-terminal classes. The only
significant difference is that 1-terminal linkages can be used to infer more structure than
connected linkages.

Proposition 3.1.4. The generating function of T (B⩾3) is

3x− x2 − x
√
1− 6x+ x2

2
,

implying that

|Tn+2(B⩾3)| =
n∑

k=0

Ck

(
n+ k

n− k

)
,

the nth large Schröder number Sn.

Proof. We give a structural tree for this class in Figure 3.7. The underlying proof tree
proceeds similarly to the connected counterpart while taking advantage of additional ob-
structions and simplifications enabled by 1-terminality. The resulting combinatorial spec-
ification and system of equations are given below:

E1
ReqIns←−−−− (E3, E4) E1(x) = E3(x) + E4(x)

E3
VE3←−− () E3(x) = x

E4
ReqIns←−−−− (E5, E7) E4(x) = E5(x) + E7(x)

E5
Factor←−−−− (E1, E3, E1) E5(x) = E1(x)

2

E7
Factor←−−−− (E8, E4) E7(x) =

1

x
E8(x)E4(x)

E8
Subtract←−−−−− (E1, E3, E10) E8(x) = E1(x)− E3(x)− E10(x)

E10
Factor←−−−− (E1, E3) E10(x) = E1(x)E3(x)

This reduces to the pair of equations

E1(x) = x+ E4(x)

E4(x) = E1(x)
2 +

1

x
E4(x)(E1(x)− x− xE1(x)),

which can be solved with a computer algebra system to give the desired generating function.

59

Figure 3.7: A structural tree for the class T (B⩾3) of 1-terminal bottom-cycle-free diagrams.

The large Schröder numbers obey the Catalan-like recurrence

Sn = Sn−1 +
n−1∑
k=1

SkSn−k

and are the counting sequence of a large variety of combinatorial objects (see [93, A006318]),

60

as are the little Schröder numbers sn = Sn/2 [93, A001003]. The following corollary
records these connections and shows that the offset phenomenon applies to T (B⩾3). See
[93, A006318] or the cited references for definitions.

Corollary 3.1.5. 1-terminal bottom-cycle-free diagrams of size n + 2 are equinumerous
with

• Schröder paths of semilength n,

• (2413, 3142)-avoiding permutations of length n+ 1, and

• semi-standard Young tableaux of shape n× 2 with consecutive entries.

3.2 Avoiding top cycles

The work in the following two sections, as well as the first two sections of Chapter 4, is
based on the paper [79] of the author.

We now turn to enumerating connected diagrams avoiding top cycles, C(T⩾3), as well
as related classes. While the decomposition strategies developed in Section 2 have proven
successful when applied to classes excluding bottom cycles, they do not appear to be
effective for top-cycle-free classes. We have thus far not been able to find a proof tree for
C(T⩾3) with our strategy collection. It remains possible though that one exists, in particular
because we have yet to conduct a suitable computer search. Furthermore, even failing that,
it is likely that further strategies could be described and added to our collection that would
yield a solution to this enumeration problem. We leave exploring this possibility to later
work.

Instead, we develop a novel method for decomposing connected diagrams. While as
formalized here it is entirely separate from the Combinatorial Exploration framework,
it is based on structural ideas related to several combinatorial strategies. The method
involves essentially partitioning a connected chord diagram into specific subdiagrams. This
partition is constructed by first partitioning the 1-terminal part of the diagram revealed
by Lemma 1.3.5 into certain 1-terminal subdiagrams and then bootstrapping the rest of
the construction onto these 1-terminal pieces. The resulting decomposition applies to any
connected diagram but is particularly well-behaved for top-cycle-free diagrams.

For the rest of the section, let C be a connected diagram of size n.

61

c

1 2 m

Figure 3.8: A representative visualization of the source-sink group, indicated by the grey
bracket, of a chord c in a connected diagram of valency m.

3.2.1 Grouping and tracing

Write NL(c) and NR(c) for the left and right neighbors, respectively, of a chord c ∈ C.

Definition 3.2.1 (Source-sink group). We say that a chord c ∈ C is attached to an
indecomposable subdiagram B of C if {c} is not a connected component of B ∪ {c};
symmetrically, B is also attached to c. Define the source-sink group of c to be the interval
of endpoints containing:

• the source of c,

• the indecomposable components of C −NL(c) nested under c and not nested under
any chord c′ > c, and

• the sinks of NL(c) whose associated chord is either attached to one of the above
indecomposable components or does not cross any chord c′ > c.

The source-sink groups of C refers to the source-sink groups of the chords of C.

See Figure 3.8. More informally, we will also refer to chords as “attached” to their
sources and sinks. Observe that that the source-sink group of c can also be characterized
as the points between the source of c (inclusive) and the source of the next chord (exclusive)
in the intersection order; while this characterization is simpler, it does not offer the local
structural information of the above definition. Note that there may be no sinks in a
source-sink group. Source-sink groups enable us to define a notion of valency for chords in
a diagram.

Definition 3.2.2. Define the valency of c ∈ C to be k + ℓ if there are exactly k left
neighbors of c not attached to any chord c′ > c and after removing the left neighbors of c
we are left with exactly ℓ indecomposable components immediately following the source of
c.

62

Figure 3.9: Above: a 1-terminal diagram with the traced subdiagram of the rightmost red
chord indicated in red. Below: another 1-terminal diagram with the traced subdiagrams
of the neighbors of the terminal chord colored.

Loosely speaking, in a local sense the valency is the number of connected pieces in
the source-sink group of a chord. This notion of valency for a diagram should be thought
of as playing the same role as outdegree for a tree, that is, the number of children of
a vertex in a rooted tree. The chord in Figure 3.8 has valency m. As we will see, our
decomposition preserves source-sink groups and therefore valencies. This will in particular
gain importance in Chapter 4.

Let T be a 1-terminal diagram. By Lemma 1.3.4 the source-sink groups of T contain
only a source and adjacent maximal interval of sinks. The source-sink group of a chord
c ∈ T contains no sinks precisely when c is the only chord of T or there is another source
following the source of c.

Definition 3.2.3 (Traced subdiagram). For c ∈ T , we construct the traced subdiagram Tc
of c as follows. The chord c belongs to Tc. Beginning with c′ = c, place in Tc the chord
attached to every sink in the source-sink group of c′, and then repeat this procedure with
each newly added chord of Tc.

See Figure 3.9 for examples. Since for 1-terminal diagrams every chord attached to a
sink in the source-sink group crosses the chord of the source to the left, traced subdiagrams
are equivalently specified as follows: each chord of D besides the base chord c is contained
in Tc if and only if its last right neighbor (in the standard order) is in Tc. In particular, we
observe the following.

Lemma 3.2.4. Traced subdiagrams Tc are 1-terminal and c is the terminal chord.

The above observation together with the following result gives a unique decomposition

63

of a 1-terminal diagram into smaller 1-terminal subdiagrams, after removing the terminal
chord.

Lemma 3.2.5. The traced subdiagrams of the neighbors of the terminal chord d of T
partition T − d.

Proof. If |T | = 1, the result trivially holds. Otherwise, the root chord c is either a neighbor
of d or it is not. If it is, note that by 1-terminality there are no chords nested under the
terminal chord. Then clearly Tc = {c} and, since the last right neighbor of c is d, it is
not contained in any other traced subdiagram besides Td. Since traced subdiagrams are
1-terminal, by Corollary 1.3.6 it follows that all other traced subdiagrams (excluding Td)
are inherited from T − c. Then we get the required partition inductively or immediately if
T − c − d is empty. On the other hand, if c is not a neighbor of d then it is contained in
the traced subdiagram of T of its rightmost neighbor, which exists since T is connected.
Then, as before, inductively we get the required partition.

Although we will not need this fact, it is also worth observing that this implies that
the traced subdiagram of the terminal chord of T is the entire diagram.

3.2.2 A recursive bijection

We are now ready to construct our decomposition of connected diagrams. The construction
comes in the form of a map α sending each connected diagram C to a tuple of connected
diagrams along with a partition of an interval [j]. The partition specifies how the connected
diagrams are shuffled together to generate C.

Let c1 ≺ c2 ≺ · · · ≺ cn be the chords of C in the intersection order and j + 1 be the
index t1(C) of the first terminal chord of C.4

Definition 3.2.6. We define the following.

• T : the 1-terminal diagram {c1, . . . , cj+1}.

• A1, A2, . . . , Ak: the indecomposable components of C−{c1, . . . , cj} nested under cj+1.
Neighbors of the terminal chord cj+1 may or may not be attached to such a com-
ponent; for each that is not, we also include among these Aℓ’s an empty component
and consider them attached to their paired neighbor chord.

4That is, the chord with rightmost sink.

64

α β

{1, 3, 4, 9} {2, 5} {6, 7, 8}

Figure 3.10: A connected diagram and its permuted decomposition defining the maps α
and β. The source-sink groups used in the construction of β are indicated by the brackets
below the three diagrams on the bottom of the figure.

• For all 1 ⩽ ℓ ⩽ k, Dℓ: the union of the traced subdiagrams of T of each neighbor
of cj+1 attached to component Aℓ in C; if Aℓ is empty this is simply the traced
subdiagram of the neighbor defining Aℓ above.

• For all 1 ⩽ ℓ ⩽ k, Cℓ: the union of Dℓ with all indecomposable components of C −T
attached to chords of Dℓ in C.

• For all 1 ⩽ ℓ ⩽ k, Iℓ: the subset {1 ⩽ i ⩽ j | ci ∈ Cℓ} of [1, j] indicating which
chords in T − cj+1 belong to Cℓ. Furthermore, set iℓ = |Iℓ|.

• α(C) = ((C1, I1), (C2, I2), . . . , (Ck, Ik)).

Figure 3.10 illustrates an example of this construction for a representative diagram C.
By Lemma 1.3.4 chords of T attach to indecomposable components of C − T at sinks; in
other words, the interval occupied by an indecomposable component of C − T intersects
at most one maximal interval of sinks of T . By the construction of traced subdiagrams, it
follows that each indecomposable component of C−T is attached to the chords of Dℓ for at
most one ℓ. Thus, we observe that {C1, . . . , Ck} is a partition of C − cj+1 by Lemma 3.2.5
and the fact that C is connected (since therefore every indecomposable component of C−T
is attached to a chord of T − cj+1); note that this also implicitly uses the fact that every
neighbor of cj+1 is in T since the intersection order is an extension of the reachability order.
We also have the following properties.

Claim 1. For all ℓ, (i) Cℓ is connected and (ii) t1(Cℓ) ⩾ iℓ.

65

Proof. Note that clearly each neighbor of cj+1 attached to Aℓ has a path to every other
attached neighbor since each cross a chord in the outermost connected component of Aℓ

by definition. Furthermore, the traced subdiagram of T of a neighbor of cj+1 is connected
since it is 1-terminal by Lemma 3.2.4. By construction, it follows that Cℓ is connected
since C is connected, giving (i). For (ii), note that either Cℓ is constructed from the traced
subdiagram of exactly one neighbor ci of cj+1 or Aℓ is nonempty. In the former case, ci
is the first terminal of Cℓ, while in the latter case each chord of Dℓ has a right neighbor
in Cℓ by the 1-terminality of traced subdiagrams. Thus, in either case, each neighbor of
cj+1 in Cℓ precedes (non-strictly) the first terminal chord of Cℓ, which is necessarily either
the neighbor ci or in Aℓ. Then another application of Lemma 3.2.4 yields the inequality
t1(Cℓ) ⩾ iℓ.

We now show that α has an inverse, that is, define a map β such that β ◦ α = id
and α ◦ β = id. Suppose we are given a tuple ((C1, I1), . . . , (Ck, Ik)) with C1, . . . , Ck

connected diagrams and {I1, . . . , Ik} a partition of [1, j] with 1 ⩽ |Iℓ| ⩽ t1(Cℓ) for all ℓ and
j = |I1|+ · · ·+ |Ik|.

Definition 3.2.7. We define the composed diagram C and map β as follows.

• For all 1 ⩽ ℓ ⩽ k, Dℓ: the 1-terminal diagram induced by the first |Iℓ| chords of Cℓ

in the intersection order.

• C ′: the diagram obtained by concatenating C1, . . . , Ck and then arranging the source-
sink groups corresponding to the first |I1|, . . . , |Ik| chords (in the intersection order) of
C1, . . . , Ck, respectively, in order according to the permutation induced by I1, . . . , Ik,
maintaining the order of the points within each diagram Cℓ.

• C: the diagram obtained from C ′ by adding a chord c with its sink in the rightmost
position and source immediately following the source-sink groups corresponding to
the first j chords of C ′ (in the intersection order).

• β((C1, I1), . . . , (Ck, Ik)) = C.

A representative example of this construction is given in Figure 3.10.

Claim 2. We have t1(C) = j + 1.

Proof. For all ℓ, clearly at least one source of Cℓ lies to the left of the source of c while the
rightmost sink of Cℓ lies to the right of the source of c. Since Cℓ is connected, it follows

66

that c has a neighbor from each Cℓ, implying that C is connected. Then by Lemma 1.3.3, c
is the first terminal chord of C since its sink lies furthest to the right. Note that nonnesting
paths of Cℓ are preserved in C by the construction process; since the first terminal chord
of Cℓ clearly either crosses c or is nested under it, this implies that there is a nonnesting
path from each of the first |Iℓ| of Cℓ to c, implying that t1(C) ⩾ |I1|+ · · ·+ |Iℓ|+1 = j+1
by Lemma 1.3.5. On the other hand, by the extension property of the intersection order,
all the chords of Cℓ−Dℓ come after the first terminal chord of C in the intersection order.
Combined with the fact that only |Iℓ| chords of Dℓ have their sources to the left of the
source of c, we see that t1(C) ⩽ j+1 by Lemma 1.3.3. We therefore infer that t1(C) = j+1,
as required.

Claim 3. The map β is the inverse of α.

Proof. Observe that α partitions the points of a given connected diagram C lying before
the source of the terminal chord cj+1 along source-sink groups. It follows that, for C
in the domain of α and ((C1, I1), . . . , (Ck, Ik)) in the domain of β, β(α(C)) = C and
α(β((C1, I1), . . . , (Ck, Ik))) by construction and our prior conclusions about α and β.

The bijection α translates into the following result recursively enumerating connected
diagrams by size and index of the first terminal chord.

Theorem 3.2.8. Write cn,j for the number of connected diagrams of size n with t1(C) = j.
Then

cn+1,j+1 =
n∑

k=1

∑
n1+···+nk=n

nℓ⩾1

∑
i1+···+ik=j
1⩽iℓ⩽nℓ

(
j

i1, . . . , ik

)∑
j1⩾i1

cn1,j1 · · ·
∑
jk⩾ik

cnk,jk .

This recurrence is implicit in the work of Marie and Yeats [75]. Later, an equivalent
recurrence based on the root-share decomposition was obtained by Courtiel and Yeats
[28]. While our decomposition is more complex, it also more clearly reveals the structure of
connected diagrams and can be used to derive further information about certain additional
diagram parameters, as shown in Chapter 4.

We now apply this decomposition to connected top-cycle-free diagrams. In this case the
diagram ends up uniquely decomposing into a tuple of smaller top-cycle-free diagrams—
the need to provide a shuffle-defining partition to accompany the decomposition effectively
disappears. We specifically prove the following recurrence.

67

Theorem 3.2.9. Write tn,j for the number of connected top-cycle-free diagrams of size n
with t1(C) = j. Then

tn+1,j+1 =
n∑

k=1

∑
n1+···+nk=n

nℓ⩾1

∑
i1+···+ik=j
1⩽iℓ⩽nℓ

∑
j1⩾i1

tn1,j1 · · ·
∑
jk⩾ik

tnk,jk .

Proof. Let C be a connected top-cycle-free diagram of size n + 1 with t1(C) = j + 1
and c1 ≺ c2 ≺ · · · ≺ cn+1 the chords of C in the intersection order. As previously,
let α(C) = ((C1, I1), . . . , (Ck, Ik)); Figure 3.11 displays a representative example. Note
that C1, . . . , Ck are clearly top-cycle-free since they are subdiagrams of the top-cycle-free
diagram C.

Claim 4. I1, . . . , Ik are intervals.

Proof. Suppose to the contrary that Iℓ is not an interval for some ℓ. Then there exists a
block Iℓ′ such that Iℓ and Iℓ′ either nest or cross, that is, there are r, s ∈ Iℓ and t ∈ Iℓ′
such that r < t < s. By construction, each subdiagram Dℓ of Cℓ contains a neighbor of the
first terminal chord cj+1 of C and each such neighbor lies before the first terminal chord
of Cℓ in the intersection order. Since Dℓ is connected, there exists a path P in Dℓ from cr
to cs. By construction of Dℓ′ and Lemma 1.3.5, there exists a nonnesting path Q in Dℓ′

from ct to a neighbor of cj+1 in Dℓ′ ; let Q
′ = Q∪ {cj+1}. Since r < t < s, by Lemma 1.3.3

cr < ct < cs in the standard order, implying that P and Q cross, that is, there is a chord c
in P and a chord c′ in Q such that c and c′ cross. Let P ′ be a nonnesting path in Dℓ from
c to a neighbor of cj+1 in Dℓ, which again exists by construction and Lemma 1.3.5. Then
P ′ ∪Q′ contains two internally-disjoint nonnesting paths of length at least three with the
same first and last chords (in the standard order), so one can easily see that it contains a
top cycle as a subdiagram. But then C is not top-cycle-free, a contradiction.

Now fix a tuple ((C1, I1), . . . , (Ck, Ik)) with C1, . . . , Ck connected top-cycle-free dia-
grams and {I1, . . . , Ik} a partition of [1, j] into intervals with 1 ⩽ |Iℓ| ⩽ t1(Cℓ) for all
ℓ and j = |I1| + · · · + |Ik|, and write C = β((C1, I1), . . . , (Ck, Ik)) and let c be the first
terminal chord of C. Suppose C contains a top cycle subdiagram A. Clearly C − c is
top-cycle-free since its connected components are exactly C1, . . . , Ck. Then it follows that
A must contain c and, since cycles are 2-connected, be a subdiagram of Cℓ ∪ {c} for some
ℓ. Write A = {c′1, . . . , c′m, c}, where c′1 < c′2 < · · · < c′m < c in the standard order. Without
loss of generality we may assume that A is chosen with c′2 maximum (in the standard
order). Then, since Cℓ is top-cycle-free, there is no path nested under c′2 from a chord of

68

α β

{4, 5} {1, 2, 3}

Figure 3.11: A top-cycle-free diagram and its decomposition defining the maps α and β.

A′ = A−{c′1, c′2, c} to a right neighbor of t2, implying that A′ is a subset of the source-sink
group of c′2. By construction it follows that c′m cannot cross c, a contradiction. So C is
top-cycle-free.

Since α is a bijection and there is exactly one partition of [1, j] into a fixed number of
intervals with specified ordered sizes, this completes the proof.

In 2005, Jeĺınek [58] showed that top-cycle-free diagrams are in bijection with the
classes D() and D(). He proved this by constructing a somewhat complicated
generating tree for each of these classes and showing that the two trees are isomorphic.
Since and its reverse are connected, this result also implies that the connected
subsets of these classes are all equinumerous. Here, we show that the decomposition
map α gives a recursively-defined direct bijection between Cn(T⩾3) and Cn(). The
bijection preserves both size and index of the first terminal chord, in virtue of the common
decompositions relating a diagram and its image. Note that the fact that this bijection
preserves the index of the first terminal chord was not obtained in [58].

Theorem 3.2.10. There is a bijection between C(T⩾3) and C() that preserves size
and index of the first terminal chord.

Proof. Let C be a -free diagram of size n with t1(C) = j and c1 ≺ c2 ≺ · · · ≺ cn the
chords of C in the intersection order. Write α(C) = ((C1, I1), . . . , (Ck, Ik)), and carry over
all prior associated notation appropriately. See Figure 3.12 for a representative example

69

of α applied to -free diagram. As previously, note that C1, . . . , Ck are -free
since they are subdiagrams of C. The key claim is that the blocks I1, . . . , Ik are uniquely
determined by their sizes i1, . . . , ik and the subdiagrams C1, . . . , Ck in the following sense.

Claim 5. Each block Iℓ partitions into intervals Iℓ,1 > . . . > Iℓ,kℓ with the following
properties.

1. For all 1 ⩽ r < s ⩽ j − 1, we have r, s ∈ Iℓ,i if and only if

a) i = 1 and the sinks of cr and cs both lie in Aℓ,

b) i > 1 and the sinks of cr and cs both lie in source-sink groups associated to
Iℓ,i−1, or

c) ℓ = 1, i = k1, k1 = max{kℓ}, and the sink of cr lies in a source-sink group
associated to I1,k1 .

2. The intervals interleave, that is, Ik,i > Ik−1,i > · · · > I1,i > Ik,i+1.

Note that there may be fewer intervals in some blocks than others, so not all terms in the
inequalities implied by (2) are necessarily present. It is for this reason the intervals are
labeled in reverse of the natural order.

Proof of Claim 5. Note that if k = 1 the claim reduces to the trivial statement that I1 is an
interval, so we may assume k ⩾ 2. We prove both properties simultaneously by induction
on i, the secondary interval index.

By -avoidance, the neighbors of the terminal chord cj of C form a clique. Thus
all such neighbors in Cℓ cross all such neighbors in Cℓ′ , implying that the sources of Cℓ ∩
NC(cj+1) lie rightward of the sources of Cℓ′∩NC(cj+1) for ℓ

′ < ℓ. This gives all but possibly
the last inequality of (2) and gives the “if” direction of (1): r, s ∈ Iℓ,1 if the sinks of cr and
cs lie in Aℓ. Now, if the other direction of (1) does not hold, then there exists 1 < t < j−1
such that ct ∈ Iℓ,1 and the sink of ct lies in the source-sink group of a neighbor cr of the
terminal chord cj. Observe that ℓ = 1 since otherwise cr, ct, and a neighbor of cj contained
in Cℓ−1 (which necessarily exists since k ⩾ 2) form a subdiagram isomorphic to .
Furthermore, by contradiction, we are not in case (c), so we may assume that 1 ̸= max{kℓ}.
Consequently there must be ℓ′ > ℓ such that Cℓ′ has a chord c whose sink lies in a source-
sink group associated to Iℓ′,1 and source lies left of the source of ct. But this implies that
cr, ct, and c form a subdiagram isomorphic to , yielding a contradiction. For the
base case it only remains to show for (2) that Ik,2 < I1,1 when kk ⩾ 2, but this follows from

70

α β

{1, 4} {2, 3, 5}

Figure 3.12: A -free diagram and its decomposition defining the maps α and β.

the fact that otherwise there exist c ∈ C1 ∩NC(cj), c
′ ∈ Ck ∩NC(cj), and a left neighbor

c′′ of c′ such that {c < c′′ < c′} is isomorphic to .

Now suppose i > 1 and assume (1) and (2) hold for all smaller i. For r, s ∈ Iℓ,i, observe
that if we are not in case (c) then the sinks of cr and cs must lie in source-sink groups
associated to Iℓ,i or Iℓ,i−1; otherwise the sink of cr or cs lies in a source-sink group associated
to Iℓ,i′ for i

′ < i− 1, violating the induction hypothesis for i′ + 1. If one of the first k − 1
inequalities of (2) does not hold, then there exists ℓ > ℓ′ such that Iℓ,i < Iℓ′,i. Then by
the induction hypothesis, connectivity, and our above observation there exist chords ct, cr,
and cs such that (i) t ∈ Iℓ,i and the sink of ct lies a source-sink group associated to Iℓ,i−1,
(ii) s ∈ Iℓ′,i−1 and the sink of cs lies to the right of the sink of ct, and (iii) r ∈ Iℓ′,i and
cr is attached to the source-sink group of cs. Then these three chords form a subdiagram
isomorphic to , a contradiction. A near identical argument further yields the last
inequality of (2).

Now we turn to property (1). For the “if” direction, the statement is trivial for case (c),
so we may assume that we are in case (b). Furthermore, we may assume by the induction
hypothesis and by way of contradiction that s ∈ Iℓ,i and r ∈ Iℓ,i′ for i

′ > i. Then by
property (2) there exists ℓ′ < ℓ such that Iℓ′,i < Iℓ,i < Iℓ′,i−1 < Iℓ,i−1. It follows that,
by connectivity, there exists a chord c in Cℓ′ such that the source of c lies in between the
source of cs and the source cr, and the sink of c lies in a source-sink group of a chord c′ that
crosses cr. Consequently, {cr < c < c′} is isomorphic to . The “only if” direction
proceeds sufficiently similar to the base case that we omit it.

71

Since Aℓ is obtained by removing the first iℓ chords of Cℓ in the intersection order, it is
easy to see that the blocks are indeed inductively uniquely determined by their sizes and
the subdiagrams C1, . . . , Ck. We thus construct a bijection ρ : Cn() → Cn(T⩾3) as
follows:

• obtain the recursively-defined images Ĉ1 = ρ(C1), . . . , Ĉk = ρ(Ck),

• let Î1, . . . , Îk be the intervals of size i1, . . . , ik, and

• set ρ(C) = β((Ĉ1, Î1), . . . , (Ĉk, Î1)).

Figure 3.11 shows the image of the diagram from Figure 3.12 under this bijection. By the
construction of β this bijection preserves size and index of the first terminal chord.

3.2.3 Triangulations, maps, and other friends

While Theorem 3.2.9 in principle provides sufficient information to obtain an explicit for-
mula for the counting sequence of C(T⩾3), the nested composition-indexed series contained
in the recurrence makes this a difficult task in practice. For this we turn to instead applying
a bijective approach, for which our decomposition will prove helpful. Along the way we ex-
plore several connections between top-cycle-free diagrams and other natural combinatorial
objects.

Marie and Yeats implicitly obtained Theorem 3.2.8 by passing from chord diagrams to
rooted plane binary trees. This essentially amounts to showing that there is a recursively-
defined bijection, based on the root-share decomposition, between rooted connected chord
diagrams and rooted plane binary trees with two recursively-defined properties. These
properties are somewhat technical and based on a labeling of the leaves induced via the
bijection by the intersection order on the chords of the associated diagram.

Later, Courtiel, Yeats, and Zeilberger [30] discovered a much nicer type of object,
combinatorial maps, that could substitute for connected chord diagrams in their work. A
(rooted) combinatorial map is a transitive permutation representation of the group ⟨σ, α |
α2 = 1⟩ with a distinguished fixed point for the action of α (the root). It can be represented
by a connected graph of half edges, each paired with at most one other half-edge to form
an edge, with a cyclic order of the half-edges incident to each vertex and the root a vertex
attached to a distinguished “dangling” half-edge. Such a map inherits certain properties
of this underlying graph; in particular, it is bridgeless if its graph is bridgeless, that is,
2-edge-connected. Other properties require a map-specific definition: it is planar if its
Euler characteristic is 2 (see e.g. [30] for the definition of the Euler characteristic).

72

Theorem 3.2.11 (Courtiel, Yeats, and Zeilberger [30]). There exists a bijection θ between
connected diagrams and bridgeless maps such that

• chords correspond to edges;

• terminal chords correspond to vertices;

• the position t1 of the first terminal chord in the intersection order corresponds to the
indegree deg−DFS,1 of the root vertex v1 under the orientation induced by the rightmost
depth-first search.

For brevity, we omit a definition of the rightmost depth-first search and associated
orientation referenced in this theorem; see Section 5.5 of [30] for these details.

It turns out top-cycle-free diagrams also independently arise in the work of Courtiel,
Yeats, and Zeilberger as the image of the bijection θ on a natural subset of bridgeless maps:
those which are planar.

Theorem 3.2.12 (Courtiel, Yeats, and Zeilberger [30, Proposition 27]). Under θ, planar
bridgeless maps are in bijection with connected top-cycle-free diagrams.

Furthermore, changing “connected” to “indecomposable” corresponds to dropping “bridge-
less” for both this result and Theorem 3.2.11.

Top-cycle-free diagrams turn out to be related to an even more classic type of com-
binatorial object: triangulations. In this context, a triangulation T is a plane graph in
which every bounded face is a triangle; for technical reasons we also require that a single
edge counts as a triangulation. Triangulation T is rooted if it has a distinguished edge,
the root; we will only work with rooted triangulations. As is standard in the literature, we
consider such triangulations up to root-preserving isomorphism. Exterior vertices of T are
incident to its boundary face, while all other vertices of T are interior vertices. We obtain
the following result, whose proof follows shortly.

Theorem 3.2.13. There is a bijection ω between (a) connected top-cycle-free diagrams
with n chords and t1 = i and (b) triangulations with n − i interior vertices and i + 1
exterior vertices.

In 1964, William G. Brown [16] explicitly enumerated (rooted) triangulations with n
interior vertices and m+ 3 exterior vertices by deriving and solving a functional equation
for the associated bivariate ordinary generating function, showing their number to be

2(2m+ 3)!(4n+ 2m+ 1)!

m!(m+ 2)!n!(3n+ 2m+ 3)!
.

73

v0

vi1
vi2

vik

T1

T2

T3

Tk

ω

Ck C2 C1

Figure 3.13: The recursive construction of a triangulation and its image chord diagram
under the bijection ω. The exterior vertex labels are taken from the decomposition map γ.

From Theorems 3.2.12, 3.2.13, and 3.2.10 it follows that we get an explicit count for the
corresponding connected top-cycle-free diagrams and planar bridgeless maps, as well as
connected -free diagrams.

Corollary 3.2.14. The number of both (a) connected top-cycle-free diagrams with n chords

and t1 = i, (b) connected -free diagrams with n chords and t1 = i, and (c) planar
bridgeless maps with n edges and deg−DFS,1 = i is

2(2i− 1)!(4n− 2i− 3)!

(i− 2)!i!(n− i)!(3n− i− 1)!
=

i− 1

(4n− 2i− 1)(2n− i− 1)

(
2i− 1

i

)(
4n− 2i− 1

n− i

)
.

In particular, for n ⩾ 1,

|Cn+1(T⩾3)| =
2

n(n+ 1)

(
4n+ 1

n− 1

)
. (3.2)

Proof of Theorem 3.2.13. We will use the unique decomposition described in the previous
section to recursively define our bijection. There is exactly one (connected top-cycle-
free) diagram of size 1, namely, a single chord, and we map it to the unique (rooted)
triangulation with no interior vertices and 2 exterior vertices: a single edge. So, explicitly,
ω maps a single chord to a single edge. Now fix a connected top-cycle-free diagram C of
size n ⩾ 2. Applying the unique decomposition from previous sections, we get connected

74

top-cycle-free subdiagrams C1, . . . , Ck and integers i1, . . . , ik with i1 + · · ·+ ik = t1(C)− 1
and 1 ⩽ iℓ ⩽ t1(Cℓ) for all 1 ⩽ ℓ ⩽ k; we have skipped the intervals I1, . . . , Ik because
their lengths i1, . . . , ik are sufficient to specify the decomposition and define the bijection
ω. Then inductively we obtain image triangulations T1, . . . , Tk of C1, . . . , Ck under ω; write
tℓ = t1(Cℓ) and vℓ,0, . . . , vℓ,tℓ for the exterior vertices of Tℓ read counterclockwise starting at
the leftmost vertex vℓ,0 of the root edge (so, in particular, vℓ,0vℓ,tℓ is the root edge). Then
we construct triangulation T as follows:

1. Join T1, . . . , Tk in that order by identifying vℓ−1,iℓ and vℓ,0.

2. Add a new vertex v and connect it with an edge to v1,0 and vk,ik ; this creates a single
new bounded face.

3. Root the graph at edge v1,0v.

4. While keeping the graph simple, add an edge from v to every vertex incident to the
newly created bounded face.

See Figure 3.13 for a visual representation of the construction. We then set ω(C) = T . It
is easy to see that T is indeed a triangulation. Furthermore, the number of vertices of T is

|T1|+
k∑

ℓ=2

(|Tℓ| − 1) = |C1|+ 1 +
k∑

ℓ=2

|Cℓ| = |C|

while the number of external vertices of T is

1 +
k∑

ℓ=1

iℓ + 1 = t1(C) + 1.

We have thus defined ω; in particular, if we write δ for the function sending ((T1, i1), . . . , (Tk, ik))
to T then ω = δ ◦ ω ◦ α (where ω acts on a tuple of diagram-integer pairs in the obvious
way). It remains only to show that ω is a bijection. To that purpose, it suffices to define
a unique decomposition γ of a triangulation T reversing the above construction, that is,
inverting δ. This follows from the observation that

β ◦ ω−1 ◦ γ = α−1 ◦ ω−1 ◦ δ−1 = (δ ◦ ω ◦ α)−1 = ω−1,

so we automatically get a recursively-defined inverse of ω. So, let T be a triangula-
tion and v0, v1, . . . , vi be the exterior vertices of T read counterclockwise with v0vi the

75

root edge. Again reading counterclockwise, vertex vi has two or more external neighbors
v0, vi1 , vi2 , . . . , vik−1

, vik . Then deleting all edges incident to vi leaves a sequence of unrooted
triangulations T1, . . . , Tk pairwise joined at vertices vi1 , . . . , vik−1

(see Figure 3.13). Root
each Tℓ at the unique edge incident to viℓ−1

which was previously incident to a bounded
face, where i0 = 0. Then it readily follows that setting γ(T) = ((T1, i1), . . . , (Tk, ik)) gives
the desired decomposition; Tℓ has exactly iℓ + 1 exterior vertices and, furthermore, clearly
δ(γ(T)) = T . This concludes the proof.

Tutte [102] was the first to prove that triangulations with n internal vertices and 3
external vertices are counted by (3.2), while Wash and Lehman [106] proved that this also
counts the number of rooted bridgeless planar maps with n edges. Bijections connecting
these two sets of objects were later given by Wormald [109], Fusy [49], and Fang [41], with
the former two obtained recursively and the latter directly. Both our bijection between
connected top-cycle-free diagrams and triangulations and the bijection of Courtiel, Yeats,
and Zeilberger between planar bridgeless maps and connected top-cycle-free diagrams are
recursively-defined. Obtaining a direct bijection mapping connected top-cycle-free dia-
grams to these other objects remains open.

There are more than a few other well studied objects in bijection with triangulations
and, thereby, connected top-cycle-free diagrams. Tamari [100] defined a partial order on
the set of plane binary trees with n non-leaf vertices, which are counted by the Catalan
numbers, and proved that it specified a lattice, the nth Tamari lattice LT

n , whose covering
relation is defined by right rotation of subtrees. Let Int(P) denote the set of all intervals
of a poset P . Chapoton [22] proved that the cardinality of Int(LT

n) is given by (3.2); later,
Bernardi and Bonichon [6] provided a bijection between Tamari intervals and triangula-
tions explaining their common count. Along with the bijection between triangulations and
bridgeless planar maps, Fang [41] obtained a bijection between bridgeless planar maps and
Tamari intervals; all of these bijections passed through so-called “sticky trees”.

In 2020, Colin Defant [35] proved that Tamari intervals are in bijection with uniquely-
sorted permutations5 of length 2n+1 that avoid the patterns 132 or 231. This is analogous
to the classic result of Knuth that 132- and 231-avoiding permutations of Sn are counted
by the nth Catalan number Cn = 1

n+1

(
2n
n

)
.

While we will return to these objects later when we consider other chord diagram
classes, for now we summarize these relations in the following corollary.

Corollary 3.2.15. Connected top-cycle-free diagrams of size n+1 are equinumerous with

5Recall these permutations from the start of the chapter.

76

intervals of the nth Tamari lattice and (132, 231)-avoiding uniquely sorted permutations of
length 2n+ 1.

Along with Equation (3.2) this makes it clear that the class C(T⩾3) is another example
of the offset phenomenon.

3.3 The map ψ : Tn+1 → Dn

As mentioned previously, Courtiel and Yeats [28] obtained a recurrence relation for the
number c′n,k of connected diagrams with n chords such that t1 ⩾ n − k. In addition to
recursively computing the associated exponential generating function and estimating the
asymptotics of c′n,k, they used this result to derive the following count.

Theorem 3.3.1 (Courtiel and Yeats [28, Corollary 11]). The number of 1-terminal dia-
grams of size n+ 1 is (2n− 1)!!.

This is the same as the number of (arbitrary) diagrams of size n. Courtiel and Yeats
used the root-share decomposition to inductively prove this count. In this section we
describe and study a bijection between the set Tn+1 of 1-terminal diagrams with n + 1
chords and the set Dn of diagrams with n chords. This map was actually first discovered
by Yeats almost a decade ago in the course of the original work with Marie [75] on chord
diagram generating series solutions to Dyson-Schwinger equations, but never published or,
to our knowledge, significantly studied.6 Yeats used a recursive formulation related to
the inductive proof of Theorem 3.3.1; here we describe and concentrate on a new, simpler
formulation. We will briefly return to Yeats’ formulation in Section 3.3.2 in the context of
Stirling permutations.

Theorem 3.3.2. There is a bijection ψ : Tn+1 → Dn between 1-terminal diagrams of size
n+ 1 and diagrams of size n. Furthermore, the bijection

(i) preserves nestings,

(ii) reduces the number of crossings by n,

(iii) restricts to a bijection between connected nonnesting diagrams Cn+1() and nonnest-
ing diagrams Dn(), and

6Personal communication.

77

ψ

Figure 3.14: An example of a 1-terminal diagram and its image diagram under the bijection
ψ. The source-sink groups “flipped” into sink-source groups by ψ are indicated by the
horizontal brackets, with the “flip axes” indicated by the dotted lines, and the sources and
terminal chord of T are indicated in red.

(iv) restricts to a bijection between 1-terminal top-cycle-free diagrams Tn+1(T⩾3) = Tn+1(T⩾3, B⩾3)
and noncrossing diagrams Dn().

Proof. Consider T ∈ Tn+1 with chords c1 < c2 < · · · < cn+1 in the standard order (which
agrees with the intersection order by 1-terminality). All but the last point of T partition
into a sequence of source-sink groups, one for each source of T . Recall that, since T is
1-terminal, these groups only contain the source and maximal interval of sinks immediately
following the source. Then we define ψ(T) to be the diagram obtained by

(1) moving each source to the end of its source-sink group, and

(2) deleting the formerly terminal chord cn.

Figure 3.14 displays a representative example of T and ψ(T). Note that the bijection ψ
induces a mapping, given by the construction, between the chords of T and the chords
of its image ψ(T). We can therefore abuse notation and write ψ(c) for the image of a
non-terminal chord c under this induced mapping.

Step (1) converts all but the last source-sink group in T into a corresponding sink-
source group in ψ(T), consisting of a source together with the maximal interval of sinks
adjacent to the source on the left. Observe that we can also dually characterize this as

78

uncrossing each non-terminal chord c with its rightmost right neighbor c′ by moving the
source of c′ immediately ahead of the sink of c while maintaining the relative order of all
other endpoints. In particular, the following key property holds.

Claim 6. A non-terminal chord c ∈ T has k right neighbors if and only if ψ(c) has k − 1
right neighbors.

This gives property (ii). Observe that for non-terminal chords c, c′ ∈ T , c′ is nested
under c if and only if ψ(c′) is nested under ψ(c) by the construction of ψ. Since the terminal
chord is necessarily not part of any nestings we infer property (i).

Now clearly the codomain of ψ is Dn, so to prove that ψ is a bijection between the
designated sets it suffices to exhibit its inverse. To that end, let D ∈ Dn and define ϕ(D)
to be the diagram obtained by

(1′) concatenating a single chord to the end of D, and

(2′) moving the source of each sink-source group to the beginning of its sink-source group.

Note that we could also skip using (2′) on the terminal chord and instead of (1′) directly
add a chord covering the rightmost maximal interval of sinks. It is readily apparent that
(1′) and (2′) invert (2) and (1), respectively, implying that ϕ is the inverse of ψ.

It remains only to prove properties (iii) and (iv). For the former, Corollary 1.3.6
implies that connected nonnesting diagrams are 1-terminal, so the property follows by
nesting preservation. For the latter, property (iv), we require a structural characterization
of 1-terminal top-cycle-free diagrams. Recall that T is 1-terminal.

Claim 7. Diagram T is top-cycle-free if and only if T is a tree7 and every non-terminal
chord has exactly one right neighbor.

Proof. The “if” direction trivially holds. For the other direction, assume T is top-cycle-free.
Note that bottom cycle diagrams have chords with two right neighbors, so it suffices to
show that every non-terminal chord has exactly one right neighbor (since T consequently
must be a tree). If not, then there exists non-terminal c ∈ T with at least two right
neighbors d and d′. Since T is top-cycle-free d and d′ do not cross and we may assume
that d is nested under d′. Choose e as far right as possible such that there is a nonnesting
d-e path nested under d′. Then either e has a right neighbor crossing d′, in which case T
contains a top cycle subdiagram, or e is terminal. In either case we get a contradiction.

7That is, G(T) is a tree.

79

Note that we could also obtain this claim using a quicker induction argument, but the
above proof offers more insight. It in particular reflects the fact that bottom cycle diagrams
are not 1-terminal.

To obtain property (iv), suppose T is top-cycle-free. Then it follows by Claims 7 and
6 that each chord in the image ψ(T) has no right neighbors, implying that there are no
crossings at all. We can similarly infer that for each noncrossing diagram D every non-
terminal chord in ψ−1(D) has exactly one right neighbor, as required.

Among other things, this sheds further light on the consequence of Theorem 3.2.13
that 1-terminal top-cycle-free diagrams are in bijection with triangulations with no interior
vertices and, therefore, are counted by the Catalan numbers. In a nutshell, (iv) implies
that we can think of 1-terminal top-cycle-free diagrams as the connectivity 1 equivalent to
noncrossing diagrams, since trees have connectivity 1. As indicated by Claim 7, they are
also minimally 1-terminal in the sense that each chord has the minimum number of right
neighbors required to be 1-terminal.

3.3.1 Higher terminality

In this section, we study the relation between k-terminality and the bijection ψ. With
the observations at the end of the previous section in mind, we can generalize statement
(iv) of Theorem 3.3.2 to get a connectivity k equivalent to noncrossing diagrams. Call a
diagram C k-terminal-minimal if all but its last k−1 chords have exactly k right neighbors.
Clearly C is k-terminal and furthermore, in particular, 1-terminal top-cycle-free diagrams
are 1-terminal-minimal. We will require a basic fact about connectivity, followed by two
important statements about the relationship between k-connectivity, k-terminality, and ψ.
For a simple graph G, write G[A] for the induced subgraph on A ⊆ V (G) and δG−A(A) for
the minimum number of neighbors that a vertex in A has in G− A.

Lemma 3.3.3. If G−A is k-connected, G[A] is either k-connected or has size at most k,
δA(V (G)− A) ⩾ min{k, |A|}, and δG−A(A) ⩾ k, then G is k-connected.

We omit the straightforward proof of this fact.

Proposition 3.3.4. If diagram C is k-terminal and has at least k + 1 chords then it is
k-connected.

Proof. Let c be the root chord of a k-terminal diagram C of size at least k + 1. By
definition C − c is k-terminal, so it is either the complete diagram of size k or we may

80

inductively assume that it is k-connected. In the former case C is also complete and thus
k-connected, while in the latter case the fact that c has k right neighbors in C implies that
C is k-connected by Lemma 3.3.3 with A = {c}.

Proposition 3.3.5. The map ψ restricts to a bijection between k-terminal diagrams of
size n and (k − 1)-terminal diagrams of size n− 1.

Proof. As with (iv) of Theorem 3.3.2, this is a straightforward consequence of Claim 6.

We similarly get our desired conclusion.

Proposition 3.3.6. The map ψ restricts to a bijection between k-terminal-minimal dia-
grams of size n and (k − 1)-terminal-minimal diagrams of size n− 1.

Corollary 3.3.7. The map ψk on k-terminal diagrams restricts to a bijection between k-
terminal-minimal diagrams of size n+k and noncrossing diagrams of size n. In particular,
k-terminal-minimal diagrams are counted by the Catalan numbers.

While Claim 7 provides a structural characterization of 1-terminal-minimality, we have
yet to obtain such a characterization for k-terminal-minimality. Our preliminary investi-
gations indicate though that there should be a similar description in terms of k-terminal
diagrams forbidding an infinite class of subdiagrams.

Conjecture 3.3.8. There is a “nice” infinite forbidden subdiagram characterization of
k-terminal-minimality.

In his infamous compilation of combinatorial objects counted by the Catalan numbers,
Stanley [96] used ballot sequences and functions f : N → N satisfying f(i) ⩽ i for all i to
define 2ℵ0 chord diagram interpretations of the Catalan numbers {Cn}n⩾0. The noncross-
ing and nonnesting diagrams are recovered by setting f(i) = 1 and f(i) = i, respectively,
so in a sense these interpretations lie between the two. Yet this construction only gives a
finite number of interpretations for any fixed size n. With the set of k-terminal-minimal
diagrams we have provided a countable infinity of combinatorial interpretations of Cn.
Furthermore, combining Stanley’s construction together with the map ψ gives 2ℵ0 com-
binatorial interpretations of the Catalan numbers with ℵ0 interpretations at each fixed
n.

We now turn to generalizing statement (iii) of Theorem 3.3.2. The proof used the fact
that connectivity is equivalent to 1-terminality for nonnesting diagrams. This actually
points to a more general statement about nonnesting diagrams.

81

Lemma 3.3.9. A nonnesting diagram is k-connected if and only if it is k-terminal and
has at least k chords.

Proof. By Proposition 3.3.4 it suffices to prove the “only if” direction. Let C be nonnesting
and k-connected and c be its root chord. By the Erdös-Szekeres theorem the left and
right neighborhoods of each chord of C form cliques, implying by k-connectivity that the
neighborhood of c is a clique of size at least k. It follows that c cannot be part of any
minimal vertex cut, so C − c is either complete or k-connected. In the former case we
are done, while in the latter case we inductively get that C − c is k-terminal, so C is as
well.

Combining this observation with Theorem 3.3.2 and Proposition 3.3.5, we get the fol-
lowing.

Proposition 3.3.10. The map ψ restricts to a bijection between k-connected nonnesting
diagrams of size n and (k − 1)-connected nonnesting diagrams of size n− 1.

Corollary 3.3.11. The map ψk restricts to a bijection between k-connected nonnesting
diagrams of size n + k and nonnesting diagrams of size n. In particular, k-connected
nonnesting diagrams are counted by the Catalan numbers.

3.3.2 Relationship with other double factorial objects

Recall that there are a number of other classical combinatorial objects counted by the
double factorials (2n− 1)!! in addition to chord diagrams. We will briefly focus on two of
the most notable: increasing ordered trees and Stirling permutations. A (rooted) tree T of
size n is ordered or plane if it is equipped with a total ordering of the children of each vertex
v ∈ T . The tree T is increasing if its vertices are labelled with the integers 0, 1, 2, . . . , n−1
such that the label of any child is greater than its parent. A Stirling permutation of
size n is a permutation of the multiset {1, 1, 2, 2, . . . , n, n} such that, for all i, all values
between the two occurrences of i are greater than i. Stirling permutations were introduced
by Gessel and Stanley to give a combinatorial interpretation to the Stirling polynomials.
They have since been studied extensively and generalized in multiple different ways (see
e.g. [50, 12, 56, 57]), as have increasing ordered trees (see e.g. [4, 83]). Write Sn and In
for the sets of Stirling permutations and increasing ordered trees of size n, respectively.

There are classic recursive constructions of both Cn and Sn: insert a root chord and
insert nn into each element of Cn−1 and Sn−1, respectively, in all possible ways. Since

82

there are always 2n − 1 possible insertion places, this proves that both of these sets have
cardinality (2n− 1)!! and gives a recursively-defined bijection ζ between them. This leads
into a simple characterization of 1-terminality and the bijection ψ on Stirling permutations.

Proposition 3.3.12. Diagram C is 1-terminal if and only if ζ(C) has 1 as a prefix and
suffix. In this case, ζ(ψ(C)) is obtained from ζ(C) by removing both occurrences of 1 and
normalizing the alphabet.

Proof. Suppose ζ(C) does not have 1 as a prefix or suffix; by possibly taking the reverse,
we may assume the former. Then, since 11 clearly has 1 has a prefix, at some step in
the iterative construction of C a root chord is concatenated to the front of the currently
placed chords, implying that it must be terminal in C and not the terminal chord with
greatest sink. So C is not 1-terminal. On the other hand, if C is 1-terminal, this never
occurs, so it easily follows that 1 remains a prefix and suffix whenever a new element is
placed and, therefore, is a prefix and suffix of ζ(C); this gives the first statement. For the
second statement, let C ′ be obtained by removing the root chord c of C. Observe that
ψ(C ′) = ψ(C) − ψ(c) and ζ(C ′) = ζ(C) − nn. Then the result follows straightforwardly
from induction.

The classic bijection η between increasing ordered trees and Stirling permutations sends
trees of size n+ 1 to permutations of size n: for a tree T ∈ In+1, delete the root label and
transfer the remaining labels from vertices to parent edges, then take a pre-order traversal
around the tree, traversing each edge twice. The encountered sequence of labels is the
Stirling permutation η(T).

As hinted at prior in the paper, and from the fact that there are (2n− 1)!! increasing
ordered trees of size n + 1, the decomposition from Section 3.2.2 defined by the maps α
and β recursively defines a natural bijection θ between the set Tn+1 of 1-terminal diagrams
and the set In+1 of increasing ordered trees. For each C ∈ Tn+1, apply α to get the 1-
terminal subdiagrams C1, . . . , Ck and intervals I1, . . . , Ik of [1, n]. Then recursively apply
θ to C1, . . . , Ck to get increasing ordered trees T1, . . . , Tk, graft them to a new root of label
0 in that order, and finally apply an order-preserving bijection to reassign each subtree Tℓ
with the labels from Iℓ. The resulting increasing ordered tree T is then set as the image
of C under θ. We omit the proof that this actually defines a bijection between Tn+1 and
In+1; it proceeds similarly to the proof of Theorem 3.2.13. Then, in this context, ψ plays
the role of extending this to a bijection to chord diagrams of size n.

From all of the above we get two bijections between Stirling permutations of size n
and chord diagrams with n chords: ζ−1 and ψ ◦ θ ◦ η−1. These bijections are highly

83

Figure 3.15: A Stirling permutation σ such that ζ−1(σ) ̸= (ψ ◦ θ ◦ η−1)(σ).

distinct, typically mapping a given Stirling permutation to two different diagrams; e.g. see
Figure 3.15. We can think of ζ−1 as encoding the recursive view of chord diagrams and
ψ ◦ θ ◦ η−1 as encoding the tree structure view of chord diagrams. The map ψ plays a role
in both perspectives, forming a kind of bridge translating 1-terminality from the recursive
view to the tree structure view.

3.3.3 Closure under subdiagram avoidance

For a bijection as well-behaved and general as ψ, with its inverse acting on all chord
diagrams, it is natural to consider whether ψ underlies enumerative equivalences between
proper restricted hereditary subclasses of T and D. In this section we explain all such
equivalences by obtaining a full characterization for when ψ and its inverse are closed
under subdiagram avoidance. That is, we determine all sets of diagrams X such that
ψ(T (X)) = D(X).

Recall that ψ transforms source-sink groups of a 1-terminal diagram T into sink-source
groups of the image ψ(T). For a diagram D, sink-source groups are composed of a source
and the left-adjacent interval of sinks, and such these groups partition all points of D
excluding the last interval of sinks. We call a sink-source (or source-sink) group trivial
if it contains no sinks and nontrivial otherwise. Note that trivial sink-source groups are
trivial source-sink groups and, via the map ψ, nontrivial sink-source groups of D corre-
spond to nontrivial source-sink groups of ψ−1(D) (excluding the terminal chord’s group).
Furthermore, observe the following basic fact, which we will use throughout the proof of
our characterization.

84

Lemma 3.3.13. Permutation diagrams are the unique diagrams that contain no nontrivial
sink-source groups.

Proof. Clearly all sink-source groups of a permutation diagram are trivial. In the other
direction, the chords attached to a nontrivial sink-source group have as a subdia-
gram.

This suggests that permutation diagrams are “invisible” to the map ψ, since it essen-
tially only effects the points of a nontrivial source-sink group.

We begin our characterization by considering when ψ is closed under subdiagram avoid-
ance. We show that ψ(T (X)) ⊆ D(X) for a diagram X if and only if, informally speaking,
in a nice sense X is at most two chords away from from being a permutation diagram. For
the more difficult “only if” statement, the proof strategy will consist of constructing, for X
that are not well-behaved in this sense, diagrams D that contain X and for which ψ−1(D)
is X-free. In most cases it suffices to simply take D = X, as we now prove.

Define a diagram D to be good if it is a permutation diagram or there exists c ∈ D
such that 1) c and all later chords (in the standard order) induce a clique and 2) all earlier
chords induce a permutation diagram and their sinks lie before the sink of c. We refer to
this permutation subdiagram as the permutation part of D and the rightmost such c as
the distinguished chord of D. In the sequel, we will often abuse notation and use the same
variable to refer to a chord in a 1-terminal diagram T (excluding the terminal chord) and
its image chord in ψ(T) (or vice versa, equivalently).

Lemma 3.3.14. For a diagram D, ψ−1(D) is D-free if and only if D is not good.

Proof. Write T = ψ−1(D). Suppose first that D is good with c the distinguished chord.
Since the permutation part of D has no nontrivial sink-source groups, the nontrivial sink-
source groups of D can only contain the sources of c and each later chord. By construction,
under ψ−1 each such chord (except c) gains as new neighbors exactly the missing neighbors
of the chord previous to it, while the new terminal chord’s neighbors are the neighbors of
the last chord d of D plus d itself. It follows that removing c from T leaves D.

For the other direction, suppose D is a subdiagram of T . Then there exists c ∈ T
such that T − c = D. If c is the terminal chord then D must be a permutation diagram,
so suppose otherwise. The relabeling isomorphism f mapping T − {c} to D sends every
chord prior to c to itself, implying that each such chord has a trivial source-sink group
in T . It follows that all chords lying before c induce a permutation diagram in D. Now
suppose c is neither the last chord of D nor a neighbor of the last chord. The terminal

85

chord of T maps to the last chord d of D under f . Then since the terminal chord is in no
nesting, neither is d, so by our supposition the terminal chord crosses every neighbor of d
and d itself, implying that it has one more neighbor than d, a contradiction. We infer that
c is either the last chord of D or one of its neighbors. Recall that the map ψ preserves
nestings, so c is also not in any nesting (since otherwise T −{c} is missing a nesting of D);
thus, the sink of every c′ < c lies before the sink of c while, by our previous observations,
c and all later chords induce a nonnesting subdiagram, in particular necessarily a clique.
We conclude that D is good, as desired.

With this, we obtain the characterization of closure under subdiagram avoidance for
ψ. Define a diagram D to be great if D is good and either (a) D is permutation, (b)
its distinguished chord c has at most 1 neighbor, (c) c is the second-to-last chord, it
has at most two neighbors, and the last chord has exactly one neighbor, or (d) D =
{(1, 7), (2, 4), (3, 6), (5, 8)}.

Theorem 3.3.15. For a diagram X, ψ(T (X)) ⊆ D(X) if and only if X is great.

Proof. We begin with the “only if” direction. Suppose X is good but not great and write
X = {c1 < · · · < ck < · · · < cn} with ck = c the distinguished chord. If k ⩽ n− 2, consider
the diagram D obtained by nesting a chord as rightmost as possible in X. Then, while
the last three chords mutually cross in X, the preimage ψ−1(D) has the second-to-last two
chords nesting, implying that one of them must be removed to obtain X. On removal
of either chord the terminal chord is reduced to degree one, unlike the last chord of X,
so it must also be removed. But ck still has a trivial sink-source group in the resulting
subdiagram D′, unlike in X, so D′ is not X, that is, ψ−1(D) is X-free.

Suppose then that k = n−1. If |N(cn)| ⩾ 2 then we can repeat the above construction
to similarly obtain a diagram D such that ψ−1(D) is X-free. So |N(cn)| = 1, implying that
|N(ck)| ⩾ 3 since X is not great. Consider the diagram D obtained from X by nesting a
chord c′ as rightmost as possible within the source-sink group of ck. By a similar nesting
preservation argument to the previous case either c′ or ck must be removed from ψ−1(D).
Since the terminal chord has degree two while cn has degree one in D, either the terminal
chord, cn, or ck must be removed from ψ−1(D). If we do not remove ck or any earlier chord
then we clearly cannot obtain X as a subdiagram, so we may assume that ck is removed.
Furthermore clearly one of c′, c1, . . . , ck−1 must be removed from ψ−1(D) since ck is not
part of a nesting in X, unlike c′. But if c′ is not removed then it must map to one of
c1, . . . , ck−1 in X, implying that there is only one sink before the source of c′ in ψ−1(D)
and the chord attached to it must be removed. But then c′ maps to ck−1, which is not the
bottom chord of a nesting, so we conclude that ψ−1(D) is X-free.

86

Finally, suppose instead that k = n. Since X is not great |N(ck)| ⩾ 2. Consider
the diagram D obtained from X by nesting a chord c′ as rightmost as possible within
the source-sink group of ck and nesting another chord c′′ as rightmost as possible within
X. If |N(ck)| ⩾ 3 then both of the last two chords of ψ−1(D) have fewer left neighbors
than ck in X, so they must be removed. But by nesting preservation the last two chords
cannot nest, so we must further remove either c′ or ck. Since neither choice results in X
we may assume that |N(ck)| = 2. We now break the argument into two cases: 1) each
chord c2, . . . , ck−1 nests under c1 and 2) at least one of these chord does not. Suppose first
that (1) holds. If either ck or c′′ is removed from ψ−1(D) to get X the terminal chord is
reduced to degree at most 1, so we must also remove it. Similarly if both the terminal
chord and c′′ are removed then we must also remove c′. So if c′′ is removed we also remove
c′ and the terminal chord, but the resulting diagram is not X because ck remains with
more neighbors. We may therefore assume that c′′ is not removed, that is, it is in any
subdiagram of ψ−1(D) isomorphic to X. By nesting and degree preservation ck and the
terminal chord are either both or neither removed. If the latter holds then ck maps to c1
under the subdiagram isomorphism, implying that ck must be reduced to left degree 0,
that is, each of c1, . . . , ck−1 is removed. But then |X| = 4, contradicting the fact that X is
not great. So it must be the case that both ck and and the terminal chord are removed.
Then by degree preservation c′ and c1 are not removed, so c′ maps to the second neighbor
cℓ of ck in X. Thus in order to get X as a subdiagram of ψ−1(D) the chord cℓ must have at
most one left neighbor and be the top chord of no nestings, implying that |X| = 4, again
giving a contradiction and thereby resolving (1). Now suppose (2) holds. Considering the
same diagram D from before, observe that we may still assume that c′′ is not removed
and either ck and the terminal are both removed or neither are removed. If the neighbors
of ck in X cross then it must be the former, since otherwise the nesting (ck, c

′′) violates
nesting preservation. But again the two neighbors of the last chord c′′ nest and neither
can be deleted by degree preservation, so we may assume that the neighbors of ck in X
do not cross. Again switching constructions, consider the diagram D obtained from X by
nesting a chord c′ as rightmost as possible within the source-sink group of ck and nesting
another chord c′′ as rightmost as possible within X while crossing the top neighbor of
ck. Observe that while X has one nontrivial sink-source group, the preimage ψ−1(D) has
three, so in order to obtain X as a subdiagram we must either delete c′, all chords in
{c1, . . . , ck−1} −NX(ck), or the terminal chord and one of c′′ or the bottom neighbor of ck
in X. Note that if the terminal chord remains we must remove the top neighbor of ck in
X to ensure the neighbors of the last chord do not cross, and if we further remove c′ we
must also remove c′′ to ensure that the last chord has a nontrivial sink-source group. But
this leaves the terminal chord with only a single neighbor, so we may assume that either
the terminal chord is removed or c′ is not removed. It follows that if c′ is removed then

87

Figure 3.16: The five types of great non-permutation diagrams. The grey section of each
diagram indicates the permutation part of the diagram.

c′′ is also removed by degree preservation, leaving the subdiagram {c1, . . . , ck} but with ck
having more neighbors. So we may further assume that c′ is not removed. If the terminal
chord and one of c′′ or the bottom neighbor of ck are removed, either choice leaves the
last chord of degree 1, so it must be removed, implying that the terminal chord, c′′, and
c′ must all be removed. Therefore as before it follows that we may assume that all chords
in {c1, . . . , ck−1} − NX(ck) are deleted along with the top neighbor of ck. The remaining
chords form a top cycle of size 5, so one can readily check that X must be a top cycle
of size 4, but T4 is not a subdiagram of T5. Applying Lemma 3.3.14, we conclude that
ψ(T (X)) ⊈ D(X) for all diagrams X such that X is not great, as desired.

Now we turn to the easier “if” direction. Let X be great and, as before, write X =
{c1 < · · · < ck < · · · < cn} with ck the distinguished chord. It remains to show that
ψ(T (X)) ⊆ D(X). Consider a diagram D such that X is a subdiagram of D. Since
permutation subdiagrams do not contain nontrivial sink-source groups they are preserved
by ψ−1, so we may assume that X is not a permutation diagram. There are five other cases,
(i)–(v), visually depicted in Figure 3.16. Since the permutation part is always preserved
we need only show the existence of chords in the same configuration as ck, . . . , cn. Note
that every sink in D is in the source-sink group of some chord in ψ−1(D). Furthermore,

88

Figure 3.17: The two types of near permutation diagrams.

recall that that chord is the rightmost right neighbor of every chord attached to a sink in
its source-sink group. It immediately follows that X is a subdiagram of ψ−1(D) in cases (i)
and (iii). Furthermore case (ii) also follows since cn still does not cross or nest c1, . . . , ck−1

in ψ−1(D). In case (iv), consider the rightmost right neighbor c in ψ−1(D) of the unique
left neighbor cℓ of ck in X. Observe that c does not cross or nest c1, . . . , ck−1. Furthermore
c is not the terminal chord, so it must have a right neighbor c′ by 1-terminality and any
such right neighbor cannot cross cℓ. It follows that {c1, . . . , ck−1, c, c

′} is isomorphic to X,
as required. Finally, consider case (v). By 1-terminality there exists a nonnesting induced
path P from c3 to the terminal chord in ψ−1(D) and at least one chord in P − {c3} must
cross c1. Letting c be the first such chord, observe that every earlier chord in the path is
nested under c1. Then P ∪ {c1, c2, c3} contains X, as required.

We can now complete the full characterization, which follows with substantially less
effort. Define a diagram D to be near permutation if D consists of a chord nested under
a permutation diagram, optionally concatenated with another chord (see Figure 3.17).
Observe that near permutation diagrams are great.

Theorem 3.3.16. For a diagram X, ψ(T (X)) = D(X) if and only if X is near permuta-
tion.

Proof. We begin with the “only if” direction. Let X be great but not near permutation and
write X = {c1 < · · · < ck < · · · < cn} with ck the distinguished chord. Since ψ is bijective
it suffices to exhibit a 1-terminal diagram T such that T contains X and ψ(T) is X-free. If
X is the diagram from case (v) then we can trivially take T = X since X is 1-terminal. In
all other cases X is not necessarily 1-terminal, so take T to be the diagram obtained from
X by inserting a chord c whose source lies immediately prior to the sink of ck−1 and sink
lies immediately after the source of ck. Then T is clearly 1-terminal and contains X. On
the other hand, observe that c, ck, . . . , cn are all isolated in ψ(T) and that k ⩾ 3 since X
is not near permutation. Thus any homomorphism certifying X as a subdiagram of ψ(T)
must map ci to ci for all 1 ⩽ i ⩽ k − 1, but ck−1 has left neighbors in X which it loses
under ψ, a contradiction.

For the other direction, let X be near permutation and T be a 1-terminal diagram
containing X. It suffices to show that ψ(T) contains X. But this follows immediately from

89

the fact that X contains no nontrivial source-sink groups and, if X is not a permutation
diagram, the rightmost chord in T crossing the last chord c in the permutation part of X
(which exists and is a right neighbor by 1-terminality) is not the terminal chord and does
not cross c in ψ(T).

Corollary 3.3.17. For a set X of diagrams, ψ(T (X)) = D(X) if all X ∈ X are near
permutation.

This gives an infinite set of distinct pairs of restricted hereditary classes that are enu-
meratively equivalent and a natural bijection explaining this equivalence.

Corollary 3.3.18. For all sets X composed of near permutation diagrams, the map ψ
restricts to a bijection between Tn+1(X) and Dn(X).

In particular we can immediately count two notable 1-terminal classes.

Corollary 3.3.19. We have

|Tn+1()| = |Tn+1()| = CnCn+2 − C2
n+1

and

|Tn+1(,)| = Ĉn,

the nth generalized Catalan number.

Proof. These two statements follow immediately from Theorem 3.3.16, the results of Gouyou-
Beauchamps [52] and Jeĺınek [58] enumerating the classes D() and D(), re-
spectively, and Theorem 3.1.2 of Bloom and Elizalde [8].

3.4 A primer on 1-sym-terminal classes

We finish this chapter with a short note commencing the study of 1-sym-terminal classes.
In particular we examine the avoidance of top cycles, bottom cycles, and the diagram

and its reverse. Further enumeration of other classes of diagrams with the 1-
sym-terminal property, including ST itself, will be discussed in Chapter 5.

We begin with the latter. Observe that for any nesting (c, c′) with c < c′ in a 1-sym-
terminal diagram T there must be a nonnesting induced path P beginning with a right
neighbor of c′ and ending in a right neighbor of c by 1-terminality:

90

c′
c

The partial top cycle8 {c, c′} ∪ P contains as a subdiagram, implying that
T does as well. Similarly, 1-rev-terminality gives us such a path involving left neighbors
and, thereby, as a subdiagram of T . Since connected nonnesting diagrams are
1-terminal and their reverses are also connected and nonnesting, this gives the following
class equalities.

Proposition 3.4.1. We have

ST () = ST () = T () = C().

Recall that 1-terminal top-cycle-free diagrams are tree diagrams by Theorem 3.3.2. By
our above argument any nesting in a 1-sym-terminal diagram is contained in a partial
bottom cycle and partial top cycle that combine to form a top cycle of the diagram.
Finally, note that all chords in a nonnesting triangle-free diagram have at most a single left
neighbor and at most a single right neighbor by the Erdős-Szekeres theorem. Combining
these facts, we conclude that nonnesting induced paths are the only 1-sym-terminal top-
cycle-free diagrams.

Proposition 3.4.2. We have ST (T⩾3) = P⩾1.

The class ST n+2(B⩾3) of 1-sym-terminal bottom-cycle-free diagrams requires somewhat
more effort to enumerate but the result is just as nice.

Proposition 3.4.3. For n ⩾ 0, there is a bijection between 1-sym-terminal bottom-cycle-
free diagrams ST n+2(B⩾3) of size n+2 and noncrossing diagrams Dn() of size n. In
particular,

|ST n+2(B⩾3)| = Cn.

Proof. Let T be a 1-sym-terminal bottom-cycle-free diagram of size n + 2. Note that the
left and right neighborhoods of a chord c of T form sets of pairwise nesting chords with no
crossings between them. Furthermore, by 1-sym-terminality and our previous observations,

8Recall these diagrams from Chapter 2 and several proof trees in the beginning of this chapter and
Section 3.1.

91

only the leftmost (in the standard order) right neighbor and rightmost left neighbor of c
may cross chords nested under c. Furthermore, when this occurs, these are the only right
and left neighbors, respectively, of the nested chords. Then define f(T) to be the diagram
obtained from T as follows:

(1) while preserving the relative order of the sources, move every source of a chord c ∈ T
immediately to the right of the sink of the first chord c′ crossing c, and

(2) delete the root chord and formerly terminal chord.

By our above observations, step (1) removes all crossings, implying that f(T) ∈ Dn().
We now exhibit the inverse of the map f , showing that it is a bijection. Let D be a
noncrossing diagram of size n and define g(D) to be the diagram obtained from D as
follows.

(1’) Concatenate a chord to the start and a chord to the end of D.

(2’) Let X be a given maximal interval of sources and Y be the maximal interval of sinks
adjacent on its left. While preserving the relative order of the sources and sinks,
move the first source of X immediately to the left of the first sink of Y and move
every other source of X immediately to the left of last sink of Y .

It can be readily verified that this map g produces a 1-sym-terminal bottom-cycle-free
diagram and inverts f .

As Chapter 5 will further support, this begins to get at an offset phenomenon with offset
2 for 1-sym-terminal classes. In that direction, we now define a general map χ : ST n+2 →
Dn related to ψ and inspired by the above bijection. Consider a 1-sym-terminal diagram
T . We refer to the nontrivial source-sink groups of T as the left point groups of T and
call the nontrivial source-sink groups of TR viewed as point intervals of T the right point
groups. Observe the following fact.

Lemma 3.4.4. For any left point group X and right point group Y of T , X and Y are
either (a) disjoint or (b) intersect exactly at an adjacent source and sink.

Proof. Suppose X and Y are not disjoint. By nontriviality both groups contain at least
one source and one sink. Furthermore, by 1-sym-terminality, both groups contain only a
single interval of sources and a single interval of sinks, respectively. Then the first sink of
X must be the unique sink of Y and the last source of Y must be the unique source of X,
implying that (b) holds.

92

While this is not quite the “partial partition” property of source-sink groups, we can
nevertheless use these point groups to construct χ as a kind of symmetric version of ψ.
Define χ(T) to be the diagram obtained by

(1) moving each source of the left point groups of T to the end of its point group,

(2) moving each sink of the right point groups of T to the start of its point group, and

(3) deleting the root chord and formerly terminal chord.

Observe that, by the above lemma, step (1) does not interfere with the validity of step
(2), that is, (2) remains a well-defined transformation. Furthermore, all sources and sinks
remain sources and sinks, respectively. Figure 3.18 displays a representative example of T
and χ(T). Step (1) and (2) transform the left and right point groups of T into left and
right reverse point groups of χ(T). By construction and Lemma 3.4.4, these are pairwise
disjoint and correspond to the nontrivial sink-source groups of a diagram and its reverse.

By construction the map χ also has the nesting preservation property of ψ, but is not
injective and correspondingly does not change the number of crossings in as simple a way;
e.g. χ sends both of the 1-sym-terminal diagrams of size three, and ,
to the single chord. Nevertheless it does in fact give some information on the counting
sequence of ST .

Theorem 3.4.5. The map χ is a surjection onto Dn that preserves nestings. In particular,
|ST n+2| ⩾ |Dn|.

Proof. For a diagram D ∈ Dn, define ξ(D) to be the diagram obtained by

(1’) concatenating a chord to the start and and a chord to the end of D

(2’) moving each source of the left reverse point groups of D to the start of its reverse
point group, and

(3’) moving each sink of the right reverse point groups of D to the end of its reverse point
group.

Since the reverse point groups are disjoint, steps (1’) and (2’) are independent. Letting
R = ξ(D), we see that (1’), (2’), and (3’) invert (1), (2), and (3) of our construction of ψ,
implying that ψ|R is the inverse of ξ, giving surjectivity.

93

χ

Figure 3.18: An example of a 1-sym-terminal diagram and its image diagram under the
map χ. The root and terminal chords are indicated in red and the left and right point
groups and their reverses are indicated by the horizontal brackets.

94

Chapter 4

Dyson-Schwinger generating
equations

First appearing under the guise of the Butcher group in numerical analysis and inde-
pendently introduced by Kreimer [68] in the context of renormalization in perturbative
quantum field theory, the Connes-Kreimer Hopf algebra of rooted trees HCK is the free
associative commutative algebra freely generated over a field K of characteristic zero by
the set of rooted trees. As implied, the product is given on the basis of forests of rooted
trees by concatenation while the coproduct is defined by setting

∆(t) =
∑

C⊆V (t)
C antichain

(∏
v∈C

tv

)
⊗

(
t \
∏
v∈C

tv

)

for a rooted tree t, where tv is the subtree of t rooted at v and parent-child is the cover
relation for a tree poset, and extending it as an algebra homomorphism to all of HCK ;
note that here we take t \ t = 1. From a pure algebraic perspective, the Connes-Kreimer
Hopf algebra is important because it possesses a certain universal property unique up to
isomorphism among Hopf algebras. Let B+ be the algebra homomorphism attaching a
set of rooted trees as children to a new common root. Note that the B+ operator is a
Hochschild 1-cocycle, a linear map L such that

(id⊗ L) ◦∆+ L⊗ 1 = ∆ ◦ L.

Then the universal property is the following.

95

Theorem 4.0.1 (Connes-Kreimer [26, Theorem 2]). Let A be an associative commutative
algebra over K and L : A → A be a linear map. Then there exists a unique algebra
homomorphism ρL : HCK → A such that ρL ◦B+ = L◦ρL. Furthermore, if A is a bialgebra
and L is a Hochschild 1-cocycle then ρL is a bialgebra homomorphism, and if A is also a
Hopf algebra then ρL is a Hopf algebra homomorphism.

There has been considerable interest in understanding Hopf subalgebras ofHCK (see e.g.
[89, 37]). In a series of papers [44, 45, 46], Foissy examined subalgebras of HCK generated
by a family of recursive equations, so-called combinatorial Dyson-Schwinger equations, of
the form

T (x) = xB+(ϕ(T (x))) (4.1)

for ϕ(z) ∈ K[[z]] with ϕ(0) = 1. The unique solution to this equation is a formal power
series T (x) whose coefficients lie in HCK . Writing tn = [xn]T (x), Foissy characterized when
the subalgebra A = K[t1, t2, . . .] of HCK is Hopf.

Theorem 4.0.2 (Foissy [44]). A is a Hopf subalgebra if and only if ϕ(z) = (1 + abz)−1/b

for some a, b ∈ K with b ̸= 0 or ϕ(z) = eaz.

We are interested in equations which arise from (4.1) by applying the universal property
to the polynomial algebra K[y] and a linear map L : K[y] → K[y]. Applying the algebra
homomorphism ρL guaranteed by Theorem 4.0.1 to both sides of (4.1), we get the bivariate
tree-like equation

G(x, y) = xL(ϕ(G(x, y))), (4.2)

where G(x, y) = ρL(T (x)). The maps L and ρL act on the coefficients in x of ϕ(G(x, y)) and
T (x) term by term additively; since L sends polynomials to polynomials this equation has
an inductively specified solution in K[y][[x]], so it is well-formed. In the physics setting,
ρL corresponds to the Feynman rules which map each Feynman graph to its associated
Feynman integral (for details see e.g. [84]). We will be most interested in Equation (4.2)
with ϕ set to generate a Hopf subalgebra of HCK via Theorem 4.0.2, but will work in the
more general setting with ϕ an arbitrary formal power series with constant term 1.

In order to get meaningful combinatorial solutions to (4.2), it is clearly necessary to
restrict L to some specific class of linear maps. With that in mind, the universal prop-
erty points the way towards which classes of maps would be of most interest: Hochschild
1-cocycle operators arising from coalgebra structures onK[y]. There are two graded coalge-
bras on one-variable polynomials classically studied in the literature, namely, the binomial

96

coalgebra and the divided power coalgebra. For the former, the coproduct is defined by
setting

∆(yn) =
n∑

k=0

(
n

k

)
yk ⊗ yn−k.

Combining this with the polynomial algebra on K[y] with the usual product, we in fact
get a Hopf algebra. The following lemma describes Hochschild 1-cocycles in the binomial
coalgebra.

Lemma 4.0.3. A map L is a 1-cocycle operator for the binomial coalgebra on K[y] if and
only if

L(yn) =

∫ y

0

F

(
d

dt

)
tndt

for some power series F (z) =
∑

i⩾0 fiz
i in K[[z]].

Proof. Writing cm,n = [yn−m]L(yn) for m ⩽ n, define

Lm(y
n) =

{
cm,ny

n−m if n ⩾ m,

0 else.

Fix m ⩽ n and note that Lm is a 1-cocycle by linearity. Then

((id⊗ Lm) ◦∆+ Lm ⊗ 1)(yn) = (id⊗ Lm)

(
n∑

k=0

(
n

k

)
yk ⊗ yn−k

)
+ Lm(y

n)⊗ 1

=
n∑

k=0

cm,n−k

(
n

k

)
yk ⊗ yn−m−k + cm,ny

n−m ⊗ 1,

while

(∆ ◦ Lm)(y
n) = cm,n∆(yn−m) =

n−m∑
i=0

cm,n

(
n−m
i

)
yi ⊗ yn−m−i.

Applying the 1-cocycle property and comparing terms, we see that m ⩾ −1 since otherwise
xn+1 ⊗ x−m−1 appears in the ladder but not the former. Furthermore,

cm,n

(
n−m
k

)
=

{
cm,n−k

(
n
k

)
if k ̸= n−m,

cm,n−k

(
n
k

)
+ cm,n if k = n−m.

It follows that cm,m = 0 and, for m < n, cm,n = n!
(n−m)!(m+1)!

cm,m+1. One can then readily

check that we get the desired expression for L by setting fm+1 = cm,m+1/(m+ 1)!.

97

Although we proved it for completeness, this result is well known; e.g. Panzer [84]
obtained an equivalent algebraic characterization. For the divided power coalgebra, the
coproduct is defined by setting

∆(yn) =
n∑

k=0

yk ⊗ yn−k.

This also gives a Hopf algebra on K[y], but the compatible algebra structure instead has
the product yi · yj =

(
i+j
i

)
yi+j; nevertheless it is in fact isomorphic as a Hopf algebra to

the binomial Hopf algebra via a scaling of coefficients. With that said, we will always
work with the standard product on K[y], meaning that in this case only the first state-
ment of the universal property will apply; we will later see that interesting combinatorics
arise regardless. A similar formula holds for Hochschild 1-cocycles in the divided power
coalgebra with the integral replaced with a degree raising operator and the derivative with
a degree lowering operator δ—its proof can be easily constructed by adapting the proof of
Lemma 4.0.3 so we omit it.

Lemma 4.0.4. A map L is a 1-cocycle operator for the divided power coalgebra on K[y]
if and only if

L(yn) = yF (δy)y
n

for some power series F (z) =
∑

i⩾0 fiz
i in K[[z]], where δy(y

n) = yn−1 if n > 0 and 0
otherwise.

We will write Lbin and Ldiv for 1-cocycles of the binomial and divided power coalgebras,
respectively, with the underlying power series F implicitly carried along. Note that for both
of these operators degL(yn) ⩽ n+ 1 and, in particular, this bound is obtained if and only
if f0 ̸= 0.

4.1 Solving tree-like equations

In this section we will solve tree-like equations arising from a 1-cocycle. The solutions
come in the form of weighted generating functions for certain chord diagram classes.

Given a connected diagram C and a sequence of weights (ϕk)k⩾0 in a field K, we asso-
ciate a weight ϕk with each chord c ∈ C of valency k (recall Definition 3.2.2 of Section 3.2.1).
Then we define the weight of C to be

ϕC =
∏
c∈C

ϕval(c).

98

This is exactly the same way weights of trees are traditionally defined, at least in the
context of tree models and hook lengths [43, 70].

Theorem 4.1.1. The functional equation

G(x, y) = xL(ϕ(G(x, y))) (4.3)

is uniquely solved by

G(x, y) =
∑
C∈C

fCϕCx
|C|Lbin(y

t1(C)−1)

(t1(C)− 1)!
if L = Lbin (4.4)

and

G(x, y) =
∑

C∈C(T⩾3)

fCϕCx
|C|Ldiv(y

t1(C)−1) if L = Ldiv, (4.5)

where ϕ(z) =
∑

k⩾0 ϕkz
k for ϕk ∈ K and

fC = f
|C|−k
0 ft2(C)−t1(C)ft3(C)−t2(C) · · · ftk(C)−tk−1(C)

for a diagram C with k terminal chords and fi the coefficients of the power series F
specifying L.

In other words, when L is a polynomial 1-cocycle operator Equation (4.3) is solved
by a generating function for a certain family of connected weighted chord diagrams where
each term is weighted by a monomial in the coefficients defining L determined by the size
of the diagram, the number of terminal chords, and the differences between the indices
of consecutive terminal chords in the intersection order. The diagrams are counted by
their size in the x variable and one less than the index of the first terminal chord in the
y variable. While (4.5) can be thought of as ordinary in both variables, (4.4) should be
viewed as ordinary in x and exponential in y, although the fact that L(yt1(C)−1) appears
in the series rather yt1(C)−1 makes this less than strictly true. One could account for this
by instead regarding both series as ordinary generating functions for a set of polynomials
{pC(y)} indexed by a class of weighted chord diagrams. It is notable that the monomial
fC is determined by the gaps between terminal chord indices, not the indices themselves,
indicating that it is their relative position that matters, not their absolute position.

Our strategy for proving Theorem 4.1.1 is as follows: 1) show that the decomposition
defined in Section 3.2.2 yields suitable weighted versions of the combinatorial identities

99

in Theorems 3.2.8 and 3.2.9, 2) apply induction to turn these identities into equivalent
recurrences for the coefficients in the x variable, and 3) demonstrate that these recurrences
are simply an expansion of the corresponding tree-like equations.

We begin with step 1. For this we will need certain statements about how the parame-
ters fC and ϕC behave under the bijection α. Let C be a connected diagram of size n with
t1(C) = j + 1, T be its 1-terminal part, and ((C1, I1, . . . , Ck, Ik)) be the image of C under
α. Carry over all other notation from Section 3.2.2 and specifically Definition 3.2.6.

Lemma 4.1.2. We have

ϕC = ϕkϕC1 · · ·ϕCk
.

Proof. Clearly the valency of the terminal chord cj+1 is k. Furthermore, for each chord
c ∈ Cℓ the valency of c in C and Cℓ is equal by construction. Then the identity follows.

Now let B1, . . . , Bm be the components of C − T listed in the intersection order of C;
that is, all chords of B1 come before all chords of B2, and so on. We require a lemma which
says that fC is determined by fD, fB1 , . . . , fBm and the index of the first terminal chords
of B1, . . . , Bm in the intersection order of C.

Lemma 4.1.3. We have

fC = fDft1(B1)fB1 · · · ft1(Bm)fBm .

In other words, fC = fC−Bmft1(Bm)fBm.

Proof. By Lemma 1.3.4, terminal chords of Bi are terminal in C and vice versa for all i.
Furthermore, by Lemma 1.3.5 T is 1-terminal both as a diagram and as a subdiagram of C.
Thus every terminal chord of C corresponds bijectively to a terminal chord in T,B1, . . . , Bk.
Furthermore, clearly the intersection orders on T,B1, . . . , Bk agree with the intersection
order on C (in the sense that c ≺ c′ in T or Bi if and only if c ≺ c′ in C for c, c′ ∈ T or
c, c′ ∈ Bi for some i) by construction. It follows that the number of terminal chords of C
is equal to the sum of the number of terminal chords in T and B1, . . . , Bk. We also further
infer by construction that every difference ti+1(C) − ti(C) corresponds uniquely to either
a difference of consecutive terminal chord indices in some Bi or the difference between the
index in C of the last terminal chord of Bi−1 and the index in C of the first terminal chord
of Bi, that is, t1(Bi). The desired equality follows from these two observations.

This gives the required equality.

100

Lemma 4.1.4. We have

fC = ft1(C1)−i1fC1 · · · ft1(Ck)−ikfCk
.

Proof. By Lemma 4.1.3 applied to fC and fC1 , . . . , fCn , we may assume that C−T −
⋃

ℓAℓ

is empty, since the corresponding terms in the monomials can simply be cancelled from
both sides. Then Cℓ = Dℓ ∪ Aℓ. By our observations in the proof of the claim above, the
chords of Dℓ are the first iℓ chords of Cℓ in the intersection order. This implies that

fCℓ
= fDℓ∪Aℓ

=

{
f iℓ
0 Aℓ if Aℓ nonempty,

f iℓ−1
0 otherwise,

t1(Aℓ) = t1(Cℓ)− iℓ (which is zero if and only if Aℓ is empty), and

fT = f j
0 = f i1+···+ik

0 = f i1
0 · · · f

ik
0 .

Then by Lemma 4.1.3

fC = fTft1(A1)fA1 · · · ft1(Ak)fAk

= f i1
0 · · · f

ik
0 ft1(C1)−i1fA1 · · · ft1(Ck)−ikfAk

= ft1(C1)−i1fC1 · · · ft1(Ck)−ikfCk
.

With this we can give the proof.

Proof of Theorem 4.1.1. Combining the bijection α, the proofs of Theorems 3.2.8 and 3.2.9,
and Lemmas 4.1.2 and 4.1.4 we obtain the following identities:∑

C∈C
|C|=n+1
t1(C)=j+1

fCϕC =
n∑

k=1

ϕk

∑
n1+···+nk=n

nℓ⩾1

∑
i1+···+ik=j
1⩽iℓ⩽nℓ

(
j

i1, . . . , ik

)
(4.6)

×

(∑
C1∈C

|C1|=n1

t1(C1)⩾i1

ft1(C1)−i1fC1ϕC1

)
· · ·

(∑
Ck∈C

|Ck|=nk

t1(Ck)⩾ik

ft1(Ck)−ikfCk
ϕCk

)

and ∑
C∈C(T⩾3)
|C|=n+1
t1(C)=j+1

fCϕC =
n∑

k=0

ϕk

∑
n1+···+nk=n

nℓ⩾1

∑
i1+···+ik=j
1⩽iℓ⩽nℓ

101

×

(∑
C1∈C(T⩾3)
|C1|=n1

t1(C1)⩾i1

ft1(C1)−i1fC1ϕC1

)
· · ·

(∑
Ck∈C(T⩾3)
|Ck|=nk

t1(Ck)⩾ik

ft1(Ck)−ikfCk
ϕCk

)
.

We require a slightly different but equivalent form of these identities with an extra term
added via an additional outermost series on both sides. This essentially matches the left
hand side to the innermost series on the right hand side. In particular we instead work
with

n∑
j=i−1

fj+1−i

∑
C∈C

|C|=n+1
t1(C)=j+1

fCϕC − f01n=0 =
n∑

j=max{i−1,1}

fj+1−i

n∑
k=1

ϕk

∑
n1+···+nk=n

nℓ⩾1

∑
i1+···+ik=j
1⩽iℓ⩽nℓ

(
j

i1, . . . , ik

)

×

(∑
C1∈C

|C1|=n1

t1(C1)⩾i1

ft1(C1)−i1fC1ϕC1

)
· · ·

(∑
Ck∈C

|Ck|=nk

t1(Ck)⩾ik

ft1(Ck)−ikfCk
ϕCk

)

and
n∑

j=i−1

fj+1−i

∑
C∈C(T⩾3)
|C|=n+1
t1(C)=j+1

fCϕC − f01n=0 =
n∑

j=max{i−1,1}

fj+1−i

n∑
k=1

ϕk

∑
n1+···+nk=n

nℓ⩾1

∑
i1+···+ik=j
1⩽iℓ⩽nℓ

×

(∑
C1∈C(T⩾3)
|C1|=n1

t1(C1)⩾i1

ft1(C1)−i1fC1ϕC1

)
· · ·

(∑
Ck∈C(T⩾3)
|Ck|=nk

t1(Ck)⩾ik

ft1(Ck)−ikfCk
ϕCk

)
,

where 1n=0 = 1 if n = 0 and 0 otherwise. One can easily check that these are equivalent
equalities. Now we translate these identities into polynomial recurrences. Note first that
applying Lbin to the standard basis of K[y] gives

Lbin(y
n) =

∫ y

0

F

(
d

dt

)
tndt =

∫ y

0

∑
i⩾0

fi
di

dti
tndt

=

∫ y

0

n∑
i=0

fi
n!

(n− i)!
tn−idt

= n!
n+1∑
i=1

fn+1−i
yi

i!
, (4.7)

102

while applying Ldiv similarly gives

Ldiv(y
n) = yF (dy)y

n =
n+1∑
i=1

fn+1−iy
i. (4.8)

Focusing on the binomial 1-cocycle case, define

hn(y) =
∑
C∈Cn

fCϕC
Lbin(y

t1(C)−1)

(t1(C)− 1)!
.

We aim to show that

hn+1(y) = Lbin(1)1n=0 +
n∑

k=1

∑
n1+···+nk=n

nℓ⩾1

ϕkLbin(hn1(y) · · ·hnk
(y)). (4.9)

Applying Equation (4.7) to the definition of hn(y) yields

hn(y) =
∑
C∈Cn

fCϕC

t1(C)∑
i=1

ft1(C)−i
yi

i!
=

n∑
i=1

(∑
C∈C
|C|=n
t1(C)⩾i

ft1(C)−ifCϕC

)
yi

i!
,

thereby expressing hn(y) in standard polynomial form. Then

ϕkLbin(hn1(y) · · ·hnk
(y))

= ϕkLbin

(
n1∑

i1=0

(∑
C1∈C

|C1|=n1

t1(C1)⩾i1

ft1(C1)−i1fC1ϕC1

)
yi1

i1!
· · ·

nk∑
ik=0

(∑
Ck∈C

|Ck|=nk

t1(Ck)⩾ik

ft1(Ck)−ikfCk
ϕCk

)
yik

ik!

)

= ϕk

n∑
m=0

Lbin(y
m)

∑
i1+···+ik=m

0⩽iℓ⩽nℓ

1

i1! · · · ik!

(∑
C1∈C

|C1|=n1

t1(C1)⩾i1

ft1(C1)−i1fC1ϕC1

)
. . .

(∑
Ck∈C

|Ck|=nk

t1(Ck)⩾ik

ft1(Ck)−ikfCk
ϕCk

)

= ϕk

n∑
m=0

m+1∑
i=0

fm+1−i
yi

i!

∑
i1+···+ik=m

0⩽iℓ⩽nℓ

m!

i1! · · · ik!

×

(∑
C1∈C

|C1|=n1

t1(C1)⩾i1

ft1(C1)−i1fC1ϕC1

)
. . .

(∑
Ck∈C

|Ck|=nk

t1(Ck)⩾ik

ft1(Ck)−ikfCk
ϕCk

)

103

=
n+1∑
i=0

yi

i!

n∑
m=max{i−1,0}

fm+1−iϕk

∑
i1+···+ik=m

0⩽iℓ⩽nℓ

(
m

i1, . . . , ik

)

×

(∑
C1∈C

|C1|=n1

t1(C1)⩾i1

ft1(C1)−i1fC1ϕC1

)
. . .

(∑
Ck∈C

|Ck|=nk

t1(Ck)⩾ik

ft1(Ck)−ikfCk
ϕCk

)
,

where the second equality follows from the linearity of L. Consequently, Equation (4.9)
follows by applying our earlier combinatorial identity and rearranging and reindexing ap-
propriately. We can perform nearly identical calculations to derive the recurrence

hn+1(y) = Ldiv(1)1n=0 +
n∑

k=1

∑
n1+···+nk=n

nℓ⩾1

ϕkLdiv(hn1(y) · · ·hnk
(y))

for polynomials hn(y) =
∑

C∈Cn(T⩾3)
fCϕCLdiv(y

t1(C)−1). It remains only to observe that

writing G(x, y) =
∑

i⩾1 hi(y)x
i implies that

G(x, y) = xL(1) + x
∑
k⩾1

∑
n⩾1

∑
n1+···+nk=n

nℓ⩾1

ϕkL(hn1(y) · · ·hnk
(y))xn

= xϕ0L(1) + xL

(∑
k⩾1

∑
n⩾1

∑
n1+···+nk=n

nℓ⩾1

ϕkhn1(y) · · ·hnk
(y)xn

)

= xL

∑
k⩾0

ϕk

(∑
i⩾1

hi(y)x
i

)k


= xL(ϕ(G(x, y)))

for L either of the binomial or divided power 1-cocycle, proving that the polynomial re-
currences are equivalent to the corresponding tree-like equations.

4.1.1 A differential equation for the binomial 1-cocycle property

After seeing these results, a natural question immediately arises: why are connected chord
diagrams the objects indexed by these generating functions? In this section we present
one attempt at an answer to this question, the roots of which go back to the work of Stein

104

from the 1970s. As previously discussed, the number cn of connected diagrams of size n
satisfies the well known recurrence

cn+1 =
n∑

k=1

(2k − 1)ckcn+1−k

due to Stein [97]. This corresponds to the differential equation

C(x)− x = C(x)

(
2x

d

dx
− 1

)
C(x)

for the ordinary generating function C(x) of connected diagrams. A bivariate version of
this differential equation, known as the renormalization group equation in a physics context
(see e.g. [110, 111, 37]), turns out to be equivalent to the binomial 1-cocycle property when
ϕ(z) = 1/(1− z), that is, all the weights are 1. Write gi(x) = i![yi]G(x, y).

Theorem 4.1.5. If G solves the functional equation

G(x, y) = xL(ϕ(G(x, y))) (4.10)

with ϕ(z) = 1/(1− z), then

∂

∂y
G(x, y) = g1(x)

(
2x

∂

∂x
− 1

)
G(x, y) ⇐⇒ L = Lbin.

Before proving this, we require a lemma which essentially states that if G is the weighted
generating function over connected chord diagrams given by Theorem 4.1.1 then it satisfies
the differential equation. This lemma was originally proven by Marie and Yeats [75] but
we reprove it here for completeness.

Lemma 4.1.6. For n ⩾ 2, we have

∑
C∈C
|C|=n
t1(C)⩾i

ft1(C)−ifC =
n−i+1∑
m=1

(2(n−m)− 1)
∑
C1∈C

|C1|=m
t1(C1)⩾1

ft1(C1)−1fC1

∑
C2∈C

|C2|=n−m
t1(C2)⩾i−1

ft1(C2)−i+1fC2 .

Proof. Let C be a connected diagram of size n with t1(C) ⩾ i. Removing the root chord c1
of C gives an indecomposable diagram C ′; let C2 be the outermost component of C ′, C1 =
C−C2, and i be the endpoint of C2 immediately left of the leftmost endpoint of C1−{c1} in

105

Figure 4.1: The root-share decomposition (C1, C2) of C, with the insertion index sup-
pressed.

C. Then (C1, C2, i) defines what we previously referred to as the root-share decomposition
of C (see Figure 4.1). Clearly we can recover C from (C1, C2, i). By construction, C1 and
C2 are connected. Furthermore, by definition, t1(C2) = t1(C) − 1 ⩾ i − 1 and, setting
m = |C1|, i can take any value in [1, 2(n − m) − 1]. Since each terminal chord of C
corresponds uniquely to a terminal chord of C1 − {c1} or C2, it easily follows that

fC = fC1ft1(C1)−1fC2 .

By all of the above observations, we infer the desired identity.

Proof of Theorem 4.1.5. We begin with the “only if” direction. Suppose G satisfies the
tree-like equation (4.10) and

∂

∂y
G(x, y) = g1(x)

(
2x

∂

∂x
− 1

)
G(x, y). (4.11)

Write fi =
[y]L(yi)

i!
and G(x, y) =

∑
n⩾1

(∑n
i=1 gi,n

yi

i!

)
xn. We proceed by induction on n to

simultaneously show that

gi,n =
∑
C∈C
|C|=n
t1(C)⩾i

ft1(C)−ifC and L(yn) = n!
n+1∑
i=1

fn+1−i
yi

i!
,

that is, L = Lbin. Although proving that G has the form given by Theorem 4.1.1 is not
part of the result statement, it seems necessary to generate a straightforward argument.

106

Where before we began by expanding (4.10) only in x, we now expand in both x and y
and then extract coefficients in x to turn the functional equation into the identity

n+1∑
i=1

gi,n+1
yi

i!
=

n∑
j=1

(
n∑

k=1

∑
n1+···+nk=n

nℓ⩾1

∑
i1+···+ik=j
1⩽iℓ⩽mℓ

(
j

i1, . . . , ik

)
gi1,n1 · · · gik,nk

)
L(yj)

j!
, (4.12)

which holds for all n ⩾ 1. Applying the induction hypotheses and (4.6), we have

n+1∑
i=1

gi,n+1
yi

i!
=

n∑
j=1

(
n∑

k=1

∑
n1+···+nk=n

nℓ⩾1

∑
i1+···+ik=j
1⩽iℓ⩽mℓ

(
j

i1, . . . , ik

)

×
∑
C1∈C

|C1|=n1

t1(C1)⩾i1

ft1(C1)−i1fC1 · · ·
∑
Ck∈C

|Ck|=nk

t1(Ck)⩾ik

ft1(Ck)−ikfCk

)
j+1∑
i=1

fj+1−i
yi

i!

=
n∑

j=1

(∑
C∈C

|C|=n+1
t1(C)=j+1

fC

)
j+1∑
i=1

fj+1−i
yi

i!
.

Then upon rearranging we obtain

n+1∑
i=1

gi,n+1
yi

i!
=

n+1∑
j=1

(∑
C∈C

|C|=n+1
t1(C)⩾i

ft1(C)−ifC

)
yi

i!
,

so extracting coefficients gives the required expression for gi,n+1. To derive L(yn+1), we
begin by noting that differential equation (4.11) expands into the identity

gi,n =
n−i+1∑
m=1

(2(n−m)− 1)g1,mgi−1,n−m for i ⩾ 2. (4.13)

Then

n+2∑
i=1

gi,n+2
yi

i!
=

n+2∑
i=2

(
n−i+3∑
m=1

(2(n+ 2−m)− 1)g1,mgi−1,n+2−m

)
yi

i!
+ g1,n+2y

107

=
n+2∑
i=2

(
n−i+3∑
m=1

(2(n+ 2−m)− 1)
∑

C1∈C∞
|C1|=m
t1(C1)⩾1

ft1(C1)−ifC1

×
∑
C2∈C

|C2|=n+2−m
t1(C2)⩾i−1

ft1(C2)−i+1fC2

)
yi

i!
+ g1,n+2y

=
n+2∑
i=2

(∑
C∈C

|C|=n+2
t1(C)⩾i

ft1(C)−ifC

)
yi

i!
+ g1,n+2y (4.14)

by Lemma 4.1.6. On the other hand, applying (4.12) and (4.6) again we get

n+2∑
i=1

gi,n+2
yi

i!
=

n+1∑
j=1

(
n+1∑
k=1

∑
n1+···+nk=n+1

nℓ⩾1

∑
i1+···+ik=j
1⩽iℓ⩽mℓ

(
j

i1, . . . , ik

)
gi1,n1 · · · gik,nk

)
L(yj)

j!

=
n+1∑
j=1

(
n+1∑
k=1

∑
n1+···+nk=n+1

nℓ⩾1

∑
i1+···+ik=j
1⩽iℓ⩽mℓ

(
j

i1, . . . , ik

)

×
∑
C1∈C

|C1|=n1

t1(C1)⩾i1

ft1(C1)−i1fC1 · · ·
∑
Ck∈C

|Ck|=nk

t1(Ck)⩾ik

ft1(Ck)−ikfCk

)
L(yj)

j!

=
n∑

j=1

(∑
C∈C

|C|=n+2
t1(C)=j+1

fC

)
j+1∑
i=1

fj+1−i
yi

i!
+

∑
C∈C

|C|=n+2
t1(C)=n+2

fC
f(yn+1)

(n+ 1)!

=
n+1∑
j=1

(∑
C∈C

|C|=n+2
i⩽t1(C)⩽n+1

ft1(C)−ifC

)
yi

i!
+

∑
C∈C

|C|=n+2
t1(C)=n+2

fC
f(yn+1)

(n+ 1)!
. (4.15)

Comparing coefficients of (4.15) and (4.14), it follows that

[yi]f(yn+1) =
fn+2−i

i!

108

for i ⩾ 2, as required. We conclude the proof by noting that the “if” direction is directly
obtained by combining Equation (4.13), Lemma 4.1.6, and Theorem 4.1.1.

While the “if” direction of this theorem was proven in [75], the “only if” direction
is new. Since in general the weighted count of weighted chord diagrams is only double
factorials when the weights are all 1, it is natural for this differential equation to only
appear when ϕ(z) = 1/(1 − z). It is unclear whether analogous differential equations can
be obtained in the case of arbitrary weights or as an equivalent condition to the divided
power 1-cocycle property.

4.2 Towards generalizing DSEs

There has been considerable work going beyond the simple one-variable combinatorial
Dyson-Schwinger equation given in (4.1), starting by generalizing the underlying Hopf
algebra. Given a combinatorial class J of so-called decorations, we form a decorated version
HJ

CK of the Connes-Kreimer Hopf algebra by associating each vertex in a rooted tree with
a decoration from J and defining HJ

CK to be the free associative commutative algebra
freely generated over a field K of characteristic zero by the set of decorated rooted trees.
Algebraically, the size function on the class J makes it a graded set and correspondingly
HJ

CK a graded Hopf algebra. The coproduct ∆J is constructed similarly to the undecorated
version. The decorated Connes-Kreimer Hopf algebra also satisfies a universal property.
Let Bj

+ be the decorated version of B+ attaching a set of decorated rooted trees as children
to a new common root decorated by a fixed j ∈ J .

Theorem 4.2.1 (van der Laan and Moerdijk [103]). Let A be an associative commutative
algebra over K and, for all j ∈ J , let Lj : A → A be a linear map. Then there exists a
unique algebra homomorphism ρ : HJ

CK → A such that for all j ∈ J , ρ ◦ Bj
+ = Lj ◦ ρ.

Furthermore, if A is a bialgebra and, for all j ∈ J , Lj is a Hochschild 1-cocycle then ρ
is a bialgebra homomorphism, and if A is also a Hopf algebra then ρ is a Hopf algebra
homomorphism.

Generalizing his prior work, in [45, 46, 47, 48] Foissy investigated systems of combina-
torial Dyson-Schwinger equations of the form

T1(x) =
∑
j∈J1

x|j|Bj,1
+ (ϕj,1(T1(x), . . . , Tm(x)))

109

T2(x) =
∑
j∈J2

x|j|Bj,2
+ (ϕj,2(T1(x), . . . , Tm(x)))

... (4.16)

Tm(x) =
∑
j∈Jm

x|j|Bj,m
+ (ϕj,m(T1(x), . . . , Tm(x)))

for a partition J1 ⊔ J2 ⊔ · · · ⊔ Jm of J and, for all j ∈ J and 1 ⩽ i ⩽ m, ϕj,i(z) ∈
K[[z1, . . . , zm]] with ϕj,i(0) = 1. The unique solution to this system is a tuple of formal
power series (T1(x), . . . , Tm(x)) whose coefficients lie in HJ

CK . Writing ti,n = [xn]Ti(x), as
previously Foissy characterized when the subalgebra A = K[ti,n, 1 ⩽ i ⩽ m, 1 ⩽ n] of HJ

CK

is Hopf. The full solution is much more complex than in the undecorated single equation
case; see [45, 46, 47] for the details. If we reduce to a single equation while keeping the
decorations than it comes in a form quite close to Theorem 4.0.2, with an extra linear case
based on a divisibility property. We note that Rotheray [89] further generalized this work
in a particularly physically relevant direction.

As before, we consider equations which arise from (4.16) by applying the universal
property to the polynomial algebra K[y] and linear maps Lj,i : K[y]→ K[y] for all j ∈ J
and 1 ⩽ i ⩽ m. Applying the algebra homomorphism ρ from Theorem 4.2.1 to both sides
of each equation in (4.16), we get the bivariate system of tree-like equations

G1(x, y) =
∑
j∈J

x|j|Lj,1(ϕj,1(G1(x, y), . . . , Gm(x, y)))

... (4.17)

Gm(x, y) =
∑
j∈J

x|j|Lj,m(ϕj,m(G1(x, y), . . . , Gm(x, y))),

where Gi(x, y) = ρ(Ti(x)). It is of most interest to work with this system with the formal
power series ϕj,i set to generate a Hopf subalgebra of HJ

CK via Foissy’s work, but we remain
in the general setting. As previously, for both algebraic and quantum field theoretic reasons
we study systems of tree-like equations with the maps Lj,i being Hochschild 1-cocycles or
closely related operators.

4.2.1 Analytic Dyson-Schwinger equations, briefly

We now briefly expand on the relationship between systems of tree-like equations and
quantum field theory, a key motivation and application for much of this work. Our ex-
planation will stay at a high level, employing less than full physical or analytic rigor. See

110

[15, 110, 84, 111] for more details. The combinatorial Dyson-Schwinger equation with
ϕ(z) = 1

1−z
,

T (x) = xB+

(
1

1− T (x)

)
,

can also be interpreted as specifying all possible ways of inserting the primitive1 Feynman

graph into itself.2 As mentioned previously, the homomorphism ρ corresponds
to the Feynman rules which map each Feynman graph to its associated Feynman integral.
The tree-like equation (4.2) with ϕ(z) = 1

1−z
then corresponds to the analytic Dyson-

Schwinger equation expressed in massless Yukawa theory as

G(x, y) = 1−
(
x

q2

∫
d4k

kq

k2(k + q)2G(x, log(k2/µ2))
− same integrand

∣∣∣
q2=µ2

)
,

where y = log(q2/µ2), x is the so-called coupling constant, q is the momentum going
through a Feynman graph, renormalization of the Feynman integral is taking place by
subtraction at a fixed reference scale µ, and G(x, y) is the Green function for the fermion
propagator.3 The Feynman rules transformed the formal power series T (x) into the Green
function G(x, y). It should be emphasized that this is an example of an analytic Dyson-
Schwinger equation in a particularly heavily restricted quantum field theory. This equation
was first solved using sophisticated analytic methods by Broadhurst and Kreimer [15]. In
[110] this equation was transformed into a simpler pseudo-differential form with the analytic
contributions packed into a single term:

G(x, y) = 1− xG
(
x,

∂

∂(−ν)

)−1

(e−yν − 1)F (ν)

∣∣∣∣
ν=0

,

where F (ν) can now be taken to be the Laurent series expansion
∑

i⩾0 fiν
i−1 of the Feyn-

man integral of the primitive graph. This is simply an alternative way of expressing this
tree-like equation; in particular,

∂n

∂(−ν)n
(e−yν − 1)F (ν)

∣∣∣∣
ν=0

=

∫ y

0

F

(
d

dt

)
tndt

1As in, primitive in the associated Hopf algebra of Feynman graphs.
2Note that for a Feynman graph we view each edge as two half-edges of a specific type and when

inserting a diagram into itself half-edge types must match, so in this case there is only one possible
insertion place.

3The directed half-edges in the primitive graph are fermion propagators.

111

is the action of a 1-cocycle on the standard basis polynomial yn (recall Lemma 4.0.3).
Then extending to tree-like systems (4.17) corresponds to generalizing to a more physically
realistic setting involved a coupled system of analytic Dyson-Schwinger equations with
multiple particle types (and, thereby, multiple Green functions, one for each equation),
multiple primitive Feynman graphs, and multiple distinguishable places (that is, edges4)
for the primitive diagrams to insert into themselves. The sizes of the decorations j in
the class J correspond to the cycle ranks, that is, dimension of the cycle space, of the
primitive graphs. Since the number of insertion places in a primitive graph of cycle rank
k is sk − 1 [110], incorporating different insertion places into the counting leads to the
following system:

G1(x, y) = 1−
∑
k⩾1

xk

(
s1k−1∏
i=1

G1

(
x,

∂

∂(−ν1,i)

)−1∏
ℓ ̸=1

sℓk∏
j=1

Gℓ

(
x,

∂

∂(−νℓ,j)

)−1
)

× (e−L
∑s1k−1

i=1 νi − 1)F1,k(ν1, . . . , νs1k−1)

∣∣∣∣
ν1=···=νs1k−1=0

... (4.18)

Gm(x, y) = 1−
∑
k⩾1

xk

(
smk−1∏
i=1

Gm

(
x,

∂

∂(−νm,i)

)−1 ∏
ℓ̸=m

sℓk∏
j=1

Gℓ

(
x,

∂

∂(−νℓ,j)

)−1
)

× (e−L
∑smk−1

i=1 νi − 1)Fm,k(ν1, . . . , νsmk−1)

∣∣∣∣
ν1=···=νsmk−1=0

.

4.2.2 Solving generalized tree-like systems

An ambitious goal is to uniquely solve the system (4.17) of tree-like equations via bivariate
generating functions Gi(x, y) for some class of weighted, decorated combinatorial objects.
Here we report several conjectures towards obtaining such solutions.

Computer calculations suggest that there is a simple transformation turning a solution
for the tree-like equation (4.2) into a solution to the version where the map L physically
allows for multiple distinguishable insertion places. For a positive integer n, write n!(m) =
n(n−m)(n− 2m) · · · 1 for the m-multifactorial of n.

4Inserting at vertices is also possible in more physically realistic quantum field theories, but the frame-
work given here is restricted to edge insertions.

112

Conjecture 4.2.2. Fix an integer s ⩾ 2 and let G be a solution to

G(x, y) = xLbin(ϕ(G(x, y))),

where

ϕ(z) =
1

(1− z)s′−1

for s′ = 2s− 1. Then Ĝ obtained by applying the substitution

fi → f̂i :=
∑

j1+···+js−1=i

∏s−1
l=1 (s(jl − 1) + 1)!(s)

(s′i− 1)!(s′)
fj1···js−1 ∀ i ⩾ 0 (4.19)

to G uniquely solves

Ĝ(x, y) = xLs

(
1

1− Ĝ(x, y)

)
, (4.20)

where

Ls(y
n) =

(
s−1∏
i=1

∂n

∂(−νi)n

)
(e−y

∑s−1
i=1 νi − 1)F (ν1, . . . , νs−1)

∣∣∣∣
ν1=···=νs−1=0

.

While we have not proven this conjecture, combined with (4.1.1) the multifactorial-
based substitution points towards the unique solution to (4.20) taking the form of a gen-
erating function for a class of combinatorial objects closely related to chord diagrams.

Turning to the more general context of systems of the form (4.18), for quantum field the-
oretic reasons it is expected that solutions to physically-realistic analytic Dyson-Schwinger
equations generally satisfy a renormalization group equation as studied in Section 4.1.1.
Obtaining such renormalization group equations has the potential to both help discover
generating function solutions to tree-like systems and, if necessary, assist in proving that
they are indeed solutions, as featured in [75, 54]. Based upon Theorem 4.1 of [110] and
extensive computer calculations of the initial terms of solutions to these type of equations,
we have the following conjecture.

Conjecture 4.2.3. Every solution (G1, . . . , Gm) to (4.18) with si = s for a fixed integer
s ⩾ 2 satisfies the system (

∂

∂y
+ β1(x)

∂

∂x
− γ1(x)

)
G1(x, y) = 0

113

...(
∂

∂y
+ βm(x)

∂

∂x
− γm(x)

)
Gm(x, y) = 0

of renormalization group equations with γi,n(x) = [yn]G(x, y), γi(x) = γi,1(x), and βi(x) =
sx
∑m

i=1 γi,1(x).

114

Chapter 5

Conjectures, speculations, and
conclusions

We developed several enumeration devices, most notably an extension of the Combinato-
rial Exploration framework [1] to chord diagrams, that have the potential to enumerate or
at least give structural information about many more classes of chord diagrams than we
considered in this thesis. Towards that goal, we computed the first 8 terms of the count-
ing sequences of approximately 10, 000 restricted hereditary diagram classes obtained by
applying combinations of the following properties:

• connectivity, 1-terminality, 1-sym-terminality

• cycle-free, top-cycle-free, bottom-cycle-free, bipartite, chordal

• avoiding some number of permutation diagrams of size 3,

• avoiding one or two permutation diagrams of size 4

• avoiding a cycle of size 4 or 5

This reduces to approximately 4, 500 classes after partially accounting for symmetries and
non-minimal forbidden diagram combinations. Around 1, 100 of the sequences match se-
quences found on the OEIS [93], indicating that they are known and likely related to objects
that have been studied in the literature or, at least, algebraic or analytic information can
be acquired on the sequence. Some notable sequences include the following (excluding the
first couple terms):

115

• 199 occurrences of the all 1s sequence: 1, 1, 1, 1, 1, 1, . . . [93, A000012]

• 163 occurrences of the Catalan numbers: 2, 5, 14, 42, 132, 429, . . . [93, A000108]

• 90 occurrences of a bisection of the Fibonacci numbers: 2, 5, 13, 34, 89, 233, . . . [93,
A001519]

• 41 occurrences of the powers of 2: 2, 4, 8, 16, 32, 64, . . . [93, A000079]

• 27 occurrences of the Motzkin numbers: 2, 4, 9, 21, 51, 127, . . . [93, A001006]

• 22 occurrences of the Fibonacci numbers: 2, 3, 5, 8, 13, 21, . . . [93, A000045]

• 20 occurrences of the number of (1243, 2134)-avoiding permutations: 2, 6, 22, 87, 354, 1459, . . .
[93, A164651]

• 20 occurrences of the number of (2341, 3421)-avoiding permutations: 2, 6, 22, 89, 382, 1711, . . .
[93, A165545]

• 20 occurrences of the number of (4123, 3412)-avoiding permutations: 2, 6, 22, 89, 381, 1696, . . .
[93, A165544]

• 18 occurrences of 1
2n+1

(
3n
n

)
: 3, 12, 55, 273, 1428, 7752, . . . [93, A001764]

• 18 occurrences of the little Schröder numbers: 3, 11, 45, 197, 903, 4279, . . . [93, A001003]

In Table 5.1 we give a sampling of some of the most intriguing conjectures that fall out
of this, incorporating the conjectured “proper” size indexing of the class, i.e. conjectured
offset phenomenon applicable.

Cn+1(T⩾4, B⩾4) C2
n [93, A001246]

Tn+1() [93, A117106]
Tn+1({T2k+1, B2k+1}k⩾1) [93, A001181]

ST n+2 [93, A001515, A144301]
ST n+2(T3) [93, A108304]

ST n+1(T⩾4, B⩾4) [93, A005802]

Table 5.1: A sampling of diagram sets and their conjectured counting sequences.

To prove these conjectures it would obviously be prudent to expand the pool of com-
binatorial strategies for our version of Combinatorial Exploration for chord diagrams and,

116

most importantly, implement it on a computer. This has the potential to resolve many or
all of these conjectures. It would also be most interesting to get at bijections, or even a
single universal map Cn+1 → Dn, explaining the offset phenomenon for connected and 1-
terminal classes. This may extend to explaining the offset 2 phenomenon of 1-sym-terminal
classes, or a different map may be needed, such as the one presented in Section 3.4.

Finally, it would be of interest to resolve the conjectures of Section 4.2.2 and obtain gen-
erating functions for chord diagrams or other combinatorial objects that solve generalized
Dyson-Schwinger equations, such as those described in Section 4.2.

117

References

[1] M. H. Albert, C. Bean, A. Claesson, E. Nadeau, J. Pantone, and H. Ulfarsson.
Combinatorial Exploration: An algorithmic framework for enumeration.

[2] E. Barcucci, A. D. Lungo, E. Pergola, and R. Pinzani. ECO: a methodology for the
enumeration of combinatorial objects. J. Diff. Eq. Appl., 5:435–490, 1999.

[3] J. S. Beissinger. The enumeration of irreducible combinatorial objects. J. Combin.
Theory Ser. A, 38(2):143–169, 1985.

[4] F. Bergeron, P. Flajolet, and B. Salvy. Varieties of increasing trees. In J. C. Raoult,
editor, CAAP ’92, pages 24–48, Berlin, Heidelberg, 1992. Springer Berlin Heidelberg.

[5] F. Bergeron, G. Labelle, and P. Leroux. Combinatorial Species and Tree-like Struc-
tures, Encyclopedia of Mathematics and its Applications, volume 67. Cambridge
University Press, 1998.

[6] O. Bernardi and N. Bonichon. Intervals in Catalan lattices and realizers of triangu-
lations. J. Combin. Theory Ser. A, 116(1):55–75, 2009.

[7] G. Birkhoff. Lattice Theory, volume 25 of Amer. Math. Soc. Colloq. Pub. American
Mathematical Society, 1967.

[8] J. Bloom and S. Elizalde. Pattern avoidance in matchings and partitions. Electron.
J. Combin, 20(2), 2013.

[9] J. Bloom and D. Saracino. Pattern avoidance for set partitions á la Klazar. Discrete
Math and Theor. Comput. Sci, 18(2), 2016.

[10] B. Bollobás and O. Riordan. Linearized chord diagrams and an upper bound for
Vassiliev invariants. J. Knot Theory Ramifications, 9(7):847–853, 2000.

118

[11] M. Bona. Exact enumeration of 1342-avoiding permutations: A close link with la-
belled trees and planar maps. J. Combin. Theory Ser. A, 175:55–67, 1997.

[12] M. Bóna. Real zeros and normal distribution for statistics on Stirling permutations
defined by Gessel and Stanley. SIAM J. Discrete Math, 23(1):401–406, 2009.

[13] A. Bouchet. Circle graph obstructions. J. Combin. Theory Ser. B, 60(1):107–144,
1994.

[14] M. Bouvel, V. Guerrini, A. Rechnitzer, and S. Rinaldi. Semi-Baxter and strong-
Baxter: two relatives of the Baxter sequence. SIAM J. Discrete Math, 32(4):2795–
2819, 2018.

[15] D. J. Broadhurst and D. Kreimer. Exact solutions of Dyson-Schwinger equations
for iterated one-loop integrals and propagator-coupling duality. Nuclear Physics B,
600:403–422, 2001.

[16] W. G. Brown. Enumeration of triangulations of the disk. Proc. Lond. Math. Soc,
3(14):746–768, 1964.

[17] S. Burrill. Crossings and nestings in four combinatorial families. Master’s thesis,
Simon Fraser University, 2007.

[18] A. Burstein. Restricted Dumont permutations. Ann. Comb, 9(3):169–280, 2005.

[19] Y. Cai and C. Yan. Counting with Borel’s triangle. Discrete Math., 342(2):529–539,
2019.

[20] L. R. Campbell, S. Dahlberg, R. Dorward, J. Gerhard, T. Grubb, C. Purcell, and
B. E. Sagan. Restricted growth function patterns and statistics. Adv. Appl. Math,
100:1–42, 2018.

[21] M. Cervetti and L. Ferrari. Pattern avoidance in the matching pattern poset, 2020.

[22] F. Chapoton. Sur le nombre d’intervalles dans les treillis de Tamari. Sém. Lothar.
Combin, 55, 2006.

[23] W. Y. C. Chen, E. Y. P. Deng, R. R. X. Du, R. P. Stanley, and C. H. Yan. Crossings
and nestings of matchings and partitions. Trans. Amer. Math. Soc, 359(4):1555–1575,
2007.

119

[24] W. Y. C. Chen, T. Mansour, and S. H. F. Yan. Matchings avoiding partial patterns.
Electron. J. Combin, 13, 2006.

[25] F. R. K. Chung, R. L. Graham, E. Hoggatt, and M. Kleiman. The number of Baxter
permutations. J. Combin. Theory Ser. A, 24:382–394, 1978.

[26] A. Connes and D. Kreimer. Hopf algebras, renormalization and noncommutative
geometry. Comm. Math. Phys, 199:203–242, 1998.

[27] R. Cori, S. Dulucq, and G. Viennot. Shuffle of parenthesis systems and Baxter
permutations. J. Combin. Theory Ser. A, 43(1):1–22, 1986.

[28] J. Courtiel and K. Yeats. Terminal chords in connected chord diagrams. Ann. Inst.
Henri Poincaré Comb. Phys. Interact, 4(4):417–452, 2017.

[29] J. Courtiel and K. Yeats. Next-tok leading log expansions by chord diagrams, 2019.

[30] J. Courtiel, K. Yeats, and N. Zeilberger. Connected chord diagrams and bridgeless
maps. Electron. J. Combin, 26(4), 2019.

[31] S. Dahlberg, R. Dorward, J. Gerhard, T. Grubb, C. Purcell, L. Reppuhn, and B. E.
Sagan. Set partition patterns and statistics. Discrete Math, 339(1):1–16, 2016.

[32] J. Davies and R. McCarty. Circle graphs are quadratically χ-bounded. Bull. Lond.
Math. Soc, 53(3):673–679, June 2021.

[33] M. de Sainte-Catherine. Couplages et Pfaffiens en combinatoire, physique et infor-
matique. PhD thesis, University of Bordeaux, 1983.

[34] M. de Sainte-Catherine and G. Viennot. Enumeration of certain Young tableaux
with bounded height. Lecture Notes in Math, 1234:58–67, 1986.

[35] C. Defant. Catalan intervals and uniquely sorted permutations. J. Combin. Theory
Ser. A, 174, 2020.

[36] C. Defant, M. Engen, and J. A. Miller. Stack-sorting, set partitions, and Lassalle’s
sequence. J. Combin. Theory Ser. A, 175, 2020.

[37] W. Dugan. Sequences of trees and higher-order renormalization group equations.
Master’s thesis, University of Waterloo, 2019.

[38] S. Dulucq and J.-G. Penaud. Cordes, arbres et permutations. Discrete Math,
117(1):89–105, 1993.

120

[39] D. Dumont. Interpretations combinatoires des nombres de Genocchi. Duke J. Math,
41:305–218, 1974.

[40] P. Erdos and G. Szekeres. A combinatorial problem in geometry. Comp. Math,
2:463–470.

[41] W. Fang. Planar triangulations, bridgeless planar maps and Tamari intervals. Euro-
pean J. Combin, 70:75–91, 2018.

[42] P. Flajolet and M. Noy. Analytic combinatorics of chord diagrams. In Formal Power
Series and Algebraic Combinatorics, pages 191–201. Springer, 2000.

[43] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge Univ. Press,
Cambridge, 2009.

[44] L. Foissy. Faá di Bruno subalgebras of the [hopf. Adv. Math, (1):136–162.

[45] L. Foissy. Classification of systems of Dyson-Schwinger equations in the Hopf algebra
of decorated rooted trees. Adv. Math, 224(5):2094–2150, 2010.

[46] L. Foissy. General Dyson-Schwinger equations and systems. Comm. Math. Phys,
327(1):151–179, 2014.

[47] L. Foissy. Pre-lie algebras and systems of dyson-schwinger equations. In Dyson-
Schwinger Equations and Faá di Bruno Hopf Algebas in Physics and Combinatorics,
pages 9–89. European Mathematical Society, 2016.

[48] L. Foissy. Multigraded Dyson–Schwinger systems. J. Math. Phys, 61(5):051703, 2020.

[49] E. Fusy. New bijective links on planar maps via orientations. European J. Combin,
31(1):145–160, 2010.

[50] I. Gessel and R. P. Stanley. Stirling polynomials. J. Combin. Theory Ser. A, 24:24–
33, 1978.

[51] I. M. Gessel. Symmetric functions and P-recursiveness. J. Combin. Theory Ser. A,
53:257–285, 1990.

[52] D. Gouyou-Beauchamps. Standard young tableaux of height 4 and 5. European J.
Combin, 10:69–82, 1989.

121

[53] J. M. Hammersley. A few seedlings of research. In Proc. Sixth Berkeley Sym. Math.
Stat. Prob., volume 1, pages 345–394, Berkley/Los Angeles, 1972. University of Cal-
ifornia Press.

[54] M. Hihn and K. Yeats. Generalized chord diagram expansions of Dyson-Schwinger
equations. Ann. Inst. Henri Poincaré Comb. Phys. Interact, 6(4):573–605, 2019.

[55] I. Hofacker, P. Schuster, and P. F. Stadler. Combinatorics of RNA secondary struc-
tures. Discrete Appl. Math, 88(1–3):207–237, 1998.

[56] S. Janson. Plane recursive trees, Stirling permutations and an urn model. Fifth
Colloquium on Mathematics and Computer Science, pages 541–548, 2008.

[57] S. Janson, M. Kuba, and A. Panholzer. Generalized Stirling permutations, families
of increasing trees and urn models. J. Combin. Theory Ser. A, 118(1):94–114, 2011.

[58] V. Jeĺınek. Dyck paths and pattern-avoiding matchings. European J. Combin,
28:202–213, 2005.

[59] V. Jeĺınek, T. Mansour, and M. Shattuck. On multiple pattern avoiding set parti-
tions. Adv. Appl. Math, 50(2):292–326, 2013.

[60] A. Joyal. Calcul intégral combinatoire et homologie du groupe symétrique. Comptes
Rendus Math. Acad. Sci., 7:337–342, 1985.

[61] A. Joyal. Règle des signes en algèbre combinatoire. Comptes Rendus Math. Acad.
Sci., 7:285–290, 1985.

[62] S. Kitaev. Patterns in Permutations and Words. Springer-Verlag, Berlin, 2011.

[63] S. Kitaev and T. Mansour. A survey on certain pattern problems. 2007.

[64] M. Klazar. On abab-free and abba-free set partitions. European J. Combin, 17:53–68,
1996.

[65] M. Klazar. Counting pattern-free set partitions I: A generalization of Stirling numbers
of the second kind. European J. Combin, 21:367–378, 2000.

[66] D. J. Kleitman. Proportions of irreducible diagrams. Stud. Appl. Math, 44(3):297–
299, 1970.

[67] D. E. Knuth. The Art of Computer Programming, vol. 1, Fundamental Algorithms.
Addison-Wesley, 1973.

122

[68] D. Kreimer. On the hopf algebra structure of perturbative quantum field theories.
Adv. Theor. Math. Phys, 2(2):303–334, 1998.

[69] G. Kreweras. Sur les partitions non croisées d’un cycle. Discrete Math, 1:333–350,
1972.

[70] M. Kuba and A. Panholzer. A unifying approach for proving hook-length formulas
for weighted tree families. Graphs Combin, 29:1839–1865, 2013.

[71] P. Leroux and B. Miloudi. Généralisations de la formule d’otter. Ann. Sci. Math.
Québec, 16(1):53–80, 1992.

[72] A. A. Mahmoud. An Asymptotic Expansion for the Number of 2-Connected Chord
Diagrams, 2020.

[73] T. Mansour. Combinatorics of Set Partitions. Chapman and Hall/CRC, first edition,
2012.

[74] A. Marcus and G. Tardos. Excluded permutation matrices and the Stanley–Wilf
conjecture. J. Combin. Theory Ser. A, 107(1):153–160, 2004.

[75] N. Marie and K. Yeats. A chord diagram expansion coming from some Dyson-
Schwinger equations. Commun. Number Theory Phys, 7(2):251–291, 2013.

[76] Jon McCammond. Noncrossing partitions in surprising locations. American Math.
Monthly, 113(7):598–610, 2006.

[77] K. Menger. Zur allgemeinen kurventheorie. Fund. Math, 10:96–115, 1927.

[78] M. M. Murphy and V. R. Vatter. Profile classes and partial well-order for permuta-
tions. Electron. J. Combin, 9(2), 2003.

[79] L. Nabergall. The combinatorics of a tree-like functional equation for connected
chord diagrams, 2021.

[80] W. Naji. Reconnaissance des graphes de cordes. Discrete Math, 54:329–337, 1985.

[81] A. Nijenhuis and H. Wilf. The enumeration of connected graphs and linked diagrams.
J. Combin. Theory Ser. A, 27(3):356–359, 1979.

[82] J. M. Pallo. Right-arm rotation distance between binary trees. Inform. Process. Lett,
87:173–177, 2003.

123

[83] A. Panholzer and H. Prodinger. Level of nodes in increasing trees revisited. Random
Structures Algorithms, 31(2):203–226, 2007.

[84] E. Panzer. Hopf-algebraic renormalization of Kreimer’s toy model. Master’s thesis,
Humboldt-Universität zu Berlin, 2011.

[85] V. Pilaud and J. Rué. Analytic combinatorics of chord and hyperchord diagrams
with k crossings. Adv. Appl. Math, 57:60–100, 2014.

[86] C. Pivoteau, B. Salvy, and M. Soria. Algorithms for combinatorial structures: well-
founded systems and Newton iterations. J. Combin. Theory Ser, 119(8):1711–1773,
2012.

[87] J. Riordan. The distribution of crossings of chords joining pairs of 2n points on a
circle. Math. Comp, 29(129):215–222, 1975.

[88] G. Robinson. On the representations of the symmetric group. Amer. J. of Math.,
60(3):745–760, 1938.

[89] L. Rotheray. Hopf subalgebras from green’s functions. Master’s thesis, Humboldt-
Universität zu Berlin, 2015.

[90] B. E. Sagan. Pattern avoidance in set partitions. Ars Combin, 94:79–96, 2010.

[91] C. Schensted. Longest increasing and decreasing subsequences. Canad. J. Math,
13:179–191, 1961.

[92] R. Simion and F. W. Schmidt. Restricted permutations. European J. Combin,
6(4):383–406, 1985.

[93] N. Sloane and The OEIS Foundation Inc. The on-line encyclopedia of integer se-
quences, 2022.

[94] R. Speicher. Free probability theory and non-crossing partitions. Sém. Lothar. Com-
bin, 39, 1997.

[95] R. P. Stanley. Enumerative combinatorics, volume 1. Cambridge Univ. Press, Cam-
bridge, second edition, 2012.

[96] R. P. Stanley. Catalan addendum, 2013.

[97] P. R. Stein. On a class of linked diagrams, I. enumeration. J. Combin. Theory Ser.
A, 24(3):357–366, 1978.

124

[98] P. R. Stein and C. J. Everett. On a class of linked diagrams, II. asymptotics. Discrete
Math, 21(3):309–318, 1978.

[99] A. Stoimenow. On the number of chord diagrams. Discrete Math, 218(1):209–233,
2000.

[100] D. Tamari. The algebra of bracketings and their enumeration. Nieuw Arch. Wiskd
Ser. 3, 10:131–146, 1962.

[101] J. Touchard. Sur un probleme de configurations et sur les fractions continues. Canad.
J. Math, 4:2–25, 1952.

[102] W. T. Tutte. A census of planar triangulations. Canad. J. Math, 14:21–38, 1962.

[103] P. van der Laan and I. Moerdijk. Families of Hopf algebras of trees and pre-lie
algebras. Homology, Homotopy Appl, 8(1):243–256, 2006.

[104] V. Vatter. Enumeration schemes for restricted permutations. Combin. Probab. Com-
put, 17(1):137–159, 2008.

[105] V. Vatter. Finding regular insertion encodings for permutation classes. J. Symbolic
Comput, 47(3):259–265, 2012.

[106] T. R. S. Walsh and A. B. Lehman. Counting rooted maps by genus III: Nonseparable
maps. J. Combin. Theory Ser. B, 18:222–259, 1975.

[107] J. West. Permutations with forbidden subsequences; and, Stack-sortable permuta-
tions. PhD thesis, MIT, 1990.

[108] J. West. Generating trees and forbidden subsequences. Discrete Math, 157(1):363–
374, 1996.

[109] N. C. Wormald. A correspondence for rooted planar maps. Ars Combin, 9:11–28,
1980.

[110] K. Yeats. Growth estimates for Dyson-Schwinger equations. PhD thesis, Boston
University, 2008.

[111] K. Yeats. A Combinatorial Perspective on Quantum Field Theory. Springer, first
edition, 2017.

[112] Y. N. Yeh. On the Combinatorial Species of Joyal. PhD thesis, State University of
New York at Buffalo, 1985.

125

[113] Y. N. Yeh. The calculus of virtual species and K-species. In Combinatoire
Énumérative, pages 351–369. Springer-Verlag, 1986.

[114] D. Zeilberger. Enumeration schemes and, more importantly, their automatic gener-
ation. Ann. Comb, 2(2):185–195, 1998.

126

APPENDICES

127

Appendix A

Proof tree for the class C(B⩾3)

Here, we display the indicated proof tree.

128

Figure A.1: The first part of a proof tree for the class C(B⩾3) of connected bottom-cycle-
free diagrams.

129

Figure A.1: The second part of a proof tree for the class C(B⩾3) of connected bottom-
cycle-free diagrams.

130

	List of Figures
	List of Tables
	Introduction
	Set partitions and chord diagrams
	Graphical features of diagrams
	Ordered features of diagrams
	Restricted hereditary classes and pattern avoidance
	Permutations
	Partitions and diagrams

	Overview
	Notation

	A structural enumeration framework
	Gridding and tiling diagrams
	Visualizing gridded objects

	Combinatorial strategies
	Linkage deletion
	Linkage inferral
	Point and chord placement
	Generalized factorization
	Additional strategies

	Example applications
	Structural trees

	Enumerating chord diagram classes
	Avoiding bottom cycles
	Avoiding top cycles
	Grouping and tracing
	A recursive bijection
	Triangulations, maps, and other friends

	The map 2mu-:6muplus1muTn+1 Dn
	Higher terminality
	Relationship with other double factorial objects
	Closure under subdiagram avoidance

	A primer on 1-sym-terminal classes

	Dyson-Schwinger generating equations
	Solving tree-like equations
	A differential equation for the binomial 1-cocycle property

	Towards generalizing DSEs
	Analytic Dyson-Schwinger equations, briefly
	Solving generalized tree-like systems

	Conjectures, speculations, and conclusions
	References
	APPENDICES
	Proof tree for the class C(B3)

