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Abstract

Video games can generate different emotional states and affective reactions, but it can
sometimes be difficult for a game’s visual designer to predict the emotional response a
player might experience when designing a game or game scene. In this thesis, I conducted
a study to collect emotional responses to video game images. I then used that data to
both confirm past research that suggests images can be used to predict affect and to build
a model for predicting emotion that is specific to games. I built both a linear regression
model and three neural network models to predict affective response and found that the
neural net that leveraged ResNet-50 was most effective. I then incorporated that model
into a Unity plug-in so that designers can use it to predict affect of players in real time.
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Chapter 1

Introduction

Game designers collect user feedback and determine the quality of the player experience
through many methods, including questionnaires, in-game feedback, and app-store reviews
(Davis et al., 2005). Most of these methods require collection of data after the game (or a
prototype) is created and require players to provide feedback after playing. Game design-
ers lack a tool that can provide immediate feedback to help predict a player’s emotional
response to game designs as the game visuals are being created.

To help game designers better understand the short-term affective states of players, I
present a Unity game engine plug-in that can predict the expected pleasure and arousal
from players when viewing game visuals in real-time, two dimensions from the pleasure,
arousal, and dominance (PAD) dimensions proposed by Russell and Mehrabian (1977).

1.1 Background

Video games are digital media embedded with extensive player engagement, which offer
a broad range of interactive experiences and allow players to enjoy virtual worlds full of
challenges (Calleja et al., 2016). Over the last few years, research has shown that video
games play a key role in affecting people’s emotions. Some research studies suggest that
video games can trigger stress (Porter & Goolkasian, 2019), while others have shown that
video games reduce or manage stress (Carlier et al., 2020). Research has also shown that
players react to video games with a large range of emotions, including anger, sadness,
amusement and enthusiasm (Behnke et al., 2021).
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Digital experiences in video games are facilitated by emotional responses. Emotions
are one of the major factors that game designers need to consider when developing a game.
Research shows that graphical and audio aesthetics in a game can largely influence the
experience of playing (Lucio de Mattos, 2020). There are many elements in video games
that can induce different emotional reactions. For example, research suggests it is an
essential feature in game design to consider sound along with graphics to create “unique,
immersive and rewarding gaming experiences” (Liljedahl, 2010).

Many theories have been proposed to provide guidelines to game designers to elicit
specific emotions in players. For example, a psychological constructionist theory, called
Conceptual Act Theory, suggests that “emotions are constructed when conceptual knowl-
edge is applied to ever changing affective experiences” (Barrett, 2014). In video games,
emotional responses are carefully designed stimulation, generated by specific playing ex-
perience, graphic content, or audio source. It is believed by some researchers that “under-
standing the role of emotion in creating truly immersive and believable environments is
critical for game designers” (de Byl, 2015). Game designers elicit different kinds of emo-
tions in players, through manipulating all game elements, including lighting, story telling,
and the game environment (de Byl, 2015).

1.2 Hypotheses and Research Questions

Studies conducted by Russell and Mehrabian in 1977 provided evidence that three inde-
pendent and bipolar dimensions, pleasure-displeasure, degree of arousal, and dominance-
submissiveness, are “both necessary and sufficient to adequately define emotional states”
(Russell & Mehrabian, 1977). In Russell and Mehrabian’s study, dominance accounted for
only a trivial proportion of variance in the measured affective value and therefore dom-
inance is generally given less attention compared to pleasure and arousal (Poels et al.,
2012). As a result, in this thesis, pleasure and arousal are used as two dimensions for
measuring player’s affective status.

Previous research has shown that the expected affective valence (EAV) of natural en-
vironments can be determined through visual information. Six factors are believed to be
responsible for automatic emotional responses to scenes and environments: shape, contour,
complexity, colour hue, colour saturation, and colour brightness (Valtchanov & Hancock,
2015).

I speculate that the same algorithm applies to game scenes as well. Therefore, I for-
mulate the following hypotheses:
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H1: Pleasure experienced while playing a digital game can be predicted by the game
scene’s shape, contour, complexity, colour hue, colour saturation, and colour bright-
ness.

H2: Arousal experienced while playing a digital game can be predicted by the game
scene’s shape, contour, complexity, colour hue, colour saturation, and colour bright-
ness.

There are several issues that, although not investigated in previous studies, are crucial to
getting a more complete understanding of a player’s affective level and help game designers
predict the expected affect in the process of game development. Therefore, I formulate the
following research questions:

RQ1 How do colour and spatial frequencies in the video game’s scene affect player’s
arousal level and pleasure level?

RQ2 Is it possible to use a linear regression model to predict video game players’ arousal
level and pleasure level?

RQ3 Is it possible to use a neural network model to predict video game players’ arousal
level and pleasure level?

RQ4 Can a tool be built for game designers that can predict a player’s arousal level and
pleasure level?

1.3 Method

Thus, to investigate how emotional feedback can be affected by game graphics, I conducted
an online study to collect people’s emotional feedback to game scenes. I used different
methods to analyze the data and built a prediction model from it.

I developed a Unity Game Engine plug-in that can predict players’ levels of pleasure and
arousal. Our prototype focuses on the emotional dimensions of pleasure and arousal. The
predicted emotions are presented in the form of an Affective Slider (Betella & Verschure,
2016), which includes a pleasure slider and an arousal slider. The algorithm used in this
Unity plug-in can be easily switched by game developers. I also provided our own machine
learning model, trained by data collected through user studies. In this thesis, I present the
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study design, data analysis, machine learning process, and the system design of the Unity
plug-in.

This plug-in can analyze the current game frame and extract information on hue, lumi-
nance, saturation, and spatial frequencies, which are used to predict and present expected
emotional response. It also uses the power of machine learning to determine the expected
pleasure and arousal scores. Users can also choose to use their own model.

1.4 Contributions

We, therefore, provide four main contributions:

1. I present empirical results from a survey study that collected individuals’ emotional
reactions to game screenshots and explore possible variables that affect the satisfac-
tion and arousal scores reported by participants. The data collected this study is
valuable for other researchers who are interested in people’s emotional responses to
images specific to video games.

2. I use linear regression methods to construct a prediction model from the collected
data. I validate the linearity assumption and measure the model’s accuracy.

3. I use supervised machine learning methods to construct a prediction model from the
collected data. This machine learning can be integrated into our prototype and make
the predictions offer more reliable accuracy.

4. I design and develop a Unity game engine plug-in, a prototype tool to help game
developers check the real-time automated analysis of the expected affective valence
of the game scene. This plug-in can act as a tool to assist designers, developers, re-
searchers, and academics to embed affective constructs within new games and under-
stand those employed in existing ones. I provide a formal approach to understanding
the role emotions play in games at all levels and bridge the gap between game design,
development and technology.

1.5 Thesis overview

In this thesis, Chapter 2 situates the thesis within the current state of research in the fields
of affective computing and affective status prediction. Chapter 3 covers a study I con-
ducted in order to collect people’s emotional feedback after seeing video game screenshots.
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Chapter 4 and Chapter 5 analyze the collected data and train a machine learning model to
predict players’ emotional feedback. Chapter 6 describes a prototype tool for game design-
ers, which is a plug-in for the Unity game engine that can display predicted quantitative
data of players’ emotions. Chapter 7 concludes the thesis and discusses potential future
work.
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Chapter 2

Related Work

This chapter provides some background for this thesis and the current state of research
in related fields. It surveys previous work in affective computing, tools to assess affective
status, and research on exploring human preference for colour and spatial frequency. This
chapter also introduces convolution neural networks (CNNs) and previous work in affective
status prediction.

2.1 Affective Computing

The field of affective computing has investigated the need to consider emotional response
in interfaces for decades, both for measuring human response to computers, as well as
eliciting intentional responses from users. Affective computing was first introduced by
Rosalind Picard in 1998. It is an interdisciplinary field based in psychophysiology, computer
science, biomedical engineering and artificial intelligence (Rosalind Picard, 1998). It has
emerged as an important study to detect or even predict human emotions. There is a
wide spectrum of promising applications in the field of affective computing such as virtual
reality, human emotion recognition and many more. Some work has focused on applying
psychological models of pleasure and arousal to categorize media along the two-dimensional
space of valence (positive or negative) versus arousal (high or low) (Hanjalic, 2006). Our
work could be considered to be in the field of affective computing, as it builds on past
research to predict a video game player’s emotional responses.
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2.2 Measuring Emotion

In our research, we need a way to assess human emotion in an online study (introduced
in Chapter 3). We also need a way to visually indicate the predicted affective state that a
game will induce in our Unity plug-in (introduced in Chapter 6).

The circumplex model of affect suggests that all affective states can be described using
two independent neurophysiological systems, one of which is valence (pleasure) and the
other of which is arousal or activation. Posner et al. (2005) proposed that each emotional
state can be represented as a linear combination of these two dimensions.

To measure these two emotional dimensions, many assessment tools have been proposed
and widely used in studies to collect subjective affective ratings of participants (Betella &
Verschure, 2016; Bradley & Lang, 1994; Watson et al., 1988). The Self-Assessment Manikin
(SAM) is a pictorial scale for the measurement of pleasure, arousal and dominance (Bradley
& Lang, 1994). Betella and Verschure (2016) more recently introduced the Affective Slider
(AS) (shown in Figure 2.1), a digital self-reporting tool composed of two slider controls
for the quick assessment of pleasure and arousal, which builds on the SAM and provides
a more modern graphical way to assess affect. The AS was shown in their study to be
more effective than SAM. These two sliders measure the level of pleasure and arousal from
the circumplex model of affect (Posner et al., 2005). The AS is intended to not require
written instructions and is displayed in black and white on purpose, in order to avoid any
bias caused by colour preference (Betella & Verschure, 2016). We therefore chose the AS
as the tool to both measure affect in our study, and to display the predicted affect in our
Unity plug-in.
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Figure 2.1: The Affective Slider
The Affective Slider (AS) is a digital self-reporting tool composed of two sliders that

measure arousal (top) and pleasure (bottom) on a continuous scale. Implementations of
the AS (including these images) are available here:

http://github.com/albertobeta/AffectiveSlider

2.3 Psychology of Colour Preference and Spatial Fre-
quency Preference

In my research, I aim to predict human emotional responses when playing video games.
In this section, I review literature on emotional response to image content. This section
discusses previous research on human preference for colour and spatial frequency of the
image content.

Video games have many colourful elements that may be carefully designed to elicit
specific emotions for players. Colour preference is one of the significant aspects of the
human visual system that affects a wide range of human behaviour, such as the choice
of buying cars and the decisions made in video games. Research by Palmer and Schloss
(2010) has shown that, when looking at medium-, and long-wavelength colours, both male
and female participants preferred colours that were more violet to colours that were more
yellow-green. However, they also found that men and women have different preferences
when looking at low- and medium-wavelength colours. Women prefer redder colours while
men prefer colours that are more blue-green (Palmer & Schloss, 2010). This finding suggests
that personal profile may have an impact on colour preference, which were explored in this
thesis.

Research has also shown that there is a significant effect of saturation and brightness
on the ratings of pleasure and arousal (Wilms & Oberfeld, 2018). Research has also shown
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that brighter and more saturated colour has an effect of inducing calmness. On the other
hand, darker colours are more likely to cause negative emotions such as anger, hostility,
and aggression (Valdez & Mehrabian, 1994).

Aside from colours, the image’s spatial frequency is another crucial factor that affects
players’ emotions. The objects players see in the game scenes have different shapes, con-
tours and complexity, which all contain different spatial frequencies that affect players’
affective status. Previous research has shown that, in terms of shape, human adults prefer
curved objects to objects with sharp or pointy corners (Bar & Neta, 2006). For curvature,
a similar finding has shown that non-curved/less-curved versions of objects with sharp
angles and straight edges are less preferred (Carbon, 2010).

For image complexity, research has found that as the level of image complexity (den-
sity of shapes and contours) increases, the image more easily triggers negative emotions
(Valtchanov, 2013).

Research suggests that the human visual system recognizes objects through spatial
frequencies and spatial frequency distributions (Fintzi & Mahon, 2014). Research has also
shown that different spatial frequencies have different effects on emotions. For example,
Wilkins et al. (1984) found that spatial frequencies within the range of 2–8 cycles/degree
are related to visual discomfort.

Fourier transforms of visual scenes allow researchers to better study the components of
visual spatial frequencies and how spatial frequencies affect human emotion (Geisler, 2008).
The power spectrum of an image can be calculated by taking the squared magnitude of
its discrete Fourier transform (DFT) (Torralba & Oliva, 2003). Previous research has also
explored the relationship between the power of spatial frequency and visual discomfort. It
is suggested that images with high power at spatial frequencies to which visual system is
most sensitive can trigger stress and discomfort (Torralba & Oliva, 2003).

2.4 Convolutional Neural Networks

In this thesis, convolution neural networks (CNNs) were used as a powerful tool to build
an affect prediction model that was trained using data collected through an online study.
It greatly boosted the model’s accuracy by incorporating more visual details of the image.
More details of the implementation of CNNs are introduced in Chapter 5. In this section,
I briefly introduce CNNs and how they are currently used for image analysis.

In recent years, a large amount of effort has been made to apply deep learning neural
network in a wide range of areas, including computer vision and object recognition. Deep
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CNNs have been widely implemented in the field of video processing, object classification
and picture segmentation, natural language processing and many other areas.

Deep learning, especially CNNs, has achieved impressive performance for various com-
puter vision and pattern recognition tasks. Like any other regular neural network, CNNs
are very popular in the community of machine learning. However, they have an impressive
feature that weights and biases are updated in the process of training. The goal of a CNN’s
feed-forward kernel is to extract meaningful features from the training data. The output
of the kernel is fed into the activation function, which only transmits the signal if its value
is above certain threshold. CNNs also use loss functions and optimizers to better train the
model and achieve convergence (Li et al., 2021).

A residual neural network (ResNet) is an artificial neural network (ANN) of a kind that
stacks residual blocks on top of each other to form a network (He et al., 2016). For example,
the popular ResNet-50 model is a CNN that is 50 layers deep. As a CNN grows deeper,
the issue of vanishing gradients occurs, which negatively impacts network performance.
ResNet solves this problem by including a “skip connection” feature which enables training
of multiple deep layers without vanishing gradient issues (He et al., 2016). Among all the
variants of ResNet, ResNet-50 has high accuracy and precision, considering its relatively
small size, which makes it faster to train and easier to deploy (Manjula et al., 2022).

2.5 Affective Status Prediction

This thesis is inspired by previous research that predicts people’s affective state based on
visual input. EnviroPulse is a mobile system that can automatically calculate expected
affective valence (EAV) in real-time (Valtchanov & Hancock, 2015). It mainly focus on
predicting human emotional response to natural environments by analyzing visual charac-
teristics of scenes. EnvroPulse can be deployed on mobile phones or be made to work with
more complex systems like global positioning systems (GPSes).

Based on Valtchanov and Hancock’s work, the EAV score can be determined by two
factors, the colour score which is calculated by multiple characteristics of scenes in the
colour space, and the content score which is calculated by the power of spatial frequency
(introduced in section 2.3).

EAV Score = 0.3 · colour score + 0.7 · content score (2.1)

The colour score can be calculated by colour hue, colour saturation, and luminance.
To make these three factors fit in a linear regression model, Valtchanov used algorithms
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introduced in previous research (Fernandez & Wilkins, 2008; Juricevic et al., 2010; Torralba
& Oliva, 2001; Valtchanov, 2013) to map them from colour space to affective levels. The
non-linear relations between colour hue, colour saturation, colour luminance and their
affective levels are show in Figure 2.2a. In principle, the pleasure score and arousal score
can be expressed as a linear combination of image hue, luminance, saturation, and an
image’s spatial frequencies.

People have different preferences for shape, complexity, and contour with the spatial
frequencies of an image. Similarly, Valtchanov and Hancock used findings from previous
research to map the radial power of spatial frequencies to affective levels as well (Fernandez
& Wilkins, 2008; Juricevic et al., 2010; Torralba & Oliva, 2001; Valtchanov, 2013). The
non-linear relations between shape, complexity, contour and their affective levels are shown
in Figure 2.2b.

11



(a) Curves of mappings used in our algorithm from colour
space to affective levels.

(b) Curves informed by psychology re-
search relating affective responses to
shape, complexity and contour with the
spatial frequencies of an image.

Figure 2.2: Mapping from image raw data to affective levels. From (Valtchanov & Hancock,
2015). Used with permission.
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2.6 Summary

This chapter discusses background knowledge that was used in this thesis to build a Unity
plug-in to predict video game players’ affective state. In this thesis, we built on the work
done by Valtchanov and Hancock (2015) by extending the model to use a neural network
and compare performance between their algorithm, a newly calculated linear regression
model, and this neural network. We then incorporated the neural network model into a
Unity plugin so that game designers can evaluate affective response to visual graphics as
they design and build games.
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Chapter 3

Study: Exploring the Emotional
Response to Video Game Images

In this chapter, I describe a study I used to gather data about people’s expected emotional
response to video game images. Section 3.1 describes the research topic and hypotheses
and the support for these hypotheses. Section 3.2 introduces participant recruitment and
basic information of participants. Section 3.3 describes the study design, including what
independent variables were manipulated and what dependent variables were measured.
Section 3.4 describes the image data set that was used in the study. Section 3.5 describes the
study procedure and what tasks participants were required to complete. Finally, section 3.6
describes the study results and analyzes the collected data. Twelve images of video games
were shown to all participants and are analyzed in this chapter to compare with expected
affective levels. Another 1800 images were presented to participants, but only rated by
one of them. These images are discussed in the study design in this chapter, but analyzed
using linear regression in Chapter 4 and used to build a machine learning prediction model
in Chapter 5.

3.1 Introduction

The purpose of this research is to analyze how a video game’s scene can affect a player’s
arousal and pleasure and to build a game engine plug-in to predict a player’s affective level.
I used linear regression and machine learning as the main tools for predictive modelling.
Since a large amount of training data is required for linear regression and machine learning,

14



the purpose of this study is to gather data about people’s expected emotional response to
video game images. During the COVID-19 pandemic, when in-person study was hard to
achieve, an online study was selected as an effective alternative to collect a large amount
of data. For the convenience of conducting an online study, I decided to collect data for
each frame of video games. In other words, study participants saw game screenshots and
provided a self-report of their emotional response.

The study in this thesis had three main goals: The first goal was to replicate the
supporting evidence for EnviroPulse (Valtchanov & Hancock, 2015) in the context of video
games. EnviroPulse is a system to automatically determine and communicate the expected
affective valence (EAV) of environments to individuals by introducing real-time affective
visual feedback of the calculated EAV of images. In my work, I extend the application of
this system to the area of video games and compare its predicted results with participants’
reported scores.

The second goal of this study was to analyze the emotional ratings collected to build
a prediction model, for example using linear regression and machine learning. As a part
of this prediction model, my aim is to include more dependent variables in the model to
improve its accuracy, such as the demographic information of participants. The prediction
accuracy of these two techniques, linear regression and neural networks, were compared
and discussed in later chapters.

The third goal of this study was to build a tool that can predict expected affective
valence as a designer is creating game visuals (e.g., as a Unity game engine plug-in) in
real-time. The data collected in this study can also be used by future researchers to build
their own machine learning model.

We formulate the following hypotheses:

H1: Participants’ reported pleasure scores are related to visual properties of game screen-
shots (e.g., colour and spatial frequency).

H2: Participants’ reported arousal scores are related to visual properties of game screen-
shots (e.g., colour and spatial frequency).

3.2 Participants

100 participants (52 identifying as women, 48 as men) were recruited using Prolific (https:
//prolific.co/), a third-party online survey recruitment tool. The ages of participants
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ranged from 18 to 64 (Mdn = 25). Exclusion criteria included participants who suffer from
any visual impairments, such as having a “lazy eye,” “crossed eyes,” or “color blindness.”
The countries of residence of these participants are also distributed around the world, from
North America and South America to Europe.

We prepared 100 unique image sets, one per participant. Participants were expected to
spend about 10 seconds rating emotional reactions to each image. The whole study session
took about 10 minutes for which participants received £0.87 (1.35 CAD).

3.3 Design

Participants were asked to view images and report their emotional response. All these
images are screenshots from video games of different genres. Images were intentionally
chosen to have different hue, saturation, luminance, and spatial frequencies, independent
variables that were used for further data analysis.

1812 images in total were randomly selected and downloaded from IGDB (https://
igdb.com/), an online video game database. All images were 1820 by 1024 pixels. Each
participant was assigned 30 images, 12 of which were the same and the other 18 images
were unique for everyone. In addition, there was one more “fake” video game screenshot
used for an attention check which had a line of text clearly stating that participants should
report an assigned value, instead of their true emotional reaction.

These 12 images (shown in Figure 3.1) which were seen by every participant were
carefully selected. According to the algorithm presented by Valtchanov (2013), three of
them were expected to have high arousal scores and high pleasure scores; three of them
were expected to have high arousal scores and low pleasure scores; three of them were
expected to have low arousal scores and high pleasure scores; three of them were expected
to have low arousal scores and low pleasure scores.

Two dependent variables were measured in this study: participants’ reported pleasure
scores and arousal scores.
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(a) Picture 1 (b) Picture 2 (c) Picture 3

(d) Picture 4 (e) Picture 5 (f) Picture 6

(g) Picture 7 (h) Picture 8 (i) Picture 9

(j) Picture 10 (k) Picture 11 (l) Picture 12

Figure 3.1: Twelve images which were seen by every participant. The EAV values shown
in brackets were calculated using Equation 2.1 (Valtchanov & Hancock, 2015)
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3.4 Materials

Images used in this study were screenshots of different kinds of games. They were collected
from IGDB (https://www.igdb.com/), an online video game image database. The dimen-
sions of all images are 1820 × 1024 pixels. All images were saved in PNG format. When
displayed during the experiment, images were scaled according to the native resolutions of
participants’ own devices. There were no modifications to the image content.

The whole image set can be accessed in an OSF repository1. The graphical styles
included in these images are also quite distinct. There are pixel games and modern 3D
games, or possibly any other kinds of games. In addition, these images have a wide range of
content, including natural scenes (shown in Figure 3.2a), city scenes (shown in Figure 3.2b),
and the unreal world (shown in Figure 3.2c).

(a) A sample image which
shows nature scene.

(b) A sample image which
shows city scene.

(c) A sample image which
shows unreal world.

Figure 3.2: Sample images in the image set.

3.5 Procedure

After agreeing to the consent form, participants were given instruction on how to respond
using the Affective Slider (Betella & Verschure, 2016), a digital scale for the self-assessment
of emotion composed of two separate slider controls (or “sliders”) that measure pleasure
and arousal. More details about Affective Slider are introduced in section 2.2. Then,
participants were asked to rate their emotional responses to each image by dragging the
Affective Slider for 30 images (a sample survey question is shown in Figure 3.3), in addition
to one attention check question, which asked the participants to read the text in the image
and move the sliders to the required position. Once the images were all rated, the study

1https://osf.io/pq8nd/?view_only=40a7012f090840f1a4443f19f9f0122e
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was complete (no additional follow-up questions were asked). Participants took 8 minutes
on average (SD = 4.67min).

Figure 3.3: Sample survey question.

Prolific also provided demographic information about each participant, including gen-
der, age, country of residence, and employment status, in addition to time spent on the
study session and their Prolific score (an internal rating of the quality of past participation
from each participant).

3.6 Results

As long as participants completed all questions in the survey, their submissions were con-
sidered valid. There was only one participant who failed to submit a survey with valid
data, and that participant’s data was removed.
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We analyzed the 12 images in common separately from the 1800 images rated by only
one participant each. This section focuses on analyzing the 12 images in common and
the 1800 images in the image pool are used for building a prediction model (discussed in
chapters 4 and 5).

Figure 3.4 shows 100 participants’ arousal/pleasure ratings of these 12 images. In
general, the 100 pleasure/arousal scores for each image are very scattered.

(a) box plot of arousal (b) box plot of pleasure

Figure 3.4: Box plots of arousal scores and pleasure scores

A one-way Analysis of variance (ANOVA) was performed to compare the effect of
different images on reported arousal/pleasure scores. Table A.1a and Table A.1b shows
the analysis of variance of arousal scores. Table A.2a and Table A.2b shows the analysis of
variance of pleasure scores. An ANOVA revealed that there was a statistically significant
difference in mean arousal score between at least two images (F11,1187 = 7.24, p < 0.01). An
ANOVA also revealed that there was a statistically significant difference in mean pleasure
score between at least two images (F11,1188 = 11.73, p < 0.01).

The calculation of confidence interval is shown in Figure 3.5 and Figure 3.6 for arousal
scores and pleasure scores. Confidence levels are compared with expected score (calculated
using Valtchanov and Hancock (2015)’s algorithm). For arousal scores, the expected score
is within the 95% confidence interval for 4 of the 12 images. For pleasure scores, the
expected score is within the 95% confidence interval for 2 of the 12 images. Therefore, the
study data doesn’t follow the expected pattern exactly.

We also filtered the data based on whether participants passed the attention check or
not. We filtered all data into three groups: the group which contains all data, the group
which contains data from participants who passed the attention check, and the group which
contains data from participants who failed the attention check. However, the average scores
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Figure 3.5: 95% confidence intervals for arousal scores for the 12 images.
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Figure 3.6: 95% confidence intervals for pleasure scores for the 12 images.
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of the pass-attention-check group do not always have the smallest absolute error (compared
to the expected score) among all three groups, as shown in Figure 3.7 and Figure 3.8 it
appears that the average scores of participants who passed and failed the attentions check
are very close. The number of times that the expected scores are within the confidence
interval are quite similar between pass-attention-check data, fail-attention-check data, and
entire data set (shown in Table 3.1). This lack of difference may be because participants
did not notice the message within the attention check image, and so had valid responses,
despite failing the attention check. As a result, we decided to use all data with out any
pass-attention-check filtering when applying other techniques like linear regression and
neural network to analyze the data.

number of image that expected
score is within CI (12 in total)

arousal (all) 4
arousal (pass attention check) 3
arousal (fail attention check) 3
pleasure (all) 2
pleasure (pass attention
check) 0

arousal (fail attention check) 2

Table 3.1: Number of images where the expected score is within the confidence interval.
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Figure 3.7: Comparison of arousal scores, from left to right: expected values calculated
using Equation 2.1, mean of all participants, mean of participants that passed the attention
check, mean of participants that failed the attention check.

Figure 3.8: Comparison of pleasure scores, from left to right: expected values calculated
using Equation 2.1, mean of all participants, mean of participants that passed the attention
check, mean of participants that failed the attention check.
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3.7 Summary

This chapter mainly described the online study we conducted to collect people’s emotional
responses to video game screenshots and analyzed the 12 images in common for each
participants. ANOVAs revealed that there was a statistically significant difference in mean
arousal/pleasure score between at least two images. However, the exact scores of each
image do not follow the expectations exactly. Chapters 4 and 5 discuss how we used other
techniques to analyze the other 1800 images.
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Chapter 4

Prediction Model Using Multiple Linear
Regression

4.1 Formulation of Multiple Linear Regression Model

As mentioned in previous chapters, the image pool, which has 1800 unique images only
rated once by participants, were used to apply methods of linear regression and machine
learning to build a prediction model. This chapter focuses on the discussion of using linear
regression to analyze the data collected through the online study.

In our linear regression model, the affective levels (pleasure scores and arousal scores)
are on a scale from 0 (highly negative) through 50 (neutral) to 100 (highly positive).

The raw image data cannot easily be fed into a linear regression model directly. We
extracted six visual information variables as inputs of the model: colour hue, colour sat-
uration, luminance, and the average radial power of each of the three ranges of spatial
frequencies (Low range is from 0 to 10, median range is from 10 to 20, high range is above
20). The mapping from image colour and spatial frequencies to their resulting affective lev-
els are based on the aggregation of past findings from different sources (Amir et al., 2011;
Bar & Neta, 2007; Valdez & Mehrabian, 1994; Valtchanov, 2013; Valtchanov & Hancock,
2015)

To make hue, saturation, and luminance fit in a linear regression model, we first use
algorithms introduced in previous research (Fernandez & Wilkins, 2008; Juricevic et al.,
2010; Torralba & Oliva, 2001; Valtchanov, 2013) to map them from colour space to affective
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levels. The non-linear relations between colour hue, colour saturation, colour luminance
and their affective levels are show in Figure 2.2a.

Humans have different preferences for shape, complexity, and contour with the spatial
frequencies of an image. Similarly, the radial power of spatial frequencies can be mapped
to affective levels as well. The non-linear relations between shape, complexity, contour,
and their affective levels are shown in Figure 2.2b.

Therefore, we have six explanatory predictors:

x1 = colour hue
x2 = colour saturation
x3 = luminance
x4 = radial power of high spatial frequencies
x5 = radial power of median spatial frequencies
x6 = radial power of low spatial frequencies

We also have two dependent variables, the arousal and pleasure scores:

y1 = arousal score
y2 = pleasure score

Given two data sets {yi1, xi1, . . . , xip}ni=1 and {yi2, xi1, . . . , xip}ni=1, where i is the image
index from 1 to 1800, with six explanatory predictors (xi1 to xip, p is the independent
variable index, starting from 1 to 6), and arousal score observations (yi1) and pleasure score
observations (yi2), both the arousal model and pleasure model assume that the relationship
between the vector of explanatory predictors and resulting predicted score is linear. Thus,
the model has the following form:

yia = βa0 + βa1xi1 + βa2xi2 + βa3xi3 + βa4xi4 + βa5xi5 + βa6xi6 + εia
yip = βp0 + βp1xi1 + βp2xi2 + βp3xi3 + βp4xi4 + βp5xi5 + βp6xi6 + εip

(4.1)

where yia are the arousal response variables for image with index i (from 1 to 1800) and
yip are the pleasure response variables for image with index i (from 1 to 1800), βa0 and
βp0 the intercepts, and βa1 to βa6 and βp1 to βp6 the slope coefficients for each explanatory
predictor. εia and εip are the error terms in the linear regression model. This model can
also be written in matrix form as:

Y = XB+ E (4.2)
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where Y is a matrix of response variables, X is a matrix of predictor variables with 7
columns (including 1 for the regression constant), B is a matrix of regression coefficients,
and E is a matrix of errors.

4.2 Examination of Linearity Assumption

The linear regression model to predict arousal score and pleasure score were calculated using
R studio (shown in Listing A.1 and Listing A.2 separately). When examining the model, we
can validate the linearity assumption. The assumptions of multivariate regression analysis
are normal distribution, linearity, freedom from extreme values, and having no multiple ties
between independent variables. The linearity assumption of the arousal/pleasure prediction
model is demonstrated in figs. 4.1 to 4.4. Note that the red lines in the figures are locally
weighted scatterplot smoothing (LOWESS), which smooth over the scattered points to
look for certain kinds of patterns in the y-axis values (Cleveland, 1981).
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(a) Residuals vs Fitted plot of the arousal model
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(b) Residuals vs Fitted plot of the pleasure model

Figure 4.1: Residuals vs Fitted plot of the arousal/pleasure model. The LOWESS (red
line) in the graphs of residuals vs. fitted data is relatively flat, which provides evidence for
the linearity assumption.
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(a) Normal Q-Q plot of the arousal model
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(b) Normal Q-Q plot of the pleasure model

Figure 4.2: Normal Q-Q plot of the arousal/pleasure model. The points form a roughly
straight line that follows the diagonal. This means the residual errors are roughly normally
distributed and provides evidence for the linearity assumption.
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(a) Scale-Location plot of the arousal model
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(b) Scale-Location plot of the pleasure model

Figure 4.3: Scale-Location plot of the arousal/pleasure model. The LOWESS (red line)
in the graphs of Scale-Location is relatively flat, which provides evidence for the linearity
assumption.
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(a) Residuals vs Leverage plot of the arousal model
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(b) Residuals vs Leverage plot of the pleasure model

Figure 4.4: Residuals vs Leverage plot of the arousal/pleasure model. The spread of stan-
dardized residuals int both graphs do not change as a function of leverage (the LOWESS
(red line) is relatively flat), which provides evidence for the linearity assumption.
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4.3 Multiple Linear Regression Results

A multiple linear regression was calculated to predict arousal based on hue, saturation,
luminance, and high, medium, and low, spatial frequency. This regression equation was
not significant (F6,1793 = 1.98, p = .066, R2 = .007).

yarousal = 30.342

+0.004 (hue’s affective level)
+0.016 (saturation’s affective level)
+0.032 (luminance’s affective level)
−0.215 (HSF’s affective level)
+0.158 (MSF’s affective level)
+0.095 (LSF’s affective level)

(4.3)

Only high spatial frequency (β = −0.215, p = .004) was a significant predictor of arousal.
No other predictors were significant (p > .1).

The same multiple linear regression was calculated to predict pleasure. A significant
regression equation was found (F6,1793 = 7.06, p < .001, R2 = .023).

ypleasure = 17.595

−0.011 (hue’s affective level)
+0.038 (saturation’s affective level)
+0.127 (luminance’s affective level)
−0.334 (HSF’s affective level)
+0.333 (MSF’s affective level)
+0.085 (LSF’s affective level)

(4.4)

Luminance (β = 0.127, p = .005), high spatial frequency (β = −0.334, p < .001) and
medium spatial frequency (β = 0.085, p = .004) were significant predictors of pleasure. No
other predictors were significant (p > .1).

4.4 Examination of Independent Variable’s Relative Im-
portance

Listing A.1 and Listing A.2 show the detailed results of the multiple linear regression in
R studio. R-squared (R2) is a statistical measure that represents the proportion of the
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variance for a dependent variable that is explained by an independent variable or variables
in a regression model (Wright, 1921). The arousal model’s R2 value is 0.66% and the
pleasure model’s R2 value is 2.3%. We also filtered the data based on whether participants
passed the attention check. However, there was no obvious improvement on R2 value for
data that only includes participants who passed the attention check.

Both models’ R2 values are very low. Such low R2 value is understandable because
unpredictable human behaviours and many other factors such as participant’s preference
on image’s content may contribute more to the total variance than our linear regression
model. It is more meaningful to examine the relative importance of each input of the
model.

The relative importance of the independent variables of the linear model (shown in
Table 4.1) was calculated by the variance decomposition metric LMG (named after the
authors Richard H. Lindeman, Peter F. Merenda, and Ruth Z. Gold), which is simply R2

partitioned by averaging over orders (Lindeman et al., 1981).

Relative importance
in arousal model

Relative importance
in pleasure model

Hue 0.78% 0.70%
Sat 5.49% 7.42%
Lum 9.10% 26.36%
HSF 34.28% 19.05%
MSF 20.71% 24.82%
LSF 29.65% 21.65%

Table 4.1: Independent variable’s relative importance in arousal/pleasure model

15.37% of the total variance in the arousal model comes from independent variables
in the colour space, while 34.48% from colour space for pleasure model. Compared with
independent variables in the colour space, the spatial frequencies have a much larger impact
on the predicted arousal score and pleasure score. This is in accordance with previous
research, stating that the colour score (hue, saturation and luminance’s affective level)
and content score (spatial frequency’s affective level) can be combined into the EAV score
using weights inferred from the variance and regression analysis by Valdez and Mehrabian
(1994), and by Valtchanov (2013), as follows (more details in section 2.5):

EAV Score = 0.3 · colour score + 0.7 · content score (4.5)
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4.5 Comparison of Multiple Linear Regression Model
and Valtchanov’s algorithm

Both Valtchanov (2013)’s algorithm and the multiple linear regression model were applied
to the same 1800 images used in the online study to predict arousal/pleasure. Table 4.2
shows the comparison between the multiple linear regression model and Valtchanov (2013)’s
algorithm, including the L1 loss, R2, Pearson correlation coefficient (PCC) between pre-
dicted scores and actual scores, and the predicted score’s standard deviation (SD). The
linear regression model performs much better than Valtchanov (2013)’s algorithm in terms
of L1 loss and PCC. However, its SD is extremely low (below 5), which means that pre-
dicted scores are clustered around the mean and the prediction is not meaningful in this
way. Also, the MLR’s R2 is really low, which means the our MLR models cannot explain
the variance of study data well.

L1 Loss R2 PCC SD

Valtchanov (2013) arousal score 30.060 0.001 0.070 8.510
Valtchanov (2013) pleasure score 30.090 0.001 0.030 14.613
MLR arousal score 24.630 0.007 0.140 2.338
MLR pleasure score 24.600 0.024 0.150 4.612

Table 4.2: Comparison of Multiple Linear Regression Model
and Valtchanov (2013)’s algorithm

4.6 Summary

This chapter examines the linearity assumption of the collected data and used a linear
regression model to predict arousal/pleasure. However, it was found that multiple linear
regression is not an ideal solution to build a prediction model due to its low R2 and low
SD. We explored using a neural network instead in Chapter 5.
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Chapter 5

Neural Network Models to Predict
Affect

As discussed in Chapter 4, the multiple linear regression model is not an ideal solution to
build a prediction model using the study data, since its R2 is extremely low, suggesting
that it cannot explain the variance in the study data very well. In this chapter, I explore
the use of a neural network. This chapter discusses three different neural network models.
Their performance was compared with the multiple linear regression model from Chapter 4
and Valtchanov and Hancock (2015)’s algorithm.

5.1 Training & Dataset

Our neural network models were trained using an online platform called Weights & Biases1,
which helps developers to automate hyper-parameter optimization and explore the space of
possible models. In this research, Weights & Biases was mainly used to tune the learning
rate, the batch size and the number of neurons in the network layers. The goal of the
training process is to achieve convergence of the loss function and minimize the converged
loss.

The dataset used to train our neural network model is the same dataset used in the
linear regression model in Chapter 4, which includes 1800 unique images. The method
of K-fold cross-validation is used to re-sample the dataset and test the machine learning

1https://wandb.ai
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model’s performance (Stone, 1976). In each training epoch, the whole dataset is split into
three portions: 80% of the data set is the training set, 10% of the data set is the validation
set, and the last 10% of the data set is the test set.

5.2 Multi-layer perception network

A multi-layer perception (MLP) network is a basic type of feed-forward artificial neural
network (ANN). It has three components: an input layer, a hidden layer and an output
layer. MLP networks are sometimes called traditional neural networks. They are different
from linear regression models in their multilayer structure and nonlinear data relationships.
All the nodes in the network are called neurons. The transmission of neurons in the
network is controlled by nonlinear activation functions (Hastie et al., 2009). In this thesis,
a rectified linear unit (ReLU) function is used for the activation function in all neurons using
Equation 5.1. Compared to a logistic sigmoid function and a hyperbolic tan function, ReLU
performs better. It can solve the problems of gradient explosion and gradient disappearance
and maintains its convergence rate in a stable state (Zoph & Le, 2018).

ReLU(x) =

{
x if x > 0
0 if x ≤ 0

(5.1)

Since the network is fully connected, each node in one layer connects to every node in the
next layer with a certain weight. Therefore, the output c of each neuron is:

c = φ
(∑

wiai + b
)

(5.2)

where ai and wi are the inputs and weights of the neuron respectively, b is the bias of the
current neuron and φ is the activation function ReLU.

In this thesis, the MLP network is composed of three parts (an input layer, multiple
hidden layers and an output layer) of nonlinearly-activating modes (Figure 5.1a). The input
layer has 6 explanatory predictors (hue/saturation/luminance/HSF/MSF/LSF’s affective
score), the same as the linear regression model discussed in Chapter 4. The detailed
structures of the hidden layers are shown in Figure 5.1b. All of the weights and biases
of the linkages between the potential variables and predicted affective values are updated
when the parameters of the network are learned based on the training data. Then the
predicted values are calculated based on the learned weights and biases when the input
data is applied. The output layer has only one neuron, which represents the values of the
arousal or pleasure scores.
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Figures A.1 to A.3 show the loss during the training process of the MLP network to
predict the pleasure score. The loss displayed here is L1 loss, also known as absolute
error loss, which is the absolute difference between a prediction and the actual value. An
exponential moving average is implemented to the loss plot (Gardner, 1985) in the range
0 to 1 with the smoothing value of all loss plots of 0.5.

The plot of training loss (Figure A.1) decreases to a point of stability. The plot of
validation loss (Figure A.2) also decreases to a point of stability. The learning curves show
no sign of over-fitting or under-fitting. For pleasure’s MLP model, the smoothed training
loss is 24.957, the smoothed validation loss is 24.86 and the smoothed test loss is 25.815.

Figures A.4 to A.6 show the loss during the training process of the MLP network to
predict the arousal score. Similar to the training process of pleasure model, the plot of
training loss (Figure A.4) decreases to a point of stability. The plot of validation loss
(Figure A.5) also decreases to a point of stability. The learning curves show no sign of
over-fitting or under-fitting. For arousal’s MLP model, the smoothed training loss is 26.071,
the smoothed validation loss is 24.865 and the smoothed test loss is 24.913.

The loss of the simple MLP network are all relatively high as the next section shows
that it can be further decreased by incorporating a pre-trained residual neural network
(ResNet)-50 model.
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Figure 5.1: Structure of the MLP network for predicting arousal/pleasure score: (a) shows
the general structure and (b) shows the details of hidden layers, including numbers of
inputs/outputs and activation functions.

38



5.3 Convolutional neural network with ResNet-50

Transfer learning is a technique where knowledge gathered from one task/model is used
in another similar task (Bozinovski, 2020). As introduced in section 2.2, a ResNet is an
innovative neural network that was first introduced by He et al. in 2016. ResNet has many
variants that run on the same concept but have different numbers of layers. ResNet-50 is
used to denote the variant that can work with 50 neural network layers.

We included a pre-trained ResNet-50 model into our MLP network, in the hopes of
increasing the accuracy of the affective score prediction. ResNet-50 can detect many low,
mid, and high-level features in the image, which may all contribute to the arousal and
pleasure scores. The new network combines the output data of the ResNet-50 with the
output data of the MLP. As shown in Figure 5.2, the output layer of the MLP concatenates
with the output layer of the ResNet-50, forming a fully-connected layer, which then outputs
the arousal score or pleasure score.

Figures A.7 to A.9 show the L1 loss during the training process of the MLP combined
with ResNet-50 to predict the pleasure score. The plot of training loss (Figure A.7) de-
creases to a point of stability. The plot of validation loss (Figure A.8) also decreases to a
point of stability. The learning curves show no sign of over-fitting or under-fitting. The
smoothed training loss (24.411), the smoothed validation loss (23.583) and the smoothed
test loss (23.761) of the MLP combined with ResNet-50 are less than those of the simple
MLP.

MLP

ResNet50

Output Layer

Output Layer

Fully-
connected

Layer

Arousal/
Pleasure 

Score

HSL 
and Spatial
Frequency

Raw image

Figure 5.2: Structure of the MLP network combined with ResNet-50.

Figures A.10 to A.12 show the L1 loss during the training process of the MLP combined
with ResNet-50 to predict arousal score. The plot of training loss (Figure A.10) decreases
to a point of stability. The plot of validation loss (Figure A.11) also decreases to a point of
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stability. The learning curves show no sign of over-fitting or under-fitting. The smoothed
training loss (22.412), the smoothed validation loss (23.646) and the smoothed test loss
(23.886) of the MLP combined with ResNet-50 are less than those of the simple MLP.

5.4 Integration of user-specific profiles

The online survey platform, Prolific, provides detailed user information including sex, age,
and nationality. As mentioned in section 2.3, previous research found that men and women
have different preferences when looking at low- and medium-wavelength colours. Women
prefer redder colours while men prefer colours that are more blue-green (Palmer & Schloss,
2010). We explored using these user-specific profiles to improve the accuracy of our neural
network model. Thus, one numerical data type (age) and two categorical data (sex and
country of residence) are included in our model’s input data.

The technique of categorical embedding has been applied to the make the categorical
data fit in the neural network model. An embedding layer is created for each of the
categorical features. This approach allows for a relationship between categories to be
captured by converting raw categories into embeddings and concatenating them together
with the rest of the other numerical features (Dahouda & Joe, 2021). The structure of
the new model is shown in Figure 5.3. The goal is that the categorical embeddings can
capture more rich/complex relationships that will ultimately improve the performance of
the model.

Figures A.13 to A.15 show the L1 loss during the training process of the MLP combined
with ResNet-50 and user-profile integration to predict the pleasure score. The plot of
training loss (Figure A.13) decreases to a point of stability. The plot of validation loss
(Figure A.14) also decreases to a point of stability. The learning curves show no sign of
over-fitting or under-fitting. The smoothed training loss (23.61), the smoothed validation
loss (23.323) and the smoothed test loss (23.117) of the MLP combined with ResNet-50
are less than those of the MLP combined with ResNet-50 only.

Figures A.16 to A.18 show the L1 loss during the training process of the MLP combined
with ResNet-50 and user-profile integration to predict arousal score. The plot of training
loss (Figure A.16) decreases to a point of stability. The plot of validation loss (Figure A.17)
also decreases to a point of stability. The learning curves show no sign of over-fitting or
under-fitting. The smoothed training loss (21.893), the smoothed validation loss (21.707)
and the smoothed test loss (22.679) of the MLP combined with ResNet-50 are less than
those of the MLP combined with ResNet-50 only.

40



MLP

ResNet50

Output Layer

Output Layer

Fully-
connected

Layer

Arousal/
Pleasure 

Score

User profile

HSL 
and Spatial
Frequency

Raw image

Figure 5.3: Structure of MLP network combined with ResNet-50 and user-profile integra-
tion.

5.5 Performance comparison

Table 5.1 shows the comparison of L1 loss among three different neural network models
introduced in sections 5.2 to 5.4. In order to compare these methods, an error indicator
(L1 loss) and a fitness indicator (R2) were applied into testing the whole prediction results
(Naser & Alavi, 2021). A low L1 loss and a high R2 indicate good performance. As can
be seen from this table, the L1 loss decreases as the model becomes more complex.

When applying Valtchanov and Hancock (2015)’s algorithm to the same data set (1800
images from the study) to predict pleasure/arousal, the average L1 loss is 30.06 for arousal
and 30.09 for pleasure, both of which are much larger than all neural network models
introduced in this chapter.

Smoothed
training loss

Smoothed
validation loss

Smoothed
test loss

MLP 24.957 24.86 25.815
MLP + ResNet-50 24.411 23.583 23.761
MLP + ResNet-50 + user-profile 23.61 23.323 23.117

Table 5.1: Comparison of different neural network models to predict pleasure score
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Smoothed
training loss

Smoothed
validation loss

Smoothed
test loss

MLP 26.071 24.865 24.913
MLP + ResNet-50 22.412 23.646 23.886
MLP + ResNet-50 + user-profile 21.893 21.707 22.679

Table 5.2: Comparison of different neural network models to predict arousal score

Table 5.3 compares the performance of all five prediction models introduced in this
thesis. Valtchanov and Hancock (2015)’s algorithm, multiple linear regression, and the
three neural network models were then compared for the whole data set (1800 images)
being used for training and testing the models.

Pleasure Arousal
L1 Loss R2 L1 Loss R2

Valtchanov and Hancock (2015)’s algorithm 30.090 0.001 30.060 0.001
Multiple Linear Regression 24.600 0.024 24.630 0.007
MLP (Neural Net) 26.405 0.000 25.407 0.000
MLP + ResNet-50 24.878 0.049 24.825 0.032
MLP + ResNet-50 + user-profile 24.380 0.050 24.753 0.034

Table 5.3: Comparison of Valtchanov and Hancock (2015)’s algorithm, the multiple linear
regression model, and the neural network models to predict pleasure and arousal scores

For all the five methods, L1 loss of predicting pleasure scores for the total data set
ranged from 24.38 to 30.09 and L1 loss of predicting arousal scores ranged from 24.753 to
30.06. R2 of predicting pleasure scores for the total data set ranged from 0 to 0.05 and
R2 of predicting arousal scores ranged from 0 to 0.034. These data show the power of the
neural network to improve the prediction accuracy to some degree. Among all the five
methods, the L1 loss of MLP with ResNet-50 and user-profile is the lowest and the R2 is
the highest.

Valtchanov and Hancock (2015)’s algorithm has the highest L1 loss (over 30) and really
low R2 (0.001 for both pleasure and arousal predictions), which were much lower than in
the original work. This low performance might be due to several factors. First of all,
in Valtchanov’s original thesis, where he conducted experiments to develop coefficients
to be used in Valtchanov and Hancock (2015)’s algorithms, participants saw images of
natural and urban scenes, instead of video game screenshots. Second, Valtchanov (2013)’s
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experiments were all in-person and all images were displayed on a 17 inch LCD monitor
with a resolution of 1280 x 1024 pixels. Participants were required to be seated at the
same distance from the monitor on a chair that could not be moved. Unlike Valtchanov
(2013)’s experiment setup, the online study conducted in this thesis could be viewed on
any electronic device with different screen resolutions and distances to the viewers, and
there was no easy way to capture this information.

The simple MLP, introduced in section 5.2, also has poor performance with relatively
large L1 loss (26.405 for pleasure and 25.407 for arousal) and extremely low R2 (near 0).
This demonstrates that our simple MLP cannot predict arousal/pleasure score well, due
to its simple structure and limited number of hidden layers. However, this may be due to
similar limitations mentioned above (i.e., lack of experimental control) and it does improve
upon Valtchanov and Hancock (2015)’s algorithm slightly.

A newly trained multiple linear regression model, introduced in section 4.1, performs
slightly better than Valtchanov and Hancock (2015)’s algorithm and the MLP neural net
with relatively low L1 loss (24.6 for pleasure and 24.63 for arousal). However, its R2 is still
considered very low (0.024 for pleasure and 0.007 for arousal).

As the structure of neural network becomes more complex, its performance becomes
better. When MLP concatenates with ResNet-50, introduced in section 5.3, the perfor-
mance was much better, shown by the larger R2. After including a pre-trained ResNet-50
model, R2 increased from 0 to 0.049 for pleasure and from 0 to 0.032 for arousal. The L1
loss also decreased from 26.405 to 24.878 for pleasure and from 25.407 to 24.825 for arousal.
Compared to the slight improvement on L1 loss, the increment of R2 is quite significant.

With the user profile integrated into the neural network, the performance became even
better. L1 loss also decreased from 24.878 to 24.38 for pleasure and from 24.825 to 24.753
for arousal. The R2 increased very slightly from 0.049 to 0.05 for pleasure and from 0.032
to 0.034 for arousal. The model with user-specific profiles has a slightly lower L1 loss and
a higher R2, which does not provide strong evidence that age, sex, and nationality affect
participants’ reported affective levels, though further research is needed.

It can also be shown from the comparison in Table 5.3 that the pleasure model performs
better than the arousal model, when examining the methods of multiple linear regression
and neural networks. The difference in L1 loss is quite small; however, in terms of R2,
the multiple linear regression, MLP with ResNet-50, and MLP with ResNet-50 and user-
profile all perform better when predicting pleasure. This demonstrates that the existing
input variables in our methods explain the variance of reported pleasure better. Further
study is required to increase the accuracy of arousal.
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5.6 Summary

The chapter discusses how we built neural network models to predict pleasure and arousal
based on images rendered in video games and compared their performances with multiple
linear regression and Valtchanov and Hancock (2015)’s algorithm. The next chapter intro-
duces how we incorporated these neural network models inside the Unity game engine and
built a prediction tool.
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Chapter 6

Unity Plug-in to Display Real-Time
Predicted Affective Status

In this chapter I present a Unity game engine plug-in based on the prediction models
discussed in Chapters 4 and 5. This tool derives from research on the psychological impact
of images to support a novel kind of affective computing for video games. This tool
automatically calculates an expected affective valence (EAV) score for the current game
scene through visual analysis of image input in real-time. It can be used to guide game
designers to build game scenes that promote better psychological well-being or achieve
certain desired emotional feedback from game players.

6.1 How to Use

This plug-in is composed of two parts, an on-screen display indicator (Figure 6.1) and a
configuration window (Figure 6.2). The on-screen display uses the Affective Slider (AS),
introduced in section 2.2. The AS was originally designed as self-assessment tool to report
affective status. Here in our Unity plug-in, it has the same visual format but only works

Figure 6.1: The affective slider of the Unity plugin
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as feedback to indicate the current EAV and cannot be adjusted by the user. The on-
screen-display is located at the bottom centre of the screen and has two parts, a pleasure
indicator on the left side and an arousal indicator on the right side.

The Unity game engine can be used in two modes, Play mode and Edit mode. In the
Play mode, users can view and play the game in the Game View Window. In the Edit
mode, users can only edit the game scene. This plug-in allows user to evaluate player’s
expected affective status in both modes.

The on-screen display of this plug-in is designed to be used in Play mode. When the
game starts to run inside the Unity game engine, this plug-in’s on-screen display also shows
up in the same window and evaluates the current rendered game scene. It displays the
current expected affective values in real-time.

Still in Play mode, the configuration window of this plug-in shows more details about
the affective contribution from each factor of the rendered game scene, including hue, lu-
minance, saturation and spatial frequencies. The configuration window can also be used
in Edit mode. It can continuously provide predicted affective status as game developer-
s/designers change the game scene in the Scene view window of the Unity game engine.
In Edit mode, instead of taking the rendered scene of a running game as input, this Unity
plug-in takes a screenshot of the Scene view window as input. While in Edit mode, the
image being tested does not correspond directly to what a player might experience, it does
provide a faster way for a designer to test different scene elements, and the designer can
still adjust their view to maximize the benefit of the predicted score (i.e., by approximating
the player’s view).

Users can also choose to load their own linear regression model or a pre-trained neural
network model. They can also load a static static image from a local device and see its
EAV by clicking the “Open picture” button at the bottom of the configuration window.

Users can start the real-time EAV prediction by clicking the start button in the config-
uration window. Figures 6.3 and 6.4 provide two examples of using the Unity plug-in. It
can be seen in the figures that the visual feedback shows different values in these different
game scenes. In Figure 6.3 the blue sky has a similar pleasure score to Figure 6.4 which
shows green grass, but Figure 6.3 has a relatively lower arousal score. These two examples
indicate that blue sky can make players feel calmer than green grass in the game.
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Figure 6.2: Configuration window of the Unity plugin

Figure 6.3: Screenshot of using the Unity plug-in (a)
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Figure 6.4: Screenshot of using the Unity plug-in (b)
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6.2 Engineering Pipeline

In this section, I elaborate on the algorithms used to engineer this plug-in. Figure 6.5 shows
the engineering pipeline of this Unity plug-in. It captures a screenshot of the current game
scene as input and passes it to two different sub-pipelines, one in colour space and the other
in spatial frequency space. The following subsections describe the engineering pipeline of
this Unity plug-in. Figure 6.5 explains how the raw image data is processed and fed into
the neural network.

Screenshot Capture

6.2.1 Converted from
RGB to HLS Space

6.2.3 Converted from
RGB to Gray Scale

6.2.2 Weighted
average HLS level

converted to affective
level

6.2.4 Spatial
frequency's radial

power converted to
affective level

Hue's affective score

Luminance's affective
score

Saturation's affective
score

High spatial
frequency's affective

score

Median spatial
frequency's affective

score

Low spatial
frequency's affective

score

MLP

Expected arousal
score

Expected pleasure
score

User Profile

ResNet 50

Fully-connected
Layer

6.2.5 Neural Network

Figure 6.5: Engineering pipeline of the Unity plugin (details are explained in the indicated
subsections).

49



6.2.1 Colour Conversion

In the sub-pipeline in colour space, the image is first converted from RGB to HSL (hue,
saturation, and luminance). This conversion of the image is essential for later histogram
calculation. The conversion formula is as follows (Equation 6.1):

Vmax ← max(R,G,B)

Vmin ← min(R,G,B)

L← Vmax + Vmin

2

S ←

{
VmaxVmin

VmaxVmin
if L < 0.5

VmaxVmin

2−(VmaxVmid
if L ≥ 0.5

H ←


60(G−B)/ (Vmax − Vmin) if Vmax = R

120 + 60(B −R)/ (Vmax − Vmin) if Vmax = G

240 + 60(R−G)/ (Vmax − Vmin) if Vmax = B

0 if R = G = B

(6.1)

6.2.2 Average Weighted Histogram

We use the OpenCV library to calculate histograms of the rendered game scene for each
channel, including hue, saturation, and luminance (Bradski, 2000). The pixel counts (the
values in the histogram) are multiplied by the pixel values (hue/saturation/luminance) and
summed together to get a weighted sum. Then the weighted sum is divided by the number
of pixels to get the weighted average of hue, saturation, and luminance across the entire
image. These weighted averages are passed into next stage. The colour pipeline has three
outputs: the weighted average hue, the weighted average saturation, and the weighted
average luminance.

6.2.3 Spatial Frequency’s Radial Power

In the other processing pipeline, the image is converted to grey scale and its discrete
Fourier transform is calculated, as introduced in section 2.3. The radial power of the
spatial frequencies, which is simply the squared amplitude of the component frequencies,
is then passed to the next stage. The spatial frequency pipeline also has three outputs:
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the radial power of high spatial frequency, the radial power of median spatial frequency,
and the radial power of low spatial frequency.

6.2.4 From Colour and Spatial Frequency to Affective Level

The colour pipeline and spatial frequency pipelines merge here. As introduced in sec-
tion 2.5, HSL values and power of spatial frequencies can be mapped to affective levels
using non-linear relations. Valtchanov used algorithms introduced in previous research
(Fernandez & Wilkins, 2008; Juricevic et al., 2010; Torralba & Oliva, 2001; Valtchanov,
2013) to map HSL values from colour space to affective levels. Similarly, Valtchanov and
Hancock used findings from previous research to map the radial power of spatial frequen-
cies to affective levels as well (Fernandez & Wilkins, 2008; Juricevic et al., 2010; Torralba
& Oliva, 2001; Valtchanov, 2013). These affective values are then fed into a neural network
model in the next stage.

6.2.5 Customized Neural Network

This Unity plug-in provides a pre-trained neural network model that takes three inputs:
the corresponding affective values of HSL values and power of spatial frequencies, the raw
image data, and user profile (age, sex, nationality). The raw image data is processed by
a pre-trained ResNet 50 model and the other two are fed into a multi-layer perception
(MLP) network. This neural network returns two outputs: the expected arousal score and
the expected pleasure score. Users can also replace the provided model with their own.

6.3 Summary

This chapter describes how to use our Unity plug-in to see the predicted arousal/pleasure
score in the process and explains the algorithm used to build this plug-in. The next chapter
concludes this thesis and discusses some limitations of our Unity plug-in.
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Chapter 7

Conclusion & Limitations

In this thesis, we explored the possibility of developing tools for game designers to auto-
matically calculate the expected affective valence (EAV) of game scenes using psychological
characteristics of raw image data, including colour and spatial frequency. We improved
Valtchanov and Hancock’s 2015 algorithm by building a linear regression model and a
neural network model. We also compared the performance of using different methods
and found that neural networks achieved the best prediction accuracy. The Unity plug-in
we built can greatly help game designers better understand the emotional consequence of
visual design in games.

7.1 Thesis Contributions

This thesis presents the following contributions:

1. We present empirical results from a survey study that collected individuals’ emotional
reactions to game screenshots and explore possible variables that affect the satisfac-
tion and arousal scores reported by participants. The data collected in our study is
valuable for other researchers who are interested in people’s emotional responses to
images specific to video games.

2. We use linear regression methods to construct a prediction model from the collected
data. We validate the linearity assumption and measure the model’s accuracy.
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3. We use supervised machine learning methods to construct a prediction model from
the collected data. This machine learning can be integrated into our prototype and
make the predictions offer more reliable accuracy.

4. We design and develop a Unity game engine plug-in, a prototype tool to help game
developers check the real-time automated analysis of the expected affective valence
of the game scene. This plug-in can act as a tool to assist designers, developers,
researchers, and academics to embed affective constructs within new games and un-
derstand those employed in existing ones. We provide a formal approach to under-
standing the role emotions play in games at all levels and bridge the gap between
game design, development and technology.

7.2 Limitations and Future Work

In our raw data collected in the online study, each image in the dataset was only rated
once. As a consequence, the noise caused by random behaviour could not be ignored.
As discussed in section 3.6, the data points on the box plot are quite scattered. Z-score
normalization has also been applied to the dataset such that the mean of all of the values
is 0 and the standard deviation is 1. However, there’s no noticeable difference between
before and after applying normalization. Noisy data may negatively impact neural network
training. Therefore, future work would benefit from a more rigorous in-person study that
collects participants emotional responses with less noise.

Furthermore, in the online study, participants only saw random screenshots from dif-
ferent video games. Therefore, they were not aware of the context of the game or the story
told by the game. Story and narratives in the games are powerful tools to impact play-
ers’ emotional experiences (Jiménez, 2016). However, the prediction models introduced
in this thesis do not consider the effect of game stories. This Unity plug-in is limited to
predicting emotional state based on colour and spatial frequency, and future work could
consider incorporating contextual factors, such as the game’s story, in a more refined neural
network.

Our existing Unity plug-in can also be improved with new features. Currently, it
only provides users with the predicted affective levels without any suggestions on specific
approaches to achieve certain desired emotional states. Future efforts can be made to build
a more complex neural network that can intelligently generate detailed instructions such
as telling users what colours they should add and what objects they should place in game
scenes.
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Appendix A

R Studio Outputs

A.1 Summery and ANOVA of 12 Images’ Arousal/Plea-
sure Scores
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SUMMARY of arousal scores
Groups Count Sum Average Variance
Image 1 100 4856 48.56 845.764
Image 2 100 6159 61.59 787.7797
Image 3 100 5799 57.99 648.3938
Image 4 100 5284 53.37374 841.5834
Image 5 100 5097 50.97 734.0092
Image 6 100 5690 56.9 877.5253
Image 7 100 4164 41.64 641.9095
Image 8 100 5095 50.95 629.9268
Image 9 100 4824 48.24 698.8711
Image 10 100 3403 34.03 972.9789
Image 11 100 4377 43.77 1235.795
Image 12 100 5182 51.82 599.5834

(a) Summery of 12 Images’ Arousal Scores
ANOVA of arousal scores
Source of Variation SS df MS F P-value F crit
Between Groups 63111.35 11 5737.396 7.236856 4.81E-12 1.796703
Within Groups 941056.3 1187 792.8023

Total 1004168 1198

(b) ANOVA of 12 Images’ Arousal Scores

Table A.1: Summery and ANOVA of 12 Images’ Arousal Scores
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SUMMARY of pleasure scores
Groups Count Sum Average Variance
Image 1 100 5547 55.47 762.8375
Image 2 100 6914 69.14 698.7681
Image 3 100 6987 69.87 564.8617
Image 4 100 5039 50.39 807.3716
Image 5 100 5242 52.42 751.4784
Image 6 100 5691 56.91 949.2544
Image 7 100 5039 50.39 758.907
Image 8 100 5490 54.9 685.6263
Image 9 100 4930 49.3 647
Image 10 100 3353 33.53 718.3324
Image 11 100 4821 48.21 1459.238
Image 12 100 4949 49.49 598.5555

(a) Summery of 12 Images’ Pleasure Scores
ANOVA of pleasure scores
Source of Variation SS df MS F P-value F crit
Between Groups 101074.5 11 9188.586 11.72733 4.67E-21 1.796696
Within Groups 930820.9 1188 783.5193

Total 1031895 1199

(b) ANOVA of 12 Images’ Pleasure Scores

Table A.2: Summery and ANOVA of 12 Images’ Pleasure Scores

61



A.2 Summery of linear regression models

1 lm(formula = Study_Arousal ~ Hue + Sat + Lum + HSF + MSF + LSF
,

2 data = 1800 _data)
3
4 Residuals:
5 Min 1Q Median 3Q Max
6 -54.86 -22.66 2.45 22.34 60.22
7
8 Coefficients:
9 Estimate Std. Error t value Pr(>|t|)

10 (Intercept) 30.341666 7.286607 4.164 3.28e-05 ***
11 Hue 0.003608 0.016969 0.213 0.8317
12 Sat 0.016234 0.024869 0.653 0.5140
13 Lum 0.032102 0.044673 0.719 0.4725
14 HSF -0.214933 0.088761 -2.421 0.0156 *
15 MSF 0.157821 0.114306 1.381 0.1675
16 LSF 0.095347 0.091744 1.039 0.2988
17 ---
18 Signif. codes: 0 `***' 0.001 '**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
19
20 Residual standard error: 28.84 on 1793 degrees of freedom
21 Multiple R-squared: 0.006566 , Adjusted R-squared: 0.003241
22 F-statistic: 1.975 on 6 and 1793 DF, p-value: 0.06601

Listing A.1: Summary of linear regression model to predict arousal score

1 lm(formula = Study_Pleasure ~ Hue + Sat + Lum + HSF + MSF +
LSF ,

2 data = 1800 _data)
3
4 Residuals:
5 Min 1Q Median 3Q Max
6 -59.714 -22.564 3.269 23.036 58.777
7
8 Coefficients:
9 Estimate Std. Error t value Pr(>|t|)
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10 (Intercept) 17.59472 7.37198 2.387 0.017103 *
11 Hue -0.01126 0.01717 -0.656 0.512058
12 Sat 0.03784 0.02516 1.504 0.132816
13 Lum 0.12716 0.04520 2.813 0.004954 **
14 HSF -0.33377 0.08980 -3.717 0.000208 ***
15 MSF 0.33286 0.11564 2.878 0.004046 **
16 LSF 0.08491 0.09282 0.915 0.360447
17 ---
18 Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
19
20 Residual standard error: 29.18 on 1793 degrees of freedom
21 Multiple R-squared: 0.02309 , Adjusted R-squared: 0.01982
22 F-statistic: 7.063 on 6 and 1793 DF, p-value: 1.899e-07

Listing A.2: Summary of linear regression model to predict pleasure score

A.3 Neural network training process

A.3.1 MLP

Figure A.1: Training process of MLP network for predicting pleasure score (smoothing
value = 0.5).
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Figure A.2: Validation process of MLP network for predicting pleasure score (smoothing
value = 0.5).

Figure A.3: Test process of MLP network for predicting pleasure score (smoothing value
= 0.5).
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Figure A.4: Training process of MLP network for predicting arousal score (smoothing value
= 0.5).

Figure A.5: Validation process of MLP network for predicting arousal score (smoothing
value = 0.5).
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Figure A.6: Test process of MLP network for predicting arousal score (smoothing value =
0.5).
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A.3.2 NLP + Resnet50

Figure A.7: Training process of MLP network combined with Resnet50 for predicting
pleasure score (smoothing value = 0.5).
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Figure A.8: Validation process of MLP network combined with Resnet50 for predicting
pleasure score (smoothing value = 0.5).

Figure A.9: Test process of MLP network combined with Resnet50 for predicting pleasure
score (smoothing value = 0.5).
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Figure A.10: Training process of MLP network combined with Resnet50 for predicting
arousal score (smoothing value = 0.5).

Figure A.11: Validation process of MLP network combined with Resnet50 for predicting
arousal score (smoothing value = 0.5).
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Figure A.12: Test process of MLP network combined with Resnet50 for predicting arousal
score (smoothing value = 0.5).
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A.3.3 NLP + Resnet50 + profile

Figure A.13: Training process of MLP network combined with Resnet50 and user-profile
integration for predicting pleasure score (smoothing value = 0.5).
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Figure A.14: Validation process of MLP network combined with Resnet50 and user-profile
integration for predicting pleasure score (smoothing value = 0.5).

Figure A.15: Test process of MLP network combined with Resnet50 and user-profile inte-
gration for predicting pleasure score (smoothing value = 0.5).
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Figure A.16: Training process of MLP network combined with Resnet50 and user-profile
integration for predicting arousal score (smoothing value = 0.5).

Figure A.17: Validation process of MLP network combined with Resnet50 and user-profile
integration for predicting arousal score (smoothing value = 0.5).
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Figure A.18: Test process of MLP network combined with Resnet50 and user-profile inte-
gration for predicting arousal score (smoothing value = 0.5).
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