
Scenario Modeling and Execution for
Simulation Testing of

Automated-Driving Systems

by

Rodrigo Barbosa de Queiroz

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2022

© Rodrigo Barbosa de Queiroz 2022

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Richard Paige
Professor, Dept. of Computing and Software,
McMaster University.

Supervisor(s): Krzysztof Czarnecki
Professor, Dept. of Electrical and Computer Engineering,
University of Waterloo.

Internal Member: Derek Rayside
Professor, Dept. of Electrical and Computer Engineering,
University of Waterloo.

Internal Member: Stephen Smith
Professor, Dept. of Electrical and Computer Engineering,
University of Waterloo.

Internal-External Member: Steven Waslander
Professor, Dept. of Mechanical and Mechatronics Engineering,
University of Waterloo
Professor, Institute for Aerospace Studies,
University of Toronto.

ii

Author’s Declaration

This thesis consists of material all of which I authored or co-authored (see Statement of
Contributions included in the thesis).

This is a true copy of the thesis, including any required final revisions, as accepted by
my examiners. I understand that my thesis may be made electronically available to the
public.

iii

Statement of Contributions

Rodrigo Queiroz is the sole author of this thesis, which was written under the super-
vision of Prof. Krzysztof Czarnecki. The development of this research resulted in the
following publications:

• (i) R Salay, R Queiroz, K Czarnecki. An analysis of ISO 26262: Machine learning
and safety in automotive software. SAE Technical Papers, 2018

• (ii) R Queiroz, T Berger, K Czarnecki. GeoScenario: An Open DSL for Autonomous
Driving Scenario Representation. IEEE Intelligent Vehicles Symposium, 2019.

• (iii) R Queiroz, D Sharma, R Caldas, K Czarnecki, S Garćıa, T Berger, P Pellic-
cione. A Driver-Vehicle Model for ADS Scenario-based Testing. ArXiv preprint,
2022 arXiv:2205.02911

• (iv) S Larter, R Queiroz, S Sedwards, A Sarkar, K Czarnecki. A Hierarchical Pedes-
trian Behavior Model to Generate Realistic Human Behavior in Traffic Simulation.
IEEE Intelligent Vehicles Symposium, 2022.

In particular, publications (ii) and (iii) contain material that is also included in this
thesis, in Chapters 3, 4, and 6. These publications benefited from collaboration with
Prof. Thorsten Berger, Prof. Patrizio Pelliccione, Ricardo Caldas, and Sergio Garcia from
Chalmers University of Technology. Profs. Berger and Pelliccione provided extensive feed-
back on the ideas that went into (ii,iii) and (iii), respectively. Ricardo Caldas and Sergio
Garcia mainly contributed the Behavior Tree Parser and Behavior Tree grammar and par-
ticipated in the literature review and the design of the scenarios used in the evaluation.
Finally, Divit Sharma and Dr. Micha l Antkiewicz from the University of Waterloo helped
implement parts of GeoScenario Server and its integration with the WISE ADS, as pre-
sented in Chapter 5.

iv

Abstract

Automated Driving Systems (ADS) have the potential to significantly impact the future
of ground mobility. However, safety assurance is still a major obstacle. Field testing
alone is impractical and simulation is required to scale and accelerate testing. Further,
it covers difficult and rare cases that are too risky to be performed on the closed-course.
Evaluating a wide range of operating scenarios in simulation is essential to ensure ADS
safety, reliability, and conformity to traffic regulations as the level of automation increases.
In order to achieve this goal, Scenario-based testing for ADS must be able to model and
simulate traffic scenarios that rely on interactions with other vehicles. Although many
languages for high-level scenario modelling have been proposed, they lack the features to
precisely and reliably control the required micro-simulation, while also supporting behavior
reuse and test reproducibility for a wide range of interactive scenarios.

To fill this gap between scenario design and execution, this thesis proposes a Domain-
Specific Language (DSL) for scenario representation, and a model for vehicle behavior in
scenario design and simulation. The main research goal is to improve scenario modeling
and execution for ADS testing in simulation, contributing to safety assurance in ADS
development. First, we present the language GeoScenario to help researchers and engineers
to develop tool-independent test scenarios, migrate scenarios between tools, and to evaluate
their systems under alternative testing environments. The language is built on top of the
well-known Open Street Map standard, and designed to be lightweight and extensible.
Second, we propose the Simulated Driver-Vehicle Model (SDV) to represent and simulate
vehicles as dynamic entities with their behavior being constrained by scenario design and
goals set by testers. This model combines driver and vehicle as a single entity. It is
based on human-like driving and the mechanical limitations of real vehicles for realistic
simulation. The layered architecture of the model leverages behavior trees to express
high-level behaviors in terms of lower-level maneuvers, affording multiple driving styles
and reuse. Further, optimization-based maneuver planner guides the simulated vehicles
towards the desired behavior.

Finally, our extensive evaluation shows the language and model’s design effectiveness
using NHTSA pre-crash scenarios, its motion realism in comparison to naturalistic urban
traffic, and its scalability with traffic density. We show the applicability of SDV model to
test a real ADS and to identify crash scenarios, which are impractical to represent using
predefined vehicle trajectories. The SDV model instances can be injected into existing
simulation environments via co-simulation.

v

Table of Contents

List of Figures x

List of Tables xiii

List of Abbreviations xiv

1 INTRODUCTION 1

1.1 Research Contributions . 6

1.2 Outline . 7

2 Background and Related Work 8

2.1 Basic Terminology . 8

2.2 Scenario-Based Testing . 9

2.3 Scenario Design and Generation . 12

2.4 Scenario Representation and Driver Behavior 13

2.4.1 Road-Network Representation . 14

2.5 Models for Traffic Simulation . 15

2.6 Simulation Tools . 17

2.7 Behavior Trees . 17

vi

3 GeoScenario: An Open DSL for Autonomous Driving Scenario Repre-
sentation 22

3.1 Introduction . 22

3.2 Designing a scenario language . 25

3.2.1 Supporting Test Design . 25

3.2.2 Scenario Orchestration . 25

3.2.3 Basic principles . 26

3.3 GeoScenario Architecture . 26

3.3.1 GeoScenario Basics . 28

3.3.2 Ego and the Driving Mission . 29

3.3.3 Scenery and Road Network . 30

3.3.4 Dynamic Elements . 31

3.3.5 Triggers & Actions . 34

3.3.6 Tool Set . 35

3.4 Application . 36

3.4.1 The Research Platform . 37

3.4.2 The Simulation Infrastructure . 38

3.4.3 Designing a Scenario . 38

3.5 Limitations and Future Work . 39

3.6 Chapter Conclusion . 40

4 A Driver-Vehicle Model for ADS Scenario-based Testing 42

4.1 Introduction . 42

4.2 Target Qualities . 45

4.3 SDV Model Design and Architecture . 46

4.4 World Model and Vehicle Representation 47

4.5 Vehicle Motion . 48

4.5.1 GeoScenario Route . 49

vii

4.6 Traffic State Estimation . 51

4.7 Behavior Layer . 51

4.7.1 Composing a Behavior . 52

4.8 Maneuver layer . 56

4.9 Execution Layer . 60

4.10 Chapter Conclusion . 61

5 Reference Implementation, Performance, and Integration 62

5.1 GeoScenario Server . 62

5.1.1 SDV implementation . 65

5.1.2 Balancing performance . 66

5.2 SDV Model Examples . 67

5.3 Integration and Co-Simulation . 68

5.4 GeoScenario design . 72

5.5 Applications . 72

6 Evaluation 75

6.1 Effective Scenario Development (RQ1) . 75

6.1.1 Metrics . 76

6.1.2 GeoScenario PDT versus GeoScenario with SDV Model 77

6.1.3 Scenario Catalog and Test Set . 77

6.1.4 Turning NHTSA Scenarios into Test Scenarios 78

6.1.5 Results . 79

6.2 Vehicle Motion Realism (RQ2) . 82

6.2.1 Naturalistic Dataset . 82

6.2.2 Experiment . 83

6.2.3 Results . 85

6.3 Application (RQ3) . 89

viii

6.3.1 The Cut-In Scenario . 89

6.3.2 System Under Test . 89

6.3.3 Test Scenario . 91

6.3.4 Results . 92

6.3.5 Summary . 93

6.4 Scalability (RQ4) . 95

6.4.1 Reference Implementation and Performance Requirements 95

6.4.2 Scenarios . 96

6.4.3 Metrics . 97

6.4.4 Results . 97

6.5 Threats to Validity . 99

6.6 Chapter Conclusion . 100

7 Conclusion 102

7.1 Limitations and Future Work . 104

References 105

APPENDICES 112

A Behavior Tree Conditions 113

B Behavior Tree Grammar 119

C NHTSA Scenarios 121

ix

List of Figures

1.1 NHTSA pre-crash scenario . 3

2.1 Scenario temporal sequence . 11

2.2 Scenario abstraction levels . 12

2.3 M-SDL Example . 14

2.4 Graphical representation of a lanelet . 15

2.5 Behavior Tree with Fallback node . 19

2.6 Behavior Tree with Sequential node . 20

2.7 Behavior Tree with Parallel node . 20

3.1 GeoScenario meta-model (class diagram notation from UML). 27

3.2 Overview of the main GeoScenario components in a 4-way intersection sce-
nario. 28

3.3 GeoScenario paths . 32

3.4 GeoScenario Trigger . 34

3.5 JOSM adapted to GeoScenario . 36

3.6 “UW Moose” research platform . 37

3.7 WISE Sim architecture . 38

3.8 Rear end pre-crash scenario in WISE Sim 39

4.1 Ego-to-HV interaction with GeoScenario Simulation 44

4.2 SDV model overview . 47

x

4.3 Frénet frame transformation . 49

4.4 Graphical SDV BT . 52

4.5 SDV Behavior Tree example . 55

4.6 SDV general maneuver model . 58

4.7 Sub trajectories in S and D for a swerve 59

4.8 Checking for collisions with static objects and dynamic obstacles 59

4.9 Trajectory planning by the SDV during a cut-in maneuver 61

5.1 GeoScenario Server (GSServer) and the SDV Model reference implementa-
tion architectures . 63

5.2 SDV Model in Simulation. Following a vehicle (a) and changing lanes (b). 69

5.3 SDV Model in Simulation. Maneuvering around static objects (c), and han-
dling an All-Way-Stop Intersection with multiple vehicles (d). 70

5.4 SDV Model integration in co-simulation 71

5.5 SDV Model and CARLA integration . 71

5.6 SDV Model and CARLA simulation . 72

6.1 A snapshot of the signalized intersection used for experiments and its cor-
responding simulation on the right. 83

6.2 Performance for all scenarios and per type, before (a) and after (b) calibra-
tion, measured using STED in meters . 86

6.3 Paths and speed profiles for three sample scenarios. Empirical vehicles in
red; SDV models in dashed blue (before calibration) and solid blue (after
calibration). 87

6.4 Paths and speed profiles for three sample scenarios. Empirical vehicles in
red; SDV models in dashed blue (before calibration) and solid blue (after
calibration). 88

6.5 Scenario #18 - Vehicle Changing Lanes – Same Direction 90

6.6 “UW Moose” research platform where the WISE ADS operates 91

6.7 Cut-in vehicle behavior using GeoScenario Behavior Tree DSL 92

6.8 Simulation scenario resulting in a crash . 94

xi

6.9 Scenario setup in GeoScenario . 96

6.10 Performance with increasing number of vehicles 98

xii

List of Tables

2.1 Summary of key Terminology . 10

2.2 Behavior Tree Node Types . 21

4.1 Condition nodes . 54

6.1 Scenarios and performance . 81

6.2 Simulation parameters for SDV behavior and results 93

6.3 Performance with multiple scenario configurations in real-time simulation . 98

6.4 Performance with faster-than-real-time simulation 99

C.1 Pre-Crash Scenario Typology from NHTSA with Relative Frequency [54]
and selected scenarios with x. 122

xiii

List of Abbreviations

ADAS Advanced driver-assistance system

API Application Programming Interface

BT Behavior Tree

DSL Domain Specific Language

HV Human-operated Vehicle

ODD Operational Design Domain

OSM Open Street Maps

ROS Robot Operating System

SDV Simulated Driver-Vehicle

TTC Time to Collision

UDP User Datagram Protocol

UTM Universal Transverse Mercator

WGS84 World Geodesic System 1984

XML Extensible Markup Language

xiv

Chapter 1

INTRODUCTION

Automated Driving Systems (ADS) have the potential to significantly impact the future of
ground mobility.1 Practical benefits include fewer road accidents, reduced traffic conges-
tion, higher occupant productivity, fuel savings, increased mobility for the elderly, disabled
and blind, and many more [71]. ADS adoption can also have enormous economic implica-
tions. Morgan Stanley [71] estimates ADS can contribute to $1.3 trillion USD in annual
savings to the US economy, and over 5.6 trillion USD globally. This estimation takes into
account fuel savings, productivity gains, and savings due to crash avoidance.

However, safety assurance is still a major obstacle. In 2021 alone, the Department
of Motor Vehicles of California/US reported 127 collisions involving autonomous vehicles
from Waymo, Cruise, Argo AI, and other ADS developers [11]. The National Highway
Traffic Safety Administration (NHTSA) in the US published the initial round of data col-
lected after the Standing General Order issued in 2021 that requires manufacturers and
operators to report certain crashes involving vehicles equipped with ADS (SAE Levels 3
to 5 [63]). The preliminary report shows 130 ADS crashes over 10 months ending in May
2022, with Waymo, Transdev, and Cruise reporting the most ADS crashes [64]. Public
perception is also not favorable, indicating low consumer confidence in the capabilities of
the technology. A 2020 survey commissioned by the advocacy group Partners for Auto-
mated Vehicle Education (PAVE) shows that nearly half Americans would not get in a
self-driving taxi [2].

Field testing alone is impractical. RAND Corporation estimates that billions of miles
driven are necessary to provide clear statistical evidence they are safer than a human [42].
In order to ensure ADS safety, reliability, and conformity to traffic regulations, we need

1ADS-equipped vehicles are often called Self-Driving Vehicles, Autonomous Vehicles, or simply AVs.

1

to evaluate a wide range of operating scenarios, and simulation is required to scale and
accelerate testing. Further, simulation can cover difficult and rare cases that are too risky
to be performed on the closed-course. Moreover, as the level of automation increases, more
driving tasks are transferred from the human driver to the ADS, which has to deal with
disturbances of the real traffic and interactions with human-operated vehicles (HVs) and
pedestrians. It is imperative that scenarios for ADS testing in simulation reflect how these
dynamic interactions between humans and the subject system can unfold in real traffic.

Scenario-based testing plays an important role in this process. It was originated as a
black-box testing paradigm from Software Engineering where scenarios are used as a central
representation that guides the testing phases [43]. Further, scenarios can also be used to
support development throughout the entire life-cycle and across teams. The ISO 26262
standard that guides development of safety-critical electrical/electronic vehicle systems
mandates the use of scenarios to support many phases of the development process [38].

As an example, Figure 1.1 shows a typical scenario for ADS testing based on the NHTSA
crash data [54, 55]. Although simple, this scenario is ranked as one of the most frequent
crash scenarios (7.2% relative frequency) of all 5.9 million police-reported crashes compiled
and aggregated by the report. The ADS can encounter a similar situation as the trailing
vehicle and must be able to stop in time to avoid or mitigate the imminent front-to-rear
impact.

There are multiple ways in which scenarios such as the one shown are created. Engineers
can manually create scenarios based on requirements and the Operational Design Domain
(ODD) of the system, use expert knowledge on common traffic situations the ADS must
be able to cope with, use search-based techniques to automatically generate scenarios [18],
or reproduce and augment scenarios collected from naturalistic traffic [75, 58] and crash
reports [54] (such as the example in Figure 1.1).

Regardless of the creation approach, two fundamental components are required for
scenario-based testing: (i) a formal representation to express a scenario, and (ii) a simula-
tion environment (the toolset) with models capable of executing such scenarios as intended
by design. Multiple representations have emerged in recent years, providing a formal def-
inition of the scenario concept and all its components: road network, weather, events,
success and fail criteria, and traffic participants, such as vehicles and pedestrians and their
behavior in the scenario. Examples include OpenScenario [8], M-SDL [5], and SDL [81].
Similarly, many simulators have also emerged (or were repurposed) for ADS testing. Some
tools focus on models for the Ego vehicle and sensor simulation (Camera, Lidar, GPS,
IMU) such as VREP [60] and Microsoft’s AirSim [69]. Others support scenario simulation
in some capacity such as CARLA [30], LG’s SVL [12], SUMO [10], or Virtual Test Drive

2

Figure 1.1: Test scenario based on typical rear end pre-crash scenario from NHTSA stud-
ies [54, 55]. At t(0), both vehicles are following the same lane, while Ego (the ADS-equipped
vehicle) is keeping a safe TTC (Time to Collision). At t(1), the leading vehicle changes its
behavior, starting to decelerate until a complete stop. At t(2), Ego (the following vehicle)
needs to stop in order to avoid a collision.

(VTD) [13]. They allow testers to create and execute scenarios with both Ego and other
traffic participants in simulation.

However, modeling and simulation in scenario-based testing for ADS development still
has major shortcomings:

• Limited interoperability: Many heterogeneous representations exist across stakehold-
ers, methods, and simulation tools. For example, scenarios from early requirements
are typically represented by natural language, while scenarios for simulation require
executable instructions. Simulation tools either run scenarios based on a representa-
tion exclusive to their own environment (a tool-specific language), or require scenar-
ios to be programmed from scratch by testers using traditional computer code (e.g.,
Python, C++) and a tool-specific API. Migrating scenarios between tools requires
code translation, and it is particularly difficult when constructs are highly coupled
with exclusive functions from the tool. Further, it requires extra effort to manage
and synchronize multiple versions of the same scenario to satisfy each tool.

3

• Limited consistency : Existing solutions yield inconsistent results across tools and
executions. When a scenario representation is adapted (i.e.,translated), the differ-
ences in the fundamental structures and assumptions of the simulation capabilities
can introduce unintended differences and change how the scenario unfolds, affecting
consistency. Scenarios can also be represented with varying levels of abstraction, and
not always encode the necessary detail for execution in simulation. This is particu-
larly difficult for the behavior of dynamic agents such as HVs. The scenario execution
relies on the underlying simulation model to handle the behavior, but this model is
often not formally defined outside of the code itself. The potential mismatch between
what is specified in the scenario and the actual execution leads to inconsistency and
compromises test reproducibility.

• Limited traffic realism: At the level of scenario representation, tool-independent lan-
guages are typically limited to relatively simple models for vehicle behavior in traffic.
For instance, specifying “what a vehicle must do” and “where it must be” in a partic-
ular scene, but without detailing “how” it moves. They do not encode the necessary
detail to guide the simulation of the vehicle in a complex and dynamic environment
as the traffic. Consequently, the simulation tool is required to implement the actual
vehicle behavior, either by translating the high-level definition to the vehicle simula-
tion model, or by forcing the change in vehicle state while disregarding the limitations
of a real vehicle in traffic. This mismatch leads to unrealistic vehicle motion, and
compromises the validity of test results if Ego-to-HV interactions do not represent
the real traffic. While there are efforts in improving realism in traffic simulation, they
are built for simulated agents to drive independently without collisions (intelligent
agents forming a Mass AI). They have limited controllability, in contrast with the
goals of scenario-based testing.

• Limited coverage: Limitations of the scenario representation or the underlying sim-
ulation models constrain the range of scenarios that can be executed, or the level of
accuracy in which a scenario can be simulated. For instance, if either the represen-
tation or the simulation lack the ability to encode and execute the nuances of the
human driving, scenarios will not be able to realistically reproduce situations from
the real traffic. Further, when the limitations or differences between representations
arise, they lead testers to use simple structures as the “lowest common denominator”.
For instance, using pre-defined trajectories (PDTs) to represent the vehicle behavior
in traffic. Such limitations constrain interactions between Ego and the traffic, and
thus the range of scenarios that can be expressed and executed.

4

The main research goal of this thesis is to improve scenario modeling and
execution for ADS testing in simulation, contributing to safety assurance in
ADS development. In particular, this thesis focus on two main aspects: the scenario
representation, and a model for vehicle behavior in scenario design and simulation. This
research has two parts:

• A DSL for Autonomous Driving Scenario Representation: In this first part, we pro-
pose GeoScenario as a Domain-Specific Language (DSL) for scenario representation.
Since typical scenarios for testing self-driving cars aim at reproducing real traffic
situations, they are similar by definition and must be able to offer the same set of
core features. The language is designed to cover these features and help researchers
and engineers to develop tool-independent test scenarios, migrate scenarios between
tools, and evaluate their systems under alternative testing environments, including
both computer simulation and closed course. The language is built on top of the
well-known Open Street Map standard, and is designed to be simple and extensi-
ble. We apply GeoScenario in the simulation infrastructure of an ADS project, and
demonstrate the language usage in practice to test a self-driving car software stack in
simulation. The language is the foundation for the Simulated Driver-Vehicle Model.

• A Model for Simulated Driver-Vehicle Behavior in Scenario-Based Testing : In the
second part, we propose a model to express and simulate realistic HV behavior in ADS
scenario testing, while affording high expressiveness, execution accuracy, scalability,
and reuse. We refer to our model as GeoScenario Simulated Driver-Vehicle Model (or
simply SDV). This model extends the base scenario-definition language GeoScenario
from the first part with HVs as dynamic agents in both scenario representation and
simulation execution. The model is based on human-like driving and the mechanical
limitations of real vehicles for realistic simulation. We use a layered architecture
and leverage behavior trees to express high-level behaviors in terms of lower-level
maneuvers, affording multiple driving styles and reuse, and covering a diverse range
of scenarios.

Methods for scenario generation (knowledge-driven or data-driven), sce-
nario coverage, and metrics for evaluating scenarios are out of the scope of this
thesis. However, these methods can benefit from our approach, since a better model for
scenario representation allows faster scenario development with behavior reuse and consis-
tency across tools. The proposed models also improve accuracy and realism when running
scenarios in simulation, allowing testers to cover highly interactive scenarios and expand

5

the range of scenarios that can be generated. Particularly, scenarios that rely on Ego-
to-HV and multi-vehicle interactions and that are too difficult to simulate with current
methods can benefit the most from our approach.

After implementing the language parser and execution model in a simulation toolset, we
evaluate GeoScenario and the SDV model in terms of scenario development effectiveness,
realistic vehicle motion, practical applicability for scenario-based ADS testing, and finally
scalability with traffic density. The following research questions guide our evaluation:

• RQ1: Can realistic and interactive scenarios for ADS testing be effectively modeled
and executed via GeoScenario and SDV models?

• RQ2: Can SDV models generate realistic vehicle motion?

• RQ3: Can using GeoScenario and SDV models improve the effectiveness of scenario-
based testing of a real ADS?

• RQ4: How does the model performance scale with traffic density?

1.1 Research Contributions

In summary, the main contributions of this work towards advancing scenario modeling and
execution for ADS testing in simulation are:

• (i) GeoScenario as an open and tool-independent DSL for ADS scenario-based testing.

• (ii) A Simulated Driver-Vehicle model to support design and execution of driver
behavior and vehicle interactions in scenario simulation.

• (iii) The Evaluation with a series of experiments that demonstrate how scenarios
from the NHTSA Crash Typology can be designed and simulated with GeoScenario,
the applicability of our method in practice with a real ADS, and how our models can
replicate the human-driving behavior from naturalistic traffic.

• (iv) An open catalog of executable test scenarios, designed with GeoScenario and
SDV model, and tested with a real ADS platform.

• (v) An open-source toolset to support scenario design and execution that includes
the reference implementation and can be easily integrated with existing simulation
tools and any ADS software stack for testing.

6

1.2 Outline

The thesis is organised as follows. Chapter 2 covers the necessary background related to this
research, alternative DSLs for scenario representation and how vehicle behavior and Ego-
to-vehicle interactions are handled in existing solutions. Chapter 3 presents GeoScenario,
including the fundamental concepts of the language and the design decisions governing its
creation. In Chapter 4 we introduce the Simulated Driver-Vehicle Model (SDV), detailing
its layered architecture and how the vehicle motion is generated. In Chapter 5 we detail
the reference implementation, its integration with alternative simulation environments, and
performance considerations. In Chapter 6, we perform an extensive evaluation to test the
effectiveness of our approach. Finally, Chapter 7 presents the conclusions and future work.

7

Chapter 2

Background and Related Work

This chapter provides the necessary background for this thesis and an overview of the
related work. This research is primarily related to two major topics: Scenario Represen-
tation and Driver Behavior, discussed in Section 2.4; and Models for Traffic Simulation,
discussed in Section 2.5. Finally, Section 2.7 introduces Behavior Trees and their classical
formulation from the literature. These concepts will be revisited in Chapter 4 when the
Behavior Tree formulation is adapted as part of the SDV Model.

2.1 Basic Terminology

SAE provides a common terminology for automated driving in the “Taxonomy and Defini-
tions for Terms Related to On-Road Motor Vehicle Automated Driving Systems - J3016” [63]
(originally released in 2014, and last updated in 2021). The standard introduced the famous
SAE Automation Levels spanning from Level 1 (no automation) to 5 (full automation),
describing the roles of the driver and the system for each level based on system capabilities.
The main distinction arise between 2 and 3, where the latter requires driving automation
system that monitors the driving environment and performs the entire Dynamic Driving
Task while a human capable of driving the vehicle is responsible for the fallback task. From
this level and higher (3 to 5) the driving automation system can be defined as Automated
Driving System (ADS). We summarize the key terminology for this thesis, and refer to the
standard for a full description:

• Automated Driving System (ADS): The hardware and software driving the vehicle
(i.e., performing the dynamic driving task), regardless of whether it is limited to a

8

specific operational design domain. This term is only applicable to systems in levels
3, 4, or 5.

• Dynamic driving task (DDT): The task of driving the vehicle. Includes the oper-
ational tasks (steering, braking, accelerating, monitoring the vehicle and roadway),
the tactical tasks (responding to events, determining when to change lanes, turn,
use signals, etc.) and monitoring the environment (including other road users) to
recognize the need for a response.

• Operational Design Domain (ODD): The operation environment and conditions for
which the ADS is designed to handle. For example, geographical restrictions (geo-
fencing), time-of-day, the presence or absence of certain traffic.

• Fallback: The response by the user or by the ADS to operate the vehicle after a
failure or when vehicle exists the ODD to achieve a minimal risk condition (MRC).

Other key terms used throughout the thesis are listed in Table 2.1.

2.2 Scenario-Based Testing

The term scenario is used inconsistently in the literature [40, 34, 74, 36]. Although its
usage varies depending on the discipline, the main components are similar: actors, back-
ground information on actors and assumptions about the environment, goals, actions and
events [36]. In the remainder, we rely on Ulbrich et al. [74] who analyze the concept of
scenario (and other related terms) across multiple disciplines and propose a consistent
definition based on requirements for testing automated vehicles:

“ A scenario describes the temporal development between several scenes in a sequence
of scenes. Every scenario starts with an initial scene. Actions and events as well as goals
and values may be specified to characterize this temporal development in a scenario. Other
than a scene, a scenario spans a certain amount of time. ” (Ulbrich et al., 2015)

“ A scene describes a snapshot of the environment including the scenery and dynamic
elements, as well as all actors’ and observers’ self-representations, and the relationships
among those entities ” (Ulbrich et al., 2015)

This temporal development from the Initial Scene is illustrated in Figure 2.1. From
a single initial scene, a scenario can evolve through alternative paths leading to different

9

Table 2.1: Summary of key Terminology

Term Description

Ego The entity representing the ADS-operated vehicle. In the con-
text of simulation, the term is used to refer to the simulated
vehicle operated by the ADS under test.

Scenario The temporal development between several scenes in a se-
quence of scenes (more in Section 2.2)

Test Scenario A scenario used for testing. The term is used interchangeably
with just “scenario” in this thesis, since we focus on ADS
testing.

Scene A snapshot of the environment, including the scenery and
dynamic elements, actors, observers, and the relationships
among those entities (more in Section 2.2)

Actor An element of a scene acting on its own behalf. They include
dynamic agents and traffic signals.

Dynamic Agent An actor in a scenario that have the ability to move. For
example, vehicles or pedestrians.

Scenery All geo-spatially stationary elements in a scene. For example,
the road network, traffic signs, and static objects.

scenes. Each path is by definition a single individual scenario. A scene can be interpreted
as a snapshot of the environment, and is composed by the scenery (stationary elements),
dynamic elements (elements that have the ability to move, or whose state changes within
the scene), actors, and observer self-representation (attributes and states).

10

Figure 2.1: A Scenario (solid line) as a temporal sequence of actions&events (edges), and
scenes (nodes). Adapted from [74]

The scenario-based design paradigm considers scenarios as a central concept to support
the development of complex systems throughout the entire lifecycle, from helping to derive
initial requirements to validating the system during the testing [36]. Kaner et al. [43] define
scenario-based testing as the dominant paradigm of black-box testing, where scenarios are
used to check how the system copes with both nominal and off-nominal situations. In
the automotive context, ISO 26262 [38] and ISO/PAS 21448 [39] guide the development
of safety-critical electrical/electronic vehicle systems and mandate the use of scenarios as
part of validation activities.

Scenarios can be described at several levels of detail and expressed using formal, infor-
mal or semi-formal notations [36]. Menzel et al. [51] propose three such levels within the
ISO 26262 systems engineering process (see Figure 2.2):

• (i) functional scenarios, being high-level natural language descriptions in the concept
phase.

• (ii) logical scenarios, being semi-formal models with state space parameters and their
ranges in the development phase.

• (iii) concrete scenarios, represented in an executable format with concrete values in
the test phase.

In this work we focus on levels (ii) and particularly (iii), since they are closer to the
level of detail required for scenario execution in simulation.

11

Figure 2.2: Scenario abstraction levels as defined by Menzel et al. [51]

2.3 Scenario Design and Generation

Researchers and engineers design scenarios based on expert knowledge and the common
traffic situations the ADS must be able to cope with, or by reproducing and augmenting
scenarios collected from traffic databases. For example, CommonRoad [19], a benchmark
for motion planners, extracts scenarios from NGSIM data [58].

A scenario can also be systematically generated to achieve specific test goals, e.g., lead
the system to trigger a certain behavior such as an emergency maneuver, or find a critical
situation leading to a crash. For example, Abdessalem et al. [17, 18] use evolutionary opti-
mization methods combined with surrogate model learning to find crash scenarios. Given
a parameterized scenario space, the evolutionary search produces subsequent generations
of parameter values with increasing criticality based on how the system performs under
simulation. Similar methods are also used to test autonomous parking systems [24].

12

2.4 Scenario Representation and Driver Behavior

Multiple tool-independent DSLs have emerged in recent years, providing a formal definition
of scenario structure, behavior, test conditions, and pass/fail criteria to support scenario-
based design and testing in simulation. The goal is to offer a uniform representation and
semantics across methods and tools. The scope and structure of each language vary, but
fundamentally they all define how vehicles behave in traffic and orchestrate interactions
with Ego that must be executed by a simulation tool during the test. We focus our
discussion on how some of the prominent languages specify this behavior.

OpenScenario 1.0 [8] is a standard managed by the Association for Standardization of
Automation and Measuring Systems (ASAM). The format describes dynamic content in
driving simulation applications in combination with OpenDRIVE [7], which specifies the
road structure. It covers traffic and driver behavior, weather, environmental events and
other features. It includes the description of a driver, but there is no model for driver
behavior in any form other than “road following.” The standard also does not contain
maneuver models or a vehicle model. Maneuvers are described in terms of actions (e.g.,
change the vehicle’s position or speed), or trajectories (defined as a polyline, clothoid, or
spline).

The Measurable Scenario Description Language (M-SDL) [5] expands the concepts of
OpenScenario 1.0. The language uses modifiers to change the behavior of the agents
similarly to actions from OpenScenario 1.0. It introduces parameter variability (a range
instead of a single value) along with constraints to narrow down values and connect multiple
parameters (e.g., velocity of vehicle A is between 10 and 20 m/s and less than vehicle B).
The language represents the vehicle behavior at the logical abstraction level and supports
generating concrete scenarios by picking random values while obeying the constraints (see
Figure 2.4 for an example). The format is planned to be merged with OpenScenario 2.0.

Scenic [33] is a probabilistic programming language to define and sample scenes of a
scenario for testing ADS. The generated scenarios can be used to test the system under
several situations, produce a training dataset, or support debugging. It allows the definition
of vehicles and actors, locations as coordinates, missions and goals, triggers to alter the ego-
vehicle’s behavior under certain conditions, and constraints. An example of a constraint is
that the ego-car must be within the 30° view of a second car while driving. The language
is used to output scenes consisting of the assignment to all the properties of each object
defined in the scenario, plus any global parameters based on the inputs explained above.

Scenario Description Language (SDL) [81] proposes a two-level abstraction approach
to scenario representation. In SDV level 1, a textual description of the scenario at a

13

Figure 2.3: Measurable Scenario Description Language (M-SDL) from Foretelix. Example
available in the official documentation [5]

higher level of abstraction can be used by regulators or system engineers. Whereas in
SDV level 2, a formal machine-readable language can be used by simulators. Scenarios can
be transformed from level 1 to 2 with the inclusion of additional details, and the reverse
transformation from level 2 to 1 is achieved by abstracting details.

SceML [66] is a graphical framework for Scenario-Based Testing that can be used to
create or visualize scenarios. It supports different abstraction levels, modularity and the
ability to reuse substructures. This representation is parsed into OpenScenario format to
generate a concrete representation before the scenario can be simulated.

A common trait amongst all representations is that they are primarily declarative lan-
guages. They define “what” must happen in a scenario during key events without speci-
fying “how.” This approach relies on external models running in simulation to handle the
execution, requiring mapping the scenario representations to these models.

2.4.1 Road-Network Representation

In the context of scenario representation, a map format can be used to express the features
of the Road Network. Open Street Map (OSM) [6] is a well-known collaborative project
to create and publish free maps using an open XML format. However, OSM and other
general map standards do not contain detailed information about the road topology at the
lane level. Therefore, they are not suitable to be used in a scenario representation as is.

Lanelets [22] is an open extension of the OSM format specifically to support Road Net-

14

work representation for automated vehicles. By definition, lanelets are “atomic, intercon-
nected, drivable road segments geometrically represented by their left and right bounds” [22].
The bounds are encoded by an array of OSM nodes forming a polyline. Together, they com-
pose the Lanelet Map. With lanes represented by road-segments with precise boundaries,
lanelets can be used to compose the Road Network of a scenario.

Figure 2.4: Graphical representation of a lanelet. Concept image adapted from documen-
tation [22]

2.5 Models for Traffic Simulation

Traffic simulation has a wide range of applications and can be used to generate the motion
of vehicles at various levels of detail. Macroscopic traffic models describe vehicle motion
and interaction in terms of flow and density, and are mainly used for large scale simulation
over a road network [68]. Since they are not suitable for street-level motion and interactions
between vehicles, they cannot be used for ADS testing.

In contrast, microscopic traffic models can generate vehicle motion and interactions at
the individual vehicle level at the cost of limited scalability [25]. They are able to encode
simple rules that allow a vehicle to follow way-points or the structure of the road, avoid
frontal collisions by alternating between driving and stopping, and perform maneuvers

15

triggered by conditions [35, 45, 30]. However, while capturing this reactive behavior, they
usually lack enough detail to simulate complex interactions between the vehicle under
test and other road users in realistic conditions. For example, they often use simplistic
motion limited to a constant velocity throughout a maneuver and disregard the physical
limitation of a real vehicle. They also cannot represent complex interactions, such as
vehicles responding to merge attempts, using the available road space to navigate around
obstacles, or skillfully navigating an intersection with multiple influencing factors (e.g.,
vehicles, pedestrians, and traffic regulation). The supported behavior is rigid and it is
hard or impossible to encode the fine-grained details that replicate human driving.

Some micro-models target a particular maneuver, for example, a lane-change model
encoding the accelerating/decelerating behavior based on surrounding vehicles [53], or
the driver’s decision and conditions that trigger the maneuver [82]. Whereas these models
better capture details at the maneuver level and allow testers to cover a range of parameters,
they are suitable for testing specific functions and subsystems (for instance, testing the ADS
emergency break) in a very constrained environment. They do not cover the complexity of
the full driving task required for scenarios in system-level testing. Attempting to combine
multiple maneuver-specific models into a simulated agent would be challenging, since every
model has its own set of assumptions and constraints.

A different approach is to learn models directly from data. Krajewski et al. [49] build
a lane-change model by using unsupervised learning to extract primitive attributes from
lane changes observed in the highD dataset [48]. The resulting model can then be used to
generate synthetic lane change maneuver trajectories in new scenarios. The main limitation
in a purely data-driven approach is the inherent bias in the data used to built the model.
While most available data-sets cover common situations, driver mistakes and safety critical
scenarios are rarely captured in such data sources. Also, they can capture the diversity of
driving styles in one road environment, but are difficult to generalize to other environments.
TrafficSim [72] uses a hybrid approach to build a model by learning from naturalistic data
and also encoding common-sense rules to guide the driving task. This hybrid approach
shows promising results in imitating the human-driving and its diversity of driving-styles,
while still reacting to traffic. However, agents are not fully controllable and cannot be
adapted to new scenarios by freely assigning new goals or styles based on a new scenario
design.

Overall, traffic simulation models are built for simulated agents to drive independently
without collisions. As a result, they tend to limit the controllability by the tester. This
is a contrast with scenario representation models that aim at providing the expressiveness
to model a multitude of scenarios (and often disregarding how exactly each step will be
performed). For scenario-based testing, the simulation model must serve the scenario goals.

16

If the evolution between scenes is not controllable, and the agents are not guaranteed to
reach the target situation (as specified by parameters, such as a time gap for a maneuver),
even the most realistic traffic simulation will not be suitable. Thus, scenario-based testing
requires expressiveness, controllability, and realistic behavior.

2.6 Simulation Tools

CARLA [30] is an open-source simulator created to support development, training, and
validation of automated driving vehicles. Built with Unreal Engine, it provides a library of
digital assets (urban layouts, roads, buildings, traffic props, vehicles) and a suite of sensor
simulation (GPS, camera, lidar). It supports environmental conditions (such as time-of-
day, weather) and scenario simulation with dynamic actors. Scenarios can be defined using
a Python interface, or with OpenScenario (although coverage is limited). Launched in 2017,
the simulator gained substantial popularity with the research community.

Several other simulators are briefly mentioned next. Simulation of Urban MObility
(SUMO) [10] is an open source microscopic and continuous traffic simulation package de-
signed to simulate large road networks in low fidelity. The project is mainly developed
by the Institute of Transportation Systems at the German Aerospace Center. SVL [12] is
an open-source high fidelity simulator built with Unity Engine. It was created and main-
tained by LG Electronics America R&D Lab until January 2022 when development was
suspended. Microsoft’s AirSim [69] is a simulator based on Unreal Engine, initially built
for Drone simulation and later adapted to support wheeled vehicles. Notable proprietary
and closed-source simulators: Virtual Test Drive (VTD) [13], Metamoto, and Cognata.

2.7 Behavior Trees

Behavior Trees (BTs) is a control architecture that emerged from the gaming industry to
structure the task switching in autonomous virtual agents. Initially, they were developed
as a way to increase modularity and reuse in the control structures of non-player characters
(NPCs), but quickly expanded to robotics and other fields of research. For example, they
have been used to structure a robotic arm task for object manipulation [21].

They are an efficient way of structuring complex systems that are both reactive and
modular: reactive as the ability to react quickly and efficiently to changes, and modular as
the extent to which the components of a system can be broken down into individual building

17

blocks and recombined. When complexity of NPC behavior increases, it is essential to be
able to work with individual components rather than the whole behavior at once.

The tree-like structure of BTs conveys a hierarchical understanding of how composition
operators coordinate elemental behaviors to perform the desired overall behavior. This
explicit organization facilitates the process of creating a behavior and understanding the
conditions leading to a task. Bagnell et al [21] highlight these properties in his work using
behavior trees in robotics:

“Real-time introspection facilitates the development of behavior trees by providing a way
to observe what the system is executing at any time. By seeing which behaviors are running,
which have succeeded and which have failed, one can quickly determine how the overall task
is performing.” (Bagnell et al, 2012, pg.3) [21]

Finite State Machines (FSMs) have been the standard choice to design task-switching
structures, but the Behavior Tree design aims to address FSM shortcomings with improved
modularity, reusability, scalability, and readability [27]. From a theoretical point of view
any Behavior Tree can be described by a FSM.

The expressive, modular, and explicit representation of BTs makes them a suitable
candidate for representing driver behavior in test scenarios and we use them in our model.
To the best of our knowledge, the use of behaviour trees to represent driver behavior in
scenario representation for ADS testing in simulation is still unexplored. There are several
Behavior Tree implementations. In this Section we describe the classical formulation, and
in Chapter 4 we describe how we adapt and integrate BTs to our model.

Classical Structure

In its classical formulation, a BT is a directed rooted tree with parent and child relations.
The internal nodes of the tree are the control nodes and leaf nodes are the behavior nodes.
Control nodes must have at least one child. In some implementations, a binary tree can
be used and the nodes are limited to two children.

The node without a parent is the root node, where execution starts with a signal that
propagates to the remaining nodes by traversing the tree from parent to children (depth-
first search) and enables the ordered execution of a node at a certain frequency (tick).
Graphically, they are typically represented with the children below the parent node (see
Figure 2.5). When a node receives a tick, it can be executed and returns a status to the
parent: (i) success if it achieved its goal, (ii) failure if it did not succeed, or (iii) running
if the task is in progress. Nodes that did not execute remain in a neutral status.

18

Control nodes : (or operators) are responsible for coordinating the execution of their
children nodes. In the classical architecture there are three operators: the fallback, se-
quence, and parallel. We describe each operator and their respective algorithms from
Colledanchise and Ogren [27] as follows.

The fallback operator resembles the logic operator or, but with a short-circuit semantics.
This node commands a sequential execution of its children, left-to-right, and returns success
immediately when a child succeeds; otherwise it executes the next child. It returns failure
when none of the children succeed (Figure 2.5).

Figure 2.5: Behavior Tree with Fallback node

Algorithm 1 Fallback node pseudocode (assuming N children)

1: for i← 1 to N do
2: childStatus← Tick(child(i))
3: if childStatus = Running then
4: return Running
5: else if childStatus = Success then
6: return Success
7: end if
8: end for
9: return Failure

The sequence operator resembles the short-circuit logic operator and. This node also
commands a sequential execution of its children, left-to-right, but returns failure immedi-
ately when a child fails. Otherwise, it executes the next child. It returns success when all
of the children succeed (Figure 2.6).

19

Figure 2.6: Behavior Tree with Sequential node

Algorithm 2 Sequence node pseudocode (assuming N children)

1: for i← 1 to N do
2: childStatus← Tick(child(i))
3: if childStatus = Running then
4: return Running
5: else if childStatus = Failure then
6: return Failure
7: end if
8: end for
9: return Success

Last, the parallel operator commands the execution of all children at the same time (or
in sequence with no interruptions when parallelism is not possible). The rule for success
or failure can be defined by alternative policies. They can return success when all children
succeed, or when a given threshold of M children succeed (Figure 2.7).

Figure 2.7: Behavior Tree with Parallel node

20

Algorithm 3 Parallel node pseudocode (assuming N children and success threshold M)

1: for i← 1 to N do
2: childStatus← Tick(child(i))
3: end for
4: if

∑
i:childStatus(i)=Success 1 ≥M then

5: return Success
6: else if

∑
i:childStatus(i)=Failure 1 > N −M then

7: return Failure
8: end if
9: return Running

Behavior nodes : They are responsible for encoding domain-specific tasks, which BTs
then compose into the overall desired behavior. These nodes are the interface to the
concrete low-level behaviors. A behavior node returns success when its task succeeds, or
‘running’ while the task is under execution, or failure when the task fails. The expressive,
modular, and interpretable representation of BTs makes them suitable for representing
driver behavior in test scenarios. Table 2.2 summarizes all node types and status.

Table 2.2: Behavior Tree Node Types

Node Type Symbol Succeeds Fails Running

Fallback ? if one child succeeds if all children fail if one child returns running
Sequence → if all children succeed if one child fails if one child returns running
Parallel ⇒ if >= M children succeed if > N −M children fail else
Action text upon completion if impossible during completion

Condition text if true if false Never

21

Chapter 3

GeoScenario: An Open DSL for
Autonomous Driving Scenario
Representation

This chapter introduces GeoScenario as a Domain Specific Language for scenario represen-
tation in the context of ADS testing in simulation. We introduce the concept of a common
scenario definition language, discuss the design decisions governing the language creation,
detail the language architecture and how key components are used to compose a full sce-
nario, and demonstrate its applicability in practice by integrating with an ADS software
stack testing infrastructure. The DSL presented in this Chapter is the foundation for the
Simulated Driver-Vehicle Model introduced in Chapter 4.

3.1 Introduction

Scenarios can support the ADS development throughout the entire life-cycle and across
different teams, from helping to derive initial requirements to validating the system in
computer simulation and coordinating tests in closed-course [20]. However, many het-
erogeneous representations exist across stakeholders, methods, and simulation tools using
formal, informal or semi-formal notations. For example, scenarios from early requirements
are typically represented by natural language, while scenarios for simulation require exe-
cutable instructions. While multiple simulators for ADS testing can be used (see Section
Simulation Tools 2.6), they typically require scenarios to be programmed from scratch by

22

testers using traditional computer code (e.g., Python, C++), or tool-specific APIs (in some
instances, proprietary and closed-source). Some simulators support scenario representation
with higher level of abstraction, but they are typically exclusive to their own environment
(a tool-specific language). In order to design and run scenarios, engineers need to learn tool-
specific languages or program simulated traffic from scratch. The learning curve increases,
and migrating scenarios between simulation environments requires extra effort. Scenario
translation between tools is particularly difficult when constructs are highly coupled with
exclusive functions from the tool’s API. Further, it requires extra effort to manage and
synchronize multiple versions of the same scenario to satisfy each tool.

Since typical scenarios for ADS testing aim at reproducing realistic traffic situations,
they are similar by definition and must be able to offer the same set of core features.
Thus, the scenario representation can be harmonized. A well-designed, tool-independent
domain-specific language (DSL) that is expressive enough to cover these features has the
potential to help researchers and engineers to develop tool-independent scenarios, migrate
them between different tools, and evaluate their systems under alternative testing environ-
ments, including both computer simulation and closed course. There are multiple potential
benefits from a common definition:

• Provides a formal definition of structure, behavior, test conditions and pass/fail cri-
teria.

• Helps engineering test scenarios using a formal structure rather than natural lan-
guage.

• Provides consistency in scenario representation across all development phases, from
requirements to validation, supporting the scenario-based design approach.

• Improves requirements understanding with scenarios formally designed since early
stages of development.

• Ensures same understanding of scenarios between different stakeholders, for example,
regulators and manufactures.

• Allows engineers to share and reuse scenarios between teams, companies, or research
groups.

• Facilitates the migration of scenarios between simulation and testing tools.

• Promotes open databases sharing catalogs of scenarios with a unified format.

23

• Alleviates the learning curve to users of simulation tools, avoiding verbose scenario
programming or learning many tool-specific languages.

• Provides a better understanding of the testing environment capabilities based on the
level of compatibility with the language and a unified set of interpretation rules.

• Fosters the development of common libraries to parse scenarios, promoting similar
interpretation and feature-set across tools.

• Helps people involved in tests to understand and coordinate a scenario before its
execution, for example, a safety driver and a test engineer.

We propose GeoScenario as a DSL for scenario representation. In contrast to a general-
purpose language, a Domain Specific Language [31] is a language specialized to a particular
application domain. The target application domain is scenario-based testing in the context
of ADS validation. GeoScenario is a modelling language, used to model scenarios. The
model expresses a scenario in a structure that is defined by a consistent set of rules in
the specification that must be used to interpret the meaning of the structure and execute
scenarios in simulation.

GeoScenario is a textual language, serialized in XML file format with ‘.osm’ file ex-
tension. Visual tools are encouraged to facilitate the scenario design, since the domain
is based on geographic reasoning over a structured road. As a textual language it relies
on standard keywords following a structure. GeoScenario represents both structure and
behavior. The structural part is static, and entails the components that are part of the
scenario (vehicles, pedestrians, the road network). The behavior is dynamic, and deter-
mines what must happen in the scenario during execution, and how the different actors
must interact.

In the language design process, we identify relevant elements of the problem domain that
compose typical test scenarios and need to be formally defined and executed in simulation
testing. The language is built on top of the well-known Open Street Map standard, and
designed to be simple and extensible. Additionally, we provide a tool-set to easily design
and validate scenarios using our DSL. We apply the DSL to the simulation infrastructure of
the WISE ADS Project [15], demonstrating its applicability in practice, and we provide, in
addition to the reference implementation, an open catalog of test scenarios for the research
community.

24

3.2 Designing a scenario language

In this section we discuss essential requirements for a well-designed scenario language for
testing automated vehicles, and how we address them in GeoScenario. We identify key
elements that compose a scenario, discuss the main scenario design approaches they must
support, and the basic principles we follow to make the language practical.

3.2.1 Supporting Test Design

The ISO 26262 standard for functional safety [38] provides a framework based on the V-
model as a reference to guide all development phases of safety-critical electric/electronic
vehicle systems. According to the standard, scenarios are used to support the development
process, from requirements to the test phase by supporting test cases. Further, ISO/PAS
21448 [39], an extension of ISO 26262, mandates the use of scenarios as part of validation
activities.

Scenarios can be created using different approaches: designed by experts based on func-
tional requirements and designs and hazard analysis, reproducing or augmenting situations
collected from traffic data, or a combination of the two mentioned methods (for example,
designing manual scenarios and extracting primitives from naturalistic databases, or sys-
tematically generated to find critical scenarios (see Background, Section 2.3). A scenario
language should be able to support all approaches. It must be simple and human read-
able, yet be able to represent precise trajectories collected from traffic data, support input
space exploration from methods generating scenarios, and also support unknown stochastic
behaviour for sampling methods. GeoScenario is designed to support all these approaches.

3.2.2 Scenario Orchestration

When dynamic elements in a scenario follow pre-defined paths, we assume a deterministic
evolution from the initial scene. However, when the ADS is responsible for the Ego’s
driving mission, a scenario can evolve to alternative scenes, and its execution becomes
nondeterministic. Scenarios described in CommonRoad [19] are clear examples of this
challenge. Dynamic elements are defined as time-discrete states of a trajectory containing
position and orientation over time. After slicing NGSIM data in different scenarios, one
vehicle is selected to represent the Ego, while the remaining vehicles are selected as dynamic
elements with their original trajectories. The challenge arises the moment Ego starts to
perform differently from the original vehicle (by different route, velocity or maneuver). The

25

scenario then evolves to a different situation. This is a natural limitation of any scenario
directly reproduced from traffic data. Consequently, a model for scenarios must be able to
orchestrate the evolution between scenes with a flexible language for Actions & Events.

A different approach is to specify intelligent dynamic agents making decisions, behaving
like human drivers and pedestrians, and reacting to every other traffic agent (including the
Ego). However, this brings the challenge of modeling complete and realistic behavior of
traffic agents.

We design GeoScenario to provide ways of reproducing trajectory data, but also cre-
ate mechanisms to orchestrate its evolution under different conditions (time and space),
allowing engineers to carefully craft scenarios that explore controlled situations. Dynamic
models of agent behavior and maneuvers are introduced in Chapter 4.

3.2.3 Basic principles

We design GeoScenario using the following basic principles. (i) Reuse: Leverage existing
open formats to build a new language on top of well-known and used structures. With
this approach, existing tools can be reused to support our new language with only minor
adjustments. (ii) Simplicity : The language is simple enough to be human readable when
simple scenarios are modeled. Tools are encouraged to support complex scenarios (e.g.,
with multiple agents) and facilitate geographic reasoning. (iii) Coverage: It is able to ex-
press the main components of a scenario. (iv) Extensibility : It can be easily extended with
new features and specializations of its standard components. (v) System independence: It
supports test cases for different ADS designs, operating on different levels of automation.
(vi) Tool independence: It can be interpreted and executed by alternative simulation and
test environments. (vii) Executability : It can express concrete scenarios that can run in
simulation without an additional language.

3.3 GeoScenario Architecture

GeoScenario is developed to express a scenario in a formal language, following the require-
ments discussed on Section 3.2. The format is XML-based and built on top of the OSM
standard. The main components include: Ego start position and goals, a road network,
agents (vehicles and pedestrians), paths, and triggers & actions. Additional elements are
omitted for simplicity, but they are available in our full specification. Figure 3.1 shows
a meta-model (a.k.a., syntax model) of our components (the Route will be introduced in

26

Chapter 4). Figure 3.2 illustrates a sample scenario with the main components in place.
In the next section we describe how all those elements work and interact.

Figure 3.1: GeoScenario meta-model (class diagram notation from UML).

27

Figure 3.2: Overview of the main GeoScenario components in a 4-way intersection scenario.

3.3.1 GeoScenario Basics

All GeoScenario elements are based on two OSM primitive types: nodes and ways.

• Node is the core element of GeoScenario, representing a specific point on Earth’s
surface. Each node comprises an ID number and a pair of coordinates (latitude and
longitude). Nodes are used to define standalone point features (e.g., a vehicle or a
pedestrian), but also to compose the shape of other elements (e.g., a path).

• Way is an ordered list of nodes defining a polyline. Ways are used to define linear
features such as paths and boundaries of areas (solid polygons that represent an
obstacle on the road, or a named area for dynamic element placement). To define
areas, the way’s first and last node must be the same and are called closed way.

All elements (nodes and ways) can have tags describing attributes of an element with the
pair of text fields k (key) and v (value). We use a tag gs to define an element’s role in
the scenario, that is, the element’s function in the GeoScenario model (e.g., gs = vehicle).
Elements without a gs tag do not have a specific role in the scenario, but can be used to
compose other elements. For example, nodes composing a path do not have a gs tag. An
element cannot have two tags with the same key.

All elements with a role must also contain the tag ’name’ (with a few exceptions). The
name is a unique string that identifies one element in a scenario. This tag is used to derive

28

relations between elements. Nodes have coordinates in the WGS84 coordinate frame (as
part of the OSM standard).

There is a fixed dictionary of tags documented in our GeoScenario specification, but
we highlight the main properties per element in this thesis. Listing 3.1 gives an example
showcasing a vehicle node and its basic components.

Listing 3.1: GeoScenario element example

<node id=’ 1 ’ l a t=’ 43 .5094 ’ lon=’ −80.5367 ’>
<tag k=’ gs ’ v=’ v e h i c l e ’ />
<tag k=’name ’ v=’ l e a d i n g v e h i c l e ’ />

</node>

3.3.2 Ego and the Driving Mission

In a scenario, Ego is the entity representing the ADS-operated vehicle. In our language
we decide not to define actions or maneuvers for the Ego. Instead, GeoScenario only
specifies initial conditions and goals. During a test case execution time, the ADS is a black
box system responsible for deciding the best route and maneuvers based on the traffic
conditions (road network, static objects, dynamic agents on the path, etc.). We decide
for this approach to allow the language to be system independent and to reflect a real
world driving scenario. In practice, a driving mission is given to the driver or ADS as a
global location to be reached as a long-term task. The initial condition is defined as a
node representing Ego’s starting position and orientation. We assume Ego always starts a
scenario in a parked position.

Listing 3.2: Ego Goal Nodes

<node id=’ 2 ’ l a t=’ 43 .5094 ’ lon=’ −80.5367 ’>
<tag k=’ gs ’ v=’ egogoa l ’ />
<tag k=’ order ’ v=’ 1 ’ />

</node>
<node id=’ 3 ’ l a t=’ 43 .5095 ’ lon=’ −80.5378 ’>

<tag k=’ gs ’ v=’ egogoa l ’ />
<tag k=’ order ’ v=’ 2 ’ />

</node>

The goal is defined as an egogoal node. A scenario can have multiple ordered goal
locations. They represent the intermediate and final driving missions the ADS should

29

achieve. The final goal for the driving mission task is the one with highest order number
and must finish the scenario with a success state. The nodes can be used to compose a
global path for the system, or create a goal point on the system’s internal map. However,
this is particular to the ADS configuration and is out of the scope of our model.

3.3.3 Scenery and Road Network

We use Lanelets [22] to represent the scenario road network (more in the Background
Chapter, Section 2.4). We decide to use Lanelets because of their compact and lightweight
structure; the GeoScenario format follows a similar spirit itself. The road network is
stored in a separate XML file to make replacements easy. However, a scenario can only
be interpreted within the context of the road network. Consequently, a GeoScenario must
always be distributed with its associated road network file.

To represent stationary obstacles that are not part of the road network, but block or
limit the drivable surface, we introduce static object. Static objects can be defined as a
single node, a way, or a closed-way. A closed-way can assume arbitrary shapes, but in order
to be valid, it must have the first and last node reference pointing to the same node ID.
A reference to a model can be used to give the object a more defined form, and additional
attributes such as width, length, height can also be used. We chose to keep the GeoScenario
simple and flexible, and the model can be defined elsewhere.

A traffic light physical object is part of the scenery and is defined in the road network
layer (lanelet). However, the state is dynamic and must be defined in the GeoScenario
file. For example, the standard “green, yellow,red” states. Note that different countries
can have different states and standard sequences. The time per state is given in (s) as a
list with the duration attribute, or optionally as intervals in simulation time. Traffic light
states can also be changed by trigger (introduced later in Section 3.3.5). Additional light
types (e.g., turn, pedestrian walk, etc) can be added either as an independent traffic light
element, or as part of the same interconnected traffic light state as sub-lights.

Listing 3.3: Traffic Light

<node id=’ 1 ’ l a t=’ 43 .5094 ’ lon=’ −80.5367 ’>
<tag k=’ gs ’ v=’ t r a f f i c l i g h t ’ />
<tag k=’name ’ v=’ i n t e r s e c t i o n 1 n o r t h l i g h t ’ />
<tag k=’ s t a t e s ’ v=’ green , yel low , red ’ />
<tag k=’ durat ion ’ v=’ 1 5 . 0 , 3 . 0 , 2 0 . 0 ’ />

</node>

30

3.3.4 Dynamic Elements

We define as dynamic elements all GeoScenario elements that are able to move (having
kinetic energy) or are able to change their state. This is different from Geyer’s [34] definition
of dynamic elements, which are based on the temporal extent of the scene. In GeoScenario,
a parked vehicle is also defined as a dynamic element. Dynamic elements that are able to
move are called agents, and are separated in two types: vehicles and pedestrians. Both
are represented as nodes and share similar attributes. Vehicle is defined with the tag
gs = vehicle, and pedestrian with tag gs = pedestrian. The orientation tag is used
do define an agent’s initial orientation (for example, a vehicle yaw). In our model the
orientation is given in degrees, with origin on East and clockwise direction. Different types
of vehicles (e.g., car, truck, bus) are represented with the same type, with an optional
attribute model specifying a vehicle model. We do not specify details of the vehicle model
dynamics or 3D meshes. Therefore, testing results must take into account additional details
of the simulation infrastructure running the scenario. A speed attribute (in km/h if not
specified) is used to define a reference velocity.

In order to move, vehicles and pedestrians need to be assigned to a path. A path is
defined as a Way element, and can be used for both vehicles and pedestrians. Paths should
be interpreted as splines composed by ordered connected nodes. When a dynamic agent is
assigned to a path, it will travel along the path with its reference speed.

To support more realistic kinematics with variable velocity and acceleration, or to
reproduce scenarios from recorded traffic data, an agent can be assigned to a speed profile.
When a path has a speed profile, it must contain nodes with the tag agentspeed to indicate
the target speed for the agent once it reaches that node. The agent must always try to
match the speed of the next node in its path with a constant acceleration. Alternatively,
nodes can contain the tag time with the time in seconds to reach the node since the start
of the path. With high density paths (i.e., more nodes) and a speed profile, a GeoScenario
model can represent a diverse range of traffic situations, manually designed by experts,
extracted from real traffic by sensors, or imported from naturalistic driving databases.
Figure 3.3 shows three alternative stopping paths with varying density. More realistic
motion requires more nodes, but at the cost of verbosity. As examples, Listing 3.4 shows a
typical dynamic agent as a vehicle, and Listing 3.5 shows its path defined as a way. Note
how the ID references to the nodes composing a path are given by the tag nd and must be
interpreted as an ordered list.

31

Figure 3.3: GeoScenario paths with alternative speed profiles for a stopping maneuver from
28 km/h to a complete stop in 5 seconds.

Listing 3.4: Dynamic agent

<node id=’ 1 ’ l a t=’ 43 .5094 ’ lon=’ −80.5367 ’>
<tag k=’ gs ’ v=’ v e h i c l e ’ />
<tag k=’name ’ v=’ l e a d i n g v e h i c l e ’ />
<tag k=’ speed ’ v=’ 30 ’ />
<tag k=’ o r i e n t a t i o n ’ v=’ 45 ’ />
<tag k=’ path ’ v=’ northpath ’ />
<tag k=’ u s e s p e e dp r o f i l e ’ v=’ yes ’ />

</node>

By default, all paths are grounded to fixed node coordinates. We introduce the tag
abstract to define flexible paths. Abstract paths are designed on fixed coordinates, but
during execution must be shifted to a new origin point based on the agent’s current location.
Abstract paths can be used to design dynamic maneuvers. For example, a lane change that
can occur at different locations of the road network.

32

Listing 3.5: Path

<way id=’ 39 ’>
<tag k=’ gs ’ v=’ path ’ />
<tag k=’name ’ v=’ vwest path ’ />
<tag k=’ ab s t r a c t ’ v=’ no ’ />
<nd r e f=’ 3 ’ />
(. . .)
<nd r e f=’ 6 ’ />

</way>

Some properties can be described by a fixed value or by value ranges. As an example, a
dynamic agent’s speed can be defined by a fixed value (e.g., 30 km/h) or by a range (e.g.,
from 20 to 40 km/h) using the notation [20:40], and [20,25,30,40] for a list of arbitrary
discrete values. The variable attribute notation is used for scenarios that rely on sampling
and test input mutation and allows our model to represent both logical and concrete
levels of scenario. Mutation of test input values is commonly used is software testing,
including driving automation systems [17]. Assigned values represent boundaries, and a
concrete value is selected before a scenario is executed. Stochastic behavior with probability
distributions is also supported. However, since many different probability distributions can
be used, (e.g., Gaussian), they must be defined elsewhere. If no distribution is explicit,
we assume a random value from Uniform Distribution. Listing 3.6 shows pedestrian with
variable speed. For example, studies have found pedestrian walking speeds at crosswalks
ranging from 5.32 km/h to 5.43 km/h for younger individuals [46] and we can use this value
range as boundaries for our pedestrian speed.

Listing 3.6: Dynamic agent

<node id=’−1 ’ l a t=’ 43 .5094 ’ lon=’ −80.5367 ’>
<tag k=’ gs ’ v=’ pede s t r i an ’ />
<tag k=’name ’ v=’ c r o s s i n gp ed e s t r i a n ’ />
<tag k=’model ’ v=’ adul t ’ />
<tag k=’ speed ’ v=’ [5 . 3 2 : 5 . 4 3] ’ />
<tag k=’ path ’ v=’ c ro s swa lk wes t path ’ />

</node>

33

3.3.5 Triggers & Actions

In GeoScenario we introduce triggers & actions to orchestrate how a scenario evolves. The
basic concept is to add trigger nodes in strategic places of the road network, and activate
different actions over dynamic elements. Each triggers has owners and targets. Owners
activate triggers, whereas targets execute the action (Figure 3.4). Owners can be the Ego
itself or agents (vehicles, pedestrians). Targets can be any dynamic element whose state
can change over the scenario, but can not be Ego. This rule follows our assumption of
the ADS as a black box system, limited to the initial conditions and the driving mission.
Actions can change an agent’s state, or the scenario itself. Listing 3.7 shows a trigger
example.

Figure 3.4: GeoScenario Trigger. When the owner activates a trigger, an action is executed
on the target. The trigger can be activated when the owner reaches the trigger node
location, when the Scenario reaches a certain time t, or when a metric between two agents
reaches a certain value x.

A trigger can be activated by three types of conditions, or by a combination of them:

• (i) Time: activated when the scenario execution reaches a given time t. A set of
timed triggers allow the designer to control the scenario in chronological order with
timed events. For example, at a given time t = 10, a pedestrian starts crossing an
intersection.

• (ii) Location: activated by overlap, when the owner reaches the trigger node location.
Must be placed over strategic points of the Road Network. They are especially useful
when timed events can not guarantee Ego and other agents are at the right place at
the right moment. For example, one can place a trigger with Owner = Ego, and and
action for a pedestrian to start a path over a crosswalk. This trigger guarantees the
walking happens at the desired distance between Ego and pedestrian.

• (iii) Metric condition: activated when a given condition based on a metric is true.
This trigger allows situations where an Action needs to be performed with no specific

34

location, but at any location after a relative condition. For example, a vehicle moving
over a path on the road starts to decelerate to stop only when the distance between
Ego and the vehicle is less than 100 meters. To support a condition, a GeoScenario
needs to track a given metric between agents.

A metric is also defined as an element in GeoScenario, by explicitly declaring which
agents are tracked. We encourage scenarios to include references for how a metric is
calculated since different approaches can be used. For example, TTC can be computed
using a variety of methods leading to different values [76, 67, 61].

Listing 3.7: Trigger

<node id=’ 4 ’ l a t=’ 43.50909 ’ lon=’ −80.53654 ’>
<tag k=’ gs ’ v=’ t r i g g e r ’ />
<tag k=’ a c t i v a t e ’ v=’ l o c a t i o n ’ />
<tag k=’name ’ v=’ s t a r t t r i g g e r ’ />
<tag k=’ owner ’ v=’Ego ’ />
<tag k=’ t a r g e t ’ v=’ l e a d i n g v e h i c l e ’ />
<tag k=’ apath ’ v=’ west path ’ />
<tag k=’ a s p e e dp r o f i l e ’ v=’ yes ’ />

</node>

This thesis only provides an overview of the model. All details (with examples) can
be found in our project’s repository.1 Additionally, the model can be easily extended with
new features and attributes to support tool-specific requirements.

3.3.6 Tool Set

Accessible tools are important to make the model useful for researchers and engineers and
adopted by the community. Since our format was developed on top of OSM primitives,
we adapt its standard map editing tool: JOSM [3]. This is a free and open-source Java
Application commonly used to create and share maps with the OSM Server. By adding
a set of custom presets and style sheets, we can now easily design and understand a
GeoScenario on top of the Road Network (Lanelet layer) and other map layers (e.g., Bing
Maps, ESRI maps) before its execution. Figure 3.5 shows a sample scenario designed in
our custom tool. The second tool is the GeoScenario Checker: a set of scripts to evaluate a
Scenario’s conformity with the language. Both tools are available at the Project’s website
along with their usage instructions.

1https://git.uwaterloo.ca/wise-lab/geoscenario

35

https://git.uwaterloo.ca/wise-lab/geoscenario

The tools are integrated with GeoScenario Server, a complete scenario simulation
toolset. The server is introduced in Chapter 5 and consolidates the implementation of
all models discussed in this thesis.

Figure 3.5: JOSM adapted to GeoScenario

3.4 Application

We incorporate GeoScenario to the WISE ADS Project testing infrastructure as the format
to design and run scenarios for testing in simulation. In this section we describe our project
and present a sample scenario, tested in simulation with the software stack.

36

3.4.1 The Research Platform

“UW Moose” is the University of Waterloo self-driving research platform. The platform is a
Lincoln MKZ Hybrid modified to autonomous drive-by-wire operation and a suite of lidar,
cameras, inertial and vision sensors (see Figure 3.6). The car is equipped with computers
to run a complete autonomous driving system, integrating mapping, sensor fusion, motion
planning, and motion control software in a custom autonomy software stack fully developed
at Waterloo as part of the research. The system was the first Canadian-built ADS to be
tested on public roads in Canada in August 2018. More info is available on the project
website [15].

The autonomy stack is implemented on top of Robot Operating System (ROS) frame-
work [9]. ROS offers an inter-process communication interface based on publish/subscribe
anonymous message passing. We explore this interface to isolate the components we want
to test and use data from our simulation tools to create a realistic testing environment. We
focus our test on motion planning modules to explore Ego’s interactions with other traffic
agents. Because the publish/subscribe system is anonymous, we can isolate Motion Plan-
ning modules by simulating data from sensors (e.g., GPS, IMU), and Perception modules
(vehicle and pedestrian detection) through ROS topic messages. We assume all sensors
work without failure. This means our simulation environment is able to provide accurate
detection of all vehicles within the range of the sensors in a map representing the Road
Network.

Figure 3.6: “UW Moose” research platform. Lincoln MKZ Hybrid modified to autonomous
drive-by-wire operation and a suite of lidar, cameras, inertial and vision sensors.

37

3.4.2 The Simulation Infrastructure

The Simulation toolset (WISE Sim) was developed on top of Unreal Engine 4.19 2. To
support GeoScenario we create the Scenario Manager module, which is able to parse and
execute GeoScenario and Lanelet formats using Unreal native features (e.g., environment
creation, 3D object handling and collision checking), and to simulate detection. Vehicle
motion dynamics for Ego simulation is handled by an external module MKZ Vehicle Model,
adapted from [77]. Figure 5.4 shows an overview of the simulation architecture.

Figure 3.7: WISE Sim architecture. Scenario Manager is responsible for parsing and
running GeoScenario and Lanelet files.

3.4.3 Designing a Scenario

We model the most frequent crash scenario according to NHTSA (lead vehicle stopped) as
illustrated in Figure 1.1. We model this car-following scenario with a single Ego goal at the
end of the road to define a driving mission, a dynamic agent as the leading vehicle shortly
after the Ego start position following the road with constant speed over the east path.
When the leading vehicle reaches a trigger, it switches to decelerate path. This path

2https://www.unrealengine.com

38

https://www.unrealengine.com

contains a speed profile, decelerating from 50 km/h to a complete stop in a short space.
Ego is the trailing vehicle and must react to avoid a collision. If a collision happens, the
ADS failed and the scenario must end. Figure 3.8 shows how we model our scenario, and
its execution in our simulation environment. Triggers with different conditions can be used
to explore this scenario with different ranges, and paths with varying speed profiles can
be used to explore different types of deceleration (e.g., an aggressive deceleration profile
increasing the level of difficulty).

Figure 3.8: Rear end pre-crash scenario modeled in GeoScenario and executed in WISE
Sim. Both vehicles are following the same lane. When reaching the trigger, the leading
vehicle switches to a decelerating path profile until a complete stop. The blue line between
vehicles indicates the range (distance between two vehicles). The red box is the bounding
box used to simulate detection and bypass perception modules.

3.5 Limitations and Future Work

GeoScenario does not specify ADS actions beyond the initial conditions and goals com-
posing a Diving Mission. This assumption was key in the language design to maintain
system-independence. We model the interactions solely based on how other agents behave

39

during the scenario evolution. We do not include driver or vehicle behavior models and
do not include advanced motion dynamics for vehicles. Instead, we model behavior and
motion at the basic level using trajectories as paths with speed profiles and triggers to
alternate behavior. Catalogs of trajectories can be used to mitigate this limitation, but
scenarios that require dynamic interactions between multiple vehicles tend to be difficult
to model and simulate (we address this limitation in the next chapter).

GeoScenario does not include elements to define environmental properties, such as
precipitation, or fog. We also do not model the effects of weather and road conditions on
friction, sensor performance, and vehicle dynamics. We recognize the importance of such
elements in a scenario, but they vary greatly based on both the simulation capabilities on
rendering the scene with varying levels of fidelity and the model for the subject system
running in simulation.

We plan to improve GeoScenario to support testing with a focus on the perception
task and include environment conditions that must be simulated to affect detection. New
behavior models for dynamic agents can be added to support scenarios exploring agent
behaviour that goes beyond path following for both vehicles and pedestrians. For example,
simulating a distracted pedestrian talking over the phone to test the system’s capabilities
to predict and handle unsafe behavior. We address the vehicle behavior limitation in
Chapter 4 with a model based on Behavior Trees and realistic motion. A model for realistic
Pedestrian Behavior is presented in [50].

Another branch of improvement is to guide scenario generation. So far, parameters
with value range and stochastic distributions are supported, but they do not help guiding
the generation towards specific goals (for example, finding critical scenarios by performing
successive input optimization). Metric composition with optimization goals can be modeled
as part of the GeoScenario, whereas the optimization method can be defined outside of the
model.

We built a database of testing scenarios with a wide coverage of requirements, exploring
a wide range of system capabilities. Scenarios are both manually designed by researchers
and extracted from traffic data. All scenarios are openly available, and the database can
be extended with new scenarios from the community.

3.6 Chapter Conclusion

In this chapter we propose GeoScenario as a DSL for scenario representation. We identify
key elements that compose typical test scenarios and which need to be formally declared

40

and executed on self-driving vehicle testing. By adopting GeoScenario in the simulation
infrastructure of the WISE ADS Project to validate the autonomy stack under simulation,
we demonstrate its applicability in practice. The language is built on top of well-known
Open Street Maps primitives, and designed to be lightweight and easily extensible.

A toolset to easily design and validate scenarios using our DSL is publicly available.
With the adoption of the format in WISE Lab projects, we publish a collection of tool-
independent scenarios for self-driving vehicle testing. With an open format and open-source
tools, we plan to expand the public scenario set into a shared database of tool-independent
scenarios with contributions from the research community. The base language is still
limited when scenarios require dynamic interactions between vehicles. We address this
issue in the next chapter with the addition of a model for dynamic vehicle behavior and
interactions targeting scenario design and a revision of the language as GeoScenario 2.0
integrated with the model. The full format specification is available in the evolving online
documentation. 3

3geoscenario.readthedocs.org

41

geoscenario.readthedocs.org

Chapter 4

A Driver-Vehicle Model for ADS
Scenario-based Testing

In this chapter we propose the Simulated Driver-Vehicle Model (SDV) to represent and
simulate vehicles as dynamic entities with their behavior being constrained by scenario
design and goals set by testers. This model extends the base scenario-definition language
GeoScenario introduced in Chapter 3. The layered architecture of the model leverages
behavior trees to express high-level behaviors in terms of lower-level maneuvers, affording
multiple driving styles and reuse. Further, optimization-based maneuver planner guides
the simulated vehicles towards the desired behavior. We detail the model’s architecture
and how the components interact.

4.1 Introduction

Testing automated driving systems (ADS) requires simulating a wide range of operating
scenarios to ensure their safety and conformity to traffic regulations and industry standards.
As the responsibility for the driving task shifts from the human driver to the ADS with
increasing levels of automation [62], the system is required to handle interactions with
the other road users, in particular with human-operated vehicles (HVs). Scenarios for
verification and validation must reflect how these dynamic interactions between humans
and the subject system can unfold in real traffic.

Figure 6.5 shows an example based on the National Highway Traffic Safety Adminis-
tration’s (NHTSA) pre-crash scenario catalog [54]. In this scenario, the vehicle operated

42

by the subject ADS (aka Ego vehicle) moves in traffic when V2 cuts in front of it, leading
to a near-collision. This cut-in maneuver likely triggers a reaction by several other close-by
vehicles, and the Ego’s reaction strongly influences how the scenario unfolds. Testing the
ADS capabilities in collision avoidance in such scenarios requires models that are able to
represent and simulate the dynamics of the traffic, including the HVs and their interactions
with Ego.

Many Domain-Specific Languages (DSLs) for scenario-based testing have emerged to
support the scenario design and representation (see Chapter 2). As such, they include
models for HVs and allow testers to define the HVs’ behavior and guide their interactions
with Ego when executed by simulation tools during testing. However, these languages are
typically limited to relatively simple models, such as using an event-based orchestration
mechanism that directly manipulates the simulated vehicle’s primitive attributes [8, 5, 13].
In such a model, a condition may trigger a direct assignment to the vehicle’s position and
velocity. The focus of these languages is declaratively specify “what a vehicle must do” and
“where it must be” in a particular scenario, but without detailing “how” it moves. Conse-
quently, this approach relies on a simulation tool to implement the actual vehicle behavior,
either by translating the high-level definition to the vehicle simulation model internal (and
often implicit) to the tool or by forcing the change in vehicle state, while disregarding the
limitations of a real vehicle in traffic. The potential mismatch between what is specified
by the language and the actual vehicle behavior compromises test reproducibility across
simulation environments and validity of the test results.

An alternative approach is to use catalogs of predefined trajectories (PDTs), either
extracted from traffic or designed by testers using a variety of mathematical functions or
polylines, and orchestrate them via triggers [59, 8, 19, 13]. This approach brings realistic
trajectories to HVs (as described in Chapter 3). However, the traffic is a dynamic system
with complex interactions amongst participants, as the example in Figure 6.5 illustrates.
Further, ADS sub-systems often exhibit some non-determinism [47, 65], which leads to non-
determinism in the overall ADS behavior. A predefined behavior at the level of trajectories
is unlikely to adequately account for the wide range of possible reactions in a dynamic
interaction between the ADS and the traffic and also achieve reproducibility. Further,
such PDTs are typically specific and limited to certain road geometries.

To fill this gap between scenario design and execution, this thesis contributes a model
to specify and simulate realistic HV behavior in ADS scenario testing, while affording high
expressiveness, execution accuracy, scalability, and reuse. We refer to our model as the
GeoScenario Simulated Driver-Vehicle model (or simply SDV model). It extends the base
scenario-definition language GeoScenario [59] with HVs as dynamic agents in both scenario
representation and simulation execution. The SDV model encapsulates driver and vehicle

43

Figure 4.1: A challenging interaction between Ego and HVs based on a pre-crash scenario
from NHTSA [54] and using the SDV model in simulation: (left) the SDV Model as V2

performs the cut-in maneuver targeting Ego, and (right) a high-fidelity co-simulator renders
the scene.

as a single entity and is based on two main layers: Behavior and Maneuvers. The Behavior
layer is a higher level of abstraction aimed at coordinating the vehicle behavior using an
explicit, user-oriented DSL. The Maneuver layer generates the actual vehicle trajectories
and is designed to approximate how real vehicles drive on the road and optimize for the
scenario test objective. Both layers are highly configurable to allow multiple driving styles,
subject to the physical limitations and nonholonomic properties [44] of a typical road
vehicle operating on structured roads.

A reference implementation of the model is available to the research community with
a full scenario simulation tool that is ready to be integrated in co-simulation with any
simulation environment (see Chapter 5). The toolset and additional model documentation
is available in the companion website.1

1https://geoscenario2.readthedocs.io

44

https://geoscenario2.readthedocs.io

4.2 Target Qualities

We identify target qualities a model must have to effectively represent and simulate HV
behavior:

• Reactiveness : It must be able to react and adapt its behavior according to the road
network and traffic rules, as expected from any traffic participant. For example,
adapting to the road geometry and lane markings, reacting to regulatory elements
and obstacles on the road, yielding or driving with right-of-way through intersections.
Further, The model must dynamically respond to the unfolding simulation of the
surrounding traffic, interacting with Ego and other participants.

• Realism: The model must be able to encode the nuance and diversity of the human
driving. Further, it must reflect real vehicle motion (non-holonomic constraints).
Some models in scenario simulation disregard such limitations, for example, using
simplistic motion limited to a constant velocity throughout a maneuver, or abrupt
changes from a moving state to a complete stop. The lack of expressiveness in the
scenario design can also result in unrealistic motion when the representation (the
DSL) do not encode the necessary detail to guide the simulation.

• Effectiveness in scenario design: Realistic simulation alone is not enough as the
primary goal of the model is to support scenario development. The model must be
able to express a diverse set of behaviors, allowing testers to cover a wide range of
operating scenarios (expressiveness). Testers also need the flexibility to modify and
reuse behavior across scenarios, accelerating the scenario design (behavior reuse).
Finally, the model must be able to accurately simulate scenario and vehicle behavior
with respect to scenario objective (execution accuracy).

• Scalability : The model must be able to scale with traffic density, for example, a sce-
nario with multiple vehicles interacting with Ego in a busy freeway. It requires mul-
tiple instances of the model, and efficient use of computational resources in real-time
simulations. Efficiency is also important to accelerate faster-than-real-time simula-
tion in batch test and increase the number of scenarios with a fixed time budget.

We also identify a design constraint. Typically, macro-traffic models rely on a multi-
agent orchestration entities to control the traffic flow. For example, a “junction manager”
controlling a non-signalized intersection, or vehicle-to-vehicle (v2v) communication to co-
ordinate interactions. Both solutions are commonly used for mass AI simulation in the

45

game industry. However, Ego is a black-box system and cannot be controlled by such
entities or engage with v2v coordination with HVs. Additionally, other vehicles in traffic
could be running inaccessible models (mixed participants). Therefore, the model must not
rely on external entities or communication with other vehicles to perform the driving task.
Current solutions lack the necessary qualities to support scenario-based testing. This led
us to build a new model.

4.3 SDV Model Design and Architecture

We now introduce the structure of the GeoScenario Simulated Driver-Vehicle (SDV) model
and its components. For simplicity and scalability, the model combines driver and vehicle
as a single entity, abstracting away driver inputs, such as steering angle, braking, and
throttle. The resulting behavior (model output) is the vehicle movement: position, velocity,
acceleration, and heading (yaw) at each point in time, referred to as VehicleState.

We design a layered architecture inspired by the seminal works of Michon [52] and
Boer et al. [23], which propose a hierarchical structure of the driving task with strategic
(e.g., route selection), tactical (maneuver selection), and control (maneuver execution)
levels. According to Boer et al. [23], the driving task can be characterized as a goal-
directed behavior, where the goal is typically composed of “a set of higher-level needs
whose interaction affects how drivers orchestrate the set of observable low-level driving
tasks.” Our model architecture targets the tactical and control levels, with a focus on
the ease of use for testers to express the overall tactical behavior in the behavior layer,
and the remaining two layers providing reusable maneuver planning and execution in (see
Figure 4.2):

• The Behavior Layer structures the driver tactical behavior. It breaks down the
complex driving task into smaller tasks and coordinates maneuvers via a user-oriented
DSL that consists of BTs and elemental maneuvers.

• The Maneuver Layer is responsible for trajectory planning. It turns a maneuver
decision from the BTs into a viable motion profile based on the road, the surrounding
actors, and the maneuver parameters.

• The Execution Layer is responsible for trajectory execution in simulation. The result
is the vehicle state as the output from the SDV model to the simulation.

46

Figure 4.2: GeoScenario SDV model overview. The model combines driver and vehicle into
a single entity and outputs the resulting vehicle state in simulation.

We rely on two general assumptions: Our model assumes scenarios are performed on
structured urban and rural road driving, as well as right-hand traffic (although the models
can be easily adapted to left-handed traffic). Next, we formalize our model representation
and break-down the layers.

4.4 World Model and Vehicle Representation

We assume that a simulation holds a ground-truth bird’s-eye-view representation of the
world in two-dimensional Cartesian coordinates, including all the static elements of the
scenario (road geometry and network, regulatory elements, static objects) and a simula-
tion state for all dynamic elements (pedestrians, vehicles, and regulatory element state).
Amongst the vehicles, Ego represents the vehicle under test, and its state is determined
by an Ego vehicle model controlled by the ADS under test. The remaining vehicles can be
SDV model instances, vehicles simulated by an unknown model, or vehicles controlled by
a human during test. In the world representation, they are equal traffic participants with

47

a body and a physical presence. All dynamic actors are perceived by each other through
their type and the state over time:

VehicleStateCartesian(t) = [x, ẋ, ẍ, y, ẏ, ÿ, θ]t (4.1)

The internal representation, systems, and the nature of their decision-making process
responsible for the driving task are not accessible. This assumption is a core concept in our
model to approximate our simulation model to real interactions in traffic, and maintain
consistent behavior in simulation with mixed participants.

4.5 Vehicle Motion

The vehicle driving mission is defined by a start state and a route assigned in GeoScenario
as part of the scenario design. The scenario route is a sequence of points to be visited
(in order), and its last point is the goal (see Section 4.5.1 GeoScenario Route). From
the Lanelet Map routing graph [57], we generate a sub-map of connected lanelets visiting
each route point on a shortest path, if such a route exists in the road network. With all
the lanelets in this route, a global path is formed by a sequence of points from the lane
centre line. It is used to guide the vehicle motion and its progress along the route to the
goal point. If the vehicle deviates from this route (after a scenario event), a new route is
generated from the last state to the remaining route points.

The SDV parameterizes and plans its motion in its dynamic Frénet reference frame [79],
rather than the global Cartesian coordinates of the simulation environment. This is moti-
vated by the fact that safety requirements on the motion of an on-road vehicle are typically
specified relative to its Frénet frame derived from the local lane geometry (e.g., see [70]).
For a given global path segment surrounding the vehicle position (which aligns with the
local lane centre line), we fit a spline, which we refer to as the reference path and use it for
the frame transformation.

The reference frame (Frénet frame) is given by the tangential t⃗ and normal n⃗ vectors
at the point along the arc length of this path that is closest to the vehicle. The resulting
frame’s S axis represents the longitudinal displacement along this path, and the D axis
represents the lateral displacement (Figure 4.3). The vehicle motion is represented by a
trajectory that combines two independent polynomial functions S(t) and D(t) in the Frénet
frame, and T as the total time (4.2). Velocity and acceleration are the first and second
derivatives, respectively, yielding the longitudinal and lateral state (4.3):

48

Figure 4.3: Road Geometry and vehicle displacement from original coordinates are trans-
formed into Frenet frame using the tangential and normal vectors t⃗, n⃗ from the lane centre
line (shown in red).

Trajectory = [S,D, T] (4.2)

VehicleStateFrénet(t) = [S(t− t0), Ṡ(t− t0), S̈(t− t0),

D(t− t0), Ḋ(t− t0), D̈(t− t0)]

for 0 ≤ t− t0 ≤ T (4.3)

The SDV trajectory is planned by the Maneuver Layer (Section 4.8) in the Frénet
frame, and the current SDV state is then translated to the Cartesian frame state (4.1) by
the Execution Layer at each simulation cycle. This approach allows us to store the road
geometry, surrounding traffic, and vehicle trajectories using a parametric representation
that is road-geometry independent and computationally inexpensive to execute in simula-
tion. Our method does not require a controller and driver inputs (e.g., throttle, brake) for
a separate Vehicle Model, since we leverage the simulation nature of the model to output
the vehicle pose from the Frénet-to-Cartesian transformations.

4.5.1 GeoScenario Route

A Route is defined in GeoScenario as a node, or composed by an ordered list of nodes (a
way object, with minimum of 2 nodes) where the last node is the goal location. Each node

49

is a 2D point (lat, lon) intersecting a valid lanelet (a lanelet in which vehicles can drive).
A Driving Mission is given to a vehicle when a route is assigned: “Drive using the shortest
path from the vehicle start position to the last node n, while visiting each intermediate
node in order along the Lanelet map”.

Listing 4.1: GeoScenario route example

< !−− GeoScenario Route−−>
<node id=’ 20 ’ l a t=’ 49.0072755 ’ lon=’ 8.457139 ’ />
<node id=’ 21 ’ l a t=’ 49.0081623 ’ lon=’ 8.4582812 ’ />
<way id=’ 10 ’>

<nd r e f=’ 20 ’ /> < !−− node 1−−>
<nd r e f=’ 21 ’ /> < !−− node n (goa l)−−>
<tag k=’ gs ’ v=’ route ’ />
<tag k=’name ’ v=’ my north route ’ />

</way>

< !−− GeoScenario Route wi th s i n g l e node (goa l)−−>
<node id=’ 30 ’ l a t=’ 49.0072755 ’ lon=’ 8.4571394 ’>

<tag k=’ gs ’ v=’ route ’ />
<tag k=’name ’ v=’ my east route ’ />

</node>

< !−− Vehic l e−−>
<node id=’−1 ’ l a t=’ 49.0072655 ’ lon=’ 8 .45704 ’> < !−−s t a r t p o s i t i o n−−>

<tag k=’ gs ’ v=’ v e h i c l e ’ />
<tag k=’ btype ’ v=’SDV ’ />
<tag k=” route ” v=”my north route ” /> < !−− ass i gned route−−>

</node>

A route node is considered as visited only if the vehicle reaches the longitudinal distance
along the intersecting Lanelet or any neighbours. The neighbour Lanelets are evaluated for
situations in which a vehicle is changing lanes along the route as part of the scenario be-
havior. Cycle Routes are defined using multiple points along the same Lanelets, respecting
the order. A node is considered visited only if the previous node was visited.

50

4.6 Traffic State Estimation

The Traffic State Estimation is a support task transforming the state of the static and
dynamic elements, including Ego, that surround the reference path into the SDV’s reference
frame (see Figure 4.2). Since both the SDV and the traffic are moving, the task predicts
the state of the world for the next point in time when the Maneuver Layer will generate a
new trajectory for the SDV. This predicted traffic snapshot in Frénet frame, along with the
map, represents a simplified representation of the world, which is then used for decision
making and trajectory generation. With the Frénet frame limited to the surroundings
of the vehicle, a Cartesian representation is also stored for decision making with vehicles
outside of the reference path (for instance, vehicle interactions in an intersection).

4.7 Behavior Layer

Given a route and the estimated traffic state, this layer performs the decision making,
modelled using BTs. In each execution cycle, the SDV executes the main BT, which is a
directed rooted tree with internal nodes being operators controlling the flow and leaf nodes
being either (i) conditions to be evaluated (based on the traffic state), (ii) decisions that
start (or end) maneuvers, or (iii) references to sub-trees.

Figure 4.4 shows a graphical representation of two sample trees, with the left one being
the main tree, and the right one being a sub-tree referred to from the main one. The main
tree first checks the sequence node, which tests whether the vehicle reached its goal; if
this test succeeds, then the tree will issue a decision to stop (stop maneuver). Otherwise
the vehicle continues driving by executing the sub-tree on the right, which first checks if
there is a lead vehicle, in which case it issues the follow maneuver; otherwise it commands
cruising at a set velocity.

51

Figure 4.4: Graphical representation of a sample SDV BT structuring the decision-making
with conditions (c) and maneuvers (m). ’?’ is the fallback operator (short-circuit or), and
→ is the sequence operator (short-circuit and).

The key motivation to use BTs is to provide test engineers with an easy-to-use means
to specify scenario-specific SDV behavior. Rather than using a full-fledged behavior plan-
ner for an entire ODD (Operational Design Domain) to control an SDV, they can specify
scenario-specific “micro-planners” by composing, parameterizing, and, if needed, customiz-
ing reusable BTs, expressed in a user-oriented DSL. This is possible since the driving task
can be broken into smaller sub-tasks (e.g, road following, handling traffic lights, switching
lanes), each encapsulated in a separate tree, and stored in a library. Test engineers can
select the BTs representing the behaviors needed for a test scenario from the library and
easily compose them through the sub-tree reference mechanism (as in Figure 4.4). They
can also modify the driving style of an SDV by modifying BT parameters, and inject
misbehaviors, such as dangerous cut-ins, by replacing normal maneuvers with BTs that
represent such misbehaviors. Compared to using a full-fledged behavior planner, this ap-
proach shields the engineers from the decision logic needed to support other scenarios and
thus eliminates unnecessary complexity.

4.7.1 Composing a Behavior

We follow the Behavior Tree classical formulation (see Section 2.7), with control nodes (se-
quence, fallback, parallel) coordinating the execution of their children nodes and behavior
nodes adapted to domain-specific tasks that compose the vehicle behavior: Condition and
Maneuver. Conditions evaluate the vehicle self state and the estimated traffic state and
must be satisfied to return SUCCESS. Table 4.1 shows a sample list of condition nodes

52

available in the SDV model that can be used to compose a custom behavior (the full list is
available in Appendix A). The Maneuver node represent the current decision in the form
of a maneuver and its configuration. This decision can be replaced if a new maneuver node
is reached on the same tick. Finally, we also add the subtree node as a composition node
with another Behavior Tree starting from the root (one can also override nodes from the
subtree to specialize the behavior). For each planning tick, the Behavior Tree is executed
from the root node in a depth-first search until the root returns its state (entire tree is
traversed). The last selected maneuver is the decision that propagates to the next layer.
The syntax in text form uses the symbols ‘‘?", ‘‘->", and ‘‘||" to denote the sequence,
fallback, and parallel control nodes respectively. Appendix B shows the complete SDV
Behavior Tree grammar in ANTLR4 format [1].

A full Behavior Tree after subtree composition is shown in Figure 4.5. Chapter 6 shows
a practical BT and how it captures a range of behaviors via parameters (Figure 6.7).
Further examples are available in the online documentation.

53

Table 4.1: Condition nodes

Condition Description

reached goal Success if vehicle has reached or passed the goal point.

at lane change segment Success if vehicle is inside a road segment where a lane change
is required to continue on route.

vehicle stopped Success if vehicle is not moving.

vehicle yielding Success if vehicle is stopped and at yielding position (stop line
or right before a conflicting lanelet). vel and distance (from
the stop line) are thresholds to define the yielding state. A
small velocity threshold can be used to account for noise in
the estimation.

vehicle parked Success if vehicle has stopped and at parking position. vel and
distance (offset from the center of the lane) are thresholds to
define the parked state. A small velocity threshold can be
used to account for noise in the estimation.

can lane change Success if a lane change to target lane (specified in the node
or set by a previous action) can be performed. gap and
time gap can be used to configure the acceptance conditions.

distance Success if distance to given vehicle (in Cartesian) is between
min and max (inclusive) in meters.

time gap Success if time distance to given vehicle (in Frénet, if vehicle is
on the path) is between min and max (inclusive) in seconds.

gap Success if distance to a given vehicle (in Frénet, if vehicle is
on the path) is between min and max (inclusive) in meters.
Note gap is negative if vehicle is behind.

lane occupied Success if current lane is occupied (i.e., there is a vehicle
ahead). Limited to maximum time and distance as thresh-
olds.

traffic light state Success if state of the traffic light (applicable to current
lanelet) matches the given color state. Example: traf-
fic light state(color=’RED’).

54

F
ig

u
re

4.
5:

A
sa

m
p

le
S

D
V

B
T

st
ru

ct
u

ri
n

g
th

e
d

ec
is

io
n

-m
ak

in
g

of
a

st
an

d
ar

d
d

ri
ve

r

55

4.8 Maneuver layer

This layer is responsible for the actual vehicle motion on the road. It receives a maneuver
decision from the Behavior Layer and implements it by generating a feasible trajectory,
which can be performed by a real vehicle. To achieve this, the model is bounded by a
set of feasibility constraints respecting the vehicle dynamics. This is an important distinc-
tion from the behavior models assumed by the scenario definition languages and traffic
simulators discussed in Chapter 2.

A maneuver is “goal-oriented vehicle motion control behavior undertaken by a human
driver or an ADS in order to achieve a specific result/outcome.” [62] A key element of the
result is the target state of the vehicle, such as reaching a desired velocity or an adjacent
lane and challenging Ego is a specific way. Furthermore, the maneuver must account for
the road geometry, other traffic, including Ego, and the desired driving style, according to
the test objectives.

Each maneuver is defined through a set of trajectory characteristics relative to the
road environment. A maneuver exposes a set of parameters to control it according to
scenario objectives. We use existing maneuver catalogs [62, 29] and implement a subset to
support the evaluation in Chapter 6 velocity keeping, vehicle following, lane swerving (used
for lane change and swerve-in-lane), merge-in-front, stop, and reverse. Note that these are
elemental maneuvers, and composite maneuvers are implemented as BTs over the elemental
maneuvers. For instance, lane maintenance composes velocity keeping, vehicle following,
and stop. The maneuvers instantiate a general model (see Figure 4.6), which has three
steps: (i) finding the target states for the maneuver, (ii) generating candidate trajectories,
(iii) selecting an optimal trajectory. Each of these steps is controlled by a set of configurable
parameters, allowing testers to realize a particular driving style or misbehavior. The
generated trajectories are kept short (2 to 5 seconds), but some maneuvers, e.g., vehicle
following, are performed over extended periods of time and, therefore, consist of a sequence
of trajectories. The Behavior layer decides when to start, finish, or abort a maneuver.

Target Finding

Each maneuver has its own criterion to define a target state and a time to reach it. Target
finding requires evaluating the road structure, traffic, and other objects. For example, the
target for velocity keeping is to reach and keep a target velocity, while in the same lane;
and the target for vehicle following is to reach and keep a certain target gap.

The maneuver configuration is used to adjust the desired behavior according to the

56

scenario goals by assigning target ranges to these parameters. Any lateral position relative
to the current lane can be used, but if the maneuver is a lane swerve, the position is relative
to the target lane. In the merge-in-front maneuver, the goal is to reach the same lane as the
target vehicle, while achieving the target differences in position, velocity, and acceleration
(δS). These target parameters allow simulating a dangerous cut-in maneuver by setting
the gap to be small and closing. Our online documentation has a detailed description of
maneuvers and target configuration options.

While defining the maneuver configuration, parameters can be set as a single value or
a value range, e.g., a vehicle target speed of exactly 14 m/s, or within 20 % from 14 m/s.
During execution, our model samples multiple values for each range parameter indepen-
dently and creates a target state set as a Cartesian product over the parameter value sets.
The sampling method of choice and the number of samples per parameter are configurable.
The target state set is used to generate multiple trajectory candidates and select the best
trajectory, filtering out configurations that may be infeasible or suboptimal.

Trajectory Generation

Given a target state set, trajectory generation computes a smooth motion profile between
the current vehicle state and each target state in the Frénet frame. We use an approach
that plans each trajectory as a pair of quintic polynomials, in longitudinal and lateral
direction, respectively [79], which minimizes jerk to reflect smooth and comfortable driving.
A quintic polynomial is a jerk-minimal connection between two points P0 and PT , in a one-
dimensional problem with p(t) as location and T as the motion duration [73]. The total
accumulated jerk over the one-dimensional trajectory is given by 4.4:

Jp,T :=

∫ t=T

t=0

...
p 2(t)dt (4.4)

Trajectory generation creates a trajectory by computing the coefficients of two quintic
polynomials, S(t) for the longitudinal dimension as p(t), and D(t) for the lateral direction
as p(t), to fit the boundary conditions: the initial state VehicleStateFrénet(t0) and each of
the target states VehicleStateFrénet(t0 + T) from the target-finding step. This results in a
candidate set that respects the target constraints.

57

Figure 4.6: SDV general maneuver model

Optimal Trajectory Selection

This step selects a feasible and optimal trajectory from the candidate set, based on fea-
sibility constraints and cost functions. Feasibility constraints reject trajectories with any
collision, direction inversion, lane departure, and exceedance of maximum lateral/longi-
tudinal jerk and acceleration. These are checked by sampling points over the S and D
trajectories independently (see Figure 4.7) and using thresholds for accepted behavior (for
instance, a more aggressive driving style can accept higher Jerk). For collision checking,
we use the predicted movement from other dynamic agents (e.g., Ego), and static object
locations as illustrated in Figure 4.8.

58

Figure 4.7: Sub trajectories in S and D for a swerve

Figure 4.8: Checking for collisions with static objects and dynamic obstacles

59

The remaining candidate set is ranked using a weighted sum of cost functions :

• Time cost: Penalizes trajectories longer or shorter than the target time T .

• Efficiency cost: Penalizes low average velocity.

• Lane-offset cost: Penalizes distance from lane center during the entire trajectory.

• Jerk cost: Penalizes high longitudinal and lateral jerk over the entire trajectory (JS,T
and JD,T).

• Acceleration cost: Penalizes high longitudinal and lateral acceleration over the entire
trajectory.

• Proximity cost: Penalizes proximity to obstacles (vehicles, pedestrians, or other ob-
jects).

The best trajectory is the lowest-cost feasible one. Weights can be adjusted per BT
node according to scenario goals. For example, if a given scenario requires the vehicle to
drive too close to Ego, the proximity cost weight for Ego must be lowered. The resulting
trajectory respects realistic vehicle motion, balances conflicting qualities such as progress
and comfort, while implementing the scenario goals.

4.9 Execution Layer

The selected trajectory is executed as a function of time. At each new planning cycle,
the BTs either continue the trajectory or switch between maneuvers if a new condition
is triggered. Figure 4.9 shows an example of trajectory planning for a cut-in maneuver
to the right lane. The grey lines are the candidate trajectories eliminated by feasibility
constraints or higher cost. The blue line is the best cut-in trajectory based on scenario
goals (target and weight values) and motion constraints. The green line is the target vehicle
(Ego) trajectory.

60

Figure 4.9: Trajectory planning by the SDV during a cut-in maneuver

4.10 Chapter Conclusion

We propose the SDV model to express and fully simulate realistic HV behavior in ADS
scenario-based testing. The model encapsulates driver and vehicle as a single entity with
a layered architecture that provides a user-oriented language to coordinate the vehicle
behavior with a higher level of abstraction, and it also includes a planner for vehicle
motion that optimizes for realism and the scenario test objective. The model fills the
gap between scenario design with traditional DSLs for scenario representation and the
execution in simulation with dynamic interactions between HVs and Ego, by allowing for
a high-level, declarative description, but also improved controllability and consistency. We
detail implementation decisions and performance considerations when using the model in
the next chapter, followed by the Evaluation in Chapter 6.

61

Chapter 5

Reference Implementation,
Performance, and Integration

In this chapter we discuss the GeoScenario and SDV Model reference implementations,
performance and scalability considerations to achieve the target qualities of the design,
how the implementation is integrated with simulators and an autonomy stack for testing,
and examples of the model running in practice. This implementation and integration are
the basis for experiments in the evaluation (Chapter 6). Additional details and a catalog
of scenarios are available in the evolving documentation, 1 and the code repository. 2

5.1 GeoScenario Server

The GeoScenario Server project contains the GeoScenario parser, the SDV model reference
implementation, and other tools for running full scenarios in simulation. The server parses
scenario definitions expressed using Lanelet2 map [57] and GeoScenario language [59] ex-
tended with the SDV BT definition format and creates a traffic simulation with the SDV
model instances running concurrently. Vehicles that do not require complex reactive be-
haviors can use predefined trajectories rather than the SDV model, which improves per-
formance. The server is implemented in Python 3.8, targets Ubuntu 20, and operates as
a co-simulator to be interfaced with the simulation of the Ego vehicle, its sensors, and the
ADS under test. Figure 5.1 shows the GeoScenario Server architecture. The components
are described as follows.

1https://geoscenario2.readthedocs.io/en/latest/
2https://github.com/rodrigoqueiroz/geoscenarioserver

62

https://geoscenario2.readthedocs.io/en/latest/
https://github.com/rodrigoqueiroz/geoscenarioserver

Figure 5.1: GeoScenario Server (GSServer) and the SDV Model reference implementation
architectures

• GeoScenario Parser : The starting point of a scenario simulation. It reads and parses
scenario definitions from GeoScenario files (.osm) using libxml, and the Lanelet2 map
(.osm) using the liblanelet [57].

• Traffic Simulation: This component coordinates the full traffic simulation (vehicles,
pedestrians, Ego and co-simulation interfaces) and monitors collisions. Additionally,
it adds StaticObjects and TrafficLights (a light state controller) over the static Lanelet
Map based on the scenario definition.

• MapModule: Interface for map related queries (identifying road and lane boundaries,
network connectivity, and regulatory elements). This module is used by both the
SimTraffic and the SDVPlanner module in the planning task.

63

• SimPedestrian: Pedestrian simulation based on GeoScenario (v1.0, as defined in
Section 3.3) or the Social Force model as defined in [50].

• SimVehicle: vehicle simulation with three types:

– External Vehicle (EV): Vehicles simulated outside of the server. These include
Ego, as the vehicle is operated by the ADS under test and simulated with a
separate model. Other vehicles not simulated by the GeoScenario Server are also
represented with this type. For example, vehicles operated directly by a tester
(manual drive) in real-time simulation, or operated by an alternative behavior
model running in the Co-Simulator. The role of this vehicle is to synchronize
the V ehicleState with the Co-Simulator or the Autonomy Stack directly.

– Trajectory-based Vehicle (TV): vehicles that do not require intelligent behavior
can use predefined trajectories rather than the SDV model. They are ideal for
better performance with high traffic density, but limit the scenarios in which
they can operate. They follow the Dynamic Agent model from the base GeoSce-
nario, as defined in Chapter 3;

– Simulated-Driver Vehicle (SDV): Vehicles running the SDV Model as defined
in Chapter 4. They run in the Main process, while the planning task runs in a
parallel process (detailed in Section 5.1.1).

• CoSimSync (The Co-Simulation Synchronization): This component is responsible
for synchronizing the state of the simulation between the server and a client simula-
tor. We use two alternative methods: Shared Memory (shared memory B) and UDP
(User Datagram Protocol) Sockets. Shared memory is the preferred method for bet-
ter performance, but requires both simulators and/or the Autonomy stack running
in the same computer. The UDP Socket can synchronize the simulation from differ-
ent computers over the network. The simulation can be asynchronous (default) or
synchronous. On asynchronous mode, the server runs the simulation independently
and updates the entire simulation state at the end of each tick (writing in the shared
memory or sending a datagram), while reading the client state and updating the
internal representation for Ego and all external vehicles in the next tick. On syn-
chronous mode, the server waits for the client tick after writing the simulation state
before it executes the next tick.

• Dashboard : This visualization module plots the map, vehicles, pedestrians, and tra-
jectories in both Cartesian frame and Frénet frame. It is an optional module for

64

debug and demonstration purposes, running in a separate process. It is computa-
tionally expensive and runs at a lower rate (10Hz recommended). The update rate
of the GUI does not affect the rate of the simulation.

5.1.1 SDV implementation

The SDV model runs in two separate processes: Planning and Execution. The separation
of roles and hierarchical structure of the model design promotes this separation and allows
parallelism. Execution is where the progress in the trajectory is computed and transfor-
mations from Frénet to Cartesian frame are performed. It requires a higher rate and must
be compatible with the simulation rate of the entire traffic. Planning is a computation-
ally expensive and time-critical task and needs to be executed with a fixed time since it
is based on a future state prediction (self-state and traffic state). It includes the Traffic
State Estimation, the Behavior Tree execution in the Behavior Layer, and the trajectory
generation and optimization from the Maneuver Layer. For each vehicle running the SDV
instance, the server creates a new process for the SDV Planner and an exclusive shared
memory block (shared memory B) to exchange the updated VehicleState and Trajectories.
This parallelism paired with a fast shared-memory interface between the two processes
is fundamental to keep the performance of the model under target in real-time simula-
tion. Further, non real-time simulation can be used to accelerate and scale the number of
scenarios in testing with a strict time-budget.

• BehaviorTree Parser : This component parses Behavior Tree files (.btree) and creates
an internal representation of the tree using the py tree library. The root tree is
assigned to a vehicle in the GeoScenario file, and subsequent sub-trees are parsed
and composed in internal tree structure as a single Behavior Tree instance. The
parser is based on ANTLR 4.7.2 (ANother Tool for Language Recognition) [1].

• TrafficState Estimator : This component is responsible for transforming the state of
the traffic simulation (static and dynamic elements, including Ego, that surround the
reference path) into the SDV’s reference frame. The traffic state is available in shared
memory A. It predicts the state of the world after the planning cycle is complete to
account for the moving traffic and self state along the previous trajectory. This
predicted traffic snapshot in both Frénet frame and Cartesian frame represents the
world and is used by the BehaviorLayer and ManeuverLayer for decision making and
trajectory generation, respectively.

65

• SDVRoute: This component is responsible for creating a route from a GeoScenario
route definition and tracking the vehicle progress along the route. This module can
identify the goal, and other relevant road segments. For example, where a lane
change is required to continue on route, or when the vehicle deviates from original
route and a re-planning is required to generate a new Reference Path. Note that
actions related to the route depend on the vehicle behavior defined in the Behavior
Tree, as the behavior is constrained by the scenario design.

• BehaviorLayer : This component executes the Behavior Tree assigned for the vehicle.
Each planning cycle restarts the execution from the root, and traverses the tree until
a decision is made (an action or maneuver).

• ManeuverLayer : This component implements the trajectory generation and opti-
mization task based on the Behavior Tree decision and maneuver configuration as
inputs.

5.1.2 Balancing performance

Two major parameters impact the overall performance of the model: Traffic Rate and
Planner Rate. They are particularly important when real-time simulation is required. For
the Traffic Rate we recommend 20 Hz to 30 Hz. Note they will depend on the perception
and tracking rates of the autonomy stack. A higher rate will generate smoother vehicle
motion, but the additional frames might not be used in practice. For the Planner Rate we
recommend 3 Hz to 5 Hz.

Additionally, planning parameters can affect the performance and must be used with
caution when running simulations with multiple vehicles.

• Cost sampling : When optimizing the trajectory selection, two parameters define how
many samples are extracted from each trajectory to compute feasibility and their cost:

– Samples per Trajectory (SPT): The minimum number of samples extracted from
each trajectory to compute the cost. We recommend a value between 10 and 20
SPT. However, scenarios that require high precision in reaching certain param-
eters might require more samples.

– Samples per Second (SPS): The minimum number of samples per second ex-
tracted from each trajectory to compute the cost. This will allow trajectories
configured to span a longer time horizon to have more samples than defined by

66

the SPT parameter. We recommend using 3 SPS. For example, a trajectory of
four seconds will require 12 samples as a baseline.

The resulting number of samples is the highest between SPT and SPS. Cost functions
based on integrals will use this parameter for approximation. These parameters apply
to all trajectories in a vehicle instance, but they can be modified per maneuver node
in the Behavior Tree.

• Path Points per Meter : The number of points-per-meter to be used along the vehicle’s
reference path as we generate the Spline. Higher density generates smoother curves.
We recommend 3 points-per-meter.

• Reference path length ahead : Look-ahead distance of the Frenét Frame (max longi-
tudinal distance). We recommend 100 m. Note the lookahead distance for conditions
can not be higher than this parameter.

• Reference path length behind : Distance behind the vehicle to be included in the Frenét
frame. We recommend 50 m (or higher for high speed merging scenarios).

External factors can also impact performance. For example, the total number of vehicles
in traffic (regardless of running SDV models), pedestrians, and static objects will affect
transformations in both Traffic Rate and Planner Rate, and impact collision checking
during the trajectory optimization as they get closer to the SDV. We recommend scenarios
with up to 10 vehicles along the reference path. The Reference path length ahead and
behind the vehicle can be adjusted to reduce the number of transformations and fine-tune
performance for a particular scenario or available computational resources.

5.2 SDV Model Examples

We show examples of the SDV Model running with the reference implementation. Note the
examples are not complete test scenarios (there is no ADS under test, which is replaced by
an SDV). However, they showcase some situations that vehicles running the SDV model
can handle in a scenario.

Figure 5.2 (a) shows a typical follow-and-stop scenario. In t(1), the lead vehicle (v2)
starts moving and the following vehicle (v1) accelerates. In t(2), both vehicles are driving
at full speed (around 14m/s) and v1 keeps a longer distance while projecting a trajectory
ahead of the current v2 position to maintain the 2 s TTC with the predicted v2 motion.

67

In t(3), v1 identifies the lead vehicle has stopped and starts decelerating until a complete
stop behind v2 in t(4).

Figure 5.2 (b) shows a lane-change scenario. In t(1), the vehicle is driving on current
lane. The trigger for a lane-change can be defined in the Behavior Tree as required by the
scenario, or as an automatic action to keep the vehicle on route (for example, to take a
turn using a parallel lane). In t(2), the vehicle projects a trajectory to the right lane, and
proceeds with the swerve in t(3). In t(4), the vehicle finishes the lane change and continues
driving. Note how between t(3) and t(4), the reference path changes to a new lane (blue
dotted line in the Cartesian frame), and the origin point in the Frenét frame (D = 0) is at
the center of the new lane. The vehicle lateral state changes from d < 0 to d > 0.

Figure 5.2 (c) shows an obstacle avoidance scenario. In t(1), the vehicle identifies
an obstacle on the road and begins sampling the lateral space (uniformly, by default).
In (t2), the feasibility constraints from the projected trajectories identify a collision (red
trajectories in Frénet frame) and the cost optimization results in the vehicle swerving away
from the object while keeping the vehicle inside the lane boundaries. In (t3), the vehicle
is safely away from the object and keeps its position on the right side of the lane. In t(4)
a new object arises, forcing the vehicle to immediately swerve to the left side of the lane.

Figure 5.2 (c) shows an all-way-stop intersection scenario. In t(1), both vehicles v1 and
v3 are approaching the intersection at the same time. Vehicle v1 projects a decelerating
trajectory until the stop line. In (t2), two new vehicles arrive and all vehicles are waiting
to cross the intersection in a deadlock. In t(3), v1 decides to move first, while v3 waits and
eventually crosses in t(4). Note the grid in the Frénet frame represents vehicles in each
occupancy zone surrounding the vehicle. The zones are part of the estimated Traffic State
and can be used for conditions that compose decisions in the Behavior Tree.

5.3 Integration and Co-Simulation

The implementation also provides a sample integration with an existing simulator, WISE
Sim, and an ADS software stack, WISE ADS (see Figure 5.4). The GSClient component
connects to the shared memory interface between the GeoScenario Server and WISE Sim,
which runs within the Unreal game engine and provides lidar and camera simulation. The
high-fidelity dynamics model of the Ego vehicle, a Lincoln MKZ, runs as a Robot Operating
System (ROS) [9] module along with the WISE ADS.

The GeoScenario Server can be integrated into any other simulation environment, sim-
ply by customizing GSClient for the new environment (shown in the cut-in example in

68

(a)

(b)

Figure 5.2: SDV Model in Simulation. Following a vehicle (a) and changing lanes (b).

69

(c)

(d)

Figure 5.3: SDV Model in Simulation. Maneuvering around static objects (c), and handling
an All-Way-Stop Intersection with multiple vehicles (d).

70

Figure 6.5). The implementation provides a collection of sample scenarios, BTs, and maps
covering different traffic situations. All tools are available to the research community and
can run scenarios out-of-the-box. More details are available in the online documentation.

Figure 5.4: SDV Model integration with the co-simulation environment (GeoScenario
Server + WISE Sim) and the subject system under test (WISE ADS). For simplicity,
all vehicle-related modules are abstracted as SDV Model Instance

We also provide an experimental integration to run scenarios in co-simulation with
CARLA [30]. The SDV model is able to drive with mixed traffic, when part of the vehicles
are CARLA Agents. This is possible because the driving task do not require any knowledge
of the underlying model driving the vehicle or any form of vehicle-to-vehicle communication.
All traffic participants are interpreted based on their external state and visibility from the
vehicle’s point of view.

Figure 5.5: SDV Model integration in co-simulation (GeoScenario Server + CARLA)

71

Figure 5.6: SDV Model running in CARLA using co-simulation

5.4 GeoScenario design

A custom JOSM can be used as a graphical editing tool to help designing and understanding
Geoscenario definitions on top of the Road Network (Lanelet layer). Additional imagery
map layers (e.g., Bing Maps, ESRI maps) can also be used if the scenarios are based on
real roads. This customization is available as a set of presets and style sheets that can
be added to the original JOSM tool (see Figure 3.5). We highly recommend using the
graphical interface when creating new scenarios. Alternatively, scenarios can be created
directly as XML files. The Behavior Trees for SDV models are written in separate files
and used as catalogs of driving behavior that can be assigned to individual vehicles in a
scenario.

5.5 Applications

Projects using GeoScenario integrated with WISE Sim and WISE ADS:

• Autonomous Driving: Mapping and Behavior Planning for Crosswalks : The project
is a study exploring pedestrian crosswalk scenarios. The goal is to evaluate methods
of balancing safety, assertiveness, caution, and obstruction to the traffic flow when
interacting with pedestrians in a configurable driving policy. Using GeoScenario, a
researcher manually designed ten pedestrian scenarios, and generated five additional
scenarios using data collected directly from a a crosswalk located at the University of
Waterloo campus Ring Road. This project explores the pedestrian paths with speed

72

profiles for realistic motion, and trigger features from GeoScenario. A configurable
driving policy for the WISE ADS system is introduced with results [26].

• WISE Bench: A Motion Planning Benchmarking Framework for Autonomous Ve-
hicles : This project aims at developing a benchmark for Motion Planning. The
goal of this study is to provide a comprehensive set of scenarios covering a diverse
range of road types (e.g., straight road, cul-de-sac, intersections) in interactions with
both vehicles and pedestrians. The project explores scenarios in a composition for-
mat with increasing levels of difficulty, and relies on a metrics module to evaluate
a systems overall performance. All scenarios from the benchmark are designed with
GeoScenario language and executed in simulation with WISE Sim. This project is
the most extensive use of the DSL, with more than 70 scenarios exploring many of
the GeoScenario features [37].

• AAA AV Test Methods project : A collaboration between WISE Lab and the Au-
tonomous Vehicles team of AAA. In this project, scenarios are performed in a testing
track using the Autonomoose vehicle. GeoScenario is used to formalize the scenario
choreography for the testing track execution, and to run the same scenarios in simula-
tion. The differences between the real track and simulation executions are compared,
and the causes of differences are used to suggest further development of the simulator
towards more consistent results. The scenarios involve the subject vehicle (Ego), a
second vehicle, and a pedestrian (in the test track, the pedestrian is a test dummy
mounted on a robotic platform from Dynamic Research Inc. “Micro LPRV” 3). The
project explores six different scenarios imposing challenges to the subject vehicle.
For example, a left turn with occlusion, a parking car close to an intersection causing
Ego to yield, and a near-crash between the subject vehicle and a pedestrian. Results
are available in the 2020 SAE Technical paper [20].

• A Hierarchical Pedestrian Behavior Model to Generate Realistic Human Behavior in
Traffic Simulation: This project extends the SDV Model to create a realistic and
highly controllable pedestrian simulation model. The hierarchical pedestrian be-
havior model generates high-level decisions through the use of behavior trees, and
executed by a low-level motion planner using an adapted Social Force model. A
full implementation of the work is integrated into GeoScenario Server, extending
its vehicle simulation capabilities with pedestrian simulation. This integration al-
lows simulating test scenarios involving both vehicles and pedestrians to assist in
the scenario-based testing process of autonomous vehicles. The model is shown to

3http://www.dri-ats.com/lprv/

73

http://www.dri-ats.com/lprv/

replicate the real-world pedestrians’ trajectories with a high degree of fidelity and a
decision-making accuracy of 98% or better, given only high-level routing information
for each pedestrian. Results are available in the IV 22 paper [50].

74

Chapter 6

Evaluation

In this Chapter we evaluate GeoScenario and the SDV model in terms of scenario develop-
ment effectiveness, realistic vehicle motion, practical applicability for scenario-based ADS
testing, and finally scalability. The following research questions guide our evaluation:

• RQ1: Can realistic and interactive scenarios for ADS testing be effectively modeled
and executed via GeoScenario and SDV models?

• RQ2: Can SDV models generate realistic vehicle motion?

• RQ3: Can using GeoScenario and SDV models improve the effectiveness of scenario-
based testing of a real ADS?

• RQ4: How does the model performance scale with traffic density?

6.1 Effective Scenario Development (RQ1)

We evaluate the effectiveness of scenario development using GeoScenario and the SDV
model to design and execute test scenarios from an independent catalog. We conduct
an experiment where we manually design scenarios from the catalog, execute them in
simulation, and observe the scenario evolution and vehicle behaviors. We evaluate the
performance in terms of expressiveness, execution accuracy, and behavior reuse. Further,
we analyze how the SDV model improves the original GeoScenario as the baseline DSL.
Finally, we discuss limitations and challenges we found during the experiment, the types of

75

scenario that improved the most with the inclusion of SDV models, and how our approach
can improve scenario based-testing with such scenarios.

Research Question 1: Can realistic and interactive scenarios for ADS testing be
effectively modeled and executed via GeoScenario and SDV models?

6.1.1 Metrics

We evaluate the effectiveness of scenario development using three metrics:

• (i) expressiveness : the breadth of scenarios that can be represented with the model.
Given a set of scenarios, we classify each scenario according to whether the required
behaviors for all vehicles in the scenario could be modeled. We assign success (S)
when all behaviors are successfully expressed with no limitations, partial (P) when
the behaviors for at least one variation of the scenario can be expressed, or failure
(F) when the minimum behavior required for a scenario cannot be expressed.

• (ii) execution accuracy : accuracy of the scenario and vehicle behavior during simu-
lation with respect to scenario objective. Even when a scenario can be represented
with the language, the intent in design may not always translate to correct execution
(this challenge is explored in [20]). After running a simulation, we classify the degree
to which scenarios are correctly executed: success (S) when all vehicles behave as
expected and the scenario objective is achieved; partial (P) when at least one varia-
tion of the scenario succeeds; and failure (F) when vehicles deviate from the design
intent and thus the scenario execution fails.

• (iii) reuse: the ability to reuse behavior across scenarios to reduce design effort.
Reuse in software is a key method for improving quality and productivity [32]. In
GeoScenario, behavior is defined using BTs, which can be reused by importing from a
shared library, composing using sub-tree references, and configuring using parameter
values. We quantify reuse in a scenario based on the internal reuse level from Frakes
and Terry [32]. When applying this metrics, BTs are considered as higher-level
items, which consist of nodes as lower-level items. Given a scenario containing a set
of BTs (higher-level items), the metric is defined as M/L, where M is the number
of nodes (lower-level items) that are used more than once (i.e., used also in BTs of
other scenarios) and L is the total number of nodes in the set of BTs. This metric
assumes values between 0 and 1 and represents the percentage of internal reuse. The

76

remaining percentage represents custom BT code, such as custom sub-trees, required
to implement behavior that is specific to the particular scenario. Note that each BT
in the library is used by at least two scenarios. Since a scenario may not use all the
nodes of the BTs it imports from the library, we also compute the internal reuse level
for a given scenario accounting for only the nodes that are actually executed in a
successful simulation.

6.1.2 GeoScenario PDT versus GeoScenario with SDV Model

Since the SDV model extends the capabilities of the original GeoScenario (Chapter 3), we
use the latter as the baseline. In the original language, the vehicle behavior is composed
of predefined trajectories (PDT) with speed profiles and triggers to change them at run-
time [59]. This common approach is also supported by other simulation tools, including
PreScan [4] and VTD [13], and scenario definition languages, including OpenScenario [8]
and M-SDL [5].

6.1.3 Scenario Catalog and Test Set

SDV models can be used in a wide variety of scenario designs and test cases requiring
Ego-to-HV interactions, which naturally leads to a large design space to explore and it
becomes difficult to show effectiveness. In order to make the evaluation feasible, we focus
on safety-critical scenarios that account for the majority of crashes in traffic. We use
the Pre-Crash Scenario Typology from NHTSA [54] to compose this evaluation set. This
scenario catalog provides interactive and realistic scenarios that can challenge the ADS
capabilities in crash avoidance and are commonly used as a reference for ADS validation in
other projects [16, 30]. They are interactive in the sense that they contain crash and near-
crash events caused by vehicle-to-vehicle interactions. They are realistic in the sense that
they are based on a large collection of actual crash reports. NHTSA scenarios are based on
the 2004 General Estimates System (GES) crash database with 5 942 000 police-reported
crashes occurred in the United States including at least one light vehicle.

Since the SDV models target scenarios that require Ego-to-HV interactions, we filter
the original set for situations with vehicle-to-vehicle interactions, resulting in 18 scenarios.
Therefore, scenarios based on a single vehicle crash (e.g., control loss), or involving other
traffic participants (e.g., pedestrians, pedalcyclists, animals on the road) are not applicable.
The list is not exhaustive in terms of coverage of the entire scenario design space, but
together they represent 69.65% of all light-vehicle crashes [54]. Table 6.1 shows the final

77

scenario set classified into groups. The ID we use is the same as the original NHTSA
Report. In Appendix C we show the complete list of 37 scenarios from NHTSA with
additional details on the selection process.

6.1.4 Turning NHTSA Scenarios into Test Scenarios

We design each scenario using a combination of the original GeoScenario and multiple
instances of SDV models. Each instance is based on a collection of BTs and maneuver
configurations representing the behavior of one or more vehicles interacting with Ego. The
original NHTSA set is based on reported events between HVs, but we assume that one of
the HVs is Ego, operated the ADS (similar to how Waymo adapts NHTSA scenarios as
tests [16]).

A test scenario must also have goals and a clear success/fail criteria. Ego’s goal is to
drive through the scenario (from start to goal point) and avoid a collision. The goal of an
SDV is to interact with Ego using target parameters defined by the tester, e.g., achieving
a certain time gap before braking. The overall scenario goal is to replicate the pre-crash
events as described by NHTSA, leading to a crash or a near-crash. If execution differs
by either a safe outcome (vehicles never interact or interact differently than intended)
or another type of crash, the scenario execution fails. After modeling the scenarios, we
execute them in simulation using the reference implementation (Chapter 5).

As part of the comparison of expressiveness with the baseline, we classify the type of
SDV behavior required in each scenario as static or dynamic with respect to three elements:
path shapes, speed profiles, and behavior triggers. Behavior triggers are conditions triggering
the required changes in paths and speed profiles during the scenario (Table 6.1). Scenarios
that involve static behavior for all three elements, i.e., fixed paths and speed profiles for
each SDV and their starting triggers, can be easily designed with PDTs from start to
finish and do not benefit significantly from a dynamic model (stat,stat,stat in Table 6.1).
Scenarios that require dynamic behaviors, but the behaviors can be expressed as sets of
static paths and velocity profiles with dynamic triggers to select among them (stat,stat,dyn
in Table 6.1), can still be modeled using PDTs with reasonable effort. Finally, scenarios
that require dynamic path or velocity profile or both (dyn,stat,*; stat,dyn,*; and dyn,dyn,*
in Table 6.1) are impractical to be modeled using PDTs, but are enabled by the proposed
SDV model. For example, the cut-in scenario has a continuous space of paths and speed
profiles, and a dynamic trajectory needs to be planned based on the Ego behavior, which
may vary from execution to execution.

We note that using the NHTSA descriptions of the scenarios as a source, many scenario

78

variants are possible. Our classification is based on the minimal behavior required to
reproduce the critical event occurring immediately prior to a crash as described by NHTSA;
however, added elements, such as additional vehicles, might change the static classification
to a dynamic one, but not the other way.

6.1.5 Results

Expressiveness

All 18 scenarios except for one variant of #17 are successfully expressed using the SDV
model. We identify 14 scenarios (78%) that depend on dynamic path or velocity profile or
both and are thus impractical for the baseline. For instance, a vehicle leaving a parking
position in scenario #17 must start this maneuver only when Ego is approaching and
adjust its trajectory, in one of the variants, to merge ahead of Ego. While the vehicle must
challenge the ADS, an unavoidable lateral crash into Ego would not be useful as a test
scenario. To achieve the scenario goal, the vehicle must be able to generate a trajectory
relative to Ego’s motion at run time. The same requirement applies to all lane-change
scenarios (#16-#19). For crossing-path scenarios #30 and #31, the velocity profile must
be dynamically planned. The SDV models enable us to successfully express these dynamic
behaviors, which are infeasible with the baseline, resulting in a higher expressiveness. One
variant of Scenario #17 “Parked Vehicle SD” requires the parked vehicle to join traffic by
making a U-turn, and this maneuver is currently not supported by the implementation of
trajectory generation.

A total of four scenarios (22%) require only static trajectories (stat,stat,* in Table 6.1)
and thus can be designed with the baseline. For instance, in the rear-end scenario #25
both path shape and speed profile can be generated offline and expressed as PDTs with
only a trigger to activate the deceleration as Ego approaches. In such examples, the SDV
model does not increase expressiveness. However, it adds two advantages: (i) conciseness,
by defining the scenario at a higher level of abstraction using target parameters instead of
detailed trajectories, and (ii) flexibility, by allowing the scenario to be replicated in different
road geometries without changing the behavior definition. We also observed improvement
in the conciseness of the scenario description in comparison with the use of PDT. All
scenarios could be simplified by avoiding detailed trajectories and adopting a higher level
of abstraction from Behavior Trees and Maneuver Configuration using targets.

79

Execution Accuracy

We run simulations to evaluate if the simulated vehicles perform as expected and if the
scenario execution resulted in the pre-crash situation as described by NHTSA. In 17 sce-
narios, vehicles perform as expected, and the scenario ends with a crash or near-crash as
described in the NHTSA report. The performance deviates from the design in the scenario
#16 “Vehicle(s) Turning – Same Direction”. The assigned behavior requires that vehicles
perform a maneuver that violates the legal road-network connectivity. Since the current
implementation relies on the Lanelet map to constrain the driving space, the map required
an adaptation to execute the scenario correctly.

Behavior Reuse

The composable nature of BTs allows us to reuse most of them, i.e., use each BT in two or
more scenarios, since there is significant commonality in the driving task for the different
scenarios. In most scenarios, vehicles start by performing normal lane maintenance or
vehicle following until an unexpected event occurs, such as a risky behavior of another
vehicle. The differences among scenarios emerge in such events and are usually modeled at
the highest levels of the main BT for the given scenario. We call them the “scenario-trees”.
The remaining tasks are reusable and performed using “sub-trees” (e.g., performing a lane-
change). This reuse pattern is not part of the original BT concept, but it has emerged
during this experiment when trying to maximize reuse.

In some instances, a simple overriding of parameters for conditions or maneuvers during
the sub-tree composition is sufficient to adapt the behavior from one scenario to another
and achieve the scenario objective with 100% reuse (see Internal Reuse Level in Table 6.1).
Overall, the average internal reuse level (weighted by the size of behavior trees in each
scenario) is 0.93. Considering only the nodes executed during a simulation, the average is
0.81. The results are summarized in Table 6.1.

Summary of Results

The experience modelling and running NHTSA scenarios reveals how effective the SDV
model can be in ADS scenario development. The model enables expressing highly-dynamic
behaviors, fosters reuse and can successfully execute most scenarios in simulation. Vehicle
interactions involving lane changing, merging, and crossing paths are severely limited or
impractical using the PDT baseline. Thus, such interactive scenarios benefit most from
the SDV model.

80

Table 6.1: Scenarios and performance

ID Group Scenario P
at

h
S

h
ap

e

S
p

ee
d

P
ro

fi
le

B
eh

av
io

r
T

ri
gg

er

E
x
p

re
ss

iv
en

es
s

E
x
ec

u
ti

on

IR
L

IR
L

ex
ec

4 CP Running Red Light stat dyn stat S S 0.83 0.60
5 CP Running Stop Sign stat dyn dyn S S 1.00 1.00
15 B Backing Up

Into Another Vehicle
stat stat dyn S S 0.91 0.60

16 LC Turning SD dyn dyn dyn S S* 0.87 0.63
17 LC Parking SD dyn dyn dyn P P 0.84 0.71
18 LC Changing Lanes SD dyn dyn dyn S S 0.89 0.79
19 LC Drifting SD dyn dyn dyn S S 0.79 0.71
20 OD Making Maneuver OD dyn dyn dyn S S 0.90 0.84
21 OD Not Making Maneuver OD dyn dyn dyn S S 0.76 0.50
22 RE Following Vehicle Making Maneuver dyn dyn dyn S S 1.00 1.00
23 RE Lead Vehicle Accelerating stat stat dyn S S 0.90 0.75
24 RE Lead Vehicle at Lower Speed stat stat stat S S 1.00 1.00
25 RE Lead Vehicle Decelerating stat stat dyn S S 0.90 0.75
27 CP Left-Turn Across Path/OD at SJ stat dyn dyn S S 0.90 0.75
28 CP Vehicle Turning Right at SJ stat dyn dyn S S 0.99 0.94
29 CP Left-Turn Across Path/OD at NSJ stat dyn dyn S S 0.98 0.93
30 CP Straight Crossing Paths at NSJ stat dyn dyn S S 0.94 0.81
31 CP Vehicle Turning at NSJ stat dyn dyn S S 0.94 0.81

Acronyms: B: Backing up, CP = Crossing Paths, LC = Lane Change, OD = Opposite
Direction, RE = Rear-end, SD = Same Direction, SJ = Signalized Junction, NSJ =

Non-Signalized Junction. Path Shape, Speed Profile, and Behavior Trigger are
requirements for vehicle behavior that can be static (stat) or dynamic (dyn).

Expressiveness and Execution show the degree in which a scenario is modeled and
correctly executed, respectively (S=successfully, P=partially, F=Failed). The internal

reuse level is computed with all Behavior tree nodes (IRL), and only for nodes that are
executed in the simulation (IRL exec). *Scenario #16 required a map adaptation to

perform correctly.

81

The limitations we identify are due to missing underlying maneuvers (such as a U-
turn, which is difficult to implement when planning in Frénet frame of a lane) or the map
constraints that prevent certain vehicle movements. We will address them in future work.
Based on the NHTSA statistics, the scenarios expressed and executed successfully with the
SDV model represent about 49% of all light-vehicle crashes in traffic.

6.2 Vehicle Motion Realism (RQ2)

In this section we evaluate the motion realism of vehicles running SDV models. As the
primary goal is to simulate human-operated vehicles, a good model must reflect the human-
driving behavior and how vehicles move in naturalistic traffic conditions. To evaluate the
motion realism, we use SDV models to replicate scenarios collected from urban traffic and
compare their behavior with real vehicles.

It is unreasonable to expect SDV models to drive exactly like the empirical vehicle, since
not even humans drive equally. However, our model is designed to be highly configurable
and adapt to different driving styles. With the proper configuration in the calibration
process, we expect that SDV models can approximate the behavior of the empirical vehicles
to a high degree given the same environment conditions. We evaluate the performance of
the model in 100 scenarios based on a measure of trajectory distance, and discuss how
different configurations can further approximate the synthetic behavior to real vehicles in
traffic.

Research Question 2: Can SDV models generate realistic vehicle motion?

6.2.1 Naturalistic Dataset

We use data from a busy signalized intersection during mid-day traffic in Waterloo, Canada,
which is part of the Waterloo Multi-Agent Traffic Dataset [14]. The “birds-eye” image
was collected using a drone and processed to label and track pedestrians and vehicles
(Figure 6.1).

82

Figure 6.1: A snapshot of the signalized intersection used for experiments and its corre-
sponding simulation on the right.

6.2.2 Experiment

This experiment follows four steps:

1. Data preparation: We classify the vehicle trajectories in the dataset into five scenario
types based on the main maneuver they represent: (i) vehicle crossing intersection
unconstrained (free), (ii) vehicle stopping (red light), (iii) vehicle resuming driving
(green light), (iv) vehicle following a lead through the intersection (follow), and (v)
vehicle partly following a lead when the lead merges or leaves mid-scenario (free/-
follow). In cases where a vehicle stops at a signal light, we split the trajectory into
two scenarios, namely (ii) and (iii), in order to eliminate the waiting state where a
simulated trajectory can trivially match the empirical vehicle. Each such classified
vehicle trajectory represents an individual experimental trial.

2. Test generation: For each classified vehicle trajectory, we identify the traffic condi-
tions that may affect how the vehicle is driving, e.g., signal light states and all other
vehicles and pedestrians that may affect it, to be reproduced in simulation. Each
classified vehicle trajectory is used as a reference vehicle for a single test. We generate
a new GeoScenario test replacing the reference vehicle with an SDV model instance
with a standard driver BT and using the same start state (velocity and position in

83

the intersection), and replicate the traffic conditions to ensure the driving task is
influenced by the same factors. The standard driver BT is capable of performing
each of the five maneuvers. We also assign a route goal to the model based on the
last known position of the empirical reference vehicle to ensure the simulated vehicle
will navigate the intersection towards the same exit lane. All other relevant empirical
vehicles and pedestrians are included in the test as agents with PDTs, and the signal
light phases are also replicated. We generate 100 test scenarios and manually review
the correctness of the identified traffic conditions.

3. Calibration: While each simulated reference uses the same standard-driver BT, it
needs a BT configuration to replicate the driving style of its empirical counterpart.
We use a set of rules to automatically analyze each empirical reference trajectory
and generate a configuration for it by extracting a set of high-level driving-style
parameter values and value ranges, including maximum and average velocities, lateral
displacement on the lane, stopping distance to target, reaction times, and time gap
to other vehicles. We adjust the SDV parameter ranges to target similar values.

4. Simulation: We run two simulations per scenario using the SDV model, one with
a default configuration before the calibration and another one after the calibration,
and export the resulting trajectories as a discrete set of the vehicle states in the
simulation frequency at 30 Hz. The default configuration uses nominal naturalistic
driving parameters, such as zero offset from the lane centerline and a time gap range
of 1.8..2.2 s [28].

The SDV performance is assessed using a measure of distance between the simulated
trajectory T1 and the empirical reference trajectory T2, which takes into account both their
spatial and temporal characteristics. The shorter the distance, the more similar the motion
behavior of the simulated and the empirical vehicle. We use the spatio-temporal Euclidean
distance (STED) [56], which represents the average Euclidean distance between positions
of the respective vehicles, T1(t) and T2(t), along their respective trajectories T1 and T2,
over the interval l in which both trajectories exist:

dSTED(T1, T2) =

∫
l
d(T1(t), T2(t)) dt

l
(6.1)

84

6.2.3 Results

Figure 6.2 shows the distribution of STED before and after calibration per scenario type.
The majority of simulated trajectories are already fairly similar to their empirical reference
even before the calibration with an average STED of 4.27 m. A review of the simulated
trajectories shows a similar decision making patterns, such as reacting to traffic lights
and vehicles ahead, to the empirical ones. However, the main differences are observed
in the speed profiles, lateral placement on the lane, time gaps, and various delays and
reaction times, all indicative of different driving styles. The calibration brings the simulated
trajectories significantly closer to their empirical counterparts: average STED for all 100
scenarios reduces from 4.27 m to 1.24 m. At an individual level, calibration improves the
performance in 82 scenarios. Although the performance is worse for 18 scenarios, it is only
slightly worse for 16 of them, with less than 1 m deterioration.

Only two scenarios deteriorated more significantly, by 1.4 m and 1.9 m. The latter
deviation is due to an erratic driving style of the empirical reference vehicle, which accel-
erates hard when resuming driving on green and then decelerates for no apparent reason.
Such erratic behavior could be replicated by a dedicated maneuver. Further note that
the improvement from calibration is most pronounced for (i) free driving by matching the
average speed of the empirical vehicle, and (ii) signal light handling by matching the delay
to resume driving on green.

Figures 6.3 and 6.4 show the paths and speed profiles of sample individual scenarios.
Plot (a) shows the reference vehicle 5 reacting to a red light. The path before calibration
shows the simulated vehicle stop at the stop line, but the empirical vehicle stops about
2.5 m before the line. After calibration, both the simulated and empirical paths match
up almost perfectly, with an STED of 17 cm, and a maximum distance of 31 cm. The
calibrated speed profile also closely matches the empirical one. Plot (b) shows vehicle 97
crossing the intersection southwards, while already following a lead vehicle. The black
dashed line shows the lead vehicle’s speed profile, which is fairly constant throughout the
scenario. The initially slower reference vehicle accelerates to match the lead’s speed. The
calibration improves the default configuration to match the more aggressive time-gap of
the empirical vehicle, resulting in closely matched speed profile and reducing the STED
from 2.37 m to 17 cm.

In rare cases, the calibration does not improve performance, as shown in plot (c). A
vehicle approaches the intersection with a red light and an already stopped vehicle ahead.
After waiting for the green light, the reference vehicle can resume driving but needs to keep
a following distance from the lead vehicle. The simulated vehicles resume with a smaller
delay compared to the empirical one.

85

Figure 6.2: Performance for all scenarios and per type, before (a) and after (b) calibration,
measured using STED in meters. Orange lines represent medians, and green triangles
represent averages.

In summary, SDV models can closely reproduce the behavior of human-driven vehicles
under the same traffic conditions. Overall, the model calibration can address varying driv-
ing styles and significantly increase the similarities in the trajectories. In some scenarios,
such as in Figure 6.3 (a), the simulated trajectory after calibration is in essence indistin-
guishable from the empirical one, with maximum difference of 31 cm. In some scenarios
the human behaves unexpectedly, however, and the current automatic calibration process
cannot replicate such behaviors, but they could be modeled in the BTs as additional ma-
neuvers. All results, trajectory logs, speed and trajectory plots are available in the project
website.

86

Figure 6.3: Paths and speed profiles for three sample scenarios. Empirical vehicles in red;
SDV models in dashed blue (before calibration) and solid blue (after calibration).

87

Figure 6.4: Paths and speed profiles for three sample scenarios. Empirical vehicles in red;
SDV models in dashed blue (before calibration) and solid blue (after calibration).

88

6.3 Application (RQ3)

We run an in-depth case study to evaluate how the model performs in a real ADS testing
environment and answer RQ3. We choose the cut-in lane change NHTSA scenario (#18
in Table 6.1) to test an actual ADS software as the subject system.

The case study has an explorative nature, with the objective to generate practical
insights of applying the SDV model to test a real ADS, including identifying potential
limitations.

Research Question: Can using GeoScenario and SDV models improve the effec-
tiveness of scenario-based testing of a real ADS?

6.3.1 The Cut-In Scenario

In this scenario, a vehicle changes lanes at a non-junction and merges closely in front
of the Ego traveling in a adjacent lane in the same direction. After the maneuver, the
lane-changing vehicle becomes the lead of the Ego. Cut-in maneuvers from other drivers
pose challenges to the ADS, and if not handled properly can lead to crashes. In fact, this
scenario accounts for 338 000 crashes or 6.69% of all the light-vehicle crashes in the NHTSA
report [54]. Avoiding or mitigating them is an important goal for any ADS development
program.

The goal of this test is to evaluate the ADS capabilities to handle cut-ins from other
vehicles. Testers want to evaluate the impact of key vehicle interaction parameters, such
as relative velocity and gap, on the likelihood and crash severity. The non-deterministic
behavior of the subject ADS makes simulating this type of scenario challenging, however.
Reaching the desired test parameter values while performing realistic vehicle interactions
requires a reactive model, capable of adapting and re-planning trajectories as the scenario
unfolds.

6.3.2 System Under Test

We test WISE ADS, developed at the University of Waterloo [15]. The ADS software
consists of a set of ROS modules implementing object-detection and tracking, occupancy
and high-definition mapping, localization and state estimation, maneuver and trajectory

89

Figure 6.5: Scenario #18 - Vehicle Changing Lanes – Same Direction

planning, and control. The software can operate a Lincoln MKZ Hybrid, equipped with
a drive-by-wire interface and a suite of lidar, camera, GPS, and inertial sensors, in auto-
mated mode at SAE level 3 (Figure 6.6). Note this is the same vehicle from the preliminary
GeoScenario applicability demonstration in Section 3.4. However, the software under test
is an updated version with improved mapping, occupancy, behavior planning, and local
planning. We focus on testing the ADS software in simulation, using WISE Sim with the
GeoScenario Server implementing the SDV model (see Figure 5.4). GeoScenario server sim-
ulates the SDV model instances and injects them into WISE Sim, with both environments
operating in co-simulation. Then WISE Sim uses the ROS publish-subscribe mechanism
to publish simulated sensor data from (GPS, IMU, cameras, and lidar) for the ADS and
receives the Ego pose from the high-fidelity dynamics model of the Ego.

90

Figure 6.6: “UW Moose” research platform where the WISE ADS operates

6.3.3 Test Scenario

The cut-in behavior is expressed as a BT, such as the one in Fig. 6.7, and assigned to an
SDV model instance. According to this BT, the vehicle must reach a certain acceptance
(rear) gap before performing the cut-in maneuver and then achieve a certain target (rear)
gap to Ego. The BT calls the standard drive BT (line 8) to maintain its current lane,
parameterized with a target speed of 14 m/s (+-10%), which is slightly higher than the road
speed limit. The simulation plans candidate trajectories by sampling 6 target velocities
from this target range (uniformly, by default). After a delay to allow the vehicle to pick
up pace (line 4), it starts checking for the acceptance distance gap (distance) of 5 m
(+-10%) for a lane change to the right (target lane id=RIGHT), on which Ego drives
at a speed matching the road speed limit (line 6). Once the acceptance gap is satisfied,
the lane change is triggered (line 7), with a target distance gap of 5 m and a relative
velocity of -3 m/s (delta s=(5,-3)). The experiment repeats the scenario with different
combinations of parameters to evaluate how Ego handles a variety of cut-in trajectories
and find configurations that are more likely to lead to a crash.

91

Figure 6.7: Cut-in vehicle behavior using GeoScenario Behavior Tree DSL. Upper image
is the graphical representation, while the lower image is the DSL form.

6.3.4 Results

As expected, more aggressive cut-ins are more likely to cause collisions, but the response
of the ADS to different parameter combinations of the cut-in maneuver is non-obvious (see
Table 6.2). Scenarios #7 and #8 are parameterized with the same short acceptance gap
∆da = 2m and the same target relative velocity ∆vt = −5m/s, but #8 has a smaller
target distance gap, ∆dt = −5m, compared to ∆dt = −2m for #7. As a result, #8 ends
in a collision. Note that ∆dt and ∆vt are planned relative to the predicted Ego location
at the end of the cut-in maneuver, assuming Ego continues at a constant velocity. Thus,
although a negative ∆dt would guarantee a collision if Ego maintained its velocity, Ego is
likely to brake and thus a negative ∆dt does not necessarily result in a collision. Scenarios
#9-11 use a larger acceptance gap, with ∆da = 5m. As a result, although #9 has the

92

same target parameters as #8, a collision is avoided, since the larger acceptance gap gives
Ego more time to react. Increasing the target aggressiveness in #11 results in a collision,
however.

Figure 6.8 shows scenario #8 with the SDV’s trajectory generation (a-b), its ground-
truth perspective (c), and the ADS’s perception of the scenario (d). The ADS detects the
SDV (yellow bounding box), and the ADS’s tracker predicts the SDV’s future trajectory
(bold green line) as in conflict with the Ego’s lane. Although the Ego initiates an emergency
stop, the rear-end collision is not avoided.

Table 6.2: Simulation parameters for SDV behavior and results

SDV Config Observed

∆da ∆dt ∆vt ∆da Coll. vSDV vEgo maneuver

7 2 -2 -5 2.07 n - - -
8 2 -5 -5 2.05 y 10.89 13.16 emergency stop
9 5 -5 -5 5.49 n - - -
10 5 -5 -10 5.50 n - - stop
11 5 -10 -10 5.60 y 7.60 12.15 -

6.3.5 Summary

This experiment demonstrates how the the SDV model can be used with a real ADS to
search for scenarios and parameters where the system may not be able avoid a collision.
We found that using another SDV instance as placeholder for Ego enables a rapid iterative
development of test scenarios. The iterations are needed to ensure the correct behavior of
the cutting-in vehicle and select reasonable ranges of test parameters, before running the
more time-consuming simulation with Ego controlled by the ADS. Finally, the experiment
results also highlight the importance of being able to plan the SDV maneuver trajectories
dynamically and influence their shape via parameters.

93

Figure 6.8: One of the simulation scenarios that results in a crash; in (a) and (b), the SDV
trajectory generation in Frénet frame targeting Ego at two different moments (optimal
trajectory in blue and infeasible ones in red); in (c) the SDV simulation view in Cartesian
coordinates; and in (d) the ADS perception (circles represent the lidar simulation, with
the Ego located at their center)

94

6.4 Scalability (RQ4)

We evaluate the SDV model scalability to see if it can support scenarios with heavy traffic.
Although most scenarios rely on a small set of vehicles interacting with Ego, such as
between one and three in the NHTSA pre-crash scenarios, other scenarios may require
simulating heavy traffic. For example, we observed that a single vehicle in our intersection
dataset may interact with up to six other vehicles. In order to support such scenarios,
the model must be able to scale traffic density without any significant degradation of the
simulation performance or the quality of the planned trajectories. We run this experiment
with a long scenario (two minutes) and increasing traffic density where all vehicles are
running SDV models.

Research Question 4: How does the model performance scale with traffic density?

6.4.1 Reference Implementation and Performance Requirements

The experiment uses the reference implementation (Chapter 5) running in real-time. To
provide a sufficient simulation update rate, the Behavior and Maneuver Layers target a
planning rate of 3 Hz, and the Execution Layer targets updating the position of all vehicles
at 30 Hz.

Planning is a highly time-critical task, which needs to be executed within its target
period of 333 ms (3 Hz). If a vehicle misses the target time to generate its plan, it likely
affects the quality of its trajectory and the resulting motion. Furthermore, a long overrun
can affect the SDV model’s ability to predict the traffic state, resulting in sub-optimal
trajectories and even unintended collisions.

The Execution Layer executes the trajectory of each vehicle from the previous planning
cycle by (i) transforming the current target state in the planned trajectory from the Frénet
frame to the Cartesian frame and (ii) updating the vehicle’s position, velocity, acceleration,
and yaw. The state transformation and update must be completed for all vehicles within
33 ms. A small exceedance, if consistent, may be acceptable, as it would slightly reduce
the update frequency below 30 Hz without destroying the actual vehicle motion.

Note: The experiment is executed on an Intel Core i7-6800K at 3.40 GHz (6 cores),
with 32 GB RAM and Ubuntu 18.04.5 (the implementation is CPU based).

95

6.4.2 Scenarios

We use two long-running scenarios, each with a two-minute duration, and vary the number
of vehicles, up to 20. In each scenario, the vehicles travel in one lane and form a virtual
platoon, simulating heavy traffic (see Figure 6.9). In scenario A, the vehicles travel without
any disturbance, and in scenario B, they need to steer to avoid a static obstacle in their lane.
When running scenario A, collision checking for obstacles is inactive; and it is activated
when running scenario B. The purpose of scenario B is to show the impact of collision
checking on scalability, since it is computationally expensive to plan around objects. Each
vehicle travelling behind another one is expected to observe a safe following distance in
both scenarios.

Figure 6.9: Scenario setup in GeoScenario. Up to 20 vehicles are travelling in one lane on
the University of Waterloo Ring Road (lanelet map on the left). On the right the image is
zoomed-in over the starting lane. The starting distance between vehicles is defined as 5m
in Frénet frame.

96

6.4.3 Metrics

We evaluate the adherence to the target rates using the following metrics:

• Target Rate Compliance (TRC), defined as the % of simulation (execution) ticks from
all vehicles that adhere to the target tick time of 33 ms (30 Hz);

• maximum tick time, defined as the longest tick in simulation;

• Target Planning Rate Compliance (TPRC), defined as the % of planning cycles from
all vehicles that adhere to the target time of 333 ms (3 Hz);

• the maximum planning time, defined as the longest planning time among all vehicles
(worst-case);

The compliance metrics allow us to observe the simulation cycles in which the vehicles
can maintain the target rate in both planning and execution, and the maximum tick time
and maximum planning time reveal the severity of the worst cases. Additionally, we observe
if there is any collision between vehicles or between vehicles and the obstacle during the
entire scenario.

6.4.4 Results

Both scenarios with up to 20 vehicles execute successfully, without any collisions or lane
boundary violations. The planning adheres to the target rate with almost 100%, with 99.8%
being the worst case (Table 6.3). On the other hand, execution deteriorates significantly
between 10 and 15 vehicles, especially when the collision checking is active, plunging from
98.49% to 78.58%.

Such a deterioration of the target rate to update the state of all vehicles may introduce
inconsistencies and confuse the ADS under test, such as inducing significant errors in its
object tracking system. However, reducing the update rate from 30 Hz to 20 Hz results
in near perfect adherence for up to 20 vehicles when no collision checking is used and up
to 15 vehicles with the collision checking active (Figure 6.10). Thus, scenarios with up to
10 SDV instances are easily handled by the reference implementation, and scaling to 20
instances requires reducing the update rate.

For scenarios requiring even more vehicles, the traffic can consist of a mix of vehicles,
with the more expensive SDV instances used for interactions with Ego, and the remaining
vehicles following PDTs, which have a negligible computing cost.

97

Figure 6.10: Performance with increasing number of vehicles. (A) is without obstacle
avoidance, and (B) is with obstacle avoidance. The grey area represents the performance
range between 20 Hz to 30 Hz.

Table 6.3: Performance with multiple scenario configurations in real-time simulation

id vehicles obstacle coll. TRC max tick TPRC max plan

1 1 inactive 0 100.00% 0.033s 100.00% 0.333s
2 5 inactive 0 100.00% 0.033s 99.93% 0.337s
3 10 inactive 0 98.44% 0.042s 100.00% 0.333s
4 15 inactive 0 92.28% 0.055s 99.94% 0.338s
5 20 inactive 0 61.90% 0.052s 100.00% 0.333s

6 1 active 0 100.00% 0.033s 100.00% 0.333s
7 5 active 0 99.97% 0.034s 100.00% 0.333s
8 10 active 0 98.49% 0.041s 99.94% 0.338s
9 15 active 0 78.58% 0.052s 99.80% 0.340s
10 20 active 0 55.65% 0.065s 99.91% 0.343s

98

When real-time simulation is not required, the tick time in the worst cases do not affect
the quality of the simulation and even more vehicles can be added. However, the total time
in simulation is still relevant to scale the number of scenarios. We run Scenario B 35%
faster with 20 vehicles, and 7% faster with 30 vehicles (see Table 6.4). Additional vehicles
in the simulation take longer than real-time to finish, but the growth is linear.

Table 6.4: Performance with faster-than-real-time simulation

id vehicles obstacle time % from sim time

12 20 active 77.8s 65%
13 30 active 112.5s 93%

6.5 Threats to Validity

A threat to external validity of our conclusions is the selection of scenarios to answer RQ1.
We acknowledge that the scenario set does not allow us to conclude that our findings are
applicable to other safety-critical scenarios, or other scenarios with Ego-to-HV interactions.
However, we attempt to increase external validity by using NHTSA Pre-Crash Typology
as a source to compose a realistic and diverse evaluation set. The NHTSA typology is
constructed with data aggregated from 6,170,000 police reported crashes involving at least
one light vehicle. We believe they should be of first priority to evaluate safety in ADS
development. Moreover, after filtering this set to applicable scenarios, the resulting eval-
uation set (18 scenarios) still account for a substantial percentage of all reported crashes
(50%). They cover different types of vehicle-to-vehicle interactions with varying road loca-
tions (traffic light intersections, stop sign intersections, single and double lane roads, same
and opposite traffic lanes, etc.).

Another threat to external validity is the Motion Realism from RQ2. The data is
limited to a single road location, and it does not cover all driving styles from HVs. It
does not support us to conclude the SDV performance will be similar when naturalistic
data collected from different locations is used. However, it shows the potential of using
Behavior Trees to express high-level behavior combined with Maneuver Models as low-level
behavior. Further, the performance improvement after calibration shows the configurability
of the model and how it can approximate synthetic and empirical vehicles. This calibration
process can be improved with learning approaches applied to new data sources and further
approximate simulated vehicles to naturalistic driving from new traffic observations.

99

A threat to internal validity arises when computing the metric behavior reuse per sce-
nario in the RQ1. We acknowledge that the order in which the scenarios are created can
affect the amount of reuse, since there is an additional pool of behaviors to compose new
scenarios. We mitigate this threat by designing the scenarios as a collection to maximize
reuse across all scenarios. This way, we are not favouring one scenario over the other.
Another threat arises from the different styles used by testers to create a scenario and
write the behavior trees. For example, a scenario can be expressed with a high level of
abstraction and encode intention while maximizing reuse, but it might be difficult to reach
the desired behavior during execution. We mitigate this threat by using three conflicting
metrics as objectives, and a good performance requires a balance that avoids design styles
that only maximizes one or the other.

6.6 Chapter Conclusion

We evaluate GeoScenario and the SDV model in terms of: scenario development effective-
ness (RQ1), which includes expressiveness, execution accuracy, and reuse, using NHTSA
pre-crash scenarios; its motion realism (RQ2) in comparison to naturalistic urban traffic;
its practical applicability (RQ3) to test an actual ADS, and its scalability with traffic
density (RQ4);

The results show that the model is able to successfully express and accurately execute all
eighteen NHTSA vehicle-to-vehicle pre-crash scenarios, except one scenario variant. This
exception only applies to a variant that requires the U-Turn (a limitation in our trajectory
planner), while the main scenario is based on a vehicle leaving the parking area and could
successfully be performed. In comparison, only four scenarios are effectively expressible
using PDTs, which is our baseline. In particular, lane-change and crossing-path scenarios
are highly unpractical with the baseline and benefit the most from the new model. The
SDV model also results in high-levels of internal reuse, achieving over 80% on average for
the NHTSA scenarios.

We use naturalistic traffic data from a busy urban intersection and show how the
motion of the simulated vehicles is similar to that of the real vehicles when operating
under the same conditions. In the best performing scenarios (first quartile), the synthetic
trajectories from the model are almost indistinguishable from empirical vehicles, with an
average spatio-temporal trajectory distance of less than 55 cm (while the average from all
scenarios is 1.24 m).

We demonstrate the model’s applicability in ADS scenario-based testing with a real
subject system, and its ability to reveal collision scenarios that cannot be expressed using

100

the baseline. Finally, we show that the model scales in scenarios with up to 10-20 simulta-
neous highly-interactive vehicles, while maintaining simulation quality and consistency in
the driving task. Given that Ego rarely interacts with more than 8 vehicles at a time, the
achieved scalability should be sufficient for most test scenarios.

101

Chapter 7

Conclusion

Scenario-based testing is one of the primary methods to verify and validate the behav-
ioral safety of automated vehicles, as mandated by industry standards (e.g., ISO26262 and
ISO21448) and safety frameworks (e.g., Waymo’s [16]). Supporting such testing requires
both a formal representation to express scenarios, and simulation models for execution.
Many solutions have emerged in recent years, but they focus on the high-level scenario def-
inition and lack the features to precisely and reliably control the required micro-simulation.
This thesis proposes GeoScenario as a tool-independent DSL for scenario representation
that covers both structure and behavior with a model for simulated human-operated ve-
hicles (SDV model). Our approach improves scenario modeling and execution for ADS
scenario-based testing, allowing researchers and engineers to develop tool-independent test
scenarios with sufficient behavior controllability, realistic movements, and interactive plan-
ning of the participating road users to achieve the test objectives.

The proposed SDV model uses a combination of BTs and dynamic trajectory planning.
The model encapsulates driver and vehicle as a single entity with a layered architecture that
provides a user-oriented language to coordinate the vehicle behavior, and vehicle motion
planning that optimizes for realism and achieving the scenario test objective. In particular,
BTs provide a high-level description of discrete decisions, with a high-level of abstraction
and parameterization to support controllability and reuse. Further, dynamic trajectory
planning allows for flexible adaptation of the SDV trajectories to different road geometries
and achieving the test objective despite varying and unpredictable Ego behaviors.

The evaluation shows that GeoScenario supports effective test scenario development
in design and execution. All eighteen NHTSA vehicle-to-vehicle pre-crash scenarios are
successfully expressed and executed using the SDV model, except for one variant due to

102

unsupported U-turns. The scenario analysis also shows that their majority (78%) require
dynamic trajectory planning, and thus cannot be effectively handled using the predefined-
trajectory agent baseline. The dynamic trajectory planning also allows for easy adaptation
of the tests to different road geometries. The ability to reuse sub-trees and override param-
eters support high levels of internal reuse, achieving over 80% on average for the NHTSA
scenarios. In other words, on average, over 80% of a scenario’s content is also used in one
or more other scenarios.

The evaluation also shows the ability of the SDV model to reproduce real-world vehicle
behavior and scale sufficiently. In one of the experiments, the average STED between the
simulation and the real trajectories for 100 traversals through a busy urban intersection
is 4.27 m before calibration, and it improves to 1.24 m after calibration. In particular,
the simulation faithfully reproduces different driving styles by adjusting parameters and
can accommodate custom behaviors, including misbehaviors, as additional conditions and
maneuvers. The reference implementation demonstrates that the SDV model scales to
execute scenarios with 10-20 highly interactive vehicles, and additional optimizations, such
as reducing the number of sampled trajectories for vehicles farther away from Ego, allow
for further scaling.

The application of GeoScenario to test WISE ADS in the cut-in scenario confirms the
usefulness of the model and offers practical insights. Among others, the ability to control
the shape of the cut-in trajectories uncovers the varied response of the ADS to different
trajectories, showing that not only the target gap and velocity, but also the acceptance
gap impact the likelihood of a collision. Further, using an SDV model instance in place of
Ego helps accelerate the development of the test scenario and parameter selection to tune
the trajectories of the agent that challenges Ego.

Additionally, this thesis contributes with an open catalog of executable test scenarios,
designed with GeoScenario and SDV model (from the Evaluation and other GeoScenario
applications), and a complete toolset to support scenario-based testing that includes the
language parser, SDV Model reference implementation, and integration tools. This toolset
can be integrated in co-simulation with any existing simulation environment and any au-
tonomy stack. With an open format and open-source tools, we hope it encourages the
adoption by the research community. The toolset and evolving documentation are avail-
able online.1

1https://geoscenario.readthedocs.io

103

https://geoscenario.readthedocs.io

7.1 Limitations and Future Work

GeoScenario does not cover environmental conditions (e.g., precipitation, fog, snow) and
the effects of such phenomena on sensor performance and vehicle dynamics. We plan to ad-
dress them in both scenario design and their effects on the SDV model for a comprehensive
traffic simulation.

The SDV model addresses the dynamic behavior of human operated light vehicles, while
other vehicle types are not covered (e.g., motorbikes, trucks and other heavy vehicles, multi-
body vehicles). While the concept of Behavior Tree in scenario design can be applied to
any simulated “driver”, the vehicle motion must be designed for the mechanical constraints
of such vehicles. We plan to extend the Maneuver Layer to account for the differences in
vehicle types. Similarly, we plan to extend the model for pedestrian behavior. Preliminary
results with BTs and the Social Force Model are available in [50]. Our next goal is to
integrate both models for scenarios with interactions between vehicles and pedestrians [50].

The model cannot reproduce irregular maneuvers that do not follow the structure of
the road or lane connectivity. For example, U-turns, 3-point-turns, and driving through a
parking lot are not supported. We plan to address this limitation with a new method to
generate the reference path and Frénet frame in such conditions, allowing the vehicle to
alternate driving modes.

We plan several other model extensions and new capabilities that exploit the model.
We plan to expand the model with new maneuvers and configuration options based on ad-
ditional scenarios, harvested from a wider range of naturalistic data, such as the additional
locations in the Waterloo dataset [14] and the multi-country INTERACTION dataset [80].
To improve the maneuver parameter sampling method, we plan to explore probabilistic dis-
tribution modelling to represent joint distributions in the maneuver configuration space.
This can accelerate the planning task by reducing the number of unfeasible trajectories
in the candidate set. Finally, we plan to improve the auto-calibration process and fur-
ther automate creation of BTs and their parameterization to approximate the naturalistic
traffic. We plan to exploit the model in generating new scenarios by injecting road-user
misbehaviour into BTs, such as simulating distraction [78] and ignoring occlusions [41].

104

References

[1] ANTLR - ANother Tool for Language Recognition. .

[2] Government Technology. https://www.govtech.com/fs/transportation/

poll-nearly-half-of-us-drivers-skeptical-of-autonomous-cars.html.

[3] Java Open Street Map Editor. https://josm.openstreetmap.de.

[4] MathWorks PreScan. .

[5] Measurable Scenario Description Language (M-SDL).
https://www.foretellix.com/open-language/.

[6] Open Street Map (OSM). https://www.openstreetmap.org.

[7] OpenDRIVE. https://www.opendrive.com.

[8] OpenScenario. https://www.asam.net/standards/detail/openscenario.

[9] Robot Operating System (ROS). https://www.ros.org/.

[10] Simulation of Urban MObility. https://www.eclipse.org/sumo/.

[11] State of California, Department of Motor Vehicles. https://www.

dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/

autonomous-vehicle-collision-reports/.

[12] SVL SIMULATOR. https://www.svlsimulator.com.

[13] Virtual Test Drive (VTD). https://vires.com/vtd-vires-virtual-test-drive.

[14] Waterloo Multi-Agent Traffic Dataset. http://wiselab.uwaterloo.ca/

waterloo-multi-agent-traffic-dataset.

105

https://www.antlr.org
https://www.govtech.com/fs/transportation/poll-nearly-half-of-us-drivers-skeptical-of-autonomous-cars.html
https://www.govtech.com/fs/transportation/poll-nearly-half-of-us-drivers-skeptical-of-autonomous-cars.html
https://josm.openstreetmap.de
https://www.mathworks.com/products/connections/product_detail/prescan.html
https://www.foretellix.com/open-language/
https://www.openstreetmap.org
https://www.opendrive.com
https://www.asam.net/standards/detail/openscenario
https://www.ros.org/
https://www.eclipse.org/sumo/
https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/autonomous-vehicle-collision-reports/
https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/autonomous-vehicle-collision-reports/
https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/autonomous-vehicle-collision-reports/
https://www.svlsimulator.com
https://vires.com/vtd-vires-virtual-test-drive
http://wiselab.uwaterloo.ca/waterloo-multi-agent-traffic-dataset
http://wiselab.uwaterloo.ca/waterloo-multi-agent-traffic-dataset

[15] WISE ADS. https://uwaterloo.ca/waterloo-intelligent-systems-engineering-lab/
projects/wise-automated-driving-system.

[16] Waymo safety report. Technical report, 09 2020.

[17] R. Ben Abdessalem, S. Nejati, L. C. Briand, and T. Stifter. Testing advanced driver as-
sistance systems using multi-objective search and neural networks. In 31st IEEE/ACM
Int. Conference on Automated Software Engineering (ASE), pages 63–74, Sep 2016.

[18] Raja Ben Abdessalem, Shiva Nejati, Lionel C. Briand, and Thomas Stifter. Testing
vision-based control systems using learnable evolutionary algorithms. In Proc. 40th
Int. Conf. on Software Engineering, pages 1016–1026. ACM, 2018.

[19] M. Althoff, M. Koschi, and S. Manzinger. Commonroad: Composable benchmarks
for motion planning on roads. In IEEE Intelligent Vehicles Symposium (IV), pages
719–726, June 2017.

[20] Michal Antkiewicz, Maximilian Kahn, Michael Ala, Krzysztof Czarnecki, Paul Wells,
Atul Acharya, and Sven Beiker. Modes of automated driving system scenario testing:
Experience report and recommendations. In SAE World Congress Experience. SAE,
2020.

[21] J. Andrew Bagnell, Felipe Cavalcanti, Lei Cui, Thomas Galluzzo, Martial Hebert,
Moslem Kazemi, Matthew Klingensmith, Jacqueline Libby, Tian Yu Liu, Nancy Pol-
lard, Mihail Pivtoraiko, Jean-Sebastien Valois, and Ranqi Zhu. An integrated system
for autonomous robotics manipulation. In 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 2955–2962, 2012.

[22] P. Bender, J. Ziegler, and C. Stiller. Lanelets: Efficient map representation for au-
tonomous driving. In IEEE Intelligent Vehicles Symposium, pages 420–425, June
2014.

[23] Ewin R Boer, Marika Hoedemaeker, et al. Modeling driver behavior with different
degrees of automation: A hierarchical decision framework of interacting mental mod-
els. In Proc. 17th European annual conference on human decision making and manual
control, pages 63–72, 1998.

[24] Oliver Bühler and Joachim Wegener. Automatic testing of an autonomous parking
system using evolutionary computation. SAE Technical Papers, 2004.

106

https://uwaterloo.ca/waterloo-intelligent-systems-engineering-lab/projects/wise-automated-driving-system
https://uwaterloo.ca/waterloo-intelligent-systems-engineering-lab/projects/wise-automated-driving-system

[25] Qianwen Chao, Huikun Bi, W. Li, Tianlu Mao, Zhaoqi Wang, Ming C. Lin, and
Z. Deng. A survey on visual traffic simulation: Models, evaluations, and applications
in autonomous driving. Computer Graphics Forum, 39, 2020.

[26] Chao, Edward. Autonomous driving: Mapping and behavior planning for crosswalks.
Master’s thesis, 2019.

[27] Michele Colledanchise and Petter Ögren. Behavior trees in robotics and AI: An intro-
duction. CRC Press, 2018.

[28] Krzysztof Czarnecki. Automated Driving System (ADS) Task Analysis - Part 1: Basic
Motion Control Tasks. Technical report, 07 2018.

[29] Krzysztof Czarnecki. Automated Driving System (ADS) Task Analysis - Part 2: Struc-
tured Road Maneuvers. Technical report, 07 2018.

[30] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. CARLA: An open urban driving simulator. In Proc. 1st Annual Confer-
ence on Robot Learning, pages 1–16, 2017.

[31] Martin Fowler. Domain Specific Languages. Addison-Wesley Professional, 1st edition,
2010.

[32] William Frakes and Carol Terry. Software reuse: Metrics and models. ACM Comput.
Surv., 28:415–435, 06 1996.

[33] Daniel J. Fremont, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue, Alberto L.
Sangiovanni-Vincentelli, and Sanjit A. Seshia. Scenic: A language for scenario speci-
fication and scene generation. In Proc. 40th ACM SIGPLAN Conf. on Programming
Language Design and Implementation, page 63–78, New York, USA, 2019. ACM.

[34] S. Geyer, M. Baltzer, B. Franz, S. Hakuli, M. Kauer, M. Kienle, S. Meier, T. Weissger-
ber, K. Bengler, R. Bruder, F. Flemisch, and H. Winner. Concept and development
of a unified ontology for generating test and use-case catalogues for assisted and au-
tomated vehicle guidance. IET Intelligent Transport Systems, 8(3):183–189, 2014.

[35] P.G. Gipps. A behavioural car-following model for computer simulation. Transporta-
tion Research Part B: Methodological, 15(2):105–111, 1981.

[36] Kentaro Go and John M. Carroll. The blind men and the elephant: Views of scenario-
based system design. Interactions, 11(6):44–53, November 2004.

107

[37] Ilievski, Marko. Wisebench: A motion planning benchmarking framework for au-
tonomous vehicles. Master’s thesis, 2020.

[38] ISO/FDIS 26262:1994. Road vehicles – Functional safety. ISO, Geneva, Switzerland,
2011.

[39] ISO/PAS-21448:2019. Road vehicles – Safety of the intended functionality. ISO,
Geneva, Switzerland, 2019.

[40] Matthias Jarke, X. Tung Bui, and John M. Carroll. Scenario management: An inter-
disciplinary approach. Requirements Engineering, 3(3):155–173, Mar 1998.

[41] Maximilian Kahn, Atrisha Sarkar, and Krzysztof Czarnecki. I know you can’t see me:
Dynamic occlusion-aware safety validation of strategic planners for autonomous vehi-
cles using hypergames. In IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2022.

[42] Nidhi Kalra and Susan M. Paddock. Driving to Safety: How Many Miles of Driving
Would It Take to Demonstrate Autonomous Vehicle Reliability? RAND Corporation,
Santa Monica, CA, 2016.

[43] Cem Kaner, James Bach, and Bret Pettichord. Lessons Learned in Software Testing.
John Wiley & Sons, Inc., New York, NY, USA, 2001.

[44] Alonzo Kelly and Bryan Nagy. Reactive nonholonomic trajectory generation via para-
metric optimal control. Int. J. Robot. Res, pages 583–602, 2003.

[45] Arne Kesting, Martin Treiber, and Dirk Helbing. General Lane-Changing Model
MOBIL for Car-Following Models. Transportation Research Record, 1999(1):86–94,
2007.

[46] Richard Knoblauch, Martin Pietrucha, and Marsha Nitzburg. Field studies of pedes-
trian walking speed and start-up time. Transportation Research Record: Journal of
the Transportation Research Board, 1538:27–38, 1996.

[47] Philip Koopman and Michael Wagner. Challenges in autonomous vehicle testing and
validation. SAE Int. J. Trans. Safety, 4:15–24, 04 2016.

[48] Robert Krajewski, Julian Bock, Laurent Kloeker, and Lutz Eckstein. The highd
dataset: A drone dataset of naturalistic vehicle trajectories on german highways for
validation of highly automated driving systems. In 2018 21st International Conference
on Intelligent Transportation Systems (ITSC), pages 2118–2125. IEEE, 2018.

108

[49] Robert Krajewski, Tobias Moers, Dominik Nerger, and Lutz Eckstein. Data-driven
maneuver modeling using generative adversarial networks and variational autoen-
coders for safety validation of highly automated vehicles. In 2018 21st International
Conference on Intelligent Transportation Systems (ITSC), pages 2383–2390. IEEE,
2018.

[50] Scott Larter, Rodrigo Queiroz, Sean Sedwards, Atrisha Sarkar, and Krzysztof Czar-
necki. A hierarchical pedestrian behaviour model to generate realistic human be-
haviour in traffic simulation. In IEEE Intelligent Vehicles Symposium (IV22). IEEE,
2022.

[51] Till Menzel, Gerrit Bagschik, and Markus Maurer. Scenarios for development, test
and validation of automated vehicles. In 2018 IEEE Intelligent Vehicles Symposium,
IV 2018, Changshu, Suzhou, China, June 26-30, 2018, pages 1821–1827, 2018.

[52] John A Michon. A critical view of driver behavior models: what do we know, what
should we do? In Human behavior and traffic safety, pages 485–524. Springer, 1985.

[53] Sara Moridpour, Majid sarvi, and Geoff Rose. Modeling the lane changing execution
of multi class vehicles under heavy traffic conditions. Transportation Research Record:
Journal of the Transportation Research Board, 2161, 12 2010.

[54] W. G. Najm, John D. Smith, and Mikio Yanagisawa. Pre-Crash Scenario Topology
for Crash Avoidance Research. Technical report, U.S. Department of Transportation,
NHTSA, April 2007.

[55] W. G. Najm, S. Toma, and J. Brewer. Depiction of Priority Light-Vehicle Pre-Crash
Scenarios for Safety Applications Based on Vehicle-to-Vehicle Communications. Tech-
nical report, U.S. Department of Transportation, NHTSA, April 2013.

[56] Mirco Nanni and Dino Pedreschi. Time-focused clustering of trajectories of moving
objects. J. Intell. Inf. Syst., 27:267–289, 11 2006.

[57] Fabian Poggenhans, Jan-Hendrik Pauls, Johannes Janosovits, Stefan Orf, Maximilian
Naumann, Florian Kuhnt, and Matthias Mayr. Lanelet2: A high-definition map
framework for the future of automated driving. In Proc. IEEE Intell. Trans. Syst.
Conf., Hawaii, USA, November 2018.

[58] Vincenzo Punzo, Maria Teresa Borzacchiello, and Biagio Ciuffo. On the assessment
of vehicle trajectory data accuracy and application to the next generation simulation

109

(NGSIM) program data. Transportation Research Part C: Emerging Technologies,
19(6):1243 – 1262, 2011.

[59] Rodrigo Queiroz, Thorsten Berger, and Krzysztof Czarnecki. GeoScenario: An open
DSL for autonomous driving scenario representation. In IEEE Intelligent Vehicles
Symposium (IV), 2019.

[60] E. Rohmer, S. P. N. Singh, and M. Freese. V-rep: A versatile and scalable robot
simulation framework. In 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1321–1326, 2013.

[61] SAE. Operational definitions of driving performance measures and statistics (sae
j2944). Technical report, SAE International, 2015.

[62] SAE. Taxonomy and Definitions for Terms Related to Automated Driving System
Behaviors and Maneuvers for On-Road Motor Vehicles (SAE J3164). Technical report,
SAE International, 2018.

[63] SAE. Taxonomy and Definitions for Terms Related to Driving Automation Systems
for On-Road Motor Vehicles(SAE J3016). Technical report, SAE International, 2021.

[64] SAE. Summary Report: Standing General Order on Crash Reporting for Automated
Driving Systems. Technical report, NHTSA, 2022.

[65] Rick Salay, Rodrigo Queiroz, and Krzysztof Czarnecki. An analysis of iso 26262:
Machine learning and safety in automotive software. SAE Technical Papers, 2018.

[66] Barbara Schütt, Thilo Braun, Stefan Otten, and Eric Sax. Sceml: A graphical mod-
eling framework for scenario-based testing of autonomous vehicles. In Proc. 23rd
ACM/IEEE International Conference on Model Driven Engineering Languages and
Systems, page 114–120, New York, NY, USA, 2020. ACM.

[67] Chris Schwarz. On computing time-to-collision for automation scenarios. Transporta-
tion Research Part F: Traffic Psychology and Behaviour, 27:283 – 294, 2014.

[68] J. Sewall, David Wilkie, Paul C. Merrell, and Ming C. Lin. Continuum traffic simu-
lation. Computer Graphics Forum, 29, 2010.

[69] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim: High-fidelity
visual and physical simulation for autonomous vehicles. CoRR, abs/1705.05065, 2017.

110

[70] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. On a formal model of
safe and scalable self-driving cars, 2018.

[71] Ravi Shanker, Adam Jonas, Scott Devitt, Katy Huberty, Simon Flannery, William
Greene, Benjamin Swinburne, Gregory Locraft, Adam Wood, Keith Weiss, Joseph
Moore, Andrew Schenker, Paresh Jain, Yejay Ying, Shinji Kakiuchi, Ryosuke Hoshino,
and Andrew Humphrey. Autonomous Cars Self-Driving the New Auto Ind̊austry
Paradigm (Blue Paper). Technical report, Morgan Stanley, 2013.

[72] Simon Suo, Sebastian Regalado, Sergio Casas, and Raquel Urtasun. Trafficsim: Learn-
ing to simulate realistic multi-agent behaviors, 2021.

[73] A. Takahashi, T. Hongo, Y. Ninomiya, and G. Sugimoto. Local path planning and
motion control for agv in positioning. In Proc. IEEE/RSJ Int. Workshop on Intelligent
Robots and Systems, pages 392–397, 1989.

[74] S. Ulbrich, T. Menzel, A. Reschka, F. Schuldt, and M. Maurer. Defining and substan-
tiating the terms scene, situation, and scenario for automated driving. In IEEE 18th
International Conference on Intelligent Transportation Systems, pages 982–988, Sept
2015.

[75] UMTRI. Safety Pilot Model Deployment. Technical report, The University of Michi-
gan Transportation Research Institute (UMTRI), 2017.

[76] Richard van der horst and Jeroen Hogema. Time-to-collision and collision avoidance
systems. 01 1994.

[77] Van Gennip, Matthew. Vehicle dynamic modelling and parameter identification for
an autonomous vehicle, 2018.

[78] J.W.C. van Lint and S.C. Calvert. A generic multi-level framework for microscopic
traffic simulation—theory and an example case in modelling driver distraction. Trans-
portation Research Part B: Methodological, 117:63–86, 2018.

[79] Moritz Werling, Julius Ziegler, Sören Kammel, and Sebastian Thrun. Optimal trajec-
tory generation for dynamic street scenarios in a Frenét Frame. IEEE Int. Conference
on Robotics and Automation, pages 987–993, 2010.

[80] Wei Zhan, Liting Sun, Di Wang, Haojie Shi, Aubrey Clausse, Maximilian Naumann,
Julius Kümmerle, Hendrik Königshof, Christoph Stiller, Arnaud de La Fortelle, and
Masayoshi Tomizuka. INTERACTION Dataset: An INTERnational, Adversarial and

111

Cooperative moTION Dataset in Interactive Driving Scenarios with Semantic Maps.
arXiv:1910.03088 [cs, eess], 2019.

[81] Xizhe Zhang, Siddartha Khastgir, and Paul Jennings. Scenario description language
for automated driving systems: A two level abstraction approach. In 2020 IEEE
International Conference on Systems, Man, and Cybernetics (SMC), pages 973–980,
2020.

[82] D. Zhao, H. Lam, H. Peng, S. Bao, D. J. LeBlanc, K. Nobukawa, and C. S. Pan.
Accelerated evaluation of automated vehicles safety in lane-change scenarios based
on importance sampling techniques. IEEE Transactions on Intelligent Transportation
Systems, 18(3):595–607, March 2017.

112

Appendix A

Behavior Tree Conditions

The condition node set that evaluates the estimated Traffic State. They are building blocks
to create and modify the vehicle behavior using Behavior Trees. This set is available in
the reference implementation, but it can be expanded by the user with access to he Traffic
State. For some conditions, the target vehicle can be identified by vid (vehicle with id),
lid (vehicle in lane with id), or zid (vehicle in zone with id). If no vehicle is given, assumes
self (reference to vehicle running this tree). For example, vehicle stopped means if self
is not moving, vehicle stopped(lid = RIGHT) means if vehicle on the right lane is not
moving. The units for distance, time, and velocities are respectively seconds, meters, and
meters per second.

Basics

• sim time
t,min,max
Success if simulation time matches given time t or is within min and max values (in
seconds). Using exact time will have a tolerance of up to the planner rate (3ms if
3Hz). If max is not given, is assumed to be infinity.

• vehicle state
vid, lid, zid
Success if vehicle state has reached longitudinal and lateral values at minimum. If
no vid or zid is assigned, defaults to self .

• delta vehicle state
s pos, s vel, s acc, d pos, d vel, d acc, vid, lid, zid

113

Success if vehicle state has reached delta values at minimum. Comparison is between
self and the given vehicle.

• wait
t
Success if time since node is first visited is ⩾ t. Resets clock after returning success.
On other words, wait given time before moving to next node (used to delay reactions).

• interrupt
Returns Failure. Can be used to interrupt a sequence of conditions with success.

Condition sim time can be useful to coordinate certain actions at the beginning of the
scenario. However, as the timeline advances, using simulation time to control the flow
is prone to error and scenario drift (when scenario deviates from intended design). We
recommend using Metrics and Interaction Conditions as the main form of control.

The conditions vehicle state and delta vehicle state are low level conditions that can be
used when Traffic Interactions and Metric conditions are not adequate. We recommend
conditions with higher level of abstraction whenever possible.

Routing and Driving Mission

• reached goal
distance
Success if the vehicle has reached or passed the goal point (see Routing in Section
4.5.1)

• at lane change segment
Success if the vehicle is inside a road segment where a lane change is required to
continue on route.

• target lane
lid
Success if given lane is the target lane. Target lane is the default lane if a lane change
is requested without specifying direction.

• out of route
Success if vehicle is outside planned route.

114

Traffic Interactions

• vehicle stopped
vid, lid, zid
Success if vehicle is not moving.

• vehicle moving
vid, lid, zid
Success if vehicle is moving.

• vehicle yielding
vid, lid, zid, distance, vel
Success if vehicle is stopped and at yielding position (stop line or right before conflict-
ing lanelet). vel and distance (from the stop line) are thresholds to define the yielding
state. A small velocity threshold can used to account for noise in the estimation.

• vehicle parked
vid, lid, zid, distance, vel
Success if vehicle has stopped and at parking position. vel and distance (offset from
the center of the lane) are thresholds to define the parked state. A small velocity
threshold can be used to account for noise in the estimation.

• lv stopped
Same as vehicle stopped, but targets the lead vehicle.

• lv moving
Same as vehicle moving, but targets the lead vehicle.

• lv parked
Same as vehicle parked, but targets the lead vehicle.

• can lane change
lid, gap, time gap
Success if there a lane change to lid or target lane (set by a previous Action) can be
performed. gap and time gap can be used to configure the acceptance conditions.

• is ego
vid, lid, zid
Success if vehicle is Ego.

115

Metrics

• distance
vid, lid, zid,min,max
Success if distance to given vehicle (in Cartesian) is between min and max (inclusive).

• time gap
vid, lid, zid,min,max
Success if time distance to given vehicle (in Frénet, if vehicle is on the path) is
between min and max (inclusive) in seconds.

• gap
vid, lid, zid,min,max
Success if distance to given vehicle (in Frénet, if vehicle is on the path) is between
min and max (inclusive) in meters. Note gap is negative if vehicle is behind.

• longitudinal distance
vid, lid, zid,min,max
Success if absolute longitudinal distance to given vehicle (in Frénet) is between min
and max (inclusive). Note this is the absolute difference, and is always positive
(unlike gap).

• lateral distance
vid, lid, zid,min,max
Success if absolute lateral distance to given vehicle (in Frénet) is between min and
max (inclusive). Note this is the absolute difference, and is always positive (unlike
gap).

Road and Regulatory Elements

• approaching intersection
distance
Success if vehicle is approaching a regulated intersection. Threshold is given in
distance to intersection.

• approaching stop sign
distance
Success if vehicle is approaching any stop sign (useful when map is incomplete and
does not contain a proper regulatory element). Threshold is given in distance to
intersection.

116

• intersection type
type
Success if vehicle is approaching intersection from given type. Type can be RIGHT OF WAY,
ALL WAY STOP, TRAFFIC LIGHT, or PEDESTRIAN CROSS.

• yield role
Success if vehicle approaching intersection and has the yielding role.

• intersection occupied
vid
Success if intersection of any type (RightOfWay, TrafficLight or AllWayStop) has
crossing vehicles (moving). With vid, returns success only if given vehicle is present.

• row occupied
vid, distance
Success if RightOfWay intersection has approaching vehicles in the lanelets with right
of way, limited to distance from the intersection. With vid, returns success only if
given vehicle is present.

• aws occupied
vid, distance
Success if AllWayStop intersection has vehicles in yielding lanelets, limited to distance
from the intersection. With vid, returns success only if given vehicle is present.

• aws yield
vel, wait time, risk probability
Success if AllWayStop intersection has vehicles yielding with priority. Failure other-
wise (meaning self has priority). With vid it returns success only if given vehicle is
present, vel is the velocity threshold to assume a vehicle is moving (account for noise),
wait time is the max wait time on a deadlock before moving, and risk probability is
the probability of taking the risk and moving first from 0 (never move) to 1 (always
move), after wait time in deadlock has passed.

• lane occupied
time, distance
Success if current lane is occupied (if there is a vehicle ahead). Limited to maximum
time and distance as thresholds.

• traffic light state
color

117

Success if state of the traffic light (applicable to current lanelet) matches the given
color state. Example traffic light state(color=’RED’).

Actions

Action conditions modify the state of the vehicle and return Success.

• action set target lane
lid
change target lane.

• action reroute
recalculate a route and generate a new reference path.

• action turn signal left
state
Change left turn signal state. Will toggle on/off if no state is given.

• action turn signal right
state
Change right turn signal state. Will toggle on/off if no state is given.

• action head light
state
Change headlight state. Will toggle on/off if no state is given.

118

Appendix B

Behavior Tree Grammar

SDV Behavior Tree Grammar in ANTLR4 format [1].

Listing B.1: Behavior Tree Grammar

grammar BTreeDSL ;
/∗ Parser Rules ∗/
behaviorTree : (’ b ehav i o r t r e e ’ name ’ : ’ INDENT rootNode NL? DEDENT?)+EOF;

rootNode : node ;
node : lea fNode | nodeComposition ;
nodeComposition : OPERATOR name? INDENT node+ DEDENT;
leafNode : (maneuver | cond i t i on | subt ree) NL;

cond i t i on : ’ c ond i t i on ’ name ’ (’ c c on f i g ’) ’ ;
maneuver : ’maneuver ’ name ’ (’ mconfig ’) ’ ;
subt ree : ’ subt ree ’ name ’ (’ (midconf (’ , ’ midconf)∗) ? ’) ’ ;
midconf : mid ’=’ mconfig ;
mconfig : name ’ (’ params∗ ’) ’ ;
c c on f i g : name ’ (’ params∗ ’) ’ ;
mid : name ;
params : bexpr (’ , ’ bexpr)∗ ;
bexpr : name (BOP|ATT) value ;
va lue : FLOAT | name | func | tup l ;
func : name ’ (’FLOAT (’ , ’ FLOAT)∗ ’) ’ ;
tup l : ’ (’FLOAT (’ , ’ FLOAT)∗ ’) ’ ;
name : WS∗ WORD WS∗ ;

119

/∗ Lexer Rules ∗/
OPERATOR : ’ ? ’ | ’−> ’ | ’ | | ’ ;
BOP : ’< ’ | ’> ’ | ’==’ | ’>=’ | ’<=’ | ’ != ’ ;
ATT : ’=’ ;
FLOAT : [+ −] ? ([0 −9]∗ [.]) ? [0 −9]+;
WORD : ([a−z] | [A−Z] | ’ ’)+ ;
WS : (’ ’ | ’ \ t ’) −> sk ip ;

120

Appendix C

NHTSA Scenarios

The National Highway Traffic Safety Administration (NHTSA), in conjunction with the
Research and Innovative Technology Administrarion’s Volpe Nation Transportation System
Center (Volpe Center) conduct a series of vehicle safety research in crash avoidance. They
published an analysis of the 2004 General Estimates System (GES) crash database where
they describe a typology of pre-crash scenarios involving light vehicles [54] with aggregated
data. They show statistics of the frequency of occurrence, severity, and number of vehicles
involved for all light-vehicle police reported crashes on 2004 GES database. The database
contains a total of 6,170,000 crashes, with 5,942,000 reports involving at least one light
vehicle, and a total of 10,695,000 light vehicles and 15,027,00 people involved.

Since our goal is to explore interactions between the ADS and human-operated vehicles
simulated by the SDV model, we focus on the statistics from Two-Vehicle Pre-crash Scenar-
ios (they also account for the majority of crashes). This thesis also do not cover scenarios
involving one vehicle (e.g., vehicle failure, control loss) or animals. We understand how
these scenarios are still important for ADS testing, but they do not benefit from our model
and are not used during the Evaluation in Section 6.1. Table C.1 shows the 37 pre-crash
scenarios that represent 99.3% of all two-vehicle crashes involving at least one light vehi-
cle. As we can see, the most frequent scenarios are #26 Lead Vehicle Stopped (16.41%),
#31 Vehicle(s) Turning at Non-Signalized Junctions, and #18 Vehicle(s) Changing Lanes
– Same Direction (5.69%). Although the most frequent crash type, #26 was excluded from
the testing set in Section 6.1 because it does not require any dynamic behavior from the
interacting vehicle. However, we can still use the SDV model to (i) simulate Ego as a
placeholder in order to evaluate the scenario before executing simulations with the auton-
omy stack, and (ii) simulate additional vehicles in traffic to increase the complexity and
difficulty of the test.

121

Table C.1: Pre-Crash Scenario Typology from NHTSA with Relative Frequency [54] and
selected scenarios with x.

Sel. Group Scenario Frequency

1 Run-Off-Road Vehicle Failure 0.71%
2 Run-Off-Road Control Loss With Prior Vehicle Action 1.73%
3 Run-Off-Road Control Loss Without Prior Vehicle Action 8.90%
4 x Crossing Paths Running Red Light 4.27%
5 x Crossing Paths Running Stop Sign 0.81%
6 Run-Off-Road Road Edge Departure With Prior Vehicle Maneuver 1.14%
7 Run-Off-Road Road Edge Departure Without Prior Vehicle Maneuver 5.62%
8 Run-Off-Road Road Edge Departure While Backing Up 1.11%
9 Animal Animal Crash With Prior Vehicle Maneuver 0.39%
10 Animal Animal Crash Without Prior Vehicle Maneuver 5.13%
11 Pedestrian Pedestrian Crash With Prior Vehicle Maneuver 0.29%
12 Pedestrian Pedestrian Crash Without Prior Vehicle Maneuver 0.66%
13 Pedalcyclist Pedalcyclist Crash With Prior Vehicle Maneuver 0.31%
14 Pedalcyclist Pedalcyclist Crash Without Prior Vehicle Maneuver 0.41%
15 x Backing Backing Up Into Another Vehicle 2.20%
16 x Lane-change Vehicle(s) Turning – Same Direction 3.73%
17 x Lane-change Vehicle(s) Parking – Same Direction 0.81%
18 x Lane-change Vehicle(s) Changing Lanes – Same Direction 5.69%
19 x Lane-change Vehicle(s) Drifting – Same Direction 1.65%
20 x Opposite Direction Vehicle(s) Making a Maneuver – Opposite Direction 0.26%
21 x Opposite Direction Vehicle(s) Not Making a Maneuver – Opposite Direction 2.08%
22 x Rear-End Following Vehicle Making a Maneuver 1.44%
23 x Rear-End Lead Vehicle Accelerating 0.32%
24 x Rear-End Lead Vehicle Moving at Lower Constant Speed 3.53%
25 x Rear-End Lead Vehicle Decelerating 7.20%
26 Rear-End Lead Vehicle Stopped 16.41%
27 x Crossing Paths LTAP/OD at Signalized Junctions 3.71%
28 x Crossing Paths Vehicle Turning Right at Signalized Junctions 0.59%
29 x Crossing Paths LTAP/OD at Non-Signalized Junctions 3.19%
30 x Crossing Paths Straight Crossing Paths at Non-Signalized Junctions 4.44%
31 x Crossing Paths Vehicle(s) Turning at Non-Signalized Junctions 7.32%
32 Run-Off-Road Evasive Action With Prior Vehicle Maneuver 0.22%
33 Run-Off-Road Evasive Action Without Prior Vehicle Maneuver 0.95%
34 Other Non-Collision Incident 0.77%
35 Object Object Crash With Prior Vehicle Maneuver 0.51%
36 Object Object Crash Without Prior Vehicle Maneuver 0.92%
37 Other Other 0.60%

122

	List of Figures
	List of Tables
	List of Abbreviations
	INTRODUCTION
	Research Contributions
	Outline

	Background and Related Work
	Basic Terminology
	Scenario-Based Testing
	Scenario Design and Generation
	Scenario Representation and Driver Behavior
	Road-Network Representation

	Models for Traffic Simulation
	Simulation Tools
	Behavior Trees

	GeoScenario: An Open DSL for Autonomous Driving Scenario Representation
	Introduction
	Designing a scenario language
	Supporting Test Design
	Scenario Orchestration
	Basic principles

	GeoScenario Architecture
	GeoScenario Basics
	Ego and the Driving Mission
	Scenery and Road Network
	Dynamic Elements
	Triggers & Actions
	Tool Set

	Application
	The Research Platform
	The Simulation Infrastructure
	Designing a Scenario

	Limitations and Future Work
	Chapter Conclusion

	A Driver-Vehicle Model for ADS Scenario-based Testing
	Introduction
	Target Qualities
	SDV Model Design and Architecture
	World Model and Vehicle Representation
	Vehicle Motion
	GeoScenario Route

	Traffic State Estimation
	Behavior Layer
	Composing a Behavior

	Maneuver layer
	Execution Layer
	Chapter Conclusion

	Reference Implementation, Performance, and Integration
	GeoScenario Server
	SDV implementation
	Balancing performance

	SDV Model Examples
	Integration and Co-Simulation
	GeoScenario design
	Applications

	Evaluation
	Effective Scenario Development (RQ1)
	Metrics
	GeoScenario PDT versus GeoScenario with SDV Model
	Scenario Catalog and Test Set
	Turning NHTSA Scenarios into Test Scenarios
	Results

	Vehicle Motion Realism (RQ2)
	Naturalistic Dataset
	Experiment
	Results

	Application (RQ3)
	The Cut-In Scenario
	System Under Test
	Test Scenario
	Results
	Summary

	Scalability (RQ4)
	Reference Implementation and Performance Requirements
	Scenarios
	Metrics
	Results

	Threats to Validity
	Chapter Conclusion

	Conclusion
	Limitations and Future Work

	References
	APPENDICES
	Behavior Tree Conditions
	Behavior Tree Grammar
	NHTSA Scenarios

