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Abstract

The flip graph for a set P of points in the plane has a vertex for every triangulation of
P , and an edge when two triangulations differ by one flip that replaces one triangulation
edge by another. The flip graph is known to have some connectivity properties: (1) the flip
graph is connected; (2) connectivity still holds when restricted to triangulations containing
some constrained edges between the points; (3) for P in general position of size n, the flip
graph is ⌈n

2
− 2⌉-connected, a recent result of Wagner and Welzl (SODA 2020).

We introduce the study of connectivity properties of the flip graph when some edges
between points are forbidden. An edge e between two points is a flip cut edge if elimi-
nating triangulations containing e results in a disconnected flip graph. More generally, a
set X of edges between points of P is a flip cut set if eliminating all triangulations that
contain edges of X results in a disconnected flip graph. The flip cut number of P is the
minimum size of a flip cut set.

We give a characterization of flip cut edges that leads to an O(n log n) time algorithm
to test if an edge is a flip cut edge and, with that as preprocessing, an O(n) time algorithm
to test if two triangulations are in the same connected component of the flip graph. For a
set of n points in convex position (whose flip graph is the 1-skeleton of the associahedron)
we prove that the flip cut number is n− 3.
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Chapter 1

Introduction

1.1 Triangulations

Given a set P of n points in the plane, which may include collinear points, an edge of P is
a line segment pq that intersects P in exactly the two endpoints p and q. A triangulation
of P is a maximal set of non-crossing edges. To give an intuition of what a triangulation of
a point set would look like, first we introduce the convex hull of a point set. The convex
hull of a point set P consists of the edges pq such that one of the two closed half-planes
determined by the line through pq contains all the points of P . This means that the
Convex Hull can be seen as the smallest container of the points in the point set. Any
triangulation of the point set contains all the edges of the Convex Hull of that point set.
Then, edges are added to the points inside the hull in a way that finally the area inside
the hull is divided into empty triangles. A triangle is empty if there do not exist any
points of P in the triangle. This is why it is called a triangulation; we add edges until the
whole area is divided into triangle regions. Figure 1.1 shows some point sets and a valid
triangulation of each point set. Triangulations have important applications in graphics and
mesh generation [4, 13] and are of significant mathematical interest [12].
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Figure 1.1: Some point sets and one of their valid triangulations. The black edges are
the edges of the convex hull. Adding the blue edges, triangulating the point set will be
completed.

A fundamental approach to understanding triangulations is by means of flips. A flip
operates on a triangulation by removing one edge pq and adding another edge uv to obtain
a new triangulation—of necessity, the edges pq and uv will cross and their four endpoints
will form a convex quadrilateral with no other points of P inside it. For example, in
Figure 1.4, edge a1b1 can be flipped to uv. We say we can transform or reconfigure
one triangulation into another one, if there exists a sequence of flips after which the first
triangulation is converted into the other one. In 1972, Lawson [23, 24] proved that any
triangulation of point set P can be reconfigured to any other triangulation of P by a
sequence of flips.
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1.2 Reconfiguration and Flip Graph

A graph G is a mathematical tool used for expressing the relation between some objects. It
has a wide range of applications in networks, combinatorial optimization, machine learning,
and so on. Each graph consists of some nodes or vertices and some edges. Each vertex
represents an object in the environment we are studying. There exists an edge between
vertices of the graph if the objects those vertices are representing satisfy a specific relation.
For example, consider the people in a university. We want to construct a graph that
shows the friendship relation between people at the university. So, each person would be
represented with a node and we place an edge between nodes that correspond to two people
who are friends. This would be the friendship graph of the mentioned university.

We denote a graph by G = (V,E) where set V = {v1, v2, ..., vn} is the set of the graph’s
vertices and E denotes the set of graph edges. We call a sequence of vertices v1, v2, .., vl+1 a
path of length l between v1 and vl+1 if there exists an edge between every two consecutive
vertices vi and vi+1 for i = 1, . . . , l. The length of this path is the number of edges along
this path. A shortest path between two vertices u and v is defined as a path with the
smallest length and the length of this path is called the distance between the two vertices
and is denoted by d(u, v). The maximum distance between any pair of vertices is called
the diameter of the graph. That is, diameter = max{d(v, u) : v, u ∈ V }. We say a graph
is connected if there exists a path between every arbitrary pair of vertices.

We can represent flips and triangulations using graphs. A flip graph has a vertex for
every triangulation of P and an edge when two triangulations differ by a flip. In this way we
can define triangulation flips as a reconfiguration problem. Reconfiguration is the study
of the relationship between the feasible solutions of a problem [31]. Each feasible solution is
considered as a valid configuration and reconfiguration consists of some steps to transform
one feasible solution into another one in a way that each intermediary step is also a feasible
solution to the problem (in other words a valid configuration). Some sensible examples of
reconfiguration problems are Sliding Puzzles, Rubik’s Cube, etc. In the reconfiguration
graph, each vertex represents a configuration and each edge shows the reconfiguration
operation which is the flip in triangulations. As mentioned, Lawson proved that any two
triangulations can be reconfigured into each other. This means there exists a path between
any two vertices in the flip graph. Therefore, the flip graph is connected. Reconfiguring
triangulations via flips is well studied, see the survey by Bose and Hurtado [6]. However,
there are some very interesting open questions, and many properties of flip graphs remain
to be discovered.

In addition to properties of the regular flip graph, properties of some specific flip graphs
have been studied too. Especially, the flip graph of triangulations that must contain a
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specific set of edges has been studied widely. In this case, the flip graph would be a
subgraph of the regular flip graph. One intriguing thing about flip graphs of triangulations
is that many properties carry over when we restrict to triangulations containing some
specified non-crossing edges—so-called constrained triangulations. The subgraph of the
flip graph consisting of triangulations that contain all the constrained edges is connected,
as proved by Chew [10]. This encourages people working on combinatorial reconfiguration
to consider special cases of the reconfiguration graph to find more properties (especially
connectivity properties) for different reconfiguration problems. As a matter of fact, that
is one of the main reasons for our contribution to the subject of this thesis.

1.3 Points in Convex Position

A well-known and important class of points sets is the class of convex point sets. A point
set P is a convex point set if all the points of P are extreme points of the convex hull
of P , i.e., for every point p ∈ P there is a line through p with all other points of P strictly
to one side of the line.

The case of points in convex position is especially interesting because there is a bijection
between flips in triangulations of a convex point set and rotations in binary trees [35], so
that flip distance becomes rotation distance between binary trees. Figure 1.2 demonstrates
the relationship between flips in convex point sets and rotation trees.
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e2

e3

e4

e5

e1 e1

e2

e3

e4

e5

(a) Two triangulations that can be reconfigured into each other using a flip. Their corresponding
tree and how it can be built has been shown in red.

e1

e2

e3

e4e5

e1e2e3

e4e5

(b) Two corresponding trees and how they can be reconfigured into each other using a rotation.

Figure 1.2: The relationship between triangulations of a convex point set and binary trees.

Finding the rotation distance between two binary trees is of great interest in biology
for phylogenetic trees [11], and in data structures for splay trees [35]. Furthermore, the flip
graph for n points in convex position is the 1-skeleton (the graph of vertices and edges) of
an (n− 3)-dimensional polytope called the associahedron [25]. See Figure 1.3.

1.4 Our results

In this thesis, we study connectivity properties of the flip graph when—instead of con-
straining certain edges between points to be present as in constrained triangulations—we
forbid certain edges between points. To be precise, if a set X of edges between points is
forbidden, we eliminate all triangulations that contain an edge of X, and examine whether
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Figure 1.3: The flip graph of points of a convex hexagon is the 1-skeleton of an associa-
hedron. If we forbid the two red edges, the resulting flip graph (with vertices circled in
green) is connected.

the flip graph on the remaining triangulations is connected. We say that X is a flip cut
set if the resulting flip graph is disconnected; in the special case where X is a single edge,
we say that the edge is a flip cut edge. For example the edge uv in Figure 1.4 is a flip cut
edge, but the two red edges in Figure 1.3 do not form a flip cut set. We define the flip cut
number of a set of points to be the minimum size of a flip cut set. This is analogous to
the connectivity of a graph—the minimum number of vertices whose removal disconnects
the graph.

Recently, Wagner and Welzl [38] have investigated some connectivity properties of the
flip graph. They have shown that the flip graph is ⌈n

2
− 2⌉-connected for P in general

position. Since the structure of the flip graph depends on the edges between the points,
it seems more natural to study connectivity of the flip graph after deleting some of these
edges, rather than deleting some vertices of the flip graph, as standard graph connectivity
does, and as the result of Wagner and Welzl [38] does.

As our main result, in Chapter 3.2 we characterize when an edge e is a flip cut edge in
terms of connectivity (in the usual graph sense) of the edges that cross e. Observe that a
triangulation that does not contain e must contain an edge that crosses e. We then use the
characterization to give an O(n log n) time algorithm to test if a given edge e in a point

6



a1 a2

b1b2

a1 a2

b1b2

u v u v

Figure 1.4: The smallest point set that has a flip cut edge. The edge e = uv is a flip
cut edge since forbidding e leaves two possible triangulations (as shown) and neither one
allows a flip.

set of size n is a flip cut edge in Section 3.3. With that algorithm as preprocessing, we give
a linear-time algorithm to test if two triangulations are still connected after we eliminate
from the flip graph all triangulations containing edge e.

For the case of n points in convex position, there are no flip cut edges, and we show
that the flip cut number is n − 3. For example, in Figure 1.3 the leftmost and rightmost
triangulations become disconnected if we forbid one more edge, which yields a flip cut set
of size 3 for n = 6. More details can be found in Chapter 4.

b1

b2
b3 b4

b5

t1
t2 t3

t4
t5

Figure 1.5: The “channel”, and a triangulation that becomes frozen (an isolated vertex
in the flip graph) if we forbid the edge b2, tn−1 (in red). In fact, every edge bitj, i, j /∈ {1, 5}
is a flip cut edge.

In Section 3.4.2, we show that a point set of size n may have Θ(n2) flip cut edges (see
Figure 1.5), and in Section 3.4.4, we show that a flip cut edge may result in Θ(n) discon-
nected components in the flip graph. We also examine various special point sets whose flip
graphs have been previously studied in Section 3.4, such as points on an integer grid [8]
and, more generally, point sets without empty convex pentagons [14]. Our characterization
of flip cut edges becomes simpler in the absence of empty convex pentagons. Point sets
without empty convex pentagons must have collinear points; our results do not assume
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points in general position.

1.4.1 Examples

In this chapter we are going to provide some examples of flip cut edges and flip cut sets.
However the details for each example are provided in later related chapters.

Figure 1.4 shows the smallest example of a point set that has a flip cut edge—in fact,
by forbidding one edge, we get a triangulation from which no flips are possible. The
triangulation associated with such an isolated vertex in the flip graph is called a frozen
triangulation.

The point set shown in Figure 1.5, which is called a channel, is created in the following
way: first, put four points on four corners of an axis-aligned rectangle. Then, add n points
from a flat convex curve connecting two points on the upper corners. These n points are
called the upper chain. Finally, add n points of a concave flat curve that connects the two
points on the lower corners. This is called the lower chain. The triangulation of this point
set shown in Figure 1.5 becomes frozen (modulo triangulating the upper and lower convex
subpolygons) when we forbid one flip cut edge. In fact, any edge joining an interior vertex
of the top curve and an interior vertex of the bottom curve is a flip cut edge. So there are
Θ(n2) flip cut edges. We justify this more carefully in Section 3.4.2.

Grid points are another well-studied case for triangulation flips [8], in part because of
physics applications. For n points lying on a

√
n ×
√
n grid, there are again Θ(n2) flip

cut edges. In fact, for an infinite grid, every edge is a flip cut edge, though boundary
effects interfere in finite grids. See Section 3.4.2. Points in a grid have the special property
that there are no empty convex pentagons. Flips for point sets without empty convex
pentagons were studied by Eppstein [14]. Such point sets must have collinear points [1].
See Section 3.4.1.

The “hourglass” shown in Figure 1.6 has a flip cut edge e = uv such that forbidding e
results in Θ(n) disconnected components in the flip graph, which is the most possible. See
Section 3.4.4.

Some point sets have Θ(n2) flip cut edges, but at the other extreme, some point sets
have no flip cut edges. For example, there are no flip cut edges for points in convex
position. The standard way to flip between two triangulations of a convex polygon is via
a star triangulation. A star triangulation is a triangulation with all edges (except the
edges of the convex hull) incident to one point. If there is a point not incident to any
forbidden edge, we can still flip to a star centered on that point. See Figure 1.7. A more

8



a1 an

u v

b1bn

Figure 1.6: In this “hourglass” uv is a flip cut edge that creates n disconnected components
in the flip graph, one for each aibi.

detailed version of this argument is given in Lemma 24 when we investigate flip cut sets
for points in convex position.

v v v v

Figure 1.7: A convex hexagon with a set X of two forbidden edges (in red), and a flip
sequence to connect one triangulation in T−X to the triangulation that is a star at v,
without using any forbidden edges.

Figure 1.8 shows some more examples of flip cut edges in point sets.

1.5 Notation and Definitions

We denote the flip graph of point set P by F(P ), or just F , when P is clear from context.

9



Figure 1.8: Some point sets and their flip cut edges (in red).

For a subset E of the edges of P , let T+E(P ) be the set of triangulations of P that in-
clude all the edges of E. These are known as constrained triangulations. Let F+E(P )
be the subgraph of the flip graph induced on the vertex set T+E(P ). It is known that
F+E(P ) is connected [10].

Let T−E(P ) be the set of triangulations of P that include none of the edges of E, and
let F−E(P ) be the subgraph of the flip graph induced on T−E(P ). When E consists of a
single edge e, we will write T−e(P ), and so on. Also, we will omit P when the point set is
clear from the context.

A subset E of edges of P is a flip cut set if the flip graph F−E(P ) is disconnected.
The smallest size of a flip cut set is called the flip cut number of P . If {e} is a flip cut
set of size one, we call e a flip cut edge.

An empty convex quadrilateral or EC4 is a set of 4 points in P that form a convex

10



quadrilateral with no other points of P inside or on the boundary. We also use EC3 for
empty triangles, EC5 for empty convex pentagons, and so on.

Point set P is a convex point set if all the points of P are extreme points of the
convex hull of P , i.e., for every point p ∈ P , there is a line through p with all other points
of P strictly to one side of the line. Point set P is in general position if no three points
are collinear.

11



Chapter 2

Related Work

In this section, we briefly discuss related work on general reconfiguration problems, flip
graphs, and questions related to these topics. Then, we give some background on flip graphs
of triangulations, some variations, and the problems that arise in this specific setting of
reconfiguration.

Reconfiguration and Flip Graphs

As described in the previous section, reconfiguration is the study of the relationship be-
tween the feasible solutions of a problem. The reconfiguration, or “flip” graph has a vertex
for each feasible solution of the problem, and an edge between two solutions if they can be
transformed into each other via an operation called a flip. There are many famous reconfig-
uration problems including “15-puzzle”, “independent set reconfiguration”, “vertex cover
reconfiguration”, “k-coloring reconfiguration”, “dominating set reconfiguration”, “sliding
puzzle”, etc. People interested in reconfiguration problems study three important question
for each problem: (1) Is the flip graph for the reconfiguration problem connected? (2)
What is the asymptotic (or exact) diameter of the flip graph? (3) What is the complexity
of finding the shortest path between two configuration in the flip graph? These are the
three well-known questions that people studying reconfiguration try to answer. Further
information on these questions and different reconfiguration problems can be found in two
surveys about reconfiguration by Nishimura [31] and van den Heuvel [36].
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Reconfiguring Triangulations

Connectivity of the flip graph. In the previous chapter we discussed that Lawson
proved that any two arbitrary triangulations T1, T2 of a point set P can be transformed into
each other using a sequence of flips. Lawson proved this using two approaches. Both of the
proofs use a canonical triangulation and prove that any triangulation can be transformed
into this canonical triangulation. In the first approach [23], the canonical triangulation can
be constructed in the following way: Sort the points by their x-coordinates. First, create
a triangle with the first three points. Then, add other points in order one by one and add
the edge between the added point and each of the previous ones if it does not cross the
previous edges. Lawson [23] proved that any triangulation can be reconfigured into this
canonical triangulation which shows that any two triangulations can be transformed into
each other via a sequence of flips. The second approach [24] used Delaunay triangulations
(which were introduced by Lee and Lin [26]) as canonical triangulations. A triangulation
of a point set P is a Delaunay triangulation if for any triangle ∆abc, we have that the
circle through a, b and c does not contain any other point of P inside it. Again, Lawson
showed that any triangulation can be reconfigured to the Delaunay triangulation, hence
any two triangulations can be transformed into each other by a sequence of flips. Note that
in both of these proofs, in the sequence of the flips, first we reconfigure one triangulation
to the canonical one and then reconfigure the canonical triangulation to the second one.

Diameter of the Flip Graph. There is considerable work on distances and diameter
of flip graphs. Lawson [24], for example, showed that for both canonical triangulations,
O(n2) flips are sufficient to reconfigure any triangulation into the canonical one. This means
O(n2) is an upper bound for the number of flips needed for transforming any triangulation
into another one. Hurtado et al. [21] proved that this upper bound is tight. In other words,
they found a point set and two specific triangulations of that point set which need Ω(n2)
flips in order to reconfigure one into the other. This point set is known as a “channel” and
the two triangulations are shown in Figure 2.1. Note that the upper and lower polygons
need to be triangulated in order to complete the triangulations. Also, it can be seen that
the only possible flip in the middle for each of the two triangulations, are b1t5 for the left
channel and t1b5 for the right channel. In order to prove the Ω(n2) bound we can consider
a binary encoding of the triangulations. We encode triangles with two vertices from the
upper chain and one vertex from the lower chain by 1 and triangles with two vertices from
the lower chain and one vertex from the upper chain by 0. Then the right triangulation is
encoded by 11110000 and the left one is encoded by 00001111. Each flip here is equal to
swapping a neighbouring 0 and 1. So, it can be shown that Ω(n2) swaps or flips are needed
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to transform one encoding (triangulation) to another one.

b1

b2
b3 b4

b5

t1
t2 t3

t4
t5

b1

b2
b3 b4

b5

t1
t2 t3

t4
t5

Figure 2.1: Two triangulaions of a channel that require Ω(n2) flips in order to transform
one into the other.

Hurtado et al. [21] showed that for a point set P with k convex layers (the convex
layers of a point set are the sequence of convex hulls of the point set, each obtained after
removing the vertices of the previous layer), each triangulation of P can be transformed to
another one with at most O(nk) flips. They also showed that at most O(n + k2) flips are
needed to reconfigure a triangulation of an n-gon with k reflex vertices to another one. A
reflex vertex is a vertex that has a concave internal angle inside the polygon.

Bounds on Flip Distance Between Triangulations. As can be seen from the above
discussion, most of the proofs for connectivity of the flip graph use some canonical trian-
gulation to reconfigure two triangulations. However, usually the shortest way to transform
one configuration into another does not include a canonical configuration in the interme-
diary steps. This observation led to finding some bounds on the distance between two
triangulations T1 and T2. Hanke et al. [18] provided an upper bound on the minimum
number of flips needed to transform one triangulation into another one. They showed that
the number of intersections between the edges of the two triangulations is an upper bound
on the distance between those two triangulations. Eppstein [14] provided a lower bound
on the flip distance between two triangulations of the point set using quadrilateral graphs.
In a quadrilateral graph of point set P , there is a vertex for each edge between two
points of the point set and there exists a graph edge between those two vertices if the
four endpoints of the corresponding edges create a convex empty quadrilateral (EC4). We
denote the quadrilateral graph by QG. Eppstein showed for two triangulations T1 and T2

on point set P if we define a complete bipartite graph between the edges of T1 and T2 and
assign the weight of an edge to be the distance between the corresponding edges in QG,
then the weight of the minimum perfect matching in this bipartite graph is a lower bound
on the flip distance between T1 and T2.
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Complexity of the Flip Distance Between Two Triangulations. Kanj et al. [22]
showed that the problem of finding the flip distance between two triangulations is fixed-
parameter tractable, that is, there is an O(n+ kck) time algorithm that identifies whether
two triangulations can be reconfigured into each other using at most k flips. For a gen-
eral point set, finding the distance in the flip graph between two triangulations (the “flip
distance”) is known to be NP-hard [28], and even APX-hard [32]. NP-hardness of the flip
distance problem is proved using channels as the building block for the reduction.

Variations: Constrained Triangulations. As mentioned in the previous chapter,
sometimes some special families and types of triangulations (and flip graphs as a result)
are studied for their properties and constrained triangulations is the most famous one
among them. In 1987, Chew [10] introduced the notion of constrained triangulations and
constrained Delaunay triangulations. Given a set X of constrained edges, the constrained
triangulations are the ones that contain all the edges of X, i.e., T+X in our notation.
The constrained Delaunay triangulation (CDT) is a triangulation in T+X that is
as close as possible to the Delaunay triangulation. That is, CDT contains all the edges
of X and for each edge e = uv of the CDT there exists a circle through u and v, and for
any point p ∈ P inside the circle there is an edge f ∈ X that crosses one of the segments
pv or pu. Chew [10] showed that any constrained triangulation can be flipped to a CDT
while keeping all the constrained edges, which implies connectivity of the flip graph for
constrained triangulations (which we denote by F+X). Houle et al. [20] introduced another
family of triangulations and another subgraph of the flip graph. This new family, which
consists of only triangulations that admit a perfect matching, was also proven to have
connected flip graphs [20].

Variations: Simultaneous Flips The next variation, introduced by Hurtado et al. [21],
is the notion of simultaneous flips in triangulations. There are some flips in triangulations
that can be done at the same time. A set of flips can be done simultaneously if no pair of the
flipping edges are sides of the same triangle. In that sense, these are independent from each
other. Based on this observation, for a triangulation T , if we flip a set E of triangulation
edges in T and obtain a new triangulation T ′, this would be called a simultaneous flip.
Hurato et al. also showed that there are always ⌈n−4

2
⌉ edges that can be flipped. Galtier

et al. [16] showed that O(n) simultaneous flips is sufficient to reconfigure one triangulation
into another one. They provided an example of two triangulations that needed at least
Ω(n) simultaneous flips in order to transform one into the other one. They also showed
that there are always ⌈n−4

6
⌉ edges that can be flipped simultaneously, and provided an

example where the maximum number of edges that can be flipped simultaneously is ⌈n−4
5
⌉.
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Variations: Edge-Labeled Flips Another variation on flips in triangulations is to
consider edge-labelled triangulations, as introduced by Bose et al. [7]. Here the edges of a
triangulation have distinct labels and a flip transfers the label from the edge that is removed
to the edge that is added. Bose et al. proved a connectivity and diameter result for points
in convex position—any labelled triangulation can be flipped to any other with O(n log n)
flips. For general point sets, the labelled flip graph is not connected, but Lubiw et al. [27]
characterized when one labelled triangulation can be flipped to another. The proof uses the
flip complex, which is an abstract complex (i.e., a complex which is defined combinatorially
rather than geometrically) that generalizes the associahedron. Some properties of the
associahedron carry over to the flip complex, e.g., the two dimensional faces have size 4 or
5.

Connectivity and Expander Properties Recently, Wagner and Welzl [38] showed
that for n points in general position in the plane, the flip graph is ⌈n

2
− 2⌉-connected.

More generally, researchers who study connectivity properties of flip graphs are interested
in mixing rate results. Wagner and Welzl also proposed the question of whether their
connectivity results are going to be helpful for rapid mixing of triangulations and expander
properties of the triangulation flip graph. An open frontier in the study of flip graphs and
triangulation mixing rate has to do with expander properties. The reason for these studies
is that expander properties would potentially be helpful for rapid mixing via random flips.
Mixing time of triangulations has been studied in [30, 29]. Molloy et al. [30] gave a lower
bound of Ω(n3/2) and an upper bound of O(n23 log(n/ϵ)). McShine and Tetali [29] improved
the upper bound to O(n5 log(n/ϵ)). Eppstein and Frishberg [15] showed that mixing time
for the flip walk on a convex point set is O(n4.75). Caputo et al. [8] studied rapid mixing
of lattice triangulations, which has important applications in quantum physics. Lattice
triangulations are triangulations on a grid point set. It has recently been shown that the
reconfiguration graph of bases of a matroid is an expander [2], and it would be interesting
to know if similar results hold for triangulation flip graphs.

Convex Point Sets and Associahedra

As mentioned in the previous chapter, the flip graph for n points in convex position can be
realized geometrically as the 1-skeleton of an (n−3)-dimensional polytope called the associ-
ahedron. This means that each vertex of the associahedron represents one triangulation of
the point set and each edge of the associahedron represents a flip. The (n−3)-dimensional
associahedron is denoted An−1. Using the fact that the flip graph of convex point sets is the
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1-skeleton of associahedra, and applying Balinski’s theorem [3] to this 1-skeleton Wagner
and Welzl [38] showed that for points in convex position, the flip graph is (n−3)-connected.
Another interesting fact about associahedra is that each vertex has n− 3 adjacent edges,
which follows from the fact that each triangulation of a convex point set has n− 3 possible
flips.

We showed that there exists a bijection between binary trees and triangulations in
Section 1.3, which means there exists a bijection between rotations in trees and flips in
triangulations. As a result, associahedra are the realizations of the reconfiguration graphs
for rotations in binary trees. Also, it is known that there is a correspondence between each
vertex of the associahedra and each different way of inserting parentheses in an expression
of length n; then, each edge represents applying the associativity rule once. Many other
realizations of associahedra have been discussed in [9].

The 3-dimensional associahedron A5 is the one that can be understood better than the
higher dimensional ones because of its simplicity. As shown in Figure 1.3 it has 14 vertices,
21 edges, and 9 faces (2D facets). Also, it is interesting that each face corresponds to one
of the inner diagonals of the convex hexagon, in the sense that the face consists of all the
triangulations that contain that diagonal. More generally, each (n − 4)-dimensional face
of the (n − 3)-dimensional associahedron consists of the triangulations that contain one
specific inner diagonal of the convex point set of size n.

The diameter of associahedra has been studied widely in the past. Sleator et al. [35]
showed that the diameter of An−1 is 2n − 6 for large enough n. Equivalently, maximum
rotation distance for trees of size n is 2n− 6 for large n’s. Later, Pournin [33] proved this
for any n larger than 9. This means that for a convex point set with n points, the diameter
of the flip graph is 2n − 10 for n > 12. However, a main open question is the complexity
of the flip distance problem for convex point sets (is it NP-hard or in P?).

17



Chapter 3

Flip Cut Edges

In this chapter, we explain the initial steps in identifying flip cut edges (Section 3.1), then
we characterize flip cut edges (Section 3.2) and give an O(n log n) time algorithm to test if
a given edge is a flip cut edge (Section 3.3). In Section 3.4 we examine some special point
sets and establish bounds on the number of flip cut edges and the number of connected
components.

3.1 Initial Steps

This section contains an analysis of flip cut edges in small point sets, and a discussion of
the role of EC4’s (empty convex quadrilaterals) and EC5’s in characterizing flip cut edges.
This material adds intuition but is not necessary for the following sections.

3.1.1 The Simplest Example of a Flip Cut Edge

The main problem at the beginning is whether it is possible to disconnect the flip graph
by forbidding exactly one of the edges between a pair of points (which we call a flip cut
edge). In order to solve this problem, one should begin with some simple examples and test
whether an edge with the described property can be found. Any point set containing three
points only has one valid triangulation, which can be constructed by creating a triangle
that contains the points as its vertices. Therefore, the flip graph contains only one vertex
and cannot become disconnected in any way. Remember that if there exists a valid flip
for a triangulation, we need a convex empty quadrilateral where the flip is exchanging its
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(a) The flip graph of a convex point set of size
four

(b) The flip graph of a point set with size four
whose convex hull is a triangle contains only one
frozen triangulation

Figure 3.1: Flip graphs of point sets with size four

diagonals. So, a point set containing four points that create an EC4 is a point set with
two valid triangulations (Figure 3.1a). First, note that we cannot forbid any edge of the
convex hull since every valid triangulation contains all of them. Thus, in the previous case,
we only can forbid one of the diagonals of the convex quadrilateral. This leads to a new
flip graph with exactly one vertex which is connected. In a point set P , |P | = 4 where the
convex hull is a triangle and there exists a point inside this triangle, no flips are possible,
so we have a frozen triangulation and an isolated vertex in the flip graph which again is
not possible to become disconnected (Figure 3.1b). This means no point set of size less
than five can have a flip cut edge. So, we are going to consider point sets of size five.

The first option is a convex point set of size five. Remember that a point set is in
convex position if all the points are vertices of the convex hull of that point set. The flip
graph for this point set contains a cycle of size five (Figure 3.2). By forbidding any single
edge of this point set, two triangulations become invalid and a path of size three will be the
new flip graph. So, again, it is not possible to disconnect the flip graph. Now, consider in
our point set P , |P | = 5, the convex hull is a convex quadrilateral, and the other point is
inside this quadrilateral. In, this scenario, if you have colinear points, then again, the flip
graph only contains an isolated vertex, and if it does not, there exists only one valid flip
which means disconnecting it is not possible (Figure 3.3a). The last possibility for |P | = 5
is a point set with a triangle convex hull and two points inside the hull. In this case, again,
there exists only one valid flip (Figure 3.3b) and disconnecting the flip graph is impossible.
As a result, we move on to point sets of size six.

In the previous chapters, we saw that the flip graph for a convex point set of size six is
a 3D associahedron (Figure 1.3). We also saw that by forbidding one edge of this point set,
we remove triangulations on one of the 2D faces of this associahedron. Thus, forbidding
one edge does not disconnect the flip graph. The second possibility is having a pentagon
convex hull and a point inside. For this case, the flip graph is shown in Figure 3.4. Again,
there is no edge such that forbidding the edge disconnects the flip graph. Finally, consider
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Figure 3.2: The flip graph for a pentagon point set

(a) Flip graph of a point set with size five whose convex hull is a quadrilateral

(b) Flip graph of a point set with size five whose convex hull is a triangle

Figure 3.3: Flip graph of point sets with size five

a point set with a quadrilateral as its convex hull which contains two points inside the hull.
The flip graph is shown in Figure 3.5; by forbidding the edge between the two points inside
the hull, the middle triangulations in the flip graph become invalid and we are left with
two isolated vertices in the resulting flip graph. This means that we have a flip cut edge in
this example, and since we have shown there exist no flip cut edges in simpler examples,
this is the smallest possible example.

3.1.2 The role of EC4’s and EC5’s

In this section we investigate the relationship between flip cut edges and EC4’s (empty
convex quadrilaterals) and EC5’s. We make a conjecture about EC4’s which we disprove,
and a conjecture about EC5’s which we later show is correct.
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Figure 3.4: The flip graph for a point set with size six whose convex hull is a pentagon

Observation 1. In Figure 3.5, each of the two disconnected triangulations contains one
of the possible convex quadrilaterals that includes the forbidden edge as its diagonal.

This observation leads us to the thinking that maybe the quadrilateral graph in-
troduced by Eppstein [14] can help us in identifying flip cut edges. Recall that in a
quadrilateral graph (QG) of point set P , there is a vertex for each edge between two
points of the point set and there exists a graph edge between those two vertices if the four
endpoints of the corresponding edges create a convex empty quadrilateral (EC4). In other
words, suppose by removing the forbidden edge in QG we disconnect two edges in QG that
cross the forbidden edge. Then, does it mean that forbidding that edge disconnects the
flip graph? The point set in Figure 3.5 is an example that gives a positive answer to this
question. The QG for this point set is shown in Figure 3.6. After removing vertex uv, a1b1
and a2b2 become disconnected in the QG.
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a1 a2

b1b2

u v

a1 a2

b1b2

u v
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b1b2
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a1 a2

b1b2
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a1 a2

b1b2
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a1 a2

b1b2

u v

Figure 3.5: The flip graph for a point set which gives us the smallest example that contains
a flip cut edge: by forbidding the edge between two points inside the quadrilateral, the
resulting flip graph only contains the leftmost and rightmost triangulations, which are
disconnected from each other.

a1b1

uv a2b2 a1v a2u

b1u b2v

Figure 3.6: The QG for the smallest example in Figure 3.5: forbidding uv disconnects a1b1
and a2b2

Conjecture 2. Suppose that the forbidden edge e = uv is contained in two EC4’s, Q1

and Q2 with diagonals ab and cd respectively. Suppose that removing uv from the QG
disconnects ab from cd. Then, in the flip graph F−e, every triangulation containing Q1∪ab
is disconnected from every triangulation containing Q2 ∪ cd.

Unfortunately, this conjecture is FALSE. The point set shown in Figure 3.7a is a
counter-example for the conjecture. The QG of this point set becomes disconnected after
removing edge uv (After forbidding uv, we need to remove vertex uv and red edges in the
QG that corresponds to invalid flips as shown in Figure 3.7b). But, the flip graph is not
disconnected as we can transform one of the triangulations containing one of the quadrilat-
erals to the triangulation that contains the other quadrilateral. In more detail, forbidding
uv in the QG disconnects a1b1 from a3b2, so the intuition was that we might be unable
to flip from a triangulation containing a1b1 to a triangulation containing a3b2. However,
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although we cannot flip directly between those two edges, the example flip sequence shows
that a3b2 flips to position va2, and a1b1 flips from position ua2.

a1
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a3

u v

b1b2

a1
a2

a3

u v

b1b2

a1
a2

a3

u v

b1b2

a1
a2

a3

u v

b1b2

a1
a2

a3

u v

b1b2

a1
a2

a3

u v

b1b2

a1
a2

a3

u v

b1b2

(a) The flip graph of the simplest point set with flip cut edge after adding point a2. Blue edges
are added after adding a2. Green edges are the edges that are created during the flip operations.

a3b2

a2v ua3

a2b2

uv
ub1

b2v
a2b1

a1v

ua2

a1b1

(b) The QG of the point set in Figure 3.7a. Red edges correspond to invalid flips after forbidding
uv.

Figure 3.7: An example where removing uv disconnects a1b1 and a3b2 in the QG (b) but
triangulations containing those diagonals are still connected in the flip graph (a).

We need a more subtle way to analyze how one EC4 is transformed to another one. To
do this, we will examine EC5’s. We first revisit the flip sequence of Figure 3.7a and then
formulate several refined conjectures. Figure 3.7a shows that in the path from transforming
the first quadrilateral to the second one, we use flips inside three intermediary pentagons:
ua2a3vb2, ua2vb1b2, ua1a2vb1. So, it shows adding a2 creates some EC5’s inside of which we
can flip in a way that enables us to transform EC4 ua3vb2 in Figure 1.4 to EC4 ua1vb1.
So, we conjectured that EC4’s containing the forbidden edge are fundamental elements
for identifying whether forbidding that edge disconnects the flip graph and EC5’s are the
bridges that help us transform each of the EC4’s to the other ones using a sequence of flips
occurring inside the EC5’s. The formal description of the conjecture is as follows:
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Conjecture 3. Edge e = uv is a flip cut edge iff there exist two EC4’s Q1 and Q2 con-
taining e in a way that there does not exist any other point p where p∪Q1 and p∪Q2 are
both EC5’s.

We are going to DISPROVE this conjecture, though it seems promising based on Fig-
ures 3.5 and 3.8. Adding a new point to the point set in Figure 3.5 in different areas
acknowledges our conjecture; we draw the extension of the edges of the two EC4’s (Fig-
ure 3.8a). After adding one point to each of areas 1, 2, 3, and 4, we see that only adding
a point to area 4, prevents edge uv from being a flip cut edge. And, that is because only
a point in area 4 can create EC5’s with the vertices of both ua1vb1 and ua3vb2. Note that
since the picture is symmetric, the same areas are created on the bottom half of the point
set. However, checking only area 4 for an additional point is not enough for identifying
whether uv is a flip cut edge.

In Figure 3.8a some points are added but not to the area 4. So, this point set satisfies
the condition in Conjecture 3. However, Figure 3.8b shows how we can transform EC4
ua1vb1 to EC4 ua3vb4 using flips inside the pentagons shown step by step. More specifically,
first we use EC5 ua1vb1b2 to transform EC4 ua1vb1 to EC4 ua1vb2; then, use flips inside
ua1a2vb2 to transform ua1vb2 to ua2vb2. We continue by using ua2vb2b3 to transform ua2vb2
to ua2vb3. ua1a2vb2 is used in the same way to transform ua1vb2 to ua2vb2. Finally, we
flip inside ua3vb3b4 to transform ua3vb3 to ua3vb4. Figure 3.9 shows how to use an EC5
to flip one EC4 to another one even with having a forbidden edge. A careful analysis of
the flip graph of the point set in Figure 3.8a shows that it is connected. So, instead of the
previous conjecture, we propose a new one that supports our observation on Figure 3.8
to characterize flip cut edges. In order to do that, first, we introduce a new graph called
pentagon graph.

Definition 4. For an edge e = uv in the point set P , the pentagon graph (PG) of
e can be constructed in the following way: every EC4 containing e as a diagonal is a
vertex. There exists an edge between two vertices if there exists an EC5 that contains both
corresponding EC4’s inside it.

The next conjecture relates flip cut edges to the PG. Later, in Section 3.3.2, we will
prove this conjecture to be CORRECT (Lemma 13).

Conjecture 5. Edge e is a flip cut edge iff its pentagon graph is disconnected.
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(b) How to use EC5’s to transform EC4 ua1vb1 to EC4 ua3vb4

Figure 3.8: Different areas for adding an additional point to point set in Figure 3.5 to see
the effect on the forbidden edge remaining a flip cut edge
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Figure 3.9: Transforming EC4 a1a2a3a4 to a2a3a4a5 using EC5 a1a2a3a4a5
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3.2 Characterizing Flip Cut Edges

In this section we give three characterizations of flip cut edges. The characterizations are
in terms of connectivity of associated graphs that we call GY , GZ , and PG. The pentagon
graph (PG) was introduced in Section 3.1.2, and the other two will be defined below.
The first characterization helps identifying connected components better, the second one
is helpful for having an efficient algorithm, and the characterization based on PG more
precisely demonstrates the transition between triangulations using flips.

3.2.1 Main Characterization, GY

Consider an edge e = uv of P . Let us orient e horizontally so we can use the terms “above”
and “below” to refer to the two sides of e. In the horizontal orientation, suppose that u
lies to the left of v.

Let Y be the set of edges f of P such that f crosses e. Let GY be the line graph of Y ,
i.e., the vertex set of GY is Y , and two edges of Y are adjacent in GY if they meet at a
point. See Figure 3.10.

We will prove that e is a flip cut edge if and only if GY is disconnected. In fact, we will
be able to identify the connected components of F−e from GY .

Observation 6. T−e is the union of the sets of triangulations T+f for f ∈ Y . Each flip
graph F+f is connected.

Proof. For any edge f , F+f is connected by properties of constrained triangulations [10].
For f ∈ Y , T+f is a subset of T−e because triangulations that contain f cannot contain e.
Finally, since every triangulation of T−e contains some edge of Y , T−e is the union of T+f

for f ∈ Y .

The observation says that every vertex of the graph F−e appears in some F+f for f ∈ Y .
In fact, every edge of the graph F−e appears in some F+f for f ∈ Y , as we will prove as
part of Theorem 8.

Based on Observation 6, in order to identify connected components of the flip graph
F−e, it suffices to figure out which subgraphs F+f are connected to which other ones in
F−e, i.e., to know when there is a path in F−e from an element of T+f to an element of
T+g.

Before giving the main theorem, we give one more observation.
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Figure 3.10: The edges Y that cross e = uv. Here, GY is connected, so e is not a flip cut
edge.

Observation 7. For any triangulation T in T−e, the edges of Y in T , which we denote
Y ∩ T , are connected in GY .

Proof. The triangles of T that cross the segment uv form a path in the planar dual of the
triangulation, and so the edges of Y ∩ T which are the side edges of these triangles form a
connected subgraph of GY . See Figure 3.11.

Theorem 8. Edge e is a flip cut edge if and only if GY is disconnected. More specifically,
edges f and g in Y are connected in GY if and only if T+f and T+g are connected in F−e.

Proof. If fg is an edge of GY , then, in the point set, the edges f and g are incident
at a common endpoint so they do not cross, which implies that there is a triangulation
containing f and g, so F+f and F+g are connected (they have a triangulation in common).
Thus, by transitivity, if f and g are connected in GY then F+f and F+g are connected.

For the converse, if F+f and F+g are connected, this means that there exists a sequence
of flips that transforms triangulation T1 ∈ T+f to T2 ∈ T+g where intermediary triangu-
lations are also in T−e. So, it suffices to show that if we flip from T1 in T−e to T2 in T−e,
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Figure 3.11: The edges of Y ∩ T (in thick black) are connected in GY . A flip of f1 to f2
requires another edge h ∈ Y ∩ T1 ∩ T2.

then Y ∩ T1 and Y ∩ T2 are connected in GY . This implies that if there is a sequence of
flips transforming T1 in T−e to T2 in T−e, then there is a path connecting f to g in GY .
First note that by Observation 7, Y ∩ T1 is a connected set in GY and the same is true for
Y ∩T2. We will show that Y ∩T1 and Y ∩T2 have an element in common. Let fi ∈ Ti∩Y ,
i = 1, 2. If either edge is in the other triangulation, we are done. Otherwise, the flip from
T1 to T2 must flip f1 to f2. Then the EC4 formed by the endpoints of f1 and f2 has a side
edge h that is an edge of Y in both T1 and T2. See Figure 3.11. (Note that this argument
shows that every edge of the flip graph F−e lies in F+h for some h ∈ Y .)

Algorithmic implications. The theorem gives an immediate polynomial time algorithm
to test if e is a flip cut edge: construct GY (a graph on O(n2) vertices) and test connectivity.
The details of this algorithm can be found in Algorithm 1 in Section 3.3.1. In Section 3.3.3
we give a faster O(n log n) time algorithm.

Our other algorithmic goal is to “identify” the connected components of F−e. Although
the flip graph is exponentially large, we can identify connected components by grouping
them into T+f ’s for f ∈ Y , and identify which groups of triangulations are connected
to which other ones. That being said, we focus on the problem of testing whether two
triangulations T1 and T2 in T−e are in the same connected component of F−e. Using
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Theorem 8, we can do that as follows. Pick f1 in Y ∩ T1 and f2 in Y ∩ T2 (note that such
edges exist). Then T1 ∈ T+f1 and T2 ∈ T+f2 . So T1 and T2 are connected in F−e iff T+f1

and T+f2 are connected in F−e iff (by Theorem 8) f1 and f2 are connected in GY , which
we can test in polynomial time. In Subsection 3.3 we give a faster O(n) time algorithm.

3.2.2 Second Characterization, GZ.

For the efficient algorithms in Section 3.3.3, we need an alternative characterization of flip
cut edges in terms of a subgraph of GY .

For any f ∈ Y , let Q(f) be the convex quadrilateral formed by the endpoints of f and
e = uv. Let Z be the set of edges f ∈ Y such that Q(f) is an EC4. Let GZ be the line
graph of Z. Then GZ is an induced subgraph of GY with a smaller vertex set.

Note that any f ∈ Z has one point above e and one point below e, and these points
make empty triangles with e. Let A be the set of points a above e such that auv is an
empty triangle (an EC3). Let B be the set of points b below e such that bvu is an empty
triangle. Thus Z consist of the edges from A to B that cross e = uv, i.e., Z = Y ∩ (A×B).
See Figure 3.13.

We will prove an analogue of Theorem 8:

Theorem 9. Edge e is a flip cut edge if and only if GZ is disconnected.

We will also be able to characterize connected components of F−e in terms of GZ , but
this cannot be analogous to Theorem 8, because not every triangulation contains an edge
of Z. We begin with some preliminary results.

Lemma 10. Edges f, g ∈ Z are connected in GZ if and only if they are connected in GY .

Proof. The forward direction is clear since GZ is an induced subraph of GY .

For the other direction, suppose f and g are connected in GY . Suppose, f = f1, f2, ...,
fm = g is a shortest path in GY between f and g. If all the fi’s are in Z, then f and
g are connected in GZ . Otherwise, we will modify the path to replace edges of Y by
edges of Z. Suppose fi = piqi with pi above uv and qi below uv. Because the path is
shortest, the common points between successive edges are alternately above and below the
line L through uv. In particular, suppose without loss of generality that p1 = p2, q2 =
q3, . . . , p2i−1 = p2i, q2i = q2i+1, . . ..
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p1 = p′1 = p2 = p′2

p3 = p4

p5 = p′5 = p6 = p′6

q1 = q′1

q2 = q′2 = q3 = q′3

q4 = q5

q6 = q′6

u v

p′3 = p′4

q′4 = q′5

f1

f2 f3

f ′
3

f4 f ′
4

f5f ′
5

f6

Figure 3.12: Proof of Lemma 10. The original path in GY from f1 ∈ Z to f6 ∈ Z is
f1, . . . , f6 (shown in black), and the modified path replaces the edges of Y − Z, which are
f3, f4, f5 by the edges f ′

3, f
′
4, f

′
5 ∈ Z (shown in red).

The plan is to replace pi by some point p′i and replace qi by some point q′i so that the
segments f ′

i = p′iq
′
i are edges in Z and form a path connecting f to g.

If triangle piuv is empty, then p′i = pi; otherwise p′i is a point inside triangle piuv that
is closest to line L. Define q′i similarly with respect to triangle qiuv. Note that f

′
1 = f1 and

f ′
m = fm.

We claim that each f ′
i is in Z. We must show that the line segment p′iq

′
i is an edge,

that it crosses e = uv, and that the quadrilateral Q(f ′
i) is empty.

First note that triangles p′iuv and q′iuv are empty because we picked p′i and q′i closest to
line L. Next we claim that these two empty triangles together form a convex quadrilateral.
This is because fi crosses uv, so Q(fi) is convex, and when we move pi to p′i and qi to q′i,
convexity is preserved. Thus f ′

i is an edge of Z.

Finally, note that p′2i−1 = p′2i and q′2i = q′2i+1 because that was true of the original
points. Thus the edges f ′

i form a path in GZ connecting f and g.

Lemma 11. Every connected component of GY contains an edge of Z.

This lemma can be proved in several different ways. One possibility is to take an edge
f ∈ Y and construct the edge f ′ ∈ Z inside Q(f) as in the above proof. However, showing
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that f and f ′ are connected in GY runs into some complications due to the possibility of
collinear points.

Instead we take an edge f ∈ Y and consider a triangulation T containing f and show
that T can flip in F−e to a triangulation containing an edge g ∈ Z. Below we give a short
proof based on this idea, and in Section 3.3 we give an alternative algorithmic proof that
efficiently finds an edge of Z connected to f in GY .

Proof. Let f be an edge of Y and let T be a triangulation that contains f . We will prove
there is an edge g ∈ Z that is connected to f in GY . There is a flip sequence from T to
a triangulation that contains e = uv. The last flip in this sequence must involve an edge
g of Z flipping to e. Until the last flip, we are in one connected component of F−e, so, by
Theorem 8, all the edges of Y in all the trianglulations in the sequence are in the same
connected component of GY . Thus f and g are connected in GY .

Proof of Theorem 9. If e is a flip cut edge, then by Theorem 8, GY is disconnected. By
Lemma 11, every connected component of GY contains an edge of GZ . Thus GZ is discon-
nected.

In the other direction, if GZ is disconnected, then by Lemma 10, GY is disconnected,
so e is a flip cut edge by Theorem 8.

In Section 3.3.3 we give efficient algorithm that uses GZ to test if edge e is a flip cut
edge, and, if so, to identify when two given triangulations are in different components of
F−e.

3.2.3 Third Characterization, PG.

The third characterization says that e is a flip cut edge if and only if PG is disconnected.
This was stated as Conjecture 5 and is proved below as Lemma 13 using Theorem 9.

Recall from Definition 4 that PG has a vertex for every EC4 that has e as a diagonal
and an edge when two EC4’s are contained in an EC5.

Claim 12. PG is a subgraph of GZ with the same vertex set.

Proof. A vertex of PG corresponds to an EC4 that has e as a diagonal, and the other
diagonal of such an EC4 is an edge of Z. This gives a one-to-one correspondence between
the vertices of PG and the set Z.
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u v

a1

a2

a3

a4

a5

b1

b2

b3

f1

f2

f3

f4 f5

Figure 3.13: The points that form empty triangles with uv are A = a1, . . . , a5 and B =
b1, b2, b3 ordered cyclically around u. The edges of Z are f1, . . . , f5 and they form two
connected components in GZ , {f1} and {f2, . . . , f5}. For any point b ∈ B, the points
a ∈ A such that ab ∈ Z form a subinterval of A.

To show that any edge of PG is an edge ofGZ , consider two vertices of PG corresponding
to edges f, g ∈ Z. Then Q(f) and Q(g) are EC4’s that are contained in a common EC5.
This implies that f and g share a common endpoint, so they are joined by an edge in
GZ .

Lemma 13. Edge e = uv is a flip cut edge iff its pentagon graph PG is disconnected.

Proof. Based on Theorem 9, e is a flip cut edge iff GZ is disconnected. So, we need to
prove PG is disconnected iff GZ is disconnected, i.e., PG is connected iff GZ is connected.

Based on the above claim, PG is a subgraph of GZ on the same vertex set. Thus, the
forward direction is trivial.

For the other direction, it suffices to show that if f and g are joined by an edge in
GZ then their corresponding vertices (Q(f) and Q(g)) are connected in PG. The existence
of an edge between f and g means they have a common endpoint. Suppose, without
loss of generality, this endpoint is b below e = uv, and f = ab and g = a′b. Suppose
a = a0, a1, ..., a

′ = al are the points above uv that create an empty triangle with u and
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v in cyclic order around u. Note that a and a′ create an empty triangle with u and v
because f = ab and g = a′b are in Z. Because of the conditions about order and having
empty triangles, we can conclude that aiubv, ai+1ubv, and uaiai+1vb are all empty for
i = 0, ..., l − 1. Hence, there is an edge between every aiubv, ai+1ubv in PG. Thus, Q(f)
and Q(g) are connected in PG.

3.3 Algorithms for Flip Cut Edges

In this section we give three algorithms to test if an edge is a flip cut edge using the
three characterizations from the previous section. One is easy to describe, one led to our
implementation, and one is efficient. In more detail:

1. Algorithm 1 is straight-forward. It tests if GY is connected, as justified by Theorem 8.
The running time is O(n4).

2. Algorithm 2 uses the simplest graph which is PG (it contains fewer vertices and
edges in comparison with GY and GZ) and checks if it is connected. It also is
a better representation of flips for transforming triangulations containing different
quadrilaterals. Algorithm 2 is the one we used for the examples in Figure 1.8. The
reason we implemented this one at first was that Conjecture 5 was our first idea
of characterizing flip cut edges and it also is a better demonstration of the way we
can transform between triangulations containing EC4s created with u and v. The
running time is O(n4).

3. Algorithm 3 tests if GZ is connected (justified by Theorem 9) with an efficient
O(n log n) time implementation.

Algorithms 1, 2, and 3 are in the first three subsections. In Section 3.3.4, we show how
to find all flip cut edges in time O(n3) (note that there may be Θ(n2) flip cut edges). In
Section 3.3.5, with Algorithm 3 as a preprocessing step, we give an O(n) time algorithm
to test if two triangulations in T−e are connected in F−e.

3.3.1 Testing for a Flip Cut Edge Using GY

Recall that Theorem 8 states:
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Theorem 8. Edge e is a flip cut edge if and only if GY is disconnected. More specifically,
edges f and g in Y are connected in GY if and only if T+f and T+g are connected in F−e.

In order to use this characteristic in implementing an algorithm, we build the graph GY

and check whether it is connected or not. Note that the vertices of GY are edges in point set
P that cross the edge e = uv (the one we are testing). So, we can have Θ(n2) vertices and
Θ(n4) edges. So, running DFS or BFS to check whether GY is connected takes O(n4) time.
Also, note that this algorithm implicitly identifies the connected components of the flip
graph. Triangulations containing edges represented by vertices in connected components
of GY are in the same connected component in the flip graph F−e. Algorithm 1 describes
the detailed implementation of the explained algorithm.
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Algorithm 1 Connected components of GY

Input: u, v, p1, . . . , pn
Output: Connected components of GY in the form of C1, . . . , Ck

1: procedure TestFlipCutEdge1
2: flipCutEdge ← False
3: k ← 0
4: // Find Y
5: Y ← ∅
6: for i← 1 to n do
7: for j ← i+ 1 to n do
8: if pipj crosses uv then add pipj to Y
9: end for
10: end for
11: // Find the edges of GY

12: for all v in Y , adjacencyList[v] = ∅, visited[v]← False
13: for v1 in Y do
14: for v2 in Y do
15: if v1 ̸= v2 and v1, v2 share a common endpoint then
16: insert v2 into adjacencyList[v1]
17: end if
18: end for
19: end for
20: // Run DFS on GY to find connected components
21: for i← 1 to Y.size() do
22: if not visited[vi] then
23: k ← k + 1
24: Ck ← ∅
25: run DFS on graph with Y as its set of vertices and adjacencyList repre-

senting the edges
26: for every v visited during DFS, insert v into Ck

27: for every v visited during DFS, visited[v]← True
28: end if
29: end for
30: if k > 1 then FlipCutEdge ← True
31: end procedure
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3.3.2 Testing for a Flip Cut Edge Using PG

Since, in the beginning, we were looking for characterization based on Conjecture 5 and
PG this was the first algorithm that we devised, thus this was the one we implemented.
Also, note that the graph built based on this algorithm better represents the sequence of
flips that transforms one triangulation into other ones. Algorithm 2 builds PG for e by
finding EC5’s and EC4’s that contain diagonal e. Then, based on the connectivity of this
graph, it decides whether e is a flip cut edge. We check every two points with u and v
to see if they create a convex quadrilateral (this takes O(n2) time) and then we need a
linear-time check to see whether that quadrilateral is empty. Similarly, for every set of
three points, we check if they can create an empty convex pentagon with u and v, which
takes O(n4) time. This algorithm works correctly as a result of Lemma 13. However, GZ

can be used for finding flip cut edges much more efficiently. This will be shown in the
following section.
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Algorithm 2 Connected components of PG
Input: u, v, p1, . . . , pn
Output: Connected components of PG in the form of C1, . . . , Ck

1: procedure TestFlipCutEdge2
2: flipCutEdge ← False
3: k ← 0
4: // Find V , the vertex set of PG
5: V ← ∅
6: for i← 1 to n do
7: for j ← i+ 1 to n do
8: if u, v, pi, pj create a convex quadrilateral containing uv as a diagonal then
9: isempty ← True
10: for l← 1 to n do
11: if pl is inside quadrilateral created by u, v, pi, pj then
12: isEmpty ← False
13: break
14: end if
15: end for
16: if isEmpty then
17: insert EC4 upivpj to V
18: adjacencyList[upivpj] = ∅, visited[upivpj]← False
19: end if
20: end if
21: end for
22: end for
23: // Find the edges of PG
24: for i← 1 to n do
25: for j ← i+ 1 to n do
26: if upivpj ∈ V then
27: for l← j + 1 to n do
28: if u, v, pi, pj, pl create a convex pentagon containing uv as a diagonal

then
29: isempty ← True
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30: for t← 1 to n do
31: if pt is inside pentagon created by u, v, pi, pj, pl then
32: isEmpty ← False
33: break
34: end if
35: end for
36: if isEmpty then
37: if upivpl ∈ V then
38: insert upivpj to adjacencyList[upivpl]
39: insert upivpl to adjacencyList[upivpj]
40: end if
41: if upjvpl ∈ V then
42: insert upivpj to adjacencyList[upjvpl]
43: insert upjvpl to adjacencyList[upivpj]
44: end if
45: end if
46: end if
47: end for
48: end if
49: end for
50: end for
51: // Run DFS to find connected components of PG
52: for all v in V , visited[v]← False
53: for i← 1 to V.size() do
54: if not visited[Vi] then
55: k ← k + 1
56: Ck ← ∅
57: run DFS on graph with V as its set of vertices and adjacencyList repre-

senting the edges
58: for every v visited during DFS, insert v into Ck

59: for every v visited during DFS, visited[v]← True
60: end if
61: end for
62: if k > 1 then
63: FlipCutEdge ← True
64: end if
65: end procedure
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3.3.3 Efficiently Testing for a Flip Cut Edge Using GZ

To test if edge e is a flip cut edge, by Theorem 9 it suffices to test if GZ is connected.
The algorithm also identifies the connected components of GZ (though without explicitly
listing the elements of Z, since there can be Θ(n2) of them). In particular, we find disjoint
subsets A1, . . . , Ac of A, and B1, . . . , Bc of B such that the ith connected component of
GZ consists of the edges of Z between Ai and Bi. Note that Z will not in general contain
all pairs from Ai ×Bi.

We first need some more properties of the sets A and B and the graph GZ . Because no
empty triangle is contained in another, the ordering of a ∈ A by decreasing (convex) angle
∠auv is the same as the ordering by increasing (convex) angle ∠avu. Let a1, . . . , ak be this
ordering of A. Similarly, let b1, . . . , bl be the ordering of B by decreasing (convex) angle
∠bvu, or equivalently, by increasing angle ∠buv. Thus the cyclic order of A ∪B around u
is a1, . . . , ak, b1, . . . , bk. See Figure 3.13.

Observation 15. For any point bj, the set of points ai such that the edge aibj is in Z(e)
form a subinterval of the ordering of A, and similarly for ai.

Later on, we will find it useful to have an even stronger property:

Observation 16. Let L be the line through uv.

1. If aibj crosses L to the right of v, then the same is true for all ai′bj′, i
′ ≥ i, j′ ≤ j.

2. If aibj crosses L to the left of u, then the same is true for all ai′bj′, i
′ ≤ i, j′ ≥ j.

3. If ai1bj2 and ai2bj1 are in Z for some ii ≤ i2 and j1 ≤ j2, then aibj is in Z for all
i1 ≤ i ≤ i2 and all j1 ≤ j ≤ j2.

Proof. Since (2) is symmetric to (1), it suffices to prove (1). To prove (1), suppose aibj
crosses L to the right of v. Then the angle ∠aivbj is convex to the right of v, so (by the
ordering) the same is true of ∠ai+1vbj and ∠aibj−1. The result follows by induction.

Also, note that (3) follows from (1) and (2). Suppose that for some i, i1 ≤ i ≤ i2 and
j, j1 ≤ j ≤ j2, aibj is not in Z, then it either crosses L to the right of v or to the left of u.
If aibj crosses L to the right of v, then based on (1), ai2bj1 is not in Z either, which is a
contradiction. If aibj crosses L to the left of u, then based on (2) ai1bj2 is not in Z, which
is a contradiction again. So, for any i, i1 ≤ i ≤ i2 and j, j1 ≤ j ≤ j2, aibj is in Z.
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Finding the ordered sets A and B. We show how to find the ordered set A in O(n log n)
time. Sort all the points p ∈ P that lie above e by decreasing angle ∠puv, breaking ties by
distance from u. Call this the u-order, <u. Also, sort the same points by increasing angle
∠pvu, and call this the v-order, <v. Define a1 to be the first point in the v-order. Observe
that a1 is a member of A (the first member of A), and that any points p with p <u a1
do NOT belong to A and can be discarded. In general, we proceed through the v-order.
Define ai to be the next un-discarded element of the v-order, and discard all points p with
p <u ai.

To prove that this is correct, observe that when we discard p, we have p <u ai and
p >v ai. Thus, the triangle puv contains ai, so discarding p is correct. Observe that when
we choose ai, we have ai−1 <v ai because we follow the v-order, and we have ai−1 <u ai
because we discarded all points p <u ai−1 in the previous step.

We can find the ordered set B similarly. The time to find the ordered sets A and B is
O(n log n), and in fact, it is O(n) after the preliminary sorting steps.

Finding the connected components of GZ. We do not explicitly list the vertices of
each connected component (there are too many). Rather, we find a partition of A into
A1, . . . , Ac and a partition of B into B1, . . . , Bc such that the ith connected component
of GZ consists of the edges of GZ contained in Ai × Bi. Given the ordered lists A and
B, we find the connected components of GZ in linear time as follows. The algorithm has
two phases. In Phase 1, we find the first edge of the next component, and in Phase 2, we
complete the component. Phase 1 initially begins with a1 and b1, but more generally, we
will find the first edge of the next component Ac, Bc among the “active” points ai, . . . , ak
and bj, . . . , bℓ, maintaining the invariant that there are no edges of Z from an inactive point
to an active point. We search for an edge that crosses uv. Let L be the line through uv. If
aibj crosses L to the right of v, then by Observation 16(1), there are no edges of Z from bj
to any active point. So we increment j and the invariant is maintained. If aibj crosses L
to the left of u, then, with similar justification, we increment i. Continue until aibj crosses
uv. This completes Phase 1—we have found the first edge of the connected component.
Add ai to Ac and add bj to Bc.

For Phase 2, we complete the connected component by alternately “pivoting” on ai and
bj. To pivot on ai, update j to the maximum index such that aibj crosses uv, putting all
the b points we find into Bc. To pivot on bj, update i to the maximum index such that aibj
crosses uv, putting all the a points we find into Ac. When no more pivots are possible, we
are done with this connected component and done with Phase 2. We increment i and j by
1, and go back to Phase 1 to find the next connected component.

More details are given as Algorithm 3. The algorithm runs in linear time since it only
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performs a linear scan through each of the ordered lists A and B, doing constant work for
each point.

We now justify correctness of the algorithm. We already argued that during Phase 1
we maintain the invariant that there are no edges of Z between an inactive point and an
active point, i.e., there are no edges of Z of the form ai′bj′ with i′ ≤ i and j′ > j or with
i′ > i and j′ ≤ j. Now consider Phase 2. Observe that when we add points to Ac and
Bc, they are part of the same connected component of GZ . This is because when we pivot
on ai, all the b points that we add to Bc are adjacent to ai in Z, and similarly, when we
pivot on bj, all the a points that we add to Ac are adjacent to bj in Z. It remains to show
that when we declare a connected component “done” because we can no longer pivot at
ai or bj, then the invariant holds for active points ai+1, . . . , ak and bj+1, . . . , bℓ, i.e., there
are no edges of Z of the form ai′bj′ with i′ ≤ i and j′ > j or with i′ > i and j′ ≤ j. First
suppose ai′bj′ ∈ Z for some i′ ≤ i and j′ > j. Then by Observation 16(3), aibj+1 is in Z,
so we would not have been done pivoting at ai. The case of i′ > i and j′ ≤ j follows by
symmetry.

3.3.4 Finding All Flip Cut Edges

To find all the flip cut edges, we run the above test on each of the O(n2) edges. We
preprocess by sorting the points cyclically around each point p in a total of O(n2 log n)
time. Then, to test a particular edge e = uv, we find the ordered sets A and B around
uv, and apply Algorithm 3, which takes linear time apart from the sorting. Thus the total
time to find all flip cut edges is O(n3).

3.3.5 Testing Connectivity of Two Triangulations

We now show how to test if two triangulations T1 and T2 in T−e are connected in F−e.
We assume that we have the output of the above algorithm, i.e., the sets A1, . . . , Ac and
B1, . . . , Bc such that the ith connected component of GZ consists of the edges of Z between
Ai and Bi. We can then find the component i of a given edge e ∈ Z in constant time.

As mentioned in Section 3.2 one approach is to pick one edge f1 from Y ∩ T1, and one
edge f2 from Y ∩ T2, and test if f1 and f2 are in the same connected component of GY .
However, we only have GZ available to us, and there are triangulations in T−e that contain
no edges of Z.
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Algorithm 3 Connected components of GZ

Input: u, v, a1, . . . , ak, b1, . . . , bℓ
Output: Connected components of GZ in the form of A1, . . . , Ac, B1, . . . , Bc

1: procedure ConnectedComponents
2: for all i, done[ai] ← False; for all j, done[bj] ← False
3: i← 1; j ← 1; c← 0
4: while i ≤ k and j ≤ ℓ do
5: // Phase 1. Find the first edge of component c
6: while aibj does not cross uv do
7: if aibj crosses L to the right of v then
8: j ← j + 1; if j > ℓ then Halt
9: end if
10: if aibj crosses L to the left of u then
11: i← i+ 1; if i > k then Halt
12: end if
13: end while
14: c← c+ 1; Insert ai into Ac, and bj into Bc

15: // Phase 2. Find all edges in component c by alternately pivoting on ai, bj until
no further pivot is possible

16: repeat
17: // Pivot on ai
18: while aibj crosses uv and j ≤ ℓ do
19: insert bj into Bc; j ← j + 1
20: end while
21: j ← j − 1; done[ai] ← True

22: // Pivot on bj
23: while aibj crosses uv and i ≤ k do
24: insert ai into Ac; i← i+ 1
25: end while
26: i← i− 1; done[bj] ← True

27: until done[ai] and done[bj]
28: i← i+ 1; j ← j + 1
29: end while
30: end procedure
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Instead, we give an algorithmic version of Lemma 11 that finds an edge g1 ∈ Z in the
same component of GY as the edges Y ∩ T1, and an edge g2 ∈ Z in the same component
of GY as the edges Y ∩ T2. Then we simply test if g1 and g2 are in the same set Ai ×Bi.

We first establish correctness and then give the details of finding g1 and g2 in linear
time. We must prove that g1 and g2 are connected in GZ if and only if T1 and T2 are
connected in F−e. Let fi be an edge of Y ∩ Ti. By Observation 7, the edges of Y ∩ Ti are
all connected in GY , so the choice of fi is arbitrary. Now T1 and T2 are connected in F−e

iff (by Theorem 8) f1 and f2 are connected in GY iff (by choice of g1, g2) g1 and g2 are
connected in GY iff (by Lemma 10) g1 and g2 are connected in GZ .

We now give the details of finding g1 (finding g2 is similar). Triangulation T1 has a
sequence C of triangles that intersect uv. See Figure 3.14. Each triangle in C shares an
edge of Y ∩ T1 with the previous triangle in C, and all the edges of Y ∩ T1 are in one
connected component of GY (by Observation 7). Among the vertices of triangles of C, let
a be a vertex above the line L through uv that is closest to L and let b be a vertex below
the line L that is closest to L. Then ab is an edge of Z and is in the same connected
component as Y ∩ T1. This can be done in linear time.

a1

a2

a3

b4

b3

b2 b1

u v

Figure 3.14: The triangles C of T1 that cross edge e = uv, and an edge a3b3 of Z (in blue)
that is connected in GY to the edges of Y ∩ T1.

3.4 Further Results on Flip Cut Edges

In this section we establish some bounds on the number of flip cut edges, and on the
number of disconnected components caused by forbidding one flip cut edge. To do this,
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we fill in the details of the claims made in Section 1.4.1 (Examples) about some special
point sets: channels, hourglasses, and grid point sets. We begin by relating flip cut edges
to empty convex pentagons. Throughout the section we refer to a forbidden edge e, and
to Z, GZ , A, B, and so on, as defined above.

3.4.1 Empty Convex Pentagons (EC5’s)

Empty convex pentagons (EC5’s) play a significant role in the study of flip graphs. In
Section 3.1.2 we showed how EC5’s are used to flip between two EC4’s without using the
forbidden edge. Later, we proved how PG illustrates the role of EC5’s in transforming dif-
ferent triangulations of F−e. EC5’s have important roles in other works too. Eppstein [14]
studied the flip graph of points without EC5’s, and gave a polynomial time algorithm to
find the minimum number of flips between two given triangulations. Points on an n×m grid
have no EC5’s, and in the other direction, a point set without EC5’s must have collinear
points. In particular, any n ≥ 10 points in general position contain an EC5 [19], and suf-
ficiently large point sets with no EC5 have arbitrarily large subsets of collinear points [1].
Empty convex pentagons also play a significant role in analyzing flips for coloured edges
and proving the Orbit Theorem [27].

We show that the absence of EC5’s leads to a simple condition for flip cut edges. In
particular, if a point set has no EC5’s, then edge e is a flip cut edge if and only if e is in
(i.e., is a diagonal of) at least two EC4’s. In fact, it suffices to exclude local EC5’s:

Lemma 17. An edge e that is not a diagonal of an EC5 is a flip cut edge if and only if it
is a diagonal of at least two EC4’s, i.e., |Z| ≥ 2.

Proof. If e is a flip cut edge, then by Theorem 9, GZ is disconnected, so we must have
|Z| ≥ 2. (For this direction we did not use the assumption about EC5’s.)

For the other direction, suppose e is not a flip cut edge and |Z| ≥ 2. We will show that
e is a diagonal of an EC5. By Theorem 9, GZ is connected. Because neighbours in GZ are
consecutive in the orderings of A and B (by Observation 15), there must be two edges f, g
in Z that are incident at one end and consecutive in the ordering of A (or B) at the other
end.

Without loss of generality, suppose f = aibj and g = ai+1bj. See Figure 3.15. The
five points ai, ai+1, bj, u, v form a convex pentagon. (Observe that the angle at u is convex
because of the EC4 Q(f), and the angle at ai is convex because ai and ai+1 make empty
triangles with uv and ai precedes ai+1 in A, and similar arguments show that the other
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u v

bj

p
ai ai+1

Figure 3.15: The endpoints of the edges aibj and ai+1bj form an EC5 with u and v.

angles are convex.) If this pentagon is not empty, then it contains a point p outside
Q(f) ∪ Q(g) and such a point of minimum y coordinate is a point of A between ai and
ai+1, a contradiction. Thus the pentagon is empty, so e is a diagonal of an EC5.

3.4.2 Grid Point Sets

The points of a k × ℓ grid have no empty convex pentagons, so by Lemma 17, an edge
is a flip cut edge if and only if |Z| ≥ 2. Edges “near” the boundary of the grid may
fail to be flip cut edges, but we show that edges farther from the boundary are flip cut
edges, and we show that in an infinite grid, all edges are flip cut edges. We first deal with
horizontal/vertical edges.

Claim 18. Let e be a horizontal/vertical edge of a grid point set. Then e is a flip cut edge
if and only if it does not lie on the boundary of the grid.

Proof. Note that e must have unit length since no edge goes through intermediate points.
We may assume without loss of generality that e goes from (x, y) to (x+ 1, y). If e lies on
the boundary, then Z is empty. For the converse, suppose e is not on the boundary. Then
the points just above e, a1 = (x, y + 1), a2 = (x + 1, y + 1), and the points just below e,
b1 = (x+ 1, y − 1), b2 = (x, y − 1), lie in the grid, and the two edges a1, b1 and a2, b2 lie in
Z, so e is a flip cut edge by Lemma 17.

Next consider an edge e that is not horizontal or vertical. Reflect so that e goes from
the point (x, y) to the point (x + ∆x, y + ∆y) with ∆x ≥ ∆y > 1. Since an edge cannot
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go through intermediate points, gcd(∆x,∆y) = 1. Let L be the line through e. On the
infinite grid, translate L upward and parallel to itself until it hits grid points and call the
resulting line LU . Similarly, translate L downward and parallel to itself until it hits grid
points, and call the resulting line LD.

Claim 19. A grid point makes an empty triangle with e iff it lies on LU or LD.

Proof. The “if” direction is clear. For the other direction, consider a triangle T determined
by e and an apex grid point strictly above LU . The area of T is strictly larger than the
area of a triangle with apex on LU . By Pick’s theorem [17] (the area of a triangle on the
grid is the number of grid points strictly inside the triangle plus half the number on the
boundary of the triangle), triangle T cannot be empty.

By the easy direction of this claim, a grid point a ∈ LU and a grid point b ∈ LD provide
an edge ab ∈ Z iff ab crosses e. The other direction of the claim is used in Figure 3.16b to
demonstrate that some edges are not flip cut edges.

We now analyze the points on LU and LD. We claim that there is a point a = (ax, ay)
on LU with ax ∈ [x, x+∆x) and ay ∈ (y, y +∆y]. To justify this, note that if a = (ax, ay)
is a point on LU , then so is (ax + ∆x, ay + ∆y) and (ax − ∆x, ay − ∆y). This implies
that there is a point a = (ax, ay) on LU with ax ∈ [x, x + ∆x). Then we must have
ay ∈ (y, y +∆y], as otherwise (ax, ay − 1) would be between L and LU . By symmetry, the
point b = (bx, by) := ((x+∆x)−(ax−x), (y+∆y)−(ay−y)) = (2x+∆x−ax, 2y+∆y−ay)
lies on LD and has bx ∈ (x, x +∆x] and by ∈ [y, y +∆y). Then, the segment ab crosses e
at their midpoints, so ab ∈ Z. The same is true for the segment from (ax + i∆x, ay + i∆y)
to (bx − i∆x, by − i∆y) for any i = 0, 1, . . .. This implies that on an infinite grid, Z has
infinite size. Thus we have proved:

Lemma 20. For the points of the infinite integer grid, every edge is a flip cut edge.

In a finite grid, the boundary edges are not flip cut edges, but they are not the only
exceptions, see Figure 3.16. It is possible to characterize flip cut edge in terms of integer
solutions to equations, but for now we simply note that a large enough grid of n points has
Θ(n2) flip cut edges, as justified by the following.

Proposition 21. Let G be a k × ℓ grid and let G′ be the middle one-third grid (the grid
which contains points that have x-coordinates between k

3
and 2k

3
and y-coordinates between

l
3
and 2l

3
). Then every edge of G′ is a flip cut edge of G.
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Proof. Let e be an edge of G′. We will show that Z has at least two elements. As above,
we may assume that e goes from (x, y) to (x + ∆x, y + ∆y) with ∆x ≥ ∆y > 1 and
gcd(∆x,∆y) = 1. Since e lies in G′ we have ∆x ≤ k/3, ∆y ≤ ℓ/3.

As noted above, there is a point a = (ax, ay) on LU with ax ∈ [x, x + ∆x) and ay ∈
(y, y+∆y] and a point b = (bx, by) = (2x+∆x−ax, 2y+∆y−ay) on LD with bx ∈ (x, x+∆x]
and by ∈ [y, y +∆y). Both a and b lie in the grid G and ab ∈ Z. For our second element
of Z, we use the edge from (ax +∆x, ay +∆y) on LU to (bx −∆x, by −∆y) on LD. Note
that these points lie in G.

LU LD

(0, 0) (7, 0)

(0, 7) (7, 7)

(3, 6)

(4, 7)

(2, 2)

(5, 4)
LU

LD

f2

f1

(a) f1 and f2 are flip cut edges since they
are in at least two EC4’s, as shown by the
diagonals (in red) with endpoints on LU and
LD (in cyan).

(0, 0) (7, 0)

(0, 7) (7, 7)

(0, 5)

(6, 6)

(6, 4)

(1, 2)

(3, 0) (4, 0)

(2, 6)

e1

e2

e3

e4

(b) e1, e2, e3, e4 are not flip cut edges since
they are in 0 or 1 EC4’s.

Figure 3.16: Example edges in a 7× 7 grid.

3.4.3 The Number of Flip Cut Edges

In Section 1.4.1, we claimed that channels, as shown in Figure 1.5, are point sets with
Θ(n2) flip cut edges. Here we justify that claim.

Proposition 22. For a channel, every edge between an interior point on the upper reflex
chain and an interior point on the lower reflex chain is a flip cut edge.

Proof. Let the points of the upper reflex chain be t1, . . . , tn and the points of the lower reflex
chain be b1, . . . , bn, as shown in Figure 1.5. Consider the edge bitj where i, j /∈ {1, n}. We
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use Lemma 17 to show that bitj is a flip cut edge. There is no EC5 with bitj as a diagonal
because such an EC5 would have to have at least 3 points of one reflex chain, say the upper
one, and those points cannot be part of a convex polygon with bi. However, both the edges
bi−1tj+1 and bi+1tj−1 form EC4’s together with bitj. Thus by Lemma 17, bitj is a flip cut
edge.

3.4.4 The Number of Components from a Flip Cut Edge

In Section 1.4.1, we claimed that one flip cut edge e can cause Θ(n) disconnected compo-
nents in F−e. Here we justify that claim.

Theorem 23. A flip cut edge can create O(n) disconnected components in the flip graph,
and this is the most possible.

Proof. First of all, connected components in the flip graph F−e correspond to connected
components in GY (by Theorem 8) and therefore correspond to disjoint sets of points, so
there are at most n of them.

The hourglass in Figure 1.6 is an example of a point set of size 2n + 2 with a flip
cut edge e that results in n components in F−e. To construct the hourglass, place points
a1, . . . , an along the top half of a circle, and let b1, . . . , bn be the diametrically opposite
points. For each i construct the wedge from ai to bi−1 and bi+1. Place points u and v on
the horizontal diameter of the circle, so close to the center of the circle that they are inside
all the wedges. Then GY consists of the n edges aibi, and no two of these are connected in
GY . Thus (by Theorem 8) F−e has n disconnected components.
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Chapter 4

Flip Cut Set for Points in Convex
Position

In this chapter, we are going to give some examples of flip cut sets, and then prove that
flip cut number for points in convex position is n− 3.

4.1 Some Examples of Flip Cut Sets

As mentioned in the introduction, a point set in convex position has no flip cut edge, i.e.,
its flip cut number is greater than 1. We are going to prove this in the next section of this
chapter. In this section, we will show all the possible flip cut sets for convex point sets
with sizes six, seven, and eight. We have not yet been able to characterize flip cut sets for
convex point sets. That being said, examining these examples should give some clue on
where to start.

First, note that for a convex point set of size five, there exists no flip cut set, since
forbidding two edges fails to disconnect the flip graph and forbidding more edges than that
leaves us with no valid triangulation. For a convex point set of size six, there are two
minimal flip cut sets with size three, which are shown in Figures 4.1 and 4.2.

The connected components of the flip cut sets in Figures 4.1 and 4.2 contain only frozen
triangulations. In Figure 4.3, a flip cut set for a convex point set of size seven is shown.
Each of the connected components of the flip graph for this set of forbidden edges contains
3 vertices (triangulations). Hence, both components are non-frozen components.
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Figure 4.4 shows all the other possible minimal flip cut sets of a point set with size
seven. We can see that all of these flip cut sets have size 4. Figure 4.5a shows some minimal
flip cut sets for a convex point set of size eight. The size of all these sets is five. However,
Figure 4.5b shows that not all sets of size five are flip cut sets.

Although we have not been able to characterize flip cut sets for points in convex position,
in the next section of this chapter, we show that the flip cut number for convex point sets
is n− 3 where n is the size of the point set.

(a) A flip cut set X for a convex point set
of size six

(b) The components of F−X are frozen

Figure 4.1: An example of flip cut set for n = 6

(a) Another flip cut set X for a convex point
set of size six

(b) The frozen components of F−X

Figure 4.2: Another example of flip cut set for n = 6 whose components are frozen
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(a) A flip cut set X for a convex point set
of size seven

(b) The components of F−X are not frozen.

Figure 4.3: An example of a flip cut set for n = 7 whose components are not frozen

Figure 4.4: Other flip cut sets for a convex point set of size seven

4.2 Flip Cut Number for Points in Convex Position

As mentioned in the introduction, a point set in convex position has no flip cut edge, i.e.,
its flip cut number is greater than 1. In this section we show that the flip cut number of
n points in convex position is n− 3.

We give a direct proof, but first we discuss what the result means in terms of associahe-
dra. The flip graph of n points in convex position is the 1-skeleton of the (n−3)-dimensional
associahedron An−1 (see Figure 1.3), so by Balinski’s theorem [3], the 1-skeleton is (n−3)-
connected. The dual polytope Ān−1 is also an (n−3)-dimensional polytope with an (n−3)-
connected 1-skeleton. The face lattice of an n-dimensional convex polytope is defined as
a lattice with n + 1 layers; the i’th layer of the lattice contains vertices corresponding to
each of the (i − 1)-dimensional faces of the polytope. There exists an edge between two
vertices (faces) of two consecutive layers, if the associated face with a higher dimension
contains the face with a lower dimension. The face lattice of Ān−1 is the inverted face
lattice (in which the order of layers has been reversed) of An−1, so the vertices of Ān−1
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(a) Some flip cut sets for a point set of size
eight

(b) Some forbidden sets of size five that are
not flip cut sets

Figure 4.5: Some sets of forbidden edges. Ones on the left are flip cut sets, but sets on the
right are not.

correspond to the (n − 4)-dimensional faces (the facets) of An−1 and the edges of Ān−1

correspond to (n−5)-dimensional faces of An−1. Forbidding a chord of the original polygon
corresponds to deleting a facet of An−1, i.e., a vertex of Ān−1. Deleting fewer than n − 3
facets of An−1 leaves the remaining facets connected via (n− 5)-dimensional faces. What
our result shows is that the remaining vertices (0-dimensional faces) of An−1 are connected
via the remaining edges (1-dimensional faces) of An−1. We do not see how to prove our
result using this polyhedral interpretation. Instead, we give a direct proof that the flip cut
number of n points in convex position is n− 3.

For points in convex position, we number the points p1, . . . , pn in cyclic order around the
convex hull. The edges pipi+1 (addition modulo n) must be present in every triangulation.
A chord is a line segment joining points that are not consecutive in the cyclic ordering.
An ear is a chord of the form pi−1pi+1 (addition modulo n), and we say that this ear cuts
off point pi. Every triangulation of a convex point set on n ≥ 4 points has at least two ears
(because the dual tree has at least two leaves). A star triangulation is a triangulation
all of whose chords are incident to the same point.

For a set X of chords, we study connectivity of F−X . We define the degree of a point
p in X to be the number of chords of X incident to p.

We begin with a necessary condition for a flip cut set. This provides a rigourous proof
that the flip cut number is greater than 1, and will also be needed for our main result.

Lemma 24. If X is a flip cut set for a set of points in convex position, then every point
is incident to an edge of X, i.e., the degree in X of every point is at least 1.
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p0 = p8

p1 p2

p3

p4

p5p6

p7

(a) A zigzag triangulation T (in black) and a
set of forbidden edges X (in red) that makes
T a frozen triangulation.

p0 = p8

p1 p2

p3

p4

p5p6

p7

(b) Another zigzag triangulation T ′ in F−X .

Figure 4.6: Construction of a flip cut set of size n− 3

Proof. We prove the contrapositive: if there is a point p ∈ P with no incident edges of
X, then X is not a flip cut set. Specifically, we prove that any triangulation T in T−X is
connected to the star triangulation centered at p. This is in fact the standard way to show
connectivity of the (full) flip graph of a convex point set. In our situation, we must show
that the required flips do not use forbidden edges.

So, suppose triangulation T contains a triangle incident to p whose other two points,
q and r, are not consecutive on the convex hull. Now T contains a triangle, say qrs, on
the other side of qr. Then pqsr forms a convex quadrilateral, and we can flip the chord qr
to the chord ps (which is not forbidden). This increases the number of chords incident to
p, so, by induction, T can be flipped to the star triangulation centered at p without using
forbidden edges.

Corollary 25. There is no flip cut edge in a convex point set.

In the rest of this section we prove that the flip cut number for n points in convex
position is n− 3. We begin with the following two lemmas.

Lemma 26. A convex point set of size n has a flip cut set of size n− 3.

Proof. Consider a “zigzag” triangulation T of a convex n-gon as shown in Figure 4.6a.
This triangulation has n− 3 chords that form a path p0, pn−2, p1, pn−3, ..., p⌊n

2
⌋. Each chord

e of T can flip to a unique other chord f(e). If we forbid the n − 3 chords X := {f(e) :
e a chord of T} then T becomes a frozen triangulation, i.e., it becomes an isolated node
in the flip graph F−X . In order to complete the proof, we only need to show that there
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exists another triangulation in F−X different from T . (This is where we use the fact that
T is a zig-zag triangulation—for example, a star triangulation would not work.) We create
another zigzag triangulation T ′ in the following way. The path of chords for T ′ starts at
the same vertex p0 = pn, but the first chord from p0 goes in the other direction, i.e., to p2.
See Figure 4.6b. The new zigzag path is p0, p2, pn−1, p3, pn−2, ..., p⌈n

2
⌉. We prove that T ′

does not use any forbidden edges. Note that each forbidden edge crosses only one chord
of T . However, each chord of T ′, crosses at least two chords of T . This is because each
chord in T ′ of the form pi+2pn−i, for i = 0, .., ⌊n

2
⌋ − 2, crosses pi+1pn−i−2 and pi+1pn−i−3

from T and any chord of the form pi+1pn−i, for i = 1, .., ⌊n
2
⌋− 2, in T ′ crosses pipn−i−1 and

pi−1pn−i−1 from T . So, since each forbidden edge e ∈ X crosses exactly one chord of T ,
but each chord of T ′ crosses at least two chords of T ; therefore T ′ does not contain any
forbidden edges.

Lemma 27. Consider a convex point set P with n points and a set X of forbidden edges
with |X| ≤ n − 3. Then there is a triangulation of P that uses no forbidden edges, i.e.,
T−X is non-empty.

Proof. The proof is by induction on n with base case n = 3. If there is a point p that is
incident to no forbidden edges, then take the star triangulation at p. Otherwise, suppose
every point is incident to at least one forbidden edge. There are n chords of the form
pi−1pi+1 (addition modulo n). So, there exists at least one of them that is not forbidden.
Suppose it is pi−1pi+1. We build a triangulation containing the ear pi−1pi+1. Let P ′ be
P − {pi} of size n′ = n − 1. Since pi is incident to at least one forbidden edge, there are
at most n− 4 = n′ − 3 forbidden edges of P ′. Thus, by induction, there is a triangulation
of P ′ that uses no forbidden edges. Together with chord pi−1pi+1 this provides the desired
triangulation of P . Thus T−X is non-empty.

Theorem 28. The flip cut number of a convex point set P with n points is n− 3.

Proof. By Lemma 26, we can disconnect P ’s flip graph by forbidding n− 3 edges. So, now
we only need to show that if X is a set of forbidden edges and |X| ≤ n− 4, then F−X(P )
is connected. By Lemma 24, F−X(P ) is connected if there is a point p ∈ P not incident to
any edge of X. Thus we may assume that every point p ∈ P is incident to some edge of
X. Let S and T be two triangulations of P that do not contain any edges of X. We will
prove that S is connected to T in F−X(P ). We will prove this by induction on n, with the
base case n = 3 where the statement is vacuously true.

We know that each triangulation contains at least two ears. We consider two cases.
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Case 1. S and T have a shared ear that cuts off point pi. Consider sub-polygon P ′

obtained by removing point pi. By assumption there is a forbidden edge incident to pi. Let
X ′ be the forbidden edges of X not incident to pi. Then |X ′| ≤ |X|−1 ≤ |P |−5 = |P ′|−4,
so by induction, the triangulations of P ′ induced from S and T are connected in F−X′(P ′).
Thus S and T are connected in F−X(P ).

Case 2. S and T have no shared ear. We claim that there is an ear e1 in S and an ear e2
in T such that e1 and e2 do not cross, i.e., the points that are cut off by e1 and by e2 are
not adjacent on the convex hull. Suppose S has an ear e1 that cuts off point pi. T has at
least two ears, and if they cross e1, they must cut off points pi−1 and pi+1. But then the
second ear of S cannot cross both these ears of T unless n = 4 (and X = ∅), in which case,
a single flip converts S to T .

Thus we may assume a pair of non-crossing ears e1 of S and e2 of T . Suppose e1 cuts
off point q1 and e2 cuts off point q2. Let P1 be P −{q1}. P1 has n1 = n− 1 points. Let X1

be the forbidden edges of X induced on P1. By assumption there is at least one edge of X
incident to q1, so |X1| ≤ |X| − 1 ≤ n− 5 = n1 − 4. By induction, the flip graph F−X1(P1)
is connected. Let S1 be the triangulation of P1 formed by cutting the ear e1 off S. The
plan is to apply induction on P1 to connect triangulation S1 to a new triangulation R1 of
P1 that includes the chord e2.

We construct R1 as follows. Let P2 be P − {q1, q2}. Then P2 has size n2 = n− 2. Let
X2 be the forbidden edges of X induced on P2. Then |X2| ≤ |X1| ≤ n1 − 4 = n2 − 3. By
Lemma 27, P2 has a triangulation that uses no chords of X2. Adding chord e2 yields the
triangulation R1.

By induction on P1 and X1 the triangulations S1 and R1 are connected in F−X1(P1).
Finally, R1 and T share the ear e2, so by Case 1, they are connected in F−X(P ). Altogether,
we have connected S to T in F−X(P ), as required.
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Chapter 5

Conclusions and Open Problems

We examined connectivity of the flip graph of triangulations when some edges between
points are forbidden, and introduced the concepts of flip cut edges, flip cut sets, and the
flip cut number. We gave an O(n log n) time algorithm to identify flip cut edges and test
connectivity after forbidding a flip cut edge, and we proved that the flip cut number of a
convex n-gon is n− 3. We conclude with some open questions.

1. Is there a polynomial-time algorithm to test if a set of edges is a flip cut set? To
compute the flip cut number?

2. What happens if we specify both a set of forbidden edges and a set of forced (con-
strained) edges. Can we characterize when the resulting flip graph is disconnected?
A better understanding of this situation might be helpful for solving the previous
open question.

3. The asymptotic diameter of the flip graph of a convex n-gon is 2n − 10—a famous
result of Sleater, Tarjan and Turston [35], improved to all n > 12 by Pournin [33].
For a convex point set and a set X of forbidden edges with |X| < n− 3 what is the
diameter of F−X in terms of n and |X|?

4. It is open whether there is a polynomial-time algorithm for the flip distance problem
for a convex polygon. Is the following generalization NP-complete: Given n points
in convex position, a set X of forbidden chords, two triangulations T1 and T2, and a
number k, is the flip distance from T1 to T2 in F−X less than or equal to k?

56



5. A flip cut edge is a bottleneck to connecting triangulations via flips. One might
guess that point sets with no flip cut edges provide better mixing properties. More
generally, how does the flip cut number affect mixing properties?
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Wood. Every large point set contains many collinear points or an empty pentagon.
Graphs and Combinatorics, 27(1):47–60, 2011.

[2] Nima Anari, Shayan Oveis Gharan, and Cynthia Vinzant. Log-concave polynomials,
entropy, and a deterministic approximation algorithm for counting bases of matroids.
In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS),
pages 35–46. IEEE, 2018.

[3] Michel L Balinski. On the graph structure of convex polyhedra in n-space. Pacific
Journal of Mathematics, 11(2):431–434, 1961.

[4] Marshall Bern and David Eppstein. Mesh generation and optimal triangulation. Com-
puting in Euclidean Geometry, pages 47–123, 1995.

[5] Reza Bigdeli and Anna Lubiw. Forbidding edges between points in the plane to
disconnect the triangulation flip graph. arXiv e-prints arXiv:2206.02700, 2022.

[6] Prosenjit Bose and Ferran Hurtado. Flips in planar graphs. Computational Geometry,
42(1):60–80, 2009.

[7] Prosenjit Bose, Anna Lubiw, Vinayak Pathak, and Sander Verdonschot. Flipping edge-
labelled triangulations. Computational Geometry: Theory and Applications, 68:309–
326, 2018.

[8] Pietro Caputo, Fabio Martinelli, Alistair Sinclair, and Alexandre Stauffer. Random
lattice triangulations: Structure and algorithms. The Annals of Applied Probability,
25(3):1650–1685, 2015.

58



[9] Cesar Ceballos, Francisco Santos, and Günter M Ziegler. Many non-equivalent real-
izations of the associahedron. Combinatorica, 35(5):513–551, 2015.

[10] L. Paul Chew. Constrained Delaunay triangulations. Algorithmica, 4(1):97–108, 1989.

[11] Bhaskar DasGupta, Xin He, Tao Jiang, Ming Li, John Tromp, and Louxin Zhang. On
distances between phylogenetic trees. In Proceedings of the ACM-SIAM Symposium
on Discrete Algorithms (SODA), volume 97, pages 427–436. SIAM, 1997.
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