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Abstract

The objective of this thesis is to bound the number of points a U2,ℓ+2- and M(Kk+1)-
minor-free matroid has. We first prove that a sufficiently large matroid will contain a
structure called a tower. We then use towers to find a complete minor in a matroid with
no U2,ℓ+2-minor.
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Chapter 1

Preliminaries

This thesis studies the maximal density of matroids that do not contain the complete
graphic matroid M(Kk+1) and the rank-2 uniform matroid on ℓ + 2 elements U2,ℓ+2 as a
minor. The results in chapters 2 and 3 use some of the ideas from a proof for the case of
binary matroids given in personal correspondence between Sergey Norin and Peter Nelson.
We will start with the basic definitions.

The following definitions are standard and can be found in [12] by Oxley. A matroid
M is a pair (E, r) where E is a finite ground set and r : 2E −→ Z is a rank function that
satisfies the following axioms:

(R1) If X ⊆ E, then 0 ⩽ r(X) ⩽ |X|.

(R2) If X ⊆ Y ⊆ E, then r(X) ⩽ r(Y ).

(R3) r(X ∪ Y ) + r(X ∩ Y ) ⩽ r(X) + r(Y ) for all X, Y ⊆ E.

We use rM to refer to the rank function of M if needed.

The rank of the matroid M is defined as r(E). A set X ⊆ E is independent if r(X) =
|X|, otherwise we say a set is dependent. A maximal independent set of M is called a basis
and a minimal dependent set is called a circuit. A circuit of size one is called a loop and if
two elements form a circuit of M , they are called a parallel pair. A circuit of size three is
called a triangle. Given a matroid M , the dual of M is the matroid M∗ with rank function
rM∗(A) := |A| − r(M) + rM(E \ A). The circuits of the dual are called cocircuits of M .

The closure of X ⊆ E is the set clM(X) = {x ∈ E : r(X ∪ x) = r(X)}. A set F ⊆ E is
called a flat of M if clM(F ) = F . A hyperplane is a flat of rank r(M)− 1, a line of M is a
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flat of rank 2 and a flat of rank 1 is called a point ; we will use ε(M) to denote the number
of points of M . We say X ⊆ E(M) spans Y ⊆ E(M) if Y ⊆ clM(X). We will denote by
ϵ(M) the number of points of a matroid M .

Given X ⊆ E, the restriction of M to X is the pair (X, rX) where rX is the restriction
of the function r to the power set of X. The deletion of X in M is the restriction of
M to E \ X. The contraction of X in M is the matroid M/X = (E \ X, rM/X) where
rM/X(A) = rM(A∪X)−rM(X) for all A ⊆ E\X. We sayN is aminor ofM ifN = M/C\D
for some C,D ⊆ E. The simplification of M , denoted by si(M), is the restriction of M to
its set of points.

Let E be the set of edges of a graph G. The matroid M(G) is the matroid with
ground set E and which circuits consist of all the the cycles of G. In particular, we will
be interested in the matroids M(Kk+1), where Kk+1 is a complete graph on k+1 vertices.
We define the uniform matroid Um,n to be the matroid on n elements where a set A is
independent if and only if |A| ⩽ m. Note that when m = 2, the ground set of U2,n is a line
with n elements.

A natural question that arises is the following; What is the maximum number of ele-
ments a simple matroid can have without containing M(Kk+1) and U2,ℓ+2 as a minor? In
the case that a rank-n matroid does not contain M(K3) as a minor, the matroid cannot
contain any circuit and hence is isomorphic to Un,n. Kung in [8] gave a singly exponen-
tial bound for the case when excluding M(K4) and U2,ℓ+2 as minor. Latter, Geelen and
Whittle in [6] prove the existence of a linear function in the rank, λ, dependent on k and ℓ
such that every simple matroid M without an U2,ℓ+2- or M(Kk+1)-minor contains at most
λr(M) elements.

Theorem 1.1 (Geelen, Whittle). For any positive integers k and ℓ, there exists an integer
λ = λ(k, ℓ) such that every simple matroid M with no U2,ℓ+2- or M(Kk+1)-minor satisfies
|E(M)| ⩽ λr(M).

Geelen proved in [3] that λ(k, ℓ) ⩽ ℓℓ
3k
, a doubly exponential bound. In the next section,

for each prime power q we will show via a simple construction an example of a U2,q+2-minor-

free and M(Kk+1)-minor-free matroid M that satisfies |E(M)| = qk−2−1
q−1

+ (n− k+2)qk−2.
In particular this implies that any upper bound on λ is at least singly exponential. The
main result of this thesis gives a singly exponential upper bound;

Theorem 1.2. If M is a U2,ℓ+2- and M(Kk+1)-minor-free simple matroid, then

|E(M)| ⩽ 2(720)2k4(ℓ+ 1)2 log(k)r(M).
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Where the logarithm here and all the other logarithms are natural. One can rewrite
Theorem 1.1 as follows;

Theorem 1.1 (Geelen, Whittle [6]). Given a minor-closed class of matroids M, either

1. there exists λ ∈ R such that ε ⩽ λr(M) for all simple matroids M ∈ M,

2. M contains all graphic matroids, or

3. M contains all simple rank-2 matroids.

This theorem is generalized to the Growth rate theorem in [4, 5] by Geelen, Kabell,
Kung and Whittle.

Growth rate theorem 1.3 (Geelen, Kabell, Kung and Whittle). If M is a minor-closed
class of matroids, then either

1. there exists c ∈ R such that |E(M)| ⩽ cr(M) for all simple matroids M ∈ M,

2. M contains all graphic matroids and there exists c ∈ R such that |E(M)| ⩽ c(r(M))2

for all simple matroids M ∈ M,

3. there is a prime-power q and c ∈ R such that M contains all GF (q)-representable
matroids and |E(M)| ⩽ cqr(M) for all simple matroids M ∈ M, or

4. M contains all simple rank-2 matroids.

Note that if a matroid M is M(H)-minor-free for a simple graph H, then M is
M(K|V (H)|)-minor-free. Our main result implies the following corollaries which improve
the bound on c in Theorem 1.3.

Corollary 1.3.1. Let ℓ ⩾ 2 and k ⩾ 4, if H is a simple graph on k vertices and M is the
class of matroids with no U2,ℓ+2-minor or M(H)-minor, then

ϵ(M) ⩽ ℓ4(10)
6(ℓ+1)2k4 log(k)r(M)

for all simple matroids M ∈ M.

Corollary 1.3.2. Let ℓ ⩾ 2 and k ⩾ 3, if H is a simple graph on k vertices and M is the
class of matroids with no U2,ℓ+2-minor or M(H)-minor, then

ϵ(M) ⩽ ℓ(4α+ok(1))(ℓ+1)2k4 log(k)r(M)

for all simple matroids M ∈ M and where α = 0.319 . . . is an explicit constant.

3



When our main theorem is specialized to the case of graphic matroids we obtain the
following;

Corollary 1.3.3. Let t ⩾ 4, if G is a simple graph on n vertices with no M(Kt)-minor,
then |E(G)| ⩽ ℓc(ℓ+1)2t4 log(t)(n− 1) for some constant c.

The bound for the graphic case has been studied before by bounding the density needed
for a graph to contain Kt as a minor, where the density of a graph G is defined as |E(G)|

|V (G)| .

Mader[10] proved that all graphs with density at least 2t−3 contain a complete graph
on t vertices as a minor. The bound given in Corollary 1.3.3, although it has the best
possible order for matroids, is still much weaker than the best known bounds for graphic
matroids. It has been proven in [7] that the density needed for the graphic case is of the
order of t

√
log t, see Proposition 1.11. In fact, we use the stronger bound in the proof of

Corollary 1.3.3.

With this in mind, for any graph H, we define the function d(H) to be the infimum

number d of the set of positive real numbers such that if G is a graph with |E(G)|
|V (G)| ⩾ d, then

G contains H as a minor. In the case of the complete graph, we will simply write d(t)
instead of d(Kt). Thomason [14] prove that d(t) = (α + o(1))t

√
log t, where α = 0.319 . . .

is explicitly given. Using random graphs, Bollobás, Catlin and Erdös in [1] proved that
this bound is optimal for Kt-minor-free graphs up to a constant factor for t large enough.
For the more general setting of excluding any graph rather than a complete graph, Reed
and Wood [13] gave an upper bound for sufficiently large densities. Latter, Norin, Reed,
Thomason and Wood [11] proved this is the best bound possible up to a constant factor.

1.1 Round matroids and Crowns

A matroid M splits if E(M) = F1 ∪ F2 where F1 and F2 are proper flats of M . We will
say M is round if it does not split. Note that if M splits, we may assume without loss
of generality that F1 and F2 are hyperplanes. The following two theorems regarding split
matroids are well known.

Proposition 1.4. If M = M(G) is a simple graphic matroid and G does not contain any
isolated vertices, then M is round if and only if G is a complete graph.

Proof. Let G be the graph associated to M . Suppose that there exist v, u ∈ V (G) such
that uv /∈ E(G). Let F1 = E(G[V (G) \ {u}]) and F2 = E(G[V (G) \ {v}]). Note that if
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e ∈ E(G), then e ∈ F1 or e ∈ F2. Furthermore, by construction F1, F2 are hyperplanes of
M(G). Therefore, the matroid M splits.

Now suppose that there exist two proper flats F1, F2 of M such that E(M) = F1 ∪ F2.
As Fi is a flat of a graphic matroid M for each i = 1, 2, there exists Si ⊆ V (G) such
that Fi = E(G[Si]). Furthermore, there exists an edge e1 = u1v1 such that e1 ∈ F1 \ F2.
Since e1 /∈ E(G[S2]), either u1 /∈ S2 or v1 /∈ S2. Without loss of generality suppose
that v1 /∈ S2. Similarly, there exists a vertex v2 ∈ S2 \ S1. Finally note that the edge
v1v2 /∈ E(G[S1]), E(G[S2]). Therefore, we have v1v2 /∈ E(G). We conclude G is not a
complete graph.

Lemma 1.5. If M is a round matroid, then so is M/e.

Proof. First note that as the complement of a hyperplane is a cocircuit M is the union of
two different hyperplanes if and only if M has two disjoint cocircuit. That is, the matroid
M is round if and only if M∗ has no disjoint circuits.

Suppose that M is a round matroid, then M∗ has no disjoint circuits. Since, this
property is preserved by deleting elements, then M∗ \ e has no disjoint circuits. Thus, we
get that (M∗ \ e)∗ = M/e has no disjoint cocircuits. It follows that M/e is round.

We will now construct an example of a U2,ℓ+2-minor-free and M(Kk+1)-minor-free ma-
troid with singly exponential number of elements, as mentioned earlier. Given a basis B of
the projective geometry G = PG(n− 1, q), an (n, k, q)−crown is the matroid M obtained
from a set K ⊆ B of size k by considering the restriction of G to the union of the closures
of K ∪ e for all e ∈ B \K. That is,

M = G|

 ⋃
e∈B\K

clG(K ∪ e)

 .

An example of a (8, 6, q)-crown can be seen in Figure 1.1.

Proposition 1.6. If M is an (n, k, q)-crown and e ∈ E(M), then si(M/e) is an (n −
1, k′, q)−crown, where k′ ∈ {k − 1, k}.

Proof. Let e ∈ M , then G/e which is isomorphic to PG(n−2, q). If e /∈ clG(K), then there
exists b ∈ B \K such that e ∈ clG(K∪b). In this case, we have that clG(K∪b) is projected
into B. Thus, the set B′ := B−b is a basis of G/e and M/e =

⋃
x∈B′\K clG/e(K∪x), hence

M/e is an (n− 1, k, q)−crown. Now, if e ∈ clG(K), then B′ = B − e is a basis of G/e and
M/e =

⋃
x∈B′\(K−e) clG/e((K − e)∪ x) where |K − e| = k− 1. Therefore, the matroid M/e

is an (n− 1, k − 1, q)−crown.
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Figure 1.1: (8, 6, q)-Crown.

Proposition 1.7. An (n, k, q)-crown is not round for k < n− 1.

Proof. Let e, f ∈ B \ K and define F1 =
⋃

x∈B\(K∪e) and F2 =
⋃

x∈B\(K∪f). Note that

r(F1), r(F2) ⩽ n − 1 and E(M) = F1 ∪ F2. Thus, we get that M splits and hence is not
round.

Crowns will give us a lower bound to the number of elements of a U2,q+2 and M(Kk+1)-
minor-free matroid. To do so, we will need to prove the following lemma.

Lemma 1.8. An (n, k, q)−crown has no round minor of rank at least k + 2.

Proof. LetM be an (n, k, q)-crown and suppose by way of contradiction there exists a round
minor M/C \D of M with r(M/C \D) > k + 1. We may assume that C is independent
and D is coindependent. This way, we have that r(M/C \ D) = r(M/C). In particular,
any hyperplane of M/C is a hyperplane of M/C \D. Thus, M/C is round with rank
greater than k + 1. Finally note that by Proposition 1.6 M/C is an (n′, k′, q)−crown
for some k′ ⩽ (k + 1) − 1 < r(M/C) − 1, a contradiction as crowns are not round by
Proposition 1.7.

By Lemma 1.4, we know that M(Kk+1) is a round matroid. It follows from Lemma 1.8
that an (n, k − 2, q)-crown M is M(Kk+1)-minor-free. Furthermore, we know that

ε(M) =
qk−2 − 1

q − 1
+ (n− k + 2)qk−2.

6



b1

b2 b3

d
ca

e

Figure 1.2: The graph G associated to the framed matroid represented by M1 with basis
B = {b1, b2, b3}.

As (n, k−2, q)-crowns are representable, they are U2,q+2-minor-free. Thus, the best we can
hope for Theorem 1.1 is a singly exponential bound. It is worth noticing that contrary to
the graphic case where the best lower bound is given by a random graph; in the case of
matroids, the best known lower bounds are archived by (n, k − 2, q)-crown which are are
concrete structures that are very symmetrical.

1.2 Framed matroids

Framed matroids are a class of matroids that closely resemble graphic matroids but are
not generally graphic. Nonetheless, in the second chapter our argument will show that a
frame matroid will contain a complete graph as a minor. A matroid M is framed by a
basis B if for each element e ∈ E(M) there is a set of at most two elements of B that
spans e. If M is framed by B, there is a naturally associated graph G, which vertices are
the elements of B and where the set of edges are the elements of E(M) \ B such that
each edge b, b′ corresponds to an element of E(M) \ B that is spanned by the set {b, b′}.
Note that the graph does not need to be simple. An example of a framed matroid is the
GF (3)-representable matroid given in Definition 1.1. M1 is framed by B = {b1, b2, b3}; its
associated graph is shown in figure 1.2.

M1 =

b1 b2 b3 a c d e( )1 0 0 1 1 0 0
0 1 0 2 0 1 1
0 0 1 0 1 1 2

(1.1)

A Θ-subgraph of a graph G consists of the union of three edge-disjoint xy-paths for
distinct vertices x, y of G. Note that a Θ-subgraph contains exactly three cycles. See
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Figure 1.3: Θ-subgraph.

Figure 1.4: From left to right: balanced cycle, unbalanced handcuffs and unbalanced Θ-
graph.

Figure 1.3 for an example of a Θ-subgraph. A bias of a graph G as defined in [15], is a
collection B of balanced cycles of G satisfying the Θ-property : In any Θ-subgraph H, if two
cycles of H are balanced, then the third one is balanced. Given a biased graph (G,B), the
matroid FM(G,B) is the matroid on E(G) whose circuits are all balanced cycles, or pairs
of disjoint unbalanced cycles joined by a path (‘handcuffs’ ) and any Θ-subgraph with all
cycles unbalanced. Figure 1.4 shows the three types of circuits, where balanced cycles are
blue and unbalanced cycles are red. Zaslavsky in [16] proved the following theorem:

Theorem 1.9 (Zaslavsky). If M is a framed matroid with underlying graph G, then there
exists a collection B of cycles of G such that M = FM(G,B).

An important subclass of framed matroids is the class of B-cliques. A B-clique is a framed
matroid M with a basis B such that for all distinct elements b, b′ ∈ B, there is a triangle
containing b and b′. Note that as all pairs of basis elements span at least one element, then
the graph associated to a B-clique is a complete graph with possibly multiple edges and
loops. Furthermore, by Theorem 1.9, if C ⊆ E(G) is a cycle, then {e ∈ E(M) : e ∈ E(C)}
is either an independent set or a circuit.
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1.3 Finding complete minors in dense subgraphs

As previously defined for an integer t ⩾ 3, the function d(t) is the infimum d of all positive
real numbers such that all graphs with density strictly higher than d contain Kt as a minor.
In [7], Kostochka gives the following theorem that can be used to lower bound d(t);

Theorem 1.10 (Kostochka). For any c ⩾ 2, if G is a simple graph with |E(G)| ⩾ c|V (G)|,
then G has a Kt-minor where t = ⌈ c

270
√
log c

⌉.

By setting c = 500
√
2t
√
log t, we can use Kostochka’s result to bound d(t) for all t ⩾ 4.

Proposition 1.11. For all integers t ⩾ 4, d(t) ⩽ (500
√
2)t

√
log t.

Proof. Let h(c) = c
270

√
log c

, which we will evaluate in c = 500
√
2t
√
log t. The real-valued

function

f(t) =
50
√
2
√
log t

27
√

log(500
√
2t
√

log t)

is such that f(4) ⩾ 1 and

f ′(t) =
50(−2 log(t) + 2 log(t

√
log(t))− 1 + log(5 · 105))

27t
√
log t(2 log(t

√
log t) + log(5 · 105)) 3

2

⩾ 0.

This way, we get that f(t) ⩾ 1 for all t ⩾ 4 and hence

h(500
√
2t
√

log t) =
50
√
2t
√
log t

27
√

log(500
√
2t
√

log t)
⩾ t,

as desired. Finally, given that η(c) ⩾ h(c), it follows that for all t ⩾ 4 if G is a graph with
|E(G)|
|V (G)| ⩾ 500

√
2t
√
log t, then G contains Kt as a minor.
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Chapter 2

Building Towers

2.1 A function

In this section we will define a structure in a matroid called a tower. The main proof is
an adaptation of the proof given in [3]. Geelen uses the huge density of a matroid to find
a stratified round minor of large size, from which a clique is obtained. On both steps all
but a logarithmic number of elements are lost. This gives rise to a doubly exponential
bound. In our approach, we start with a huge density matroid from which we obtain a
tower of large size by losing all but a logarithmic number of elements. Later, by exploiting
the concrete structure of towers, we obtain a clique in exchange of only losing all but a
polynomial number of elements. This will give rise to a singly exponential bound.

Definition 2.1. An n-tower in a matroid M is a function φ : 2[n] \{∅} −→ E(M)\ clM(∅)
such that:

(i) The set V0 = {φ({i}) : i ∈ [n]} is an n-element independent set in M ,

(ii) For all i, j ∈ [n] with i < j, φ({i, j}) is not parallel to φ({j}),

(iii) For all S ⊆ 2[n] \ {∅} and k > max(S),

φ(S ∪ {k}) ∈ clM({φ(S), φ({k})}) ∩ clM({φ({s, k}) : s ∈ S}).

(iv) For all j > 1, there exists some i < j such that φ({i, j}) is not parallel to φ({i}).
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Note that we do not require φ to be injective. Deviating from Oxley, we consider equal
elements to be parallel. Figure 2.1 shows an example of condition (iii) for S = {s, s′, s′′}
and k > max(S). One can see φ(S ∪ k) is spanned by the set {φ(k), φ(S)} and by the set

{φ({s, k}), φ({s′, k}), φ({s′′, k})}.

In this example, the element φ({s′, k}) is parallel to φ(s′). If 1 ⩽ i < j ⩽ n are such that
φ(i) is not parallel to φ({i, j}) we will say j lifts i.

φ(k)

φ(S)

φ(s′′)

φ({s′, k})

φ(s)

φ(1)

φ({s′′, k})
φ(S ∪ k)

φ({s, k})

φ(2)

Figure 2.1: φ(S ∪ k) ∈ clM({φ(k), φ(S)}) ∩ clM({φ({s, k}), φ({s′, k}), φ({s′′, k})})

For every i ∈ [n], we will write vi := φ({i}) = φ(i) and we will refer to the elements
φ(i) as joints. Additionally, for an n-tower φ and ∅ ̸= X ⊆ [n], we define the set

Jφ
X := {φ(x) : x ∈ X}

and for every n-tower φ we define the set

E(φ) := {φ(S) : ∅ ̸= S ⊆ [n]}.
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We will say a matroid M contains an n-tower, if there exists an n-tower φ : 2[n] \ {∅} −→
E(M) \ clM(∅).

We will now prove some properties of towers.

Lemma 2.2. For all ∅ ̸= X ⊆ [n], if φ is an n-tower on M , then φ(X) ∈ clM(JX).

Proof. For the case that X = {i}, we have φ(i) = vi ∈ clM({vi}). Suppose X = {x, y}
for some x, y ∈ [n] with x < y then, by (iii), it follows that φ(X) = φ({x} ∪ {y}) ∈
clM({vx, vy}).

Let ∅ ̸= X ⊆ [n] and let k = max(X). By (iii) and the previous case,

φ((X − k) ∪ {k}) ∈ clM({φ({x, k}) : x ∈ X − k})
⊆ clM({clM(vx, vk) : x ∈ X − k})
⊆ clM(JX).

Lemma 2.3. Let H0, H1 are hyperplanes of a simple matroid M . If e /∈ H0 ∪H1 is such
that for every x ∈ H0 there exists y ∈ H1 with rM({x, y, e}) = 2 and for every y ∈ H1

there exists x ∈ H0 with rM({x, y, e}) = 2, then M | H0 is isomorphic to M | H1.

Proof. Let f : H0 −→ H1 be a function that assigns every x ∈ H0 and element y = f(x)
such that rM({x, f(x), e}) = 2. Similarly, let g : H1 −→ H0 be a function such that
rM({g(y), y, e}) = 2. We claim g is the inverse function of f . Let x ∈ H0 and note that by
definition g(f(x)) ∈ H0. Furthermore, x ∈ clM({f(x), e}) and g(f(x)) ∈ clM({f(x), e}),
implying that g(f(x)) ∈ H0∩ clM({x, e}). As e /∈ H0, then rM(H0∩ clM({x, e})) ⩽ 1. This
way, since x, g(f(x)) ∈ H0 ∩ clM({x, e}) and M is simple, then x = g(f(x)). Similarly we
obtain that for every y ∈ H1, we have that f(g(y)) = y.

Finally note that for any X ⊆ H0 we have

rM/e(X) = rM(f(X)).

Furthermore, since e /∈ H0 ∪ H1, it follows that rM(X) = rM/e(X) and rM(f(X)) =
rM/e(f(X)). Therefore, rM(X) = rM(f(X)) and M |H0 is isomorphic to M |H1.

Proposition 2.4. If φ is an n-tower on a simple matroid M , then the sets

H0 = {φ(S) : ∅ ̸= S ⊆ [n− 1]} ∩ E(φ)

and
H1 = {φ(S ∪ n) : ∅ ̸= S ⊆ [n− 1]} ∩ E(φ)

are hyperplanes of M |E(φ), and M |H0 is isomorphic to M |H1.
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Proof. We will first prove that H0 is a hyperplane; to do so it is enough to prove that

H0 = clM(Jφ
[n−1]) ∩ E(φ).

By Lemma 2.2, we get H0 ⊆ clM(Jφ
[n−1]). Suppose that H0 ⊊ clM(Jφ

[n−1]) ∩ E(φ); then

there exists ∅ ̸= T ⊆ [n] such that φ(T ) ∈ clM(Jφ
[n−1]) \ H0. By the definition of H0, we

get n ∈ T . Since φ(T \ {n}) ∈ Jφ
[n−1] and φ(n) ∈ clM({φ(T \ {n}), φ(T )}), it follows that

φ(n) ∈ clM(Jφ
[n−1]), which contradicts that Jφ

[n] is independent. Therefore, H0 is a flat of

rank n− 1 in M |E(φ), that is, a hyperplane of M |E(φ).

For every i ∈ [n− 1] let fi = φ({i, n}). We claim that

H1 = clM({f1, . . . , fn−1)}) ∩ E(φ).

By Definition 2.1(iii), for all ∅ ̸= S ⊆ [n − 1], we have φ(S ∪ n) ∈ cl({fs : s ∈ S}).
Thus, it is enough to prove that if φ(T ) ∈ clM({f1, . . . , fn−1)}), then n ∈ T and T ̸= {n}
or φ(T ∪ n) ∈ clM(φ(T )). First suppose that φ(n) ∈ clM({f1, . . . , fn−1)}). Given that
fi ∈ clM({φ(i), φ(n)}), then Jφ

[n] ⊆ clM({f1, . . . , fn−1)}). This is a contradiction as

rM(Jφ
[n]) = n > rM(clM({f1, . . . , fn−1)})).

Thus, we may assume that φ(n) /∈ clM({f1, . . . , fn−1)}). Now suppose that n /∈ T and
φ(T ∪ n) /∈ clM(φ(T )). Similarly to before, by Definition 2.1(iii) we have that

φ(T ∪ n) ∈ clM({ft : t ∈ T}).

Therefore, φ(T ), φ(T∪n) ∈ clM({f1, . . . , fn−1)}). Finally note that φ(n) ∈ clM(φ(T ), φ(T∪
n)), which contradicts φ(n) /∈ clM({f1, . . . , fn−1)}). Furthermore, we know that the set
{f1, . . . , fn−1)} is projected into Jφ

[n−1] in M/φ(n). Thus, {f1, . . . , fn−1)} is an independent
set of M and H1 is a hyperplane of M .

We will now use Lemma 2.3 to prove that M |H0 is isomorphic to M |H1. Note that
for every ∅ ̸= T ⊆ [n − 1], we have that rM({φ(T ), φ(T ∪ n), φ(n)}) = 2. Thus, for
every x = φ(S) ∈ H0 there exists y = φ(S ∪ n) ∈ H1 with rM({x, y, φ(n)}) = 2, where
∅ ̸= S ⊆ [n−1]. Additionally, if ∅ ̸= S ⊆ [n−1] we have that for every y = φ(S∪n) ∈ H1

there exists x = φ(S) ∈ H0 with rM({x, y, φ(n)}) = 2. Thus, the matroid M |H0 is
isomorphic to M |H1.

Proposition 2.5. Let φ be an n-tower on a matroid M and for each ∅ ̸= S ⊆ [n − 1]
define φ1 by

φ1(S) := φ(S ∪ n),

then φ1 is an (n− 1)-tower.
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Proof. We may assume that M is simple. Note that the set Jφ1

[n−1] = {φ({i, n}) : i ∈ [n−1]}
and for any ∅ ̸= S ⊆ [n− 1], we have φ(S) ∈ clM(Jφ1

[n−1]). Thus, we get

M |(Jφ1

[n−1]) = M |(clM({φ({i, n}) : i ∈ [n− 1]}) ∩ {φ(S) : S ⊆ [n], S ̸= ∅}).

Properties (i)-(iv) from Definition 2.1 now follow from Proposition 2.4 as φ restricted to
φ : 2[n−1] \ {∅} is an (n− 1)-tower.

We say a set S ⊆ [n] is a tree of an n-tower φ if for all j ∈ S with j > min(S) there
exists a unique i ∈ S with i < j such that φ({i, j}) is not parallel to φ(i). We will now
need the following lemma about circuits.

Lemma 2.6. If C and C ′ are circuits of a matroid M such that C ∩ C ′ = {e} and
rM(C ∪ C ′) = rM(C) + rM(C ′)− 1, then (C ∪ C ′) \ {e} is a circuit.

Proof. It is enough to consider M ′ = M |C ∪ C ′, note that |E(M ′)| = |C| + |C ′| − 1 and
r(M ′) = rM(C) + rM(C ′)− 1 = |C|+ |C ′| − 3. Thus,

r((M ′)∗) = |E(M ′)| − r(M ′)

= (|C|+ |C ′| − 1)− (|C|+ |C ′| − 3) = 2.

Now, note that for all x ∈ (C ∪ C ′) \ {e}, the set {e, x} is independent in (M ′)∗. As
r((M ′)∗) = 2 and e is not a loop, the set {e} is a hyperplane of (M ′)∗ and hence (C∪C ′)\{e}
is a cocircuit of (M ′)∗. It follows that (C ∪ C ′) \ {e} is a circuit of M ′ as desired.

We can now prove the following lemma about trees in towers.

Proposition 2.7. For an n-tower φ on M and S ⊆ [n] with |S| ⩾ 2, if S is a tree of φ,
then the fundamental circuit of φ(S) with respect to V0 is Jφ

S ∪ φ(S).

Proof. The proof is by induction on |S|. If S = {i, j}, then φ({i, j}) is spanned by
{φ(i), φ(j)}. As S is a tree of φ, then φ({i, j}) is not parallel to either φ(i) or φ(j).
Therefore, the set {φ({i, j}), φ(i), φ(j)} is a triangle.

Let k = max(S) and let S0 = S − k. First note that for all j < k, we get φ({j, k}) /∈
clM(φ(k)) and thus S0 is also a tree of φ. Hence, by induction C = Jφ

S0
∪φ(S0) is a circuit.

Claim 2.8. C ′ := {φ(S), φ(S0), φ(k)} is a triangle.
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φ(S0)

φ(k)

φ(j)
φ(1)

φ(2)

φ(3)

φ({j, k})
φ(S0 ∪ k)

Figure 2.2: Triangle {φ(k), φ(S0 ∪ k), φ(S0)}.

Proof. By (iii) φ(S) ∈ clM({φ({s, k}) : s ∈ S0}) ∩ clM({φ(k), φ(S0)}). Since S is a tree of
φ, there exists a unique j ∈ S such that φ({j, k}) is not parallel to φ(j). Hence, we get

φ(S) ∈ clM(Jφ
S0−j ∪ φ({j, k})) ∩ clM({φ(k), φ(S0)}),

as shown in Figure 2.2. Let F0 be the flat spanned by Jφ
S0

and consider M ′ = M/Jφ
S0−j.

Then

rM ′(F0) = rM(F0 ∪ Jφ
S0−j)− rM(Jφ

S0−j) = 1.

As φ(S0), φ(j) ∈ F0, it follows that φ(S0) is parallel to φ(j) in M ′. Furthermore,

rM ′(clM(Jφ
S0−j ∪ φ({j, k}))) = |S0| − (|S0| − 1) = 1.

Therefore, the element φ(S0 ∪ k) is parallel to φ({j, k}) in M ′. Given that φ({j, k}) is
neither parallel to φ(k) or φ(j) and φ(S0) is parallel to φ(j), then

φ(S0 ∪ k) /∈ clM(φ(S0)), clM(φ(k)).

It follows that {φ(S), φ(S0), φ(k)} is a triangle. ■
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Therefore, the sets C and C ′ are two circuits such that C ∩ C ′ = φ(S0) and

rM(C ∪ C ′) = |S0|+ 1 = |S0|+ 2− 1 = rM(C) + rM(C ′)− 1.

By Proposition 2.6 the set Jφ
S0

∪ {φ(k), φ(S)} = Jφ
S ∪ φ(S) is a circuit as desired. □

We say two n-towers φ1 and φ2 are equivalent, if there exists a permutation σ of [n]
such that φ1(S) = φ2(σ(S)) for all ∅ ̸= S ⊆ [n].

Given φ1, φ2 : 2[n] \ {∅} −→ E(M) and e ∈ E(M), we define the function φ1 ⊕e φ2 :
2[n+1] \ {∅} −→ E(M) by

φ1 ⊕e φ2(S) =


φ1(S) if n+ 1 /∈ S

φ2(S \ {n+ 1}) if n+ 1 ∈ S, S ̸= {n+ 1}
e if S = {n+ 1}

Lemma 2.9. If e ∈ E(M), and the functions φ1, φ2 are inequivalent n-towers in M and
equivalent in M/e, then φ1 ⊕e φ2 is an (n+ 1)-tower.

Proof. Let φ := φ1 ⊕e φ2. We first need to check the set Jφ
[n+1] = Jφ1

[n] ∪ e is independent.

Since φ1 is a tower, the set Jφ
[n+1] is independent. If e ∈ clM(Jφ

[n+1]), then rM/e(J
φ
[n+1]) =

n− 1, a contradiction. Therefore, we get that Jφ
[n+1] is independent.

Let i, j ∈ [n+ 1] with i < j. We may assume j = n+ 1, otherwise

φ({i, j}) = φ1({i, j}) /∈ clM(φ1(j)) = clM(φ(j)).

Now, if j = n+ 1,

φ({i, n+ 1}) = φ2(i) /∈ clM(φ(n+ 1)) = clM(e).

Thus, the function φ satisfies (ii).

To prove (iii), first note that if n+1 ∈ S, then there does not exists k > max(S). Thus,
suppose n + 1 /∈ S and let k > max(S). As n + 1 /∈ S and φ1 is an n-tower, if k ̸= n + 1
then the result follows. Assume k = n + 1, this way, we get that φ(S ∪ {n + 1}) = φ2(S)
and clM({φ(S), φ(n + 1)}) = clM({φ1(S) ∪ e}). Given that φ1, φ2 are equivalent in M/e,
it follows that

φ2(S) ∈ clM({φ1(S) ∪ e}).
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φ1(S) = φ2(S)

e

φ1(S
′)

φ2(S
′)

Figure 2.3: Towers φ1 and φ2 are equivalent in M/e.

Similarly, we have
clM({φ({s, n+ 1}) : s ∈ S}) = clM(Jφ2

S ).

By (iii) for φ2, we obtain φ2(S) ∈ clM(Jφ2

S ).

Note that as φ1 satisfies Definition 2.1(iv), it is sufficient to prove this condition for
φ(n + 1). Since φ1 is not equivalent to φ2 in M , then there exists i ∈ [n] such that φ1(i)
is not parallel to φ2(i). This way, the element φ({n + 1, i}) = φ2(i) is not parallel to
φ1(i) = φ(i). Therefore, the function φ is an (n+ 1)-tower.

It is important to note that the construction defined in the previous lemma is asym-
metric, as φ1 ⊕e φ2 ̸= φ2 ⊕e φ1, where

φ2 ⊕e φ1(S) =


φ2(S) if n+ 1 /∈ S

φ1(S \ {n+ 1}) if n+ 1 ∈ S, S ̸= {n+ 1}
e if S = {n+ 1}.

We will use this property in chapter 3. If φ1 and φ2 are two different towers of M that are
equivalent in M/e, we will say φ1 collapses into φ2 with respect to e. For every e ∈ E(M),
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collapsing induces an equivalence relationship. With this in mind, we will denote by T n
M/e

the equivalence class of an n-tower φ in M with respect to the collapsing relationship when
contracting e.

Proposition 2.10. Let φ, φ′ be n-towers in a simple matroid M for which φ(i) = φ′(i)
for all i ∈ [n]. If x ∈ E(M) and φ and φ′ are equivalent n-towers in M/x, then they are
equivalent in M .

Proof. Note that as rM/x(J
φ
[n]) = rM/x(J

φ′

[n]) = n, it follows that x /∈ clM(Jφ
[n]) ∪ clM(Jφ′

[n]).

Given that φ and φ′ are equivalent in M/x, then for every S ⊆ [n], we have φ′(S) ∈
clM({φ(S), x}) \ {x}. By the definition of n-tower, for every ∅ ̸= S ⊆ [n] we have φ′(S) ∈
clM(Jφ′

[n]) = clM(Jφ
[n]). Similarly, by definition, we get φ(S) ∈ clM(Jφ

[n]) ∩ clM({φ(S), x}).
Since x /∈ clM(Jφ

[n]) it follows that rM(clM(Jφ
[n]) ∩ clM({φ(S), x})) ⩽ 1. Given that M is

simple, it follows that

|E(M |(clM(Jφ
[n]) ∩ clM({φ(S), x})))| ⩽ 1.

Therefore, φ(S) = φ′(S).

Proposition 2.11. Let ℓ be a positive integer and let M be a simple matroid with no
U2,ℓ+2-restriction. If x ∈ E(M) and φ is an n-tower in both M and M/x, then there are
at most ℓn n-towers of M that are n-towers of M/x and equivalent to φ.

Proof. For every i ∈ [n], let Li = clM({x, φ(i)}) \ {x}. Since M is U2,ℓ+2-restriction-free,

we have that |Li| ⩽ ℓ. By Proposition 2.10, if φ′ and φ′′ are n-towers with joint set Jφ′

[n]

and such that φ′ and φ′′ are equivalent n-towers to φ in M/x, then φ′′ is isomorphic to
φ′. As there are at most

∏
i∈[n] |Li| ⩽ ℓn possible choices of joint set, there are at most ℓn

n-towers that are equivalent to φ in M/x.

2.2 The two towers

In this section we will consider two important structures contained in n-towers. We say a
set S ⊆ [n] is a clique or complete of φ if for all i, j ∈ S with i < j, the element φ({i, j})
is not parallel to φ(i). The second structure occurs when j only lifts i if j = i + 1 for all
i, j ∈ [n].

Lemma 2.12. If S is a clique of an n-tower φ in M , then the matroid M restricted to
Jφ
S ∪ {φ({i, j}) : i, j ∈ S} ⊆ E(M) is a Jφ

S -clique.
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Proof. Take any φ(i), φ(j) ∈ Jφ
S with i, j ∈ S and i < j. Note that φ({i, j}) /∈ clM(φ(i))

and by Definition 2.1(ii), we get φ({i, j}) /∈ clM(φ(j)). Thus, as j > max{i}, by Defini-
tion 2.1(iii), the set {φ({i, j}), φ(i), φ(j)} is a triangle.

Let E0 := {φ({i, j}) : i, j ∈ S}; we need to prove that any e ∈ E0 is spanned by two
elements of Jφ

S . Note that by Definition 2.1(iii), we have φ({i, j}) ∈ clM(φ(i), φ(j)) for
any i < j, with i, j ∈ S. Thus, the matroid M |(Jφ

S ∪ E0) is a Jφ
S -clique.

Given a B-clique M , by Theorem 1.9, there exists a complete biased graph (G,B) such
that M is the framed matroid obtained from (G,B). It is now convenient to talk about
(G,B) instead of a clique S on an n-tower. Given a clique S in an n-tower φ, let G be the
graph associated to the B-clique M |(Jφ

S ∪ E0), where the vertices are the elements of Jφ
S

and the edges are E0.

Lemma 2.13. Let (G,B) be a biased graph from which G is a complete graph and let M be
its associated framed matroid. If X ⊆ E(G) contains a unique cycle, then X is independent
or contains a unique circuit in M .

Proof. Follows from M being a framed matroid with underlying graph (G,B).

Lemma 2.14. For any integer ℓ ⩾ 2, if M is a B-clique of size 2n with no U2,ℓ+2-
minor, then the associated biased graph G contains a set X ⊆ E(G) and independent sets
J1, J2 ⊆ E(G) such that:

1. r(Ji) = n− 1 for i = 1, 2,

2. |X| ⩾ n2

l+1
, and

3. M |(X ∪ (J1 ∪ J2))) = M(G|(X ∪ (J1 ∪ J2))).

Proof. Let (V1, V2) be a partition of the vertices of G into equal size sets such that G[V1] and
G[V2] contain (respectively) a spanning subgraph Gi, isomorphic to K1,n−1 which center is
vi. Let Ji be the n − 1 edges of Gi for i = 1, 2 and let F = E[V1, V2]. This way, we have
|F | = n2. Furthermore,

rM/(J1∪J2)(F ) ⩽ r(M/J1 ∪ J2)

= r(M)− r(J1 ∪ J2)

= 2n− 2(n− 2) = 2.
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v1 v2

Figure 2.4: Stars G1 and G2 with an equivalence class of parallel edges in M/(J1 ∪ J2).

As M is U2,ℓ+2-minor-free, the matroid (M/(J1 ∪ J2))|F contains at most ℓ + 1 points.
Note that the elements of (M/(J1 ∪ J2))|F are not loops as the set J1 ∪ J2 ∪ f does not
contain a circuit for any f ∈ F . Thus, there exists a parallel class X of M/(J1 ∪ J2) with
at least n2

ℓ+1
points of M . We claim M |(X ∪J1∪J2)) = M(G|(X ∪J1∪J2)). To see this, it

is enough to see all the cycles of M |(X ∪ J1 ∪ J2)) are circuits of M , that is, all cycles are
balanced. Suppose there exists an M -independent cycle C ⊆ X ∪ J1 ∪ J2. By extending C
to a spanning pseudo-tree, we obtain a spanning set without balanced cycles. That is an
independent set of M |E(G) with size 2n. This is a contradiction as

rM(X ∪ (J1 ∪ J2)) = rM/J1∪J2(X) + |J1 ∪ J2|
= 1 + 2(n− 1) = 2n− 1 < 2n.

Therefore, we have M |(X ∪ (J1 ∪ J2))) = M(G|X ∪ (J1 ∪ J2)).

As previously defined, for each t > 1 we will use d(t) to denote the infimum of all all

positive real numbers d such that if G is a graph with |E(G)|
|V (G)| ⩾ d, then G contains Kt as a

minor. Since there are 2n vertices in G\{v1, v2} and at least n2

ℓ+1
edges in G|(X∪(J1∪J2)),

the average degree of G|X ∪ (J1 ∪ J2) is at least
n2

(ℓ+1)(2n)
= n

2(ℓ+1)
. As a result we obtain

the following theorem.

Theorem 2.15. For any integer ℓ ⩾ 2, if M is a B-clique and the rank of M is at least
4(ℓ+ 1)⌈d(k)⌉, then M contains M(Kk) as a minor.

Given an n-tower φ, we say the r-tuple S = (s1, . . . , sr) where 1 ⩽ s1 < . . . < sr ⩽ n
is a path if for all 1 < i ⩽ r, the element φ({si, si−1}) is not parallel to φ(si) but for all
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j < i − 1 ⩽ k, we have that φ({si, sj}) is parallel to φ(sj). If S = (1, . . . , n), we will say
the path has length n. For simplicity we may refer to S as a set. An example of a 6-path
is shown in Figure 2.5. Similarly to paths in graphs, if S = (s1, . . . , sr) is a path on φ then
for any 1 ⩽ i < j ⩽ r, the tuple (si, . . . , sj) is also a path on φ.

φ(2)φ(1) φ({1, 2})

φ(3)

φ({2, 3})

φ({1, 2, 3})

φ(4)

φ(5)

φ(6)

Figure 2.5: 6-path

We will use the following proposition to find M(Kn) as a minor in a matroid that
contains an n-path.

Proposition 2.16. Let M be a matroid, H0, H1 be hyperplanes of M and e /∈ H0 ∪ H1

such that M |H0 and M |H1 are isomorphic to M(Kn−1), the matroid F = M |(H0 ∩ H1)
is isomorphic to M(Kn−2) and E(M) = H0 ∪ H1 ∪ e. If for each x ∈ H0 − (H0 ∩ H1)
there is some y ∈ H1 − (H0 ∩H1) such that {e, x, y} is a triangle, then M |(H0 ∪H1 ∪ e)
is isomorphic to M(Kn).

To prove this, we will need the following lemma found in [3].

Lemma 2.17. Let M be a matroid with ground set B ∪H where B = b1, . . . , bn is a basis
of M , H = {ei,j : 1 ⩽ i < j ⩽ n} is a hyperplane of M disjoint from B, and {bi, ei,j, bj} is
a triangle of M for each i < j. Then M is isomorphic to M(Kn+1).

Proof of Proposition 2.16. We first claim that if M is isomorphic to M(Kn−1) and K is a
cocircuit of M of size n− 2, then K is a star of the clique. As K is a cocircuit of a graphic
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matroid, there exists X ⊆ V (Kn−1) such that K = δ(X). Given that |K| = n− 2, then X
or V \X is a vertex. Therefore, we have that K is a star of the clique.

Since H0 is a hyperplane of M , to use Lemma 2.17, it is enough to prove that the
cocircuit B = (H1 \H0) ∪ e is a basis of M , where every element of H0 is spanned by two
elements of B. Take an element x ∈ E(M) \B. If x ∈ H0 \H1, by hypothesis there exists
y ∈ H1 \ H0 such that x ∈ clM({e, y}), where e, y ∈ B. Now suppose that x ∈ H0 ∩ H1,
given that H0 ∩ H1 is isomorphic to M(Kn−2) and H1 is isomorphic to M(Kn−1), then
H0 ∩H1 is a hyperplane of H1. Thus, by the previous claim, the set K = H1 \H0 is a star
of H1. Hence, there exists b, b′ ∈ K such that x ∈ clH1({b, b′}). Therefore, we have that
B is a basis of M disjoint from H0 and such that E(M) = H0 ∪ B. By Lemma 2.17, the
matroid M is isomorphic to M(Kn).

We now have all the lemmas we need to prove that if X is a path in an n-tower of a
matroid M , then M contains a clique as a restriction.

Lemma 2.18. If X ⊆ [n] is a path in an n-tower φ on M , then

M |(clM(Jφ
X) ∩ E(φ))

is isomorphic to M(K|X|+1).

Proof. We may assume that M is simple. Note that when X = (x1, x2), as X is a path on
φ, the set {φ(x1), φ(x2), φ({x1, x2})} is a triangle and hence isomorphic to K3. Suppose
inductively the statement is true for paths with length less than r. Let X = (x1, . . . , xr)
be a path on φ.

By induction, the sets X0 = (x1, . . . , xr−1) and F = (x1, . . . , xr−2) are both paths of M
and thus,

M |(clM(Jφ
X0
) ∩ E(φ))

and
M |(clM(Jφ

F ) ∩ E(φ))

are isomorphic to M(Kr) and M(Kr−1) respectively. Furthermore, by Property 2.4

M |(clM({φ(xi, xr) : i ∈ [r − 1]}) ∩ E(φ))

is isomorphic to M |(cl(Jφ
X0
) ∩ E(φ))) and hence to M(Kr).

Since X is a path in φ, we have that φ({xi, xr}) is parallel to φ({xi}) for any i < r− 1
and

clM({φ(xi, xr) : i ∈ [r − 2]}) = clM(Jφ
[r−2] ∪ {φ(xr−1, xr)}).

22



Therefore,
(clM(Jφ

X0
) ∩ clM({φ(xi, xr) : i ∈ [r − 1]})) ∩ E(φ)

is equal to
clM(Jφ

F ) ∩ E(φ).

Note that if S ⊆ F or S ⊆ X with xr−1 /∈ S, then

φ(S) /∈ (clM({φ(xi, xr) : i ∈ [r − 1]} \ clM(Jφ
X0
)) ∩ E(φ)

Thus, for any

φ(S) ∈ (clM({φ(xi, xr) : i ∈ [r − 1]} \ clM(Jφ
X0
)) ∩ E(φ),

we get that xr−1, xr ∈ S. In particular {φ(S), φ(S − xr), φ(xr)} is a triangle of M , where
φ(S − xr) ∈ clM(Jφ

X0
) ∩ E(φ). Hence, by Proposition 2.16, the matroid

M |(clM(Jφ
X) ∩ E(φ))

is isomorphic to M(K|X|+1).

2.3 Finding a complete graph

We will now use both the previous structures to prove the following result.

Lemma 2.19. For any integer ℓ ⩾ 2, if M is a U2,ℓ+2-minor-free matroid that contains a
4(ℓ+ 1)(k − 1)⌈d(k + 1)⌉-tower, then M contains an M(Kk+1)-minor.

Proof. Let t = 4(ℓ + 1)(k − 1)⌈d(k + 1)⌉ and φ be a t-tower in M . As φ satisfies Defini-
tion 2.1(iv), for every 2 ⩽ j ⩽ n, the set {i ∈ [j − 1] : φ({i, j}) /∈ clM(φ(i))} is non-empty.
We define α(1) = 1 and for every 2 ⩽ j ⩽ n we define α(j) as follows:

α(j) := min({i ∈ [j − 1] : φ({i, j}) /∈ clM(φ(i))}).

We call an r-tuple V = (v1, . . . , vr) an α-path with respect to φ if the sequence 1 ⩽
v1 < v2 < . . . < vr ⩽ t is such that α(vj) = vj−1 for all j ∈ {2, . . . , r}. Note that an
α-path is a path in M with respect to φ. Indeed, by the minimality of α(s), for any
1 ⩽ k < s − 1 ⩽ r, we get α(s) ̸= φ(vk) and thus φ(vk) is not parallel to φ({vk, vs}).
Therefore, by Lemma 2.18, if there exists an α-path of length at least k in M , then there
is a path of length k in the tower φ and hence M contains M(Kk+1). Suppose therefore
that there is no α-path of length k.
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Claim 2.20. There exists a set L ⊆ [t], with |L| ⩾ 4(ℓ + 1)⌈d(k + 1)⌉ such that for all
v ∈ L and j ∈ [t] \ {v} we have v ̸= α(j).

Proof. Consider the collection of all maximal α-paths. Note that by maximality, if (v1, . . . , vr)
is a maximal α-path then each j ∈ [t]\{vr} satisfies vr ̸= α(j). Furthermore, every element
of E(M) is in a maximal α-path and any α-path has length at most k − 1. Thus, there
are at least t

k−1
= 4(ℓ+ 1)⌈d(k + 1)⌉ maximal α-paths. Let L be the set consisting of the

highest element of a maximal path. ■

Claim 2.21. If C = V0 \ Jφ
L , then the matroid M/C contains a Jφ

L -clique as a restriction.

Proof. Fix i < j with i, j ∈ L. We need to prove there is a triangle of M/C contain-
ing φ(i) and φ(j). Let Pi and Pj be the α-paths in M that start in i and j respec-
tively and end in 1. This way, there exists vi ∈ Pi and vj ∈ Pj such that φ({vi, vj}) /∈
{clM(φ(vi)), clM(φ(vj))} but for all v ∈ Pi with v > vi, and w ∈ Pj with w > vj, we have
φ({v, w}) ∈ {clM(φ(v)), clM(φ(w))}.

Let P ′
i = {v ∈ Pi : i > v > vi} and P ′

j = {v ∈ Pj : j > v > vj}. We will prove there
exists an element ei,j /∈ V0 and a circuit Ci,j such that

{ei,j, φ(i), φ(j)} ⊆ Ci,j ⊆ (V0 \ {φ(k) : k ∈ L \ {i, j}}) ∪ ei,j.

Note that if such circuit exists, then in M/C the set {ei,j, φ(i),φ(j)} is a triangle. Let
ei,j = φ({vi, . . . , i, vj . . . , j}). By our choice of vi and vj, the set P ′

i ∪ P ′
j is a path of φ.

Hence, by Proposition 2.7,

Ci,j = {φ(k) : k ∈ P ′
i ∪ P ′

j} ∪ ei,j

is a circuit. Therefore, the matroid M/C contains as a restriction a Jφ
L -clique. ■

By Theorem 2.15, given that |L| ⩾ 4(ℓ+1)(k−1)⌈d(k+1)⌉, then M contains M(Kk+1)
as a minor. □
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Chapter 3

Finding Towers

In this chapter, by taking advantage of the density of a matroid, we will inductively con-
struct a t-tower for some large t. Using the fact that ε(M) is the number of 1-towers and
ε(M) is huge compared to the rank of M , we will find a minor of M with a large number
of 2-towers. Recursively, for each 1 ⩽ i ⩽ t we will exploit the huge number of i-towers
to find a minor with a large number of (i + 1)-towers. Our final objective is to show the
number of t-towers is positive for a minor of M . We will lastly combine this result with
the results of chapter 2 to find a Kk+1-minor.

We will first use the following theorem by Kung [9] to bound the number of points in a
U2,ℓ+2-free matroid. Note that as a consequence of this theorem, a t-tower spans ℓt points.

Theorem 3.1 (Kung[9]). For any integer ℓ ⩾ 2, If M is a simple U2,ℓ+2-minor-free ma-
troid, then

|M | ⩽ 1 + ℓ+ ℓ2 + . . .+ ℓr(M)−1 =
ℓr(M) − 1

ℓ− 1
.

For t ⩾ 1 denote by Nt(M) the number of pairwise inequivalent t-towers in a matroid
M and let N0(M) = r(M). The following theorem will prove the existence of a t-tower for
any big enough matroid.

Lemma 3.2. For all integers ℓ ⩾ 2, a ⩾ 1, t ⩾ 0, if M is a matroid with no U2,ℓ+2-minor
and Nt(M) > ℓt(a+ℓt−1)Nt−1(M), then M has a minor M0 such that Nt+1(M0) > aNt(M0).

Proof. Fix ℓ ⩾ 2, a ⩾ 1 and t ⩾ 0 and let M0 be a minor-minimal minor of M such that
Nt(M0) > ℓt(a + ℓt−1)Nt−1(M0). Note that by minimality, the matroid M0 is simple. We
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may assume by contradiction that Nt+1(M0) ⩽ aNt(M0). Furthermore, by the minimality
of M0, for every x ∈ E(M0), we have Nt(M0/x) ⩽ ℓt(a+ ℓt−1)Nt−1(M0/x). Thus,∑

x∈E(M0)

Nt(M0/x) ⩽
∑

x∈E(M0)

ℓt(a+ ℓt−1)Nt−1(M0/x).

Moreover, we get∑
x∈E(M0)

(Nt(M0)−Nt(M0/x)) > ℓt(a+ ℓt−1)
∑

x∈E(M0)

(Nt−1(M0)−Nt−1(M0/x)).

We define the set T t
M0

to be the set of t-towers of M0 and for every x ∈ E(M0) we define
T t
M0/x

to be the set of t-towers in M0/x. Let T t
M0/x

denote the set of equivalent classes of

T t
M0/x

with respect to the equivalence in M0/x. Additionally, for every natural number i

and for every x ∈ E(M0) let Ai(x) be the set of pairs (x, φ) where φ is a i-tower of M0 but
not of M0/x. Note that if φ ∈ At(x) then x ∈ clM(Jφ

[t]). Given that M0| clM(Jφ
[t]) does not

contain U2,ℓ+2 as a minor, by Theorem 3.1 for each tower φ there are at most ℓt such x.
Hence

∑
x∈E(M0)

|At(x)| ⩽ ℓtNt(M0). Let Bt(x) denote the set of triplets (x, φ1, φ2) where

φ1 and φ2 are distinct t-towers of M0 that are equivalent t-towers in M0/x, that is, if φ1

collapses into φ2. Now, if φ ∈ T t
M0

and x ∈ E(M0), either φ spans x and is not a t-tower
in M0/x or φ belongs to an equivalence class of M0/x. Thus, for each x ∈ E(M)

Nt(M0) = |At(x)|+
∑

c∈T t
M0/x

|c|.

If φ is a t-tower and x /∈ clM(E(φ)) then φ is a t-tower of M0/x. Hence, we obtain
Nt(M0/x) ⩾ |T t

M0/x
|. Therefore, for every x ∈ E(M0)

Nt(M0)−Nt(M0/x) ⩽

At(x) +
∑

c∈T t
M0/x

|c|

− |T t
M0/x

|

= At(x) +
∑

c∈T t
M0/x

(|c| − 1)

⩽ |At(x)|+
∑

c∈T t
M0/x

(
|c|
2

)

⩽ |At(x)|+
1

2
|{(φ1, φ2) : φ1 collapses into φ2 in M0/x}|
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where we are using the fact that (|c| − 1) ⩽
(|c|
2

)
and the last inequality holds because

for any two t-towers φ, φ′ in an equivalence class with respect to M0/x, the pairs (φ, φ′)
and (φ′, φ) are in the set {(φ1, φ2) : φ1 collapses into φ2}. Furthermore, by Lemma 2.9,
given a pair (φ, φ′) of t-towers such that φ collapses into φ′ in M0/x, then there exists two
different (t+ 1)-towers φ⊕x φ

′ and φ′ ⊕x φ containing φ and φ′. Therefore∑
x∈E(M0)

(Nt(M0)−Nt(M0/x))

⩽
∑

x∈E(M0)

(|At(x)|+
1

2
|{(φ1, φ2) : φ1 collapses into φ2 in M0/x}|)

⩽ ℓtNt(M0) +
∑

x∈E(M0)

(
1

2
|{(φ1, φ2) : φ1 collapses into φ2 in M0/x}|

)
⩽ ℓtNt(M0) +Nt+1(M0)

⩽ (ℓt + a)Nt(M0).

Now consider the equivalence class of φ, a (t− 1)-tower with t > 1 and with respect to
M0/x. By Lemma 2.9, for any two towers φ1, φ2 in the same equivalence class as φ, the
functions φ1 ⊕x φ2 and φ2 ⊕x φ1 are two t-towers in M0. For any x ∈ E(M0) define the
function fx : Bt−1(x) −→ T t

M0
as

fx((x, φ1, φ2)) = φ1 ⊕x φ2.

Note that fx is injective. Furthermore, given any distinct x, y ∈ E(M0), and triples
(x, φx

1 , φ
x
2), (y, φ

y
1, φ

y
2), we have

fx((x, φ
x
1 , φ

x
2))(n) = x

fy((y, φ
y
1, φ

y
2))(n) = y

Thus, the towers given by fx((x, φ
x
1 , φ

x
2)) and fy((y, φ

y
1, φ

y
2)) are distinct because there are

no equivalent towers in M . Therefore, the function f :
⋃

x∈E(M0)
Bt−1(x) −→ T t

M0
defined as

follows; For x ∈ E(M0) and (x, φ1, φ2) ∈ Bt−1(x);

f((x, φ1, φ2)) := fx((x, φ1, φ2))),

is injective. Hence, we get |
⋃

x∈E(M0)
Bt−1(x)| ⩽ Nt(M0).

Additionally, suppose that φ is a t-tower of M0 such that x = φ(t). Given that φ
satisfies Definition 2.1(iv), there exists ∅ ̸= S ⊆ [t − 1] such that φ(S ∪ t) is not parallel
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to φ(S). Then, the (t − 1)-towers φ1 and φ2 are inequivalent in M0 but collapse into the
same tower in M/x. For any ∅ ̸= S ⊆ [t− 1] define φ1 and φ2 as follows

φ1(S) = φ(S ∪ t)

φ2(S) = φ(S).

Note that by Proposition 2.5, the functions φ1 and φ2 are (t − 1)-towers. Therefore, we
get (φ(t), φ1, φ2) ∈ Bt−1(φ(t)). We conclude

∑
x∈E(M0)

|Bt−1(x)| = Nt(M0), where

|Bt−1(x)| =
∑

c∈T t−1
M0/x

2

(
|c|
2

)
=

∑
c∈T t−1

M0/x

|c|(|c| − 1).

Note that by Proposition 2.11 we get |c| ⩽ ℓt−1. As a consequence;

|Bt−1(x)| ⩽
∑

c∈T t−1
M0/x

ℓt−1(|c| − 1)

and thus
|Bt−1(x)|

ℓt−1
⩽

∑
c∈T t−1

M0/x

(|c| − 1).

With this in mind we get the following inequalities when t > 1;

∑
x∈E(M0)

Nt−1(M0)−Nt−1(M0/x) =
∑

x∈E(M0)


|At−1(x)|+

∑
c∈T t−1

M0/x

|c|

− |T t−1
M0/x

|


=

∑
x∈E(M0)

|At−1(x)|+
∑

c∈T t−1
M0/x

(|c| − 1)


⩾

∑
x∈E(M0)

 ∑
c∈T t−1

M0/x

(|c| − 1)


⩾

∑
x∈E(M0)

|Bt−1(x)|
ℓt−1

=
Nt(M0)

lt−1
.
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Finally note that when t = 1 and since there are no loops in E(M0), the rank of M0/x is
r(M0/x) = r(M0)− 1 for all x ∈ E(M0). Thus,∑

x∈E(M0)

Nt−1(M0)−Nt−1(M0/x) =
∑

x∈E(M0)

r(M0)− r(M0/x)

=
∑

x∈E(M0)\clM0
(∅)

1

= |E(M0) \ clM0(∅)|
= N1(M0).

Therefore, we have the following;∑
x∈E(M0)

(Nt(M0)−Nt(M0/x)) ⩽ (ℓt + a)Nt(M0),

Nt(M0)

lt−1
⩽

∑
x∈E(M0)

(Nt−1(M0)−Nt−1(M0/x)),

ℓt(a+ ℓt−1)
∑

x∈E(M0)

(Nt−1(M0)−Nt−1(M0/x)) <
∑

x∈E(M0)

(Nt(M0)−Nt(M0/x))

which implies

ℓ(a+ ℓt−1)Nt(M0) = ℓt(a+ ℓt−1)
Nt(M0)

ℓt−1
< (ℓt + a)Nt(M0),

ℓaNt(M0) < aNt(M0),

a contradiction. Therefore, Nt+1(M0) ⩽ aNt(M0).

Theorem 3.3. Let M be a U2,ℓ+2-free matroid. If ε(M) > ℓt
2−(t−1

2 )r(M), then there exists
a minor M ′ of M that contains a t-tower.

Proof. Let at−1 = 0 and define the integers at−2, . . . , a0 recursively by ai = ℓi+1(ai+1 + ℓi)
for all 0 ⩽ i ⩽ t− 2.

Claim 3.4. For all i ⩽ t− 1, we have at−i ⩽ ℓit−(
i−1
2 ).

Proof. The proof is by induction on i. The base case i = 1 is trivial. Suppose that
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at−(i−1) ⩽ ℓ(i−1)t−(i−2
2 ). By definition,

at−i = ℓt−i+1(at−i+1 + ℓt−i)

⩽ ℓt−i+1(ℓ(i−1)t−(i−2
2 ) + ℓt−i)

The real-valued function f(x) = (x− 1)t−
(
x−2
2

)
− (t− x) satisfies f(2) = 2 and

f ′(x) = t− (x− 1

2
) + 1

which is non-negative for 2 ⩽ x ⩽ t. Hence

ℓ(i−1)t−(i−2
2 ) + ℓt−i ⩽ ℓ(i−1)t−(i−2

2 )+1.

Therefore,

at−1 ⩽ ℓt−i+1(ℓ(i−1)t−(i−2
2 ) + ℓt−i)

⩽ ℓt−i+1(ℓ(i−1)t−(i−2
2 )+1)

= ℓit−((i−2)+(i−2
2 ))

= ℓit−(
i−1
2 )

as desired. ■

Let i ∈ {0, . . . , t− 1} be maximal such that M has a minor M0 for which

Ni+1(M0) > aiNi(M0).

Such an i exists since

N1(M) = ε(M) > ℓt
2−(t−1

2 )r(M) ⩾ a0r(M),

where we have a0 ⩽ ℓt
2−(t−1

2 ) by the previous claim.

Suppose that i = t − 1, then there exists a minor M ′ of M such that Nt(M
′) >

at−1Nt−1(M
′). As at−1 = 0, then Nt(M

′) > 0 as desired. Suppose otherwise, and let M ′

minor of M such that Ni+1(M
′) > aiNi(M

′) = ℓi+1(ai+1 + ℓi)Ni(M
′). By Lemma 3.2,

there exists a minor M0 of M such that N(i+1)+1(M0) > ai+1Ni+1(M0), contradicting the
minimality of i. □
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As a direct result we obtain the following theorem, where d(k + 1) is the infimum of

all positive real numbers d such that all simple graphs G with |E(G)|
|V (G)| ⩾ d contain Kk+1 as

a minor.

Theorem 3.5. If M is a U2,ℓ+2-minor-free matroid and ε(M) ⩾ ℓ8((ℓ+1)k⌈d(k+1)⌉)2r(M),
then M contains M(Kk+1) as a minor.

Proof. By Theorem 3.3, since 1
2
(t+2)2 > t2 −

(
t−1
2

)
and 4(ℓ+1)k⌈d(k+1)⌉) > t+2 when

t = 4(ℓ+1)(k− 1)⌈d(k+1)⌉, the matroid M contains a (4(ℓ+1)(k− 1)⌈d(k+1)⌉)-tower.
Therefore, by Lemma 2.19 the matroid M contain M(Kk+1) as a minor.

First recall that Thomason showed in [14] that d(k) = (α + o(1))k
√
log(k) where

α = 0.319 . . .. Combining this result with Theorem 3.5 for large k we obtain the following
bound asymptotic in k.

Theorem 3.6. Let k ⩾ 3 and ℓ ⩾ 2 be integers, if M is a U2,ℓ+2-minor-free matroid and

ε(M) ⩾ ℓ(4α+ok(1))(ℓ+1)2k4 log(k)r(M)

where α = 0.319 . . ., then M contains M(Kk) as a minor.

Additionally, by using the bound for d(k) given by Kostochka and using Proposition 1.11
and Theorem 3.5 we obtain the following bound unconditionally for all k.

Theorem 3.7. Let k ⩾ 4 and ℓ ⩾ 2 be integers, if M is a U2,ℓ+2-minor-free matroid and

ε(M) ⩾ ℓ4(10)
6(ℓ+1)2k4 log(k)r(M),

then M contains M(Kk) as a minor.
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