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Abstract

The Riemann problem is an important topic in the numerical simulation of compressible
flows, aiding the design and verification of numerical codes. A limitation of many of the
existing studies is the perfect gas assumption. Over the past century, flow technology
has tended toward higher pressures and temperatures such that non-ideal state equations
are required along with specific heats, enthalpy, and speed of sound dependent on the full
thermodynamic state. The complexity of the resulting physics has compelled researchers to
compromise on rigour in favour of computational efficiency when studying non-ideal shock
and expansion waves. This thesis proposes exact, approximate, and machine learning
approaches that balance accuracy and computational efficiency to varying degrees when
solving the Riemann problem with non-ideal thermodynamics.

A longstanding challenge in the study of trans- and supercritical flows is that numerical
simulations are often validated against prior numerical simulations or inappropriate ideal-
gas shock tube test cases. The lack of suitable experimental data or adequate reference
solutions means that existing studies face difficulties distinguishing numerical inaccuracies
from the physics of the problem itself. To address these shortcomings, a novel derivation of
exact solutions to shock and expansion waves with arbitrary equation of state is performed.
The derivation leverages a domain mapping from space-time coordinates to characteristic
wave coordinates. The solutions may be integrated into a suitable Riemann solution algo-
rithm to produce exact reference solutions that do not require numerical integration.

The study of wave structures is also pertinent to the development of practical Rie-
mann solvers for finite volume codes, which must be computationally simple yet entropy-
stable. Using the earlier derivations, the idea of structurally complete approximate Rie-
mann solvers (StARS) is proposed. StARS provides an efficient means for analytically
restoring the isentropic expansion wave to pre-existing three-wave solvers with arbitrary
thermodynamics. The StARS modification is applied to a Roe scheme and shown to have
improved accuracy but comparable computational speed to the popular Harten-Hyman
entropy fix. Four test cases are examined: a transcritical shock tube, a shock tube with
periodic bounds that produce interfering waves, a two-dimensional Riemann problem, and
a gradient Riemann problem—a variant on the traditional Riemann problem featuring an
initial gradient of varying slope rather than an initial step function. Additionally, a scaling
analysis shows that entropy violations are most prevalent and yield the greatest errors in
trans- and supercritical flows with large gradients.

The final area of inquiry focuses on FluxNets, that is, learning-based Riemann solvers
whose accuracy and efficiency fall in between those of exact and approximate solvers. Var-
ious approaches to the design and training of fully connected neural networks are assessed.
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By comparing data-driven versus physics-informed loss functions, as well as neural networks
of varying size, the results show that order-of-magnitude reductions in error compared to
the Roe solver can be achieved with relatively compact architectures. Numerical validation
on a transcritical shock tube test case and two-dimensional Riemann problem further reveal
that a physics-informed approach is critical to ensuring smoothness, generalizability, and
physical consistency of the resulting numerical solutions. Additionally, parallelization can
be leveraged to accelerate inference such that the significant gains in accuracy are achieved
at one quarter the runtime of exact solvers. The trade-off in accuracy versus efficiency may
be justified in the case of non-ideal flows where even minor errors can result in spurious
oscillations and destabilized solutions.

Keywords: computational fluid dynamics, numerical methods, transcritical thermody-
namics, entropy, Riemann solver, machine learning, high-speed flow
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Chapter 1

Introduction

1.1 Literature Review

The Riemann problem (RP) is named after German mathematician Bernhard Riemann who

first studied the initial value problem for a hyperbolic set of partial differential equations

in 1860 [6]. Two constant flow states are initially separated by an imaginary membrane

at x = 0. At time t = 0, the imaginary membrane disappears and the solution at any

t > 0 must be found by evolving the one-dimensional time-dependent Euler equations for

the given initial conditions. Four types of self-similar solutions to the RP are possible,

composed of shock waves, expansion waves, and a contact discontinuity wave (Fig. 1.1).

There are multiple theoretical and practical uses of the RP. Exact solutions reveal the

mathematical behaviour of generic systems of hyperbolic conservation equations. Intercell

fluxes in the finite volume method may be computed using approximations to the RP [7]—
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Figure 1.1: Overview of the Riemann problem in gas dynamics and the four possible
configurations of self-similar solutions: a) initial conditions; b) rarefaction-contact-shock;
c) shock-contact rarefaction; d) shock-contact-shock; e) rarefaction-contact-rarefaction. In
practice, the wavespeeds may vary such that solutions are skewed more toward the left or
right.
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an idea that was originally proposed by Godunov [8]. Exact solutions may also be used

to evaluate the accuracy of shock-capturing numerical methods, e.g. Sod shock tube test

[9], Einfeldt’s strong rarefaction test [10]. This is particularly valuable given the lack of

experimental data to validate numerical simulations; few shock tube facilities operate at

sufficiently high pressures and temperatures to mimic the conditions of modern engineering

devices where non-ideal thermodynamics are present [11]. The RP also appears in the study

of magnetohydrodynamics [12], astrophysical flows [13], and numerous practical problems

such as SF6 circuit breakers [14], dust explosions [15, 16, 17], and experimental shock

ignition facilities [18, 19]. Studies of the RP thus come in two broad flavours: those which

are concerned with accuracy and not computational speed (for the purposes of physical

understanding and verifying numerical codes), versus those concerned with speed and

adequate accuracy (for the purposes of computing fluxes to solve applied problems).

However, a longstanding shortcoming of existing studies on the RP is the tendency to

assume that the gas is ideal and thermally or calorically perfect [6, 20, 8, 9, 21, 22, 23, 24].

For a number of modern applications, including jet and rocket engines, hypersonic aircraft,

and supercritical diesel engines, it is necessary to use non-ideal EOS along with heat

capacities, enthalpies, and speeds of sound that depend on the full thermodynamic state

as defined by two independent state variables [25]. In this chapter, we explore the challenges

with accuracy and practical computation when solving the RP especially with non-ideal

thermodynamics. This discussion is divided into exact solutions, approximate solvers, and

a new generation of machine learning (ML) approaches that strive to balance accuracy

with fast runtime.
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1.1.1 Exact Solutions

Finding the exact solution to an RP begins with deriving shock and expansion waves as

two independent phenomena. Afterwards, an iterative scheme can be developed to solve

the implicit system of equations that arises when these waves manifest simultaneously in

the RP. Such solutions are said to be exact when it is possible to iterate to an arbitrary

level of precision. Exact solutions offer physical insight as well as serve as a reference to

test the accuracy of numerical schemes. It is worth distinguishing that while there exist

closed-form solutions to ideal shocks and expansion waves as standalone problems, there

are no exact closed-form solutions to the RP—not even for ideal gases—due to the highly

nonlinear and coupled nature of the equations [24]. Many numerical studies of non-ideal

flows do not even utilize exact solutions to verify the numerical method, instead they

verify accuracy against prior numerical solutions [26, 27]. Nonetheless, the evaluation of a

numerical code against either exact-iterative or numerical reference solutions to the RP is

frequently termed a shock tube test.

For an ideal and calorically perfect gas, Riemann [6] is credited with deriving explicit

analytical solutions to the centred expansion wave. Rankine [28] and Hugoniot [20] made

major contributions to solving the stationary normal shock problem. Riemann applied

the method of characteristics to the time-dependent Euler equations, while Rankine and

Hugoniot performed direct algebraic manipulation of the steady Euler equations. In both

cases, the solutions relied on the ideal and calorically perfect assumption, which in turn

implies a polytropic gas. Polytropic gases possess immensely simplified thermodynamic be-

haviour because the product of pressure and volume raised to a constant exponent remains
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invariant with respect to temperature variations. This exponent depends on the type of

thermodynamic process (e.g. for an isentropic flow, the exponent is the gas specific heat

ratio), but it is guaranteed to be constant. Indeed, the ideal, calorically perfect, polytropic

gas model lies at the foundation of much of classical compressible flow theory, including

shocks, rarefactions, Prandtl-Meyer expansion fans, converging-diverging nozzles, Rayleigh

and Fanno flows, and more [29].

Unfortunately, both the ideal gas law and the calorically perfect gas model are unrealis-

tic under conditions such as transcritical or supercritical flow. Near the critical point, heat

capacities exhibit highly nonlinear variations that induce nonlinear behaviour in enthalpy,

specific heat ratio, and speed of sound [30]. Therefore, these thermodynamic quantities

cannot be assumed constant, let alone functions of only one variable such as temperature.

It is also necessary to use non-ideal EOS such as cubic or virial-type EOS to accurately

model pressure-volume-temperature relationships [25]. The complicated form of the result-

ing equations renders impossible the direct integration of the Riemann invariants in any

expansion waves, as well as prevents an explicit solution to shock ratios [31].

Shock tube tests for non-ideal thermodynamics have thus historically comprised highly

resolved numerical solutions. These tests generally fall into one of two categories: high-

order schemes [26, 27, 5, 32, 33, 11, 34, 35] or implicit solutions that take advantage

of iterative solvers but use numerical integration in regions containing expansion waves

[36, 37, 38, 39, 40, 41, 42, 43]. A handful of studies have also discussed the qualitative

wave behaviour of non-ideal gases [44, 45, 46], advancing conceptual understanding though

lacking quantitative answers.
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Arina [26] was the first to perform numerical simulations on a RP under near-critical

conditions. He extended the AUSM flux-splitting scheme to single-phase real gases where

the van der Waals, Carnahan-Starling-De Santis, or Redlich-Kwong (RK) EOS could be

used. Although novel, Arina’s study was limited in that the numerical method was verified

using the Sod shock tube test [9]—which involves an ideal gas. Arina’s numerical sim-

ulations of the supercritical piston effect offered insight into relative agreement between

real gas state equations, but were not verified against an exact solution in the trans- or

supercritical regime where non-ideal effects are present.

Terashima et al. [27] subsequently developed a sixth-order differencing scheme with

third-order total-variation-diminishing Runge-Kutta time integration, specifically intended

for supercritical flows. They utilized the Soave-Redlich-Kwong (SRK) EOS, as well as a

localized artificial diffusivity method to eliminate spurious oscillations near sharp disconti-

nuities such as shocks. Their method successfully captured various qualitative features of

a supercritical planar jet, such as flow instabilities, flapping motion, and jet entrainment,

but the method was verified using Arina’s [26] numerical results for a supercritical shock

tube which were in turn verified on the Sod test as discussed above.

Recently, Ma et al. [5] devised an entropy-stable double-flux scheme with the Peng-

Robinson (PR) EOS, verified against a transcritical nitrogen shock tube using the results

from a high-resolution essentially non-oscillatory scheme as the reference solution. The

method was then applied to simulate a variety of flow problems, including planar jets.

Pantano et al. [32] applied a diffusive interface method with the van der Waals EOS to

simulate supercritical flow, again verified using a supercritical RP whose reference solution

was produced using a highly resolved quadrature method. Other contemporary works
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[33, 34, 47] have followed a similar vein of simulation verified against simulation.

Finally, a number of iterative schemes have been devised that operate on the implicit

equations of the non-ideal RP and numerically integrate the Riemann invariant when

expansion waves are detected. These schemes are popular because the wave structure

is modelled explicitly, thus yielding sharp interfaces between the waves. Closure of the

implicit scheme is achieved through the contact discontintuity in the star-state region,

across which pressure and velocity remain constant. Collela & Glaz [36] famously specified

general algorithms to iteratively solve RP with arbitrary EOS by guessing, iterating, and

converging on star-state velocity and pressure—this was a generalization of Godunov’s

original observation that was specific to ideal gases [8]. Saurel et al. [31] implemented the

iterative scheme of Collela & Glaz [36] to produce reference solutions for testing different

numerical schemes and nondimensionalized approximate Riemann solvers. Banks [39] also

used a Collela & Glaz [36] iterative scheme for solving generic flow problems with complex

state equations, while Kam [40] adopted a similar strategy for exactly solving detonation

problems. In general, one can apply an iterative solver such as Newton or secant iteration

to find these star-state conditions, and then calculate the remaining wavespeeds and flow

properties in the RP. When rarefactions are present, the Riemann invariant is typically

numerically integrated over density or another independent variable. The choice of density

step size may require further iterations to ensure that star-state conditions are continuous

with the rarefaction within acceptable tolerance [39, 40]. A major caveat with this class

of iterative schemes is that stability is not guaranteed.

Ultimately, a noticeable issue is the absence of reference solutions that are free of spatial

discretization and numerical integration errors. The current literature reveals a tenuous
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pattern of verifying numerical methods against other numerical methods or irrelevant ideal-

gas test cases. Numerical inaccuracies in the reference solutions, such as artificial viscosity

and truncation errors, can become indistinguishable from the physics of the problem itself.

An exact non-ideal solution is lacking which would formally ground this area of inquiry.

Such a solution might, for example, exploit a change of variable or specialized integration

path to derive exact-iterative or partially closed-form solutions to the RP.

1.1.2 Approximate Riemann Solvers

Riemann solvers are numerical tools that can be used to compute the flux in the flux dif-

ference splitting approach. It is also possible to use flux vector splitting, which does not

rely on Riemann solvers, but this is typically practised for steady flows such as in aero-

dynamics. By contrast, difference splitting is popular for unsteady and generic problems

[24]. Many approximate Riemann solvers have been developed for practical use in compu-

tational fluid dynamics (CFD) [24], and are typically non-iterative to prioritize computa-

tional speed. Such solvers also tend to assume a perfect gas to relate the thermodynamic

variables. From these flux estimates it is possible to construct efficient numerical schemes

for simulating flow problems of interest to scientists and engineers [7]. With the increas-

ing interest in systems operating at thermodynamic conditions that depart from the ideal

assumptions—often characterized by highly non-linear thermodynamic coupling and com-

putationally expensive evaluation of fluxes [48]—the accuracy and efficiency of Riemann

solvers become increasingly relevant.

The general idea behind the construction of an approximate Riemann solver is that
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the propagation of information between cells can be modelled as an RP. If we know which

region of the RP occupies the cell interface location at x = 0, then we can approximate

the flux at the interface. This is usually achieved through a direct estimate of the flux in

the numerical method [21, 49, 50, 23]. Alternatively, one can estimate the state in each

region of the RP and then compute the flux [51] however this approach involves assuming

a fixed, often false, wave structure of the exact solution [24].

Among the first approximate Riemann solvers are those of Osher [50], Roe [49], and

Harten, Lax, & Van Leer [21]. Osher [50] approximated the flux by applying eigende-

composition then defining a Jacobian matrix splitting much like the flux vector splitting

approach. By picking suitable integration paths, it is possible to integrate the Riemann

invariant analytically. Roe [49] approximated the Riemann solution by assuming a con-

stant Jacobian matrix of the flux vector with respect to conservative variables, requiring

the constant Jacobian to satisfy certain properties, then solving the equations exactly. The

HLL solver [21] approximated the Riemann solution as three constant states divided by the

fastest left- and right-moving waves. The Rankine-Hugoniot equations relate the condi-

tions across each wave. Using an appropriate wavespeed estimate, such as from Davis [52]

or Einfeldt [22], it becomes practical to determine which state occupies the cell interface

and to find the corresponding flux. Though suited to hyperbolic systems of two equations

(e.g. the shallow water equations), these solvers often experience difficulties in resolving

sharp features such as material interfaces, shear waves, contact surfaces, and strong shocks

in the time-dependent Euler equations [24].

Indeed, for nearly four decades, there has been a continual pursuit to improve the

representation of the wave structure within Riemann solvers. This is because improvements
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to the design of the Riemann solver can result in increased accuracy at minimal additional

expense as compared to leveraging more involved discretization schemes. In some cases, it

is impossible to resolve certain flow phenomena if the Riemann solver omits the necessary

waves [53]. For instance, the HLLC solver [23] restored the missing contact discontinuity in

the HLL flux [21], leading to improved resolution of material interfaces and sharp physical

features in contexts such as supersonic and shallow water flows. Also, the HLLE [22] and

HLLEM [10] solvers addressed issues with wavespeeds to ensure positively conservative

results, particularly under vacuum conditions. To date, the highest fidelity approximate

solvers consist of three-wave models [51, 54, 23, 55, 56], named as such because they account

for shocks, contact discontinuities, and the heads of expansion waves.

A major limitation of most approximate solvers is that rarefactions in the solution to

the RP are simplified to discontinuous jumps. The spatially varying nature of rarefactions

is lost despite their presence in exact solutions as well as in the underlying physical problem.

This occurs due to the consideration of piecewise constant states between the wave fronts,

resulting from the linearization of the governing equations. At a fully subsonic or supersonic

state (Fig. 1.2.a), the rarefaction does not enclose the cell interface and the omission of

an exact expansion wave is benign; the intercell flux is determined by other regions in the

solution. However, if a rarefaction is present in a transonic scenario (Fig. 1.2.b), and it

is approximated as a discontinuous jump, one can prove that the resulting weak solution

violates the entropy condition [57]. In the context of this thesis, we denote a transonic

scenario when the head of the rarefaction is subsonic while the tail is supersonic. This

often occurs in numerical simulations where the flow itself is transonic.

The issue of entropy violations is especially relevant to the study of trans- and supercrit-
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ical flows, in which transonic conditions may arise more easily due to the immense energy

of the fluids and the rapid variations in speed of sound around the critical point. Harten

& Hyman [1], Osher [57], and Quirk [58] were among the first to explore entropy issues

and fluxes due to transonic rarefactions in Riemann solvers. They showed that entropy

violations are consistent with the mathematical definition of hyperbolic conservation laws

but are thermodynamically inconsistent for the purposes of simulating real-world flows.

Entropy-violating solutions frequently contain nonphysical phenomena such as expansion

waves that suddenly decay into a shock front, also called expansion shocks or rarefaction

shocks. Qu et al. [59] provide a contemporary review of Riemann solvers for high-speed

flow problems, noting various issues and fixes therein.

a) b)t

x

SL S*L S* SR SL S*L S* SR

Figure 1.2: The general wave structure of the rarefaction-contact-shock solution (left pres-
sure > pressure in the blue region > right pressure) as commonly drawn in textbooks
and research papers (left), versus when the head and tail of the rarefaction sit on oppo-
site sides of x = 0 (right). The blue lines enclose the so-called star or star-state region.
SL, S∗L, S∗, SR are the speeds of the left expansion head, left expansion tail, contact dis-
continuity, and right normal shock, respectively.

Various entropy fixes have been developed over the years [1, 60], and they are generally

modelled after Harten & Hyman’s [1] approach of introducing a new intermediate state
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to approximate the lost rarefaction wave. The new intermediate state is often treated as

a constant; alternatively, it can be linearly or polynomially interpolated between known

states. This has the effect of introducing additional diffusivity in the flux terms to mitigate

any expansion shocks. It has also been shown, in the case of perfect gases, that it is possible

to calculate the flux analytically [61, 7, 24]. Even so, a simple and analytically correct

means of restoring the expansion wave for arbitrary Riemann solvers—and especially under

non-ideal thermodynamics—has not yet been demonstrated. Moreover, no studies to-

date have investigated which flow conditions tend to cause transonic rarefactions. Such

knowledge would be valuable for determining when entropy fixes ought to be used versus

can be omitted for greater speed of computation.

Recent contributions in the area of entropy stability have instead primarily focused on

extending fundamental entropy concepts to new applications. Few fundamental improve-

ments have been made to the design of the Riemann solver itself. For example, studies have

investigated entropy violations in boundary conditions [62], higher dimensions [63, 64], mul-

ticomponent flows [65], low-Mach number flows [66], or hybridized Riemann solvers that

switch or average between different flux estimates [67, 68]. The ideal gas assumption is

usually made, and any entropy fixes follow the classical implementation or with minor opti-

mizations. Other works have also examined entropy stability in the context of discontinuous

Galerkin schemes [69, 70, 71], magnetohydrodynamics [72], Lagrangian gas dynamics [73],

relativistic hydrodynamics [74], and nonclassical dense gases where rarefaction shocks are

physically admissible [75, 76, 77, 78, 79]. The case of a single-species gas with arbitrary

state equation obeying the Euler equations has thus far been overlooked. Studying this

particular problem would facilitate the analysis of nonphysicalities attributable only to the
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Riemann solver.

1.1.3 Machine Learning for the Riemann Problem

Historically, the research and practice of CFD have been driven by domain expertise

and heuristics—but with advances in high-performance computing, ML has emerged as

a promising tool to address unresolved challenges [80].

One of the earliest and longstanding applications of ML to fluid mechanics has been

the discovery and development of physical models. Kolmogorov, one of the early pioneers

of both probability and turbulence theory, proposed turbulence closure as one of the key

applications for statistical learning [80, 81]. Sirovich [82] developed the snapshot proper

orthogonal decomposition to model the dynamics of coherent structures, a technique that

would ultimately become the foundation for modern computer vision [83]. Jambunathan

et al. [84] trained neural networks to predict convective heat transfer coefficients. Milano

et al. [85] applied neural networks to reconstruct near-wall fields in turbulent flows. More

recently, Ma et al. [86] leveraged ML to develop reduced order models for multiphase

flow. Lusch et al. [87] investigated deep learning approaches to approximate nonlinear

dynamics using linear embeddings. San et al. [88] and Pawar et al. [89] explored artificial

neural networks for reduced order modelling in fluid dynamics. Milan et al. [48] used ML

to accelerate thermodynamic calculations in real-fluid flows. Duraisamy et al. [90] offers

a comprehensive review of applications of ML in turbulence modelling, with a particular

focus on uncertainty quantification and predictive capability.

ML has also been successfully applied to flow control and optimization. Faller & Schreck
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[91] reviewed a range of applications for ML to solve various problems in aeronautics with

a particular emphasis on fault diagnostics and adaptive control systems. Lee et al. [92]

and Mohan et al. [93] explored neural networks for turbulent flow control. Benard et al.

utilized genetic algorithms for experimental mixing optimization [94]. Pierret & Van Den

Braembussche [95] trained networks on databases of Navier-Stokes solutions to optimize

turbine blade designs. A significant body of flow control research takes advantage of

reinforcement learning spanning hydrological systems [96], laminar bluff-body flow [97],

fish motion [98], gliders [99], and the kinematics of unmanned aerial systems [100].

Despite the explosive interest in ML, Brunton et al. [80] note that certain nuances

unique to fluid mechanics have yet to be addressed. For example, few studies have exam-

ined how learning algorithms should contend with the vast physical scales, sensitivity to

noise, presence of latent variables, sharp flow features, or transient states. For instance,

Dissanayake & Phan-Thien [101], Gonzalez-Garcia et al. [102], Lagaris et al. [103] chose

slow-evolving and smooth test problems to evaluate the feasibility of neural networks in

solving ordinary and partial differential equations. Recent works are just beginning to

push the boundary of neural networks for high-speed flows. Raissi et al. [104] proposed

physics-informed neural networks for supervised learning tasks while abiding by physical

laws specified as nonlinear partial differential equations. Mao et al. [105] examined physics-

informed approaches for studying high-speed flow problems. Bezgin et al. [106] trained a

convolutional neural network to estimate weights in a weighted essentially non-oscillatory

scheme for nonclassical undercompressive shock problems. Whereas typical applications

of ML are concerned mainly with predictive performance and generalizability, the use of

ML in physics must continue to uphold the principle of interpretability. Together, these
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considerations have motivated the use of ML not to replace numerical schemes entirely,

but rather, to address specific well-defined issues within fluid mechanics.

The RP may be one area where ML can enhance accuracy at minimal increase in com-

putational expense and without compromising the explainability of the broader numerics.

Current approximate solvers are designed to render a non-iterative means to estimate the

star-state conditions, albeit at the expense of accuracy. The star-state conditions together

with the initial conditions are then used to solve the remaining states of the RP, and in

turn, the intercell flux. ML could provide a means to estimate star-state conditions at

greater accuracy than traditional approximate solvers, but with less time complexity than

exact solvers. Moreover, physics enforces that every set of initial conditions corresponds

to only one set of star-state conditions.

Magiera et al. [107] were the first to develop a neural network that predicts con-

ditions in the star-state region. They trained networks of 5 to 7 layers with 20 to 70

nodes per hidden layer with exponential linear unit activation functions, adding a so-

called constraint-resolving layer that ensures the star-state predictions satisfy the Rankine-

Hugoniot shock jump conditions [20] within a specified tolerance. They also tested a more

general constraint-adapted loss (CAL) method wherein the loss function penalizes devia-

tion from the constraint but is not guaranteed to satisfy the loss exactly. The mean L1

errors show good agreement on the order of O(10−2) and were able to resolve the shock

front precisely, however a discussion of computational costs was not included. The study

was also limited to perfect gases where the polytropic relation significantly simplifies the

thermodynamic relationships.
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This work was soon followed by Gyrya et al. [108] who used a two-layer network with

64 nodes per hidden layer and ReLU activation functions. No physical constraints were

explicitly incorporated. Still, the network achieved root-mean squared errors of O(10−2)

for the star-state conditions. The authors also attempted to train their network to predict

speeds of the left- and right-moving waves (which are highly nonlinear functions of the

star-state conditions), yielding unacceptable errors of O(1). Compared to Magiera et al.

[107], the network by Gyrya et al. was ostensibly simpler with similarly low star-state

errors, but numerical results were prone to spurious discontinuities not reflected in the

averaged error metrics associated with the learning curves. Most importantly, Gyrya et

al. output 9 variables in the star-state region, of which many are redundant and can be

calculated using standard equations in fluid mechanics. Thus, it is possible that their

network added unwarranted computational overhead to produce these extra variables that

may instead be computed more quickly and accurately by solving the appropriate fluids

equations explicitly. In both the Magiera et al. [107] and Gyrya et al. [108] studies, there

is limited analysis on network complexity and the implications for under- or overfitting.

Additionally, it should be noted that the range of training and test data can affect the

network size required to achieve a certain level of accuracy, and therefore the ideal network

size is not universal.

Tangential studies have also considered other topics related to Riemann solver design.

Fuks & Tchelepi [109] attempted to design a physics-informed neural network to predict

fluxes given initial conditions in two-phase porous media, but noted challenges when train-

ing networks to minimize highly nonlinear loss surfaces with discontinuities. Dieselhorst et

al. [110] trained neural networks to accelerate the primitive-to-conservative conversions in
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relativistic hydrodynamics, for which there is no analytical closed-form solution much like

in non-ideal thermodynamics. Though these studies did not relate to flows with non-ideal

thermodynamics, they suggest potential alternate network architectures and the possible

benefits they may provide to the overall numerical scheme.

As such, there remains an opportunity to develop a learning-based Riemann solver that

preserves the requisite wave structure of the solution, achieves low errors when predicting

variables required for flux calculations, is computationally efficient compared to state-of-

the-art approximate solvers, is physically consistent, and delivers these capabilities for

flows with non-ideal thermodynamics. In transcritical flows especially, more sophisticated

Riemann solvers are generally needed to preserve entropy stability—there may be oppor-

tunities to take advantage of parallel matrix algorithms to render efficient neural network

computations relative to traditional methods.

1.1.4 Summary of Research Gaps

While analytical shock and rarefaction solutions are available for perfect gases, the lack

thereof for non-ideal EOS has undermined the study of non-ideal flows in two ways. For one,

numerical methods intended for non-ideal thermodynamics are regularly verified against

shock tube tests where fluids behave as an ideal gas. Secondly, numerical results for trans-

and supercritical problems are commonly verified against other numerical results despite

sometimes circular validation. For non-ideal flows in particular, there is a need for exact

solutions that do not involve numerical integration. This would permit more rigorous

verification of codes designed for such flow conditions.
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Within numerical codes, Riemann solvers have proven tremendously useful in the finite

volume method. However, the occurrence of transonic rarefactions and entropy violations

are discussed only tangentially to the derivation of Riemann solvers—such situations are

considered an edge case in which so-called entropy fixes may be applied. Current entropy

fixes are largely crude, introducing a heuristic amount of artificial diffusivity to cure non-

physicalities in shock-capturing codes. These fixes are also highly simplistic, comprising

constant-state averages of the head and tail of the rarefaction. Alternate methods for re-

constructing the rarefaction should also be investigated, along with the scaling behaviour

of errors that result when the rarefaction is ignored (i.e. modelled a discontinuous wave).

Also in need of study are the flow conditions in which transonic rarefactions tend to occur.

If exact solutions prioritize accuracy over speed, and approximate Riemann solvers the

opposite, then ML presents an exciting avenue to deliver a balance of both that has not

been historically attainable. Early works have demonstrated the feasibility of training

networks that can predict star-state conditions for ideal gases. However, for subcritical

and ideal-gas flow problems, it may be argued that the computational demands of an ML

approach outweigh any gains in accuracy. For transcritical or supercritical flows, where

issues such as entropy violations and spurious oscillations warrant more complex Riemann

solvers to ensure physically consistent solutions, a learning-based Riemann solver may be

better received. Current literature has yet to explore this possibility. In addition, past

studies have not rigorously studied the effect of network size and physical constraints on

the accuracy and generalizability of predictions.
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1.2 Research Objectives

The research gaps summarized at the end of §1.1 inform the objectives of this thesis:

1. Explore new approaches to solving shocks and rarefactions exactly in the case of

non-ideal gases, leveraging analytical derivations wherever possible to uphold math-

ematical rigour.

2. Develop or modify practical Riemann solvers that offer improved entropy stability

with minimal computational increase, especially for transonic or transcritical flows

with large gradients where even small errors can destabilize solutions.

3. Develop a learning-based Riemann solver for flows with non-ideal thermodynamics,

accounting for the role of network size and physical constraints on performance.

4. Compare and contrast exact, approximate, and machine learning approaches in terms

of computational complexity and accuracy—thus enabling scientists and engineers to

critically weigh each method’s benefits and disadvantages when simulating modern

compressible flow problems.

A list of key findings, research implications, and future research directions are provided in

chapter 7, indicating that all objectives were satisfied.
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1.3 Overview of Thesis Structure and Results

Chapters 2 and 3 provide the essential background theory on CFD and ML required

to study the RP in the context of non-ideal gases. In the chapter on CFD theory, the

full nonlinear Euler equations and the derivation of Godunov’s first-order upwind scheme

are discussed. Also examined are different EOS and thermodynamic departure functions

needed to compute thermodynamic quantities such as heat capacity, speed of sound, and

enthalpy for non-ideal thermodynamics. In the chapter on ML theory, such topics as super-

vised learning, fully connected neural networks (multi-layer perceptrons), loss functions,

optimizers, regularization, and physics-informed approaches are covered. Together, these

chapters explain the mathematical and physical concepts that are used in this thesis to

investigate exact, approximate, and learning-based Riemann solvers.

Exact analytical solutions to non-ideal shocks and rarefactions are addressed in chapter

4. The stationary normal shock and the centred expansion wave cases are dealt with

separately. It is shown that solving stationary normal shocks exactly requires the use of an

iterative solver, however, such iterations converge quickly to a high tolerance within a few

steps. Then, a novel domain mapping strategy is used to solve for the primitive variables

inside a non-ideal rarefaction as explicit functions of space and time. The derivation

reveals that the primitives vary according to a generic exponential function with constants

determined by the boundary conditions at the head and tail of the wave. Most importantly,

the derivation of the non-ideal expansion wave makes no assumptions on the EOS and is

therefore valid for arbitrary thermodynamics and flow conditions. This promising result

sets the stage for the subsequent chapter.
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Chapter 5 explores the idea of structural completeness in the context of approximate

Riemann solvers. Leveraging the prior analytical solutions for non-ideal rarefactions, a

simple but effective analytical entropy fix is proposed that restores the expansion wave

to linearized solvers such as the Roe solver. By rigorously analyzing the conditions un-

der which rarefaction waves are transonic, it is also shown that entropy violations—and

therefore entropy fixes—tend to be needed when flow problems possess large gradients and

occur under trans- or supercritical conditions. Using various 1D and 2D numerical test

cases, the new entropy fix achieves lower errors to the traditional Harten-Hyman fix while

bearing similar computational complexity. The new fix is also analytical and thus requires

no tuning of artificial diffusivity as with traditional fixes. The new entropy fix is shown to

improve numerical stability, entropy satisfaction, and ensure positively conservative results

on cases where the Roe solver would normally fail.

Having explored exact and approximate approaches, chapter 6 examines the feasibility

and merits of a learning-based approach, termed FluxNet. An evaluation of different possi-

ble input and output variables reveals that the use of primitive variables yields simpler net-

works over attempts to incorporate conservatives or fluxes. The loss curves of data-driven

and physics-informed FluxNets are analyzed, highlighting the importance of incorporating

physical constraints to ensure smoothness, generalizability, and physical consistency. Nu-

merical test cases show further reductions in error over the structurally complete approach

of the prior chapter, albeit at some increase in computational expense. However, the bias

and variance of errors over all train and test data is significantly smaller with FluxNets

than with traditional Roe-type solvers. Ultimately, the FluxNet approach achieves greater

accuracy than linearized solvers and less runtime complexity than exact techniques.
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A review of the major findings, their implications, and potential future directions is

given in chapter 7. While traditional approximate solvers may be suited for low-speed

non-ideal gases, entropy-stable solvers are required for high-speed non-ideal flows with

large gradients. In this regard, the structurally complete Riemann solver proposed in

chapter 5, as enabled by the derivations of chapter 4, is arguably most appropriate due to

its general validity. For flow problems where the stability of numerical schemes is especially

sensitive to noise or errors, a FluxNet approach may be helpful to avoid phenomena such

as pressure instabilities that naturally arise when simulating transcritical flows. For the

purposes of scientific reproducibility, hyperlinks to external code repositories are included

at the outset of chapters 4 through 6.
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Chapter 2

Theory I: CFD

This chapter summarizes essential aspects of fluid mechanics, thermodynamics, and nu-

merical schemes that are relevant to studying the RP with non-ideal gases.

2.1 Governing Equations

The flow is assumed to be inviscid, isentropic except at any shocks, and one-dimensional

in the x-direction. Gravity is neglected. Therefore, the time-dependent Euler equations

apply, which in differential and conservative form are:

∂ρ

∂t
+
∂(ρu)

∂x
= 0 (2.1)

∂(ρu)

∂t
+
∂(p+ ρu2)

∂x
= 0 (2.2)
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∂

∂t

(
ρ

(
e

M
+
u2

2

))
+

∂

∂x

(
ρu

(
e

M
+
u2

2

))
+
∂(pu)

∂x
= 0 (2.3)

where ρ is density, u is the velocity component in the x-direction, p is pressure, M is the

molar mass of the fluid, e is specific internal energy on a molar basis, and t is time. The

full multi-dimensional governing equations are provided in Appendix A. Additionally, the

specific enthalpy on a molar basis is:

h = e+ pv (2.4)

where v =M/ρ is the molar specific volume.

Sometimes it is more useful to work with total energy E per unit volume:

E = ρ

(
e

M
+
u2

2

)
=
e

v
+
ρu2

2
(2.5)

as well as total enthalpy H per unit mass:

H =
E + p

ρ
=

h

M
+
u2

2
(2.6)

which permit the energy equation (2.3) to be re-expressed:

∂E

∂t
+

∂

∂x

(
u (E + p)

)
=
∂E

∂t
+

∂

∂x

(
ρuH

)
= 0 (2.7)
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With this information, it is possible to represent the Euler equations in matrix form:

Ut + F(U)x = 0 (2.8)

where U is the vector of conserved variables and F is the flux vector:

U =


ρ

ρu

E

 ; F =


ρu

p+ ρu2

u(E + p)

 (2.9)

For steady flows, such as steady normal shocks that are aligned with the shock frame

of reference, the time-dependent terms drop out. For centred expansion waves and most

fluid problems, which are aligned with the lab frame of reference, the full Euler equations

are applicable.

2.2 Equation of State

Herein, no requirements are imposed on the choice or nature of the EOS. However, for

the purposes of computing numerical results, the general form of a cubic EOS [111] is

employed:

p =
RT

v − b
− Θ

v2 + δv + ϵ
(2.10)

where R = 8314.4621J kmol−1K−1 is the universal gas constant, T is temperature, Θ is

a function of temperature, and b, δ, ϵ are constants (Tab. 2.1). For an ideal gas, the

25



parameters b, δ, ϵ,Θ are simply zero. This thesis focuses on single-species fluids, however

Poling et al. [25] show how to generalize to mixtures via the appropriate mixture rules.

The use of pressure-explicit EOS is desirable for both analytical derivations and numer-

ical studies because Maxwell relations enable all thermodynamic quantities to be expressed

in terms of explicit partial derivatives and integrals of pressure. Cubic EOS in particular

are widely used in CFD, where a balance needs to be struck between computational effi-

ciency and thermodynamic accuracy. It is important to note that the choice of EOS for

a given fluid problem is highly dependent on context, and as such, readers are referred to

Poling et al.[25] for further discussion.

The partial derivatives and integrals of (2.10) are stated below. Constants of integration

are left out for simplicity since these integrals are always evaluated over definite intervals

in the derivations.

∂p

∂T

∣∣∣∣
v

=
R

v − b
−

dΘ
dT

v2 + δv + ϵ
(2.11)

∂p

∂v

∣∣∣∣
T

=
(2v + δ)Θ

(v2 + δv + ϵ)2
− RT

(v − b)2
(2.12)

∂2p

∂T 2

∣∣∣∣
v

= −
d2Θ
dT 2

v2 + δv + ϵ
(2.13)

ˆ
∂p

∂T

∣∣∣∣
v

dv = R ln(v − b)−
2dΘ
dT

arctanh( δ+2v√
δ2−4ϵ

)
√
δ2 − 4ϵ

(2.14)

ˆ
v
∂p

∂v

∣∣∣∣
T

dv =
bRT

v − b
−RT ln(v − b) +

2Θarctanh( δ+2v√
δ2−4ϵ

)
√
δ2 − 4ϵ

− Θv

v2 + δv + ϵ
(2.15)
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ˆ
∂2p

∂T 2

∣∣∣∣
v

dv = −
2d2Θ
dT 2 arctanh(

δ+2v√
δ2−4ϵ

)
√
δ2 − 4ϵ

(2.16)

Table 2.1: Abott parameters, constants, and derivatives of Θ(T ) for common cubic EOS.
ω is the acentric factor defined by Pitzer et al. [3][4]. It has a value ω = − log10(pac) − 1
where pac =

p
pc

at T
Tc

= 0.7. For CO2, ω = 0.228.

Name Abbott Parameters Constants Relevant Derivatives

RK [112] b, δ = b, ϵ = 0,

Θ = a( 1
T )

1
2

a = 0.4278R2T
5
2
c

pc
,

b = 0.0867RTc

pc

dΘ

dT
= −a

2
(
1

T
)

3
2

d2Θ

dT 2
=

3a

4
(
1

T
)

5
2

SRK [113]

b, δ = b, ϵ = 0,
Θ = a(1 + (0.48 + 1.574ω

−0.176ω2)(1− ( T
Tc
)

1
2 ))2

a = 0.42747
R2T 2

c

pc
,

b = 0.08664RTc

pc

dΘ

dT
= − Ωa√

Tc

(
1− Ω(

√
T
Tc
− 1)

√
T

)

d2Θ

dT 2
=

Ω(Ω + 1)a

2
√
TcT

3
2

Ω = 0.48 + 1.574ω − 0.176ω2

PR [2]
b, δ = 2b, ϵ = −b2,

Θ = a(1 + (0.3746 + 1.5422ω

−0.2699ω2)(1− ( T
Tc
)

1
2 ))2

a = 0.45724
R2T 2

c

pc
,

b = 0.07780RTc

pc

dΘ

dT
= − Ωa√

Tc

(
1− Ω(

√
T
Tc
− 1)

√
T

)

d2Θ

dT 2
=

Ω(Ω + 1)a

2
√
TcT

3
2

Ω = 0.37464 + 1.54226ω − 0.2699ω2
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2.3 Heat Capacity, Enthalpy, and Speed of Sound

By relaxing the ideal gas assumption, a more general EOS may be considered. Thermo-

dynamic functions of a single phase flow can be fully defined using two independent ther-

modynamic state variables, for example speed of sound c(v, T ) or enthalpy h(v, T ). Based

on the selected EOS, the specific heat capacities, enthalpy, and speed of sound may be ex-

pressed as functions of v, T by applying thermodynamically-consistent departure functions

to the corresponding ideal gas states.

The ideal gas specific heat capacities and enthalpies on a molar basis c′p, c
′
v, h

′ may

be empirically modelled as polynomial functions of temperature alone. More specifically,

c′p, c
′
v, h

′ are modelled as thermally perfect (dependent on T only), not calorically perfect

(constant with respect to thermodynamic state). The subscripts p, v indicate constant pres-

sure or constant volume, respectively, while the prime superscripts denote we are denoting

an ideal gas. Thermally perfect gas specific heat capacities are commonly represented with

polynomials of degree n [114]:

c′p(T ) =
n∑

i=0

BiT
i (2.17)

c′v(T ) = c′p −R =
n∑

i=0

BiT
i −R (2.18)

where the Bi terms are constants fitted from experimental data. The thermally perfect gas

specific enthalpy on a molar basis is then:

h′(T ) =

ˆ T

0

c′pdT =
n∑

i=0

Bi

i+ 1
T i+1 (2.19)
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where h′ = 0 at T = 0. Now applying departure functions to Eqs. (2.17), (2.18), and

(2.19), the non-ideal gas specific heat capacities are:

cv(v, T ) = c′v + T

ˆ v

∞

∂2p

∂T 2

∣∣∣∣
v

dv (2.20)

cp(v, T ) = cv − T
( ∂p
∂T

∣∣∣∣
v

)2(∂p
∂v

∣∣∣∣
T

)−1

(2.21)

and the non-ideal gas specific enthalpy h is:

h(p, T ) = h′(T ) +

ˆ p

0

(
v − T ∂v

∂T

∣∣∣∣
p

)∣∣∣∣∣
T

dp (2.22)

which can be converted to partial derivatives of pressure using the triple product rule and

dp = dp
dv

∣∣∣
T
dv:

h(p, T ) = h′(T ) + T

ˆ v

∞

∂p

∂T

∣∣∣∣
v

dv +

ˆ v

∞
v
∂p

∂v

∣∣∣∣
T

dv (2.23)

where the domain has been mapped from [0, p] to [∞, v]. Finally, the non-ideal gas speed

of sound may be expressed:

c2 =
∂p

∂ρ

∣∣∣∣
s

= − v
2

M

∂p

∂v

∣∣∣∣
s

(2.24)

since ρ = M
v
⇒ dv = −M

v2
dρ. For an isentropic process, cp

cv
= ∂v

∂p

∣∣
T
∂p
∂v

∣∣
s
[115]. Thus:

c(v, T ) =

√
− v

2

M

cp
cv

∂p

∂v

∣∣∣∣
T

(2.25)

Lastly, Eqs. (2.21) and (2.20) may be substituted into Eq. (2.25) to produce a monstrous

equation that is left for the reader to expand at their extended leisure. It is easy to verify
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that in the case of an ideal gas, γ = cp
cv

and ∂p
∂v

∣∣
T
= −RT

v2
, yielding c′(T ) =

√
γRT/M as

expected. These equations for specific heat capacities, enthalpy, and speed of sound are

analytical except for a polynomial fit of c′p(T ) which for values of n = 6 have been shown

to give errors of less than 0.5% compared to experimental values [116].

2.4 Characteristic Curves of the Riemann Problem

At the outset of Chapter 1, the RP was qualitatively described as an initial value problem

whose solution comprises a combination of shock and expansion waves along with a single

contact discontinuity wave. Mathematically, this wave structure arises from the method of

characteristics. Textbooks [7, 24] normally derive the characteristic curves via eigendecom-

position of the linearized time-dependent Euler equations. But when exact solutions are

of interest, it is necessary to use the full nonlinear equations and thus avoid any eigenanal-

ysis. It will be proven shortly that the characteristic curves obey the same compatibility

equations as in the nonlinear case, giving rise to left-running (C−), right-running (C+),

and entropy (C0) wave characteristics.

In isentropic flow, dp = c2dρ. Substituting into the continuity equation (2.1) and

rearranging gives:

1

ρc
(
∂p

∂t
+ u

∂p

∂x
) + c

∂u

∂x
= 0 (2.26)

The momentum equation (2.2) may be reformulated by expanding the derivatives and
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using the continuity equation to cancel out terms, resulting in:

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
= 0 (2.27)

Adding or subtracting Eq. (2.26) to/from Eq. (2.27) gives:

(
∂u

∂t
+ (u± c)∂u

∂x

)
± 1

ρc

(
∂p

∂t
+ (u± c)∂p

∂x

)
= 0 (2.28)

Now considering the total differential du = ∂u
∂x
dx + ∂u

∂t
dt, it is possible to choose charac-

teristic curves C± : dx = (u± c)dt such that du
dt

= ∂u
∂t

+ (u± c)∂u
∂x
, respectively. Similarly,

dp
dt

= ∂p
∂t

+ (p ± c) ∂p
∂x
. Substituting du

dt
and dp

dt
in (2.28) yields left-running characteristics

C− : dx
dt

= u − c along which the compatibility equation is dp − ρcdu = 0, as well as

right-running curves C+ : dx
dt

= u + c along which dp + ρcdu = 0. Finally, there are so-

called entropy characteristics C0 : dx = udt where the compatibility equation is simply the

isentropic speed of sound dp− c2dρ = 0. This characteristic field is visualized in Fig. 2.1.

It is imperative to note that C−, C0, C+ do not denote specific curves but rather families

of all curves that obey the corresponding compatibility equation. There are infinitely many

such curves, however the contact discontinuity is one particular C0 while expansion wave

heads and tails are particular cases of C− or C+ curves depending on if they appear on the

left or right of the contact discontinuity. Shocks are regions where characteristic curves on

either side coalesce.
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Figure 2.1: Characteristic field of the Riemann problem in the case of a high-pressure,
high-density left initial region and a low-pressure, low-density right initial region. It can
be rigorously proven that C− characteristics on either side of a left rarefaction are parallel
to the nearest bound of the rarefaction (indicated by the matching blue and green slopes);
C0 characteristics in the central star-state region are aligned with the slope of the contact
discontinuity (red slopes); and, all characteristics to the right of the shock and C+ charac-
teristics in the post-shock region coalesce into the shock front.
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2.5 A Building Block for Numerical Methods

The RP is often termed a building block for numerical methods [24] because it is an intuitive

model for how information propagates between cells. In the finite volume method, fluxes

modelled via the RP ensure that solutions are physically consistent and correctly upwinded

(Fig. 2.2). Godunov [8] was the first to recognize the potential of the RP and proposed a

scheme that was first-order accurate in space and time. Unfortunately, Godunov’s original

scheme called for expensive exact-iterative solutions to the RP at each cell interface. It

was not until van Leer’s pioneering work [117] that an efficient second-order extension of

Godunov’s scheme led to a renewed interest and use of Riemann solvers. Since then, a

number of Riemann solvers [49, 21, 23] have been developed and used in a wide range of

numerical schemes including AUSM [118, 119] and finite-volume WENO [120]. Because a

given fluids simulation may involve many thousands or millions of calls of a Riemann solver,

such solvers must strike a careful balance between accuracy and computational simplicity.

2.6 First-Order Upwind Godunov Scheme

In this thesis, all numerical solutions are computed with a first-order upwind Godunov

scheme—derived in detail for one dimension in the next paragraph. Extending the Godunov

scheme to multiple dimensions is discussed in Appendix B. A low-order scheme was chosen

for three reasons. Firstly, Godunov’s theorem [8] states that monotone, linear numerical

schemes are at most first-order accurate. That is, higher-order linear schemes do not

guarantee monotonicity of solutions, which is a fundamental property of exact solutions
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Figure 2.2: A visualization of the Riemann problem as a building block of the finite volume
method. The conserved variables of each cell at time t are visualized by the grey rectangles.
The cell interfaces are modelled as Riemann problems whereby different self-similar wave
solutions emerge depending on the initial conditions flanking each interface. At time
t+∆t, the waves have propagated such that the fluxes at each interface may be computed
by solving, whether exactly or approximately, each Riemann problem.

of conservation laws. Secondly, Harten [21] proved that a scheme is monotone if and

only if it is also total variation non-increasing, thus ensuring convergence. A first-order

upwind Godunov scheme is therefore also convergent. Thirdly, and most importantly,

a low-order scheme clearly demonstrates the impact of Riemann solver design upon the

accuracy of results, whereas a higher-order scheme would require additional fixes (e.g.

Total-Variation Diminishing) to preserve non-oscillatory behaviour [24]. In the higher-order

scenario, it becomes challenging to decouple the error uniquely due to the Riemann solver.

For these reasons, a low-order scheme is favoured. Time integration in this thesis is achieved

via a strong stability-preserving third-order Runge-Kutta method [121]. Nevertheless, all

Riemann solvers discussed in this thesis—whether exact, approximate, or learning-based—

may be employed in higher-order schemes as required.

The derivation of the first-order upwind Godunov scheme follows. We are given a
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boundary value problem governed by (2.8) with initial conditions at t = 0:

U(x, 0) = Ut=0(x) (2.29)

and boundary conditions at x = 0 and x = L:

U(0, t) = Ux=0(t); U(L, t) = Ux=L(t) (2.30)

where the spatial domain is x ∈ [0, L] and the time domain is t ∈ [0, T ] where T ≥ 0 (not to

be confused with temperature). It is assumed that there exists a unique entropy-satisfying

solution to this problem. In order to permit discontinuous solutions, an integral form of

the conservation laws (2.8) must be embraced. For a control volume [x1, x2]× [t1, t2] within

the spatiotemporal domain, we have:

ˆ x2

x1

U(x, t2)dx−
ˆ x2

x1

U(x, t1)dx+

ˆ t2

t1

F(U(x2, t))dt−
ˆ t2

t1

F(U(x1, t))dt = 0 (2.31)

Now that the problem is defined, the numerical scheme may be developed in the following

major steps: discretize the domain, apply suitable boundary conditions to the discretized

domain, approximate the governing equations, and derive a flux function according to the

solution of the RP at each cell boundary.
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2.6.1 Discretization of the Domain

The spatial domain [0, L] is discretized into M cells of width ∆x = xi+ 1
2
− xi− 1

2
where

i = 1, ...,M (not to be confused with molar mass). For simplicity, we uniformly distribute

the cells so that ∆x = L/M . For the ith cell, the position of the cell centre xi is:

xi = (i− 1

2
)∆x (2.32)

and the cell boundaries xi− 1
2
, xi+ 1

2
are:

xi− 1
2
= (i− 1)∆x; xi+ 1

2
= i∆x (2.33)

of which there are M + 1 cell boundaries in total.

The temporal discretization is performed in steps of ∆t of varying size dependent on

the maximum wavespeed in the spatial domain at each time t. The time step size must be

limited to ensure that information from any one cell boundary does not propagate to any

other cell boundary, or else the known cell conditions at the current time t cannot be used

to solve for the next time step t+∆t. As discussed in §2.4, the fastest left-moving and right-

moving wavespeeds originating from the jth cell boundary, where j = 0, ...,M , are given by

SLj = u(xj, t)− c(xj, t) and SRj = u(xj+1, t)+ c(xj+1, t). Thus, a Courant-Friedrichs-Lewy

(CFL) condition applies:

∆t = CFL min
j∈[0,M ]

(
∆x

|SLj|
,
∆x

|SRj|

)
(2.34)
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where CFL < 1. The resultant discretization scheme is shown in Fig. 2.3. Finally, the

conserved variables in each cell are modelled as constant such that the overall solution is

piecewise-constant at each time step. For notational purposes, we write Un
i to denote the

conditions in the ith cell at the nth time step.

x0.5 x1 x1.5

x

xi-1/2 xi+1/2xi xM-1/2 xM+1/2xM

0 �x (i-1)�x M�x(M-1)�xi�x

t

SR0 S1L S1R SjL SjR S(j+1)L S(j+1)R S(M-1)L S(M-1)R SML

�t

… …

Figure 2.3: Discretization of the spatiotemporal domain. Dashed lines indicate the cell
boundaries. Grey circles indicate the x position of the cell centres xi. The time step size
∆t changes from one time step to the next based on a Courant-Friedrichs-Lewy condition
on the fastest wavespeeds minj∈[0,M ] (SLj, SRj) in the spatial domain at time t.

2.6.2 Types of Boundary Conditions

The boundary conditions (2.30) are implemented via a so-called ghost cell approach due

to its flexibility in accommodating various types of boundaries. A fictitious cell of width

∆x is appended before x = 0, and another fictitious cell is appended after x = L. Their

cell centres are x0 = −1
2
∆x and xM+1 = (M + 1

2
)∆x, respectively. When specifying the

ghost cell conditions, there may be reflective, transmissive, or periodic boundaries.
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A reflective boundary returns incoming signals with the same magnitude but opposite

direction. The physical analogue to a reflective boundary is a stationary impermeable

wall. This boundary condition is achieved by changing the sign of velocity but retaining

the thermodynamic state (i.e. p, ρ) of the flow. The corresponding ghost-cell states to the

left and right of the domain are therefore:

Un
0 =


ρn1

−ρn1un1

En
1

 ; Un
M+1 =


ρnM

−ρnMunM

En
M

 (2.35)

Transmissive boundaries (sometimes called transparent, open-end, radiation, or far-

field boundary conditions) permit incoming signals to propagate without any impedance.

The use of transmissive boundaries is particularly useful in the simulation of small com-

putational domains. Mathematically, a transmissive boundary is achieved by copying the

conditions in the nearest cell. Ghost-cell states for transmissive boundaries are:

Un
0 =


ρn1

ρn1u
n
1

En
1

 ; Un
M+1 =


ρnM

ρnMu
n
M

En
M

 (2.36)

Periodic boundaries redirect incoming signals to the other end of the domain and while

propagating in the same direction. This is useful when simulating periodic flows or wave

interference while keeping the computational domain small. Periodic boundaries are thus
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similar to transmissive boundaries except the ghost-cell states are switched:

Un
0 =


ρnM

ρnMu
n
M

En
M

 ; Un
M+1 =


ρn1

ρn1u
n
1

En
1

 (2.37)

For further details on these boundary conditions, the reader may consult Toro [24].

2.6.3 Approximation of the Euler Equations

With the domain and boundary conditions discretized appropriately, we now turn our

attention to the integral form of the conservation laws (2.31). For the ith cell, let us

consider the control volume defined by x1 = xi− 1
2
, x2 = xi+ 1

2
, t1 = tn, and t2 = tn+1. Then:

ˆ x
i+1

2

x
i− 1

2

U(x, tn+1)dx−
ˆ x

i+1
2

x
i− 1

2

U(x, tn)dx

+

ˆ tn+1

tn

F(U(xi+ 1
2
, t))dt−

ˆ tn+1

tn

F(U(xi− 1
2
, t))dt = 0

(2.38)

However, at the end of our discussion on discretization, we modelled the conditions in each

cell as constant in space. That is, U(x, tn) = Un
i for x ∈ [xi− 1

2
, xi+ 1

2
] and t = tn; and so

forth. Thus, (2.38) simplifies to:

Un+1
i ∆x−Un

i ∆x+ F(Un
i+ 1

2
)∆t− F(Un

i− 1
2
)∆t = 0 (2.39)
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whereUn
i+ 1

2

are the conditions at the intercell boundary xi+ 1
2
for ∆t > 0, which corresponds

to the solution at x = 0 of the RP with left and right initial conditions (Un
i ,U

n
i+1). Provided

that the CFL condition is respected, the solution at x = 0 is constant for ∆t > 0 since the

slopes of the characteristic waves smoothly change sign passing through x = 0, becoming

vertical exactly at x = 0 (Fig. 2.1). Although this observation is traditionally linked to

the linearized, ideal-gas formulation of the Euler equations, a proof for the full non-linear

equations and non-ideal thermodynamics is given in §2.4.

After some rearrangement, we obtain the Godunov first-order numerical scheme:

Un+1
i = Un

i +
∆t

∆x

(
Fi− 1

2
− Fi+ 1

2

)
(2.40)

where the intercell flux at xi+ 1
2
is:

Fi+ 1
2
= F(Ui+ 1

2
) (2.41)

and the time step ∆t is required to satisfy the CFL condition from earlier (2.34). To

incorporate strong stability-preserving third-order Runge-Kutta time-stepping [121], the

numerical scheme is modified to the following form:

(Un+1
i )(1) = Un

i +
∆t

∆x

(
Fi− 1

2
− Fi+ 1

2

)
(Un+1

i )(2) =
3

4
Un

i +
1

4
(Un+1

i )(1) +
1

4

∆t

∆x

(
F

(1)

i− 1
2

− F
(1)

i+ 1
2

)
Un+1

i =
1

3
Un

i +
2

3
(Un+1

i )(2) +
2

3

∆t

∆x

(
F

(2)

i− 1
2

− F
(2)

i+ 1
2

) (2.42)
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where F
(k)

i+ 1
2

represents the flux at xi+ 1
2
once the solution has advanced to the the kth

sub-step, i.e. (Un+1
i )(k) for k = 1, 2.

2.6.4 Computing flux terms via a Riemann solver

The last step in designing any Godunov-type scheme is formulating an appropriate Rie-

mann solver. A Riemann solver is any function that calculates, whether exactly or ap-

proximately, the intercell flux as described in (2.41). More precisely, a Riemann solver is

a function R that computes the flux F at cell boundary xi+ 1
2
:

Fi+ 1
2
≈ R(Ui,Ui+1) (2.43)

where (Ui,Ui+1) are the cell states to the left and right of the boundary. The first-

order upwind Godunov scheme is now completely specified. Indeed, the remainder of

this thesis compares existing and novel approaches to designing exact, approximate, and

ML representations of R. As we can see, the Riemann solver significantly influences the

accuracy and computational effort of a numeral scheme. R must be evaluatedM +1 times

per time step in the case of 1D forward Euler time-stepping, or 3M +3 times per time step

for the 1D strong stability-preserving third-order Runge Kutta method.
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Chapter 3

Theory II: ML

This chapter summarizes essential ML topics needed to study the RP with non-ideal gases.

3.1 Types of Learning Algorithms

Mitchell’s [122] definition of ML may be stated as the phenomenon by which a computer

program improves its performance P on one or more tasks T from experience E. The

program is said to learn from experience E, which contains training data. When the

trained program is used to make predictions for practical purposes, this process is referred

to as inference. Numerous algorithms have been developed over the years to realize learn-

ing behaviour in computer programs, and they may be generally classified as supervised,

unsupervised, and semi-supervised learning [123].

In supervised learning, the task T is mapping inputs to outputs and the experience

42



E is a set of example input-output pairs. In unsupervised learning, the task T is find-

ing patterns among input data (e.g. via clustering or principal component analysis) and

the experience E is a set of unlabelled data. The approaches of reinforcement and semi-

supervised learning strive to balance exploration and exploitation of knowledge, by incen-

tivizing desirable performance (reinforcement) or providing partially unlabelled training

data (semi-supervised).

For a Riemann solver, the task T is to map initial conditions to intercell fluxes by

learning from training data E produced by exact-iterative computations—thus, a super-

vised learning approach is appropriate.

3.2 Supervised Learning

Goodfellow et al. [124] offer a precise definition of supervised learning that may be sum-

marized as:

Given a set of n training points (x̄1, ȳ1), (x̄2, ȳ2), ..., (x̄n, ȳn) where x̄i is a feature

tensor and ȳi is the response tensor of an unknown function ȳi = f(x̄i), find a

model F that approximates the true function f .

In the context of Riemann solvers, the feature vector x̄i should contain sufficient infor-

mation from the initial conditions in order to uniquely determine the flux. This thesis

employs a feature vector of the form x̄i = [ρL, uL, pL, ρR, uR, pR] ∈ R6, and the prediction

or response vector is chosen to be ȳi = [ρ∗L, u∗L, p∗L, u∗, ρ∗R, u∗R, p∗R] ∈ R7. At first glance,
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it may seem odd to include u∗, u∗L, u∗R when all three are constant in the star-state—

however this separation is necessary to enforce physical constraints as discussed later in

§3.5. From these predicted variables, it is possible to determine the wavespeeds in the

RP and estimate the intercell flux. §6.1 contains a comprehensive analysis of the possi-

ble choices of feature and predicted variables, and how they may be integrated with the

broader numerical scheme.

The supervised learning task at hand can thus be made more specific: to find a regres-

sion model F(x̄i; θ) ∈ R6×7 with learnable parameters or weights θ that approximates the

true mapping from initial conditions to star-state conditions as stated above. The regres-

sion model’s error, which affects the accuracy of the subsequent calculations of wavespeeds

and flux, is the L1 norm:

∆ȳi = |ŷi − ȳi| (3.1)

where ŷi = F(x̄i; θ) is the neural network prediction. Only nitrogen gas is studied in

this thesis’ ML research (Chapter 6), otherwise additional mixture parameters should be

represented in the feature vector.

3.3 Multi-Layer Perceptron

A feed-forward neural network architecture with non-linear activation functions and fully

connected hidden layers is used in this thesis. This architecture, known as the multi-layer

perceptron, was selected due to its popularity when performing non-linear regression tasks

in fluid mechanics [125, 108, 107, 126, 127]. More complex networks such as convolu-
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tional and recurrent networks are found in image processing, speech analysis, and natural

language processing [80] where the focus is instead on classification and ordered data.

However for low-dimensional continuously real-valued inputs and outputs, the multi-layer

perceptron is simple yet suitable.
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Figure 3.1: A generic multi-layer perceptron designed for the Riemann problem with depth
k + 1 and width j at each layer (which need not be equal to the dimension of x̄i nor ŷi).
Each hidden layer applies a non-linear activation function in an element-wise fashion. The

matrices ˜̄U contain the weights of the network. The number of weights to be trained scales
as O(jjk).

The architecture of a generic multi-layer perceptron for the RP is shown in Fig. 3.1.

There are k+1 layers (i.e. a depth of k+1) of which k are hidden layers, while each layer

has a width of j which may vary from layer to layer. For simplicity, this thesis considers

network designs where j is constant across all layers, similar to Magiera et al. [107] and
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Gyrya et al. [108]. Each linear transform is of the form z̃ = ¯̄Uh̄ + b̄ where ¯̄U ∈ Rj×j and

z̄, h̄, b̄ ∈ Rj, which is equivalent to the more convenient form:

z̃k =
˜̄Ukh̃k (3.2)

where ˜̄U = [ ¯̄U b̄] ∈ Rj×j+1 and h̃ = [h̄ 1]T ∈ Rj+1. For the first linear layer, h̃1 = x̃1.

For the (k+1)th layer, z̃k+1 = ŷi. Within the kth hidden layer, an element-wise non-linear

activation function ϕk is applied:

h̄kj = ϕk(z̃kj) (3.3)

Common activation functions are sigmoid, tanh, radial basis, and the rectified linear unit

[124, 128]. To avoid potential saturation issues with vanishing gradients, a leaky rectified

linear unit activation function with slope 10−2 is used in this thesis:

ϕLeakyReLU(x) =

 x x ≥ 0

0.01x x < 0
(3.4)

The term artificial neural network, or simply neural network, derives from the numerous

variables and activation functions related in a highly interwoven fashion much like in animal

brains. However, this similarity is more art than science—artificial neural networks ought

to be treated as mathematical constructs only loosely inspired by biology.

It is also worth noting that the training dataset (x̄i, ȳi) typically needs to be scaled in

order to prevent saturation of activation functions, particularly when there are different

orders of magnitude or units in the feature and prediction vectors. For this thesis, mean
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normalization is used:

x′ =
x−mean(x)

max (x)−min (x)
(3.5)

where x ∈ R may be any of the feature or predicted variables, and x′ is the corresponding

normalized value. Alternative normalization schemes include Z-score and min-max nor-

malization, however we know a priori that the data is not normally distributed, while

min-max normalization rescales inputs to [0, 1] which does not take advantage of the leaky

rectified linear unit’s nonzero outputs for negative inputs.

3.4 Loss Function and Optimizer

In addition to specifying the network design, it is necessary to determine an appropriate

loss function and optimizer. The loss function is designed to take on smaller values when

the weights θ yield better performance, i.e. lower values of some error metric of interest.

Training involves executing the search algorithm, also called the optimizer, to find weights

that minimize the loss function for some set of training data. For every data point (x̄i, ȳi)

and choice of weights θ, there is a loss L given by some loss function L(x̄i, ȳi; θ) that

represents a penalty related to poor performance. Often, the loss is taken as a mean

average across the training data:

L(D; θ) = 1

n

∑
(x̄,ȳ)∈D

L(x̄, ȳ; θ) (3.6)

where D = {(x̄1, ȳ1), (x̄2, ȳ2), ..., (x̄n, ȳn)} is the dataset used for training. Common loss

functions for regression include the L1 and L2 norms, Huber, as well as mean-squared
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error (MSE) [124, 128]. Due to the suitability of MSE for generic regression problems, it

is utilized in this thesis:

LMSE(D; θ) =
1

n

∑
(x̄i,ȳi)∈D

||ȳi −F(x̄i; θ)||2 (3.7)

An optimization algorithm may then be applied that searches for weights θ such that the

loss function is minimized over the dataset D. Common optimizers include stochastic gra-

dient descent, root-mean square propagation [129], and Adam [130], among others. This

thesis employs the Adam [130] optimizer, named after the algorithm’s use of adaptive

moments. By varying the learning rate via first and second gradient moments with expo-

nential decay, Adam facilitates fast convergence even in high-dimensional non-linear search

spaces such as those expected in the RP with non-ideal thermodynamics. The specific vari-

ant of the Adam algorithm used in this study is provided in Fig. 3.2.

3.5 Regularization and a Physics-Informed Approach

The universal approximation property [131, 132, 133] guarantees the existence of F , how-

ever finding weights θ that yield a desired level of accuracy is generally an NP-hard problem.

Thus, the tuning of hyperparameters (i.e. parameters that control the learning process),

selection of appropriate train and test data, and use of regularization techniques (e.g.

ridge regression, lasso, data augmentation, bagging, dropout, batch normalization) are

additional considerations for mitigating overfitting and reducing generalization error. A

balance must be struck between accuracy on the training data versus accuracy on unseen
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Require: Learning rate γ
Require: Moment decay rates β1, β2 < 1
Require: Vector of initial weights θ̄0
Require: Weight decay λ
Require: Small constant ϵ to improve numerical stability
Require: Loss function L
Initialize first and second moment vectors m̄0, v̄0 ← 0
for t = 1 to max. epochs do

ḡt ← ∇θ̄L(D; θ̄t−1)
ḡt ← ḡt + λθ̄t−1

m̄t ← β1m̄t−1 + (1− β1)ḡt
v̄t ← β2v̄t−1 + (1− β2)ḡt · ḡt
m̂t ← 1

(1−βt
1)
m̄t

v̂t ← 1
(1−βt

2)
v̄t

θ̄t ← θ̄t−1 − γm̂t√
v̂t+ϵ

▷ Note: operations are applied element-wise in this step
end for
return θ̄t

Figure 3.2: Adam optimization algorithm with weight decay. Variables with an overhead
bar or circumflex (hat) indicate vectors of length equal to the number of weights in the
network. The notation used above is restricted to the algorithm definition, and should not
be confused with other variables in fluid mechanics (e.g. v for molar specific volume).
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data that may be encountered during inference.

Since the present research involves a regression task governed by known physical laws,

traditional data-driven regularization techniques are eschewed in favour of a physics-informed

approach. A physics-informed approach [105, 104] involves directly integrating physical

laws into the neural network or loss function such that physical violations are penalized

during training. Unlike data-driven regularization, physical constraints are free of subjec-

tive heuristical criteria for smoothness and generality of predictions. Weights that yield

low losses on training data are still penalized if they violate physical laws, just as how

traditional regularization penalizes weights that might yield higher losses on unseen test

data. As with all regularization techniques, the physics-informed approach enables smaller

training datasets to be used for accurate predictions across a wide feature space.

Physical constraints are incorporated through a CAL approach [107]. Alternatively,

the network complexity itself may be increased, but this would reduce runtime efficiency.

A generic CAL loss function is of the form:

LCAL(D; θ) =
1

n

∑
(x̄i,ȳi)∈D

||ȳi −F(x̄i; θ)||2 + κ|ψ(x̄i; θ)| (3.8)

where κ is a user-defined hyperparameter and ψ(x̄i; θ) ∈ R is the residual calculated from

a physics-informed constraint function such that ψ = 0 when the constraint is satisfied.

A natural set of physical constraints for the RP is furnished via the Rankine-Hugoniot

jump conditions applied to the Euler equations (Eq. 2.8). Suppose there is a moving jump

at xs(t), moving at speed us(t). The situation is considered on a control volume of spatial

and temporal lengths ∆x = x2 − x1 and ∆t = t2 − t1 such that x1 < xs < x2. Then, a
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Taylor expansion of ∆x with respect to ∆t yields:

∆x = us(t1)∆t+O(∆t2) (3.9)

Similarly, applying a Taylor expansion to U(x, t) in the regions left and right of the jump

results in:

U(x1 < x < xs, t) = U(x1, t) +O(∆t) (3.10)

U(xs < x < x2, t) = U(x2, t) +O(∆t) (3.11)

Substituting Eqs. (3.10) and (3.11) into the integral conservation laws (Eq. 2.38) gives:

∆xU(x1, t1) = ∆xU(x2, t1) + ∆tF(U(x1, t1))−∆tF(U(x2, t1)) +O(∆t2) (3.12)

and substituting in Eq. (3.9) then dividing by ∆t produces:

us(t1)
(
U(x2, t1)−U(x1, t1)

)
= F(U(x2, t1))− F(U(x1, t1)) +O(∆t) (3.13)

Now taking the limit ∆t→ 0 and generalizing t1 to be any t, we have the Rankine-Hugoniot

condition:

us =
F(U(x2, t))− F(U(x1, t))

U(x2, t)−U(x1, t)
(3.14)

and it is easily observed that the faster that the flux changes with respect to the conserved

variables, the faster the jump speed—as one might intuitively expect.

The Rankine-Hugoniot constraints are conveniently prescribed at the contact disconti-
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nuity in the RP, since velocity and pressure remain constant across such waves. In terms

of the variables that F is designed and trained to predict, it may be formally stated that

p∗L = p∗R and u∗L = u∗R = u∗ where the subscripts (∗L, ∗R) denote the conditions imme-

diately to the left and right of the contact discontinuity. Expanding and rearranging Eq.

(3.14) yields individual constraint functions for mass, momentum, and energy:

ψmass = us(ρ∗R − ρ∗L)− ρ∗Ru∗R + ρ∗Lu∗L (3.15)

ψmom = us(ρ∗Ru∗R − ρ∗Lu∗L)− (ρ∗Ru
2
∗R + p∗R) + (ρ∗Lu

2
∗L + p∗L) (3.16)

ψenergy = us(E∗R − E∗L)− u∗R(E∗R + p∗R) + u∗L(E∗L + p∗L) (3.17)

and it is straightforward to verify through direct substitution that ψmass, ψmom, ψenergy = 0

across a contact discontinuity. Should F(x̄i; θ) incorrectly predict one or more star-state

conditions of interest, a nonzero physics-informed penalty is applied as follows:

ψ(x̄i; θ) = κmassψmass(x̄i; θ) + κmomψmom(x̄i; θ) + κenergyψenergy(x̄i; θ) (3.18)

where the κmass, κmom, κenergy terms are additional user-defined hyperparameters that weigh

the relative importance of each constraint in the training process.

Furthermore, the total energy on a per unit volume basis E is neither a feature nor

prediction of F , so it is necessary to restore the original magnitudes of the variables to

calculate the total energy terms. The resultant values can subsequently be normalized

by some factor suitable for the training data in use. Also, the energy constraint is the
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most functionally complex of the three constraints, since energy calculations require the

evaluation of the energy-enthalpy relationship (Eq. 2.4) and non-ideal enthalpy (Eq. 2.23),

which in turn depend on several thermodynamic departure functions. This issue does not

arise in existing literature, which is based upon the perfect gas assumption. But for non-

ideal thermodynamics, preliminary training attempts in §6.1 revealed that omitting the

energy constraint improved convergence and accuracy. The energy constraint is therefore

not used in this thesis.
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Chapter 4

Analytical Solutions with Non-Ideal

Thermodynamics

A generalization is performed to the theory of inviscid shocks and rarefactions, yielding

well-behaved exact implicit shock solutions as well as the first known exact closed-form

solutions for isentropic expansion waves with non-ideal EOS. Generalized shock ratios

based on the Rankine-Hugoniot equations are formulated, while a novel domain mapping

is used to analytically integrate the Riemann invariant for isentropic rarefactions. It is

also shown that the essential mathematical structure of the isentropic expansion wave is

constitutively invariant—that is, does not depend on EOS. Although the present derivations

are performed for stationary shocks and centred expansion waves, Anderson [29] and Collela

& Glaz [36] offer guidance on constructing solutions to incident waves and the full RP.

This chapter is structured as follows: section 4.1.1 defines the stationary normal shock
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problem formally, and provides generic shock functions that are applicable to arbitrary

EOS. In section 4.1.2, numerical results are computed and discussed for various shock

ratios, using both ideal and non-ideal EOS.

This chapter is published as Wang, J. C.-H. and Hickey, J.-P. (2020): Analytical so-

lutions to shock and expansion waves for non-ideal equations of state, Phys. Fluids 32,

086105, https://doi.org/10.1063/5.0015531.

The codes that contributed to the results of this chapter are available at https://git.

uwaterloo.ca/jc9wang/analytical_shocks_and_rarefactions.

4.1 Normal Shocks

4.1.1 Problem Setup and Derivation: Stationary Normal Shock

Figure 4.1: The stationary normal shock problem, with the shock fixed at x = 0.

The stationary normal shock (Fig. 4.1) features a centred flow discontinuity with known

pre-shock conditions, indicated by the subscript 1. To be determined are the post-shock
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conditions, indicated by the subscript 2. For ideal gases, exact shock ratios can be derived

as explicit functions of pre-shock conditions [29].

For non-ideal gases, an implicit solution is unavoidable due to the mathematical form

of the EOS and thermodynamic properties dependent on two independent state variables.

However, it is still possible to use the implicit equations to find the pre- and post-shock

conditions such that the final result is piecewise-explicit in space and time due to inviscid

shocks manifesting as step discontinuities that travel at finite wavespeeds (zero in the case

of a stationary shock). Traditionally, such exact implicit solutions have been solved by

iterating on the default form of Rankine-Hugoniot relations [40, 42], where a total of six

variables (four pressure, two enthalpy) contain highly involved expressions comprising the

non-ideal EOS or its partial derivatives and integrals.

It is possible to condense the governing equations into generalized Rankine-Hugoniot

conditions comprising continuity-momentum and continuity-energy shock functions where

the number of terms containing non-ideal thermodynamics is reduced. This yields better-

behaved Jacobian and Hessian expressions that are conducive to finding implicit solutions.

These generic shock functions are:

CM(v2, T2) = p2 − p1 −
Mu21
v21

(v1 − v2) (4.1)

CE(v2, T2) =
h2
M
− h1
M
− u21

2

(
1− v22

v21

)
(4.2)

which contain only four variables (pressure and enthalpy of pre- and post-shock conditions)

where the non-ideal thermodynamics appear. Since p is defined by the EOS p = p(v, T ),
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and the real-gas enthalpy is of the form h = h(v, T ), the two unknowns T2, v2 are found by

solving for CM = 0 and CE = 0.

The set of nonlinear equations resulting from the substitution of cubic EOS and depar-

ture functions into Eqs. (4.1) and (4.2) may be readily solved using iterative methods. For

this study, the Trust-Region-Dogleg nonlinear solver was used, which handles both convex

and non-convex systems adequately [134].

4.1.2 Shocks Results for Non-Ideal Equations of State

Normal shock ratios for carbon dioxide gas were computed using ideal and non-ideal EOS

(Figs. 4.2 and 4.3). For all cases, a constant pre-shock velocity is maintained in order to

isolate the role of the EOS on the shock ratios. Each curve represents the shock ratios

for a particular EOS as pre-shock conditions are varied under either constant pressure

or temperature. Different pre-shock Mach numbers are achieved for the same pre-shock

conditions due to the choice of EOS which affects the speed of sound. Properties of carbon-

dioxide were taken from Poling et al. [25] and Yaws [135]. The subscript r indicates reduced

values (normalized by their critical values). The iterative solutions converged to 10−7 error

within 3 to 15 steps.

The ideal gas solutions overpredict temperature and Mach ratios but underpredict

pressure and specific volume ratios relative to the non-ideal EOS. At first glance, this

may appear counter-intuitive since the ideal gas law ignores intermolecular forces and

thus should overpredict pressure and volume. In actuality, this result is due to this very

phenomenon. Neglecting intermolecular forces resulted in pressure differences of O(1-
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6MPa), corresponding to an approximately 20% increase in the pre-shock pressures of

O(5-24MPa), but a <10% increase in the high post-shock pressures of O(60-70MPa). This

causes a lower p2/p1. Similar logic holds for the specific volume ratio. Also,Ma1 was lower

in the ideal gas curves due to the higher temperatures predicted by the ideal gas law. Since

Ma1 and p2/p1 are traditionally used as the independent variables in solving stationary

and moving shocks respectively [29, 31], these graphs reveal that the choice of EOS can

yield significant discrepancies in the apparent shock ratios as a function of these variables.

The tendency for ideal and non-ideal ratios to agree within a 6-10% error in low-pressure

subcritical as well as high-temperature supercritical conditions in Fig. 4.2 is consistent with

the recent finding [136] that the ideal gas law is valid within 10% error for Tr > 2 and

pr < 6, where intermolecular forces are negligible. It is also worth discussing why the

constant-volume results (Fig. 4.2) are functions in Ma1 and vary monotonically, while the

constant-temperature results (Fig. 4.3) do not possess these properties. This peculiarity

is due to the fact that cubic EOS are named as such because they are cubic in volume,

but are functions of T and T 0.5. Isotherms in the p-v plane change curvature near the

critical point, resulting in the shock state response curving back on itself in Fig. 4.3. By

contrast, any linear combination of linear and square root functions is always concave or

always convex, leading to the monotonic results of Fig. 4.2 even near the critical point.

A sensitivity analysis of the continuity-momentum and continuity-energy functions to

v2, T2 further revealed that although variations are O(107 kJ kg-1) and O(104 Pa) respec-

tively, the functions are locally convex. In particular, Fig. 4.4 contains sensitivity plots

generated at transcritical conditions where thermodynamic derivatives are typically the

largest in magnitude. Still, the variations are smooth and convex. Thus, this form of
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the implicit solution lends itself well to iterative solution methods, contrary to traditional

wisdom on the computational intractability of non-ideal shocks [29]. Compared to existing

methods [38, 41, 42], the present solution generalizes to all pressure-explicit non-ideal EOS

while reducing the number of terms containing non-ideal thermodynamics and yielding

convex surfaces in the solution space.

Figure 4.2: Shock ratios for carbon dioxide gas with constant v1 = 0.293 m3mol-1, u1 =
750 ms-1. Diamonds compare results for a particular subcritical case (p1r,PR = 0.68, T1r
= 0.95); circles, transcritical (p1r,PR = 1.00, T1r = 1.15); squares, supercritical (p1r,PR =
3.22, T1r = 2.63).
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Figure 4.3: Shock ratios for carbon dioxide gas with constant T1 = 375K, T1r = 1.23, u1
= 750 ms-1. Diamonds compare results for a particular subcritical case (p1r,PR = 0.02);
circles, transcritical (p1r,PR = 1.28); squares, supercritical (p1r,PR = 1.91).
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Figure 4.4: The Continuity-Momentum function [kJ kg-1] and Continuity-Energy function
[Pa] versus T2 [K] and v2 [m3mol-1], for a transcritical pre-shock condition (p1r,PR = 1.28,
T1r = 1.23). The blue dot is the solution that zeros both functions.

4.2 Expansion Waves

4.2.1 Problem Setup and Derivation: Centred Expansion Wave

The centred expansion wave features a widening expansion region (Fig. 4.5) that propa-

gates left when p1 > p3 or propagates right when p1 < p3. For the present analysis, the

former case is considered; the derivations remain similar for right-propagating waves. The

boundary conditions in regions 1○ and 3○ are known and uniform, as is typically the case

in a shock tube or finite difference splitting method. To be determined are the properties

of the rarefaction wave region in between these bounds.

Applying the method of characteristics produces the widely known compatibility equa-
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Figure 4.5: The centred expansion wave where p1 > p3. The points a, b lie along an
arbitrary C− characteristic inside the wave.

tions along C± curves:

du± dp

ρc
= 0 ⇐⇒ J± = u±

ˆ
dp

ρc
= constant (4.3)

where J± are the corresponding Riemann invariants. Authors such as Anderson [29] have

shown that for arbitrary points a, b along any C− line:

J±a = J±b
(4.4)

which implies that J+ is constant throughout the wave. Also, by adding or subtracting J+
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and J− at a point:

u =
1

2
(J+ + J−) ,

ˆ
dp

ρc
=

1

2
(J+ − J−) (4.5)

For an ideal gas, it is possible to use polytropic relations and the ideal gas speed of

sound to directly compute the integral. However, in a real gas, the ratio of specific heat

capacities is not constant. The inability to analytically evaluate this integral for a real gas

has traditionally prevented the derivation of exact closed-form solutions [46]. However, it

will be seen that u = 1
2
(J+ + J−) and a novel domain mapping approach are sufficient

to complete the derivation. This strategy is inspired by the Riemann solver of Osher

[50], which attempts to identify generalized Riemann invariants and admissible integration

paths in phase space.

Eqs. (4.4) and (4.5) prove that C− characteristics are lines of constant velocity u.

According to Eq. (4.3), this implies dp = 0, which in an isentropic flow (dp = c2dρ) further

implies dρ = 0. Because two state variables p, ρ are constant, there must be constant

T and c(v, T ). Thus, the C− characteristics represent straight, constant-property lines

passing through the origin in the xt plane. Interestingly, this result is independent of

the chosen EOS and therefore holds for any state equation: the essential mathematical

structure of the rarefaction is an artefact of mass continuity, momentum conservation, and

constant entropy. Although EOS properties may be used to prove it, such as in traditional

ideal gas derivations [29], this is not necessary. The role of the EOS is only to influence

the speed at which the head and tail propagate by way of c1 and c3.

To ultimately obtain v, p, u as functions of x and t, Eq. (4.3) will be reformulated, then

v, p, u will be solved in the (C−, t) domain and mapped to (x, t). This is possible because
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every point (x, t) in the rarefaction region can be equivalently specified by a choice of

(C−, t). Finally, T is found via the EOS.

Substituting dp = c2dρ and dρ = −M
v2
dv into Eq. (4.3) gives the following for C± lines:

du∓ c

v
dv = 0 (4.6)

Now viewing the problem in the (C−, t) domain, it is possible to partially integrate Eq.

(4.6) along each characteristic to produce J− in terms of x
t
, i.e. the slope of each C−. Since

speed of sound is constant along each C−:

J− = u+ c

ˆ
C−

dv

v
= u+ c ln v (4.7)

Substituting u = x
t
+c corresponding to C−, replacing J− with J+ via u = 1

2
(J++J−) from

Eq. (4.5), and rearranging yields ln v = 1
c
(x
t
− J+ + c). But, the choice of C− and hence x

t

is arbitrary. Thus, v is of the form:

v(x, t) = exp
(
A1
x

t
− A2

)
(4.8)

where A1, A2 are constants. We have successfully mapped v(C−, t) −→ v(x, t).

To find p and u, the problem is considered in (C−, t) and one can partially integrate

Eq. (4.3):

J− = u− 1

ρc

ˆ
C−

dp = u− pv

Mc
(4.9)
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which implies that the product pv = f(x
t
). Knowing v:

p(x, t) = exp
(
− A3

x

t
− A4

)
(4.10)

Also, substituting Eq. (4.8) into Eq. (4.7) and utilizing u = 1
2
(J+ + J−) again produces u:

u(x, t) = A5 + A6
x

t
(4.11)

where A3, A4, A5, A6 are constants.

The constants Ai can be determined by applying the head and tail boundary conditions

at x1, x3 where x1 = (u1 − c1)t and x3 = (u3 − c3)t. Their full expressions are provided

below:

A1 =
ln(v1

v3
)

u1 − c1 − u3 + c3
(4.12)

A2 =
u1 − c1 + u3 − c3

2(u1 − c1 − u3 + c3)
ln(

v1
v3
)− 1

2
ln v1v3 (4.13)

A3 =
− ln(p1

p3
)

u3 − c3 − u1 + c1
(4.14)

A4 =
u1 − c1 + u3 − c3

2(u1 − c1 − u3 + c3)
ln(

p1
p3
)− 1

2
ln p1p3 (4.15)

A5 =
1

2
(u1 + u3)−

(u1 − u3)(u1 − c1 + u3 − c3)
2(u1 − c1 − u3 + c3)

(4.16)

A6 =
u1 − u3

u1 − c1 − u3 + c3
(4.17)

Clearly, these constants act to stretch and shift the general shape of the solutions, which

have an exponential form in the case of p, v or linear form in the case of u. Governing
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equations therefore enforce solutions to p, v, u, while solving the EOS p = p(v, T ) permits

computation of T from p, v.

This generalized interpretation is consistent with ideal gas solutions such as those by

Anderson [29]. In ideal gases, the integral in Eq. (4.5) is evaluated analytically and it

is unnecessary to perform the domain mapping and partial integration that gives p, v as

exponential functions and Ai as constants. Instead, flow speed is classically found to be:

u(x, t) = 2
γ+1

(
c1 +

x
t

)
where p, v, T are powers of linear functions of u(x, t). The non-(x, t)

coefficients and terms in the ideal gas solutions are simply constants composed of γ and

u, c at either the head or tail (head and tail conditions are equivalent due to polytropic

relations). Thus, in both the ideal and general case, an analytical solution is found by

relating these coefficients and terms to the boundary conditions.

4.2.2 Expansion Wave Results for Non-Ideal Equations of State

The speed of sound in cubic EOS, found via Eq. (2.25), is used to calculate x1 = (u1− c1)t

and x3 = (u3 − c3)t. p, v, u is solved by applying the head and tail boundary conditions

to Eqs. (4.8), (4.10), and (4.11) at a given time t. A nonlinear solver such as the Trust-

Region-Dogleg method [134] may be used to find T via the EOS. Results for a subcritical

region 1○ are provided in Fig. 4.6 and the curves are identical, as expected.

Expansion waves in transcritical and supercritical carbon dioxide gas were computed

using ideal and non-ideal EOS (Figs. 4.7 and 4.8). u1 was set to zero as is the case in

shock tube experiments. v and T were independently specified at the left boundary, and

p was found with the EOS. On the right boundary, T was specified, ideal gas polytropic
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relations were used to specify v, and p was again found with the EOS. This was done only

to ensure the boundary v, T would be identical across ideal and non-ideal results for the

purpose of comparison, however in real problems this may not be the case.

At transcritical head conditions, the ideal EOS overpredicts pressure, and the differences

in head and tail speed of sound cause overestimates of 0.5 MPa to 2 MPa or ∼ 20% more

than the corresponding non-ideal values at the same point along x. At supercritical values,

the ideal non-ideal results converge to nearly identical curves except with pressure and

specific volume differences of 15% near the centre of the rarefaction wave. This once again

supports the notion [136] that ideal EOS may be acceptable under certain high-temperature

and low-pressure supercritical conditions.
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Figure 4.6: Pressure [Pa], specific volume [m3mol-1], temperature [K], and flow speed [m
s-1], versus x [m] at time t=0.05s for a subcritical head (p1r,PR=0.014, T1r=0.99).
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Figure 4.7: Pressure [Pa], specific volume [m3mol-1], temperature [K], and flow speed [m
s-1], versus x [m] at time t=0.05 s for a transcritical head (p1r,PR=1.28, T1r=1.23)

69



Figure 4.8: Pressure [Pa], specific volume [m3mol-1], temperature [K], and flow speed [m
s-1], versus x [m] at time t=0.05 s for a supercritical head (p1r,PR=3.65, T1r=1.97)
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Chapter 5

Structurally Complete Approximate

Riemann Solvers (StARS)

The idea of structurally complete approximate Riemann solver (StARS) is defined and

explored, which use recent derivations by Wang & Hickey [137] to analytically restore the

expansion wave in pre-existing three-wave solvers. By structurally complete and approxi-

mate, it is meant that StARS provides explicit non-iterative means to compute:

1. wave speeds associated with the method of characteristics, i.e. normal shocks, contact

discontinuities, rarefaction heads, and rarefaction tails; and

2. primitive and conservative variables as well as fluxes in each region between these

waves—in particular, expansion waves are analytically reconstructed and not approx-

imated as a constant or interpolated state.
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The result is a class of efficient entropy-stable approximate solvers that offer improved

accuracy, the benefits of which are especially apparent under transonic flux conditions.

Most importantly, this property of structural completeness is valid for both ideal and

non-ideal thermodynamics. In this chapter, the Roe solver [49], whose entropy properties

have been widely studied, is compared to a structurally complete version of the Roe solver

(dubbed Roe-StARS) across compressible flow test cases where entropy violations arise.

Also performed is a comprehensive scaling analysis of flow conditions that give rise to

transonic rarefactions, yielding a clear conceptual understanding of the thermodynamic

and flow conditions in which such rarefactions occur. It is shown that transonic fluxes are

particularly prevalent in trans- and supercritical flows with large thermophysical gradients.

The chapter is organized as follows: section 5.1 describes the general approach in

restoring the expansion wave to an arbitrary three-wave solver, so that transonic fluxes

are correctly accounted for. Section 5.2 conducts a scaling analysis of the flow conditions

under which transonic fluxes occur and the errors that can arise if they are omitted.

Finally, section 5.3 provides numerical results for a transcritical shock tube, shock tube

with periodic bounds resulting in interfering shocks and rarefactions, a so-called gradient

RP, and a two-dimensional RP.

This chapter is published as Wang, J. C.-H. and Hickey, J.-P. (2022): A class of

structurally complete approximate Riemann solvers for trans- and supercritical flows with

large gradients, J. Comput. Phys. 468, 111521, https://doi.org/10.1016/j.jcp.2022.

111521

The codes that contributed to the results of this chapter are available at https://git.
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uwaterloo.ca/jc9wang/structurally-complete-riemann.

5.1 Restoring the rarefaction wave

5.1.1 Detecting the presence of a rarefaction at the cell interface

Fig. 1.2 depicts the rarefaction-contact-shock solution configuration that is often shown in

textbooks and papers, although rarefactions and/or shocks can occur on the left, right, or

both flanks of the star-state region (outlined in blue). The speed of various characteristic

waves are denoted as S followed by the appropriate subscript. Pressure and velocity

are uniform throughout the star-state region, and there is always a contact discontinuity

wave located within the star-state region. Of interest are the conditions under which the

rarefaction head and tail sit on opposite ends of the cell interface at x = 0, denoted as a

transonic state as defined in the introduction. It is assumed that the properties of the left

and right star-state regions are available through the choice of a pre-existing three-wave

Riemann solver.

Classical derivations of the expansion wave structure assume an ideal and calorically

perfect gas [29], however Wang & Hickey [137] recently proved that this wave structure is

common to both ideal and non-ideal thermodynamics. Specifically, left-running character-

istics in left rarefactions and right-running characteristics in right rarefactions are always

straight lines through the origin, irrespective of the choice of state equation. Riemann

invariants along the characteristics that pass through the head and tail of a simple wave

are constant throughout the simple wave. These universal properties justify the validity of
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the expansion wave diagram whether cubic, virial, or other non-ideal state equations are

used in conjunction with thermodynamic properties that depend on two state variables.

Left and right rarefactions require different treatments. Left rarefactions occur when

pL > p∗ as drawn in Fig. 1.2, whereas right rarefactions occur when pR > p∗ (representing a

symmetry about x = 0 in 1.2). The trivial case of no rarefactions occurs only when pL and

pR are lower than p∗, in which case the discussion is moot. For simplicity, the remaining

derivations assume a left rarefaction, however the derivation for right rarefactions is in

Appendix D.

For left rarefactions, the characteristics along dx/dt = u − c follow straight lines,

x/t = u− c, that pass through the origin. Thus, the position of the head and tail may be

determined as:

xL = SLt = (uL − cL)t (5.1)

x∗L = S∗Lt = (u∗ − c∗L)t (5.2)

where L indicates the initial properties of the left cell and ∗L indicates the properties

of the left star-state region. Therefore, the cell interface at x = 0 is enclosed by a left

rarefaction when pL > p∗, SL < 0, and S∗L > 0. Similarly, the cell interface is inside a

right rarefaction when pR > p∗, SR > 0, and S∗R < 0. Evidently, the expansion head is

subsonic, the expansion tail is supersonic, and such rarefactions are therefore transonic.
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5.1.2 Computing the flux of a transonic rarefaction

Wang & Hickey [137] also proved that inside expansion waves, the primitive variables v, p, u

obey generalized analytical expressions of the form in (4.8), (4.10), (4.11) which include

constants Ai determined by substituting the known conditions at the head and tail of the

expansion wave. Since the boundary conditions are indeed known from the pre-existing

three-wave solution, and since x = 0 defines the cell interface, these analytical expressions

can be recast for the purposes of computing a transonic flux at t > 0:

v(0, t) = exp

(
1

2
ln vLv∗L −

uL − cL + u∗ − c∗L
2(uL − cL − u∗ + c∗L)

ln
vL
v∗L

)
(5.3)

p(0, t) = exp

(
1

2
ln pLp∗ −

uL − cL + u∗ − c∗L
2(uL − cL − u∗ + c∗L)

ln
pL
p∗

)
(5.4)

u(0, t) =
1

2
(uL + u∗)−

(uL − u∗)(uL − cL + u∗ − c∗L)
2(uL − cL − u∗ + c∗L)

(5.5)

As a sanity check, the properties at the cell interface should remain constant for all t > 0

since properties along straight-line characteristics are constant and x = 0 defines a vertical

straight-line characteristic within the transonic rarefaction. As expected, the expressions

do not depend on time. Similar expressions for right transonic rarefactions are provided

in Appendix D. Thus, by calculating the expansion tail properties through an existing

three-wave solver, it is possible to analytically solve for the primitive variables at the cell

interface when a transonic rarefaction is present. Finally, the flux vector may be computed
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in the usual manner as:

FRoe−StARS =


ρu

p+ ρu2

u(E + p)


(x,t)=(0,t)

(5.6)

substituting in the values of ρ, u, p at the interface. Compared to the original three-wave

solver, the StARS version consists of two steps: a check that determines whether the

wavespeeds imply a transonic flux, and if so, the computation of (5.3) through (5.5) to

determine the flux. This is of comparable computational expense to the Harten and Hyman

[1] entropy fix. A caveat to this analytical restoration is that while the structure of the

expansion wave is exact given the head and tail conditions, the tail conditions are still

approximate—therefore, like other entropy fixes, entropy-violating discontinuities such as

expansion shocks are not fully removed, they are only mitigated. Additionally, in the event

that a transonic flux is not present, then the original Riemann solver solution is used.

5.2 Scaling Analysis

Here we perform a scaling analysis on the errors when transonic rarefactions are omitted

from the Riemann solver. For demonstrative purposes, the Roe solver [49] and the Roe-

StARS version are analyzed with nitrogen gas as the working fluid. The approach may be

trivially extended to other three-wave solvers and media of interest.
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5.2.1 Flow conditions causing transonic rarefactions in the Rie-

mann solver

Earlier we showed that in order for a rarefaction to occur at the cell interface, the expansion

head must be subsonic and the expansion tail must be supersonic. Head properties are

based on the initial conditions of the nearby cell, so it is necessary that the magnitude of

the Mach number obeys:

|Ma| = |u|
c
< 1 (5.7)

for transonic rarefactions. Additionally, for a supersonic tail, it is necessary that the

magnitude of the nearest star-state region’s Mach number:

|Ma∗K | =
|u∗K |
c∗K

> 1 (5.8)

where K = {L,R} for left or right rarefactions, respectively. In this context, the nearest

star-state region refers to the subset of the star-state region (highlighted in blue in Fig.

1.2) bounded by S∗ and S∗K . Ma∗K can be evaluated with the given solver’s estimates for

the star-state region and the speed of sound equation defined in (2.25).

In the case of Roe, the Roe averages provide an approximation to the conditions in the

star-state region. A version of the Roe solver [49] modified for real gases is provided in

Appendix E. By substituting the applicable Roe averages, the supersonic inequality above

becomes:

M̃a =
1

c̃

∣∣∣∣√ρLuL +
√
ρRuR√

ρL +
√
ρR

∣∣∣∣ = 1

c̃

∣∣∣∣∣∣
uL +

√
ρR
ρL
uR

1 +
√

ρR
ρL

∣∣∣∣∣∣ > 1 (5.9)
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where c̃ = c(ṽ, T̃ ) is the Roe-averaged non-ideal gas speed of sound. It is possible to

compute M̃a directly from the known left and right states, however to fully grasp the nature

of these variations, it is insightful to recast the equation as a first-order approximation of

flow variables, derivatives, and discretization parameters. To first-order accuracy, (5.9)

may be expanded as:

M̃a =
1

c̃

∣∣∣∣∣∣
u+

(√
1 + 1

ρ
dρ
dx
∆x
)
(u+ du

dx
∆x)

1 +
√

1 + 1
ρ
dρ
dx
∆x

∣∣∣∣∣∣ > 1 (5.10)

where uL = u, uR ≈ u+ du
dx
∆x, ρL = ρ, and ρR ≈ ρ+ dρ

dx
∆x, ρ ̸= 0. The expansion of c̃ in

terms of primitives is avoided for tractability and, as we shall see shortly, does not hinder

the analysis. Rearranging (5.10) and assuming u ̸= 0:

M̃a =
|u|
c̃

∣∣∣∣∣∣
1 + (1 + 1

u
du
dx
∆x)

√
1 + 1

ρ
dρ
dx
∆x

1 +
√
1 + 1

ρ
dρ
dx
∆x

∣∣∣∣∣∣ > 1 (5.11)

Thus, M̃a varies primarily as a function of the Roe-averaged speed of sound, velocity,

density, and the spatial derivatives of velocity and density which, in turn, depend on other

flow variables linked through the governing equations.

We can now paint a clear conceptual picture of the thermodynamic region, D, in the

reduced temperature/pressure plot Tr × pr, within which transonic fluxes occur (Fig. 5.1)

for a given set of hydrodynamic flow conditions. The ratio |u|/c̃ from (5.11) may be inter-

preted as a close approximation of the Mach number magnitude |Ma| = |u|/c especially

as ∆x→ 0 in fine grids. This means that the sonic curve |M̃a| = 1 may be approximated
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as the sonic curve |Ma| = 1 multiplied by a positive factor equal to the large fraction in

(5.11). In the remainder of this paper, this factor is referred to as the stretching factor due

its role in determining the area between |Ma| = 1 and |M̃a| = 1 that defines D.

Ma = 1

Ma < 1
Ma* > 1

Ma* = 1

Ma > 1
Ma* > 1

Ma < 1
Ma* < 1

Stronger �ow gradients

cause the outer boundary

to expand outward

pr

Tr

Figure 5.1: Conceptual diagram of the thermodynamic state space D where transonic rar-
efactions occur, shown in the shaded area. pr, Tr are the reduced pressure and temperature.
In between the sonic curves lies D. As flow gradients increase in magnitude, the blue curve
corresponding to Ma∗ = 1 stretches further, causing D to grow and cover more of the
thermodynamic state space.

When flow gradients are weak, the stretching factor is small and D therefore occupies

a relatively small area in the thermodynamic state space. As the magnitudes of flow

gradients increase, the stretching factor increases in magnitude, causing M̃a = 1 to widen

in all directions and therefore resulting in a larger domain D where transonic fluxes—and

hence entropy fixes—should be considered. These differences are exemplified in a) and b)
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of Fig. 5.2, which correspond to the following small- and large-gradient conditions:


dp/dx

dT/dx

du/dx


small

=


−1 MPam−1

−1× 102 Km−1

1× 103s−1

 ;


dp/dx

dT/dx

du/dx


large

=


−1× 101 MPam−1

−1× 103 Km−1

1× 104s−1

 (5.12)

with ∆x = 5× 10−3 m and u = 300 m s−1.

Figure 5.2: Sonic Mach number Ma = 1 and sonic star-state region Mach number
Ma∗ ≈ M̃a = 1 plotted with respect to thermodynamic state, computed for nitrogen
gas under different conditions: a) small-gradient case dp/dx = −1 MPam−1, dT/dx =
−100 Km−1, du/dx = 1000s−1, u = 300ms−1, ∆x = 5 × 10−3m; b) large-gradient case
dp/dx = −10 MPam−1, dT/dx = −1, 000 Km−1, du/dx = 10, 000 s−1, u = 300 m s−1,
∆x = 5 × 10−3 m. The figures demonstrate the effect of flow gradients on the size of the
region in which transonic fluxes can occur.

There is an important nuance to these trends: at small density gradients where the

velocity gradient is positive and density gradient is negative, the stretching factor can

grow as gradients continue to decrease. This can result in seemingly peculiar behaviour,

such as nonphysical shock magnitudes that increase by a small amount as gradients become
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smaller (see results in 5.3.2).

It is also worth highlighting a few observations on the nature of the sonic curve |Ma| =

1. SinceMa is a function only of flow speed and thermodynamic state, we should not expect

the |Ma| = 1 curve to change under different spatial flow gradients. Indeed, |Ma| = 1

is identical between Figs. 5.2 a) and b). The shape of the sonic curves is also heavily

influenced by the speed of sound c (Fig. 5.3). The left leg of the sonic curve closely follows

the Widom pseudo-boiling line, where c is known to attain a local minimum [30]. The right

leg of the sonic curve is determined by how quickly the fluid’s speed of sound increases

from the local minimum as pressure and temperature continue to increase.

Figure 5.3: Speed of sound as a function of thermodynamic state. The sonic curve |Ma| = 1
is plotted along the red curve for u = 300 ms−1. Values below 200 or above 900 ms−1 were
truncated to the nearest colour to more clearly highlight visualize near the sonic curve.
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5.2.2 Errors due to omitting the rarefaction

When approximate Riemann solvers linearize the time-dependent Euler equations, the

rarefaction collapses into a single jump discontinuity that lies somewhere within the region

of the rarefaction in the exact solution. The cell interface is then situated in either the

nearest initial condition or the nearest star-state region. Whether it is the initial condition

or the star-state region that determines the flux depends on both the flow conditions and

where the linearized jump discontinuity falls within the rarefaction. For simplicity, we

will consider the error scaling with respect to the star-state region although the behaviour

would be similar with respect to the nearest initial condition. Thus, the magnitude of the

error in the primitive variables for omitting a left transonic rarefaction is:

|∆v| =
∣∣∣v(0, t)− v∗L∣∣∣ = ∣∣∣ exp(1

2
ln vLv∗L −

uL − cL + u∗ − c∗L
2(uL − cL − u∗ + c∗L)

ln
vL
v∗L

)
− v∗L

∣∣∣ (5.13)

|∆p| =
∣∣∣p(0, t)− p∗L∣∣∣ = ∣∣∣ exp(1

2
ln pLp∗ −

uL − cL + u∗ − c∗L
2(uL − cL − u∗ + c∗L)

ln
pL
p∗

)
− p∗L

∣∣∣ (5.14)

|∆u| =
∣∣∣u(0, t)− u∗∣∣∣ = ∣∣∣1

2
(uL + u∗)−

(uL − u∗)(uL − cL + u∗ − c∗L)
2(uL − cL − u∗ + c∗L)

− u∗
∣∣∣ (5.15)

Similar expressions exist for right transonic rarefactions. These expressions are highly

nonlinear functions and therefore it is less straightforward to perform a first-order analysis

as with the sonic curves of the previous subsection. Instead, it is easier to imagine how

this truncation error would vary depending on the proximity to the |M̃a| = 1 curve within

the D domain. The closer that the conditions are to |M̃a| = 1, the closer the tail of the

rarefaction is to the cell interface x = 0 and therefore the smaller the truncation error.
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Conversely, the errors tend to increase towards |Ma| = 1.

In addition to the errors in the primitives, it is useful to compute the flux error:

|∆F| =
∣∣∣FRoe − FRoe−StARS

∣∣∣ (5.16)

which can also be plotted and analyzed in terms of its three vector components. The

flux components are functions of the primitives and therefore analysis by inspection is less

straightforward. It is sufficient to note that the flux components comprise products and

sums of the primitives, and therefore the errors in the primitives are magnified in the flux

vector. Even relatively small errors in the primitives can yield order-of-magnitude greater

errors in the fluxes. This observation is particularly noteworthy given that Riemann solvers

ultimately output a flux, and not a set of primitives, for use in the finite volume method.

The primitives provide additional insight into the underlying variables that affect the flux

estimate.

Figs. 5.4 and 5.5 show the primitive and flux errors for two sets of flow conditions

corresponding to the small-gradient and large-gradient cases from Fig. 5.2. As predicted

by the error analysis above, errors under small-gradient conditions are relatively small,

while in the large-gradient case they are larger in magnitude and occupy a greater portion

of the thermodynamic state space. It is prudent to emphasize that these plots show errors

on a per-cell basis computed at a single point in time, and only in transonic regions of

the flow. Over the course of millions of Riemann solver evaluations in a flow simulation,

errors have the potential to accumulate and propagate throughout the spatio-temporal

computational domain. The question of producing entropy-stable solutions with proper
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Figure 5.4: Relative errors in the primitive and flux vector components between Roe and
Roe-StARS, computed for N2 gas under the small-gradient conditions of Fig. 5.2.a). As
predicted by the theory, there is a relatively narrow region where transonic fluxes occur,
and the errors are relatively low in magnitude compared to Fig. 5.5. The sonic curves
Ma = 1 and Ma∗ = 1 are indicated with the red and blue curves. F1, F2, F3 are the mass
flux, momentum flux, and energy flux, respectively.
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Figure 5.5: Relative errors in the primitive and flux vector components between Roe and
Roe-StARS, computed for nitrogen gas under the same large-gradient conditions as Fig.
5.2.b). As predicted by the theory, there is a relatively large region where transonic fluxes
occur, and the errors are relatively large in magnitude compared to Fig. 5.4. The sonic
curves Ma = 1 and Ma∗ = 1 are indicated with the red and blue curves. F1, F2, F3 are the
mass flux, momentum flux, and energy flux, respectively.
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transonic flux modelling is therefore paramount for trans- and supercritical flows with

large flow gradients.

5.3 Numerical Results

Numerical results are compared for four test cases involving shocks and rarefactions with

nitrogen gas: 1) a transcritical shock tube, 2) a shock tube with periodic boundaries and

interfering waves, and 3) a novel interpretation of the RP as the limiting case of general

flow gradients; 4) a two-dimensional RP. The results of the third test case are analyzed

together with the scaling analysis. The ensuing discussion focuses on the adverse effects

of entropy violations and the merits of the simple and accurate entropy fix through a

structurally complete solution to the RP. All results are computed using the first-order

upwind scheme described in §2.6 in order to isolate the benefits of the improved Riemann

solver.

5.3.1 Transcritical shock tube

Here we examine the results of solving a transcritical shock tube. Results are compared

between the classical Roe solver [49], the Roe solver with Harten-Hyman entropy fix as

originally proposed in [1], and the Roe-StARS solver derived in this study. Exact solutions

are computed using a Collela & Glaz-type iterative solver [36] leveraging Wang & Hickey’s

[138] shock and expansion wave equations for non-ideal gases, and the moving normal

shock equations of Appendix C. A comparison between ideal and non-ideal results is also
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provided. At time t = 0, the flow field is initialized to the following conditions:


ρL

uL

pL

 =


180 kgm−3

150 m s−1

11 MPa

 ;


ρR

uR

pR

 =


7.4 kgm−3

50 m s−1

0.2 MPa

 (5.17)

The computational domain consists of 256 cells that are uniformly distributed over x ∈

[−1, 1]. A CFL number of 0.5, based on the acoustic time scale, is used. Transparent

(i.e. transmissive, non-reflecting) boundary conditions are implemented via ghost cells, as

described in Toro [24]. The solution at time t = 0.0009 s is shown in Figs. 5.7 (calorically

perfect gas) and 5.8 (non-ideal gas modelled with the PR state equation [2]). A grid

convergence study was performed, showing that the selected number of cells falls within

the region of asymptotic convergence (Fig. 5.6). Plotted are the L2 and L∞ norms of the

density error across the domain, normalized by the exact solutions. Linear convergence is

observed, consistent with other studies involving sharp flow features [5, 139].

In Fig. 5.7, the Roe solver admits an obvious expansion shock at x = 0. Approaching

x = 0 from either side, the slope of every flow variable tends toward zero followed by a

sudden and nonphysical discontinuous jump. This coincides with the flow passing through

a transonic state, as seen in the Ma subplot of Fig. 5.7. To quantify the nonphysical

shock mitigation achieved by the Roe-StARS versus Roe-Harten, it is helpful to examine

the percentage reduction in error (i.e. at x = 0). The L1 error in a variable y may be

computed:

∆y =
ŷ − yexact
yexact

(5.18)
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Figure 5.6: Grid convergence study for the case simulated in Fig. 5.7, with ncells ranging
from 32 to 512. Linear convergence is observed.

where ŷ is the solution calculated via the Riemann solver of interest (i.e. Roe, Roe-

Harten, Roe-StARS) and yexact is the exact solution. The smaller the error, the smaller

the magnitude of the nonphysical feature. The errors, and percent reductions in error

offered by the entropy-fixed solvers, are summarized in Tabs. 5.1 and 5.2.

Table 5.1: Absolute L1 errors at x = 0 for primitive variables ρ, u, pr achieved by the
Roe, Roe-Harten, and Roe-StARS solvers in the ideal transcritical shock tube of Fig. 5.7.
Percentage reduction in the Roe error is shown in parentheses.

Error Roe Roe-Harten Roe-StARS

∆ρ 26.0 4.19 (−83.9%) 2.62 (−89.9%)
∆u -53.6 -9.26 (−82.7%) -5.80 (−89.2%)
∆pr 0.584 0.104 (−82.1%) 0.0705 (−87.9%)

The Roe-Harten solver reduces the magnitude of the jump by 82% to 84% for all the
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Figure 5.7: Numerical results for a transcritical nitrogen shock tube solved with perfect
gas thermodynamics. Results for the Roe, Roe solver with Harten-Hyman entropy fix [1]
(Roe-Harten), and Roe-StARS solver are shown.
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Figure 5.8: Numerical results for a transcritical nitrogen shock tube solved with non-ideal
thermodynamics and the Peng-Robinson equation of state [2]. Results for the Roe, Roe
solver with Harten-Hyman entropy fix [1] (Roe-Harten), and Roe-StARS solver are shown.
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Table 5.2: Absolute L1 errors at x = 0 for primitive variables ρ, u, pr achieved by the Roe,
Roe-Harten, and Roe-StARS solvers in the non-ideal transcritical shock tube of Fig. 5.8.
Percentage reduction in the Roe error is shown in parentheses.

Error Roe Roe-Harten Roe-StARS

∆ρ 33.0 13.5 (−59.2%) 12.9 (−61.1%)
∆u -56.2 -15.2 (−73.0%) -13.8 (−75.4%)
∆pr 0.680 0.222 (−67.4%) 0.208 (−69.4%)

Table 5.3: Floating point operations required to solve the flux of a single cell interface
using the Roe, Roe-Harten, or Roe-StARS solvers.

No Entropy Violation With Entropy Violation
Solver Ideal Gas PR Gas Ideal Gas PR Gas

Roe 123 157 123 157
Roe-Harten 229 (+86%) 331 (+111%) 239 (+94%) 341 (+177%)
Roe-StARS 229 (+86%) 331 (+111%) 285 (+132%) 387 (+215%)

primitive variables. However, an inconvenience with Harten-Hyman-type entropy fixes is

the need to tune parameters that control the amount of artificial dissipation introduced

during an entropy violation [58]. Thus, it is possible that other parameter selections

could result in greater or lesser smoothness for a given flow problem, which impacts the

generalizability of these fixes. On the other hand, the Roe-StARS solver achieves a 88%

to 90% reduction in the expansion shock magnitude and requires no tuning. Away from

the expansion shock, the pressure and velocity are nearly identical between Roe, Roe-

Harten, and Roe-StARS. The entropy-fixed solvers yield within the star-state region a

slight reduction in density and Mach number, as well as a slight increase in temperature

and specific internal energy.

Fig. 5.8 yields similar conclusions regarding the relative improvement of the Roe-StARS

versus Roe-Harten solvers. Both solvers noticeably reduce and smoothen the expansion
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shock. The Harten-Hyman fix lessens the expansion shock error by 59% to 73% while the

Roe-StARS solver achieves a 61% to 75% reduction. It is also worth noting that, when

compared against the perfect gas solution, the use of a non-ideal state equation yields a

different temperature profile, seen in Fig. 5.8 as compared to Fig. 5.7. Also, no spurious

oscillations are observed for this test despite their prevalence in transcritical flows with

non-ideal thermodynamics [140, 5]. Any differences between the solutions in Fig. 5.8 can

thus be attributed to the Riemann solvers and not additional errors that may arise in the

simulation of high-speed transcritical flows.

Finally, a comparison of the computational requirements of each Riemann solver is

provided in Tab. 5.3. The number of floating point operations per cell interface are

shown, determined by a line-by-line review of the flux functions in the present study’s

MATLAB implementations of the Roe, Roe-Harten, and Roe-StARS solvers (a link to the

code is provided in the conclusion). Although Roe-StARS involves more floating point

operations than the baseline Roe solver, it is of identical complexity to the Harten-Hyman

entropy fix when no entropy violations are present (i.e. no fix is applied to the flux).

That is, both traditional entropy fixes and Roe-StARS perform similar checks on the

wavespeeds and therefore the computational requirements are identical when entropy issues

do not occur. In the presence of an entropy violation, Roe-StARS is substantially more

demanding than either the Roe or Roe-Harten solvers, however for most flow problems, a

very small fraction of the total cells contain entropy-violating solutions. For instance, in the

current transcritical shock tube problem, only the two cells adjacent x = 0 admit entropy

problems, or approximately 0.8% of the computational domain. Roe-StARS’ improvements

in accuracy and generalizability versus the additional computational expense may therefore
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advantageous in cases where transonic fluxes are present and entropy stability is desired.

5.3.2 Periodic shock tube: interfering shock and expansion waves

Historically, the investigation of entropy violations has been characterized by the study of

nonphysical features at a fixed time after the initial conditions. For example, in the last

subsection, a transcritical shock tube was studied at t = 0.9 ms. With limited opportunity

for waves to propagate throughout the domain, there is no interference between rarefac-

tions, shocks, or contact discontinuities. By contrast, real-world flow simulations call for

thousands of time steps that would inevitably obscure and dissipate entropy errors so as

to render them indistinguishable from physically consistent flow features. This subsection

aims to highlight one example of this occurrence.

A flow field is initialized with the same conditions as in the previous subsection, using

the same uniform mesh, and the same time advancement to solve a transcritical shock

tube problem. However, the boundary conditions are now periodic: the fluxes at one end

of the spatial domain propagate to the other end. This is implemented by setting the

0th ghost cell conditions equal to the (ncells)
th cell conditions, and the (ncells + 1)th ghost

cell conditions equal to the 1st cell conditions, then proceeding with flux calculations as

usual. Additionally, the time marching is allowed to proceed until t = 7.5 ms, or more

than 8 times the final simulation time of the earlier transcritical shock tube. Perfect gas

thermodynamics are used. The results at time t = {0.9, 2.0, 4.0, 7.5} ms are shown for the

primitive variables ρ, u, pr in Fig. 5.9. Both Roe-StARS and Roe-Harten would remove

nonphysical shocks, thus the results of Roe-StARS compared with Roe.
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Figure 5.9: Numerical results at various times for a transcritical nitrogen shock tube with
periodic boundary conditions. The solution initially comprises distinct waves that interfere
as time proceeds, causing the errors from the expansion shock to propagate throughout
the domain.
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At time t = 0.9 ms, the solution has just started to evolve and the wave regions

are distinct. Two rarefactions are generated: a central expansion wave that encloses the

erroneous shock at x = 0, and an expansion wave whose head is located at approximately

x = −0.55 m and whose tail wraps around to the right side just left of x = 1 m (bear

in mind the periodic boundaries). The first rarefaction shall be referred to as the central

rarefaction; the second rarefaction, the edge rarefaction. A second, significantly smaller

expansion shock is observed at the rarefaction tail near x = 1 m, however its effect on the

solution at later time snapshots is marginal. Two shocks are also generated: a right-moving

shock at approximately x = 0.5 m and a left-moving shock at approximately x = 0.7 m.

Two contact discontinuities are observed, however these dissipate rapidly in the subsequent

time snapshots. Overall, the solution at t = 0.9 ms resembles the usual rarefaction-contact-

shock structure except with periodic bounds. Outside the vicinity of the expansion shocks,

the solution is largely similar between Roe and Roe-StARS.

By t = 2.0 ms, the heads of the central and edge rarefactions meet at approximately

x = −0.18 m. The region where Roe and Roe-StARS differ has grown, now spanning

x ∈ [−0.17, 0.20] m as the central expansion wave spreads out in space thereby propagating

errors from the original expansion shock at x = 0 m. The two shocks have also passed

each other, the left-moving shock at x = 0.64 m and the right-moving shock at x = 0.90

m. In the interstitial post-shock region x ∈ [0.64, 0.90] m, the density and pressure of the

Roe-StARS solution is minutely lower than that of Roe. The contact discontinuities have

interfered with the strong shocks and are no longer uniquely identifiable. The differences

between Roe-StARS and Roe continue to be concentrated around the expansion shock

locations.
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The snapshot at t = 4.0 ms offers the first glimpse of the solution after the expansion

waves have started to interfere, revealing significant discrepancies between Roe and Roe-

StARS. By now, the right-moving shock has reappeared on the left at x = −0.55 m

and overlaps with the edge and central rarefactions. The slower-moving left shock has

been pushed back to x = 0.73 m as it has started to interfere with the right-moving tail

of the central rarefaction. Whereas the Roe-StARS solution is smooth throughout the

region x ∈ [−0.55, 0.73] m, the Roe solution contains a kink as well as overshooting and

undershooting to the left and right of x = 0.

The last snapshot shown at t = 7.5 ms shows the right shock having made it all the

way around to meet the left shock again near x = 0.6 m. All waves have interfered with

one another in at least one location, and unlike at t = 4.0 ms, the errors due to the central

expansion shock have dissipated. In particular, no obvious kinks are visible and the solution

is relatively smooth save for the two known shocks. Unless one were carefully tracking each

wave as we have in this analysis, it would be easy to assume that no entropy violation has

occurred in the Roe results. The Roe-StARS solver, however, nearly completely removes

the nonphysicalities and their propagation throughout the domain.

5.3.3 Gradient Riemann problem

The RP is typically initialized with a discontinuous step function at x = 0. However,

computationally, the act of discretizing the spatial domain implies that step functions are

mathematically equivalent to regions of sufficiently large slope. This begs the question:

if numerical schemes treat discontinuous jumps as regions of large flow gradients, then

96



how do entropy violations change as the initial condition jump is replaced by shallower

gradients?

Here we study versions of the RP where the centre of the initial conditions is not a

step function but a gradient region of finite slope. These problems are dubbed gradient

Riemann problems. We demonstrate that entropy violations persist and change in mag-

nitude with respect to the initial gradients, and that these changes—though sometimes

non-monotonic—are consistent with the earlier scaling analysis.

The initial conditions are as follows. Suppose ∆L is the thickness of the gradient region

centred at x = 0. Then for x < −∆L
2
, the density and pressure are 180kg/m3 and 11MPa.

For x > ∆L
2
, the initial conditions are 7.4 kg/m3 and 0.2 MPa. The flow speed at t = 0 is

set to 150 m/s everywhere. However, for the gradient region |x| ≤ ∆L
2
, the initial conditions

are: 
ρ

u

p

 =


−ρR−ρL

∆L
x+ ρR+ρL

2

−uR−uL

∆L
x+ uR+uL

2

−pR−pL
∆L

x+ pR+pL
2

 (5.19)

where L and R signify the conditions at x < −∆L
2

and x > ∆L
2
, respectively. This is a

linear region that connects the left and right primitive variables. The spatial domain is

made up of 128 points uniformly distributed between x ∈ [−0.5, 0.5] m, yielding the same

level of discretization as the previous subsection. Non-ideal thermodynamics with the PR

state equation [2] are used and the time step is selected based on a constant CFL number of

0.5. The solution is advanced to t = 0.5 ms, and transparent boundary conditions are used

although the time advancement is so short that waves would not interfere even if periodic

boundary conditions were applied instead. Results are compared for Roe and Roe-StARS
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for values of ∆L = {0.78, 2.34, 3.91, 5.46} cm (Fig. 5.10). The magnitude of the expansion

shock at x = 0 is tabulated in Tab. 5.4.

Figure 5.10: Pressure, flow speed, and reduced pressure plots for four gradient Riemann
problems in which left and right initial conditions are identical but the width of the initial
gradient region varies from ∆L = 7.8 mm to 5.47 cm. The magnitude of the expansion
shock decreases at first, then increases slightly as gradients become smaller.

The leftmost plots in Fig. 5.10 are effectively up-close snapshots of the typical Riemann

problem with a discontinuous jump. At ∆L = 7.8 mm, the gradient is indiscernible from a

step function that has been discretized. The limits in the x-axis are confined to ±0.1 m to
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Table 5.4: Magnitude of the nonphysical shock at x = 0 for primitive variables ρ, u, pr
achieved by the Roe versus Roe-StARS solvers for the gradient Riemann problem of Fig.
5.10. Note the non-monotonic behaviour of the Roe solver as the gradient becomes smaller.

Roe Roe-StARS
∆L 7.8mm 2.34cm 3.91cm 5.47cm 7.8mm 2.34cm 3.91cm 5.47cm

∆ρ -62.8 -14.1 -15.9 -8.6 -6.4 -12.2 -7.7 -5.5
∆u 150.0 32.5 36.6 19.6 14.3 27.1 17.4 12.4
∆pr -1.37 -0.30 -0.35 -0.19 -0.14 -0.25 -0.17 -0.12

offer a clearer picture of the entropy violation. As expected, an expansion shock appears

at x = 0 for the Roe solver, but this is almost completely mitigated with Roe-StARS.

What seems anomalous at first glance is that as ∆L grows (i.e. the initial gradients

become shallower), the magnitude of the Roe solver’s expansion shock rises slightly for

∆L = 3.91 cm, then falls again for ∆L = 5.47 cm. Similar behaviour is observed for the

Roe-StARS solver’s expansion shock, which rises slightly for ∆L = 2.34 cm and falls again

for ∆L = 3.91 cm. The magnitude of the nonphysical shock at x = 0 continues to decrease

monotonically thereafter for both solvers. It is also worth noting that the Roe-StARS

entropy violation is nevertheless always smaller than the Roe entropy violation.

To explain this non-monotonic behaviour, we return to (5.11) which describes the con-

ditions needed for supersonic rarefaction tails. Recall that subsonic rarefaction heads and

rarefaction tails result in transonic conditions that give rise to entropy errors. Let us sub-

stitute z =
√

1 + 1
ρ
dρ
dx
∆x and f = 1+ 1

u
du
dx
∆x, where f > 0 at x = 0 in this test case. Then

(5.11) simplifies to:

M̃a =
|u|
c̃

∣∣∣∣1 + fz

1 + z

∣∣∣∣ (5.20)

As negative density gradients decrease in magnitude, z increases, which in turn causes the
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entire stretching factor to increase in magnitude. Of course, du
dx

and thus f is also decreasing,

and these two competing effects determine whether the overall expression grows or shrinks.

In the presence of suitable flow conditions, the stretching factor can grow and thus expand

the region D in the thermodynamic state space where transonic fluxes arise. It is therefore

imperative in the analysis of entropy violations to consider not only the magnitude of these

violations when they occur, but also how often they occur in the spatio-temporal domain.

In this example, the relative errors for a given cell and time step ((5.13) to (5.15)) decrease

as gradients become smaller—yet the thermodynamic state space under which entropy

violations occur is growing. The result is non-monotonic expansion shock magnitude as

gradients change. All approximate Riemann solvers are thus capable of producing this

non-monotonic expansion shock behaviour.

5.3.4 Two-dimensional Riemann problem

Although the RP is typically studied in 1D, it is easy to extend the problem to higher

dimensions in which more complex flow structures and anomalies can occur. Here we

consider a test case comprising the RP in 2D. Details on extending the first-order Godunov

scheme and Roe solver to higher dimensions are available in Appendices A, B, and E. In

higher dimensions, it is possible to construct more elaborate schemes and meshes that can

improve the accuracy and stability of results. However, uniform Cartesian grids are used

here for simplicity and consistency with the 1D cases studied earlier. It is the ability of

the Riemann solver, and less so the scheme, that is of central interest.

It should be noted that there is extensive literature on the nature of solutions to the
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2D RP. Glimm et al. [141] performed early studies exploring the nature of the 2D RP,

examining the interaction of various wave structures and proving essential properties and

corollaries for two-dimensional elementary waves. This was soon followed by Zhang &

Zheng [142] who proposed criteria on the initial conditions required to achieve certain wave

arrangements. Major contributions have also been made by Schulz-Rinne [143], Schulz-

Rinne et al. [144], Lax & Liu [145], and others [146, 147, 148, 149, 150], who discovered

further wave combinations, structures, flow instabilities, and spurious flow features. Like

the 1D RP, the 2D RP serves as a test case for verifying numerical codes, in addition to

offering critical insights on wave interactions when interpreting complex real-world phe-

nomena such as Mach reflection and diffraction. What renders the multi-dimensional RP

challenging to solve is that waves propagate not only in orthogonal directions, but also at

oblique angles especially at the origin where information from all four quadrants interfere.

For the present purpose, it suffices to consider just one of the potential configurations of a

2D RP comprising two rarefaction and two contact discontinuity waves under transcritical

conditions.

Fig. 5.11 shows the initial conditions and expected wave evolution. u is the velocity

in the x-direction, while w is the velocity in the y-direction. Transparent boundary con-

ditions are set at x = −1m, 1m and y = −1m, 1m. A CFL number of 0.45 is used. The

computational domain consists of 256× 256 cells. The numerical scheme is advanced until

time t = 0.0006s. The medium is transcritical nitrogen gas, modelled with the PR EOS

and full non-ideal thermodynamics. The results for the Roe and Roe-StARS solvers are

provided in the contours of Figs. 5.12 and 5.13. Unlike the 1D RP, an analytical expres-

sion for expansion waves is lacking due to the interference of various waves near the origin.
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Therefore, the ensuing analysis is based on the concepts discussed earlier and knowledge

of the 1D RP.

For both the Roe-StARS and Roe solvers, slices of the solution along x < 0 and y < 0

are similar to the earlier transcritical shock tube as one should expect. Shock waves are

observed at y ∼ 0.4m,x < 0 and x ∼ 0.4m, y < 0, while transonic rarefactions whose

heads and tails move in opposite directions are seen enclosing the negative x and y axes.

The regions near the positive x and y axes comprise slip lines across which pressure and

velocity are equal but density varies—these correspond to 2D contact discontinuities. In

both solutions, a high pressure region is observed just to the upper right of the origin.

This local maximum occurs because the pressurized gas in the bottom left interferes with

the dense gas in the top right, resulting in a localized peak. However, this is where the

similarities end.

The Roe solution exhibits nonphysical expansion shocks along the negative x and y axes.

As is typical for a rarefaction wave, there are a number of successive contour curves ap-

proaching each nonphysical shock from within the bottom left quadrant. These contours—

which are akin to characteristic curves—change drastically across the expansion shock and

become more sparse on the other side. That is, the characteristic lines effectively termi-

nate as they intersect with the nonphysical shock. The nonphysical shocks also extend

past the origin before connecting with the wavefront where the two slip lines meet. Due

to the severity of the expansion shock, information from the bottom left quadrant does

not propagate effectively into the remaining domain, limiting the peak values of the com-

pressed region that forms between the bottom left and top right regions. Most critically,

t = 0.0006s is the maximum simulation time that the Roe solver can manage. Spurious
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flow instabilities manifest around x = 0.3m, y = 0.4m that cause negative pressure, tem-

perature, and specific internal energy. The simulation would crash for any additional time

steps, and indeed, the results presently shown are physically incorrect. It is worth noting

that for the Euler equations in any number of spatial dimensions, Einfeldt et al. [10] proved

that Godunov’s scheme is positively conservative, however no Godunov-type scheme based

on linearized Riemann solvers can be guaranteed as such. In particular, they proved that

for the Roe scheme, certain choices of initial data will result in a nonphysical vacuum,

producing instabilities despite the existence of solutions. This appears to be the cause of

the present anomaly, where pressure, temperature, and internal energy are negative and

density is extremely low in the vicinity of the spurious oscillations.

Fortunately, the Roe-StARS solution admits physically consistent results and is capable

of advancing past t = 0.0006s. The rarefaction shocks are greatly mitigated, with the

characteristics maintaining a fan-like appearance as expected in uninterrupted rarefaction

waves. This permits information from the bottom left quadrant to reach other areas of

the domain, such that the peak density is ∼ 270kgm−3, or about 50% higher than in the

case of the Roe solution. In place of the spurious flow instabilities of the Roe solution,

there are minor kinks in the contour lines. This is visible in the top-right-most contour of

the specific internal energy plot, near the corner where the contour line changes direction.

Additionally, there appear to be small vortical structures near x = 0.2m, y = 0.2m owing

to the slip lines and complex pressure and density interactions between the four quadrants.

Similar types of structures manifest in ideal-gas test cases examined by others [144, 145].

Overall, the 2D RP test case further demonstrates how entropy violations can lead to

flow inaccuracies far away from the space-time coordinates of the original violation, as well
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as produce spurious oscillations. Roe-StARS therefore offers a heuristics-free approach to

mitigating these challenges in cases where flow interactions are complex and exact reference

solutions are generally unavailable.
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Figure 5.11: Initial conditions for the 2D Riemann problem test case. The gas in the
bottom left quadrant is set to the highest pressure and density. The top left and bottom
right quadrants are set to the lowest density. Density in the top right is higher than the
densities of the top left and bottom right. Pressure and velocities are the same in the top
left, top right, and bottom right quadrants. Based on these initial conditions, the expected
waves are shown consisting of two contact discontinuities (i.e. slip lines in 2D) and two
expansion waves.
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Figure 5.12: Solution to the 2D Riemann problem test case at t = 0.0006s, featuring two
rarefaction waves and two slip lines, as computed with a Roe solver. Note the nonphysical
expansion shocks along the negative x and y axes, the negative primitive variables, and
the spurious oscillations in the top-right quadrant. e here is presented in units of J kg−1.
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Figure 5.13: Solution to the 2D Riemann problem test case at t = 0.0006s, featuring
two rarefaction waves and two slip lines, as computed with the Roe-StARS solver. Unlike
the Roe solution, the Roe-StARS solutions significantly mitigate any nonphysicalities or
spurious oscillations. e here is presented in units of J kg−1.

106



Chapter 6

FluxNet: a Physics-Informed

Learning-Based Riemann Solver

Different multi-layer perceptron networks are trained to predict star-state variables in the

RP, which in turn can be used to compute the intercell flux for Godunov schemes. For the

present purpose, neural networks used for flux computations are termed FluxNets. Prior

efforts to leverage ML for the RP have tended to assume perfect gas thermodynamics

and have used physics-informed loss functions and arbitrary network dimensions without

much justification. Given the growing interest in non-ideal flow problems, where flux and

thermophysical computations can jointly account for approximately 80% of total runtime

[48], there may be performance gains in adopting a learning-based Riemann solver for

arbitrary EOS. In this chapter, it is shown that a compact physics-informed FluxNet can

be trained whose errors are an order-of-magnitude less than with approximate solvers,

and whose time complexity is ∼ 25% that of exact solvers when matrix computations
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are parallelized. Virtually all FluxNet designs examined in this chapter predict star-state

conditions with 0.1 to 0.3% error during training, however the physics-informed approach

ensures smooth generalizable predictions. Additionally, it is shown that a learning-based

approach produces smaller, less biased distributions of error in the star-state variables

compared to the Roe family of solvers.

This chapter is organized in the following manner. Section 6.1 analyzes preliminary de-

signs of different FluxNet approaches, and comments on the feasibility that these FluxNets

could offer competitive performance (i.e. balance of accuracy and efficiency) relative to

traditional Riemann solvers. In section 6.2, the data preparation process is discussed, in-

cluding the generation and post-processing of exact data used for training and testing. A

total of six FluxNet designs detailed in section 6.3 are trained and tested. Their learning

curves are studied in subsection §6.4.1, with the final two candidates tested on transcritical

1D and 2D test cases in subsections 6.4.2 and 6.4.3. A final comparison of accuracy and

time complexity between various Riemann solvers is offered in subsection 6.4.4.

Chapter 6 is under review as Wang, J. C.-H. and Hickey, J.-P. (2022): FluxNet: a

physics-informed learning-based Riemann solver for transcritical flows with non-ideal ther-

modynamics, J. Comput. Phys.

The codes (including hyperparameters) that contributed to the results of this chapter

are available at https://git.uwaterloo.ca/jc9wang/fluxnet.
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6.1 Preliminary Design and Feasibility Assessment

Prior to the systematic training and evaluation of any FluxNets, it is wise to thoroughly

consider the alternative choices for feature and prediction vectors, their potential implica-

tions for network performance, and how the resulting network must be integrated with the

broader numerical scheme. As part of this analysis, preliminary, informal training attempts

were conducted in Python 3.9 and PyTorch 1.10.2, using the datasets described shortly

in §6.2. These initial training sessions helped to determine which candidate designs were

suitable for continued study. The dimensions used for preliminary training were 6 hidden

layers with 64 nodes per hidden layer, benchmarked on the multi-layer perceptron designs

in existing literature [108, 107].

It is crucial to note that if calculations are parallelized, then the time complexity of

multiplying two square matrices is O(ln (n)) where n is the height or width of each matrix

[151]. Therefore, a multi-layer perceptron with n nodes per layer and h hidden layers would

have a time complexity τ that scales as:

τ = h(ln (n) + n) (6.1)

in which the addition of n accounts for the element-wise activation functions per layer.

So, a 64 × 6 FluxNet scales as O(6(ln (64) + 64)) ≈ 409. A further O(102) operations

are required to compute the intercell flux from the star-state conditions predicted by each

FluxNet. Thus, a 64× 6 FluxNet possesses a time complexity of roughly 509, as compared

to the 331 to 387 floating point operations when computing the Roe-StARS flux in the
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case of a PR gas (Tab. 5.3). In traditional Riemann solvers, many of these calculations are

nonlinear and scalar, and therefore must be performed serially. Although an ML approach

does indeed require more total computations, the runtime consequences can be mitigated

through parallelized linear algebra realized on GPU-equipped servers. A mild sensitivity

analysis of network performance to network size is discussed later in the systematic training

and evaluation phase beginning in §6.3. If the 64×6 initial network specification produced

inadequate performance during the preliminary design phase, then hyperparameters and

dimensions were varied until the network complexity exceeded or would exceed that of

traditional solvers by an order of magnitude. In this case, the design was abandoned.

A total of four candidates for feature and prediction vectors were examined (Tab. 6.1).

Although finer variations are possible, these four represent distinct philosophies in the

development of a learning-based Riemann solver: 1) a conservative variable-only approach,

2) a primitive-to-conservative solver, 3) a purely primitive variable solver that specifies all

independent thermodynamic state variables, and 4) a primitive variable solver with only

the minimum required predictions. The analysis herein concludes that it is indeed feasible

to develop a learning-based Riemann solver whose accuracy and computational complexity

fall in between current approximate and exact approaches, with the fourth design eventually

selected for the development of detailed FluxNet candidate designs in §6.3. The first three

candidates were discarded for theoretical reasons and initial training observations that will

be discussed below.

Design 1 represents an end-to-end Riemann solver in the sense that no further mathe-

matical steps are required to compute each step of the Godunov scheme as shown in Eq.

(2.40). In Design 1, it is possible to go directly from the known conservative variables at
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Table 6.1: Potential choices of feature and prediction vectors for designing a FluxNet
(i.e. a learning-based Riemann solver). The subscripts (L,R) refer to the left and right
initial conditions, while (∗L, ∗R) refer to the left and right star-state conditions. F with
no subscript is shorthand for the intercell flux, that is, F(Ui+ 1

2
) assuming that (L,R)

correspond to the (i, i+ 1) cells as per notation in Chapter 2.
Design No. Features (Input) Predictions (Output)

1 UL,UR F, u∗
2 pL, uL, ρL, pR, uR, ρR F, u∗
3 pL, uL, ρL, TL, pR, uR, ρR, TR ρ∗L, u∗L, p∗L, T∗L, u∗, ρ∗R, u∗R, p∗R, T∗R
4 pL, uL, ρL, pR, uR, ρR ρ∗L, u∗L, p∗L, u∗, ρ∗R, u∗R, p∗R

one time step, to the desired conservative variables at the next time step, using a direct

mapping from U to F. This design lends itself to a rather simple numerical scheme by

using entirely conservative variables and eliminating the usual computational overhead of

alternating between conservative variables (useful for fluid dynamics) and primitive vari-

ables (useful for thermodynamics), which become highly computationally expensive under

non-ideal thermodynamic conditions. The Rankine-Hugoniot conditions, in conservative

form (Eq. 3.18), may be used to define a physics-informed loss function.

Despite its seeming simplicity and elegance, Design 1 possesses two critical flaws.

Firstly, recall that the CFL condition (Eq. 2.34) requires the speed of sound to be com-

puted at each time step. However, the speed of sound is a thermodynamic quantity that,

in general, depends on the complete thermodynamic state defined by two independent

primitive variables, e.g. v, T when using cubic EOS. Although Design 1 would simplify

flux computations, the overall numerical scheme still requires the overhead of conservative-

to-primitive conversion. Secondly, the use of conservative variables forces the FluxNet to

discover the mapping from conservatives to primitives and vice-versa. This is because the
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characteristic waves that influence the behaviour of the RP are functions of primitive vari-

ables, and there are multiple combinations of primitive variables that correspond to the

same momentum and energy components of U. Design 1 requires that the FluxNet learn

the complete primitive to conservative mapping in order to preserve a one-to-one corre-

spondence. Design 1 would therefore increase network complexity while simultaneously

still requiring primitives to be calculated separately for CFL purposes.

Design 2 attempts to overcome the weaknesses of Design 1 by mapping primitive vari-

ables to the intercell flux F, eliminating the need for the FluxNet to uncover the highly

nonlinear conservative-to-primitive relationship. In practice, attempts to train a multi-

layer perceptron to predict F were unfruitful. Despite varying hyperparameters and testing

other optimizers, it was observed that network widths and depths more than triple the ini-

tial dimensions could not reduce training or test errors below 30%. This poor performance

may be attributed to the sheer complexity of the underlying mathematical relationships.

The flux terms are nonlinear expressions of primitive variables that depend on which state

of the RP encloses the cell interface. The correct state is, in turn, dependent on the accu-

rate estimation of characteristic waves that separate the states, which further depend on

the complex mathematical form of the non-ideal speed of sound (Eq. 2.25). Indeed, if a

FluxNet could be designed to predict fluxes accurately, it is likely that inference would be

far slower than running exact-iterative solvers, let alone approximate solvers, even when

computations are parallelized. Fuks & Tchelepi [109] have also noted difficulties in pre-

dicting flux variables from initial conditions, however that was in the context of two-phase

porous media.

In Design 3, a primitive-to-primitive mapping is proposed that also includes T . Temper-
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ature together with density may be used to calculate the wavespeeds of the RP, determine

which region of the RP occupies the intercell boundary, and compute the flux. It should be

noted that estimating all three thermodynamic state variables does not necessarily over-

constrain the prediction space, provided that the network learns the underlying EOS. The

Rankine-Hugoniot constraints in primitive form (Eqs. 3.15 to 3.17) may be employed to

define a physics-informed loss function. Once again, practical attempts to train such a net-

work revealed difficulties in predicting p, ρ, T that were consistent with the EOS. Despite

varying hyperparameters, network width and depth, and optimizers, the best-performing

FluxNets predicted only two of three thermodynamic state variables within < 30% error

during any training session. The percent error in the third remaining state variable was

observed oscillating near O(102). An example of a preliminary training run on Design 3 is

shown in Fig. 6.1. An additional loss term based on the EOS was tested, thereby incorpo-

rating an explicit constraint to assist learning of the EOS, but yielded similar results. As

with Design 2, Design 3 experienced difficulty producing physically consistent predictions

in an efficient manner.

Design 4 was selected for further exploration. By removing T , initial training attempts

with a 64 × 6 FluxNet revealed that all predicted star-state variables fell well below 5%

error after a mere 200 epochs, with potential for improvement as the loss function was

still decreasing at the point where the training process was stopped prematurely for the

purposes of preliminary evaluation. It is worth acknowledging that a version of Design 4

was trained to predict ρ, T rather than p, ρ, but like with Design 3, either ρ or T tended

to diverge. Compared to Design 3, the only difference in the broader numerical scheme is

that Design 4 requires a post-inference computation of T∗L and T∗R from the corresponding
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Figure 6.1: Learning curve from a sample training run on Design 3, showing mean L1
test errors that stall around 12% in all predicted variables except T∗L which oscillates at
> 100% error. Accordingly, Design 3 was not advanced further.

p, ρ using the EOS. It is also interesting that although the physics of the RP depends on

the choice of EOS, the absence of T and any EOS-based physical constraint produced im-

proved convergence, stability, and accuracy. Moreover, this performance was achieved only

with the mass and momentum constraints. In fact, the inclusion of the energy constraint

hampered the convergence and stability of the training process, likely due to the extremely

nonlinear relationships underpinning the energy terms.

It should be emphasized that Chapter 5 revealed how the accurate prediction of star-

state conditions and wavespeeds in turn leads to more accurate numerical results. This is

true not only of transcritical and transonic conditions, but compressible flows in general:
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recall from §1.1 that the HLLC solver improved resolution of material interfaces and sharp

flow features by restoring the contact discontinuity wave to the star-state estimates. Hence,

the remaining ML research focuses primarily on the network development process as it

relates to accurate and efficient prediction of the star state, culminating in a perfunctory

demonstration of FluxNets for solving the earlier transcritical shock tube of §5.3.1.

6.2 Data Preparation

Datasets for training and testing were generated using a MATLAB code that iteratively

computes exact solutions to the non-ideal RP using a Collela & Glaz [36] scheme modified

to use the analytical derivations of Chapter 4 and the moving normal shock equations of

Appendix C. Each sample involved 2 to 6 iterations to solve the RP within < 0.1% error

in all primitive star-state variables. Intercell fluxes were also computed for the preliminary

training attempts on Design 2 of §6.1. Many samples failed to converge since the Newton-

Raphson iterations therein guarantee neither stability nor convergence, especially in the

case of highly nonlinear non-ideal thermodynamics.

The thermodynamic state space around the critical point for nitrogen gas was sampled

a total of 64,000 times using uniform probability distributions across the 6 feature variables

representing initial conditions. Velocities were selected so that sub-, trans-, and supersonic

conditions would be represented. The limits of sampling are shown in Tab. 6.2. It is

important to note that the range of training data in this study was selected to encapsulate

the highly nonlinear behaviour of thermodynamic variables about the pseudo-boiling curve

[136]. Network performance, and thus network size and complexity, will generally vary
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depending on the desired range of features and predictions that the network is expected

to map accurately.

Of the 64,000 points for which exact solutions were attempted, only 21,237 points or

approximately one-third converged. Liquid points were then removed (i.e. points above

the boiling curve but below the critical temperature). Repeated points were also deleted

to ensure a uniform distribution of samples. The resulting dataset comprised 213 = 8192

points, which was doubled to 16,384 points by swapping left and right initial conditions

via symmetry of the RP. Finally, the data was mean-normalized as described in Eq. (3.5)

to avoid gradient saturation during the eventual training process. Training and test splits

were taken with ten-fold cross-validation on a randomly sampled subset of 16, 000 training

and 1, 600 test points. Although this data preparation approach was used for nitrogen gas

assuming PR EOS, it is expected to hold for other gases since the corresponding states

principle involves shifting the critical locus but maintaining the mathematical form of the

thermodynamic relationships [25].

Table 6.2: Ranges of initial conditions represented in the training and test datasets. The
ranges are representative of transcritical flow problems [5].

Feature Range

pL, pR 100 kPa to 13.5 MPa
uL, uR -200 to 200 ms−1

ρL, ρR 1 to 200 kgm−3
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6.3 Network Architectures and Losses

Six variations in multi-layer perceptron architecture and loss function were trained and

evaluated (Tab. 6.3), all based on Design 4 from §6.1. These specific architectures and

losses were chosen to assess the impact of network complexity and loss function on perfor-

mance. Network depth was varied in order to evaluate the sensitivity of final losses and

errors to the network complexity—a more exhaustive investigation of network size is left

to future studies, as the current research is framed around feasibility and practicality, not

optimality. Each FluxNet was trained via both an MSE loss (Eq. 3.7) and a CAL version

of MSE (Eq. 3.8), in order to compare traditional and physics-informed approaches. The

CAL version included a Rankine-Hugoniot physical constraint of the form Eq. (3.18) with

mean-normalized variables, κmass, κmom = 1, and κenergy = 0 thus omitting the energy

constraint. For non-ideal thermodynamics, the energy constraint was determined to have

a deleterious effect on training as stated in §3.5 and §6.1.

All FluxNets were trained in double-precision Python 3.9 and PyTorch 1.10.2 using an

Adam optimizer (Fig. 3.2). The optimizer was configured with learning rate 2.5 × 10−5,

first and second moment decay rates 0.9 and 0.999, and weight decay rate 10−9. For the

physics-informed loss functions, κ = 10−6 was set in Eq. (3.8). These hyperparameters

were empirically found to yield adequate stability and convergence. A maximum of 8000

training epochs were conducted per FluxNet, with the final weights selected based on the

lowest training loss obtained in the last 4000 epochs. In order to control for varying weight

initializations and choices of cross-validation splits, the same random seed was used for all

FluxNets.
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Table 6.3: List of FluxNet architectures and loss functions evaluated in this thesis. The
time complexity refers to the number of temporally distinct floating point operations as-
suming parallel inference, including an additional O(102) operations required to compute
the intercell flux from the star-state conditions predicted by each FluxNet. This overhead
can vary slightly depending on the number of T = T (p, ρ) iterations required.

Name Nodes Hidden Layers Loss Time Complexity

64× 5 MSE 64 5 MSE 441
64× 5 MSE-RH 64 5 MSE + ϕ 441
64× 6 MSE 64 6 MSE 509
64× 6 MSE-RH 64 6 MSE + ϕ 509
64× 7 MSE 64 7 MSE 577
64× 7 MSE-RH 64 7 MSE + ϕ 577

6.4 Results

Learning curves and numerical results are presented for the learning-based Riemann solvers

considered above. The learning curves show the progression of errors and losses during

the training process of each neural network, revealing that the training process for all

networks seem similarly promising in terms of mean L1 errors. The FluxNet approach

also yields a significantly tighter distribution of L1 errors as compared to the Roe family

of solvers. Moreover, the numerical results indicate the importance of a physics-informed

approach while demonstrating improved numerical stability and accuracy relative to Roe-

type solvers. The MSE and MSE-RH versions of the 64 × 5 FluxNet were used to solve

a transcritical shock tube test case, showing that the 64 × 5 MSE-RH FluxNet yielded

smoother, more generalizable solutions. A two-dimensional Riemann problem was also

solved in which the Roe solution admits various nonphysicalities and errors that were

mitigated by the 64 × 5 MSE-RH FluxNet. Overall, the 64 × 5 MSE-RH neural network

achieved an order of magnitude improvement in accuracy with a 23% increase in time

118



complexity relative to Roe-StARS, assuming parallelized computations.

6.4.1 Learning curves

The learning curves for each FluxNet in Tab. 6.3 are shown in Figs. 6.2 and 6.3. Plotted

are the progression of test errors, train losses, and test losses across all epochs. The

vertical axes are logarithmic to help easily distinguish the curves from each other—careful

interpretation is therefore warranted since the seemingly large spikes are in fact relatively

small in magnitude. The final errors and losses are compiled in Tab. 6.4. Mean L1 errors

across the test dataset are reported. The mean L1 errors are also tabulated for the Roe

solver and the Collela & Glaz [36] iterative solver, using the same dataset on which the

FluxNets were tested.

Table 6.4: Mean L1 test errors (%) and losses (unitless) for six different learning-based
Riemann solvers. For reference, typical errors for approximate and exact-iterative solvers
are shown.
Solver ρ∗L u∗L p∗L u∗ ρ∗R u∗R p∗R Ltrain[10

−6] Ltest[10
−6]

64× 5 MSE 0.28 0.09 0.11 0.10 0.17 0.10 0.09 3.14 1.44
64× 5 MSE-RH 0.29 0.08 0.17 0.07 0.22 0.08 0.13 3.21 1.40
64× 6 MSE 0.26 0.09 0.15 0.12 0.19 0.09 0.16 3.04 1.45
64× 6 MSE-RH 0.25 0.13 0.17 0.14 0.22 0.14 0.17 2.94 1.43
64× 7 MSE 0.28 0.14 0.13 0.13 0.27 0.13 0.16 2.92 1.51
64× 7 MSE-RH 0.94 1.08 0.96 1.05 0.84 1.13 0.77 5.82 3.7
Roe 4.20 1.04 1.74 1.04 0.27 1.04 1.74 N/A N/A
Exact 0.01 0.01 0.01 0.01 0.01 0.01 0.01 N/A N/A

All FluxNets except 64 × 7 MSE-RH achieved final test errors of O(10−1)%. The

networks tended to elicit greater errors in density (around 0.2 to 0.3%) and smaller errors

in velocity and pressure (around 0.1 to 0.2%). The lower errors on velocity and pressure

119



Figure 6.2: Learning curves showing mean L1 test errors for all multi-layer perceptrons in
Tab. 6.3. Network depth does not significantly affect the convergence rates nor the final
errors and losses. All networks except 64× 7 MSE-RH converged to errors < 1%.
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Figure 6.3: Learning curves showing train and test losses for all multi-layer perceptrons
in Tab. 6.3. All 64 × 5 and 64 × 6 networks converged to similar losses, while the 64 × 7
MSE-RH network exhibited poor convergence. The lower test losses are likely caused by
bias in the test sample, however final train and test errors were similar.
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Figure 6.4: Learning curves truncated at 1000 epochs, showing test errors only for ρ∗L, ρ∗R
across all multi-layer perceptrons trained from Tab. 6.3. Here it is visible that the MSE
networks exhibit less stable convergence compared to the physics-informed MSE-RH net-
works. 122



are likely due to the physics of the contact discontinuity wave, across which pressure

and velocity should be constant. Such lower errors are observed for both the MSE and

MSE-RH FluxNets, which suggests that the networks were able to learn this pattern at

least partially from the data alone. By contrast, density can change across a contact

discontinuity (i.e. since the contact discontinuity represents the moving material interface

between the initial left and right states). Learning of the pressure-density relationship may

have been hampered by the absence of the Rankine-Hugoniot energy constraint—which,

again, was omitted due the highly nonlinear physics causing unstable training behaviour.

The 64 × 7 MSE-RH network bears anomalous final test errors, losses, and training

curves. Final train and test losses are nearly double that of the other FluxNets, and unlike

all other FluxNets, the loss curves start to oscillate noticeably around 4000 epochs. It is

worth noting that attempts to vary the learning rate still resulted in the same convergence

behaviour and noisy loss curves. Taken together, these observations imply that the differ-

ence is related to both the number of weights and the Rankine-Hugoniot constraint in 64×7

MSE-RH. Neural networks become more prone to overfitting as the number of weights and

number of training epochs increase. It is plausible that in 64× 7 MSE-RH, the oscillations

arise as the Rankine-Hugoniot constraint competes against overfitting tendencies due to

greater number of weights. This would also explain why the same oscillations and poor

performance are not observed in the 64 × 7 MSE network. The 64 × 7 MSE network is

free to overfit, and indeed, it has the lowest train loss and greatest test loss of all networks

examined. The overfitting explanation is further supported by the noisy numerical results

in the next subsection, §6.4.2. This hypothetical limit on the number of weights to prevent

overfitting is, however, also a function of the training data. Were a different range of the
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thermodynamic state space sampled in the training data, then this threshold would likely

change as well. Different sampling techniques, such as a gradient-weighted approach that

increases point density in regions of steep thermodynamic changes, could also shift the

threshold at which overfitting becomes problematic.

In comparing the networks among each other, it is clear that the 64 × 5 MSE and

MSE-RH networks are favourable for further evaluation, due to their relative simplicity

yet similar test errors to the more complex architectures. While the error plots in Fig. 6.2

show all curves spanning all training epochs and predicted variables, finer insights may be

gleaned by considering only a subset of the curves. Fig. 6.4 shows the density learning

curves for the first 1000 epochs. The error curves for the MSE-RH networks appear to

oscillate less and at smaller amplitudes than the equivalent MSE networks, potentially due

to the less naive, physics-informed search process. Except for the 64×7 MSE-RH network,

all networks also approached O(1)% error around 200 epochs with both MSE and MSE-

RH networks converging at roughly the same rate. Despite the apparent noise in mean L1

errors, we can be satisfied that all networks converged to an acceptable degree given the

decreasing, relatively noise-free trends in the loss curves, excepting 64× 7 MSE-RH.

Neural networks thus provide an order of magnitude reduction in the mean L1 test

errors compared to the Roe family of solvers, which ranged from 1 to 4% as shown in

Tab. 6.4. Though this improvement may seem marginal, even minor inaccuracies in

transcritical numerical simulations can destabilize solutions and lead to spurious results.

In addition, only the mean L1 test errors have been discussed. It is compelling to analyze

the distribution of L1 errors across the entire dataset.
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Fig. 6.5 contains box plots of the L1 errors across the entire dataset including train and

test samples. Data points are identified as outliers if they are greater than qe +w(q3 − q1)

or less than q1 − w(q3 − q1) where w corresponds to 3σ, q1 is the first quartile, and q3

is the third quartile. The 64 × 5 MSE-RH FluxNet is evidently more precise in that its

error distributions are significantly tighter across all star-state variables. Additionally, the

mean errors of the 64 × 5 MSE-RH FluxNet are more closely aligned with zero, whereas

the mean error of the Roe family of solvers overpredicts density and pressure by ∼ 2%,

and underpredicts velocity by ∼ 1%. The error distribution may also be analyzed through

a probability density plot, such as Fig. 6.6 which plots the error probability density

function in ρ∗L by normalizing a histogram of errors against the total number of data

points. Compared to 64× 5 MSE-RH’s dense clustering around zero, the mode of the Roe

distribution is at zero although the errors are more evenly spread out with a smaller peak at

2.5%. Interestingly, there is a local maximum in error probability for the 64× 5 MSE-RH

network around 4%. Further analysis reveals that this is due to points in the dataset where

feature and response variables are identical save for O(10−2) or smaller errors arising due

to the limited precision and stability of the exact-iterative solver when initial conditions

are similar.

6.4.2 Transcritical shock tube

The 64× 5 MSE and 64× 5 MSE-RH FluxNets were used to solve the transcritical shock

tube test case from §5.3.1, leveraging the first-order Godunov scheme described in 2. Unfor-

tunately, the 64× 5 MSE network caused significant numerical instabilities that produced
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Figure 6.5: Box plots showing the distribution of errors in all star-state errors estimated
by 64 × 5 MSE-RH FluxNet versus the Roe family of solvers. The red lines indicate the
mean, the boxes enclose data from the 25th to the 75th percentile, and the circles indicate
outliers. Vertical axes are rescaled to make boxes more visible—many outliers, especially
for the Roe results, sit beyond the vertical limits. Errors were calculated across the entire
dataset including train and test samples.
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Figure 6.6: Probability of errors in ρ∗L for the 64 × 5 MSE-RH FluxNet versus the Roe
family of solvers. The horizontal axis is rescaled to improve resolution near the mean—
many outliers sit beyond the horizontal limits. Errors were calculated across the entire
dataset including train and test samples.
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negative temperatures and internal energies. To determine whether this would always be

the case, the 64× 5 MSE network was tested on a slightly modified version of the original

problem initialized to a lower left pressure, density, and velocity as well as slightly higher

right pressure, density, and velocity. This change was designed to reduce the gradients dur-

ing the initial time steps before the self-similar wave structure of the RP has stabilized. On

the modified problem, 64×5 MSE did not produce negative thermodynamic variables (Fig.

6.7). Notwithstanding, the results are unacceptable. There are visible errors throughout

the rarefaction wave region, as well as significant noise near the tail of the rarefaction where

the wave meets the left star state. The region to the right of the shock is also unusually

diffusive considering that information should not propagate upstream of a normal shock

even in a first-order scheme. This would only be possible if the wavespeeds calculated from

the star-state predictions by the FluxNet resulted in fluxes taken from an incorrect state

of the RP. This may also explain why oscillations are most severe at interface between the

rarefaction tail and left star state: the flux solver needs to accurately calculate wavespeeds

in order to ensure entropy correctness and proper upwinding. Considering that the 64× 5

MSE network had lower train losses and higher test losses than the 64×5 MSE-RH network

during training (Tab. 6.4), this adds to the pool of evidence that the non-physics-informed

network overfitted the data.

Meanwhile, 64× 5 MSE-RH generated smooth and physically consistent solutions with

the original transcritical shock tube as posed in §5.3.1. To facilitate comparison with the

exact and Roe-StARS solutions computed earlier, Fig. 6.8 plots solutions to the original

problem rather than the modified problem used for 64× 5 MSE. Looking at x = 0 where

Roe normally suffers from an expansion shock nonphysicality, it is immediately clear that
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Table 6.5: Absolute L1 errors at x = 0 for primitive variables ρ, u, pr achieved by the Roe,
Roe-StARS, and 64 × 5 MSE-RH solvers in the non-ideal transcritical shock tube of Fig.
6.8. Errors for Roe-Harten are repeated here from Tab. 5.2 for reference. Percentage
reduction in the Roe error is shown in parentheses.

Error Roe Roe-Harten Roe-StARS 64× 5 MSE-RH

∆ρ 33.0 13.5 (−59.2%) 12.9 (−61.1%) 11.8 (−64.2%)
∆u -56.2 -15.2 (−73.0%) -13.8 (−75.4%) -11.8 (−79.1%)
∆pr 0.680 0.222 (−67.4%) 0.208 (−69.4%) 0.171 (−74.9%)

64×5 MSE-RH not only alleviates this error but is more smooth and accurate in this region

than even the Roe-StARS solver (Tab. 6.5). Minor differences between the Roe-StARS

and 64 × 5 MSE-RH solution are also observed throughout the solution. For instance,

64 × 5 MSE-RH predicts a normal shock position slightly to the left of that predicted by

Roe-StARS, closer to the exact solution.

6.4.3 Two-dimensional Riemann problem

In order to further evaluate the implications of a FluxNet approach, a 2D Riemann problem

test case was solved with the 64 × 5 MSE-RH FluxNet and the Roe solver [49]. Similar

to the 1D Riemann problem, the 2D problem serves as a test case for verifying numerical

codes. Additionally, in higher dimensions, more complex wave interactions such as Mach

diffraction and reflection can occur. More elaborate schemes and meshes may also be

deployed to improve accuracy and stability because waves propagate not only in orthogonal

directions but at angles oblique to the unit basis vectors [24, 7]. However, for the present

purposes, it suffices to consider a uniform Cartesian grid and just one of the potential

configurations of a 2D Riemann problem—it is the the Riemann solver, and less so the
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Figure 6.7: Numerical results for a transcritical nitrogen shock tube solved with the 64× 5
MSE FluxNet, showing oscillatory and spurious solutions. Non-ideal thermodynamics and
the Peng-Robinson equation of state [2] are applied.
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Figure 6.8: Numerical results for a transcritical nitrogen shock tube solved with non-ideal
thermodynamics and the Peng-Robinson equation of state [2]. Results for the Roe, Roe-
StARS, and 64× 5 MSE-RH FluxNet solver are shown.
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scheme, that is under consideration.

Fig. 6.9 provides the initial conditions and expected wave evolution for a transcritical

2D Riemann problem inspired by the case studied earlier in §5.3.4. Here, u is the velocity in

the x-direction and w is the velocity in the y-direction. Transparent boundary conditions

were set at x = −1m, 1m and y = −1m, 1m. A CFL number of 0.45 was used. The

computational domain consisted of 256 × 256 cells. The numerical scheme was advanced

until t = 0.0009s. The medium comprised transcritical nitrogen gas modelled with the

Peng-Robinson state equation [2] and full non-ideal thermodynamics. Results for the Roe

and 64 × 5 MSE-RH solvers are shown in Figs. 6.10 and 6.11. Analytical solutions are

unavailable for the 2D Riemann problem, therefore the subsequent discussion is based on

concepts developed for the 1D Riemann problem [24, 152].

The most obvious difference between the Roe and FluxNet results is that nonphysical

shocks are greatly diminished in the FluxNet solution. In the Roe solution, expansion

shock fronts manifest along the negative x and y axes, even extending slightly past the

origin. These shocks remain stationary with respect to time, thus preventing information

from propagating across these spurious boundaries. By contrast, the FluxNet solution

shows a finer, more even distribution of characteristic waves that is typical of isentropic

expansion fans. The nonphysical shock fronts also do not extend as far past the origin. The

mitigation of expansion shocks further changes the nature of the peak that forms just to

the upper right of the origin. In the FluxNet solution, the pressure, density, temperature,

and internal energy are all higher in this region. This is in contrast to the Roe solution,

where the artificial shocks produce relatively low post-shock conditions. Interestingly, the

maximum internal energy is higher in the Roe solution, occurring near x = 0.4m, y < 0
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and x < 0, y = 0.4m. This is likely due to the highly nonlinear thermodynamics whereby

small variations in pressure, volume, or temperature can result in noticeable differences in

more complex thermodynamic quantities such as internal energy.

Finally, it is worth noting that the FluxNet solution contains small kinks in u along

the y = 0 expansion shock and in w along the x = 0 expansion shock. These kinks do not

appear in the Roe solution. These errors may be attributed to the simplistic Cartesian

formulation of the numerical scheme. Expansion shocks that run orthogonal to the flow

direction (e.g. x = 0 expansion shock in w, or y = 0 expansion shock in u) are not always

effectively mitigated due to the directional independence of the unit basis vectors. Such

behaviour can likely be corrected with advanced meshing or flux weighting techniques [24].

The essential insights from this 2D test case are that the FluxNet approach successfully

mitigates nonphysicalities, and even small errors in thermodynamic state can result in

significant errors when dealing with full non-ideal thermodynamics.

6.4.4 Comparison of accuracy and time complexity

Sufficient data is now available to perform a critical comparison of the different types of

Riemann solvers examined throughout this thesis. Entropy violation errors are summarized

in Tab. 6.5, time complexity is shown in Tab. 6.6, mean errors are contained in Tab. 6.4,

and error distributions are plotted in Fig. 6.5.

As far as computational efficiency is concerned, it is manifest that any entropy-stable

Riemann solver involves O(102) greater time complexity than the unmodified Roe solver.

Whereas Roe-Harten and Roe-StARS exhibit minor differences in time complexity between
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Figure 6.9: Initial conditions for the 2D Riemann problem test case considerd in this
study, based loosely on the case considered in §5.3.4. The expected wave pattern is shown
consisting of two contact discontinuities (i.e. slip lines in 2D) and two expansion waves.
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Figure 6.10: Solution to the 2D Riemann problem test case at t = 0.0009s, as computed
with a Roe solver. Two expansion waves and two slip lines are visible, along with non-
physical expansion shocks along the negative x and y axes. e here is presented in units of
J kg−1.
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Figure 6.11: Solution to the 2D Riemann problem test case at t = 0.0009s, as computed
with the 64×5 MSE-RH FluxNet. Two expansion waves and two slip lines are visible, and
unlike the Roe solution, the FluxNet solutions significantly mitigate any nonphysicalities.
e here is presented in units of J kg−1.
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Table 6.6: Time complexity required to solve the flux of a single cell interface using the Roe,
Roe-StARS, 64× 7 MSE-RH, or exact-iterative solvers. Time complexity for Roe-Harten
is repeated here from Tab. 5.3 for reference.

No Entropy Violation With Entropy Violation

Solver Ideal Gas PR Gas Ideal Gas PR Gas
Roe 123 157 123 157
Roe-Harten 229 (+86%) 331 (+111%) 239 (+94%) 341 (+117%)
Roe-StARS 229 (+86%) 331 (+111%) 285 (+132%) 387 (+146%)
64× 5 MSE-RH 441 (+258%) 441 (+181%) 441 (+258%) 441 (+181%)
Exact 524 (+326%) 1799 (+1046%) 524 (+326%) 1799 (+1046%)

ideal and non-ideal gases, as well as whether an entropy violation is present, the FluxNet

approach is equally demanding under all circumstances. It is necessary to highlight as

well that methods such as Roe-Harten require tuning the appropriate amount of artificial

diffusivity to balance entropy stability with sharpness, whereas Roe-StARS needs no tuning

and is thus more generic in its design and application. FluxNets, on the other hand, are

indirectly the product of heuristic decisions such as the training data and hyperparameters

that influence the learning process.

In terms of errors and accuracy, the Roe solver is likely inappropriate for many tran-

scritical flows where entropy violations must be avoided. Roe-Harten, Roe-StARS, and

FluxNets offer varying levels of entropy stability, mean error, and error distribution that

are each beneficial for different flow problems. When transcritical flow problems span rel-

atively small regions of the thermodynamic state space, the Roe-Harten or Roe-StARS

solvers are most appropriate due their efficiency yet effective mitigation of entropy errors.

Roe-StARS in particular avoids re-tuning and unnecessary diffusivity. However, when

flow problems span relatively large thermodynamic variations and numerous time steps, a
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learning-based approach may be more sensible. The error distribution plots suggest that

over a wide thermodynamic state space, traditional Roe-type solvers exhibit greater bi-

ases and a wider range of errors in star-state conditions compared to the physics-informed

FluxNet. Such errors would naturally accumulate as simulation time progresses, as dis-

cussed in the earlier numerical results of §5.3.
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Chapter 7

Conclusion

Earlier in §1.2, we stated that the research objectives were to explore novel exact, ap-

proximate, and learning-based approaches to solve the RP for non-ideal gases, as well as

compare the performance between them. Now with the objectives satisfied, the major

research contributions and the key findings therein may be summarized. The ideas pre-

sented in this thesis endeavour to improve numerical simulations of high-speed transcritical

and supercritical flows, where the accuracy, efficiency, and thermodynamic consistency of

Riemann solvers is essential to achieving physically consistent results.

In Ch. 1, the history and modern literature on the RP—particularly with non-ideal

thermodynamics—was critically reviewed for knowledge gaps. Chs. 2 and 3 established the

prerequisite CFD and ML theory related to this research. The first contribution centred

on the derivation of novel approaches to solving normal shocks and centre expansion waves

subject to arbitrary EOS. The second contribution leveraged the newly derived analytical
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equations for an expansion wave to create so-called structurally complete approximate

Riemann solvers from pre-existing three-wave solvers. Also analyzed were the occurrence

and behaviour of entropy violations in 1D and 2D problems. Finally, the third contribution

demonstrated the feasibility of training compact neural networks to solve the RP in a

physics-informed manner.

7.1 Key Findings and Implications

Amidst the broad research contributions of this thesis, a number of critical conclusions may

be established in relation to high-speed flow simulations with non-ideal thermodynamics.

The continuity-momentum and continuity-energy formulation of the station-

ary normal shock problem is conducive to fast convergent and stable iterations

when seeking exact solutions. Contrary to what some studies seem to assume, the

surfaces with respect to post-shock v and T are smooth and well-behaved. By initializing

to the ideal gas solutions, it is relatively quick to iteratively compute exact solutions for

normal shocks with non-ideal thermodynamics.

There exists a closed-form analytical solution to expansion waves with non-

ideal thermodynamics, which may be derived by leveraging a novel domain

mapping from space and time coordinates to characteristic curves. As a result

of these derivations, the mathematical shape of expansion waves may be expressed as an

explicit function of space and time. Also, this functional form arises from the governing

equations only—thermodynamics acts to stretch and shift the wave in space. This implies
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that the derivations may be used to design or improve future Riemann solvers regardless

of the thermodynamic conditions, be it low or high pressure flow, ideal or non-ideal EOS,

or whether one EOS is used or another.

A structurally complete approximate Riemann solver, or StARS, approach

may be used to restore the expansion wave analytically to pre-existing lin-

earized solvers, thus rendering them entropy-stable. An unfortunate limitiation of

linearized Riemann solvers is that solutions are collapsed into piecewise-constant regions

with discontinuous jumps. Inviscid rarefactions are therefore modelled as an artificial jump,

introducing an entropy violation. By applying a StARS modification to existing solvers

such as the Roe solver, it is possible to furnish a simple yet analytically correct entropy fix

that does not require tuning of artificial diffusivity as with some traditional fixes.

The occurrence and magnitude of entropy violation errors are more preva-

lent under conditions of transcritical or supercritical flow with large gradients.

Thus, entropy fixes are warranted. Using a rigorous analysis of the conditions under

which transonic rarefactions occur, it is possible to derive and plot curves that define the

thermodynamic state boundaries where entropy violations occur. These entropy errors

accumulate and propagate through space and time, and lead to numerical instabilities or

negative pressures, temperatures, and negative internal energies, thus heightening the im-

portance of an accurate and stable Riemann solver. For fluid simulations involving high-

speed non-ideal flows with large gradients, the computational cost of an entropy-stable

Riemann solver (e.g. using a StARS fix) is justified.

In numerical simulations, step functions and regions of large gradients are
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indistinguishable. It is therefore useful to observe the behaviour of numerical

schemes using a gradient RP. In this problem setup, the initial step function is replaced

by a gradient of varying slope. Entropy violations in Riemann solvers do not necessarily

exhibit monotonic decrease with respect to decreasing magnitude of initial gradients. In

other words, weaker shocks or shallower flow gradients do not always result in smaller

entropy errors.

Learning-based Riemann solvers, or FluxNets, offer yet another option to

increase the accuracy of numerical simulations at a runtime complexity in be-

tween that of exact and approximate solvers. Whereas the error in star-state prim-

itive variables may reach as high as 9% in the case of entropy-fixed approximate solvers,

FluxNet errors are typically well below 0.3%. However, FluxNets also possess around

13% greater time complexity than with the StARS approach assuming parallelized ma-

trix computations. Because of this, FluxNets may be best suited to those flow problems

where numerical stability is especially sensitive to noise and errors. Even so, alternate

data-driven techniques such as look-up tables or interpolation curves may be advisable for

computational efficiency.

The learning curves of FluxNets with different network depths seem to

suggest that predictive accuracy on test data is only loosely correlated with

network size and complexity. In fact, the largest neural network that was tested

exhibited poor stability during the training process, due to competition between achieving

low loss on the training data versus low loss on the physics-informed penalty.

Physics-informed loss functions provide smoother, more generalizable solu-
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tions than traditional loss functions that are purely data-driven. The Rankine-

Hugoniot jump conditions applied at the contact discontinuity suffice as a natural physical

constraint. However, it may be advisable to avoid an energy conservation constraint with

non-ideal thermodynamics, due to the significant non-linearities it can introduce. In this

thesis, networks demonstrated poorer convergence and greater losses when the energy con-

straint was included.

7.2 Future Research

Fundamental ideas are developed and tested in this thesis, however their practical applica-

tion and extension to more complex problems remain outstanding. Some future research

directions include:

1. Explore characteristic curve domain mappings for other types of shock problems

(e.g. detonation) and types of matter (e.g. solid, liquid) in which hyperbolic partial

differential equations may permit analytical solutions to emerge.

2. Extend the study of non-ideal shock and expansion waves to include Lorentz trans-

formations, which could be relevant for future astrophysical fluid dynamics.

3. Extend the exact, approximate, and ML Riemann solvers of this thesis to contexts

where mixtures or other terms in the Navier-Stokes equations are relevant. Thermo-

dynamic mixing rules, viscosity models, and additional heat transfer properties may

need to be considered when adapting the approaches of this thesis.
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4. Apply StARS to restore the expansion wave to other Riemann solvers, e.g. HLL,

HLLC, or AUSM, and extend the numerical tests to include more practical 2D and

3D problems with higher-order numerical schemes. As part of this, compare low-

order schemes with more advanced Riemann solvers against high-order schemes with

simpler Riemann solvers, in terms of accuracy and computational cost.

5. Experiment with alternate implementations of StARS for the Roe solver, including

designs that take advantage of massively parallelized matrix computations, in order

to further reduce time complexity and accelerate practical computations.

6. Perform a broader sensitivity analysis of FluxNet performance to various factors,

such as training data sampling techniques, breadth of training data, number of net-

work nodes, and loss functions. Given the highly nonlinear thermodynamics around

the critical point of gases, it is possible that alternate data generation and training

techniques could significantly influence the minimum network complexity required to

achieve a certain level of accuracy.

7. Test compact convolutional or recurrent networks as an alternative to traditional

multi-layer perceptron approaches. Early work has been promising in the use of con-

volutional networks for estimating weights in the weighted essentially non-oscillatory

scheme [106].

8. Test alternative physical constraints when developing loss functions for learning-

based Riemann solvers, e.g. constraints based on EOS, boundary condition, or

wavespeed. The use of different or additional physical constraints could further en-
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hance accuracy, but also increases the risk of destabilizing the training process due

to competing behaviour between the loss terms.

9. Conduct a performance analysis of all contemporary solvers against various test cases,

plotting results on an accuracy vs. time complexity graph. There may be an empirical

scaling law or clustering of solvers’ performance capabilities that could provide CFD

practitioners with a tool to select the right Riemann solver for the desired level of

accuracy.
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Appendix A

Integral and differential forms of the
governing equations

Anderson [29] provides a thorough derivation of the integral and differential forms of the
governing equations of continuum fluid mechanics. In a generic three-dimensional flowfield,
suppose there is a control volume of volume V and surface area S. If the control volume is of
infinitesimal size, then let its volume and surface area be denoted dV and dS, respectively.

The integral form of mass conservation is:

∂

∂t

˚
V
ρdV +

‹
S
ρV · n̂dS = 0 (A.1)

where theV is the velocity vector and n̂ is the surface normal unit vector pointing outward.
The left-hand side represents the rate of change of mass within the volume and the mass
flow rate exiting the volume.

The integral form of momentum conservation is:

˚
V

∂(ρV)

∂t
dV +

‹
S
(ρV · n̂)VdS =

˚
V
ρfdV +

‹
S
−pn̂dS + fviscous (A.2)

where the left-hand terms are the rate of change of momentum within the volume and the
momentum flow rate exiting the volume; and the right-hand terms are the body forces f,
pressure forces, and viscous forces fviscous (i.e. friction forces that act tangential to the
surface) acting on the control volume. Since this thesis is concerned with inviscid flows,
we generally assume that body and viscous forces are zero. It should be noted that fviscous
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is commonly modelled as a Newtonian fluid whereby surface viscous stresses need to be
estimated, such as with Reynolds-averaging.

The integral form of energy conservation is:

˚
V

∂

∂t

(
ρ

(
e

M
+

1

2
V ·V

))
dV +

‹
S
ρ

(
e

M
+

1

2
V ·V

)
V · n̂dS

=

˚
V
q̇ρdV +

‹
S
−pV · n̂dS +

˚
V
ρ(f ·V)dV

(A.3)

where the left-hand terms are the rate of change of total energy within the volume and
the total energy flow rate out of the volume; and the right-hand terms are the rate of heat
addition to the volume, the rate of work done on the volume by pressure forces, and the
rate of work done on the volume by body forces.

In order to derive the differential form of the governing equations, it is helpful to use
the divergence theorem for vector and scalar-valued functions:

‹
S
A · n̂dS =

˚
V
(∇ ·A)dV (A.4)

‹
S
An̂dS =

˚
V
(∇A)dV (A.5)

where A and A are continuously differentiable functions that are vectors or scalars, respec-
tively. Then, the differential forms of mass, momentum, and energy conservation are:

∂ρ

∂t
+∇ · (ρV) = 0 (A.6)

∂

∂t
(ρV) +∇ · (ρV⊗V) = −∇p+ ρf (A.7)

∂E

∂t
+∇ · EV = ρq̇ −∇ · (ρV) + ρ(f ·V) (A.8)

where ⊗ is the outer product of two vectors. It is thus possible to consider only the x or
x, y dimensions as required in this thesis.
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Appendix B

Multi-dimensional Godunov scheme

Multi-dimensional Godunov schemes are generally derived through dimensional splitting
(also called the method of fractional steps) or through an unsplit finite volume approach
[24]. In the fractional step method, one applies 1D methods in each dimension. For
each dimension, the fluxes are computed in that direction and all cells are updated before
proceeding to the next dimension. In the unsplit method, the flux contributions from all
dimensions are solved simultaneously. In this thesis, the unsplit finite volume method
technique is used as it avoids the potential complexities of intermediate states during each
time step, permitting analysis that is more closely linked to the Riemann solver itself.

Similar to Eq. (2.8), it may be shown that the 2D Euler equations are of the form:

Ut + F(U)x +G(U)y = 0 (B.1)

where G is the flux in the y direction and depends on the conservative variables U. Now,
the conservative variables and flux vectors read:

U =


ρ
ρu
ρw
E

 ; F =


ρu

p+ ρu2

ρuw
u(E + p)

 ; G =


ρw
ρwu

p+ ρw2

w(E + p)

 (B.2)

where w is the velocity in the y direction, and the total energy must now be computed as:

E =
e

v
+

1

2
ρ
(
u2 + w2

)
(B.3)
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Applying an explicit cell-centred finite volume scheme such as in Toro [24] §16.4.1, the
resulting first-order Godunov scheme is:

Un+1
i,j = Un

i,j +
∆t

∆x

(
Fi− 1

2
,j − Fi+ 1

2
,j

)
+

∆t

∆y

(
Gi,j− 1

2
−Gi,j+ 1

2

)
(B.4)

which is analogous to Eq. (2.40). It is evident that all flux contributions are considered at
each time step, as required by the unsplit finite volume method. The final consideration
when migrating to higher dimensions is the CFL condition. Let Sn,x

i,j , S
n,y
i,j be the fastest-

moving wavespeeds for the i, j cell in the x and y directions, respectively. Then the CFL
condition becomes:

∆t = CFLmin
i,j

(
∆x

Sn,x
i,j

,
∆y

Sn,y
i,j

)
(B.5)

That is, the CFL number must now be chosen considering the fastest wavespeeds in either
Cartesian direction. Numerical stability analysis is also much more challenging due to the
extra degree of freedom. Details on accuracy and stability in multiple dimensions can be
found in Billett & Toro [153].
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Appendix C

Speed of a moving normal shock

Earlier, the pre-shock and post-shock conditions of a stationary normal shock were denoted
1 and 2, respectively. Suppose that instead of a stationary shock, the shock is moving at
a speed us with respect to the environment. Then, the velocities relative to the moving
shock are:

û1 = u1 − us (C.1)

û2 = u2 − us (C.2)

where the circumflex (hat) symbol indicates that the quantity is measured in the frame
where the moving shock appears to be stationary. The governing equations Eqs. (2.1) to
(2.3) become:

ρ2û2 = ρ1û1 (C.3)

ρ2û
2
2 + p2 = ρ1û

2
1 + p1 (C.4)

û2ρ2(
1

2
û22 +

ê2
M

+
p2
ρ2

) = û1ρ1(
1

2
û21 +

ê1
M

+
p1
ρ1

) (C.5)

Substituting Eq. (C.3) into Eq. (C.4):

ρ2û
2
2 =

ρ2û2
ρ1

ρ2û2 + p1 − p2 (C.6)

which can be rearranged to obtain:

û22 =
ρ1
ρ2

(
p1 − p2
ρ1 − ρ2

)
(C.7)
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or similarly:

û21 =
ρ2
ρ1

(
p1 − p2
ρ1 − ρ2

)
(C.8)

Finally, combining Eq. (C.7) or Eq. (C.8) with either Eq. (C.1) or Eq. (C.2), respectively:

us = u1 −

√
ρ2
ρ1

(
p1 − p2
ρ1 − ρ2

)
(C.9)

which can be used to calculate the speed of the moving shock in either exact-iterative
or learning-based Riemann solvers (which iterate or estimate star-state, i.e. post-shock,
conditions).
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Appendix D

Restoring a right rarefaction wave

In a right rarefaction wave, the form of Eqs. 4.8 through 4.11 changes slightly:

v(x, t) = exp
(
− A1

x

t
− A2

)
(D.1)

p(x, t) = exp
(
A3
x

t
− A4

)
(D.2)

u(x, t) = A5 − A6
x

t
(D.3)

where Ai are again the constants determined by substituting the known conditions at the
head and tail of the expansion wave. The head and tail of a right rarefaction are located
along the C+ rather than C− characteristics in left rarefactions. Thus, the primitives
evaluated at the cell interface for a right transonic rarefaction are given by:

v(0, t) = exp
(1
2
ln vRv∗R −

uR + cR + u∗ + c∗R
2(uR + cR − u∗ − c∗R)

ln
vR
v∗R

)
(D.4)

p(0, t) = exp
(1
2
ln pRp∗ −

uR + cR + u∗ + c∗R
2(uR + cR − u∗ − c∗R)

ln
pR
p∗

)
(D.5)

u(0, t) =
1

2
(uR + u∗)−

(uR − u∗)(uR + cR + u∗ + c∗R)

2(uR + cR − u∗ − c∗R)
(D.6)

from which it is possible to calculate the flux as described earlier.
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Appendix E

Roe solver for gases with non-ideal
thermodynamics

The governing equations (2.1) to (2.3) may be cast into matrix form:

Ut + F(U)x = 0 (E.1)

as shown in (2.8). By introducing the Jacobian:

A(U) =
∂F

∂U
(E.2)

and using the chain rule, the governing equations may be restated as:

Ut +A(U)Ux = 0 (E.3)

Roe [49] assumed that the Jacobian could be approximated by a constant matrix Ã of the
form:

Ã = Ã(UL,UR) (E.4)

that depends only on the initial conditions to the left and right of the cell interface. Roe
therefore chose to solve the approximate, linearized Riemann problem:

Ut + ÃUx = 0 (E.5)

subject to the initial conditions U(x < 0, t = 0) = UL and U(x > 0, t = 0) = UR. Roe
further imposed that the Jacobian matrix Ã must satisfy the properties of hyperbolicity,
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consistency, and conservation across discontinuities.

The resulting system may be solved analytically using standard techniques for linear
hyperbolic equations. By decomposing this system in terms of eigenvalues, eigenvectors,
and wave strengths, and with some algebraic manipulation, Roe showed that the intercell
flux becomes:

F =
1

2
(FL + FR)−

1

2

m∑
i=1

α̃i|λ̃i|K̃(i) (E.6)

where α̃i are wave strengths, λ̃i are eigenvalues, and K̃i are right eigenvectors computed
from so-called Roe-averaged physical quantities. The index i = 1 extends to m where m
is the number of spatial dimensions plus 2. Solving the Riemann problem thus reduces
to selecting a methodology for finding the Roe-averages, the above mentioned terms, and
finally the flux. If deriving a Roe solver for 2D flow, then an analogous result is obtained
for fluxes in the y direction, that is, G if using the same notation as Appendix B.

For the case of one-dimensional flow of non-ideal gases, where thermodynamic quantities
are expressed in terms of v and T , the relevant Roe averages are:

ũ =

√
ρLuL +

√
ρRuR√

ρL +
√
ρR

(E.7)

H̃ =

√
ρLHL +

√
ρRHR√

ρL +
√
ρR

(E.8)

ṽ =

√
ρLvL +

√
ρRvR√

ρL +
√
ρR

(E.9)

T̃ =

√
ρLTL +

√
ρRTR√

ρL +
√
ρR

(E.10)

c̃ = c(ṽ, T̃ ) (E.11)

where c is the real-gas speed of sound from (2.25). In the case of ideal gases, these equations
may be simplified further. The required eigenvalues are thus:

λ̃1 = ũ− c̃; λ̃2 = ũ; λ̃3 = ũ+ c̃ (E.12)
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the corresponding right eigenvectors are:

K̃(1) =

 1
ũ− c̃
H̃ − ũc̃

 ; K̃(2) =

 1
ũ

1
2
ũ2

 ; K̃(3) =

 1
ũ+ c̃

H̃ + ũc̃

 (E.13)

and the corresponding wave strengths are:

α̃1 =
∆p− ρ̃c̃∆u

2c̃2
; α̃2 = −

(
∆p

c̃2
−∆ρ

)
; α̃3 =

∆p+ ρ̃c̃∆u

2c̃2
(E.14)

where ∆p = pR − pL, ∆u = uR − uL, and ∆ρ = ρR − ρL.

In the case of two-dimensional flow, then solving for F requires an additional Roe
average:

w̃ =

√
ρLwL +

√
ρRwR√

ρL +
√
ρR

(E.15)

along with modified right eigenvectors:

K̃(1) =


1

ũ− c̃
w̃

H̃ − ũc̃

 ; K̃(2) =


1
ũ
w̃
1
2
ũ2

 ; K̃(3) =


0
0
1
w̃

 ; K̃(3) =


1

ũ+ c̃
w̃

H̃ + ũc̃

 (E.16)

and modified wave strengths:

α̃1 =
∆p− ρ̃c̃∆u

2c̃2
; α̃2 = −

(
∆p

c̃2
−∆ρ

)
; α̃3 = ρ̃∆w; α̃4 =

∆p+ ρ̃c̃∆u

2c̃2
(E.17)

Additionally, these calculations must be repeated for G except with the positions and
ordering of u and w swapped accordingly. For details, see Toro [24] §11.3.3.

170


	List of Figures
	List of Tables
	Abbreviations
	List of Symbols
	Introduction
	Literature Review
	Exact Solutions
	Approximate Riemann Solvers
	Machine Learning for the Riemann Problem
	Summary of Research Gaps

	Research Objectives
	Overview of Thesis Structure and Results

	Theory I: Computational Fluid Dynamics (CFD)
	Governing Equations
	Equation of State
	Heat Capacity, Enthalpy, and Speed of Sound
	Characteristic Curves of the Riemann Problem
	A Building Block for Numerical Methods
	First-Order Upwind Godunov Scheme
	Discretization of the Domain
	Types of Boundary Conditions
	Approximation of the Euler Equations
	Computing flux terms via a Riemann solver


	Theory II: Machine Learning (ML)
	Types of Learning Algorithms
	Supervised Learning
	Multi-Layer Perceptron
	Loss Function and Optimizer
	Regularization and a Physics-Informed Approach

	Analytical Solutions with Non-Ideal Thermodynamics
	Normal Shocks
	Problem Setup and Derivation: Stationary Normal Shock
	Shocks Results for Non-Ideal Equations of State

	Expansion Waves
	Problem Setup and Derivation: Centred Expansion Wave
	Expansion Wave Results for Non-Ideal Equations of State


	Structurally Complete Approximate Riemann Solvers (StARS)
	Restoring the rarefaction wave
	Detecting the presence of a rarefaction at the cell interface
	Computing the flux of a transonic rarefaction

	Scaling Analysis
	Flow conditions causing transonic rarefactions in the Riemann solver
	Errors due to omitting the rarefaction

	Numerical Results
	Transcritical shock tube
	Periodic shock tube: interfering shock and expansion waves
	Gradient Riemann problem
	Two-dimensional Riemann problem


	FluxNet: a Physics-Informed Learning-Based Riemann Solver
	Preliminary Design and Feasibility Assessment
	Data Preparation
	Network Architectures and Losses
	Results
	Learning curves
	Transcritical shock tube
	Two-dimensional Riemann problem
	Comparison of accuracy and time complexity


	Conclusion
	Key Findings and Implications
	Future Research

	References
	Appendices
	Integral and differential forms of the governing equations
	Multi-dimensional Godunov scheme
	Speed of a moving normal shock
	Restoring a right rarefaction wave
	Roe solver for gases with non-ideal thermodynamics

