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Abstract

Wind energy, as a renewable and green energy source with substantial value that is vital
for sustainable human development, is gaining more and more attention around the world.
The variability of wind implies that wind power is random, intermittent, and volatile. In
order to overcome the unfavourable factors brought by wind power and enhance the reliable,
stable, and secure operation of electrical grids that incorporate wind power systems, a
multi-hour ahead wind power forecasting system consisting of an optimal combination of
statistical, physical, and artificial intelligence (AI) models for real wind farm applications
was proposed in this research.

Except for a direct persistence model that was able to produce wind power forecasts
directly, an indirect persistence, an autoregressive integrated moving average (ARIMA),
and a Weather Research and Forecasting (WRF) model were used to provide wind speed
forecasts which, in turn, could be converted to wind power forecasts by using a power
curve model. A technique for order of preference by similarity to ideal solution (TOPSIS)
scheme was applied to construct a novel 5-in-1 (ensemble) WRF model for wind speed and
wind power forecasting. An adaptive neuro-fuzzy inference system (ANFIS) model was
employed to determine the power curve model, and another ANFIS model was utilised to
build a wind speed correction model exclusively for correcting the wind speed forecasts
provided by the 5-in-1 (ensemble) WRF model.

By using a set of 24-day historical wind speed and wind power measurements acquired
from an operational wind turbine in a real wind farm located in North China, the multi-hour
ahead wind power forecasting system was proposed comprising the following components
over various forecast time horizons: the direct and indirect persistence models for 30-minute
ahead forecasting, the ARIMA model for 1-hour ahead forecasting, and the WRF-TOPSIS
model (with corrections obtained from the ANFIS-based wind speed correction model) for
1.5-hour to 24-hour (with a 30-minute temporal resolution) ahead forecasting. The primary
contribution of this research is the novel WRF-TOPSIS model strategy used to select and
combine the best-performing WRF models from a vast ensemble of possible models. The
results demonstrated that the proposed multi-hour ahead wind power forecasting system
has excellent predictive performance and is of practical relevance.
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Chapter 1

Introduction

1.1 Background

As the global population grows rapidly and the standard of living improves, energy demand
is burgeoning. This trend has a significant influence on politics, economics, and culture
all over the world. Professor Richard E. Smalley, from Rice University, the United States,
who won the Nobel Prize in Chemistry in 1996, declared that energy is the first among
the top 10 problems of humanity (energy, water, food, environment, poverty, terrorism
and war, disease, education, democracy, and population) and plays the most vital role
for people trying to solve the other nine problems [127]. Currently, the world’s dominant
energy is still conventional fossil fuels, namely coal, oil, and natural gas [136]. However,
these sources of energy have two apparent drawbacks. One is resource depletion since
these fossil fuels are non-renewable [55]. According to the Statistical Review of World
Energy 2021 provided by British Petroleum (BP), the whole world proved coal reserves
could support its production for around 139 years, while oil and natural gas would be
used up in 53.5 and 48.8 years, respectively [11]. The other is environmental pollution,
mainly reflected in global warming, acid rain, and ozone depletion [101]. In the face of
these enormous threats, seeking a reliable and green energy supply that ensures sustainable
human development is becoming more and more crucial.

Wind, a widely distributed and powerful source of energy, is inexhaustible. Besides,
being different from conventional power generation, wind power is environmentally friendly
without any air or water pollution. Compared with other clean energy supplies, wind
power has exceptional advantages. For instance, unlike nuclear power, wind power has
no disposal issues associated with toxic, hazardous, or radioactive waste, which means it
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is safe; unlike hydroelectric power, wind power is flexible since it can be harnessed both
onshore and offshore; unlike solar power, there are no day or night restrictions on wind
power, so it is possible to realise a continuous power supply throughout the day. With
recent technological innovations which have promoted the large-scale development and
utilisation of available wind resources, wind power has become more and more economical.
Specifically, the global weighted-average levelised cost of the electricity of onshore wind
farms dramatically decreased from USD 0.311 per kWh in 1983 to USD 0.041 per kWh in
2020, which was cheaper than those of almost all power plants operating on fossil fuels,
typically ranging from USD 0.04 to 0.14 per kWh. Moreover, it was also lower than those
of electricity generation derived from other renewable energy sources, such as hydropower
(USD 0.044 per kWh), solar photovoltaics (USD 0.057 per kWh), geothermal energy (USD
0.070 per kWh), and bioenergy (USD 0.076 per kWh) [59, 129].

Wind power, as the most mature and promising renewable energy technology with
substantial commercial value, is gaining more and more attention worldwide [28, 119, 151].
In the last two decades, it has become a significant way of providing energy in some
developed and developing countries. According to the Global Wind Report 2021 by the
Global Wind Energy Council (GWEC), China, the United States, Brazil, the Netherlands,
and Germany were the world’s top five countries for the new installed wind capacity in
2020, occupying 80.6% of the global market share; while for the cumulative installed wind
capacity, the world’s top five markets were China, the United States, Germany, India, and
Spain, making up 73% of the total wind power installations in the world [49].

Figures 1.1 and 1.2 show the global annual installed wind capacity 2001–2020 and
cumulative installed wind capacity 2001–2020, respectively [49]. Specifically, Figure 1.1
indicates that the global annual installed wind capacity increased gradually between 2001
and 2015, although it did decrease in 2013. After that, it slightly went down for 3 years.
However, 2019 saw a growth of 20% compared with 2018, and 2020 saw an increase of 53%
compared with 2019. In 2020, a 93.0 GW wind capacity was installed globally, breaking
the record in history. As a result, the global cumulative installed wind capacity went up
year by year (see Figure 1.2). By the end of 2020, the global cumulative installed wind
capacity reached 743 GW. As a whole, wind power is in a stage of rapid development at
present.
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Figure 1.1. Global annual installed wind capacity 2001–2020.

Figure 1.2. Global cumulative installed wind capacity 2001–2020.

China, where the average wind energy density is around 100 W/m2, has abundant wind
power resources. Liu, Tang, and Jiang [84] claimed that China’s total wind energy reserves
are about 3,226 GW, of which the available onshore wind energy for development and
utilisation is 253 GW, and the exploitable offshore wind energy is 750 GW, adding up to
1,000 GW approximately. Figures 1.3 and 1.4 show China’s annual installed wind capacity
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2001–2020 and cumulative installed wind capacity 2001–2020, respectively [45, 46, 47, 48,
49]. The first 3 years saw the slow development of wind power. However, China’s wind
power industry has entered an accelerated development stage since 2004. By the end of
2003, the cumulative installed wind capacity was only 568 MW. Thereafter, the growth of
the new installed wind capacity doubled for 6 consecutive years. 13,785 MW of new wind
power installations were added in 2009, with year-over-year growth of 125.6%. During the
following 11 years, the rise in the annual installed wind capacity remained at a high level
with a tremendous fluctuation. The historical record of the annual installed wind capacity,
reaching 48,940 MW, occurred in 2020. This number is impressive as it represented more
than half of the world’s market [49]. In 2020, China continued to lead the global wind
power market in both onshore and offshore new installations, making up 56% and 50% of
the world’s share, respectively. As of the end of 2020, China’s cumulative installed wind
capacity was 278,324 MW, which was ranked first in the world and accounted for more
than one third of the global share [49].

Figure 1.3. China’s annual installed wind capacity 2001–2020.
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Figure 1.4. China’s cumulative installed wind capacity 2001–2020.

In 2019, an additional 597 MW of new wind power capacity was installed in four
provinces in Canada, representing the investment of more than one billion Canadian dollars
in the field of wind energy. To be precise, two projects totalling 360 MW were constructed
in Ontario, which is the leader of the Canadian wind power industry. Alberta took second
place with one project of a 202 MW capacity. These two provinces took up 94.1% of
the entire 2019 national market, followed by Saskatchewan and British Columbia with
contributions of 20 MW and 15 MW, respectively. By the end of 2019, there were 301 wind
farms with 6,771 wind turbines operating in Canada, and Canada’s cumulative installed
wind capacity reached 13,413 MW, which could meet the electricity demand of around 3.4
million Canadian homes [16]. Figure 1.5 shows Canada’s annual installed wind capacity
between 2001 and 2020. An upward trend with some fluctuations can be seen from 2001
to 2014, while the following 6 years saw a significant downward trend. Besides, Figure 1.6
shows Canada’s cumulative installed wind capacity between 2001 and 2020, from which a
steady increase from 198 MW to 13,577 MW can be found [45, 46, 47, 48, 49]. By the end
of 2020, Canada was ranked the ninth wind power market in the world [49]. Evidently,
fantastic development opportunities remain in Canada’s wind power market. Moreover,
wind energy has become the largest source of new power generation in Canada over the
past 10 years and, indeed, continues to be a fast-growing contributor to Canada’s hybrid
electricity supply [15].

5



Figure 1.5. Canada’s annual installed wind capacity 2001–2020.

Figure 1.6. Canada’s cumulative installed wind capacity 2001–2020.

With the continuous research and development of wind energy, the unit capacity of wind
turbines is rising, and the construction scale of wind farms is expanding, resulting in wind
power’s higher and higher proportion in mixed electrical grids. Nevertheless, wind power
is significantly affected by the characteristics of wind, which, by its very nature, is random,
intermittent, and volatile [147]. It is true that when the capacity of a wind farm is small,
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the above features will not make a severe impact on the power system. However, the higher
the proportion of wind power in the electrical grid, the more noticeable influences on the
power system will be in power quality, grid stability, and system security [3]. Sometimes,
these effects may even compromise the whole power system. In consequence, wind power’s
larger and larger-scale grid connections bring new challenges to the reliable, stable, and
secure operation of electrical grids that incorporate wind power systems.

1.2 Motivation

Developing a multi-hour ahead wind power forecasting system as the focus of this research
was motivated by the following three potential outcomes:

(1) Greatly ensuring the stable, secure, and economical operation of electrical grids

Wind power forecasting allows power-dispatch divisions to know the future trend of
wind power in advance and reduce the negative impacts on electrical grids resulting
from random, intermittent, and volatile wind power by means of control. In addition,
they can also adjust the schedules of mixed power generation supplies by increasing or
decreasing reserve capacities in time to meet electricity demands and avoid financial
losses as much as possible. Consequently, the stability, security, and efficiency of
electrical grids improve, while the operating costs reduce [137].

(2) Effectively enhancing the reliability and market competitiveness of wind power

Wind farms have a risk of receiving financial penalties for unreliable power supplies.
Compared with the other controllable methods of electricity generation, wind power’s
competitiveness is weak owing to its characteristics of randomness, intermittency, and
volatility. Forecasting the power production of wind farms can effectively enhance the
reliability of wind power and make wind power more competitive in the electricity
market [148].

(3) Systematically scheduling the maintenance and repairs of wind turbines

Based on the results of wind power forecasting, technicians can be arranged to maintain
and repair wind turbines when there is no wind or the wind speed is too low to start
wind turbines, preventing the waste of wind resources and increasing the efficiency of
wind turbines [109].
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Hence, the research on multi-hour ahead wind power forecasting is imperative as it
will predictably tackle the uncertainty associated with wind energy. Creating a wind
power forecasting system and improving its forecast accuracy contribute to reducing the
unfavourable influences caused by the randomness, intermittency, and volatility of wind
energy. In the meantime, they are also in favour of improving the stability, security,
economy, reliability, and efficiency of wind power systems.

1.3 Problem Statement

This research aimed to develop a comprehensive multi-hour ahead wind power forecasting
system for real wind farm applications. Four categories of models, namely the wind data
acquisition and pre-processing, wind speed forecasting, wind speed correction, and wind
power forecasting models, were proposed as the main components of the whole system.

Historical wind speed and wind power measurements are acquired directly from wind
farms, where these data are recorded at specific time intervals every day. Although these
data are highly confidential, the operators of wind farms, as end-users, can enter histor-
ical wind speed and wind power measurements into the wind data acquisition and pre-
processing model by themselves. The tricky part was wind speed forecasts provided by
Weather Research and Forecasting (WRF) models. These data are predicted results that
are not as accurate as wind speed measurements. Since all necessary resources, such as the
WRF model, global geographical data, and historical meteorological data, are available
online and free to download, wind speed forecasts can be obtained. However, WRF mod-
elling requires a high level of meteorological knowledge and large amounts of computational
resources. In addition, all wind data must be pre-processed before being input into the
wind speed forecasting model, wind speed correction model, and wind power forecasting
model.

The second problem tackled in this research was related to the generation of a multi-
hour ahead wind speed forecasting model. After acquiring and pre-processing wind data,
the next step was to process them. Three different methodologies based on a persistence,
an autoregressive integrated moving average (ARIMA), and a WRF-technique for order of
preference by similarity to ideal solution (TOPSIS) model were proposed to forecast wind
speed multiple hours in advance.

The third problem was associated with correcting wind speed forecasts obtained from
the WRF-TOPSIS model. An adaptive neuro-fuzzy inference system (ANFIS), belonging
to artificial intelligence (AI), was suggested to amend wind speed forecasts according to
the difference between historical wind speed measurements and wind speed forecasts.
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The last problem was with a power curve model for converting the wind speed forecasts
to wind power forecasts. An ANFIS model was recommended to delineate the mapping
relationship between wind speed and wind power based on historically measured wind data.
By making use of the outputs of the multi-hour ahead wind speed forecasting model as
the inputs to the wind power forecasting model, wind power could be forecasted multiple
hours in advance.

In summary, there were four major problems that needed to be solved in this research:

1) how to produce wind speed forecasts by using the WRF model;

2) how to employ the persistence, ARIMA, and WRF-TOPSIS models for multi-hour
ahead wind speed forecasting;

3) how to correct the wind speed forecasts obtained from the WRF-TOPSIS model;

4) how to build the power curve model for converting the wind speed forecasts to wind
power forecasts.

1.4 Proposed Contributions

The existing literature on wind power forecasting highlights two main issues of present
models. One is that most researchers focused on very limited forecast time steps (one or
a few); the other is that they applied meteorological forecasts provided by third parties
instead of producing those data by themselves. In order to tackle these shortcomings, a
comprehensive wind power forecasting system with multiple time horizons was proposed,
and the application of WRF models to generate computational wind speed data was in-
troduced.

In the process of developing the multi-hour ahead wind power forecasting system, the
proposed contributions can be summarised as follows:

(1) Modelling of a multi-hour ahead wind speed forecasting model based on three different
methodologies

A persistence, an ARIMA, and a WRF-TOPSIS model were used to forecast wind
speed separately. According to their individual features, each wind speed forecasting
model was recommended for one or more specific time horizons. Generally, shorter-
term wind speed forecasting was only based on historically measured wind speeds. In
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contrast, longer-term wind speed forecasting was based on historically measured wind
speeds and computational wind speeds.

(2) Development of a multi-hour ahead wind power forecasting system by integrating wind
speed forecasting models with a power curve model

An ANFIS model was employed to build a power curve model which aimed at mapping
wind speed values into wind power values. Specifically, historically measured wind
speed and wind power data were applied to form a training dataset. By inputting
multi-hour ahead wind speed forecasts into a trained ANFIS model, the corresponding
multi-hour ahead wind power forecasts could be generated as the outputs of the power
curve model. That is to say, the wind speed forecasting models and the power curve
model worked together to constitute the multi-hour ahead wind power forecasting
system.

(3) A systematic method to select WRF models instead of an ad hoc method

In the process of WRF modelling, a couple of crucial physics options needed to be de-
termined, and for each of them, there were lots of parameterisation schemes available.
Previously for a case study in the laboratory, an ad hoc method mainly based on per-
sonal work experience was applied to establish a WRF model. However, a systematic
method instead of it was proposed for the same case in this study. Specifically, after the
preliminary screening according to the basic features of the parameterisation schemes,
10,800 parameterisation scheme combinations were chosen. Due to the combination
restrictions, the number of the total practical parameterisation scheme combinations
decreased to 1,334. Then, the predictive performance of the 1,334 candidate WRF
models on the first day of the training dataset was examined, and the TOPSIS scheme
selected the top 50 WRF models by using six evaluation metrics. Similarly, the predic-
tive performance of the top 50 WRF models over the rest days of the training dataset
was tested, and the TOPSIS scheme finally determined the top five WRF models for
wind speed forecasting.

(4) A novel way of combining WRF models to enhance model reliability

The TOPSIS is a comprehensive evaluation method that can make full use of the
information of original data, and its results can accurately reflect the gap among al-
ternatives. In addition to ranking alternatives, it can also be utilised as an approach
to assigning weights for them. Hence, combining the top five WRF models with the
TOPSIS scheme was proposed according to their predictive performance on the train-
ing dataset. At last, the 5-in-1 (ensemble) WRF model was demonstrated to be more
reliable than any single candidate WRF model.
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(5) Development of an ANFIS model for the wind speed correction model

The errors in wind speed forecasts obtained from WRF models exist. An ANFIS model
was proposed to detect the complicated relationship between wind speed forecasts and
wind speed measurements according to the historical records and to correct wind speed
forecasts before being input into the power curve model. The results demonstrated that
this correction model is helpful for the improvement of wind power forecasting.

(6) Development of numerical methods to tune the ARIMA and ANFIS models

In terms of the ARIMA and ANFIS models, a couple of model parameters need to be
decided. Different values of parameters lead to different results. Hence, the numerical
analysis, comparing the model performance based on different parameter combinations,
was applied to optimise the parameters of these models proposed in the research.

1.5 Structure of the Dissertation

This dissertation is organised as follows. In Chapter 1, the background, motivation, prob-
lem statement, proposed contributions, and structure of the dissertation are introduced.
In Chapter 2, the classification of wind power forecasting, wind power forecasting models
and software, fundamental theories of the Sugeno-type fuzzy inference system (FIS), AN-
FIS, and time series analysis, fundamental principle of the WRF model, and fundamental
algorithm of the TOPSIS are reviewed. In Chapter 3, the analysis of factors affecting wind
power, description of data sources, approaches of data pre-processing, spectral analysis of
wind speed measurements, introduction of model evaluation metrics, interpretation of a
‘forecast time horizon’, and power curve modelling are presented. In Chapters 4 and 5, the
statistics-based and physics-based modelling for multi-hour ahead wind speed and wind
power forecasting are investigated based on a real case study, and the model predictive
performance is assessed. In Chapter 6, the statistics-based and physics-based forecasting
models are compared and analysed, and the multi-hour ahead wind power forecasting sys-
tem is created and evaluated. In the last Chapter 7, the conclusions are drawn, and the
future work is suggested.

11



Chapter 2

Literature Review

2.1 Classification of Wind Power Forecasting

According to the time horizon, wind power forecasting can be divided into four categories,
namely very short-term, short-term, medium-term, and long-term forecasting [51]. How-
ever, there are no authoritative definitions for their ranges in the wind power industry.
Different researchers have individual descriptions in their own studies. Besides, the actual
applications of different forecast time horizons in electricity systems are consequential var-
ious. By referring to the relevant literature [22, 24, 51, 63, 122, 139, 156], the unit, range,
and applications for each wind power forecast category are summarised in Table 2.1.
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Table 2.1. Classification of wind power forecasting according to the time horizon.

Time horizon Unit Range Applications

Very short-term Minute A few minutes to
30 minutes ahead

Wind turbine control, regulation ac-
tions, real-time grid operations, electric-
ity market clearing, etc.

Short-term Hour 1 hour to 72 hours
ahead

Power dispatch schedules, load smart de-
cisions, operational security in electric-
ity markets, etc.

Medium-term Day 3 days to 1 week
ahead

Generator online/offline decisions, main-
tenance and repair schedules, reserve re-
quirement decisions, unit commitment
decisions, operation cost optimisation,
operation management, etc.

Long-term Year 1 year to several
years ahead

Wind resource assessment, feasibility
studies on wind farm design, etc.

According to the methodology, wind power forecasting can be divided into two cate-
gories, namely physical and statistical methods [139, 156].

2.1.1 Physical Methods

In physical methods, physical variables which influence wind power production, such as
the landform of wind farms (roughness, obstacles, orography, etc.), surrounding weather
conditions (wind speed, wind direction, temperature, pressure, humidity, etc.), and the
layout of wind turbines, are usually incorporated into forecasting models [22, 63, 122].
These factors are considered in complicated mathematical models to calculate wind speeds
in the future. After that, wind speed forecasts will be converted to wind power forecasts
by using the power curves of wind turbines [51]. The essence of physical methods is to
improve the resolution of meteorological data generated by numerical weather prediction
(NWP) models as high as possible [156], for example, downscaling from tens of square
kilometres to one square kilometre for the purpose of obtaining more accurate weather
prediction. The advantages of physical methods are reflected in the fact that there is
no need for a large number of historically measured data [63], as well as they are more
suitable for complex terrain [74]. However, one of their drawbacks is the necessity of having
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a wealth of meteorological knowledge and the understanding of physical characteristics to
build forecasting models [74]. Additionally, physical methods require collecting physical
information [66] and mostly need a tremendous amount of computational resources [73].

2.1.2 Statistical Methods

Statistical methods aim at establishing mapping relationships that can be either linear or
non-linear between meteorological data (such as wind speed and wind direction) and wind
power outputs [51]. For a statistical model, historically measured data are employed as a
training dataset to determine the statistical relationship between inputs and outputs [63].
After being tuned by contrasting model forecasting results with wind power measurements,
the statistical model parameters can be optimised for wind power forecasting [122]. In gen-
eral, statistical methods contain time series analysis and AI [139]. One of the advantages of
statistical methods is that their modelling processes are straightforward and affordable [63].
Besides, statistical methods can be easily adapted to different terrains of wind farms and
various layouts of wind turbines [6], effectively ignoring some meteorological factors that
have minor impacts on the power production of wind farms, such as temperature, pressure,
and humidity [139]. Nevertheless, statistical methods have some inherent disadvantages.
Although statistical models work well for short forecast time horizons, their forecast accu-
racy drops with the increase of the time scale [22]. Furthermore, it is difficult for statistical
models to predict abrupt climate changes [154]. In addition, statistical methods require
long-term data collection and large datasets for model training processes [139].

2.2 Overview of Wind Power Forecasting Models

2.2.1 Persistence Models

Persistence models, in which wind speed or wind power in the future is assumed to be equal
to measured wind speed or wind power at the moment [156], are the most straightforward
and economical approach in the field of wind power forecasting [22]. Another advantage
of persistence models is that there are no additional variables, so there is no need to tune
parameters [51]. Persistence models can be described by the following equations [22]:

v(t+ ∆t) = v(t) , (2.1)

and
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P (t+ ∆t) = P (t) , (2.2)

where v is the wind speed, t is the time, ∆t is the time step size, and P is the wind power.

However, the forecast errors of persistence models go up sharply with the expansion
of the forecast time scale [145]. In the literature, this approach is usually applied as
a benchmark to be compared with other advanced forecasting approaches in order to
evaluate the improvements of those advanced models [128]. Typically, persistence models
are designed for very short-term wind power forecasting and are widely used in the electrical
industry [122].

2.2.2 Time Series Models

In addition to persistence models, statistical methods based on time series models are
commonly applied for wind speed and wind power forecasting. Following three stages of
model construction, namely identification, parameter estimation, and diagnostic checking,
a mathematical model can finally be generated to describe studied data and then used to
forecast wind speed or wind power [63].

Based on Box and Jenkins’s research, classical time series models can be divided into
four basic types, namely the autoregressive (AR), moving average (MA), autoregressive
moving average (ARMA), and ARIMA models [86]. In general, time series models have
the following form [51]:

Xt = c+ αt +

p∑
i=1

ϕiXt−i −
q∑
j=1

θjαt−j , (2.3)

where Xt is the wind speed (power) forecast at time t, c is a constant, αt is the white
noise at time t, p is the order of the AR component of the model, ϕi (i = 1, 2, . . . , p)
are the AR model parameters, q is the order of the MA component of the model, and θj
(j = 1, 2, . . . , q) are the MA model parameters. Equation (2.3) corresponds to the general
form of the ARMA model. When either p = 0 or q = 0, the model reduces to an MA or
an AR model, respectively [63]. Finally, the ARIMA model arises through the application
of a differencing operation on the original data [86].

Huang and Chalabi [56] proposed a linear, time-varying AR model for wind speed
forecasting based on a dataset acquired from a weather station in Herstmonceux, England.
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The results indicated that the AR model was only applicable to forecast wind speed up
to several hours in advance. Besides, the AR model was verified to be sufficient for the
real-time control purpose.

Gallego et al. [36] suggested a conditional parametric autoregressive (CPAR) and a
regime-switching autoregressive (RSAR) model which were constructed by replacing the
fixed weights in linear AR models with functions depending on the wind speed and wind
direction. This methodology was applied by these researchers to an offshore wind farm
at Horns Rev in the North Sea near Denmark. The results showed that both the CPAR
and RSAR models outperformed the base models (viz., the persistence, AR, and Markov
switching autoregressive (MSAR) models) in terms of the 1-step ahead prediction of the
wind speed and wind power for this very short time horizon forecasting application.

Kamal and Jafri [65] tested an ARMA model for a simulation of the hourly averaged
wind speed values in Quetta, Pakistan, based on the data of 2-year wind speed measure-
ments. In the process of the modelling, a couple of essential characteristics of wind speed
data (viz., autocorrelation, non-Gaussian distribution, and diurnal non-stationarity) were
considered. They proved that the wind speed forecasts with the 95% confidence interval
provided by the ARMA model were acceptable up to 6 hours in advance.

Torres et al. [131] applied an ARMA and a persistence model to forecast the hourly
average wind speed in Navarre, Spain, ranging from 1 to 10 hours in advance. The transfor-
mation and standardisation of the wind speed time series data were advised in the process
of the ARMA modelling. Only in several 1-hour ahead forecasting cases, the errors of
the persistence model were smaller than those of the ARMA model. For the other cases,
the ARMA model consistently performed better than the persistence model. In addition,
if the acceptable root mean squared error (RMSE) was limited to be not greater than
1.5 m/s, the proposed models in the study were only suitable for very short-term wind
speed forecasting.

Erdem and Shi [29] presented four ARMA-based models (viz., a component, a traditional-
linked ARMA, a vector autoregression (VAR), and a restricted VAR model) for providing
the 1-hour ahead forecasts of wind speed and wind direction at two locations in North
Dakota, the United States. Comparing these forecasts with the measurements acquired
from the wind observation sites, these researchers claimed that the wind speed predictive
performance of the traditional-linked ARMA, VAR, and restricted VAR models was com-
parable to one another, and each of these models was preferable to the component model.
Nevertheless, the best models with regard to the wind direction forecasting were different,
the component model for the first site and the VAR model for the second one.

An ARIMA and an artificial neural network (ANN) model were examined in Cadenas
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and Rivera’s [12] paper to forecast the monthly wind speed of the South Coast of Oaxaca,
Mexico. After a comparative analysis, the superiority of the seasonal ARIMA model was
revealed in the accuracy of wind speed forecasting. However, it was also concluded that
the predictive performance of the ANN model might be enhanced by means of augmenting
the number of training vectors.

Kavasseri and Seetharaman [67] investigated the application of fractional-autoregressive
integrated moving average (f-ARIMA) models to forecast wind speed 24 and 48 hours in
advance and applied the proposed methodology to four potential wind farms located in
North Dakota, the United States. According to the power curve of the studied wind turbine,
the wind speed forecasts were converted to the wind power forecasts. The conclusion was
that the wind speed forecast errors of the f-ARIMA models were much lower than those
of the persistence model, resulting in the improved forecasting of both the wind speed and
wind power.

Liu et al. [81] reported an improved time series method (ITSM) based on an ARIMA
model for forecasting the wind speed and wind power of a particular wind farm in China.
A wavelet approach was employed to decompose the time series data into a couple of
sub-series which were separately forecasted multi-step ahead and aggregately calculated.
Finally, the forecasts of the original time series data were achieved. The results showed that
the ITSM, which could be individually applied in wind speed or wind power forecasting,
gave higher accuracy compared with a classical time series and a back-propagation network
method.

According to the literature review of time series models listed above, it can be found
that in most cases of wind speed and wind power forecasting, the forecasting models solely
depend on the time series of wind speed or wind power measurements, and time is the
only considered factor affecting results. The assumption is that the historical trend of
wind data will influence the future wind data, and the continuity of change exists. The
excellent effectiveness of time series models in short-term wind power forecasting has been
validated [122]. Moreover, the structures of time series models are simple, and the required
computational resources are comparatively low [51]. However, time series models need lots
of historical data for modelling [86]. Since an essential assumption for time series modelling
is that the data are stationary [92], it is tricky for time series models to deal with the
condition of the data being non-stationary [157]. In addition, with the rise of the forecast
time step, the corresponding forecast accuracy of time series models deteriorates mainly
because these models rely on their own previous forecasts in the cases of multi-step ahead
forecasting [63].
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2.2.3 Artificial Intelligence Models

Thanks to the development of AI, a vast number of novel models based on AI are mush-
rooming in the field of wind speed and wind power forecasting in recent years [22]. The
most widely used techniques involved in AI models are ANNs, support vector machines
(SVMs), and fuzzy logic (FL) [86].

ANNs, composed of numerous simple processing units (neurons) interconnecting based
on specific topological structures, imitate the human brain and its functions [85]. Two basic
types of ANNs formed by different network architectures are feed-forward neural networks
(FNNs) and recurrent neural networks (RNNs) [70]. Back-propagation is a pretty popular
learning algorithm for training ANNs, and this type of ANNs is called back-propagation
neural networks (BPNNs) [71]. Generally, an ANN model consists of one input layer, one
or several hidden layers, and one output layer [2]. The weights of neurons’ interconnections
are learnt via a training process based on a training dataset [44]. After training, the ANN
model is able to identify the intricate non-linear relationship between input and output
variables [26]. Furthermore, ANNs have the abilities of self-learning, self-organising, and
self-adapting [144].

SVMs, designed for classification and regression, are based on a statistical learning the-
ory [41]. As a machine learning technique, SVMs can overcome some shortcomings of tra-
ditional ANNs, for example, overlearning and getting stuck at a local minimal point [133].
Basically, SVMs are more suitable for dealing with those non-linear problems with small
sample sizes [153].

FL, in which the truth values of features are in the range of [0, 1] rather than either 0
or 1 in Boolean logic, is inspired by the fact that humans often make decisions according
to uncertain and imprecise information [68]. Membership functions and linguistic fuzzy
rules are implemented for FL modelling [103]. Additionally, FL can be combined with
ANNs. An ANFIS, integrating FL with an ANN, is a good example [60, 134]. In this way,
the ANFIS holds the advantages of the readability from FL and learning ability from the
ANN [1].

Mohandes, Rehman, and Halawani [94] proposed an FNN model to forecast the mean
monthly and daily wind speed in Jeddah, Saudi Arabia. Besides, an AR model was de-
scribed as a benchmark. The results demonstrated that the FNN model was preferable to
the AR model because of its lower RMSEs for the 1-step ahead monthly and daily fore-
casting cases. Moreover, the FNN model also showed its superiority in multi-step ahead
forecasting compared with the AR model.

Sfetsos [121] introduced an FNN model for average hourly wind speed forecasting based
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on time series analysis. In addition, a persistence and an ARIMA model were also pre-
sented for reference purposes. Two sets of 1-month wind speed data were employed: one
was observed on the island of Crete, Greece, in March 1998; the other was measured in
Oxfordshire, the United Kingdom, in June 1997. Because of producing the lowest errors for
both of the cases studied, the FNN model was concluded to be better than the persistence
and ARIMA models in terms of wind speed forecasting ability.

Mabel and Fernandez [87] presented an FNN model for the purpose of forecasting
monthly wind power generated by the wind farms in Muppandal, India. To be precise, the
FNN model was built with three input variables (viz., wind speed, relative humidity, and
generation time) in the input layer and one output variable (wind power) in the output
layer. After a couple of tests, the optimal numbers of the hidden layer and neurons in
the hidden layer were determined to be one and four, respectively. The field data over 3
years between April 2002 and March 2005, provided by seven wind farms located in the
studied area, were utilised in the research. A good agreement was discovered between the
forecasted wind power values provided by the FNN model and the recorded data, with an
overall percentage error (PE) of 4%.

Cadenas and Rivera [13] recommended an ANN model for the 1-hour ahead wind speed
forecasting in Oaxaca, Mexico. A set of statistical tests on the 7-year hourly wind speed
data, observed by the Federal Electricity Commission (CFE), verified that the wind speeds
of each specific month in different years belonged to a same group. Hence, 12 specialised
ANN models were established for every month of a year. Besides, four types of ANN models
with different structures (viz., the different numbers of layers and neurons) were listed and
compared with each other. It was surprising that the simplest ANN model with two layers
and three neurons (two for the input layer and one for the output layer) overcame the other
models with more complex configurations concerning the mean squared error (MSE) and
mean absolute error (MAE). Moreover, this conclusion was confirmed by the cases of 12
months. These researchers claimed that the proposed wind speed forecasting model was
sufficient for practical applications.

In order to forecast the power production of a wind energy conversion system (WECS)
10 minutes in advance, Chang [20] reported a BPNN model with three inputs in the input
layer and one output in the output layer. A training dataset was created based on the
3-day historical power measurements of an operational WECS located on the Taichung
coast, Taiwan, while the data of the following day was used as a test dataset. According
to the results of a numerical approach, the optimal number of neurons in the hidden layer
was determined to be 35. It was concluded that the proposed BPNN model was accurate
and reliable for forecasting wind power with an average absolute error (AAE) of 0.2780%.
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More and Deo [97] suggested an FNN and an RNN model for the wind speed forecasting
of two coastal sites in India. As a conventional statistical time series analysis method, an
ARIMA model was introduced to be a benchmark in their research. The actual wind speed
observations between 1989 and 2000 in the coastal area of Colaba, provided by the India
Meteorological Department (IMD), Mumbai, were employed to generate the forecasting
models and validate model effectiveness. The results of the daily, weekly, and monthly wind
speed forecasting confirmed that the proposed two neural network models outperformed
the ARIMA model in terms of forecast accuracy.

Li and Shi [77] did a comprehensive investigation to compare the 1-hour ahead wind
speed forecasting abilities of three typical neural network models, namely a feed-forward
back-propagation (FFBP), a radial basis function (RBF), and an adaptive linear element
(ADALINE) model. The collection of 1-year hourly average wind speed data acquired
from two locations (Hann and Kulm) in North Dakota, the United States, was utilised
in the research. It was concluded that the forecast accuracy of different neural network
models varied. The choice of the neural network model type which contributed to the
highest forecast accuracy depended on the data source. Nevertheless, the results indicated
that even for the same dataset, there was no single neural network model that was able
to consistently perform the best among all the presented models in terms of three metrics
(viz., the MAE, RMSE, and mean absolute percentage error (MAPE)). In addition, for an
individual neural network model, it was observed that the numbers of input variables and
the learning rate affected the model forecast accuracy more or less.

In order to automatically specify the input variables and interior model parameters
of an ANN and a nearest neighbour search model for 1-hour ahead wind power forecast-
ing, Jursa and Rohrig [64] applied two evolutionary optimisation algorithms (viz., particle
swarm optimisation (PSO) and differential evolution (DE)) to the forecasting models. The
weather forecast data acquired from the German Weather Service (DWD), Germany, and
the historically measured wind power data obtained from 10 wind farms located in north-
western Germany, covering a period from the 1st of January 2004 to the 30th of June
2007, made up a database for the case study. The conclusion was that the precision of
wind power forecasting could be enhanced through the proposed automatic specification
approach.

Guo et al. [43] developed a modified empirical mode decomposition based feed-forward
neural network (EMD-FNN) model for multi-step average monthly and daily wind speed
forecasting. The EMD-FNN model was adjusted by removing a high-frequency component.
The predictive performance of the modified EMD-FNN model was evaluated based on two
datasets of wind speed measured in Zhangye, China. One was the monthly data from 2003
to 2006, and the other was the daily data between May 2006 and August 2006. Through a
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comparative analysis, it was found that the modified EMD-FNN model was preferable to
the FNN and unmodified EMD-FNN models. Specifically, the MSE, MAE, and MAPE for
the modified EMD-FNN model were lower than those for the other two mentioned models
in both of the case studies.

Mohandes et al. [95] examined an SVM model to forecast daily wind speed. The 12-year
data of average daily wind speed observations in Madina, Saudi Arabia, were introduced
to the case study. Another neural network method, a multilayer perceptron (MLP) model,
was also generated as a reference model. According to the metric of the RMSE, it was
concluded that the SVM model was more suitable than the MLP model for the wind speed
forecasting. This judgement was supported by the systems with orders ranging from 1 to
11.

Zhou, Shi, and Li [158] stated a piece of detailed research on the application of a least-
squares support vector machine (LS-SVM) model for 1-step ahead wind speed forecasting.
In this study, these researchers introduced a linear, a Gaussian, and a polynomial kernel
function to create three different LS-SVM models. The 1-year hourly wind speed data
applied in this study were collected by a wind observation station in North Dakota, the
United States. In order to avoid the seasonal influence, the entire dataset was divided
into four seasonal datasets. It was found that the LS-SVM models were superior to the
persistence model in terms of forecast accuracy for the spring, autumn, and winter datasets
but not for the summer dataset.

Zhu et al. [159] advised a FL methodology for the forecasting of wind farm power out-
put. The number of fuzzy rules used in this methodology was optimised based on a modified
fuzzy c-means clustering algorithm, and a back-propagation algorithm was applied to tune
the parameters of input and output membership functions. Wind speed, temperature, and
wind power were taken into account as the three inputs of the FL model. In addition,
a BPNN model was chosen as a benchmark. The measured wind speed and wind power
data over a 25-day period with a temporal resolution of 10 minutes were acquired from an
operational wind farm located in Inner Mongolia, China, and employed for model valida-
tion. After a comparative study, it was found that the FL model outperformed the BPNN
model in terms of the 30-minute, 1-hour, and 2-hour ahead wind power forecasting since
the RMSEs for the former kept lower than those for the latter in all the cases.

Potter and Negnevitsky [110] carried out a piece of research on applying an ANFIS
model, which combined a FL and an ANN model, for very short-term (2.5-minute ahead)
wind forecasting. Besides, the proposed model was utilised to forecast wind vectors instead
of wind speed and wind power. The effectiveness of the ANFIS model was evaluated
according to a 21-month wind speed and wind direction time series observed in Tasmania,
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Australia. The results indicated that the ANFIS model performed much better than the
persistence model, which was considered a benchmark. More specifically, the MAPE for
the ANFIS model was lower than 4%, while the corresponding error for the persistence
model was roughly 30%.

Nowadays, an increasing number of researchers are using AI models instead of conven-
tional statistical models. The novel models listed above have verified the success of the AI
technique in the field of wind speed and wind power forecasting. In general, AI models
are preferable to time series models in terms of forecast accuracy. However, each AI model
has individual pros and cons. An AI model which outperforms all other ones for all cases
does not exist. That is because choosing a model for wind speed or wind power forecasting
highly depends on many factors, including the data resource, forecast time horizon, wind
farm location, and even season.

2.2.4 Hybrid Models

Hybrid models refer to the models in which two or more models based on various algo-
rithms are combined together for forecasting [51]. The motivation behind hybrid models
is to take advantage of the superiority of varied techniques and enhance overall predictive
performance [145]. Although a combination of different models might not consistently out-
perform a single model [63], it is true that the combination method not only contributes
to higher forecast accuracy in most situations [122] but also reduces the risk of forecast
errors [53].

Li, Shi, and Zhou [78] presented a new two-step approach for hourly wind speed fore-
casting. To be precise, three ANN models, namely an ADALINE, a BPNN, and an RBF
model, were introduced to forecast the wind speed individually, and a Bayesian model
averaging (BMA) model was applied to combine the wind speed forecasts generated from
the three single ANN models and then output the final wind speed forecasts. Two sets of
1-year mean hourly wind speed observations acquired from two locations in North Dakota,
the United States, were used to prove the effectiveness of the proposed model. According
to the evaluation metrics (viz., the MAE, RMSE, and MAPE), the adaptability, reliability,
and accuracy of the proposed hybrid forecasting model were demonstrated to be robust,
and the improvement of the hybrid model against each single ANN model was found.

Bouzgou and Benoudjit [9] introduced a multiple architecture system (MAS) including
a multiple linear regression (MLR), an MLP, an RBF, and an SVM model for wind speed
forecasting. Three methods (viz., an average, a weighted, and a non-linear method) were
used to combine the wind speed forecasts produced by every individual model. A set of

22



10-year mean daily wind speed data measured by seven sites in Algeria from 1995 to 2004
was applied for the case study. Finally, the improvement of the proposed MAS over the
individual forecasting models was observed.

Chang [21] declared a hybrid model based on an enhanced particle swarm optimisation
(EPSO) algorithm to forecast wind power 10 minutes in advance. Particularly, a persis-
tence, a BPNN, and an RBF model were employed to forecast wind power individually.
Moreover, the EPSO algorithm was used to determine the best weights for every single
model. Finally, the weighted outputs of the individual models were combined together to
generate the final wind power forecasts. In order to validate the predictive performance of
the hybrid model, a set of 1-year wind speed and wind power data recorded by a WECS
located in Taichung, Taiwan, was applied in the research. By considering the seasonal
influence, the data were split into four groups standing for the four seasons. The results
proved the effectiveness of the proposed hybrid model because its forecast accuracy was
consistently higher than that of the other models (viz., the persistence, BPNN, and RBF
models) in the four seasonal case studies.

Liu, Wang, and Lu [83] stated a novel hybrid short-term wind power forecasting model.
For this purpose, three AI models (viz., a BPNN, an RBF, and an LS-SVM model) were
applied to provide the individual forecasts of the wind power 48 hours in advance. In order
to choose appropriate inputs for these models, a Pearson correlation coefficient (PCC)-
based approach was introduced to pre-process the raw data. Subsequently, the forecasts
obtained from the three individual models were combined by using an ANFIS model to
generate the final wind power forecasts. A case study with a 60-day dataset acquired from
an operational wind farm in Sichuan, China, was used to evaluate the predictive perfor-
mance of the proposed model. Besides, the actual meteorological observations (viz., wind
speed, wind direction, and temperature) were employed instead of the forecasted meteo-
rological data in this study because of the unavailability of NWP data. The comparative
results showed that the proposed hybrid forecasting model was superable to each of the
individual models in the cases of four seasons in terms of wind forecast accuracy.

Cadenas and Rivera [14] built a hybrid ARIMA-ANN model for wind speed forecasting.
More specifically, the ARIMA model was employed to forecast the wind speed time series,
and the ANN model was introduced to model the non-linear behaviour in the errors created
by the ARIMA model. Three sets of hourly wind speed measurements obtained from three
regions of Mexico, namely the Isla de Cedros in Baja California, the Cerro de la Virgen
in Zacatecas, and Holbox in Quintana Roo, were applied to verify the forecasting ability
of the proposed model. Three error metrics (viz., the mean error (ME), MSE, and MAE)
were used to evaluate the model performance. A good agreement between the actual wind
speed observations and wind speed forecasts provided by the proposed hybrid model was
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found in the three case studies. Besides, the errors of the proposed model kept being lower
than those of the single ARIMA and single ANN models in terms of wind speed forecasting.

Guo et al. [42] combined a seasonal autoregressive integrated moving average (SARIMA)
and an LS-SVM model to forecast the average monthly wind speed in Hexi Corridor, China.
Specifically, the SARIMA model was used to forecast the wind speed time series, and then
the LS-SVM model was applied to describe the residuals of the SARIMA model. For the
purpose of evaluation, two datasets of monthly average wind speed in Mazong Mountain
and Jiuquan between January 2001 and December 2006 were employed in the case study.
Moreover, an ARIMA, a SARIMA, an LS-SVM, an ARIMA-SVM, and a grey model were
created based on the datasets for a comparative analysis. According to the three metrics
(viz., the MSE, MAE, and MAPE), the hybrid model performed much better than the
other models in both of the cases. These researchers declared that it was not only efficient
but also easy to forecast the monthly wind speed in Hexi Corridor by utilising the proposed
model.

Shi, Guo, and Zheng [123] suggested two hybrid models for wind speed and wind power
forecasting, namely an ARIMA-ANN and an ARIMA-SVM model. The whole idea was
that the ARIMA model was suitable for forecasting the linear component of a time se-
ries, while the ANN and SVM models were good at forecasting the non-linear component.
In addition, the individual ARIMA, ANN, and SVM models were also introduced in this
study for a comparative analysis. A set of 2-year hourly wind speed observations acquired
from a wind observation station located in Colorado, the United States, and a set of 2-year
hourly wind power measurements obtained from a wind turbine installed in North Dakota,
the United States, were applied for the validation of the wind speed and wind power fore-
casting, respectively. The proposed wind forecasting models were tested for the different
forecast time horizons (viz., 1-step, 3-step, 5-step, 7-step, and 9-step ahead). It was con-
cluded that although it was promising to forecast wind speed and wind power by using the
hybrid models, neither the ARIMA-ANN nor the ARIMA-SVM model outperformed the
individual models for all the cases studied.

Liu, Tian, and Li [82] described two hybrid models, an ARIMA-ANN and an ARIMA-
Kalman model, for wind speed forecasting. In detail, the ARIMA model was employed
to optimise the structure of the ANN model in the ARIMA-ANN model and the initial
parameters of the Kalman model in the ARIMA-Kalman model. Besides, a pure ARIMA
model was considered a benchmark. Two sets of hourly wind speed data acquired from
a wind farm in China were used to validate the effectiveness of the proposed models.
The models were examined separately for the 1-step, 2-step, and 3-step ahead forecasting.
The results proved that the proposed hybrid models were superable to the ARIMA model
in both of the cases. Furthermore, it was discovered that the ARIMA-Kalman model
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outperformed the ARIMA-ANN model in terms of the MAE, MSE, and MAPE.

Zhao et al. [155] recommended a novel hybrid model consisting of a WRF model, an
ANN model, and a Kalman filter to forecast wind power 1 day in advance. Particularly,
the WRF model was applied to generate meteorological forecasts including wind speed,
wind direction, pressure, temperature, and humidity; the Kalman filter was utilised to
post-process the raw wind speed forecasts obtained from the WRF model in order to
increase the accuracy; and the enhanced wind speed forecasts together with the other
forecasts provided by the WRF model were input to the ANN model to forecast wind
power. A case study of the Lingyang wind farm in Nantong, China, was introduced in the
research. Owing to the Kalman filter, the forecasting model’s normalised RMSE reduced
from 17.81% to 16.47%. In conclusion, the authors claimed that the proposed hybrid wind
power forecasting model was beneficial to the growth of wind energy penetration in China.

For short-term wind power forecasting, Catalão, Pousinho, and Mendes [19] created a
neural network wavelet transform (NNWT) model. Besides, a persistence, an ARIMA, and
an ANN model were considered the reference models in the study. Four sets of wind power
data acquired from a wind farm in Portugal were chosen for model construction and val-
idation. Three error metrics, namely the MAPE, sum squared error (SSE), and standard
deviation of the error (SDE), were used to evaluate the forecast accuracy. The numerical
results showed that the proposed hybrid model was preferable to the reference models.
In addition, it was pretty cost-effective in terms of computational consumption. Later on,
these researchers presented a hybrid wavelet-neuro-fuzzy (WNF) model and tested it based
on the same case study [17]. The results indicated that the WNF model outperformed the
NNWT model. Still in the same year, they proposed a wavelet transform, particle swarm
optimisation, and adaptive-network-based fuzzy inference system (WPA) model as another
hybrid intelligent model [18]. The data applied in this research were precisely the same as
those in the previous two studies. It was concluded that the WPA model had the highest
forecast accuracy among all the seven reference models, including the NNWT and WNF
models. Four years later, Osório, Matias, and Catalão [104] continued the identical case
study in Portugal and announced a new model named the hybrid evolutionary-adaptive
(HEA) model. In detail, the HEA model was composed of a mutual information (MI),
a wavelet transform (WT), an evolutionary PSO, and an ANFIS model. A comparative
analysis demonstrated that the HEA model was more accurate for short-term wind power
forecasting than the other models, such as the NNWT, WNF, and WPA models investi-
gated in the previous studies.

Zhang et al. [152] suggested a novel hybrid model for short-term wind speed forecasting.
Since a wavelet transform technique (WTT), a seasonal adjustment method (SAM), and a
radial basis function neural network (RBFNN) were included in the model, the model was
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named WTT-SAM-RBFNN. To be precise, the WTT was used to pull out the primary
features and get rid of the noise component from a raw time series; the SAM was applied
to deal with the seasonal component; and the RBFNN was utilised to identify the trend
component. Two sets of average hourly wind speed data recorded in Wuwei and Minqin,
China, were employed to evaluate the proposed model. The experiments illustrated that the
proposed hybrid model was preferable to the persistence, MLP, RBFNN, SAM-RBFNN,
and WTT-RBFNN models as its errors were the lowest in both of the cases.

Hong and Rioflorido [54] established a hybrid deep learning neural network model to
forecast wind power 24 hours in advance. More specifically, the novel model consisted of a
convolutional neural network (CNN) and an RBFNN model. A double Gaussian function
(DGF) was suggested as an activation function for the RBFNN model. Besides, the best
parameters of the CNN and RBFNN models were selected according to an adaptive moment
estimation (ADAM) approach. Through a convolution, a kernel, and a pooling operation,
the features of wind power were captured by the CNN model. Moreover, the uncertain
features were handled through the RBFNN-DGF model. The data of measured wind
power acquired from the Changgong wind farm located in Changhua, Taiwan, between
December 2014 and November 2015 were utilised to confirm the predictive performance of
the proposed model. In addition, the entire data were split into four groups representing the
four seasons. These researchers concluded that the proposed hybrid model was superable to
the other models, namely the multi-feedforward neural network (MFNN)-genetic algorithm
(GA), RBFNN-GA, RBFNN-DGF-GA, CNN-MFNN, and CNN-RBFNN models, in all the
cases investigated in the study.

Lin, Liu, and Collu [79] integrated an isolation forest (IF) algorithm with deep learning
neural networks and used this configuration for wind power forecasting. In the proposed
hybrid model, the input variables were the wind speed, nacelle orientation, yaw error, blade
pitch angle, and ambient temperature, while the output variable was the wind power. The
1-year data between July 2018 and June 2019 used in the case study were observed by
an offshore wind turbine installed in Leven, the United Kingdom. Two anomaly detection
techniques, namely the elliptic envelope (EE) and IF, were applied to filter the raw mea-
surements separately, and the results of this filtering were compared with those obtained
without anomaly detection. It was concluded that the deep learning neural networks were
not able to identify the outliers, and an additional anomaly detection technique was nec-
essary. Furthermore, IF performed better than EE in terms of wind forecast accuracy,
especially when the statistics of the wind data did not conform (approximately or better)
to a Gaussian distribution.

Recently, hybrid models are becoming more and more popular in the field of wind speed
and wind power forecasting. Many researchers have proposed their own hybrid models and
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demonstrated the effectiveness of those models. Several basic types of ideas for constructing
hybrid models can be summarised as follows:

1) applying a couple of independent models for individual forecasting and employing an
integration algorithm to combine the outputs of the independent models to generate
the final forecasts;

2) linking a time series model with an AI model;

3) joining a physics-based model with an AI model;

4) connecting a time series decomposition technique with an AI model;

5) integrating deep learning neural networks with other techniques, such as an ANN or a
filtering algorithm.

2.3 Overview of Wind Power Forecasting Software

A number of European developed countries, including Denmark, Spain, Germany, the
United Kingdom, France, the Netherlands, Portugal, and Ireland, as well as the United
States and China, have developed some pieces of wind power forecasting software which are
or were being run in real wind farms, and the effectiveness has been verified in practice [33,
139].

Prediktor, developed by the Risø National Laboratory (RNL), Denmark, is a piece of
short-term wind power forecasting software based on a physical method [132]. The basic
idea is to tailor the NWP forecasts (viz., wind speed and wind direction) obtained from a
High Resolution Limited Area Model (HIRLAM) for a target wind farm by applying the
Wind Atlas Analysis and Application Programme (WAsP), which models the influences
of local conditions including obstacles, surface roughness, and orography, together with a
PARK model, which takes into account the wake and array effects among the wind turbines
in a wind park. The power curves of wind turbines are employed to calculate the final wind
power forecasts for the next 36 hours [72].

EuroWind GmbH, a German meteorological firm, launched a piece of commercial re-
gional wind power forecasting software named the Simulation Model for the Operational
Forecast of the Wind Energy Production in Europe (SOWIE) [75]. The SOWIE is a
physics-based model that relies on the NWP data (viz., 3D wind and temperature fore-
casts) of a HIRLAM and the Global Forecast System (GFS) and the information database
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of all the wind turbines in Europe. Moreover, its forecast time horizon is expanded to 120
hours in advance [96].

Besides the physical method, the statistical method is another primary methodology
widely utilised in wind power forecasting software. For example, a British company, Garrad
Hassan, created GH Forecaster based on an adaptive multi-parameter statistical regres-
sion technique [106]. The location-specific meteorological forecasts (viz., wind speed, wind
direction, air temperature, and air pressure) transformed from the global NWP forecasts
provided by the Met Office, the United Kingdom, are input to a power model to be con-
verted to wind farm power generation [40].

In response to the increasing wind power in Spain, Sipreólico was developed by the
cooperation between University Carlos III of Madrid (UC3M) and the Electrical Grid of
Spain (REE), Spain [120]. The forecasting software is based on adaptive non-parametric
statistical models with the inputs of the NWP forecasts provided by the Spanish HIRLAM
and hourly real-time power records obtained from a supervisory control and data acquisi-
tion (SCADA) system together with various power curve models [66]. For different data
availability, there are nine statistical models. To be precise, one of them does not use
NWP forecasts; another three only take forecasted wind speed into account; another three
consider wind direction besides wind speed; the rest two are the hybrids of the others with
the extra non-parametric prediction of a diurnal cycle. Final forecasts are produced relying
on the combination of these alternative models according to the recent forecast errors of
every single model with a memory (a forgetting factor) of 24 hours [38]. Additionally, the
forecast time horizon of Sipreólico is 36 hours in advance with a temporal resolution of 1
hour [96].

The Technical University of Denmark (DTU) developed the Wind Power Prediction
Tool (WPPT), which is able to forecast the wind power generation of an individual wind
farm, a group of wind farms, and an area of wind farms with a time horizon up to 2
days [88]. In order to forecast the wind power of an area, a two-branch method is in-
troduced. Specifically, in the first branch, the online records and NWP forecasts of the
representative wind farms are used to generate the wind power forecasts of the representa-
tive wind farms in each sub-area; then, the wind power forecasts of the representative wind
farms are combined and upscaled to calculate the production of each sub-area; and then
the wind power production of the area is achieved through integrating the production of
each sub-area. In the second branch, the offline wind power records of the sub-areas and
the NWP forecasts of the area are utilised to compute the wind power production of the
sub-areas; once again, the area’s production is achieved through integrating the production
of the sub-areas. Finally, the total production is the weighted mean of the wind power
forecasts provided by these two branches.
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A conditional parametric approach which builds the relationship between meteoro-
logical variables (viz., wind speed and wind direction) and the output of wind power is
employed in the WPPT consisting of four models. To be precise, a wind farm model con-
verts NWP forecasts and online observations to the wind power of a wind farm by using
wind direction dependent power curves; an upscaling model calculates the wind power pro-
duction of a sub-area by integrating the forecasts of the representative wind farms based
on an upscaling function; an area model converts NWP forecasts and offline records to the
wind power production of an area based on a similar method in the wind farm model; and
a total model integrates the forecasts obtained from the two branches by using a weighted
mean method [88]. In response to the changes either in surroundings or in NWP models,
an adaptive parameters estimation method is employed based on a recursive least squares
and exponential forgetting algorithm. In addition, the WPPT offers the assessment of
wind power forecasting uncertainty [96].

Moreover, AI is applied to a couple of statistics-based software models. For instance, a
Spanish firm, AleaSoft, developed AleaWind with the assistance from the Polytechnic Uni-
versity of Catalonia (UPC). An exclusive model called AleaModel is applied in AleaWind
for wind power forecasting. Particularly, an ANN and a SARIMA model are combined
for the software architecture. The parameters of AleaWind are assessed online. Besides,
the wind speed and wind direction forecasts obtained from NWP models and wind power
measurements acquired from wind farms are applied as the inputs of AleaWind, which is
able to forecast the wind power production of an individual wind farm, a region, and a
whole nation with a time horizon of 1 to 2 days [96].

The Association for the Research and Development of Industrial Methods and Processes
(ARMINES) and the Paris School of Mines (ENSMP), France, codeveloped the ARMINES
Wind Power Prediction System (AWPPS) by integrating five types of models [39]. To be
precise, the short-term models based on a statistical time series method are generated to
forecast wind power 10 hours in advance. The long-term models based on fuzzy neural net-
works with the inputs of real-time SCADA data and NWP forecasts provide 3-day ahead
wind power forecasts. A hybrid model based on an intelligent weighting method combines
the forecasts of the short-term and long-term models to optimise the overall predictive per-
formance. The upscaling prediction models based on a cascaded and a clustering method
with reference wind farms are created by applying adaptive fuzzy neural networks and
used for regional and national forecasting. An uncertainty estimation model based on the
methods of adapted resampling and prediction risk indices assesses the confidence intervals
of short-term and long-term forecasting [96].

At the request of a group of Portuguese wind farm owners, the Institute of Systems and
Computer Engineering (INESC), the Institute of Mechanical Engineering and Industrial
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Management (INEGI), and the Research Centre for Wind Energy and Atmospheric Flows
(CEsA), Portugal, worked together to develop a piece of 3-day ahead wind power fore-
casting software which is named EPREV [96]. There are three types of statistical models,
namely a wind-to-power (W2P) model, an AR model, and a neural network assembling
model (NNAM), applied in EPREV. To be precise, the W2P model converts NWP fore-
casts to wind power forecasts; the AR model is specific for very short-term forecasting; and
the NNAM is for the fusion of the W2P and AR models. In addition, an error prediction
model is designed to assess the uncertainty of wind power forecasting [116].

The Institute for Solar Energy Supply Technology (ISET), Germany, developed the
Wind Power Management System (WPMS) based on a statistical method. In the WPMS,
the Lokalmodell of the DWD is regarded as an input model fed into an ANN model. For
the purpose of improving the Lokalmodell, the Klimamodell Mainz (a numerical mesoscale
atmospheric model) is applied to transform wind forecasts specifically for the site of wind
farms [30]. The WPMS performs the following two operations: real-time monitoring the
current wind power output of control areas and partial regions; and forecasting the wind
power of individual wind farms, control areas, and partial regions up to 3 days in advance.
Moreover, regional wind power forecasts are calculated by aggregating and upscaling the
forecasts of every single wind farm through a conversion model [117].

In order to further improve the accuracy of wind power forecasting, the hybrid method
with the combination of the physical and statistical methods is employed in the software.
LocalPred and RegioPred, provided by the National Renewable Energy Centre (CENER)
and the Research Centre for Energy, Environment and Technology (CIEMAT), Spain, is
a set of wind power forecasting software based on a hybrid method [89]. RegioPred is a
model for regional forecasting according to the results obtained from the single wind farm
forecasting model LocalPred. Specifically, regional forecasts are worked out by adding up
the forecasts of every individual wind farm or reference wind farms selected by cluster
analysis. Besides, LocalPred, containing an adaptive NWP inputs optimisation model
based on principal component analysis, time series modelling, mesoscale modelling with
Mesoscale Model 5 (MM5), and power curve modelling, is specifically designed for the
wind power forecasting of those wind farms in complex terrain. In addition, 72-hour ahead
meteorological variables forecasting is done by MM5 with a spatial resolution of one square
kilometre [90].

Following the principle of Prediktor, the University of Oldenburg (UO), Germany, pre-
sented a pretty similar software model called Previento [32]. They formerly implemented
the Deutschlandmodell [8] and now the Lokalmodell [32] of the DWD instead of a HIRLAM
for NWP. Besides, stricter physical downscaling and innovative linear upscaling are intro-
duced in Previento [139]. The forecast time horizon is up to 48 hours [32]. Along with wind
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power forecasts, the uncertainty of forecasted results is also provided by Previento [76].

Aeolis Forecasting Services, the Netherlands, launched a piece of software called Scirocco,
which is based on a hybrid method [96]. The various NWP models including the HIRLAM,
MM5, the European Centre for Medium-Range Weather Forecasts (ECMWF) model, and
the National Centers for Environmental Prediction (NCEP) model are applied to gener-
ate meteorological forecasts, which are used as the inputs of Scirocco. Besides, there are
three schemes for adjustment purposes in Scirocco. Specifically, a Model Output Statistics
(MOS) scheme is designed to adjust the systematic errors of NWP models as a post-
processing procedure. Another scheme is utilised to transform global NWP forecasts to
site-specific ones with local orography and roughness conditions. The other MOS scheme
is employed to deal with the features of wind turbines and wind farms. Finally, fore-
casted wind speed is converted to wind power via power curves provided by manufacturers.
Moreover, regional wind power production can be forecasted by using an upscaling model
according to the representative wind farms. The forecast time horizon relies on NWP
outputs. It is worth noting that Scirocco has the ability of self-learning that it is able to
adapt to a target wind farm by adjusting all the parameters in the schemes according to
the forecast errors during its operation in the first couple of months.

University College Cork (UCC), Ireland, developed the Weather and Wind Energy
Prognosis (WEPROG), which comprises a weather prediction model operating every 6
hours and a power prediction model using historical and real-time SCADA data [96]. A
multi-scheme ensemble prediction approach is applied to the weather prediction model,
while a training procedure building the relationship between meteorological forecasts and
historical wind power measurements is implemented in the power prediction model. The
WEPROG can be used to forecast the wind power generation of either a wind farm or a
region.

Prediktor and the WPPT were integrated and extended to be a new piece of software
called Zephyr, under the collaboration between the RNL and the DTU, Denmark [37].
The motivation of this hybrid method is to join the advantages of the two models to-
gether [124]. In Zephyr, a wind power forecasting model is allocated to a wind farm based
on data availability. For example, when the information of a wind farm is limited to the
type, number, and location of wind turbines, a simplified physics-based Prediktor model
is employed with the only inputs of NWP forecasts. Nevertheless, if all the data of a wind
farm are available, in that case, a statistics-based WPPT model will be added to forecast
wind power together [96].

Apart from the European countries, the United States also has its wind power fore-
casting software named eWind, developed by a U.S. company AWS Truewind [4]. The
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ForeWind numerical weather model, as a mesoscale model using the boundary conditions
obtained from a regional weather model, is run in the commercial software eWind. Unlike
Prediktor applying once-and-for-all parameterisation for local influences with the WAsP,
more physical processes can be captured and regional NWP forecasts can be better refined
to a specific location through this approach. Besides, an adaptive statistical method is
utilised to deal with systematic errors. The forecast time horizon of eWind is 2 days [38].

In addition, it is worth noting that as a developing country, China successfully developed
the Wind Power Forecast System (WPFS) with the support from the China Electric Power
Research Institute (CEPRI). The WPFS, taking NWP forecasts and wind farm historical
measurements into account, is a hybrid model based on a physical and a statistical method.
Specifically, there are five modules integrated into the WPFS, namely a NWP, a prediction
system database, a prediction programme, a user interface, and an energy management
system (EMS) interface module [139]. However, Canada still does not have its own wind
power forecasting software at the moment. Therefore, it is meaningful for Canada to
develop a piece of forecasting software with independent intellectual property rights.

Table 2.2 gives a list of wind power forecasting software with the corresponding devel-
opers, methods, and countries and regions of application [33, 96, 139].

Table 2.2. Wind power forecasting software.

Software Developer(s) Method Countries & regions of
application

Prediktor Risø Nationallaboratoriet, Den-
mark

Physical Denmark, Spain, Ire-
land, Northern Ireland,
France, Germany, the
United States, Scot-
land, and Japan

SOWIE EuroWind GmbH, Germany Physical Germany, Austria, and
Switzerland

AleaWind AleaSoft & Universidad Politécnica
de Cataluña, Spain

Statistical Spain

AWPPS Association pour la Recherche et
le Développement des Méthodes et
Processus Industriels & École Na-
tionale Supérieure des Mines de
Paris, France

Statistical Ireland, Crete, Madeira,
and the Azores
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Software Developer(s) Method Countries & regions of
application

EPREV Instituto de Engenharia de Sis-
temas e Computadores, Instituto
de Engenharia Mecânica e Gestão
Industrial, and Centro de Estudos
de Energia Eólica e Escoamentos
Atmosféricos, Portugal

Statistical Portugal

GH Fore-
caster

Garrad Hassan, the United King-
dom

Statistical Great Britain, Greece,
and the United States

Sipreólico Universidad Carlos III de Madrid &
Red Eléctrica de España, Spain

Statistical Spain

WPMS Institut für Solare Energiever-
sorgungstechnik, Germany

Statistical Germany, Austria, and
Italy

WPPT Danmarks Tekniske Universitet,
Denmark

Statistical Denmark, Australia,
Canada, Ireland,
Northern Ireland, the
Netherlands, Sweden,
and Greece

eWind AWS Truewind, the United States Hybrid the United States

LocalPred
& Regio-
Pred

Centro Nacional de Enerǵıas Ren-
ovables & Centro de Investiga-
ciones Energéticas, Medioambien-
tales y Tecnológicas, Spain

Hybrid Spain & Ireland

Previento Carl von Ossietzky Universität
Oldenburg, Germany

Hybrid Germany & Northern
Ireland

Scirocco Aeolis Forecasting Services, the
Netherlands

Hybrid The Netherlands, Ger-
many, and Spain

WEPROG Coláiste na hOllscoile Corcaigh,
Ireland

Hybrid Denmark, Germany,
Ireland, and Australia

WPFS China Electric Power Research In-
stitute, China

Hybrid China
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Software Developer(s) Method Countries & regions of
application

Zephyr Risø Nationallaboratoriet & Dan-
marks Tekniske Universitet, Den-
mark

Hybrid Denmark & Australia

2.4 Fundamental Theory of the Sugeno-Type Fuzzy

Inference System

The Sugeno-type FIS, also known as the Takagi-Sugeno-Kang system, was first proposed
in 1985 [130]. Its output membership functions are limited to either constant or linear.
If the output membership functions are constant, it is called a zero-order system; if the
output membership functions are linear, it is called a first-order system.

A typical form of the fuzzy rules in the zero-order Sugeno-type FIS is

if x is A and y is B, then z = k , (2.4)

where x and y are the input variables, A and B are the fuzzy sets, z is the output, and k is
a constant. The output membership functions of all the rules in the zero-order Sugeno-type
FIS are a singleton set [143].

The first-order Sugeno-type FIS, which is more popular in practical applications, has
the following form of fuzzy rules:

if x is A and y is B, then z = px+ qy + r , (2.5)

where x and y are the input variables, A and B are the fuzzy sets, z is the output, and
p, q, and r are constants. The first-order Sugeno-type FIS, in which each rule defines
the location of a moving singleton set, can be regarded as the extension of the zero-order
Sugeno-type FIS [143].

In each fuzzy rule, the relationship between input variables and the output is linear.
After computation, a smooth non-linear input-output curve can be produced via interpola-
tion [143]. The Sugeno-type FIS, widely used in the field of system modelling and control,
is a simple and effective way of applying a linear approach to a non-linear system [102].
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In addition, a higher-order Sugeno-type FIS is theoretically feasible. Nevertheless, the
growth in the order makes the system extremely complex, but it does not bring significant
advantages in terms of more precise modelling or control. Thus, the application of the
higher-order Sugeno-type FIS is relatively rare in practice.

In general, the advantages of the Sugeno-type FIS can be summarised as follows [102]:

1) it ensures the continuity of the output curve;

2) it has high computational efficiency;

3) it is pretty suitable for mathematical analysis;

4) it can be well combined with existing linear system theories;

5) it can be applied together with optimisation and adaptive algorithms.

2.5 Fundamental Theory of the Adaptive Neuro-Fuzzy

Inference System

The FIS goes through a series of mapping processes in inference, namely mapping the
characteristics of input variables to input membership functions, mapping input member-
ship functions to fuzzy rules, mapping fuzzy rules to the characteristics of the output,
mapping the characteristics of the output to output membership functions, and mapping
output membership functions to a single value or decision [61]. In a typical FIS, either
given (expert experience) or arbitrarily selected (intuitive experience) membership func-
tions are employed. Essentially, the fuzzy rules of the established FIS, explaining system
characteristics, are acquired in advance based on the knowledge and experience of experts
or professionals [68]. Structurally, the FIS is usually represented by if-then conditional
sentences (rules), which are very suitable for presenting human qualitative or fuzzy knowl-
edge and experience. However, a lack of corresponding knowledge or experience will lead
to unsatisfactory results.

In the past few decades, the development of the FIS and ANN has made considerable
progress in intelligent control. Although both FIS and ANN belong to the field of AI, their
fundamental theories are entirely different. An obvious shortcoming of the FIS is that it
does not have a self-learning function, so its application is greatly restricted. On the other
hand, the ANN cannot express the fuzzy language. The ANFIS, combining the FIS and

35



ANN, not only can express human knowledge but also has the self-learning ability. It is
an effective tool for the modelling and control of complex systems [60].

A typical architecture of an ANFIS is shown in Figure 2.1. Each node in the same
layer has a similar function, and the functions in each layer of the ANFIS are described as
follows [99]:

Figure 2.1. Typical architecture of an ANFIS.

(1) First layer

Each node in this layer is an adaptive node and represented by a node function given
by

O1, i = µAi
(x1), i = 1, 2 , (2.6)

and
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O1, i = µBi−2
(x2), i = 3, 4 , (2.7)

where O1, i is the output of the i-th node in the first layer, µAi
and µBi−2

are the
membership functions, Ai and Bi−2 are the fuzzy sets, and x1 and x2 are the inputs to
the nodes.

(2) Second layer

Each node in this layer is a fixed node represented by Π. The inputs are multiplied by
each other, and the resulting product is the output, so

O2, i = ωi = µAi
(x1)µBi

(x2), i = 1, 2 , (2.8)

where O2, i is the output of the i-th node in the second layer, ωi is the weight of the
i-th node, µAi

and µBi
are the membership functions, Ai and Bi−2 are the fuzzy sets,

and x1 and x2 are the inputs to the nodes.

(3) Third layer

Each node in this layer is a fixed node represented by N . The ratio of the weight of
the i-th rule to the sum of the weights of the rules is calculated as the output of the
node, so

O3, i = ωi =
ωi

ω1 + ω2

, i = 1, 2 , (2.9)

where O3, i is the output of the i-th node in the third layer, ωi is the normalised weight
of the i-th node, and ωi is the weight of the i-th node.

(4) Fourth layer

Each node in this layer is an adaptive node and represented by a node function given
by

O4, i = ωifi = ωi(pix1 + qix2 + ri), i = 1, 2 , (2.10)

where O4, i is the output of the i-th node in the fourth layer, ωi is the normalised
weight of the i-th node, fi is the output of the i-th rule, pi, qi, and ri are the consequent
parameters, and x1 and x2 are the inputs to the nodes.
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(5) Fifth layer

The single node in this layer is a fixed node that calculates the final output of all the
input signals:

O5, i = f =
∑
i

ωifi =

∑
i ωifi∑
i ωi

, i = 1, 2 , (2.11)

where O5, i is the output of the i-th node in the fifth layer, f is the sum of the outputs
of the rules, ωi is the normalised weight of the i-th node, fi is the output of the i-th
rule, and ωi is the weight of the i-th node.

The ANFIS can reflect the features of the studied data correctly since its fuzzy rules
and membership functions are learnt according to the given information [118]. In general,
the ANFIS is mainly applied to the following situations [34]:

1) a large number of input-output data pairs are available for modelling;

2) the analytical model of the system is not available in advance based on existing input
and output variables.

2.6 Fundamental Theory of Time Series Analysis

2.6.1 Stationary Time Series

In statistics, stationarity means that the statistical properties of a time series do not change
over time. If a random time series yt, for any time t, meets all of the following conditions:

1) expectation, E(yt) = µ <∞, is a constant independent of time t;

2) variance, V ar(yt) = E(yt − µ)2 = σ2, is a constant independent of time t;

3) autocovariance, Cov(yt, yt−k) = E[(yt − µ)(yt−k − µ)] = γk, is a constant only related
to the time interval k and independent of time t,

then yt is called a stationary time series, and γk is called an autocovariance function [52].
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2.6.2 Autocorrelation Function of a Stationary Time Series

The definition of the autocorrelation function of the time series yt is shown as follows [10]:

ρk =
γk
γ0

. (2.12)

In fact, it is impossible to calculate the theoretical expectation, autocovariance, and
autocorrelation function according to the definition. Instead, the corresponding estimated
values, namely the sample mean, sample autocovariance, and sample autocorrelation func-
tion, are calculated based on sample data. If n observations of a random time series are
given, then the formulae are shown as follows [10]:

(1) Sample mean:

y =
1

n

n∑
t=1

yt . (2.13)

(2) Sample autocovariance:

γ̂(k) =
1

n

n−k∑
t=1

(yt − y)(yt−k − y) . (2.14)

(3) Sample autocorrelation function:

ρ̂(k) =
γ̂(k)

γ̂(0)
. (2.15)

2.6.3 Autoregressive and Moving Average Model

The previous information of the variable and disturbance terms is applied to find the
changing rules in a single-variable time series model. The ARMA model, which is the most
popular model used to fit a single-variable stationary time series, can be divided into three
types, namely the AR, MA, and ARMA models [50].
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(1) AR model

A model with the following structure is called a p-order AR model, which can be simply
written as AR (p):

yt = φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt

φp 6= 0

E(εt) = 0, V ar(εt) = σ2
ε , E(εtεs) = 0, s 6= t

E(ysεt) = 0, ∀s < t

. (2.16)

The AR (p) model has the following conditions:

1) φp 6= 0, ensuring that the highest order of the model is p;

2) E(εt) = 0, V ar(εt) = σ2
ε , E(εtεs) = 0, s 6= t, asking that the random disturbance

series εt is a zero-mean white noise series;

3) E(ysεt) = 0, ∀s < t, indicating that the current random disturbance term is inde-
pendent of the past values of the series.

Introduce the lag operator L, and let Lk be the k-step lag operator:

Lkyt = yt−k , (2.17)

then the AR (p) model can be simplified as follows:

Φ(L)yt = εt , (2.18)

where Φ(L) = 1 − φ1L − φ2L
2 − · · · − φpLp, which is called a p-order AR coefficient

polynomial.

Moreover, Φ(L) = 0 is called the characteristic equation of the AR (p) model. The p
roots λi (i = 1, 2, . . . , p) of the characteristic equation are called the characteristic
roots of the AR (p) model. If all of the p characteristic roots are outside of the unit
circle:

|λi| > 1, i = 1, 2, . . . , p , (2.19)

then the AR (p) model is called a stationary AR model, and the series yt fitting
this model is called a stationary AR series. Equation (2.19) is called the stationary
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condition of the AR model. Since Φ(L) = 0 is a polynomial related to the lag operator
L, the stationarity of the AR model depends on the parameters φ1, φ2, . . . , φp.

(2) MA model

A model with the following structure is called a q-order MA model, which can be
simply written as MA (q):

yt = εt − θ1εt−1 − θ2εt−2 − · · · − θqεt−q
θq 6= 0

E(εt) = 0, V ar(εt) = σ2
ε , E(εtεs) = 0, s 6= t

. (2.20)

The MA (q) model has the following conditions:

1) θq 6= 0, ensuring that the highest order of the model is q;

2) E(εt) = 0, V ar(εt) = σ2
ε , E(εtεs) = 0, s 6= t, requiring that the random distur-

bance series εt is a zero-mean white noise series.

Apply the lag operator L, and then the MA (q) model can be simplified as follows:

yt = Θ(L)εt , (2.21)

where Θ(L) = 1 − θ1L − θ2L
2 − · · · − θqLq, which is called a q-order MA coefficient

polynomial.

Moreover, Θ(L) = 0 is called the characteristic equation of the MA (q) model. The q
roots λk (k = 1, 2, . . . , q) of the characteristic equation are called the characteristic
roots of the MA (q) model. If all of the q characteristic roots are outside of the unit
circle:

|λk| > 1, k = 1, 2, . . . , q , (2.22)

then the MA (q) model is called an invertible MA model, and the series yt fitting
this model is called an invertible MA series. Equation (2.22) is called the invertible
condition of the MA model. Since Θ(L) = 0 is a polynomial related to the lag operator
L, the invertibility of the MA model depends on the parameters θ1, θ2, . . . , θq.
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(3) ARMA model

A model with the following structure is called an ARMA model, which can be simply
written as ARMA (p, q):


yt = φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt − θ1εt−1 − θ2εt−2 − · · · − θqεt−q
φp 6= 0, θq 6= 0

E(εt) = 0, V ar(εt) = σ2
ε , E(εtεs) = 0, s 6= t

E(ysεt) = 0, ∀s < t

. (2.23)

The ARMA (p, q) model has all the conditions mentioned above in the AR (p) and
MA (q) models.

Apply the lag operator L, and then the ARMA (p, q) model can be simplified as follows:

Φ(L)yt = Θ(L)εt , (2.24)

where Φ(L) = 1 − φ1L − φ2L
2 − · · · − φpLp, which is called a p-order AR coefficient

polynomial, and Θ(L) = 1 − θ1L − θ2L
2 − · · · − θqL

q, which is called a q-order MA
coefficient polynomial.

Obviously, when q = 0, the ARMA (p, q) model is equivalent to the AR (p) model;
when p = 0, the ARMA (p, q) model is equivalent to the MA (q) model. It can be seen
that the AR (p) and MA (q) models are the special cases of the ARMA (p, q) model.
Therefore, if the roots of Φ(L) = 0 have all modulus greater than 1, ARMA (p, q) is
a stationary ARMA model; if the roots of Θ(L) = 0 have all modulus greater than 1,
ARMA (p, q) is an invertible ARMA model; and if the roots of Φ(L) = 0 and Θ(L) = 0
have all modulus greater than 1, ARMA (p, q) is a stationary and invertible ARMA
model.

2.6.4 Model Identification

By investigating the properties of the sample autocorrelation function and sample partial
autocorrelation function of a stationary time series, an appropriate model can be selected
to be fitted to the time series of observations [35].
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(1) Partial autocorrelation function

Set yt to be a stationary time series. When the values of yt−1, yt−2, . . . , yt−k are given
to predict yt, the predicted value is the linear combination of yt−j:

ŷt =
k∑
j=1

gkjyt−j . (2.25)

The prediction error is

et = yt − ŷt = yt −
k∑
j=1

gkjyt−j . (2.26)

Minimise the square of the prediction error. Set the selected parameters ψkj (j =
1, 2, . . . , k), which let

E(e2
t ) = E[(yt −

k∑
j=1

gkjyt−j)
2] = min , (2.27)

then ŷt =
∑k

j=1 ψkjyt−j is called a linear minimum variance estimation. Besides,
ψkj (j = 1, 2, . . . , k) is called the partial autocorrelation function (PACF) of the
stationary time series yt.

Expanding and simplifying Equation (2.27), the following equation can be obtained:

k∑
i=1

ψkiρj−i = ρj, j = 1, 2, . . . , k . (2.28)

Its matrix form is 
1 ρ1 · · · ρk−1

ρ1 1 · · · ρk−2
...

...
. . .

...
ρk−1 ρk−2 · · · 1



ψk1

ψk2
...
ψkk

 =


ρ1

ρ2
...
ρk

 . (2.29)

According to Equation (2.29), the recursive equation of the PACF ψkk is shown as
follows:
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ψkk =


ρ1, k = 1

ρk −
∑k−1

j=1 ψk−1, jρk−j

1−
∑k−1

j=1 ψk−1, jρj
, k = 2, 3, . . .

, (2.30)

in which

ψkj = ψk−1, j − ψkkψk−1, k−j, j = 1, 2, . . . , k . (2.31)

(2) Identification of the AR model

Multiply both sides of the stationary time series model yt = φ1yt−1 + φ2yt−2 + · · · +
φpyt−p + εt by yt−k (∀k ≥ 1), and then calculate the expectation:

E(ytyt−k) = φ1E(yt−1yt−k)+φ2E(yt−2yt−k)+· · ·+φpE(yt−pyt−k)+E(εtyt−k), ∀k ≥ 1 .
(2.32)

According to the third condition of the AR (p) model:

E(εtyt−k) = 0, ∀k ≥ 1 , (2.33)

the following recursive equation of the autocovariance function can be obtained:

γk = φ1γk−1 + φ2γk−2 + · · ·+ φpγk−p . (2.34)

Since ρk = γk
γ0

, divide both sides of Equation (2.34) by the variance function γ0, and

then the recursive equation of the autocorrelation function (ACF) can be obtained:

ρk = φ1ρk−1 + φ2ρk−2 + · · ·+ φpρk−p . (2.35)

The ACF of the stationary AR (p) model has two significant properties: one is tailing
off, which means ρk always has a non-zero value and will not invariably be equal to zero
when k is greater than a certain constant; the other is that ρk decays by the negative
exponent.

For the AR (p) model
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
ρ1 = φ1 + φ2ρ1 + · · ·+ φpρp−1

ρ2 = φ1ρ1 + φ2 + · · ·+ φpρp−2

...

ρp = φ1ρp−1 + φ2ρp−2 + · · ·+ φp

, (2.36)

its matrix form is 
ρ1

ρ2
...
ρp

 =


1 ρ1 · · · ρp−1

ρ1 1 · · · ρp−2
...

...
. . .

...
ρp−1 ρp−2 · · · 1



φ1

φ2
...
φp

 . (2.37)

It can be proved that the PACF ψkk of the stationary AR (p) model cuts off after the
lag p, which means ψkk = 0, ∀k > p. Conversely, if the PACF ψkk of a time series
cuts off after the lag p, then the time series fits the AR (p) model. The mathematical
expression is shown as follows:

ψkj =

{
φj, j = 1, 2, . . . , p

0, j = p+ 1, p+ 2, . . . , k
. (2.38)

(3) Identification of the MA model

For the invertible MA (q) model yt = εt−θ1εt−1−θ2εt−2−· · ·−θqεt−q, the autocovariance
function is

γk = E(ytyt−k) = E[(εt−θ1εt−1−· · ·−θqεt−q)(εt−k−θ1εt−k−1−· · ·−θqεt−k−q)] . (2.39)

According to the second condition of the MA (q) model:

E(εtεs) = 0, s 6= t , (2.40)

the following recursive equation of the autocovariance function can be obtained:
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γk =


(1 + θ2

1 + · · ·+ θ2
q)σ

2
ε , k = 0

(−θk +

q−k∑
i=1

θiθk+1)σ2
ε , 1 ≤ k ≤ q

0, k > q

. (2.41)

Since ρk = γk
γ0

, divide both sides of Equation (2.41) by the variance function γ0, and
then the recursive equation of the ACF can be obtained:

ρk =


1, k = 0

−θk +
∑q−k

i=1 θiθk+1

1 + θ2
1 + · · ·+ θ2

q

, 1 ≤ k ≤ q

0, k > q

. (2.42)

It can be proved that the ACF ρk of the invertible MA (q) model cuts off after the lag
q, which means ρk = 0, ∀k > q. Conversely, if the ACF ρk of a time series cuts off
after the lag q, then the time series fits the MA (q) model.

The PACF of the invertible MA (q) model has two significant properties: one is tailing
off, which means ψkk always has a non-zero value and will not invariably be equal to
zero when k is greater than a certain constant; the other is that ψkk decays by the
negative exponent.

(4) Identification of the ARMA model

The criteria for the identification of the ARMA model are summarised as follows:

1) if the ACF of a stationary time series yt tails off, and its PACF cuts off, then the
series yt is an AR series;

2) if the ACF of a stationary time series yt cuts off, and its PACF tails off, then the
series yt is an MA series;

3) if both the ACF and PACF of a stationary time series yt tail off, then the series yt
is an ARMA series.

2.6.5 Stationary Model of a Non-Stationary Time Series

The AR, MA, and ARMA models mentioned above are all used to describe stationary time
series. However, in practice, many time series are non-stationary. In order to smooth a time
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series, a first-order or second-order differencing operation is usually applied to transform
the original time series into a stationary time series. If a non-stationary time series can
be transformed into a stationary time series by differencing, then the series is called a
homogeneous non-stationary time series, and the number of differencing times is called a
homogeneous order [10].

Set ∇ to be a differencing operator, then the first-order differencing is

∇yt = yt − yt−1 , (2.43)

and the second-order differencing is

∇2yt = ∇(yt − yt−1) = yt − 2yt−1 + yt−2 . (2.44)

It can be deduced that

∇k = (1− L)k . (2.45)

If yt is a d-th order homogeneous non-stationary time series, then the new time series
transformed by the d-th order differencing

yt
′ = (1− L)dyt (2.46)

is a stationary time series.

If the new time series yt
′ fits the ARMA (p, q) model Φ(L)yt

′ = Θ(L)εt, then the original
time series yt fits

Φ(L)(1− L)dyt = Θ(L)εt , (2.47)

where Φ(L) = 1− φ1L− φ2L
2 − · · · − φpLp, which is the AR coefficient polynomial of the

stationary and invertible ARMA (p, q) model; Θ(L) = 1− θ1L− θ2L
2 − · · · − θqLq, which

is the MA coefficient polynomial of the stationary and invertible ARMA (p, q) model; and
εt is a zero-mean white noise series.

The model is called an ARIMA model, and the original non-stationary time series yt
fits the ARIMA (p, d, q) model.
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2.7 Fundamental Principle of the Weather Research

and Forecasting Model

2.7.1 Introduction

The WRF model, jointly developed by a large number of scientific research institutions in-
cluding the National Center for Atmospheric Research (NCAR), the National Oceanic and
Atmospheric Administration (NOAA), represented by the NCEP and the Earth System
Research Laboratory (ESRL), the Air Force Weather Agency (AFWA), the Naval Research
Laboratory (NRL), the University of Oklahoma (OU), and the Federal Aviation Admin-
istration (FAA), is a next-generation mesoscale NWP system with high resolution [126].
This system is designed not only for operational numerical weather forecasting applica-
tions, for example, daily weather and severe storm, air-quality, wildland fire, and wind
and solar forecasts, but also for atmospheric numerical simulation research, including data
assimilation research, atmospheric physics/parameterisation research, regional climate and
seasonal time-scale research, land surface-atmosphere interaction simulations, air-sea cou-
pling simulations, and idealised simulations at multiple scales [112].

To be precise, the WRF model is a fully compressible and non-hydrostatic model (with
a hydrostatic option) written in the Fortran 90 language [108]. The Arakawa C-grid (a
staggered grid) is applied in the horizontal direction, while a terrain-following hydrostatic
pressure coordinate is employed in the vertical direction [105]. Besides, a second-order
and a third-order Runge-Kutta algorithm are used for time integration schemes [135]. In
addition, the WRF model features two dynamical cores (the Advanced Research Weather
Research and Forecasting (ARW) and Non-Hydrostatic Mesoscale Model (NMM) cores),
one data assimilation system, and one scalable software architecture that supports parallel
computing and system extensibility [69]. In terms of the model framework, programme
optimisation, and numerical calculations, the state-of-the-art technology is utilised for the
WRF model in which the robust data assimilation technology, powerful nesting capability,
and advanced physical processes are combined together to allow researchers to simulate
real atmospheric data or ideal atmospheric conditions [113].

The WRF model has a number of advantages, such as scalability, portability, high
efficiency, and easy maintenance. Moreover, it can also be coupled to those prediction
models from different industries [138]. At present, the WRF model, as a free and shared
resource holding over 30,000 registered users from more than 150 countries, has become a
mainstream weather prediction model that is suitable for the scale range of tens of metres
to thousands of kilometres [125].
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2.7.2 WRF Model Structure

A WRF modelling system flow chart is shown in Figure 2.2, from which it can be seen that
the system consists of three main components, namely a Weather Research and Forecast-
ing Pre-Processing System (WPS), a WRF model, and a post-processing and visualisation
system [27]. Specifically, the WPS is used for real-world simulations. The functions of the
WPS include defining the simulation domains, interpolating static geographical data (such
as topography, the land-use type, and the soil type) into the simulated domains, and in-
terpolating the gridded meteorological data obtained from other models into the simulated
domains. The WRF model is made up of two parts. One is called a Weather Research and
Forecasting Data Assimilation (WRFDA) system, which is not mandatory. Nevertheless,
the WRFDA system can be utilised to add observation data to the interpolation analysis
created by the WPS. When the WRF model is running in cyclic mode, the WRFDA system
can also be used to update the initialisation conditions of the WRF model. The other is
an ARW solver, which is the critical component of the WRF modelling system. The ARW
solver is composed of several initialisation programmes and is used for the simulations and
numerical integrations of ideal and real data. The post-processing and visualisation system
supports multiple graphics and verification tools, such as the Visualisation and Analysis
Platform for Ocean, Atmosphere, and Solar Researchers (VAPOR), the NCAR Command
Language (NCL), ARWpost, Read/Interpolate/Plot 4 (RIP4), the Weather Research and
Forecasting Post Processor (WPP), and Model Evaluation Tools (MET).
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Figure 2.2. WRF modelling system flow chart.
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2.8 Fundamental Algorithm of the Technique for Or-

der of Preference by Similarity to Ideal Solution

2.8.1 Introduction

The TOPSIS, designed for solving multi-criteria decision making problems, was first pro-
posed by Hwang and Yoon in 1981 [58] and further developed by Yoon in 1987 [149] and
Hwang, Lai, and Liu in 1993 [57]. It is a comprehensive evaluation method that can make
full use of the information of the original data, and its results can accurately reflect the
gap among alternatives [150]. The positive and negative ideal solutions are the two fun-
damental concepts of the TOPSIS method [140]. To be precise, the attribute values of
the positive and negative ideal solutions are the best and worst ones for all the evaluation
criteria, respectively [141]. The basic principle of the TOPSIS is to compare each alterna-
tive with both the positive and negative ideal solutions. The one which is the closest to
the positive ideal solution and farthest from the negative ideal solution is the best option
among all the alternatives [31]. In terms of the advantages of the TOPSIS, it is simple in
structure and computationally efficient [111]. Moreover, there are no strict requirements
concerning the criterion type, criterion amount, sample size, and data distribution [23]. In
addition to ranking alternatives, the TOPSIS can also serve as an approach to assigning
weights for various alternatives.

2.8.2 TOPSIS Scheme

The TOPSIS scheme is implemented by carrying out the following key steps [5, 93, 146]:

(1) Step 1

Create a standardised evaluation matrix X consisting of m alternatives and n criteria:

X =


x11 x12 · · · x1n

x21 x22 · · · x2n
...

...
. . .

...
xm1 xm2 · · · xmn

 . (2.48)

(2) Step 2

Positivise the original matrix X:
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Y = P (X) =


y11 y12 · · · y1n

y21 y22 · · · y2n
...

...
. . .

...
ym1 ym2 · · · ymn

 . (2.49)

As shown in Table 2.3, there are four common types of criteria used in the TOPSIS
scheme. Specifically, the first type is called the benefit criterion, the characteristic
of which is the bigger, the better. The second one is called the cost criterion, which
is contrary to the benefit criterion, with the characteristic of the smaller, the better.
Besides, there is a type called the intermediate criterion, and its characteristic is the
closer to a specific value, the better. The last one is named the interval criterion,
instead of a value, its characteristic is the closer to a particular interval, the better.
Positivisation refers to the conversion of all non-benefit criteria into benefit ones.

Table 2.3. Four common types of criteria and their characteristics.

Type Characteristic

Benefit criterion The bigger, the better.

Cost criterion The smaller, the better.

Intermediate criterion The closer to a specific value, the better.

Interval criterion The closer to a specific interval, the better.

For each non-benefit criterion, there is a formula that can be applied to convert it to
a benefit criterion. The details are shown as follows:

1) cost criterion −→ benefit criterion:

yi = max{xi} − xi . (2.50)

2) intermediate criterion −→ benefit criterion:

yi = 1− |xi − x0|
M

, (2.51)

in which

M = max{|xi − x0|} . (2.52)
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3) interval criterion −→ benefit criterion:

yi =


1− a− xi

M
, xi < a

1, a ≤ xi ≤ b

1− xi − b
M

, k > b

, (2.53)

in which

M = max{a−min{xi},max{xi} − b} . (2.54)

(3) Step 3

Normalise the positivised matrix Y to eliminate the influence of different criterion
dimensions:

Z = N(Y ) =


z11 z12 · · · z1n

z21 z22 · · · z2n
...

...
. . .

...
zm1 zm2 · · · zmn

 , (2.55)

in which

zij =
yij√∑m
i=1 yij

2
. (2.56)

(4) Step 4

Define the positive ideal solution Z+ and negative ideal solution Z−:

Z+ = (Z+
1 , Z

+
2 , . . . , Z

+
n )

= (max{z11, z21, . . . , zm1},max{z12, z22, . . . , zm2}, . . . ,max{z1n, z2n, . . . , zmn})
,

(2.57)

and

Z− = (Z−1 , Z
−
2 , . . . , Z

−
n )

= (min{z11, z21, . . . , zm1},min{z12, z22, . . . , zm2}, . . . ,min{z1n, z2n, . . . , zmn})
.

(2.58)
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The nature of Equations (2.57) and (2.58) is to pick out the maximum and minimum
values of each criterion, respectively.

(5) Step 5

Calculate the distances between each alternative and the positive and negative ideal
solutions:

D+
i =

√√√√ n∑
j=1

(Z+
j − Zij)2 , (2.59)

and

D−i =

√√√√ n∑
j=1

(Z−j − Zij)2 . (2.60)

(6) Step 6

Calculate the similarity scores of all the alternatives to the positive ideal solution:

Si =
D−i

D+
i +D−i

. (2.61)

The range of Si is between 0 and 1. Specifically, if the distance between the alternative
and negative ideal solution D−i is 0, which means the alternative is just the negative
ideal solution, its similarity score Si will be 0. If the distance between the alternative
and positive ideal solution D+

i is 0, which means the alternative is just the positive
ideal solution, its similarity score Si will be 1.

(7) Step 7

Rank all the alternatives according to their similarity scores Si.
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Chapter 3

Preliminary Work

3.1 Analysis of Factors Affecting Wind Power

The electricity of wind farms is produced by wind turbines which first convert the kinetic
energy of wind into the mechanical energy of blades and then into electrical energy via
electromagnetic induction. The output power of a wind turbine can be described by the
following formula [98]:

P =
1

2
CpηρAU

3 , (3.1)

where P is the wind power (W), Cp is the power coefficient, η is the efficiency, ρ is the air
density (kg/m3), A is the swept area (m2), and U is the wind speed (m/s).

(1) Wind speed

According to Formula (3.1), it can be seen that the wind power (P ) is proportional
to the cube of the wind speed (U). That is to say, eight times the wind power can be
obtained by doubling the wind speed. A typical wind turbine power curve is shown in
Figure 3.1 [7], from which it can be found that a slight change in the wind speed leads
to a great influence on the wind power when the wind speed is in the range between the
cut-in and rated speeds. Specifically, the cut-in speed is the minimum required wind
speed to start the wind turbine. Usually, its value is from 3 to 4 m/s. Besides, the
rated output speed, typically between 12 and 17 m/s, is the wind speed at which the
output power reaches the rated power of the wind turbine. Moreover, the cut-out speed
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is the maximum wind speed for wind turbine safe operation, and its common value is
25 m/s [114]. While the wind speed is between the rated output and cut-out speeds,
the wind turbine can keep running at the maximum output power level. Nevertheless,
when the wind speed is either lower than the cut-in speed or higher than the cut-out
speed, the wind turbine will not work, so that the output power is 0. Hence, the wind
speed is the most important variable that affects the wind power.

Figure 3.1. Typical wind turbine power curve.

(2) Wind direction

When the wind turbine is facing directly into the wind, the output wind power will
be very close to the designed value. However, when there is a certain angle between
the horizontal axis of the wind turbine and wind direction, the wind energy cannot be
fully captured by the wind turbine, resulting in the lower output power. Although a
yaw drive, installed in the horizontal wind turbine, is capable of intelligently orienting
the wind turbine to face the wind by sensors when the wind direction changes, the
response action costs time. Therefore, the wind direction variable affects the wind
power as well.
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(3) Air density

Formula (3.1) illustrates that the air density (ρ) is another variable that affects the
wind power. With the rise of the air density, the output power of the wind turbine goes
up. In addition, the air density varies with the changes in the atmospheric pressure,
temperature, and humidity, which are also regarded as the factors that have influences
on the wind power.

(4) Power coefficient, efficiency, and swept area

As shown in Formula (3.1), the power coefficient (Cp), efficiency (η), and swept area
(A) all affect the output power. However, these properties are fixed for any given wind
turbine. In other words, they are factors affecting the wind power but not variables.

3.2 Description of Data Sources

Three sets of time series data were used for developing the multi-hour ahead wind power
forecasting system in this study. More specifically, two of these datasets were acquired
from a real wind farm located in North China. These datasets consisted of the histori-
cal wind speed measurements obtained at the wind turbine hub height and wind power
measurements for a single operational wind turbine for the time period from 00:00:00 Co-
ordinated Universal Time (UTC) on the 11th of August 2015 to 23:30:00 UTC on the
3rd of September 2015. The sampling time of the data was 30 minutes. In total, each of
the two sets of data had 1,152 samples acquired over a period of 24 days. The remaining
dataset consisted of the meteorological forecasts obtained from the GFS with a temporal
resolution of 6 hours for the same period of time. In order to build the forecasting models
and assess their predictive performance, these three sets of data were divided into two
groups. In particular, the data from the first 20 days were used as a training dataset, and
the remaining data from the last 4 days were used as a test dataset. Additionally, for the
ANFIS-based power curve model and wind speed correction model, the last-day data of
the first 20-day data were set as a checking dataset for validation (preventing overfitting of
the training dataset), which means the length of the training dataset reduced to 19 days.

Besides, there was a set of geographic coordinate data for each of the 66 wind turbines
in the wind farm. The centre point of all the wind turbines could be determined: the
location centroid was 41.06◦ N and 114.81◦ E. This was regarded herein as the location of
the target wind turbine at which wind speed and wind power forecasts would be made.
In addition, a set of static geographical data provided by the University Corporation for
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Atmospheric Research (UCAR), the United States, was available for WRF (physics-based)
modelling.

3.3 Approaches of Data Pre-Processing

(1) Use interpolation for missing data

In the actual operation of wind farms, incomplete wind data are very common. This
problem may result from system failures or may be caused by human errors. Therefore,
for a set of raw data, the first step is to apply an approach to complete it. The Lagrange
polynomial is a proper interpolation method for solving the problem of missing data.
The mathematical description is shown as follows [25].

A set of n+ 1 different data points, a = x0 < x1 < · · · < xn = b, in the range of [a, b]
is given, and the values of the function y = f(x) are set to be y0, y1, . . . , yn. If there
is a polynomial

Pn(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n (3.2)

let

Pn(xi) = yi, i = 0, 1, 2, . . . , n , (3.3)

then Pn(x) is called the interpolation polynomial of y = f(x), x0, x1, . . . , xn are
the interpolation nodes, [a, b] is the interpolation interval, and Equation (3.3) is the
interpolation condition.

(2) Clear negative data

In the original wind data, some values of historically measured wind speed and wind
power were negative, which was abnormal. In order to generate the forecasting models
properly, all the negative data had to be cleared. A simple way was to regard all of
them to be 0:

Ui = 0, if Ui < 0 , (3.4)

and
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Pi = 0, if Pi < 0 , (3.5)

where Ui is the i-th wind speed, and Pi is the i-th wind power.

(3) Normalise data

For the purpose of the fast convergence of an ANFIS model, both input and output
data should be normalised in the range between 0 and 1 before training and testing
procedures. In this study, the input was the wind speed, and the output was the wind
power. A popular min-max normalisation technique was employed [107]:

xn, i =
(xi − xmin)(ymax − ymin)

xmax − xmin
+ ymin , (3.6)

where xn, i is the i-th normalised wind speed (power), xi is the i-th wind speed (power),
xmin is the minimum wind speed (power), ymax is the normalised maximum wind
speed (power), ymin is the normalised minimum wind speed (power), and xmax is the
maximum wind speed (power).

In this study, the minimum wind speed and wind power were both 0; the maximum
wind speed and wind power were 25 m/s and 1,500 kW, respectively; the normalised
minimum wind speed and wind power were both 0; and the normalised maximum wind
speed and wind power were both 1. Thus, Equation (3.6) can be simplified as follows:

Un, i =
Ui
25

, (3.7)

and

Pn, i =
Pi

1500
, (3.8)

where Un, i is the i-th normalised wind speed, Ui is the i-th wind speed, Pn, i is the
i-th normalised wind power, and Pi is the i-th wind power.

3.4 Spectral Analysis of Wind Speed Measurements

In nature, wind varies owing to large-scale slowly evolving weather patterns and small-scale
influences such as topography and local stability. Therefore, the wind at a fixed location
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may appear multi-time-scale variability. It is best to perform a spectral analysis of wind
speed measurements and use the results to guide statistical models. The spectral analysis
decomposes a set of time series observed data into underlying sine and cosine functions of
different frequencies for the purpose of identifying those frequencies that appear particu-
larly strong or significant. If a large correlation between the sine and cosine functions of
different frequencies and observations is pinpointed, it can be concluded that a strong pe-
riodicity of the respective frequency in the data exists [142]. As mentioned in Section 3.2,
the wind speed measurements used in this research were a set of 24-day time series data.
The spectrum of the time series was calculated, and the smoothed periodogram is shown
in Figure 3.2, from which it can be seen that no evident periodicity was detected for this
limited-length data. In addition, there was no diurnal variability of the wind identified in
this case.
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Figure 3.2. Smoothed periodogram of the spectral analysis of the 24-day wind speed measure-
ments.
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3.5 Introduction of Model Evaluation Metrics

In order to evaluate the predictive performance of the forecasting models, six of the most
widely used statistical metrics, namely the mean bias (MB), MAE, RMSE, index of agree-
ment (IA), MAPE, and symmetric mean absolute percentage error (SMAPE), were selected
in this study [80, 115, 156]. Furthermore, an official document released by the National
Energy Administration (NEA), China, recommends two additional wind power forecast
metrics for validation, namely the accuracy rate and qualification rate [100]. In the follow-
ing, the definitions of these eight evaluation metrics are given in detail.

(1) Mean bias (for wind speed and wind power) is defined as

MB =

∑n
i=1(Ẑi − Zi)

n
, (3.9)

where n is the total number of assessment time points per day, Ẑi is the i-th wind
speed (power) forecast, and Zi is the i-th wind speed (power) measurement.

(2) Mean absolute error (for wind speed and wind power) is defined as

MAE =

∑n
i=1 |Ẑi − Zi|

n
, (3.10)

where n is the total number of assessment time points per day, Ẑi is the i-th wind
speed (power) forecast, and Zi is the i-th wind speed (power) measurement.

(3) Root mean squared error (for wind speed and wind power) is defined as

RMSE =

√∑n
i=1(Ẑi − Zi)2

n
, (3.11)

where n is the total number of assessment time points per day, Ẑi is the i-th wind
speed (power) forecast, and Zi is the i-th wind speed (power) measurement.

(4) Index of agreement (for wind speed and wind power) is defined as

IA = 1−
∑n

i=1(Ẑi − Zi)2∑n
i=1(|Ẑi − Z̄|+ |Zi − Z̄|)2

, (3.12)
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where n is the total number of assessment time points per day, Ẑi is the i-th wind
speed (power) forecast, Zi is the i-th wind speed (power) measurement, and Z̄ is the
mean of the wind speed (power) measurements.

(5) Mean absolute percentage error (for wind speed only) is defined as

MAPE =

∑n
i=1

∣∣∣ Ẑi−Zi

Zi

∣∣∣
n

× 100% , (3.13)

where n is the total number of assessment time points per day, Ẑi is the i-th wind
speed forecast, and Zi is the i-th wind speed measurement.

(6) Symmetric mean absolute percentage error (for wind speed only) is defined as

SMAPE =

∑n
i=1

|Ẑi−Zi|
(|Ẑi|+|Zi|)/2

n
× 100% , (3.14)

where n is the total number of assessment time points per day, Ẑi is the i-th wind
speed forecast, and Zi is the i-th wind speed measurement.

(7) Accuracy rate (for wind power only) is defined as

accuracy rate =

1−

√√√√∑n
i=1

(
Ẑi−Zi

Cap

)2

n

× 100% , (3.15)

where n is the total number of assessment time points per day, Ẑi is the i-th wind power
forecast, Zi is the i-th wind power measurement, and Cap is the wind farm installed
capacity. The monthly or yearly average accuracy rate for wind power forecasting is
the arithmetic mean of the daily accuracy rates for that month or year.

(8) Qualification rate (for wind power only) is defined as

qualification rate =

∑n
i=1 Qi

n
× 100% , (3.16)

with
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(
1− |Ẑi − Zi|

Cap

)
× 100% ≥ 75%, Qi = 1 ; (3.17)

and (
1− |Ẑi − Zi|

Cap

)
× 100% < 75%, Qi = 0 . (3.18)

Herein, n is the total number of assessment time points per day, Qi indicates whether
the i-th wind power forecast is qualified, Ẑi is the i-th wind power forecast, Zi is the i-th
wind power measurement, and Cap is the wind farm installed capacity. The monthly
or yearly average qualification rate for wind power forecasting is the arithmetic mean
of the daily qualification rates for that month or year.

3.6 Interpretation of a ‘Forecast Time Horizon’

In order to strengthen and standardise the operational management of wind farms, imple-
ment the requirement of the guaranteed full purchase of wind power, ensure the safe and
reliable operation of power systems, and promote the healthy and orderly development of
wind power, the NEA [100] officially clarified the industry requirements for grid-connected
operational wind farms in China. Specifically, all the operators of the wind farms in China
have to report their wind power forecasts (with a temporal resolution of 15 minutes) for 24
hours of the next day to the power-dispatch agency. Due to the limitations of the temporal
resolution of the currently available wind data, the time interval used in this study was 30
minutes. However, the idea was precisely the same. For example, assume that it is 00:00
currently. For 24-hour ahead wind power forecasting, not only is the wind power forecast at
24:00 required, but also the wind power forecasts from 00:30 to 23:30 with a time interval
of 30 minutes are necessary. In other words, 48 wind power forecasts should be reported
for the 24-hour ahead wind power forecasting of the next day. It is straightforward to
understand that for a forecast time horizon of 24 hours, only reporting the last wind power
forecast, which is really 24 hours later from now, is meaningless. The trend of wind power
and how it will perform during these 24 hours are significant, and this is why wind power
forecasts every 30 minutes in 24-hour ahead wind power forecasting are necessary.

For the purpose of forecasting the wind power for the next 24 hours as accurately as
possible, all the wind data up to the forecast time point should be fully utilised. This point
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is worth emphasising since among the 48 wind power forecasts for the next 24 hours, only
the last wind power forecast is really reported 24 hours in advance, and the others are not.
For instance, the first wind power forecast is reported 30 minutes from now. Basically,
it is a 30-minute ahead wind power forecast, but it still belongs to the 24-hour ahead
wind power forecasting results. The same applies to the other 46 wind power forecasts.
There is no doubt that when generating the first wind power forecast for the next 24
hours, the real 24-hour ahead wind power forecasting can be applied. However, by doing
so, there is no access to any wind data from the past 24 hours. Instead, the wind data
from 24 hours ago are employed. This method can be used for the first 47 wind power
forecasts, and, as a result, all the wind power forecasts are truly determined 24 hours in
advance. Nevertheless, this way of forecasting will cause the forecast accuracy rate to
decrease appreciably. Obviously, it does not make any sense to do the 24-hour ahead wind
power forecasting like this.

In conclusion, in actual applications, the 24-hour ahead wind power forecasting does
not mean forecasting a single point 24 hours later from now or forecasting every point 24
hours in advance. All the available data at the moment should be used to forecast wind
power for the next 24 hours. In this way, the first wind power forecast is forecasted 30
minutes in advance, the second one is 1 hour in advance, the third one is 1.5 hours in
advance, . . . , the 47th one is 23.5 hours in advance, and only the last one is a true 24-hour
ahead forecast. However, this forecasting scheme is still referred to as 24-hour ahead wind
power forecasting. This concept can be extended to other forecast time horizons. For
instance, the 4-hour ahead wind power forecasting requires the wind power forecasts for
the next 4 hours with a time interval of 30 minutes, leading to reporting eight wind power
forecasts.

3.7 Power Curve Modelling

3.7.1 Introduction

A power curve indicates the relationship between wind speed and wind power. Once wind
speed forecasts are obtained, the corresponding wind power forecasts can be calculated
according to the power curve via mapping the wind speed to wind power.

Every wind turbine comes with a power curve provided by the manufacturer. However,
in this study, the specific model of the studied wind turbine was unknown, which means
the manufacturer’s power curve was unavailable. Even though the power curve was given,
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it only represented the designed relationship between wind speed and wind power. As
discussed in Section 3.1, the output power of a wind turbine is influenced by changeable
surroundings. In practice, the relationship between wind speed and wind power is hard
to strictly follow the manufacturer’s power curve. Hence, the method of the power curve
modelling based on historical wind speed and wind power measurements was suggested. It
was believed that the power curve model created in this way was able to reflect the actual
performance of the wind turbine.

3.7.2 Power Curve Modelling Based on an ANFIS Model

An ANFIS was proposed to model the power curve in this study. The wind speed was set
as the input of the ANFIS model, while the wind power was the output. The historical
wind speed and wind power data measured from the 11th of August 2015 to the 3rd of
September 2015 with a time interval of 30 minutes were employed for the power curve
modelling. In total, each set of data had 1,152 measurements for 24 days. Both sets of
data were divided into three groups in the time series. In particular, the data from the
first 19 days were used as a training dataset for model training, the data from the 20th day
were used as a checking dataset for model validation, and the remaining data from the last
4 days were used as a test dataset for evaluating the mapping performance of the model.

A scatter plot revealing the relationship between the historical wind speed and wind
power measurements from the training dataset is shown in Figure 3.3. The objective of
the power curve modelling was to create a single curve based on the scatter points by
minimising the errors.
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Figure 3.3. Relationship between the historical wind speed and wind power measurements from
the 20-day training dataset.

In the ANFIS modelling, some model parameters need to be set by users. One of
the vital model parameters is the membership function type associated with the input.
According to the shape of the power curve shown in Figure 3.1, a generalised bell-shaped
membership function was selected in this case. Another crucial model parameter is the
number of membership functions. More membership functions contribute to an ANFIS
model with a more complex structure but not necessarily better performance. In this
case, it was found that the ANFIS model failed in the power curve modelling as long as the
number of membership functions was greater than 3. For example, Figure 3.4 shows a power
curve provided by an ANFIS model with four membership functions. Roughly speaking,
there was a drop in the wind power when the wind speed rose from 10 to 11 m/s. Obviously,
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this trend went against the truth. The same thing happened in the experiments with the
increasing number of membership functions. Since at least two membership functions are
required for ANFIS learning, the appropriate number of membership functions for the
power curve modelling was either 2 or 3. Moreover, when the wind speed was between
0 and 3 m/s, some corresponding wind power values were negative, which was not valid.
This negative wind power issue could be solved simply by setting all negative values to 0.
In addition, all the wind power values had to be adjusted to 0 when the wind speed was
lower than 2 m/s since the wind turbine will stop working once the wind speed does not
reach the cut-in speed value.

Figure 3.4. Power curve provided by an ANFIS model with four membership functions.

Another model parameter that needs to be highlighted is the training epoch number.
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The combinations of the different numbers of membership functions and training epochs
were applied to train the ANFIS model. The other parameters inside the ANFIS model
were determined through self-learning during the training process. Next, the wind speed
measurements from the test dataset were input to the trained ANFIS model, and then the
corresponding wind power computations were obtained as the model output. According
to the model evaluation metrics explained in Section 3.5, the MBs, MAEs, RMSEs, IAs,
accuracy rates, and qualification rates were calculated based on the differences between
the wind power computations provided by the ANFIS model and the wind power measure-
ments from the test dataset. For the simplicity purpose, the 4-day average value (viz., the
arithmetic mean over a period of 4 days represented by the test dataset) of each metric
was used to compare the mapping performance of the ANFIS models with different num-
bers of membership functions and training epochs. The corresponding results are shown
in Tables 3.1 to 3.6.

Table 3.1. Four-day average MBs for the ANFIS models with different numbers of membership
functions and training epochs evaluated by using the 4-day test dataset.

4-day average MB (kW)
Number of membership functions

2 3

Number

of

training

epochs

10 0.9 0.6

100 1.2 0.2

200 1.2 0.0

500 1.2 -0.1

1,000 1.1 -0.1

2,000 1.1 -0.1

5,000 1.1 -0.1

10,000 1.1 -0.1
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Table 3.2. Four-day average MAEs for the ANFIS models with different numbers of membership
functions and training epochs evaluated by using the 4-day test dataset.

4-day average MAE (kW)
Number of membership functions

2 3

Number

of

training

epochs

10 12.9 10.2

100 10.8 10.2

200 10.7 10.2

500 10.6 10.2

1,000 10.6 10.2

2,000 10.6 10.2

5,000 10.6 10.2

10,000 10.6 10.2

Table 3.3. Four-day average RMSEs for the ANFIS models with different numbers of membership
functions and training epochs evaluated by using the 4-day test dataset.

4-day average RMSE (kW)
Number of membership functions

2 3

Number

of

training

epochs

10 21.6 17.0

100 18.0 17.2

200 17.8 17.2

500 17.6 17.3

1,000 17.5 17.3

2,000 17.5 17.3

5,000 17.5 17.3

10,000 17.5 17.3
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Table 3.4. Four-day average IAs for the ANFIS models with different numbers of membership
functions and training epochs evaluated by using the 4-day test dataset.

4-day average IA
Number of membership functions

2 3

Number

of

training

epochs

10 1.00 1.00

100 1.00 1.00

200 1.00 1.00

500 1.00 1.00

1,000 1.00 1.00

2,000 1.00 1.00

5,000 1.00 1.00

10,000 1.00 1.00

Table 3.5. Four-day average accuracy rates for the ANFIS models with different numbers of
membership functions and training epochs evaluated by using the 4-day test dataset.

4-day average accuracy rate
Number of membership functions

2 3

Number

of

training

epochs

10 98.56% 98.87%

100 98.80% 98.86%

200 98.81% 98.85%

500 98.83% 98.85%

1,000 98.84% 98.85%

2,000 98.84% 98.85%

5,000 98.84% 98.85%

10,000 98.83% 98.85%
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Table 3.6. Four-day average qualification rates for the ANFIS models with different numbers of
membership functions and training epochs evaluated by using the 4-day test dataset.

4-day average qualification rate
Number of membership functions

2 3

Number

of

training

epochs

10 100.00% 100.00%

100 100.00% 100.00%

200 100.00% 100.00%

500 100.00% 100.00%

1,000 100.00% 100.00%

2,000 100.00% 100.00%

5,000 100.00% 100.00%

10,000 100.00% 100.00%

From Tables 3.1 to 3.6, it can be found that most of the ANFIS models were incredibly
close to each other in terms of the evaluation metrics. To be precise, the 4-day average
qualification rate was 100.00% for every ANFIS model. Besides, the 4-day average IAs
were all 1.00, except that one for the ANFIS model with two membership functions and 10
training epochs, which was 0.99 (almost reaching 1.00). In general, the ANFIS model with
three membership functions performed better than that with two membership functions
since the former always had a lower 4-day average MB absolute value, MAE, and RMSE
and a higher 4-day average accuracy rate compared with the latter under the condition of
the same number of training epochs. In addition, it can be seen that for the ANFIS model
with three membership functions, the increasing number of training epochs did not improve
the 4-day average MAE, IA, and qualification rate at all and even had the adverse effects
on the 4-day average RMSE and accuracy rate. Although the 4-day average MB absolute
value for the ANFIS model with three membership functions and 10 training epochs was
higher than those for the other ANFIS models with the same number of membership
functions but more training epochs, all of the 4-day average MB absolute values were lower
than 1.0 kW. Under the consideration of computational costs, the combination of three
membership functions and 10 training epochs was selected for the power curve modelling.
In conclusion, three key model parameters, namely the type of membership functions,
number of membership functions, and number of training epochs, were finally determined
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to be generalised bell-shaped, 3, and 10, respectively.

3.7.3 Model Evaluation

A comparison between the wind power predictions provided by the selected ANFIS model
and the historical wind power measurements from the test dataset is shown in Figure 3.5.
Intuitively, the conformance between the wind power computations and measurements was
excellent. Numerically, the 4-day average MB, MAE, and RMSE were 0.6 kW, 10.2 kW,
and 17.0 kW, respectively. These values for the three evaluation metrics were relatively
small in comparison with the rated power of the wind turbine (1,500 kW). Furthermore,
the 4-day average IA, accuracy rate, and qualification rate were 1.00, 98.87%, and 100.00%,
respectively. In other words, if the wind speed forecasts were equal to the wind speed mea-
surements for these 4 days, the 4-day average IA and qualification rate for the wind power
forecasting would both correspond to their maximum values (perfect scores). Moreover,
the 4-day average accuracy rate would reach 98.87%. In view of this, the selected ANFIS
model provided an excellent model for the power curve of the wind turbine for this case.
Finally, it is noted that the 1.13% wind power prediction error, as characterised by the
accuracy rate, mainly resulted from the systematic errors, model errors, and neglect of
other variables that affected the wind power.

In this research, the historical wind speed measurements were treated as the ‘truth’.
Nevertheless, wind speed measurements are not perfect. For example, wind speeds mea-
sured by an anemometer typically have errors on the order of 1 m/s. In wind power
forecasting, the relationship between wind speed and wind power measurements matters
rather than the accuracy of the wind speed measurements. Although there were measure-
ment errors, the selected ANFIS model indicated that if the wind speed forecasts were
equal to the wind speed measurements, the prediction error for the 4-day test dataset
would be only 1.13%. Furthermore, this was the main reason for generating a power curve
model by using the real wind speed and wind power measurements instead of employing
the power curve provided by the manufacturer. The ANFIS-based power curve model is
able to correct partial errors caused by measurement.
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Figure 3.5. Evaluation of the power curve model by using the historical wind speed and wind
power measurements from the 4-day test dataset.

3.7.4 Power Curve

The final power curve created by using the selected ANFIS model is shown in Figure 3.6,
from which it can be seen that this power curve which successfully described the relationship
between the wind speed and wind power when the wind speed ranged between 0 and 12 m/s
looks very similar to the left part of the typical one given in Figure 3.1. The main drawback
of this power curve was that the wind power tended to have a maximum value lower than
1,200 kW at the end of the curve. Nevertheless, the rated power of the studied wind
turbine was 1,500 kW. Obviously, this ANFIS model did not capture the features of the
power curve when the wind speed was between the rated and cut-out speed values or
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higher than the cut-out speed value, which means the mapping performance of this ANFIS
model would definitely deteriorate when the wind speed was greater than 12 m/s. All these
problems were due to the limitation of the given training dataset. From Figure 3.3, it can
be seen that the maximum wind speed in the training dataset was less than 12 m/s, and
only a few points fell in the wind speed values ranging from 11 to 12 m/s. Therefore, it was
impossible for the ANFIS model to learn the right part of the typical power curve because
of the lack of facts in this case. It is strongly recommended to collect a considerable number
of historically measured wind data for complete power curve modelling. Fortunately, the
power curve in Figure 3.6 was sufficient for the case study in this research simply because
the maximum wind speed measurement in the test dataset was lower than 12 m/s, and the
maximum wind power measurement was less than 1,200 kW.

Figure 3.6. Final power curve created by using the selected ANFIS model.
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3.7.5 Summary

The role of a power curve is to map wind speed forecasts to wind power forecasts. In
this case, an ANFIS was proposed to model the power curve by using a set of historically
measured wind speed and wind power data over a period of 24 days. Specifically, the first
19-day wind data were employed as a training dataset, the wind data from the 20th day
were a checking dataset, and the remaining 4-day data were a test dataset. Besides, the
wind speed was set as the model input, while the wind power was the output. Through a
comparative analysis, three key ANFIS model parameters, namely the type of membership
functions, number of membership functions, and number of training epochs, were deter-
mined to be generalised bell-shaped, 3, and 10, respectively. The mapping performance of
the trained ANFIS model was assessed according to the test dataset. The effectiveness of
the selected ANFIS model was verified as the model IA, accuracy rate, and qualification
rate were 1.00, 98.87%, and 100.00%, respectively. The 1.13% wind power prediction error,
as characterised by the accuracy rate, mainly resulted from the systematic errors, model
errors, and neglect of other variables that affected the wind power. Finally, the power
curve created by using the selected ANFIS model was obtained. Because of the limitation
of the training dataset, this power curve could only handle the cases when the wind speed
was lower than 12 m/s. However, the established power curve was sufficient in this study
simply because there were no wind speed values higher than 12 m/s and no wind power
values higher than 1,200 kW in the test dataset.
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Chapter 4

Statistics-Based Modelling

4.1 Persistence Modelling

4.1.1 Introduction

Nowadays, the persistence model is widely used in the electrical industry, especially for very
short-term wind speed and wind power forecasting. In fact, it is the most straightforward
and economical approach: the basic idea here is to view a past wind speed or wind power
measurement as the future wind speed or wind power forecast (for example, the persistence
model considers that the wind speed or wind power at time t + 1 is simply equal to the
wind speed or wind power at time t). More specifically, the persistence model asserts the
following relationships:

vi = vi−∆t , (4.1)

and

Pi = Pi−∆t , (4.2)

where vi is the wind speed at time i, ∆t is the time step size, and Pi is the wind power at
time i.

From Equations (4.1) and (4.2), it can be seen that the structure of the persistence
model is quite simple. Specifically, there are no variables except the time step size, and no
model parameters need to be tuned.
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4.1.2 Wind Speed Forecasting Based on a Persistence Model

In total, there was a set of 24-day historical wind speed measurements. However, in order
to compare the predictive performance of the persistence model with that of the advanced
models in the following sections, only the last 5 days of wind speed measurements were
utilised for the wind speed forecasting in this case. In addition, the persistence model was
evaluated over the last 4 days of available wind speed measurements. The first day of the
last 5 days was included because the wind speed measurements for that day were applied
to provide the wind speed forecasts for the second day.

For a comprehensive assessment of the persistence model in the wind speed forecast-
ing, the different forecast time step sizes ranging from 1 to 48 steps were tested in the
experiment. According to Equation (4.1), the wind speed forecasts based on the different
time step sizes for the last 4 days were acquired. Since the temporal resolution of the wind
speed measurements was 30 minutes, 1-step, 2-step, 3-step, 4-step, 6-step, 8-step, 12-step,
16-step, 24-step, and 48-step ahead corresponded to 30 minutes, 1 hour, 1.5 hours, 2 hours,
3 hours, 4 hours, 6 hours, 8 hours, 12 hours, and 24 hours in advance, respectively. Accord-
ing to Equations (3.9) to (3.14), the MBs, MAEs, RMSEs, IAs, MAPEs, and SMAPEs for
the wind speed forecasting by using the persistence model and their 4-day average values
were calculated. The corresponding results are shown in Tables 4.1 to 4.6.
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Table 4.1. MBs for the wind speed forecasting by using the persistence model applied to the
4-day test dataset.

MB (m/s)
Forecast day

Average
1 2 3 4

Forecast

time

horizon

30 minutes -0.01 -0.02 0.04 -0.07 -0.01

1 hour -0.04 -0.05 0.10 -0.15 -0.03

1.5 hours -0.07 -0.06 0.15 -0.21 -0.05

2 hours -0.07 -0.04 0.19 -0.30 -0.05

3 hours -0.13 -0.02 0.29 -0.56 -0.11

4 hours -0.22 -0.05 0.43 -0.88 -0.18

6 hours -0.30 -0.06 0.49 -1.41 -0.32

8 hours -0.33 -0.18 0.54 -1.72 -0.42

12 hours -0.26 -0.32 0.29 -1.98 -0.57

24 hours -0.19 0.02 -1.17 -0.34 -0.42
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Table 4.2. MAEs for the wind speed forecasting by using the persistence model applied to the
4-day test dataset.

MAE (m/s)
Forecast day

Average
1 2 3 4

Forecast

time

horizon

30 minutes 0.70 0.56 0.61 0.59 0.61

1 hour 1.10 0.67 0.71 0.83 0.83

1.5 hours 1.30 0.80 0.90 0.97 0.99

2 hours 1.41 0.89 0.99 1.11 1.10

3 hours 1.49 0.92 1.11 1.37 1.22

4 hours 1.56 1.16 1.33 1.58 1.41

6 hours 1.75 1.10 1.80 1.80 1.62

8 hours 1.79 1.09 2.14 2.09 1.78

12 hours 1.70 1.43 2.86 2.87 2.22

24 hours 1.59 1.07 2.29 3.69 2.16
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Table 4.3. RMSEs for the wind speed forecasting by using the persistence model applied to the
4-day test dataset.

RMSE (m/s)
Forecast day

Average
1 2 3 4

Forecast

time

horizon

30 minutes 1.41 0.71 0.78 0.75 0.91

1 hour 2.08 0.89 0.90 1.11 1.24

1.5 hours 2.36 1.05 1.09 1.29 1.45

2 hours 2.39 1.08 1.23 1.46 1.54

3 hours 2.35 1.12 1.46 1.79 1.68

4 hours 2.43 1.37 1.64 1.99 1.86

6 hours 2.56 1.33 2.07 2.29 2.07

8 hours 2.74 1.28 2.60 2.67 2.32

12 hours 2.69 1.67 3.14 3.58 2.77

24 hours 2.34 1.57 2.68 4.10 2.67
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Table 4.4. IAs for the wind speed forecasting by using the persistence model applied to the 4-day
test dataset.

IA
Forecast day

Average
1 2 3 4

Forecast

time

horizon

30 minutes 0.86 0.95 0.98 0.99 0.94

1 hour 0.70 0.92 0.97 0.97 0.89

1.5 hours 0.61 0.89 0.96 0.96 0.86

2 hours 0.60 0.89 0.95 0.94 0.85

3 hours 0.61 0.88 0.92 0.92 0.83

4 hours 0.59 0.82 0.90 0.90 0.80

6 hours 0.54 0.83 0.85 0.87 0.77

8 hours 0.48 0.84 0.76 0.82 0.72

12 hours 0.50 0.73 0.65 0.67 0.64

24 hours 0.62 0.76 0.75 0.56 0.67
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Table 4.5. MAPEs for the wind speed forecasting by using the persistence model applied to the
4-day test dataset.

MAPE
Forecast day

Average
1 2 3 4

Forecast

time

horizon

30 minutes 25.48% 27.64% 18.32% 20.00% 22.86%

1 hour 38.92% 34.83% 25.32% 26.74% 31.46%

1.5 hours 47.26% 41.26% 35.73% 29.21% 38.37%

2 hours 51.72% 43.10% 44.15% 31.84% 42.70%

3 hours 61.54% 55.66% 58.83% 37.69% 53.43%

4 hours 64.06% 68.58% 68.36% 43.77% 61.19%

6 hours 72.08% 71.71% 89.43% 45.14% 69.59%

8 hours 85.95% 58.45% 127.90% 49.28% 80.40%

12 hours 69.72% 80.03% 164.96% 78.80% 98.38%

24 hours 62.99% 51.97% 94.90% 148.03% 89.47%
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Table 4.6. SMAPEs for the wind speed forecasting by using the persistence model applied to the
4-day test dataset.

SMAPE
Forecast day

Average
1 2 3 4

Forecast

time

horizon

30 minutes 24.71% 24.53% 17.75% 19.72% 21.68%

1 hour 35.78% 28.85% 23.32% 25.95% 28.47%

1.5 hours 41.41% 33.47% 30.62% 28.84% 33.58%

2 hours 45.98% 37.57% 34.26% 32.56% 37.59%

3 hours 50.03% 40.01% 38.59% 41.48% 42.53%

4 hours 55.10% 48.87% 42.52% 49.95% 49.11%

6 hours 63.42% 47.56% 54.43% 57.63% 55.76%

8 hours 63.93% 48.63% 59.66% 64.21% 59.11%

12 hours 58.81% 62.39% 78.48% 86.79% 71.62%

24 hours 55.87% 41.96% 73.91% 97.77% 67.38%

From Tables 4.1 to 4.6, it can be seen that the persistence model performed well for
the 30-minute ahead wind speed forecasting. Specifically, its 4-day average MB absolute
value was only 0.01 m/s, which was almost equal to 0; its 4-day average MAE and RMSE
were 0.61 m/s and 0.91 m/s, respectively, which were both less than 1 m/s; its 4-day
average IA was 0.94, which was the only one above the level of 0.90; and its 4-day average
MAPE and SMAPE were 22.86% and 21.68%, respectively, which were just slightly higher
than 20.00%. Nevertheless, it is not surprising that with the rise in the forecast time
horizon from 30 minutes to 12 hours, the 4-day average MB absolute value, MAE, RMSE,
MAPE, and SMAPE for the wind speed forecasting by using the persistence model went
up gradually. In the end, the values of these evaluation metrics for the 12-hour ahead wind
speed forecasting, reaching 0.57 m/s, 2.22 m/s, 2.77 m/s, 98.38%, and 71.62%, respectively,
were much higher than those for the 30-minute ahead wind speed forecasting. Additionally,
the corresponding 4-day average IA decreased gradually with the increasing forecast time
horizon. The 4-day average IA for the 12-hour ahead wind speed forecasting, as low as 0.64,
was much worse than that for the 30-minute ahead wind speed forecasting. One interesting
discovery is that the predictive performance of the 24-hour ahead wind speed forecasting
was a little better than that of the 12-hour ahead wind speed forecasting according to
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every single metric in this case. However, this can only be explained as an accidental
phenomenon since it does not make any sense.

Another point that needs to be highlighted is that although the MBs for the 30-minute
ahead wind speed forecasting were close to each other for the 4 single days, the differences
among them became much larger as the forecast time horizon increased from 30 minutes
to 24 hours. The same applied to the MAEs, RMSEs, IAs, MAPEs, and SMAPEs. For
instance, the MB, MAE, RMSE, IA, MAPE, and SMAPE for the second day changed
from -0.02 to 0.02 m/s, 0.56 to 1.07 m/s, 0.71 to 1.57 m/s, 0.95 to 0.76, 27.64% to 51.97%,
and 24.53% to 41.96%, respectively, while these metrics for the fourth day changed from
-0.07 to -0.34 m/s, 0.59 to 3.69 m/s, 0.75 to 4.10 m/s, 0.99 to 0.56, 20.00% to 148.03%,
and 19.72% to 97.77%, respectively. These findings indicated that with the expansion of
the forecast time horizon, the wind speed predictive performance of the persistence model
became unstable, and the model reliability went down.

In the actual operation of wind farms, 30 minutes, 4 hours, and 24 hours are the most
common wind power forecast time horizons as required. A comparison of the 30-minute,
4-hour, and 24-hour ahead wind speed forecasts provided by the persistence model and
the historical wind speed measurements from the test dataset is shown in Figure 4.1. It
is easy to see that the 30-minute ahead wind speed forecasts were incredibly close to the
historical wind speed measurements. The 4-hour ahead wind speed predictive performance
seemed still acceptable, although the errors at some time points were not small. In contrast,
the difference between the 24-hour ahead wind speed forecasts and historical wind speed
measurements was quite large. Especially in the last 2 days, there were clear opposite
trends between the forecasts and measurements most of the time.
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Figure 4.1. Comparison of the 30-minute, 4-hour, and 24-hour ahead wind speed forecasts pro-
vided by the persistence model and the historical wind speed measurements from the 4-day test
dataset.

4.1.3 Wind Power Forecasting Based on a Persistence Model

Same as the wind speed forecasting based on a persistence model in Section 4.1.2, the
predictive performance of the wind power forecasting based on a persistence model was
assessed over the last 4 days of wind data. There are two ways of forecasting wind power
based on the persistence model: direct forecasting and indirect forecasting.
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(1) Direct forecasting

In this method, historical wind power measurements are the only necessary data and
are simply regarded as future wind power forecasts. The 5-day historical wind power
measurements in the identical time period as the historical wind speed measurements
in Section 4.1.2 were used in this case. For a comprehensive assessment of the direct
persistence model in the wind power forecasting, the different forecast time step sizes
ranging from 1 to 48 steps were tested in the experiment. According to Equation (4.2),
the direct wind power forecasts based on the different time step sizes for the last 4 days
were acquired. The correspondence between the time step size and time horizon was
the same as that explained in Section 4.1.2. According to Equations (3.9) to (3.12)
and (3.15) to (3.18), the MBs, MAEs, RMSEs, IAs, accuracy rates, and qualification
rates for the wind power forecasting by using the direct persistence model and their 4-
day average values were calculated. The corresponding results are shown in Tables 4.7
to 4.12.

Table 4.7. MBs for the wind power forecasting by using the direct persistence model applied to
the 4-day test dataset.

MB (kW)
Forecast day

Average
1 2 3 4

Forecast

time

horizon

30 minutes -0.1 -1.9 2.0 -5.4 -1.4

1 hour -1.5 -3.6 5.1 -11.0 -2.8

1.5 hours -2.8 -4.6 7.4 -14.9 -3.7

2 hours -3.5 -3.7 7.9 -19.4 -4.7

3 hours -6.2 -2.3 9.2 -39.1 -9.6

4 hours -7.4 -6.2 14.3 -69.8 -17.3

6 hours -8.3 -5.3 14.3 -125.4 -31.2

8 hours -8.3 -9.7 17.6 -154.5 -38.7

12 hours -8.3 -9.7 1.2 -177.4 -48.5

24 hours -16.5 35.6 -123.1 -50.7 -38.7
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Table 4.8. MAEs for the wind power forecasting by using the direct persistence model applied to
the 4-day test dataset.

MAE (kW)
Forecast day

Average
1 2 3 4

Forecast

time

horizon

30 minutes 58.2 26.6 59.0 50.7 48.6

1 hour 98.5 33.5 63.0 81.5 69.1

1.5 hours 114.9 38.0 74.6 93.5 80.3

2 hours 117.7 41.7 80.3 110.1 87.5

3 hours 119.3 37.6 89.6 135.5 95.5

4 hours 119.6 48.2 112.4 149.3 107.4

6 hours 124.4 39.0 155.4 146.9 116.4

8 hours 122.4 37.5 192.2 164.2 129.1

12 hours 123.6 46.2 247.2 212.4 157.3

24 hours 109.9 70.0 158.4 307.3 161.4
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Table 4.9. RMSEs for the wind power forecasting by using the direct persistence model applied
to the 4-day test dataset.

RMSE (kW)
Forecast day

Average
1 2 3 4

Forecast

time

horizon

30 minutes 199.4 46.0 90.9 82.7 104.7

1 hour 285.0 54.1 92.0 128.2 139.8

1.5 hours 312.4 57.9 105.6 156.9 158.2

2 hours 312.8 59.6 116.8 181.7 167.7

3 hours 312.5 53.1 131.7 217.4 178.7

4 hours 318.1 65.5 154.4 228.7 191.7

6 hours 319.8 56.0 191.5 224.1 197.9

8 hours 319.7 57.6 227.3 253.9 214.6

12 hours 319.7 64.1 271.3 313.7 242.2

24 hours 264.0 209.1 202.7 360.7 259.1
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Table 4.10. IAs for the wind power forecasting by using the direct persistence model applied to
the 4-day test dataset.

IA
Forecast day

Average
1 2 3 4

Forecast

time

horizon

30 minutes 0.74 0.68 0.90 0.97 0.82

1 hour 0.33 0.49 0.89 0.92 0.66

1.5 hours 0.10 0.40 0.85 0.88 0.56

2 hours 0.10 0.37 0.82 0.84 0.53

3 hours 0.10 0.56 0.77 0.75 0.54

4 hours 0.09 0.21 0.66 0.68 0.41

6 hours 0.09 0.45 0.47 0.66 0.42

8 hours 0.09 0.38 0.26 0.57 0.33

12 hours 0.09 0.23 0.02 0.40 0.18

24 hours 0.12 0.24 0.41 0.06 0.21
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Table 4.11. Accuracy rates for the wind power forecasting by using the direct persistence model
applied to the 4-day test dataset.

Accuracy rate
Forecast day

Average
1 2 3 4

Forecast

time

horizon

30 minutes 86.71% 96.94% 93.94% 94.49% 93.02%

1 hour 81.00% 96.40% 93.87% 91.45% 90.68%

1.5 hours 79.17% 96.14% 92.96% 89.54% 89.45%

2 hours 79.15% 96.03% 92.21% 87.89% 88.82%

3 hours 79.17% 96.46% 91.22% 85.51% 88.09%

4 hours 78.80% 95.63% 89.71% 84.75% 87.22%

6 hours 78.68% 96.27% 87.23% 85.06% 86.81%

8 hours 78.69% 96.16% 84.85% 83.08% 85.69%

12 hours 78.69% 95.72% 81.91% 79.09% 83.85%

24 hours 82.40% 86.06% 86.49% 75.95% 82.73%
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Table 4.12. Qualification rates for the wind power forecasting by using the direct persistence
model applied to the 4-day test dataset.

Qualification rate
Forecast day

Average
1 2 3 4

Forecast

time

horizon

30 minutes 95.83% 100.00% 100.00% 100.00% 98.96%

1 hour 91.67% 100.00% 100.00% 97.92% 97.40%

1.5 hours 91.67% 100.00% 100.00% 93.75% 96.35%

2 hours 91.67% 100.00% 100.00% 93.75% 96.35%

3 hours 91.67% 100.00% 97.92% 85.42% 93.75%

4 hours 91.67% 100.00% 97.92% 79.17% 92.19%

6 hours 91.67% 100.00% 95.83% 91.67% 94.79%

8 hours 91.67% 100.00% 89.58% 81.25% 90.62%

12 hours 91.67% 100.00% 87.50% 81.25% 90.10%

24 hours 91.67% 95.83% 91.67% 75.00% 88.54%

From Tables 4.7 to 4.12, it can be found that the predictive performance of the direct
persistence model for the 30-minute ahead wind power forecasting was good. To be
precise, its 4-day average MB absolute value, MAE, RMSE, IA, accuracy rate, and
qualification rate were 1.4 kW, 48.6 kW, 104.7 kW, 0.82, 93.02%, and 98.96%, respec-
tively. However, it is not surprising that as the forecast time horizon expanded from
30 minutes to 24 hours, the 4-day average MB absolute value, MAE, and RMSE for
the wind power forecasting by using the direct persistence model increased gradually,
while the corresponding 4-day average IA, accuracy rate, and qualification rate de-
creased. At last, the values of these evaluation metrics for the 24-hour ahead direct
wind power forecasting, reaching 38.7 kW, 161.4 kW, 259.1 kW, 0.21, 82.73%, and
88.54%, respectively, were much worse than those for the 30-minute ahead direct wind
power forecasting. Nevertheless, a few exceptions existed in this case. Specifically, the
4-day average MB absolute value for the 24-hour ahead direct wind power forecasting
was a little smaller than that for the 12-hour ahead direct wind power forecasting;
the 4-day average IAs for the 3-hour, 6-hour, and 24-hour ahead direct wind power
forecasting were a little higher than those for the 2-hour, 4-hour, and 12-hour ahead
direct wind power forecasting, respectively; and the 4-day average qualification rate for
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the 6-hour ahead direct wind power forecasting was a little higher than those for the
4-hour and 3-hour ahead direct wind power forecasting. All of them can be regarded
as accidental phenomena since they do not make any sense.

Another point that needs to be highlighted is that although the MBs for the 30-minute
ahead direct wind power forecasting were close to each other for the 4 single days, the
differences among them became much larger as the forecast time horizon increased from
30 minutes to 24 hours. The same applied to the MAEs, RMSEs, IAs, accuracy rates,
and qualification rates. For instance, the MB, MAE, RMSE, IA, accuracy rate, and
qualification rate for the second day changed from -1.9 to 35.6 kW, 26.6 to 70.0 kW,
46.0 to 209.1 kW, 0.68 to 0.24, 96.94% to 86.06%, and 100.00% to 95.83%, respectively,
while these metrics for the fourth day changed from -5.4 to -50.7 kW, 50.7 to 307.3 kW,
82.7 to 360.7 kW, 0.97 to 0.06, 94.49% to 75.95%, and 100.00% to 75.00%, respectively.
These findings indicated that with the expansion of the forecast time horizon, the wind
power predictive performance of the direct persistence model became unstable, and the
model reliability went down.

In the actual operation of wind farms, 30 minutes, 4 hours, and 24 hours are the
most common wind power forecast time horizons as required. A comparison of the
30-minute, 4-hour, and 24-hour ahead wind power forecasts provided by the direct
persistence model and the historical wind power measurements from the test dataset
is shown in Figure 4.2. It is easy to see that the 30-minute ahead direct wind power
forecasts were incredibly close to the historical wind power measurements. The 4-hour
ahead direct wind power predictive performance seemed still acceptable, although the
errors at some time points were not small. In contrast, the difference between the 24-
hour ahead direct wind power forecasts and historical wind power measurements was
quite large. Especially in the last 2 days, there were clearly different trends between
the forecasts and measurements most of the time.
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Figure 4.2. Comparison of the 30-minute, 4-hour, and 24-hour ahead wind power forecasts pro-
vided by the direct persistence model and the historical wind power measurements from the 4-day
test dataset.

(2) Indirect forecasting

In this method, historical wind speed measurements are considered future wind speed
forecasts that can be converted to wind power forecasts by using a power curve model.
As discussed in Section 4.1.2, the wind speed forecasts provided by the persistence
model for the multiple forecast time horizons were obtained. In this case, all the wind
speed forecasts for the last 4 days were input to the ANFIS-based power curve model
created in Section 3.7, and then the corresponding indirect wind power forecasts could
be acquired as the output of the power curve model. According to Equations (3.9)
to (3.12) and (3.15) to (3.18), the MBs, MAEs, RMSEs, IAs, accuracy rates, and
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qualification rates for the wind power forecasting by using the indirect persistence
model and their 4-day average values were calculated. The corresponding results are
shown in Tables 4.13 to 4.18.

Table 4.13. MBs for the wind power forecasting by using the indirect persistence model applied
to the 4-day test dataset.

MB (kW)
Forecast day

Average
1 2 3 4

Forecast

time

horizon

30 minutes -2.1 -0.4 -4.6 5.1 -0.5

1 hour -3.5 -2.8 -0.8 -1.1 -2.0

1.5 hours -4.8 -3.7 1.5 -4.9 -3.0

2 hours -5.0 -2.7 2.1 -10.3 -4.0

3 hours -8.1 -0.9 3.5 -30.7 -9.1

4 hours -10.1 -4.1 8.6 -62.9 -17.1

6 hours -11.1 -3.5 8.9 -120.2 -31.5

8 hours -11.2 -8.4 12.8 -151.9 -39.7

12 hours -11.0 -8.8 -3.5 -175.5 -49.7

24 hours -14.5 33.9 -122.1 -57.2 -40.0
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Table 4.14. MAEs for the wind power forecasting by using the indirect persistence model applied
to the 4-day test dataset.

MAE (kW)
Forecast day

Average
1 2 3 4

Forecast

time

horizon

30 minutes 54.7 28.3 64.2 56.2 50.8

1 hour 94.7 33.1 67.0 78.9 68.4

1.5 hours 110.3 38.7 76.7 93.7 79.8

2 hours 114.4 41.6 83.1 111.1 87.6

3 hours 116.2 36.8 92.2 135.0 95.1

4 hours 115.9 46.6 113.3 147.3 105.7

6 hours 120.7 38.1 155.2 147.7 115.4

8 hours 119.1 35.7 186.3 165.6 126.7

12 hours 120.9 48.4 239.9 211.5 155.2

24 hours 110.0 66.2 161.3 300.6 159.5
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Table 4.15. RMSEs for the wind power forecasting by using the indirect persistence model applied
to the 4-day test dataset.

RMSE (kW)
Forecast day

Average
1 2 3 4

Forecast

time

horizon

30 minutes 193.6 45.9 93.8 85.4 104.7

1 hour 275.5 52.8 98.1 129.0 138.9

1.5 hours 301.8 57.6 112.2 158.8 157.6

2 hours 302.4 59.4 121.2 183.7 166.7

3 hours 302.4 51.6 137.5 218.3 177.5

4 hours 306.6 63.9 160.1 227.2 189.5

6 hours 308.9 54.3 191.2 225.1 194.9

8 hours 308.9 55.3 224.6 253.1 210.5

12 hours 309.1 65.2 262.9 313.5 237.7

24 hours 262.7 193.6 204.9 354.6 254.0
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Table 4.16. IAs for the wind power forecasting by using the indirect persistence model applied
to the 4-day test dataset.

IA
Forecast day

Average
1 2 3 4

Forecast

time

horizon

30 minutes 0.74 0.68 0.88 0.97 0.82

1 hour 0.33 0.49 0.87 0.93 0.65

1.5 hours 0.11 0.38 0.83 0.89 0.55

2 hours 0.10 0.36 0.80 0.84 0.53

3 hours 0.10 0.58 0.74 0.76 0.54

4 hours 0.10 0.22 0.62 0.70 0.41

6 hours 0.10 0.47 0.45 0.67 0.42

8 hours 0.10 0.42 0.25 0.58 0.34

12 hours 0.10 0.20 0.03 0.40 0.18

24 hours 0.12 0.26 0.40 0.07 0.21
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Table 4.17. Accuracy rates for the wind power forecasting by using the indirect persistence model
applied to the 4-day test dataset.

Accuracy rate
Forecast day

Average
1 2 3 4

Forecast

time

horizon

30 minutes 87.09% 96.94% 93.74% 94.31% 93.02%

1 hour 81.63% 96.48% 93.46% 91.40% 90.74%

1.5 hours 79.88% 96.16% 92.52% 89.42% 89.49%

2 hours 79.84% 96.04% 91.92% 87.76% 88.89%

3 hours 79.84% 96.56% 90.83% 85.45% 88.17%

4 hours 79.56% 95.74% 89.33% 84.85% 87.37%

6 hours 79.41% 96.38% 87.26% 84.99% 87.01%

8 hours 79.40% 96.32% 85.03% 83.12% 85.97%

12 hours 79.39% 95.65% 82.47% 79.10% 84.15%

24 hours 82.48% 87.09% 86.34% 76.36% 83.07%
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Table 4.18. Qualification rates for the wind power forecasting by using the indirect persistence
model applied to the 4-day test dataset.

Qualification rate
Forecast day

Average
1 2 3 4

Forecast

time

horizon

30 minutes 95.83% 100.00% 100.00% 100.00% 98.96%

1 hour 91.67% 100.00% 100.00% 97.92% 97.40%

1.5 hours 91.67% 100.00% 100.00% 93.75% 96.35%

2 hours 91.67% 100.00% 100.00% 93.75% 96.35%

3 hours 91.67% 100.00% 95.83% 85.42% 93.23%

4 hours 91.67% 100.00% 97.92% 85.42% 93.75%

6 hours 91.67% 100.00% 95.83% 91.67% 94.79%

8 hours 91.67% 100.00% 91.67% 81.25% 91.15%

12 hours 91.67% 100.00% 89.58% 81.25% 90.62%

24 hours 91.67% 95.83% 91.67% 77.08% 89.06%

From Tables 4.13 to 4.18, it can be found that the predictive performance of the in-
direct persistence model for the 30-minute ahead wind power forecasting was good.
To be precise, its 4-day average MB absolute value, MAE, RMSE, IA, accuracy rate,
and qualification rate were 0.5 kW, 50.8 kW, 104.7 kW, 0.82, 93.02%, and 98.96%,
respectively. However, it is not surprising that as the forecast time horizon expanded
from 30 minutes to 24 hours, the 4-day average MB absolute value, MAE, and RMSE
for the wind power forecasting by using the indirect persistence model increased grad-
ually, while the corresponding 4-day average IA, accuracy rate, and qualification rate
decreased. At last, the values of these evaluation metrics for the 24-hour ahead indi-
rect wind power forecasting, reaching 40.0 kW, 159.5 kW, 254.0 kW, 0.21, 83.07%, and
89.06%, respectively, were much worse than those for the 30-minute ahead indirect wind
power forecasting. Nevertheless, a few exceptions existed in this case. Specifically, the
4-day average MB absolute value for the 24-hour ahead indirect wind power forecasting
was a little smaller than that for the 12-hour ahead indirect wind power forecasting;
the 4-day average IAs for the 3-hour, 6-hour, and 24-hour ahead indirect wind power
forecasting were a little higher than those for the 2-hour, 4-hour, and 12-hour ahead
indirect wind power forecasting, respectively; and the 4-day average qualification rate
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for the 6-hour ahead indirect wind power forecasting was a little higher than that for
the 4-hour ahead indirect wind power forecasting, which was a little higher than that
for the 3-hour ahead indirect wind power forecasting. All of them can be regarded as
accidental phenomena since they do not make any sense.

Another point that needs to be highlighted is that although the MBs for the 30-minute
ahead indirect wind power forecasting were close to each other for the 4 single days,
the differences among them became much larger as the forecast time horizon increased
from 30 minutes to 24 hours. The same applied to the MAEs, RMSEs, IAs, accuracy
rates, and qualification rates. For instance, the MB, MAE, RMSE, IA, accuracy rate,
and qualification rate for the second day changed from -0.4 to 33.9 kW, 28.3 to 66.2 kW,
45.9 to 193.6 kW, 0.68 to 0.26, 96.94% to 87.09%, and 100.00% to 95.83%, respectively,
while these metrics for the fourth day changed from 5.1 to -57.2 kW, 56.2 to 300.6 kW,
85.4 to 354.6 kW, 0.97 to 0.07, 94.31% to 76.36%, and 100.00% to 77.08%, respectively.
These findings indicated that with the expansion of the forecast time horizon, the wind
power predictive performance of the indirect persistence model became unstable, and
the model reliability went down.

In the actual operation of wind farms, 30 minutes, 4 hours, and 24 hours are the
most common wind power forecast time horizons as required. A comparison of the
30-minute, 4-hour, and 24-hour ahead wind power forecasts provided by the indirect
persistence model and the historical wind power measurements from the test dataset
is shown in Figure 4.3. It is easy to see that the 30-minute ahead indirect wind power
forecasts were incredibly close to the historical wind power measurements. The 4-hour
ahead indirect wind power predictive performance seemed still acceptable, although the
errors at some time points were not small. In contrast, the difference between the 24-
hour ahead indirect wind power forecasts and historical wind power measurements was
quite large. Especially in the last 2 days, there were clearly different trends between
the forecasts and measurements most of the time.
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Figure 4.3. Comparison of the 30-minute, 4-hour, and 24-hour ahead wind power forecasts pro-
vided by the indirect persistence model and the historical wind power measurements from the
4-day test dataset.

4.1.4 Summary

The persistence modelling, a widely used statistical approach for wind speed and wind
power forecasting in the electrical industry at the moment, is presented in Section 4.1.
Basically, there are two ways of forecasting wind power based on a persistence model. One
is called direct forecasting. In this method, historical wind power measurements are the
only necessary data and are simply regarded as future wind power forecasts. The other
is indirect forecasting, in which historical wind speed measurements are considered future
wind speed forecasts that can be converted to wind power forecasts by utilising a power
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curve model. In this case study, both the direct and indirect wind power forecasting were
tested for 10 different forecast time horizons ranging from 30 minutes to 24 hours. The
results revealed that the direct and indirect persistence models performed quite well for
the 30-minute ahead wind power forecasting. However, with the rise in the forecast time
horizon, the MB, MAE, RMSE, IA, accuracy rate, and qualification rate for the wind
power forecasting by using the direct and indirect persistence models deteriorated.

4.2 ARIMA Time Series Modelling

4.2.1 Introduction

The ARIMA time series modelling, as a classical statistical method, was proposed for wind
speed and wind power forecasting in this study. Its general idea was to use an ARIMA
model to forecast wind speed first and then convert wind speed forecasts to wind power
forecasts by using a power curve model. In order to create the ARIMA model and evaluate
its predictive performance, the original 24-day historical wind speed measurements were
divided into two groups. In particular, the data from the first 20 days were used as a
training dataset, and the remaining data from the last 4 days were used as a test dataset.
According to the training dataset, the most appropriate ARIMA model could be finally
determined and employed to forecast the wind speeds for the last 4 days. The details of
the ARIMA model configuration and predictive performance evaluation are described in
the following subsections within this section.

4.2.2 Exploratory Data Analysis

In order to figure out the significant properties of given data, an exploratory data analysis
is usually the first step for time series modelling. One of the most basic and practical
exploratory graphical approaches is to plot the data in the time series. The graph of the
24-day historical wind speed measurements against time is given in Figure 4.4. Not only
the obvious but also the less clear statistical features of the studied data can be gleaned
from the visual interpretation of the plot. The details of the analysis are represented as
follows.
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Figure 4.4. Time series of the 24-day historical wind speed measurements.

(1) Autocorrelation

From Figure 4.4, it was discovered that at some specific sections of the time series, the
wind speed measurements were consistently above the overall mean level, whereas at
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the other locations, the wind speed measurements below the mean level were grouped
together. These patterns of persistence signified that the historical wind speed mea-
surements were probably autocorrelated.

(2) Seasonality

Wind speed is affected by climate and meteorological conditions, which vary greatly
in the four seasons. Since the time period of the historical wind speed measurements
applied in this study was only 24 days, it did not make sense to argue that the season
had a significant influence on the data. Besides, Figure 4.4 demonstrates that there
were no obvious cycles in the data. Hence, the historical wind speed measurements
were supposed to be not seasonal or periodic.

(3) Non-stationarity

From Figure 4.4, it was found that the historical wind speed measurements fluctuated
and followed the overall mean level in general. This plot was not similar to those ones
of typical non-stationarity. Therefore, this time series of the historical wind speed
measurements seemed to be stationary. However, when data were only marginally
non-stationary, it might not be sure whether a differencing operation was needed to
account for homogeneous non-stationarity.

(4) Trends

The existence of trends in data is one of the non-stationarity forms. As shown in
Figure 4.4, there were no uptrends or downtrends in the historical wind speed mea-
surements against time. Neither deterministic nor stochastic trend was present here.
This finding followed the previous statement that the studied data in this case might
be stationary.

(5) Need for a transformation

At this stage, it was hard to determine whether a transformation was required for the
studied data just from the plot. Nevertheless, at the diagnostic checking stage of the
model construction, this issue would be detected by examining the properties of the
residuals.

(6) Extreme values

The existence of the extreme wind speed values was easily detected in Figure 4.4. By
comparing the plots of the time series of the 24-day historical wind speed measurements
(see Figure 4.4) and the corresponding time series of the 24-day historical wind power
measurements (see Figure 4.5), it was concluded that all the extreme wind speed values
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were correct because they contributed to the corresponding extreme wind power values
at their specific time points, except the extreme wind speed value on the 16th day. By
looking up the original wind dataset, the wind speed value was 11.5 m/s at 12:30
UTC on the 26th of August 2015, while the corresponding wind power value was
16.8 kW. Apparently, these two values did not match each other, which means it was
very likely that either the wind speed value or the wind power value was incorrectly
recorded. However, among the total 1,152 values, only one wrong extreme value would
not significantly affect the model construction.
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Figure 4.5. Time series of the 24-day historical wind power measurements.

(7) Long term cycles

Actually, this set of 24-day historical wind speed measurements was too short to detect
any long-term cycles graphically.
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(8) Known or unknown interventions

There were no known interventions to the historical wind speed measurements in the
studied wind farm. Nevertheless, the operator of the wind farm sometimes does in-
tervene in the running of the wind turbines. For instance, a wind turbine may be
stopped by human operations for maintenance or repair purposes even if the wind
speed is good for the wind turbine running. By comparing Figures 4.4 and 4.5, it was
concluded that the studied wind turbine was running normally during the period of 24
days. Moreover, the plot of the historical wind speed measurements (see Figure 4.4)
also indicates that there were no apparent changes in the mean level of the historical
wind speed measurements due to unknown interventions.

(9) Proposed type of time series models

According to the results of the exploratory data analysis on the historical wind speed
measurements discussed above, the non-seasonal ARIMA model was entertained as
the most appropriate type of time series models to be fitted to the time series of the
historical wind speed measurements.

4.2.3 Confirmatory Data Analysis

After proposing the non-seasonal ARIMA model as the most suitable time series model to
describe the historical wind speed measurements from the training dataset against time,
the next step of the time series modelling was the confirmatory data analysis. Follow-
ing the three stages of model construction, namely identification, parameter estimation,
and diagnostic checking, the most appropriate ARIMA model could finally be created to
describe the studied data in the time series.

4.2.3.1 Identification

In order to create the most appropriate ARIMA (p, d, q) model, there are three numbers of
orders, namely the number of AR terms (the p value), number of differencing operations
(the d value), and number of MA terms (the q value), need to be identified. At the stage
of identification, the graphs of the sample ACF and sample PACF are usually examined
to determine the values of these parameters.
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(1) Sample autocorrelation function

The sample ACF of the time series of the historical wind speed measurements from the
training dataset was calculated and is plotted against lag 30 in Figure 4.6. As shown
in Figure 4.6, the sample ACF of the non-seasonal historical wind speed measurements
attenuated relatively slow, revealing that it might be advisable to difference the data
once.
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Figure 4.6. Sample ACF of the time series of the historical wind speed measurements from the
20-day training dataset.

The historical wind speed measurements from the training dataset against time were
differenced according to Equation (2.43), and the results are shown in Figure 4.7,
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from which it can be visually found that the mean level of the differenced historical
wind speed measurements decreased to about 0. More specifically, the mean value was
calculated to be 0.001720542 m/s, which was approximately equal to 0 m/s. Further-
more, compared with the original time series of the historical wind speed measurements
(see Figure 4.4), the time series of the differenced historical wind speed measurements
looked much more stationary.
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Figure 4.7. Time series of the differenced historical wind speed measurements from the 20-day
training dataset.

The sample ACF of the time series of the differenced historical wind speed measure-
ments from the training dataset was calculated and is plotted against lag 30 in Fig-
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ure 4.8, from which it can be seen that after differencing the original historical wind
speed measurements once, the homogeneous non-stationarity was removed, and the
sample ACF died off quite quickly. In addition, the sample ACF damped out but did
not appear to truncate, indicating the need for AR terms to model the time series
of the differenced historical wind speed measurements. Nevertheless, one might also
argue that the sample ACF cut off and was not significantly different from 0 after lag
1. Therefore, a pure MA model might be proposed as well.
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Figure 4.8. Sample ACF of the time series of the differenced historical wind speed measurements
from the 20-day training dataset.

(2) Sample partial autocorrelation function

The sample PACF of the time series of the differenced historical wind speed mea-
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surements from the training dataset was calculated and is plotted against lag 30 in
Figure 4.9. Particularly, the sample PACF attenuated but did not appear to cut off,
which suggested the need for MA terms to model the time series of the differenced
historical wind speed measurements.
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Figure 4.9. Sample PACF of the time series of the differenced historical wind speed measurements
from the 20-day training dataset.

(3) Proposed ARIMA models

As discussed above, the original historical wind speed measurements from the train-
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ing dataset were required to be differenced once to remove the homogeneous non-
stationarity since the sample ACF of the time series of the original historical wind
speed measurements died off relatively slow. Thus, the d value was determined to be
1. Besides, the sample ACF of the time series of the differenced historical wind speed
measurements was not significantly different from 0 after lag 1. Hence, the q value was
proposed to be 1. Additionally, the sample PACF of the time series of the differenced
historical wind speed measurements was not significantly different from 0 after lag 7.
Since the sample PACFs at lags 4 and 6 were within the confidence interval, the p value
was proposed to be 1, 2, 3, 5, or 7. Moreover, a pure MA model was also proposed
in the above sample ACF section. In conclusion, the orders of the proposed ARIMA
models were summarised as follows: (0, 1, 1), (1, 1, 1), (2, 1, 1), (3, 1, 1), (5, 1, 1), and
(7, 1, 1).

4.2.3.2 Parameter Estimation

By examining the figures of the sample ACF and PACF of the time series of the differenced
historical wind speed measurements from the training dataset (see Figures 4.8 and 4.9), the
orders required for the ARIMA model were ascertained. In total, there were six tentative
models identified to describe the differenced historical wind speed measurements in the
time series. At this stage, an approach of maximum likelihood is usually used to calculate
the maximum likelihood estimates (MLEs) and standard errors (SEs) for the parameters
of the AR and MA terms in the ARIMA models. Besides, the Akaike information criterion
(AIC) method is advised to select the most appropriate model from the tentative ones.

The MLEs, SEs, and AICs of the tentative ARIMA models fitted to the time series of the
differenced historical wind speed measurements from the training dataset were calculated
and are shown in Table 4.19. Among the six tentative ARIMA models, the ARIMA (3, 1, 1)
model had the minimum AIC value (2,949.48). However, for the φ3 in the ARIMA (3, 1, 1)
model, its absolute value of the MLE was less than 1.96 times that of the SE. Thus, it
could be claimed that the estimate for the φ3 was not significantly different from 0, and
the φ3 should be left out of the model. Consequently, the ARIMA (2, 1, 1) model might
be the best choice. To be precise, for the parameters of the AR and MA terms in the
ARIMA (2, 1, 1) model, the absolute values of the MLEs were all greater than 1.96 times
those of the corresponding SEs. Therefore, it could be declared that even at the level of
1% significance, these estimates for the parameters were significantly different from 0, and
the parameters should be included in the model. In addition, the AIC value of the ARIMA
(2, 1, 1) model was just a little bit higher than that of the ARIMA (3, 1, 1) model and was
the second smallest among those of the six tentative ARIMA models. As a result, the
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ARIMA (2, 1, 1) model was selected as the best model to be fitted to the time series of the
differenced historical wind speed measurements from the training dataset.

Table 4.19. MLEs, SEs, and AICs of the tentative ARIMA models fitted to the time series of the
differenced historical wind speed measurements from the 20-day training dataset.

ARIMA (p, d, q) Parameter MLE SE AIC

(0, 1, 1)
θ1 -0.2442 0.0352

2,979.85
σ2
a 1.304 /

(1, 1, 1)
φ1 0.6151 0.1083

2,962.4
θ1 -0.8249 0.0835

σ2
a 1.277 /

(2, 1, 1)

φ1 0.7351 0.0334

2,949.77φ2 0.1272 0.0330

θ1 -0.9856 0.0090

σ2
a 1.257 /

(3, 1, 1)

φ1 0.7313 0.0332

2,949.48
φ2 0.0929 0.0399

φ3 0.0496 0.0328

θ1 -0.9880 0.0080

σ2
a 1.254 /

(5, 1, 1)

φ1 0.7314 0.0330

2,952.69

φ2 0.0906 0.0400

φ3 0.0315 0.0401

φ4 0.0128 0.0401

φ5 0.0162 0.0327

θ1 -0.9896 0.0075

σ2
a 1.253 /
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ARIMA (p, d, q) Parameter MLE SE AIC

(7, 1, 1)

φ1 0.3238 0.3542

2,969.86

φ2 -0.0082 0.0903

φ3 -0.0263 0.0587

φ4 -0.0326 0.0487

φ5 -0.0492 0.0454

φ6 0.0041 0.0481

φ7 -0.0668 0.0448

θ1 -0.5633 0.3556

σ2
a 1.271 /

As mentioned in Section 4.2.3.1, the mean value of the differenced historical wind speed
measurements from the training dataset was approximately equal to 0 m/s. According to
the estimates for the parameters given in Table 4.19, the selected ARIMA (2, 1, 1) model
can be written as

(1− B)(1− 0.7351B − 0.1272B2)zt = (1 + 0.9856B)at , (4.3)

where B is the backshift operator, zt is the differenced historical wind speed measurement
at time t, and at is the white noise term at time t that is normally independently distributed
(NID) with a mean of 0 and a variance of 1.257 (i.e., NID (0, 1.257)).

4.2.3.3 Diagnostic Checking

For the purpose of ensuring that the proposed ARIMA (2, 1, 1) model was adequate to
describe the time series of the differenced historical wind speed measurements from the
training dataset, a couple of statistical tests had to be performed at the stage of diagnostic
checking. More specifically, overfitting, consisting of one or more additional parameters
in the model, was employed to test the adequacy of the proposed model at first. Then, a
whiteness, a normality, and a constant variance test were applied to check if the estimated
innovations or residuals of the calibrated ARIMA model were satisfied with the assumptions
of independence, normality, and homoscedasticity, respectively. The details of these tests
are explained as follows.
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(1) Overfitting

Overfitting means fitting a more complex ARIMA model than the proposed one to
check whether adding one or more parameters contributes to enhancing the fit. By
referring to Figure 4.8, the sample ACF of the time series of the differenced historical
wind speed measurements from the training dataset died off and was not significantly
different from 0 after lag 1. Nevertheless, the sample ACF value at lag 2 was just on
the lower limit of the confidence interval, which implied that the second order of the
MA term might be helpful for the model construction. Hence, a test model generated
by overfitting the proposed ARIMA (2, 1, 1) model was the ARIMA (2, 1, 2) model. For
the purpose of a comprehensive study, the ARIMA (0, 1, 2), ARIMA (1, 1, 2), ARIMA
(3, 1, 2), ARIMA (5, 1, 2), and ARIMA (7, 1, 2) models were involved in the test as well.
The MLEs, SEs, and AICs of the overfitted ARIMA models fitted to the time series
of the differenced historical wind speed measurements from the training dataset were
calculated and are shown in Table 4.20.

Table 4.20. MLEs, SEs, and AICs of the overfitted ARIMA models fitted to the time series
of the differenced historical wind speed measurements from the 20-day training dataset.

ARIMA (p, d, q) Parameter MLE SE AIC

(0, 1, 2)
θ1 -0.2370 0.0322

2,973.32θ2 -0.1015 0.0346

σ2
a 1.292 /

(1, 1, 2)

φ1 0.8929 0.0231

2,948.05θ1 -1.1556 0.0426

θ2 0.1660 0.0399

σ2
a 1.254 /

(2, 1, 2)

φ1 1.1836 0.2421

2,948.34
φ2 -0.2476 0.2087

θ1 -1.4405 0.2327

θ2 0.4461 0.2293

σ2
a 1.252 /
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ARIMA (p, d, q) Parameter MLE SE AIC

(3, 1, 2)

φ1 0.6772 0.8175

2,951.96

φ2 0.1276 0.6273

φ3 0.0717 0.0866

θ1 -0.9355 0.8160

θ2 -0.0526 0.8031

σ2
a 1.254 /

(5, 1, 2)

φ1 0.0054 0.2647

2,954.49

φ2 0.6218 0.1948

φ3 0.1000 0.0446

φ4 0.0585 0.0331

φ5 0.0026 0.0351

θ1 -0.2626 0.2628

θ2 -0.7178 0.2602

σ2
a 1.252 /

(7, 1, 2)

φ1 0.1982 0.3431

2,956.22

φ2 0.4809 0.2525

φ3 0.0788 0.0478

φ4 0.0265 0.0379

φ5 -0.0052 0.0365

φ6 0.0527 0.0344

φ7 -0.0049 0.0387

θ1 -0.4556 0.3419

θ2 -0.5298 0.3391

σ2
a 1.249 /

From Table 4.20, it can be found that for the parameters of the AR and MA terms in
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the ARIMA (3, 1, 2) and ARIMA (7, 1, 2) models, the absolute values of the MLEs were
all less than 1.96 times those of the corresponding SEs. Therefore, these two models
would not be chosen in this case. Besides, for the φ4 and φ5 in the ARIMA (5, 1, 2)
model, their absolute values of the MLEs were both less than 1.96 times those of the
SEs, indicating that these two parameters should not be considered for the ARIMA
model. It had been proved that the ARIMA (3, 1, 2) model was not suitable, and
neither was the ARIMA (5, 1, 2) model. Similarly, for the φ2 and θ2 in the ARIMA
(2, 1, 2) model, their absolute values of the MLEs were both less than 1.96 times those of
the SEs. Hence, these two estimates for the parameters were not significantly different
from 0, and the parameters should be left out of the model. It had been proved that
the ARIMA (1, 1, 1) model was inferior to the ARIMA (2, 1, 1) model, and so was the
ARIMA (2, 1, 2) model. In addition, the ARIMA (0, 1, 2) model would not be selected
since its AIC value was the highest among all of those of the overfitted ARIMA models.

The most impressive find was the ARIMA (1, 1, 2) model. To be precise, it had the
smallest AIC value among the total 12 proposed ARIMA models mentioned above.
Moreover, for the parameters in this model, the absolute values of the MLEs were all
greater than 1.96 times those of the corresponding SEs. Thus, it could be announced
that even at the level of 1% significance, these estimates for the parameters were
significantly different from 0, and the parameters should be included in the model.

As mentioned in Section 4.2.3.1, the mean value of the differenced historical wind speed
measurements from the training dataset was approximately equal to 0 m/s. According
to the estimates for the parameters given in Table 4.20, the selected ARIMA (1, 1, 2)
model can be written as

(1− B)(1− 0.8929B)zt = (1 + 1.1556B − 0.1660B2)at , (4.4)

where B is the backshift operator, zt is the differenced historical wind speed measure-
ment at time t, and at is the white noise term at time t that is NID with a mean of 0
and a variance of 1.254 (i.e., NID (0, 1.254)).

In strict, the ARIMA (1, 1, 2) model could not be simply regarded as an overfitted
model based on the previously selected ARIMA (2, 1, 1) model. The reason was that
although the second order of the MA term was added to the ARIMA (2, 1, 1) model,
the second order of the AR term was removed. In conclusion, it was hard to figure
out which one was better to be fitted to the time series of the differenced historical
wind speed measurements from the training dataset between the ARIMA (2, 1, 1) and
ARIMA (1, 1, 2) models at this stage.
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(2) Whiteness test

The residuals of the ARIMA (2, 1, 1) and ARIMA (1, 1, 2) models fitted to the time
series of the differenced historical wind speed measurements from the training dataset
were calculated and are plotted against time in Figures 4.10 and 4.11, respectively.
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Figure 4.10. Time series of the residuals of the ARIMA (2, 1, 1) model fitted to the time series of
the differenced historical wind speed measurements from the 20-day training dataset.
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Figure 4.11. Time series of the residuals of the ARIMA (1, 1, 2) model fitted to the time series of
the differenced historical wind speed measurements from the 20-day training dataset.

Among the three assumptions for innovations, independence is the principal one. The
most informative method to check whether the estimated residuals are uncorrelated or
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white is to examine the graph of the residual autocorrelation function (RACF). The
sample RACFs of the ARIMA (2, 1, 1) and ARIMA (1, 1, 2) models fitted to the time
series of the differenced historical wind speed measurements from the training dataset
were calculated and are plotted against lag 30 in Figures 4.12 and 4.13, respectively.
From Figures 4.12 and 4.13, it can be found that the values of the sample RACFs of
the ARIMA (2, 1, 1) and ARIMA (1, 1, 2) models were all within the 95% confidence
interval after lag 0, which means all the residuals were uncorrelated and indicates that
the innovations of the selected ARIMA (2, 1, 1) and ARIMA (1, 1, 2) models for the
differenced historical wind speed measurements from the training dataset satisfied the
whiteness assumption.
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Figure 4.12. Sample RACF of the ARIMA (2, 1, 1) model fitted to the time series of the differenced
historical wind speed measurements from the 20-day training dataset.
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Figure 4.13. Sample RACF of the ARIMA (1, 1, 2) model fitted to the time series of the differenced
historical wind speed measurements from the 20-day training dataset.

(3) Normality test

Innovations, represented by at, are assumed to be identically and independently dis-
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tributed for ARIMA models. In particular, in the maximum likelihood estimation
method, innovations are developed to be Gaussian or normally distributed. The nor-
mality tests for the residuals of the ARIMA (2, 1, 1) and ARIMA (1, 1, 2) models fitted
to the time series of the differenced historical wind speed measurements from the train-
ing dataset were performed, and the results are shown in Table 4.21. Additionally, the
Lilliefors (Kolmogorov-Smirnov) normality test was applied here.

Table 4.21. Results of the normality tests for the residuals of the ARIMA (2, 1, 1) and ARIMA
(1, 1, 2) models fitted to the time series of the differenced historical wind speed measurements
from the 20-day training dataset.

Proposed model D value p value

ARIMA (2, 1, 1) 0.069885 5.781E-12

ARIMA (1, 1, 2) 0.069918 5.622E-12

From Table 4.21, it can be seen that the p values of the residuals of the fitted ARIMA
(2, 1, 1) and ARIMA (1, 1, 2) models (5.781E-12 and 5.622E-12, respectively) were ex-
tremely small. Hence, the null hypothesis was rejected, implying that the innovations
did not follow a normal distribution. In view of this situation, a Box-Cox transfor-
mation method was proposed to transform the differenced historical wind speed mea-
surements from the training dataset. Then, the ARIMA (2, 1, 1) and ARIMA (1, 1, 2)
models needed to be refitted to the differenced-and-transformed historical wind speed
measurements from the training dataset in order to calculate the new parameters for
the proposed models. Finally, the residuals could be corrected.

For the Box-Cox transformation, the critical point was to determine an appropriate
parameter λ. The automatic selection for the Box-Cox transformation parameter by
R (a programming language) was around 0.33. For the comparative analysis purpose,
the additional values of λ in the range of 0.05 to 0.60 with an interval of 0.05 were
examined in the time series of the differenced historical wind speed measurements from
the training dataset, and the results are shown in Table 4.22.
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Table 4.22. Results of the normality tests for the residuals of the ARIMA (2, 1, 1) and ARIMA
(1, 1, 2) models refitted the time series of the differenced-and-transformed historical wind speed
measurements from the 20-day training dataset.

λ
Refitted ARIMA (2, 1, 1) Refitted ARIMA (1, 1, 2)

D value p value D value p value

0.05 0.053483 8.28E-07 0.054198 5.317E-07

0.10 0.047562 2.511E-05 0.047724 2.302E-05

0.15 0.044724 0.0001093 0.042509 0.00032

0.20 0.043041 0.0002488 0.039694 0.001141

0.25 0.041953 0.0004148 0.038127 0.002212

0.30 0.038636 0.001791 0.037041 0.003435

0.33 0.036299 0.004599 0.035792 0.005589

0.35 0.03635 0.004508 0.035586 0.006044

0.40 0.034676 0.008485 0.034238 0.009951

0.45 0.033991 0.01087 0.035043 0.007409

0.50 0.03683 0.003735 0.036585 0.004113

0.55 0.039697 0.00114 0.039744 0.001117

0.60 0.04239 0.0003384 0.044344 0.000132

From Table 4.22, it can be seen that all the p values were greater than those in Ta-
ble 4.21, while all the D values were smaller than those in Table 4.21. These results of
the normality tests suggested that the Box-Cox transformation acted on the studied
data indeed. The residuals of the ARIMA (2, 1, 1) and ARIMA (1, 1, 2) models refitted
the time series of the differenced-and-transformed historical wind speed measurements
from the training dataset were much closer to a normal distribution. In general, to pass
a normality test, the p value should be greater than 0.05, so that the null hypothesis
can be accepted, which means the distribution of data is normal. Unfortunately, there
were no p values greater than 0.05 in this case. Nevertheless, the maximum p value
(0.01087) occurred when the parameter of the Box-Cox transformation was 0.45, and
the refitted model was the ARIMA (2, 1, 1) model. At least, this p value was greater
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than 0.01. In other words, the null hypothesis of the residuals satisfying a normal
distribution could not be rejected with 99% confidence. Besides, the corresponding D
value was the smallest one among all the D values. Therefore, the Box-Cox transforma-
tion with the parameter of 0.45 was determined to transform the differenced historical
wind speed measurements from the training dataset, and the ARIMA (2, 1, 1) model
was selected.

In addition, the sample RACF of the ARIMA (2, 1, 1) model refitted to the time
series of the differenced-and-transformed historical wind speed measurements from the
training dataset was calculated and is plotted against lag 30 in Figure 4.14, from which
it can be found that the values of the sample RACF of the refitted ARIMA (2, 1, 1)
model were all within the 95% confidence interval after lag 0, which means all the
residuals were uncorrelated and indicates that the innovations of the ARIMA (2, 1, 1)
model refitted to the differenced-and-transformed historical wind speed measurements
from the training dataset satisfied the whiteness assumption.
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Figure 4.14. Sample RACF of the ARIMA (2, 1, 1) model refitted to the time series of
the differenced-and-transformed historical wind speed measurements from the 20-day training
dataset.
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(4) Constant variance test

A constant variance, called homoscedasticity in statistics, is assumed to exist in the
residuals of a fitted ARIMA model. Levene’s test was used for testing the homogene-
ity of the variance of the innovations in this study. The constant variance tests for
the residuals of the ARIMA (2, 1, 1) models fitted to the differenced and refitted to
the differenced-and-transformed historical wind speed measurements from the training
dataset were performed, and the results are shown in Table 4.23.

Table 4.23. Results of the constant variance tests for the residuals of the ARIMA (2, 1, 1) models
fitted to the differenced and refitted to the differenced-and-transformed historical wind speed
measurements from the 20-day training dataset.

Type of data Pr (> F )

Differenced historical wind speed measurements from the training dataset 0.1806

Differenced-and-transformed historical wind speed measurements from the
training dataset

0.9238

As can be seen in Table 4.23, the Pr value of the ARIMA (2, 1, 1) model fitted to the
differenced historical wind speed measurements from the training dataset was 0.1806,
which was greater than 0.05, indicating that the null hypothesis could not be rejected.
In other words, the innovations passed the constant variance test. By contrast, the
Pr value of the ARIMA (2, 1, 1) model fitted to the differenced-and-transformed his-
torical wind speed measurements from the training dataset, 0.9238, was much larger
than that of the ARIMA (2, 1, 1) model fitted to the differenced historical wind speed
measurements from the training dataset and quite close to 1. This result showed the
contribution of the Box-Cox transformation once again. By applying the Box-Cox
transformation, the innovations could be announced to be homoscedastic with much
more confidence.

4.2.3.4 Most Appropriate Model

Following the identification (see Section 4.2.3.1), parameter estimation (see Section 4.2.3.2),
and diagnostic checking (see Section 4.2.3.3) stages, the most appropriate model, ARIMA
(2, 1, 1), to describe the differenced-and-transformed historical wind speed measurements
from the training dataset was constructed. In the process of refitting the ARIMA (2, 1, 1)
model to the time series of the differenced historical wind speed measurements from the
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training dataset transformed by applying the Box-Cox transformation with the parameter
of 0.45, the MLEs, SEs, and AIC of the ARIMA (2, 1, 1) model were calculated and are
shown in Table 4.24.

Table 4.24. MLEs, SEs, and AIC of the ARIMA (2, 1, 1) model refitted to the differenced-and-
transformed historical wind speed measurements from the 20-day training dataset.

ARIMA (p, d, q) Parameter MLE SE AIC

(2, 1, 1)

φ1 0.7395 0.0333

1,535.4φ2 0.1220 0.0329

θ1 -0.9858 0.0085

σ2
a 0.2876 /

From Table 4.24, it can be found that for the parameters of the AR and MA terms in
the ARIMA (2, 1, 1) model fitted to the differenced-and-transformed historical wind speed
measurements from the training dataset, the absolute values of the MLEs were all greater
than 1.96 times those of the corresponding SEs. Therefore, it could be declared that even at
the level of 1% significance, these estimates for the parameters were significantly different
from 0, and the parameters should be included in the model. By comparing Table 4.24 with
Tables 4.19 and 4.20, it can be seen that the variance of the white noise of the ARIMA
(2, 1, 1) model fitted to the Box-Cox transformed time series, 0.2876, was much smaller
than those of the ARIMA models fitted to the untransformed time series. Furthermore,
the AIC value of the ARIMA (2, 1, 1) model fitted to the Box-Cox transformed time series,
1,535.4, dropped dramatically. All of these findings revealed the benefits provided by the
Box-Cox transformation.

As mentioned in Section 4.2.3.1, the mean value of the differenced historical wind speed
measurements from the training dataset was approximately equal to 0 m/s. According to
the estimates for the parameters given in Table 4.24, the most appropriate model, ARIMA
(2, 1, 1) fitted to the Box-Cox transformed time series, can be written as

(1− B)(1− 0.7395B − 0.1220B2)z
(0.45)
t = (1 + 0.9858B)at , (4.5)

where B is the backshift operator, zt is the differenced historical wind speed measurement
at time t, and at is the white noise term at time t that is NID with a mean of 0 and a
variance of 0.2876 (i.e., NID (0, 0.2876)).
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4.2.4 Wind Speed Forecasting Based on an ARIMA Model

Following the exploratory data analysis (see Section 4.2.2) and confirmatory data analysis
(see Section 4.2.3), the most appropriate model, ARIMA (2, 1, 1), fitted to the time series
of the differenced-and-transformed historical wind speed measurements from the training
dataset was generated. A comparison between the wind speed fits provided by the ARIMA
(2, 1, 1) model and the historical wind speed measurements from the training dataset is
shown in Figure 4.15.
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Figure 4.15. Comparison between the wind speed fits provided by the ARIMA (2, 1, 1) model
and the historical wind speed measurements from the 20-day training dataset.

From Figure 4.15, it can be visually found that the wind speed fits obtained from the
ARIMA (2, 1, 1) model provided an excellent conformance with the historical wind speed
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measurements from the training dataset in the period of 20 days. The characteristics of
the wind speed measurements were captured and described by the ARIMA (2, 1, 1) model
successfully. Next, the ARIMA (2, 1, 1) model was applied to the wind speed forecasting
for the purpose of providing the best estimates of what would happen at the specified time
points in the future. In addition, the method of minimum MSE forecasts was used here.

For a comprehensive assessment of the ARIMA (2, 1, 1) model in the wind speed fore-
casting, the different forecast time step sizes ranging from 1 to 48 steps were tested in the
experiment. According to Equation (4.5), the wind speed forecasts based on the different
time step sizes for the test dataset were acquired. The correspondence between the time
step size and time horizon was the same as that explained in Section 4.1.2. According to
Equations (3.9) to (3.14), the MBs, MAEs, RMSEs, IAs, MAPEs, and SMAPEs for the
wind speed forecasting by using the ARIMA (2, 1, 1) model and their 4-day average values
were calculated. The corresponding results are shown in Tables 4.25 to 4.30.

Table 4.25. MBs for the wind speed forecasting by using the ARIMA (2, 1, 1) model applied to
the 4-day test dataset.

MB (m/s)
Forecast day

Average
1 2 3 4

Forecast

time

horizon

30 minutes -0.08 -0.07 -0.12 -0.29 -0.14

1 hour -0.04 -0.13 -0.23 -0.41 -0.20

1.5 hours -0.22 -0.09 -0.31 -0.54 -0.29

2 hours -0.11 -0.14 -0.25 -0.72 -0.31

3 hours -0.11 -0.10 -0.29 -0.62 -0.28

4 hours -0.47 -0.21 -0.31 -0.82 -0.45

6 hours 0.11 -0.09 -0.21 -1.07 -0.32

8 hours -0.45 -0.11 -0.63 -1.49 -0.67

12 hours -0.30 -0.37 -0.32 -1.36 -0.59

24 hours -0.31 -0.12 -1.06 -1.63 -0.78

137



Table 4.26. MAEs for the wind speed forecasting by using the ARIMA (2, 1, 1) model applied to
the 4-day test dataset.

MAE (m/s)
Forecast day

Average
1 2 3 4

Forecast

time

horizon

30 minutes 0.67 0.52 0.62 0.63 0.61

1 hour 0.75 0.60 0.69 0.82 0.72

1.5 hours 0.99 0.65 0.80 0.87 0.83

2 hours 1.12 0.67 0.94 1.08 0.95

3 hours 1.10 0.64 1.00 1.07 0.95

4 hours 1.10 0.78 1.04 1.31 1.06

6 hours 1.41 0.81 1.65 1.41 1.32

8 hours 1.17 0.85 1.50 1.94 1.37

12 hours 1.02 0.86 2.10 1.96 1.49

24 hours 1.04 0.75 1.75 2.22 1.44
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Table 4.27. RMSEs for the wind speed forecasting by using the ARIMA (2, 1, 1) model applied
to the 4-day test dataset.

RMSE (m/s)
Forecast day

Average
1 2 3 4

Forecast

time

horizon

30 minutes 1.37 0.67 0.78 0.83 0.91

1 hour 1.47 0.78 0.89 1.07 1.05

1.5 hours 1.84 0.88 1.01 1.23 1.24

2 hours 1.99 0.86 1.18 1.43 1.36

3 hours 1.90 0.80 1.27 1.50 1.37

4 hours 1.94 0.97 1.33 1.76 1.50

6 hours 1.99 1.00 1.86 1.85 1.67

8 hours 1.83 1.05 1.76 2.45 1.77

12 hours 1.74 1.05 2.33 2.56 1.92

24 hours 1.75 0.94 2.10 2.83 1.91
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Table 4.28. IAs for the wind speed forecasting by using the ARIMA (2, 1, 1) model applied to
the 4-day test dataset.

IA
Forecast day

Average
1 2 3 4

Forecast

time

horizon

30 minutes 0.87 0.96 0.98 0.98 0.95

1 hour 0.85 0.94 0.97 0.97 0.93

1.5 hours 0.76 0.93 0.96 0.96 0.90

2 hours 0.72 0.93 0.95 0.95 0.89

3 hours 0.75 0.94 0.94 0.94 0.89

4 hours 0.74 0.91 0.94 0.92 0.88

6 hours 0.72 0.90 0.88 0.91 0.85

8 hours 0.77 0.90 0.89 0.85 0.85

12 hours 0.79 0.89 0.81 0.83 0.83

24 hours 0.79 0.91 0.85 0.80 0.84
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Table 4.29. MAPEs for the wind speed forecasting by using the ARIMA (2, 1, 1) model applied
to the 4-day test dataset.

MAPE
Forecast day

Average
1 2 3 4

Forecast

time

horizon

30 minutes 25.32% 26.82% 20.75% 20.37% 23.31%

1 hour 30.33% 32.35% 24.97% 23.39% 27.76%

1.5 hours 34.67% 33.19% 30.80% 23.45% 30.53%

2 hours 42.81% 36.07% 38.42% 29.00% 36.57%

3 hours 41.42% 33.97% 44.48% 27.51% 36.85%

4 hours 42.84% 47.45% 39.87% 39.29% 42.36%

6 hours 58.66% 49.93% 79.46% 33.96% 55.50%

8 hours 48.20% 50.09% 67.75% 50.59% 54.16%

12 hours 41.88% 47.08% 102.59% 50.77% 60.58%

24 hours 42.84% 44.39% 67.99% 55.48% 52.67%
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Table 4.30. SMAPEs for the wind speed forecasting by using the ARIMA (2, 1, 1) model applied
to the 4-day test dataset.

SMAPE
Forecast day

Average
1 2 3 4

Forecast

time

horizon

30 minutes 24.21% 22.55% 19.63% 19.50% 21.47%

1 hour 28.08% 26.36% 22.37% 22.89% 24.92%

1.5 hours 33.45% 26.16% 26.81% 23.55% 27.49%

2 hours 39.11% 28.33% 31.37% 31.37% 32.22%

3 hours 36.61% 26.76% 31.58% 28.12% 30.76%

4 hours 41.62% 33.36% 33.01% 37.42% 36.35%

6 hours 48.78% 34.53% 52.25% 36.34% 42.97%

8 hours 44.43% 35.30% 48.56% 54.24% 45.63%

12 hours 37.60% 37.01% 64.40% 51.93% 47.73%

24 hours 38.43% 31.73% 55.25% 59.72% 46.28%

From Tables 4.25 to 4.30, it can be seen that the ARIMA (2, 1, 1) model performed well
for the 30-minute ahead wind speed forecasting. Specifically, its 4-day average MB absolute
value was only 0.14 m/s, which was close to 0; its 4-day average MAE and RMSE were
0.61 m/s and 0.91 m/s, respectively, which were both less than 1 m/s; its 4-day average IA
was 0.95, which was the only one reaching the level of 0.95; and its 4-day average MAPE
and SMAPE were 23.31% and 21.47%, respectively, which were just slightly higher than
20.00%. Nevertheless, it is not surprising that with the rise in the forecast time horizon
from 30 minutes to 12 hours, the 4-day average MB absolute value, MAE, RMSE, MAPE,
and SMAPE for the wind speed forecasting by using the ARIMA (2, 1, 1) model went up
gradually, although there were a few exceptions. To be precise, the 4-day average MB
absolute values for the 3-hour, 6-hour, and 12-hour ahead wind speed forecasting were a
little smaller than those for the 2-hour, 4-hour, and 8-hour ahead wind speed forecasting,
respectively; the 4-day average MAPE for the 8-hour ahead wind speed forecasting was a
little smaller than that for the 6-hour ahead wind speed forecasting; and the 4-day average
SMAPE for the 3-hour ahead wind speed forecasting was a little smaller than that for the
2-hour ahead wind speed forecasting. In the end, the values of these evaluation metrics for
the 12-hour ahead wind speed forecasting, reaching 0.59 m/s, 1.49 m/s, 1.92 m/s, 60.58%,
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and 47.73%, respectively, were much higher than those for the 30-minute ahead wind speed
forecasting. Additionally, the corresponding 4-day average IA decreased gradually with the
increasing forecast time horizon. The 4-day average IA for the 12-hour ahead wind speed
forecasting, as low as 0.83, was relatively worse than that for the 30-minute ahead wind
speed forecasting. This is because for the 1-step ahead wind speed forecasting, all of the
wind speed forecasts were calculated according to the historical wind speed measurements.
However, for the multi-step ahead wind speed forecasting, half or most of the wind speed
forecasts depended on the wind speed estimates previously calculated. Thus, the wind
speed forecast error gradually accumulated with the expansion of the forecast time step
size, resulting in a larger and larger error. One interesting discovery is that the predictive
performance of the 24-hour ahead wind speed forecasting was a little better than that of
the 12-hour ahead wind speed forecasting according to every single metric except the MB
in this case. However, this can only be explained as an accidental phenomenon since it
does not make any sense.

Another point that needs to be highlighted is that although the MBs for the 30-minute
ahead wind speed forecasting were close to each other for the 4 single days, the differences
among them became much larger as the forecast time horizon increased from 30 minutes
to 24 hours. The same applied to the MAEs, RMSEs, IAs, MAPEs, and SMAPEs. For
instance, the MB, MAE, RMSE, IA, MAPE, and SMAPE for the second day changed from
-0.07 to -0.12 m/s, 0.52 to 0.75 m/s, 0.67 to 0.94 m/s, 0.96 to 0.91, 26.82% to 44.39%,
and 22.55% to 31.73%, respectively, while these metrics for the fourth day changed from
-0.29 to -1.63 m/s, 0.63 to 2.22 m/s, 0.83 to 2.83 m/s, 0.98 to 0.80, 20.37% to 55.48%,
and 19.50% to 59.72%, respectively. These findings indicated that with the expansion of
the forecast time horizon, the wind speed predictive performance of the ARIMA (2, 1, 1)
model became unstable, and the model reliability went down.

In the actual operation of wind farms, 30 minutes, 4 hours, and 24 hours are the most
common wind power forecast time horizons as required. The individual comparisons be-
tween the 30-minute, 4-hour, and 24-hour ahead wind speed forecasts (together with the
90% confidence interval) provided by the ARIMA (2, 1, 1) model and the historical wind
speed measurements from the test dataset are shown in Figures 4.16, 4.17, and 4.18, re-
spectively. It is easy to see that the 30-minute ahead wind speed forecasts were incredibly
close to the historical wind speed measurements, and the corresponding 90% confidence
interval covered almost all the wind speed measurements. One 30-minute ahead forecast
provided by the ARIMA (2, 1, 1) model was predicted one step in advance based on the
previous two points. Hence, it was expected to be close to the past measurement, resulting
in a lag display. The 4-hour ahead wind speed predictive performance seemed still accept-
able, although the errors at some time points were not small, and the corresponding 90%
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confidence interval covered almost all the wind speed measurements as well. In contrast,
the difference between the 24-hour ahead wind speed forecasts and historical wind speed
measurements was quite large. In fact, the 24-hour ahead wind speed forecasts did not
capture the characteristics of the wind speed measurements at all. Nevertheless, the cor-
responding 90% confidence interval still covered most of the wind speed measurements. It
should be noted that the ARIMA (2, 1, 1) model was fitted to the time series of Box-Cox
transformed historical wind speed measurements. The Box-Cox transformed wind speed
forecasts were in the middle of the confidence intervals. However, in order to produce the
real wind speed forecasts shown in Figures 4.16 to 4.18, an inverse Box-Cox transformation
was performed. After that, the wind speed forecasts were not in the middle of the confi-
dence intervals anymore. In addition, a comparison of the 30-minute, 4-hour, and 24-hour
ahead wind speed forecasts provided by the ARIMA (2, 1, 1) model and the historical wind
speed measurements from the test dataset is shown in Figure 4.19.
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Figure 4.16. Comparison between the 30-minute ahead wind speed forecasts (together with the
90% confidence interval) provided by the ARIMA (2, 1, 1) model and the historical wind speed
measurements from the 4-day test dataset.
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Figure 4.17. Comparison between the 4-hour ahead wind speed forecasts (together with the
90% confidence interval) provided by the ARIMA (2, 1, 1) model and the historical wind speed
measurements from the 4-day test dataset.
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Figure 4.18. Comparison between the 24-hour ahead wind speed forecasts (together with the
90% confidence interval) provided by the ARIMA (2, 1, 1) model and the historical wind speed
measurements from the 4-day test dataset.
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Figure 4.19. Comparison of the 30-minute, 4-hour, and 24-hour ahead wind speed forecasts
provided by the ARIMA (2, 1, 1) model and the historical wind speed measurements from the
4-day test dataset.
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4.2.5 Wind Power Forecasting Based on an ARIMA Model

As discussed in Section 4.2.4, the wind speed forecasts provided by the ARIMA (2, 1, 1)
model for the multiple forecast time horizons were obtained. In this case, all the 4-day
wind speed forecasts for the test dataset were input to the ANFIS-based power curve model
created in Section 3.7, and then the corresponding wind power forecasts could be acquired
as the output of the power curve model. According to Equations (3.9) to (3.12) and (3.15)
to (3.18), the MBs, MAEs, RMSEs, IAs, accuracy rates, and qualification rates for the
wind power forecasting by using the ARIMA (2, 1, 1) model and their 4-day average values
were calculated. The corresponding results are shown in Tables 4.31 to 4.36.

Table 4.31. MBs for the wind power forecasting by using the ARIMA (2, 1, 1) model applied to
the 4-day test dataset.

MB (kW)
Forecast day

Average
1 2 3 4

Forecast

time

horizon

30 minutes -20.9 -6.9 -30.6 -37.7 -24.0

1 hour -21.9 -10.2 -44.5 -56.8 -33.3

1.5 hours -41.7 -10.7 -55.9 -74.8 -45.7

2 hours -37.6 -17.2 -50.2 -93.2 -49.5

3 hours -36.6 -11.9 -62.8 -87.7 -49.7

4 hours -60.8 -22.3 -59.7 -111.5 -63.6

6 hours -29.6 -15.8 -73.5 -139.8 -64.7

8 hours -62.4 -22.5 -103.9 -169.6 -89.6

12 hours -63.2 -26.2 -80.3 -178.5 -87.1

24 hours -63.5 -23.3 -135.8 -196.0 -104.6
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Table 4.32. MAEs for the wind power forecasting by using the ARIMA (2, 1, 1) model applied to
the 4-day test dataset.

MAE (kW)
Forecast day

Average
1 2 3 4

Forecast

time

horizon

30 minutes 52.8 25.4 60.6 57.1 49.0

1 hour 53.2 27.5 66.8 81.2 57.2

1.5 hours 75.5 34.7 75.7 89.5 68.9

2 hours 78.5 30.5 83.1 104.1 74.0

3 hours 83.5 31.3 90.3 108.2 78.3

4 hours 66.1 30.5 93.4 118.3 77.1

6 hours 96.0 32.1 133.5 140.6 100.5

8 hours 69.3 34.0 118.7 172.2 98.6

12 hours 66.7 31.3 166.7 182.4 111.8

24 hours 67.1 31.6 142.4 199.8 110.2
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Table 4.33. RMSEs for the wind power forecasting by using the ARIMA (2, 1, 1) model applied
to the 4-day test dataset.

RMSE (kW)
Forecast day

Average
1 2 3 4

Forecast

time

horizon

30 minutes 187.8 41.4 92.4 96.0 104.4

1 hour 186.5 44.3 101.6 127.7 115.0

1.5 hours 232.5 51.7 113.4 150.5 137.0

2 hours 233.6 48.1 122.1 167.3 142.8

3 hours 235.4 46.5 130.4 189.8 150.5

4 hours 226.2 49.8 138.1 203.4 154.4

6 hours 237.1 48.7 172.8 219.7 169.6

8 hours 226.2 52.6 169.7 267.7 179.0

12 hours 225.9 52.8 203.2 291.5 193.4

24 hours 226.0 51.0 199.4 305.9 195.6
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Table 4.34. IAs for the wind power forecasting by using the ARIMA (2, 1, 1) model applied to
the 4-day test dataset.

IA
Forecast day

Average
1 2 3 4

Forecast

time

horizon

30 minutes 0.65 0.67 0.86 0.95 0.78

1 hour 0.64 0.57 0.82 0.90 0.73

1.5 hours 0.18 0.37 0.76 0.86 0.54

2 hours 0.17 0.40 0.73 0.81 0.53

3 hours 0.17 0.46 0.69 0.75 0.52

4 hours 0.19 0.40 0.67 0.72 0.50

6 hours 0.14 0.36 0.45 0.65 0.40

8 hours 0.19 0.34 0.56 0.52 0.40

12 hours 0.19 0.40 0.28 0.47 0.34

24 hours 0.19 0.39 0.48 0.45 0.38
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Table 4.35. Accuracy rates for the wind power forecasting by using the ARIMA (2, 1, 1) model
applied to the 4-day test dataset.

Accuracy rate
Forecast day

Average
1 2 3 4

Forecast

time

horizon

30 minutes 87.48% 97.24% 93.84% 93.60% 93.04%

1 hour 87.57% 97.04% 93.23% 91.49% 92.33%

1.5 hours 84.50% 96.55% 92.44% 89.97% 90.86%

2 hours 84.43% 96.79% 91.86% 88.85% 90.48%

3 hours 84.31% 96.90% 91.31% 87.34% 89.96%

4 hours 84.92% 96.68% 90.80% 86.44% 89.71%

6 hours 84.19% 96.75% 88.48% 85.35% 88.69%

8 hours 84.92% 96.49% 88.69% 82.15% 88.06%

12 hours 84.94% 96.48% 86.46% 80.57% 87.11%

24 hours 84.93% 96.60% 86.70% 79.61% 86.96%
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Table 4.36. Qualification rates for the wind power forecasting by using the ARIMA (2, 1, 1) model
applied to the 4-day test dataset.

Qualification rate
Forecast day

Average
1 2 3 4

Forecast

time

horizon

30 minutes 97.92% 100.00% 100.00% 100.00% 99.48%

1 hour 97.92% 100.00% 100.00% 97.92% 98.96%

1.5 hours 95.83% 100.00% 100.00% 95.83% 97.92%

2 hours 95.83% 100.00% 97.92% 93.75% 96.88%

3 hours 95.83% 100.00% 100.00% 89.58% 96.35%

4 hours 95.83% 100.00% 97.92% 91.67% 96.35%

6 hours 95.83% 100.00% 95.83% 83.33% 93.75%

8 hours 95.83% 100.00% 95.83% 85.42% 94.27%

12 hours 95.83% 100.00% 91.67% 81.25% 92.19%

24 hours 95.83% 100.00% 91.67% 81.25% 92.19%

From Tables 4.31 to 4.36, it can be found that the predictive performance of the ARIMA
(2, 1, 1) model for the 30-minute ahead wind power forecasting was good. To be precise, its
4-day average MB absolute value, MAE, RMSE, IA, accuracy rate, and qualification rate
were 24.0 kW, 49.0 kW, 104.4 kW, 0.78, 93.04%, and 99.48%, respectively. However, it is
not surprising that as the forecast time horizon expanded from 30 minutes to 24 hours, the
4-day average MB absolute value, MAE, and RMSE for the wind power forecasting by using
the ARIMA (2, 1, 1) model increased gradually, while the corresponding 4-day average IA,
accuracy rate, and qualification rate decreased. At last, the values of these evaluation
metrics for the 24-hour ahead wind power forecasting, reaching 104.6 kW, 110.2 kW,
195.6 kW, 0.38, 86.96%, and 92.19%, respectively, were much worse than those for the
30-minute ahead wind power forecasting. Nevertheless, a few exceptions existed in this
case. Specifically, the 4-day average MB absolute value for the 12-hour ahead wind power
forecasting was a little smaller than that for the 8-hour ahead wind power forecasting; the
4-day average MAEs for the 4-hour, 8-hour, and 24-hour ahead wind power forecasting
were a little smaller than those for the 3-hour, 6-hour, and 12-hour ahead wind power
forecasting, respectively; the 4-day average IA for the 24-hour ahead wind power forecasting
was a little higher than that for the 12-hour ahead wind power forecasting; and the 4-day
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average qualification rate for the 8-hour ahead wind power forecasting was a little higher
than that for the 6-hour ahead wind power forecasting. All of them can be regarded as
accidental phenomena since they do not make any sense.

Another point that needs to be highlighted is that although the MBs for the 30-minute
ahead wind power forecasting were close to each other for the 4 single days, the differences
among them became much larger as the forecast time horizon increased from 30 minutes to
24 hours. The same applied to the MAEs, RMSEs, IAs, accuracy rates, and qualification
rates. For instance, the MB, MAE, RMSE, IA, accuracy rate, and qualification rate for the
second day changed from -6.9 to -23.3 kW, 25.4 to 31.6 kW, 41.4 to 51.0 kW, 0.67 to 0.39,
97.24% to 96.60%, and 100.00% to 100.00%, respectively, while these metrics for the fourth
day changed from -37.7 to -196.0 kW, 57.1 to 199.8 kW, 96.0 to 305.9 kW, 0.95 to 0.45,
93.60% to 79.61%, and 100.00% to 81.25%, respectively. These findings indicated that
with the expansion of the forecast time horizon, the wind power predictive performance of
the ARIMA (2, 1, 1) model became unstable, and the model reliability went down.

In the actual operation of wind farms, 30 minutes, 4 hours, and 24 hours are the most
common wind power forecast time horizons as required. In the same way as mapping
the wind speed forecasts to wind power forecasts by using the ANFIS-based power curve
model created in Section 3.7, the 90% confidence intervals for the different forecast time
horizons could also be generated. The individual comparisons between the 30-minute, 4-
hour, and 24-hour ahead wind power forecasts (together with the 90% confidence interval)
provided by the ARIMA (2, 1, 1) model and the historical wind power measurements from
the test dataset are shown in Figures 4.20, 4.21, and 4.22, respectively. It is easy to
see that the 30-minute ahead wind power forecasts were incredibly close to the historical
wind power measurements, and the corresponding 90% confidence interval covered almost
all the wind power measurements. The 4-hour ahead wind power predictive performance
seemed still acceptable, although the errors at some time points were not small, and the
corresponding 90% confidence interval covered almost all the wind power measurements
as well. In contrast, the difference between the 24-hour ahead wind power forecasts and
historical wind power measurements was quite large. In fact, the 24-hour ahead wind
power forecasts did not capture the characteristics of the wind power measurements at
all. Nevertheless, the corresponding 90% confidence interval still covered most of the wind
power measurements. In addition, a comparison of the 30-minute, 4-hour, and 24-hour
ahead wind power forecasts provided by the ARIMA (2, 1, 1) model and the historical
wind power measurements from the test dataset is shown in Figure 4.23.
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Figure 4.20. Comparison between the 30-minute ahead wind power forecasts (together with the
90% confidence interval) provided by the ARIMA (2, 1, 1) model and the historical wind power
measurements from the 4-day test dataset.
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Figure 4.21. Comparison between the 4-hour ahead wind power forecasts (together with the
90% confidence interval) provided by the ARIMA (2, 1, 1) model and the historical wind power
measurements from the 4-day test dataset.
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Figure 4.22. Comparison between the 24-hour ahead wind power forecasts (together with the
90% confidence interval) provided by the ARIMA (2, 1, 1) model and the historical wind power
measurements from the 4-day test dataset.
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Figure 4.23. Comparison of the 30-minute, 4-hour, and 24-hour ahead wind power forecasts
provided by the ARIMA (2, 1, 1) model and the historical wind power measurements from the
4-day test dataset.

4.2.6 Summary

The ARIMA time series modelling, as a classical statistical method for wind speed and
wind power forecasting, is presented in Section 4.2. First of all, an exploratory data
analysis was applied to the 24 days of historical wind speed measurements. Through the
visual interpretations of the characteristics of the historical wind speed measurements,
such as autocorrelation, non-seasonality, no trends, no long term cycles, and no known
or unknown interventions, a non-seasonal ARIMA model was entertained as the most
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appropriate type of time series models to be fitted to the time series of the historical wind
speed measurements.

Then, a confirmatory data analysis was employed. To be precise, in the first stage
of identification, the plot of the sample ACF of the time series of the historical wind
speed measurements from the training dataset implied that a differencing operation was
necessary for the original data. According to the plots of the sample ACF and sample PACF
of the time series of the differenced historical wind speed measurements from the training
dataset, the orders of the ARIMA models were proposed to be (0, 1, 1), (1, 1, 1), (2, 1, 1),
(3, 1, 1), (5, 1, 1), and (7, 1, 1). In the second stage of parameter estimation, an approach
of maximum likelihood was used to calculate the MLEs and SEs for the parameters of the
AR and MA terms in the ARIMA models, together with the AIC method, the ARIMA
(2, 1, 1) model was selected from the six tentative models as the most appropriate one.

In the third stage of diagnostic checking, overfitting was tested at first, and the ARIMA
(1, 1, 2) model was found as the second most promising model since the AIC value of the
ARIMA (1, 1, 2) model was even lower than that of the ARIMA (2, 1, 1) model, and the
estimates for the parameters of the AR and MA terms in the ARIMA (1, 1, 2) model
were all significantly different from 0. After that, a whiteness test was applied to the
residuals of the ARIMA (2, 1, 1) and ARIMA (1, 1, 2) models. Their plots of the sample
RACF indicated that the residuals of these two models were uncorrelated. Therefore,
both of the models satisfied the whiteness assumption. However, these two models failed
a normality test. In view of this situation, applying a Box-Cox transformation to the
differenced historical wind speed measurements from the training dataset was suggested.
Then, the ARIMA (2, 1, 1) and ARIMA (1, 1, 2) models were refitted to the differenced-and-
transformed historical wind speed measurements from the training dataset. The results of
the normality test for the residuals of the refitted ARIMA models verified the contributions
of the Box-Cox transformation. The maximum p value of 0.01087, considerably larger than
the previous ones (5.781E-12 and 5.622E-12), occurred when the parameter of the Box-Cox
transformation was 0.45, and the ARIMA (2, 1, 1) model was employed. Unfortunately,
this p value was still less than the desired value of 0.05. Nevertheless, it was at least
greater than 0.01. In other words, the null hypothesis of the residuals satisfying a normal
distribution could not be rejected with 99% confidence. In addition. the corresponding D
value was the smallest one among all the D values. Hence, the Box-Cox transformation
with the parameter of 0.45 was proposed to transform the differenced historical wind speed
measurements from the training dataset, and the ARIMA (2, 1, 1) model was selected.
Moreover, the refitted ARIMA (2, 1, 1) model passed the whiteness test as well.

And then, a constant variance test was applied to the residuals of the ARIMA (2, 1, 1)
models fitted to the differenced and differenced-and-transformed historical wind speed
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measurements from the training dataset. The results showed that both of the models passed
the constant variance test. Owing to the Box-Cox transformation, the innovations of the
refitted ARIMA (2, 1, 1) model could be announced to be homoscedastic with much more
confidence. The most appropriate model for the wind speed forecasting was determined to
be the ARIMA (2, 1, 1) model and can be written as

(1− B)(1− 0.7395B − 0.1220B2)z
(0.45)
t = (1 + 0.9858B)at , (4.6)

where B is the backshift operator, zt is the differenced historical wind speed measurement
at time t, and at is the white noise term at time t that is NID with a mean of 0 and a
variance of 0.2876 (i.e., NID (0, 0.2876)).

Next, the selected ARIMA (2, 1, 1) model was utilised to forecast the wind speeds
for the test dataset. The wind speed forecasting was tested for 10 different forecast time
horizons ranging from 30 minutes to 24 hours, and the predictive performance was assessed
by using the six evaluation metrics described in Section 3.5. It was concluded that the
ARIMA (2, 1, 1) model performed well for the 30-minute ahead wind speed forecasting,
with the 4-day average MB absolute value of 0.14 m/s, MAE of 0.61 m/s, RMSE of
0.91 m/s, IA of 0.95, MAPE of 23.31%, and SMAPE of 21.47%. Besides, the corresponding
90% confidence interval covered almost all the wind speed measurements. Nevertheless,
with the rise in the forecast time horizon, the 4-day average MB absolute value, MAE,
RMSE, MAPE, and SMAPE for the wind speed forecasting by using the ARIMA (2, 1, 1)
model went up gradually, while the corresponding 4-day average IA decreased. This is
because for the 1-step ahead wind speed forecasting, all of the wind speed forecasts were
calculated according to the historical wind speed measurements. However, for the multi-
step ahead wind speed forecasting, half or most of the wind speed forecasts depended
on the wind speed estimates previously calculated. Thus, the wind speed forecast error
gradually accumulated with the expansion of the forecast time step size, resulting in a
larger and larger error. Although there were some exceptions in this case, they can only
be explained as accidental phenomena since they do not make any sense. Additionally, the
differences among the MBs for the 4 single days of the test dataset became much larger
as the forecast time horizon increased from 30 minutes to 24 hours. The same applied to
the other five evaluation metrics. These findings indicated that with the expansion of the
forecast time horizon, the wind speed predictive performance of the ARIMA (2, 1, 1) model
became unstable, and the model reliability dropped.

Finally, the wind speed forecasts provided by the ARIMA (2, 1, 1) model were converted
to the wind power forecasts by using the ANFIS-based power curve model created in
Section 3.7. Like the wind speed forecasting, the wind power forecasting was tested for 10
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different forecast time horizons ranging from 30 minutes to 24 hours, and the predictive
performance was assessed by using the six evaluation metrics described in Section 3.5. It
was concluded that the ARIMA (2, 1, 1) model performed well for the 30-minute ahead
wind power forecasting, with the 4-day average MB absolute value of 24.0 kW, MAE of
49.0 kW, RMSE of 104.4 kW, IA of 0.78, accuracy rate of 93.04%, and qualification rate
of 99.48%. Similarly to the wind speed forecasting, the corresponding 90% confidence
interval covered almost all the wind power measurements. However, with the rise in the
forecast time horizon, the 4-day average MB absolute value, MAE, and RMSE for the
wind power forecasting by using the ARIMA (2, 1, 1) model increased gradually, while the
corresponding 4-day average IA, accuracy rate, and qualification rate went down. Although
there were some exceptions in this case, they can only be explained as accidental phenomena
since they do not make any sense. In addition, the differences among the MBs for the 4
single days of the test dataset became much larger as the forecast time horizon increased
from 30 minutes to 24 hours. The same applied to the other five evaluation metrics. These
findings indicated that with the expansion of the forecast time horizon, the wind power
predictive performance of the ARIMA (2, 1, 1) model became unstable, and the model
reliability dropped.
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Chapter 5

Physics-Based Modelling

5.1 Introduction

In Chapter 4, the statistics-based modelling (viz., the persistence modelling and ARIMA
time series modelling) for wind speed and wind power forecasting is explained in detail.
Besides, another primary methodology, widely used in the field of wind speed and wind
power forecasting as well, is called physics-based modelling. By applying real geographical
and meteorological data, the physics-based forecasting method is supposed to be more
suitable for longer forecast time horizons. The general idea of the physics-based modelling
for wind power forecasting in this study was to produce wind speed forecasts by using a
WRF model first and then convert the wind speed forecasts to wind power forecasts by
using a power curve model.

In order to determine the most reliable WRF model and evaluate its predictive perfor-
mance, the same historical wind data used for the statistics-based modelling were employed
for the physics-based modelling in this case. Specifically, the original 24 days of historical
wind speed and wind power measurements were divided into two groups: the first 20 days
of wind data were used as a training dataset, and the remaining 4 days of wind data were
used as a test dataset. In addition, the real geographical data provided by the UCAR
and the meteorological data provided by the GFS were both open resources that could be
downloaded from the websites. Moreover, in the process of physics-based modelling, the
different combinations of model parameters contributed to the different WRF models and
different wind speed forecasts as well. Therefore, a TOPSIS scheme was proposed to select
and combine the WRF models to generate the best wind speed forecasts. The details of
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the WRF model configuration and predictive performance evaluation are described in the
following sections within this chapter.

5.2 Setting up and Running a WPS Programme

In a WPS programme, there are three independent subprogrammes, namely geogrid, ungrib,
and metgrid, that cooperate together to prepare the inputs to a real programme for real-
data simulations in the WRF model. Every single subprogramme has its own role of
preparation. Particularly, the geogrid programme is used to define the model domains and
interpolate static geographical data to the model grids; the ungrib programme is able to
read gridded meteorological fields from the files in the format of the general regularly-
distributed information in binary form (GRIB) and write these data in an intermediate
format; and the metgrid programme interpolates the extracted gridded meteorological
fields to the defined model grids horizontally. In addition, a vertical interpolation of the
extracted gridded meteorological fields to the WRF eta levels is implemented in the real
programme. A WPS flow chart is shown in Figure 5.1.

Figure 5.1. WPS flow chart.
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As shown in Figure 5.1, the variables of the geogrid, ungrib, and metgrid programmes
are controlled in a file called namelist.wps, which consists of a shared namelist record for all
the programmes and three individual namelist records for each programme. The content
of the edited namelist.wps file for this study is shown below:

&share
wrf core = ‘ARW’,
max dom = 4,
start date = ‘2015-08-10 00:00:00’, ‘2015-08-10 00:00:00’, ‘2015-08-10 00:00:00’, ‘2015-08-
10 00:00:00’,
end date = ‘2015-09-04 00:00:00’, ‘2015-09-04 00:00:00’, ‘2015-09-04 00:00:00’, ‘2015-09-
04 00:00:00’,
interval seconds = 21600,
active grid = .true., .true., .true., .true.,
io form geogrid = 2,
opt output from geogrid path = ‘./output/’,
/
&geogrid
parent id = 1, 1, 2, 3,
parent grid ratio = 1, 3, 3, 3,
i parent start = 1, 116, 71, 71,
j parent start = 1, 78, 48, 48,
e we = 301, 211, 211, 211,
e sn = 202, 142, 142, 142,
geog data res = ‘default’, ‘default’, ‘30s’, ‘30s’,
dx = 27000,
dy = 27000,
map proj = ‘lambert’,
ref lat = 41.06,
ref lon = 114.81,
truelat1 = 30.0,
truelat2 = 60.0,
stand lon = 114.81,
geog data path = ‘/home/greendou/scratch/WPS GEOG/’,
opt geogrid tbl path = ‘./geogrid/’,
/
&ungrib
out format = ‘WPS’,
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prefix = ‘./output/FILE’,
/
&metgrid
fg name = ‘./output/FILE’,
opt metgrid tbl path = ‘./metgrid/’,
io form metgrid = 2,
opt output from metgrid path = ‘./output/’,
/

5.2.1 Setting up and Running a geogrid Programme

Before running the geogrid programme, some variables in the share and geogrid sections in
the namelist.wps file needed to be edited. First of all, in the share section, since the WPS
prepared the input data for the ARW simulations in this study, the wrf core variable, spec-
ifying the WRF dynamical core, was set to be ‘ARW’. The max dom variable, specifying
the total number of domains/nests (including the parent domain) in the simulation, was set
to be 4 as it was designed to have four domains. The meaning of the nests can be explained
as they contribute to a higher resolution with lower computational costs. From the content
of the namelist.wps file shown above, it can be found that for some variables, there were
four columns that represented the individual values for the four domains. The active grid
variable was set to be a list of four .true.’s as each grid of the four domains would be
processed by the geogrid and metgrid programmes. The io form geogrid variable was left
at the default value of 2 as the domain files generated by the geogrid programme would be
written in the format of the network common data form (NetCDF), which was expected by
the metgrid programme. The opt output from geogrid path variable gave the path to the
location where the domain files from the geogrid programme would be written to and read
from. These mentioned variables in the share section were all relevant to the geogrid pro-
gramme. However, the other variables, namely start date, end date, and interval seconds,
would be ignored by the geogrid programme, which only produced time-independent data.

In the geogrid section, the parent id variable, specifying the domain number of each
nest’s parent, was set to be 1, 1, 2, 3, which means that domain 1 was the parent domain,
and domains 2, 3, and 4 were inside domains 1, 2, and 3, respectively. The parent grid ratio
variable, specifying the ratio of each nest’s parent grid distance to the corresponding nest’s
grid distance, was set to be 1, 3, 3, 3, which means that the grid lengths of domains 1,
2, and 3 were three times those of domains 2, 3, and 4, respectively. The i parent start
and j parent start variables, specifying the x and y coordinates of the lower-left corner of
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each nest in the corresponding parent domain, were set to be 1, 116, 71, 71 and 1, 78,
48, 48, respectively, indicating that the coordinates of the lower-left corners of domain 2
in domain 1, domain 3 in domain 2, and domain 4 in domain 3 were (116, 78), (71, 48),
and (71, 48), respectively. The basis of these settings was keeping the nest boundaries
away from the corresponding coarse domain boundaries and roughly putting the nests at
the centre of their parent domains. The e we and e sn variables, specifying each domain’s
full west-east and south-north dimensions, were set to be 301, 211, 211, 211 and 202,
142, 142, 142, respectively, indicating that domain 1 had 301 grid points in the west-east
dimension and 202 grid points in the south-north dimension, and domains 2, 3, and 4 all
had 211 grid points in the west-east dimension and 142 grid points in the south-north
dimension. The geog data res variable, specifying the resolution of the source data to
be employed when the static terrestrial data being interpolated to the nest’s grid, was
set to be ‘default’, ‘default’, ‘30s’, ‘30s’. The dx and dy variables, specifying the grid
distances (in metres) in the x and y directions, respectively, were both set to be 27000 as
recommended by the model developers that these two variables preferably have the same
value for a Lambert conformal projection, which means that the grid distance of domain
1 was 27×27 km2. Based on the values specified for the parent id and parent grid ratio
variables, the grid distances of domains 2, 3, and 4 were 9×9 km2, 3×3 km2, and 1×1 km2,
respectively. The map proj variable specifies the projection of the simulation domain.
There are four optional projection types, namely Lambert conformal (‘lambert’), polar
stereographic (‘polar’), Mercator (‘mercator’), and regular latitude-longitude (‘lat-lon’).
‘lambert’ was selected in this study because the studied wind turbine was located in a
mid-latitude area for which the Lambert conformal projection was the most suitable one.
The ref lat and ref lon variables specify the latitude and longitude of the centre point of the
coarse domain, respectively. In order to place the studied wind turbine at the centre point,
the ref lat and ref lon variables were set to be 41.06 and 114.81, respectively, by referring
to the estimated location of the wind turbine (41.06◦ N, 114.81◦ E) in Section 3.2. The
truelat1 and truelat2 variables were set to be 30.0 and 60.0, respectively, indicating that
the surface of the Lambert conformal projection intersected the surface of the earth at the
latitudes of 30.0◦ N and 60.0◦ N. The stand lon variable, specifying the longitude parallel
with the y-axis in the Lambert conformal projection, was set to be the same value (114.81)
as the ref lon variable, which means that the coarsest domain would be centred. The
geog data path and opt geogrid tbl path variables gave the paths to the directories where
the static geographical data and GEOGRID.TBL file were stored, respectively.

Once the simulation coarse and nested domains were correctly defined in the namelist.wps
file, the WPS domain configuration used for the numerical weather forecasts over the wind
farm was finished. A picture of the domain configuration is displayed in Figure 5.2, in
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which the four nested domains (centred on the location of the wind farm) are labelled as
d01 (coarsest corresponding to the entire domain), d02, d03, and d04 (finest). By running
the geogrid programme, the domain files were produced.

Figure 5.2. WPS domain configuration used for the numerical weather forecasts over the wind
farm.

5.2.2 Setting up and Running an ungrib Programme

Before running the ungrib programme, some variables in the share and ungrib sections
in the namelist.wps file needed to be edited. First of all, in the share section, the
start date and end date variables, specifying the starting and ending UTC dates and
times of the simulation for each domain, were set to be ‘2015-08-10 00:00:00’, ‘2015-08-
10 00:00:00’, ‘2015-08-10 00:00:00’, ‘2015-08-10 00:00:00’ and ‘2015-09-04 00:00:00’, ‘2015-
09-04 00:00:00’, ‘2015-09-04 00:00:00’, ‘2015-09-04 00:00:00’, respectively, indicating that
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the simulation for each domain would start from 00:00:00 UTC on the 10th of August 2015
and end at 00:00:00 UTC on the 4th of September 2015. The interval seconds variable,
specifying the time interval (in seconds) between the meteorological input files, was set
to be 21600 since the input files were available with a temporal resolution of 6 hours. In
the ungrib section, the out format variable, specifying the format of the intermediate files
written by the ungrib programme, was set to be ‘WPS’ as the ungrib programme was
executed in the WPS programme. The prefix variable identified the path and prefix of the
intermediate files.

After suitably editing the variables related to the ungrib programme in the namelist.wps
file, the variable table (Vtable) of the codes to identify the variables and levels in the GRIB
files was supplied. Moreover, the GRIB files obtained from the GFS had to be linked to the
filenames that were expected by the ungrib programme. By running the ungrib programme,
the meteorological fields from the GRIB files were extracted, and the files of meteorological
data were produced in the intermediate format.

5.2.3 Setting up and Running a metgrid Programme

Some variables in the share and metgrid sections are relevant to the running of the metgrid
programme. However, at this stage, there was no need to modify any variable in the share
section because all of the variables were set appropriately for the runnings of the geogrid
and ungrib programmes in Sections 5.2.1 and 5.2.2, respectively. In the metgrid section, the
fg name variable identified the path and prefix of the intermediate meteorological data files.
The opt metgrid tbl path variable gave the path to the directory where the METGRID.TBL
file was stored. The io form metgrid variable was left at the default value of 2 as the outputs
generated by the metgrid programme would be written in the format of the NetCDF, which
was expected by the real programme. The opt output from metgrid path variable gave the
path to the location where the output files from the metgrid programme would be written
to.

After suitably editing the variables related to the metgrid programme in the namelist.wps
file, the METGRID.TBL file appropriate for the WRF core had to be linked in the metgrid
directory. By running the metgrid programme, the meteorological fields extracted by the
ungrib programme were horizontally interpolated to the model domains defined by the
geogrid programme.
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5.3 Setting up and Running a WRF Programme

After successfully running the WPS programme, which is required for the real-data simula-
tions, the next step is to set up a WRF programme. Similar to the WPS programme, there
is a namelist.input file in which the parameters of the WRF programme can be edited. An
example of a namelist.input file for this study is shown below:

&time control
run days = 0,
run hours = 0,
run minutes = 0,
run seconds = 0,
start year = 2015, 2015, 2015, 2015,
start month = 08, 08, 08, 08,
start day = 10, 10, 10, 10,
start hour = 18, 18, 18, 18,
start minute = 00, 00, 00, 00,
start second = 00, 00, 00, 00,
end year = 2015, 2015, 2015, 2015,
end month = 08, 08, 08, 08,
end day = 12, 12, 12, 12,
end hour = 00, 00, 00, 00,
end minute = 00, 00, 00, 00,
end second = 00, 00, 00, 00,
interval seconds = 108000,
input from file = .true., .true., .true., .true.,
history interval = 30, 30, 30, 30,
frames per outfile = 9000, 9000, 9000, 9000,
restart = .false.,
restart interval = 4320,
io form history = 2,
io form restart = 2,
io form input = 2,
io form boundary = 2,
/
&domains
time step = 162,
time step fract num = 0,
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time step fract den = 1,
max dom = 4,
e we = 301, 211, 211, 211,
e sn = 202, 142, 142, 142,
e vert = 50, 50, 50, 50,
p top requested = 5000,
num metgrid levels = 27,
num metgrid soil levels = 4,
dx = 27000, 9000, 3000, 1000,
dy = 27000, 9000, 3000, 1000,
grid id = 1, 2, 3, 4,
parent id = 1, 1, 2, 3,
i parent start = 1, 116, 71, 71,
j parent start = 1, 78, 48, 48,
parent grid ratio = 1, 3, 3, 3,
parent time step ratio = 1, 3, 3, 3,
feedback = 1,
smooth option = 0,
/
&physics
mp physics = 5, 5, 5, 5,
cu physics = 2, 2, 0, 0,
bl pbl physics = 6, 6, 6, 6,
sf sfclay physics = 5, 5, 5, 5,
sf surface physics = 3, 3, 3, 3,
num soil layers = 9,
ra lw physics = 4, 4, 4, 4,
ra sw physics = 4, 4, 4, 4,
radt = 27, 27, 27, 27,
co2tf = 1,
bldt = 0, 0, 0, 0,
cudt = 0, 0, 0, 0,
icloud = 1,
num land cat = 21,
sf urban physics = 0, 0, 0, 0,
/
&dynamics
w damping = 1,
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diff opt = 2, 2, 2, 2,
km opt = 4, 4, 4, 4,
diff 6th opt = 2, 2, 2, 2,
diff 6th factor = 0.12, 0.12, 0.12, 0.12,
base temp = 290,
damp opt = 3,
zdamp = 5000, 5000, 5000, 5000,
dampcoef = 0.2, 0.2, 0.2, 0.2,
khdif = 0, 0, 0, 0,
kvdif = 0, 0, 0, 0,
non hydrostatic = .true., .true., .true., .true.,
moist adv opt = 1, 1, 1, 1,
scalar adv opt = 1, 1, 1, 1,
gwd opt = 0,
/
&bdy control
spec bdy width = 5,
spec zone = 1,
relax zone = 4,
specified = .true.,
nested = .false., .true., .true., .true.,
/

Unlike the namelist.wps file (see Section 5.2), in which the values of all the variables
were fixed after being edited, some parameters in the namelist.input file had a number of
optional values, implying that there were different candidate WRF models for the wind
speed and wind power forecasting in this study. In order to facilitate the description of
the parameter settings, the parameters in the namelist.input file are split into two parts:
one is the fixed parameters, and the other is the variable parameters.

5.3.1 Settings of Fixed Parameters

In the time control section, the run days, run hours, run minutes, and run seconds param-
eters, specifying the simulation run time in days, hours, minutes, and seconds, respectively,
were all simply set to be 0, which means that the time to run the model simulation would
entirely depend on the starting and ending times. The interval seconds parameter, speci-
fying the periodic frequency of incoming real data in seconds, was set to be 108000, which
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means that there were no updated real data within 30 hours. Although the resolution
of the GFS data was 6 hours, the WRF model aimed to forecast wind speeds one day
in advance in this research. Therefore, the model lateral boundaries were not able to be
updated every 6 hours. The input from file parameter was set to be .true. for the four
domains, indicating that the nested run would have input files for each domain. The his-
tory interval parameter was set to be 30 for each domain as the frequency of recording
data to the history file was 30 minutes. The frames per outfile parameter, specifying the
number of time periods that would be written to each history file, was set to be 9000
for each domain, and it was big enough to generate one output file containing all output
times. The restart parameter was set to be .false. as a restart run would never be done,
because of which the restart interval parameter, specifying the time interval (in minutes) of
restart output files, would be ignored. The io form history, io form restart, io form input,
and io form boundary parameters, specifying the formats for the history output, restart
output, input, and boundary files, respectively, were all left at the default value of 2 (the
NetCDF) as recommended by the model developers.

In the domains section, the time step parameter, specifying the time step (in seconds)
for integration, was set to be 162 as the model developers recommend applying a value
of 6×dx in km for a typical case. The time step fract num and time step fract den pa-
rameters, specifying the numerator and denominator for the fractional time step, were set
to be 0 and 1, respectively, indicating that the time step was an integer. The max dom
parameter, specifying the number of domains for running, was set to be 4, which means
that all the domains were going to be run. The e we and e sn parameters, specifying each
domain’s full west-east and south-north dimensions, were set to be 301, 211, 211, 211 and
202, 142, 142, 142, respectively, indicating that domain 1 had 301 grid points in the west-
east dimension and 202 grid points in the south-north dimension, and domains 2, 3, and 4
all had 211 grid points in the west-east dimension and 142 grid points in the south-north
dimension. The e vert parameter, specifying the number of vertical levels onto which the
real programme would interpolate the incoming data, was set to be 50 for each domain as
a level range of 40 to 60 is recommended by the model developers. The p top requested
parameter, specifying the pressure top (in Pa) to use in the model, was left at the default
value of 5000 as recommended by the model developers. The num metgrid levels param-
eter was set to be 27 as there were 27 incoming vertical levels in the input data. The
num metgrid soil levels parameter was set to be 4 as there were four soil levels in the WPS
outputs. The dx and dy parameters, specifying the grid distances (in metres) in the x and
y directions, respectively, were both set to be 27000, 9000, 3000, 1000, which means that
the grid distances of domains 1, 2, 3, and 4 were 27×27 km2, 9×9 km2, 3×3 km2, and
1×1 km2, respectively. The grid id parameter, specifying the domain numbers, was set to
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be 1, 2, 3, 4 as there were four domains. The parent id parameter, specifying the domain
number of each nest’s parent, was set to be 1, 1, 2, 3, which means that domains 1, 2, 3, and
4 had domains 1, 1, 2, and 3 as parents, respectively. The i parent start and j parent start
parameters, specifying the x and y coordinates of the lower-left corner of each nest in the
corresponding parent domain, were set to be 1, 116, 71, 71 and 1, 78, 48, 48, respectively,
indicating that the coordinates of the lower-left corners of domain 1 in domain 1, domain
2 in domain 1, domain 3 in domain 2, and domain 4 in domain 3 were (1, 1), (116, 78),
(71, 48), and (71, 48), respectively. The parent grid ratio parameter, specifying the ratio
of each nest’s parent grid distance to the corresponding nest’s grid distance, was set to be
1, 3, 3, 3, which means that the grid lengths of domains 1, 2, and 3 were three times those
of domains 2, 3, and 4, respectively. The parent time step ratio parameter, specifying the
parent-to-nest time step ratio, was set to be 1, 3, 3, 3 as recommended by the model de-
velopers. The feedback parameter was set to be 1 as the feedback from the nests to their
corresponding parent domains would be used and the run would be a two-way nested run.
The smooth option parameter was set to be 0, which means that the smoothing option for
each parent domain in the area of the nest was turned off as recommended by the model
developers.

In the physics section, the ra lw physics and ra sw physics parameters, specifying the
longwave and shortwave radiation options, respectively, were both set to be 4 (the Rapid
Radiative Transfer Model for General Circulation Models (RRTMG) scheme) for each
domain as recommended by the model developers. The radt parameter, specifying the
minutes between radiation physics calls, was set to be 27 for each domain as the model
developers recommend applying 1 minute per km of dx. Since the co2tf parameter is
the flag of the CO2 transmission function for the Geophysical Fluid Dynamics Laboratory
(GFDL) radiation only, it would be ignored in this case. The bldt and cudt parameters,
specifying the minutes between boundary layer physics calls and cumulus physics calls,
respectively, were both set to be 0 for each domain as every time step is recommended by
the model developers. The icloud parameter was left at the default value of 1, indicating
that the cloud effect on the optical depth in radiation would be applied. The num land cat
parameter was set to be 21 as there were 21 land categories in the input data. The
sf urban physics parameter was set to be 0 for each domain, indicating that the urban
canopy model would not be activated.

In the dynamics section, the w damping parameter was set to be 1, which means that
the vertical velocity damping flag was turned on as this is required for the model stability of
the operational run. The diff opt parameter, as a turbulence and mixing option, was set to
be 2 for each domain, which means evaluating mixing terms in physical space. The km opt
parameter, as an eddy coefficient option, was set to be 4 (the horizontal Smagorinsky
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first-order closure) for each domain as it is recommended by the model developers for real-
data cases. The diff 6th opt parameter was set to be 2 for each domain, indicating that
the sixth-order numerical diffusion without up-gradient diffusion would be applied. The
diff 6th factor parameter, specifying the sixth-order numerical diffusion non-dimensional
rate, was left at the default value of 0.12 for each domain. The base temp parameter,
specifying the base state sea-level temperature (in K), was left at the default value of 290
as a typical value ranges from 270 to 300 K. The damp opt parameter, as the upper-level
damping flag, was set to be 3 (with the Rayleigh damping) as it is suitable for real-data
cases. The zdamp parameter, specifying the damping depth (in metres) from the model
top, was left at the default value of 5000 for each domain. The dampcoef parameter,
specifying the damping coefficient, was left at the default value of 0.2 for each domain.
The khdif and kvdif parameters, specifying the horizontal and vertical diffusion constants
(in m2/s), were both left at the default value of 0 for each domain. The non hydrostatic
parameter was set to be .true. for each domain, indicating that the model was run in non-
hydrostatic mode. The moist adv opt and scalar adv opt parameters were both left at the
default value of 1 for each domain, indicating that the positive-definite advection would be
applied for moisture and scalars. The gwd opt parameter was set to be 0, indicating that
the gravity wave drag option was turned off.

In the bdy control section, the spec bdy width parameter was set to be 5, indicating that
there were five rows for specified boundary value nudging. The spec zone and relax zone
parameters, specifying the numbers of points in the specified and relaxation zones, were
set to be 1 and 4, respectively. The specified parameter was set to be .true., indicating
that the specified boundary condition was turned on. The nested parameter was set to
be .false., .true., .true., .true. as the nested boundary conditions had to be applied to the
nests.

5.3.2 Settings of Variable Parameters

In the time control section, the start year, start month, start day, start hour, start minute,
start second, end year, end month, end day, end hour, end minute, and end second param-
eters, specifying the starting and ending times for the model domains in the year, month,
day, hour, minute, and second, respectively, are the variable parameters. In this study, the
forecast time horizon was 24 hours. Besides, the spin-up time required for the WRF model
to stabilise and build up the dynamic structure of the atmospheric motions was taken to
be 6 hours. As a consequence, the total simulation time for each case was 30 hours. The
WRF model took a cold start at 18:00 one day before every forecast day. For instance, for
the case of the first forecast day, the WRF model started from 18:00 UTC on the 10th of

175



August 2015 and ended at 00:00 UTC on the 12th of August 2015. The parameter settings
of the starting and ending times for the first day are presented in the namelist.input file
in Section 5.3. In the meantime, the introduction of the spin-up time ensures that final
wind power forecasts can be reported before the next day a couple of hours in advance.
The earliest reporting time depends on the computational time of the WRF model. Since
the time length of the original wind data was 24 days, there were 24 pairs of starting and
ending time parameters in total.

In the physics section, the mp physics, cu physics, bl pbl physics, sf sfclay physics, and
sf surface physics parameters, as the critical physics options that need to be determined
in the WRF modelling, were selected as the variable parameters in this study. To be
precise, the mp physics, cu physics, bl pbl physics, sf sfclay physics, and sf surface physics
parameters represent the microphysics, cumulus, planetary boundary-layer, surface-layer,
and land-surface parameterisations, respectively. The direct interactions between the var-
ious WRF physics options are displayed in Figure 5.3. In addition, there is another
variable parameter called num soil layers, which represents the number of soil layers in
the land-surface model. For each land-surface model, the number of soil layers is fixed.
Since the num soil layers parameter depends on the sf surface physics parameter, the
num soil layers parameter will not be considered in the following discussion.
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Figure 5.3. Direct interactions between the various WRF physics options.

For each physics option, there are many parameterisation schemes available. Some of
them are simple and used for coarse domains or ideal cases, while the others are com-
plex and suitable for high-resolution real-world simulations. The various parameterisation
schemes (used in this research) for the five physics options in the WRF model are sum-
marised in Table 5.1.
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Table 5.1. The various parameterisation schemes for the five physics options in the WRF model.

No. mp physics cu physics bl pbl physics sf sfclay physics sf surface physics

1 Purdue Lin Kain-Fritsch Yonsei Uni-
versity

Revised MM5 Rapid Update
Cycle

2 Ferrier Eta Betts-Miller-
Janjic

Mellor-
Yamada-
Janjic

Eta Similarity Noah-Multi-
Physics

3 WRF Single-
Moment
6-Class

Grell-Freitas Quasi-
Normal
Scale Elimi-
nation

Quasi-Normal
Scale Elimina-
tion

Community
Land Model
Version 4

4 Thompson et
al.

Grell 3D Mellor-
Yamada
Nakanishi
and Niino
Level 3

Mellor-
Yamada
Nakanishi and
Niino

5 Milbrandt-
Yau Double-
Moment
7-Class

Zhang-
McFarlane

BouLac Total Energy -
Mass Flux

6 Stony Brook
University (Y.
Lin)

Kain-Fritsch-
Cumulus
Potential

University of
Washington

7 WRF Double-
Moment
6-Class

Multi-Scale
Kain-Fritsch

Total En-
ergy - Mass
Flux

8 NSSL Single-
Moment
6-Class

New Tiedtke Shin-Hong

9 NSSL-LFO
Single-
Moment
6-Class

Grenier-
Bretherton-
McCaa
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No. mp physics cu physics bl pbl physics sf sfclay physics sf surface physics

10 Thompson
Aerosol-
Aware

From Table 5.1, it can be seen that the numbers of selected physical parameterisa-
tion schemes for the microphysics, cumulus, planetary boundary-layer, surface-layer, and
land-surface physics options were 10, eight, nine, five, and three, respectively. Mathe-
matically, there were 10,800 physical parameterisation scheme combinations. However, a
number of restrictions on the various scheme combinations exist. For example, the plane-
tary boundary-layer scheme is fixed to one or two specific surface-layer schemes: when the
bl pbl physics parameters are set to be 1, 2, 4, 6, 8, 9, 10, 11, and 12, the sf sfclay physics
parameters have to be 1, 2, 4, 5, 1 or 2, 1 or 2, 10, 1, and 1, respectively. Any other
combination between the planetary boundary-layer and surface-layer schemes does not
work. Besides, the multi-scale Kain-Fritsch scheme only matches the Yonsei University
scheme, and the Zhang-McFarlane scheme requires the Mellor-Yamada-Janjic or Univer-
sity of Washington scheme, which are the fixed combinations between the cumulus and
planetary boundary-layer schemes. The community land model scheme is not compatible
with the Mellor-Yamada-Janjic or quasi-normal scale elimination scheme, which are the
conflicts between the land-surface and planetary boundary-layer schemes. Additionally,
some WRF models with certain scheme combinations cannot generate full results. Conse-
quently, the number of total practical scheme combinations was 1,334, which was relatively
small compared with that of possible scheme combinations (10,800).

5.3.3 Running a real and a wrf Programme

After suitably editing the parameters in the namelist.input file, a real programme can
be run. The real programme is an initialisation programme required by real simulations.
Specifically, it plays the role of taking the 2D outputs created by the WPS programme and
performing the vertical interpolation for 3D meteorological fields and sub-surface soil data.
After that, the boundary and initial condition files for each domain are produced and will
be fed into a wrf programme. Running the wrf programme is the last step of running
the WRF model. Finally, the output files containing all the meteorological forecasts were
generated.
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5.4 Estimating Wind Speed Forecasts at the Wind

Turbine Hub Height

WRF output files contain a large number of different meteorological forecasts, and wind
speed forecasts were the only meteorological data needed in this research. As explained in
Section 5.3, in the vertical direction, the WRF model domain was discretised by utilising
50 levels extending from the ground surface to a height corresponding to an atmospheric
pressure of 5,000 Pa. The corresponding heights of the first 12 levels are shown in Table 5.2.

Table 5.2. Heights of the first 12 vertical levels in the WRF models.

Model level Height (m)

1 0

2 52.6

3 119.75

4 205.06

5 312.82

6 447.9

7 615.71

8 821.93

9 1072.74

10 1373.08

11 1725.85

12 2132.68

The hub height of the studied wind turbine was 65 m. By referring to Table 5.2, it can
be found that the hub height was between the second and third vertical levels. Since the
wind speed forecasts for each vertical level were available, an interpolation method could
be applied to estimate the wind speed forecasts at the 65-m height. Moreover, as most
weather stations observe wind speeds at the height of 10 m, WRF models automatically
estimate 10-m height wind speed forecasts and provide these data for users. Hence, a more
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convenient solution was proposed herein—converting wind speed forecasts at the 10-m
height to those at the 65-m height by the wind profile power law shown as below [62]:

Uhub = Ur(
hhub
hr

)α , (5.1)

where Uhub is the wind speed (m/s) at the hub height, Ur is the given wind speed (m/s)
at a reference height, hhub is the hub height (m), hr is the reference height (m), and α is
the wind shear. When wind speed measurements at different heights are unavailable, the
wind shear exponent α is taken as 1/7 (or 0.143) as an approximation.

The estimation process of the wind speed forecasts at the wind turbine hub height is
described as follows:

(1) Read a WRF output file;

(2) Extract the x-wind components at the 10-m height at all times;

(3) Extract the y-wind components at the 10-m height at all times;

(4) Find the nearest grid index to the wind turbine location;

(5) Extract the x-wind components at the 10-m height for the wind turbine location;

(6) Extract the y-wind components at the 10-m height for the wind turbine location;

(7) Calculate the wind speed forecasts at the 10-m height based on the zonal and merid-
ional wind components by the Pythagorean theorem;

(8) Estimate the wind speed forecasts at the hub height by the wind profile power law.

5.5 Selecting and Combining WRF Models Based on

a TOPSIS Scheme

Dr Deyong Wen is now an atmospheric scientist and a data analyst working at Environ-
ment and Climate Change Canada (ECCC). When he did research in our laboratory as a
postdoctoral fellow a few years ago, he produced a set of wind speed forecasts by using the
WRF model for the same wind turbine case. The previous WRF model was created mainly
based on Dr Wen’s working experience. In particular, a couple of physical parameterisation
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scheme combinations were examined based on a very short test dataset, and then a specific
scheme combination was chosen according to the model predictive performance. Although
those data (wind speed forecasts) have not been published, the methodology of building the
WRF model is very similar to that one applied in Dr Wen’s paper ‘Short-term wind speed
and power forecasting using an ensemble of mixture density neural networks’ [91], which
was published in the journal of Renewable Energy in 2016. His current status as an expert
at ECCC and his published papers show that he has sufficient professional meteorological
knowledge to build reliable WRF models and calculate wind speed forecasts. Therefore,
the wind speed forecasts he generated for the specific wind turbine, as the early results of
our laboratory, are believed to be able to represent a general level in the industry and be
regarded as a benchmark in this research. In order to distinguish them from the previous
wind speed forecasts, the wind speed forecasts obtained in this case were called new wind
speed forecasts. The choices of the physical parameterisation scheme combinations for the
various physics options provide different WRF models that generate different wind speed
forecasts. Nevertheless, there are no rules for selecting the parameterisation scheme for each
physics option. All physical parameterisation schemes were developed by different research
groups, and each of these schemes has its own characteristic features. The assumption in
this study was that for the studied wind farm with its distinctive geographical factors and
climatic conditions, one or several specific physical parameterisation scheme combinations
might consistently outperform other scheme combinations. In addition, it was speculated
that among the five selected physics options, the planetary boundary-layer, surface-layer,
and land-surface parameterisations were even more sensitive than the microphysics and
cumulus parameterisations.

Instead of the ad hoc method previously applied, a systematic approach was proposed to
select the WRF models. In total, there were wind speeds over a 24-day period that needed
to be forecasted. However, 1,334 possible physical parameterisation scheme combinations
implied that there were 1,334 individual WRF model forecasts that needed to be considered.
Because of the substantial computational time and cost that this would require, it was
extremely burdensome to run 1,334 individual WRF models to provide wind speed forecasts
for each day of the 24-day period. A practical solution proposed in the study was to run the
entire set of 1,334 WRF models for the first day and select the top 50 from them according
to their predictive performance. A comparison of the new wind speed forecasts provided by
the 1,334 different WRF models, Dr Wen’s wind speed forecasts, and the historical wind
speed measurements for the first day of the dataset is exhibited in Figure 5.4. A careful
perusal of this figure shows that the predictive performance of the 1,334 WRF models
(with specific choices for the parameterisations of the various physical processes) varied
greatly. Besides, the general trend of the new wind speed forecasts was roughly the same
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as that of Dr Wen’s wind speed forecasts. Nevertheless, it is a little bit tricky to tell how
well the new wind speed forecasts perform compared with Dr Wen’s wind speed forecasts
according to Figure 5.4. It should be noted that the wind speed measurements fell out
of the coverage of the wind speed forecasts provided by the 1,334 WRF models most of
the time. However, this one-day period was too short to indicate statistical significance.
Furthermore, atmospheric motion is a complicated process, and the predictive performance
of WRF models varies every day. At this stage, the goal was to find relatively accurate WRF
models which had the potential to be further improved by using a wind speed correction
model.

Figure 5.4. Comparison of the new wind speed forecasts provided by the 1,334 different WRF
models, Dr Wen’s wind speed forecasts, and the historical wind speed measurements for the first
day of the dataset (the 11th of August 2015).
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A short version of the dataset of the historical wind speed measurements (indicated by
WSM), Dr Wen’s wind speed forecasts (indicated by WSF 0), and the new wind speed
forecasts provided by the 1,334 different WRF models (indicated by WSFs 1 to 1,334) for
the first day of the dataset is shown in Table 5.3.

Table 5.3. Short version of the dataset of the historical wind speed measurements (indicated by
WSM), Dr Wen’s wind speed forecasts (indicated by WSF 0), and the new wind speed forecasts
provided by the 1,334 different WRF models (indicated by WSFs 1 to 1,334) for the first day of
the dataset (the 11th of August 2015).

Month Day Hour Minute WSM
(m/s)

WSF
0
(m/s)

WSF
1
(m/s)

WSF
2
(m/s)

· · · WSF
1,333
(m/s)

WSF
1,334
(m/s)

8 11 0 0 0.33 1.26 1.80 1.92 · · · 1.68 1.62

8 11 0 30 0.59 0.85 2.18 2.40 · · · 2.05 1.89

8 11 1 0 0.38 0.75 2.52 2.68 · · · 2.26 2.14

8 11 1 30 1.84 1.00 2.85 2.99 · · · 2.67 2.67

8 11 2 0 1.75 1.84 3.26 3.38 · · · 3.16 3.30

8 11 2 30 1.65 2.59 3.44 3.55 · · · 3.41 3.55

8 11 3 0 0.90 2.73 3.63 3.77 · · · 3.59 3.74

8 11 3 30 1.37 2.93 3.69 3.73 · · · 3.68 3.73

8 11 4 0 2.20 3.71 4.21 4.08 · · · 3.72 3.69

8 11 4 30 2.34 4.07 4.40 4.61 · · · 4.05 4.05

...
...

...
...

...
...

...
...

. . .
...

...

8 11 21 30 2.79 3.60 4.29 4.21 · · · 4.17 3.98

8 11 22 0 2.40 2.10 4.03 3.94 · · · 3.57 3.52

8 11 22 30 2.19 3.38 3.39 3.38 · · · 3.18 3.25

8 11 23 0 2.16 3.20 3.33 3.22 · · · 3.20 3.98

8 11 23 30 2.12 2.71 4.36 4.10 · · · 2.39 2.19
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Since the historical wind speed measurements for the first day of the dataset were given,
the new wind speed forecasts and Dr Wen’s wind speed forecasts could be evaluated by
comparing them with their corresponding measurements. For this purpose, various evalu-
ation metrics summarised in Equations (3.9) to (3.14) were used to assess the predictive
performance of the WRF models. More specifically, the MB, MAE, RMSE, IA, MAPE,
and SMAPE were evaluated for each of the WRF model forecasts of the wind speed for
the first day. A short version of the predictive performance assessment of the 1,335 WRF
models by using six evaluation metrics is shown in Table 5.4. The first column represents
the WRF model index. Particularly, Model 0, as a benchmark model in this study, referred
to the WRF model previously created by Dr Wen. Models 1 to 1,334 represented the 1,334
individual WRF models based on different physical parameterisation scheme combinations.
The values of the six evaluation metrics for each WRF model are shown in columns 2 to 7.
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Table 5.4. Short version of the predictive performance assessment of the 1,335 WRF models for
the first day of the dataset (the 11th of August 2015) by using six evaluation metrics.

Model
index 1

MB
(m/s)

MAE
(m/s)

MAPE SMAPE RMSE
(m/s)

IA

0 0.81 1.67 87.22% 58.74% 2.12 0.37

1 1.79 2.03 127.31% 62.33% 2.43 0.40

2 1.77 2.04 128.71% 63.07% 2.42 0.39

3 1.78 2.08 128.73% 63.65% 2.47 0.39

4 1.75 2.03 124.56% 62.65% 2.41 0.40

5 1.79 2.03 126.04% 62.76% 2.41 0.40

6 1.80 2.05 127.73% 62.80% 2.44 0.40

7 1.72 2.05 127.26% 63.37% 2.44 0.37

8 1.74 2.03 124.93% 62.87% 2.40 0.40

9 1.75 2.03 125.03% 62.82% 2.40 0.41

10 1.79 2.05 125.40% 62.91% 2.43 0.40

...
...

...
...

...
...

...

1,330 1.47 2.00 120.69% 62.54% 2.40 0.35

1,331 1.48 1.97 120.74% 61.49% 2.37 0.37

1,332 1.42 1.90 115.45% 60.34% 2.30 0.37

1,333 1.43 1.93 115.90% 61.15% 2.31 0.37

1,334 1.43 1.92 115.58% 60.66% 2.32 0.36

If there were only one specific metric, it would be straightforward to compare the 1,335
WRF model forecasts with the associated wind speed measurements using this metric
and rank the individual forecasts from the best to the worst in predictive performance.
However, in this case, six different metrics were employed, and the ranking of the 1,335
WRF model forecasts was different for each metric. For the purpose of finding the best-
performing prediction among the various WRF model forecasts of the wind speed, the
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TOPSIS scheme was applied to address this multi-metric decision making problem, and
the process is carried out as follows:

(1) Step 1

Create a standardised evaluation matrix X consisting of 1,335 alternatives and six
metrics:

X =



0.81 1.67 0.8722 0.5874 2.12 0.37
1.79 2.03 1.2731 0.6233 2.43 0.40
1.77 2.04 1.2871 0.6307 2.42 0.39
1.78 2.08 1.2873 0.6365 2.47 0.39
1.75 2.03 1.2456 0.6265 2.41 0.40
1.79 2.03 1.2604 0.6276 2.41 0.40
1.80 2.05 1.2773 0.6280 2.44 0.40
1.72 2.05 1.2726 0.6337 2.44 0.37
1.74 2.03 1.2493 0.6287 2.40 0.40
1.75 2.03 1.2503 0.6282 2.40 0.41
1.79 2.05 1.2540 0.6291 2.43 0.40

...
...

...
...

...
...

1.47 2.00 1.2069 0.6254 2.40 0.35
1.48 1.97 1.2074 0.6149 2.37 0.37
1.42 1.90 1.1545 0.6034 2.30 0.37
1.43 1.93 1.1590 0.6115 2.31 0.37
1.43 1.92 1.1558 0.6066 2.32 0.36



. (5.2)

(2) Step 2

Positivise the original matrix X, and use Y to represent the positivised matrix. Posi-
tivisation refers to the conversion of all non-benefit metrics into benefit ones. In this
case, the MB was an intermediate metric since its optimal value was 0. Besides, the
MAE, MAPE, SMAPE, and RMSE belonged to the cost metric. This is because, for
all the errors, the lower is the better. Obviously, the last one, IA, was a benefit met-
ric as the bigger was the better for it. Therefore, there were one intermediate and
four cost metrics that needed to be converted to the benefit metrics. According to
Equations (2.50) to (2.52), the positivised matrix was generated:
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Y = P (X) =



1.90 1.10 0.7555 0.2507 1.24 0.37
0.91 0.75 0.3546 0.2149 0.93 0.40
0.93 0.73 0.3406 0.2075 0.94 0.39
0.93 0.69 0.3404 0.2016 0.89 0.39
0.95 0.75 0.3821 0.2117 0.95 0.40
0.92 0.74 0.3673 0.2105 0.95 0.40
0.90 0.73 0.3504 0.2102 0.92 0.40
0.99 0.72 0.3551 0.2045 0.93 0.37
0.97 0.74 0.3784 0.2095 0.97 0.40
0.96 0.74 0.3774 0.2099 0.96 0.41
0.92 0.73 0.3737 0.2090 0.93 0.40

...
...

...
...

...
...

1.23 0.78 0.4208 0.2128 0.97 0.35
1.23 0.81 0.4203 0.2232 0.99 0.37
1.29 0.87 0.4732 0.2347 1.06 0.37
1.27 0.85 0.4687 0.2267 1.06 0.37
1.28 0.86 0.4719 0.2316 1.04 0.36



. (5.3)

(3) Step 3

Normalise the positivised matrix Y , and use Z to represent the normalised matrix. The
meaning of normalisation is to eliminate the influence of different metric dimensions.
According to Equation (2.56), the normalised matrix was obtained:
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Z = N(Y ) =



0.0460 0.0378 0.0487 0.0321 0.0341 0.0263
0.0221 0.0256 0.0229 0.0275 0.0255 0.0287
0.0226 0.0250 0.0220 0.0266 0.0259 0.0280
0.0224 0.0237 0.0220 0.0258 0.0246 0.0273
0.0231 0.0256 0.0246 0.0271 0.0261 0.0285
0.0222 0.0255 0.0237 0.0270 0.0262 0.0286
0.0219 0.0250 0.0226 0.0269 0.0254 0.0284
0.0240 0.0249 0.0229 0.0262 0.0255 0.0262
0.0235 0.0256 0.0244 0.0268 0.0265 0.0286
0.0232 0.0255 0.0243 0.0269 0.0264 0.0288
0.0223 0.0250 0.0241 0.0268 0.0257 0.0286

...
...

...
...

...
...

0.0299 0.0267 0.0271 0.0273 0.0265 0.0247
0.0297 0.0277 0.0271 0.0286 0.0272 0.0266
0.0313 0.0298 0.0305 0.0301 0.0291 0.0263
0.0308 0.0291 0.0302 0.0290 0.0291 0.0260
0.0310 0.0294 0.0304 0.0297 0.0286 0.0259



. (5.4)

(4) Step 4

Determine the weights for the six model evaluation metrics. For this purpose, an
entropy method was employed in this study rather than a customisation method (which
is arbitrary). The results are shown in Table 5.5.

Table 5.5. Weights for the six model evaluation metrics determined by using an entropy method.

Metric MB MAE MAPE SMAPE RMSE IA

Weight 0.2105 0.2347 0.2268 0.1011 0.2036 0.0233

(5) Step 5

Define the positive ideal solution Z+ and negative ideal solution Z−. According to
Equations (2.57) and (2.58), the positive and negative ideal solutions were acquired:

Z+ = (0.0507, 0.0513, 0.0509, 0.0430, 0.0494, 0.0390) , (5.5)

and
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Z− = (0, 0, 0, 0, 0, 0.0181) . (5.6)

(6) Step 6

Calculate the distances between each alternative and the positive ideal solution D+
i

and between each alternative and the negative ideal solution D−i . According to Equa-
tions (2.59) and (2.60), the distances for the first day of the dataset were calculated,
and a short version of the results is shown in Table 5.6.
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Table 5.6. Short version of the distances between each alternative and the positive ideal solution
and between each alternative and the negative ideal solution for the first day of the dataset (the
11th of August 2015).

Positive ideal solution Distance Negative ideal solution Distance

D+
0 0.0106 D−0 0.0408

D+
1 0.0255 D−1 0.0242

D+
2 0.0257 D−2 0.0240

D+
3 0.0264 D−3 0.0232

D+
4 0.0247 D−4 0.0249

D+
5 0.0252 D−5 0.0245

D+
6 0.0258 D−6 0.0239

D+
7 0.0253 D−7 0.0243

D+
8 0.0246 D−8 0.0250

D+
9 0.0247 D−9 0.0249

D+
10 0.0253 D−10 0.0243

...
...

...
...

D+
1330 0.0223 D−1330 0.0272

D+
1331 0.0218 D−1331 0.0277

D+
1332 0.0197 D−1332 0.0299

D+
1333 0.0201 D−1333 0.0294

D+
1334 0.0200 D−1334 0.0295

(7) Step 7

Calculate the similarity scores of all the alternatives to the positive ideal solution.
According to Equation (2.61), the similarity scores for the first day of the dataset were
calculated, and a short version of the results is shown in Table 5.7.
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Table 5.7. Short version of the similarity scores of the alternatives to the positive ideal solution
for the first day of the dataset (the 11th of August 2015).

Model Similarity score

S0 0.7938

S1 0.4876

S2 0.4825

S3 0.4682

S4 0.5018

S5 0.4928

S6 0.4807

S7 0.4894

S8 0.5032

S9 0.5012

S10 0.4905

...
...

S1330 0.5495

S1331 0.5593

S1332 0.6030

S1333 0.5942

S1334 0.5965

(8) Step 8

Rank all the alternatives according to their similarity scores. Since the similarity scores
of the 1,335 WRF models were obtained, these models could be ranked from the highest
similarity score to the lowest one for the first day of the dataset. A short version of
the result is shown in Table 5.8, from which it can be found that the similarity score
of Model 210 was more than 10 times that of Model 682, indicating that for the first
day, the wind speed predictive performance of Model 210 was much better than that
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of Model 682.

Table 5.8. Short version of the model rankings for the first day of the dataset (the 11th of August
2015) according to the similarity scores.

Rank Model index 1 Similarity score

1 210 0.9797

2 220 0.9679

3 211 0.9357

4 215 0.9256

5 256 0.9223

6 218 0.9207

7 217 0.9192

8 258 0.9173

9 230 0.9172

10 227 0.9139

11 222 0.9124

...
...

...

1,331 923 0.1002

1,332 692 0.1001

1,333 921 0.0965

1,334 664 0.0963

1,335 682 0.0921

As mentioned previously, it was not possible (computationally prohibitive) to compute
1,334 WRF model forecasts for each day of the 24-day dataset. The significance of testing
the predictive performance of the 1,334 WRF models based only on the first day of the
dataset was to provide the rational basis for picking a small number of the best-performing
WRF models to be used in forecasting the wind speed for the remaining 23 days of the
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dataset. The top 75 WRF models selected according to the similarity scores are shown in
Table 5.9.

Table 5.9. Top 75 WRF models selected for the first day of the dataset (the 11th of August 2015)
according to the similarity scores.

Rank Model index 1 Similarity score

1 210 0.9797

2 220 0.9679

3 211 0.9357

4 215 0.9256

5 256 0.9223

6 218 0.9207

7 217 0.9192

8 258 0.9173

9 230 0.9172

10 227 0.9139

11 222 0.9124

12 223 0.9122

13 257 0.9122

14 237 0.9116
15 233 0.9108

16 225 0.9084

17 250 0.9062

18 228 0.9046

19 238 0.9035

20 209 0.9034

21 221 0.9032

22 247 0.9017
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Rank Model index 1 Similarity score

23 213 0.8987

24 216 0.8968

25 226 0.8959

26 236 0.8946

27 206 0.8940

28 224 0.8933

29 219 0.8833

30 207 0.8823

31 240 0.8817

32 246 0.8813

33 243 0.8780

34 252 0.8761

35 232 0.8734

36 825 0.8733

37 248 0.8715

38 251 0.8701

39 244 0.8700

40 200 0.8644

41 249 0.8591

42 253 0.8586

43 242 0.8570

44 214 0.8556

45 254 0.8507

46 212 0.8503

47 208 0.8482
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Rank Model index 1 Similarity score

48 231 0.8480

49 831 0.8464

50 234 0.8440

51 827 0.8437

52 255 0.8435

53 795 0.8410

54 830 0.8410

55 235 0.8397

56 241 0.8374

57 203 0.8362

58 828 0.8313

59 794 0.8294

60 229 0.8224

61 245 0.8183

62 829 0.8133

63 842 0.8096

64 205 0.8088

65 201 0.8063

66 832 0.8062

67 826 0.7971

68 204 0.7968

69 239 0.7954

70 1122 0.7940

71 0 0.7938

72 202 0.7933

196



Rank Model index 1 Similarity score

73 844 0.7918

74 1126 0.7883

75 804 0.7869

From Table 5.9, it can be seen that the ranking of Model 0 was 71, indicating that
there were 70 WRF models performing better than Dr Wen’s WRF model in the wind
speed forecasting for the first day. It should be noted that a certain number of these 70
WRF models (viz., Models 218, 223, 233, 238, 213, 243, 825, 248, 253, 208, 827, 203,
and 832) failed to generate complete wind speed forecasts for the next 23 days and, as
a consequence, had to be removed from the selection of the best-performing models. In
accordance with the similarity scores and applicability, the top 50 WRF models for the
first day of the dataset (see Table 5.10) were selected from the remaining WRF models and
applied to provide the predictions of the wind speed for the remaining 23 days. For the
purpose of convenience, the index of the 50 best-performing WRF models was renamed
from model index 1 to model index 2. From Table 5.10, it can be seen that the similarity
scores of these 50 WRF models were all greater than 0.8000 and higher than that of Model
0 (the benchmark).

Table 5.10. Top 50 WRF models selected for the first day of the dataset (the 11th of August
2015) according to the similarity scores and applicability.

Model index 2 Model index 1 Similarity score

1 210 0.9797

2 220 0.9679

3 211 0.9357

4 215 0.9256

5 256 0.9223

6 217 0.9192

7 258 0.9173

8 230 0.9172

9 227 0.9139
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Model index 2 Model index 1 Similarity score

10 222 0.9124

11 257 0.9122

12 237 0.9116

13 225 0.9084

14 250 0.9062

15 228 0.9046

16 209 0.9034

17 221 0.9032

18 247 0.9017

19 216 0.8968

20 226 0.8959

21 236 0.8946

22 206 0.8940

23 224 0.8933

24 219 0.8833

25 207 0.8823

26 240 0.8817

27 246 0.8813

28 252 0.8761

29 232 0.8734

30 251 0.8701

31 244 0.8700

32 200 0.8644

33 249 0.8591

34 242 0.8570
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Model index 2 Model index 1 Similarity score

35 214 0.8556

36 254 0.8507

37 212 0.8503

38 231 0.8480

39 831 0.8464

40 234 0.8440

41 255 0.8435

42 795 0.8410

43 830 0.8410

44 235 0.8397

45 241 0.8374

46 828 0.8313

47 794 0.8294

48 229 0.8224

49 245 0.8183

50 829 0.8133

Although the 50 WRF models selected above were few in number compared with the
original 1,334 possible WRF models, this number of models was still too large for practical
applications. The solution was to further reduce the number of WRF models based on the
training dataset consisting of the wind speed measurements for the first 20 days. More
specifically, the 50 best-performing WRF models selected above were applied to generate
the wind speed forecasts for the first 20 days. The predictive performance of these 50 WRF
models was evaluated by using six evaluation metrics, namely the MB, MAE, RMSE, IA,
MAPE, and SMAPE. Following on from this evaluation, the TOPSIS scheme was used to
rank the 50 WRF models over this 20-day wind speed forecast interval, and the ranking
result is shown in Table 5.11. From Table 5.11, it can be seen that the similarity scores of
these 50 best-performing WRF models were diverse. In particular, the highest similarity
score among all the WRF models considered was 0.9770, while the lowest similarity score
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was as low as 0.1015. Although all of these 50 WRF models outperformed Dr Wen’s WRF
model in the wind speed forecasting for the first day, there were only six WRF models
superior to Model 0 in terms of the overall predictive performance over the period of 20
days.

Table 5.11. Model rankings for the 20 days of the training dataset according to the similarity
scores.

Rank Model index 2 Similarity score

1 39 0.9770

2 47 0.9141

3 46 0.8806

4 43 0.8755

5 42 0.8629

6 50 0.6100

7 0 0.5415

8 16 0.4277

9 45 0.3580

10 6 0.3530

11 10 0.3412

12 24 0.3368

13 28 0.3113

14 1 0.3010

15 3 0.3009

16 5 0.2932

17 26 0.2923

18 20 0.2829

19 19 0.2770

20 2 0.2699
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Rank Model index 2 Similarity score

21 27 0.2502

22 9 0.2496

23 4 0.2475

24 7 0.2470

25 23 0.2408

26 11 0.2379

27 30 0.2337

28 15 0.2282

29 49 0.2195

30 40 0.2152

31 25 0.2050

32 18 0.2035

33 29 0.2029

34 32 0.1943

35 14 0.1892

36 17 0.1875

37 37 0.1783

38 48 0.1727

39 22 0.1671

40 34 0.1626

41 12 0.1586

42 8 0.1566

43 35 0.1517

44 13 0.1450

45 41 0.1431
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Rank Model index 2 Similarity score

46 33 0.1427

47 38 0.1371

48 21 0.1298

49 44 0.1176

50 36 0.1065

51 31 0.1015

However, solely considering the overall predictive performance of a WRF model is
insufficient. If a WRF model performs well under some conditions and poorly under
other conditions, it cannot be regarded as a reliable and robust model. Consequently, the
evaluation of the segmental predictive performance of the top six candidate WRF models
was considered herein. Since the test dataset consisted of 4 days of wind speed data, it was
useful to consider every group of wind data over a 4-day period to be a segment. From this
perspective, the 20-day wind speed training dataset was split into five segments. After this
split of the training dataset, the TOPSIS scheme was applied to each segment separately,
and the rankings of the 51 WRF models for each segment were determined. The segmental
and overall rankings of the top six candidate and Dr Wen’s WRF models are displayed in
Table 5.12.

Table 5.12. Segmental and overall rankings of the top six candidate and Dr Wen’s WRF models
as determined by using the 20-day training dataset.

Model index 2 1st 4-day 2nd 4-day 3rd 4-day 4th 4-day 5th 4-day 20-day

0 7 1 15 40 10 7

39 2 2 2 5 2 1

42 1 3 3 2 6 5

43 4 8 1 7 3 4

46 5 6 6 1 1 3

47 3 5 4 4 4 2

50 6 4 5 48 5 6
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A careful examination of Table 5.12 shows that although Model 0 performed the best
for the second segment, its predictive performance on the third segment was not very good,
and its predictive performance on the fourth segment was poor. A similar finding applied
to Model 50, which performed well for all the data segments except one: the predictive
performance of Model 50 on the fourth segment (48th) was extremely terrible. In contrast,
the segmental predictive performance of the other five WRF models, namely Models 39,
42, 43, 46, and 47, was generally good on all the data segments. Specifically, the rankings
of these WRF models were in the top 10 for every segment and in the top five for the entire
20-day training dataset. Moreover, the predictive performance of Models 39 and 47 was
consistently in the top five—resulting, as such, in their top two rankings for the overall
wind speed predictive performance.

At this stage, the top five WRF models (viz., Models 39, 42, 43, 46, and 47) selected
from the original 1,334 WRF models were optimal in the sense that they not only out-
performed the other models but also performed consistently over all the data segments.
The physical parameterisation scheme combinations of the top five WRF models are sum-
marised in Table 5.13, from which it can be easily found that the planetary boundary-layer,
surface-layer, and land-surface parameterisations were proved to be more sensitive than the
microphysics and cumulus parameterisations. Specifically, the top five WRF models shared
the same physical schemes for the planetary boundary-layer, surface-layer, and land-surface
parameterisations, namely BouLac, revised MM5, and Noah-multi-physics, respectively. In
addition, the selections for the microphysics and cumulus parameterisations were also very
limited—three physical schemes (NSSL-LFO single-moment 6-class, NSSL single-moment
6-class, and Stony Brook University (Y. Lin)) for the former and two (new Tiedtke and
Betts-Miller-Janjic) for the latter. By referring to Table 5.1, it can be categorised that three
out of the 10 microphysics parameterisation schemes and two out of the eight cumulus pa-
rameterisation schemes contributed to the best-performing individual WRF models. In
addition, one specific scheme combination for the planetary boundary-layer, surface-layer,
and land-surface parameterisations from a number of possible choices was determined to
outperform the other scheme combinations consistently.
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Table 5.13. The physical parameterisation scheme combinations of the top five WRF models.

Rank Model
index 2

mp physics cu physics bl pbl
physics

sf sfclay
physics

sf surface
physics

1 39 NSSL-LFO
Single-
Moment
6-Class

New
Tiedtke

BouLac Revised
MM5

Noah-
Multi-
Physics

2 47 NSSL
Single-
Moment
6-Class

Betts-
Miller-
Janjic

BouLac Revised
MM5

Noah-
Multi-
Physics

3 46 Stony
Brook
University
(Y. Lin)

New
Tiedtke

BouLac Revised
MM5

Noah-
Multi-
Physics

4 43 NSSL
Single-
Moment
6-Class

New
Tiedtke

BouLac Revised
MM5

Noah-
Multi-
Physics

5 42 NSSL-LFO
Single-
Moment
6-Class

Betts-
Miller-
Janjic

BouLac Revised
MM5

Noah-
Multi-
Physics

One possibility for the next step in the analysis was to simply apply Model 39 to forecast
the wind speed for the last 4 days (the test dataset), as this was the best model based on
the overall predictive performance on the training dataset. An alternative (perhaps more
novel) possibility was proposed here: to create a 5-in-1 (ensemble) WRF model (referred to
herein as Model 51) by combining the top five best-performing WRF models. As mentioned
in Section 2.8.1, the TOPSIS can also be utilised as an approach to assigning weights for
the various model alternatives. From this perspective, the proposed wind speed forecasts
provided by the output of Model 51 were determined in accordance with the following
schema:
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M51 = w39M39 + w42M42 + w43M43 + w46M46 + w47M47 , (5.7)

in which

wi =
Si

S39 + S42 + S43 + S46 + S47

, i = 39, 42, 43, 46, 47 , (5.8)

where M51, M39, M42, M43, M46, and M47 are the wind speed forecasts provided by Models
51, 39, 42, 43, 46, and 47, respectively, wi is the weight for Model i, and Si is the similarity
score of Model i (obtained from the TOPSIS scheme).

And then, Model 51 was compared with the top 50 and Dr Wen’s WRF models, and
these models were ranked by using the TOPSIS scheme again. The segmental and overall
rankings of the 5-in-1 (ensemble), the top five, and Dr Wen’s WRF models are summarised
in Table 5.14. A careful perusal of this table shows that Model 51 was exceptional: in terms
of predictive performance, this model either ranked first or second for every 4-day data
segment and first for the entire 20-day wind speed training dataset.

Table 5.14. Segmental and overall rankings of the 5-in-1 (ensemble), the top five, and Dr Wen’s
WRF models as determined by using the 20-day training dataset.

Model index 2 1st 4-day 2nd 4-day 3rd 4-day 4th 4-day 5th 4-day 20-day

0 8 1 17 41 10 8

39 2 3 3 4 3 2

42 3 4 4 5 7 6

43 5 9 1 7 4 4

46 6 7 7 2 2 5

47 4 6 5 3 5 3

51 1 2 2 1 1 1

Finally, the test dataset was used to assess the wind speed predictive performance
of the 5-in-1 (ensemble) WRF model as well as the top 50 and Dr Wen’s WRF models.
The model rankings, together with the similarity scores obtained by using the TOPSIS
scheme, are presented in Table 5.15. An examination of this table indicates that Model 51
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ranked second: this model exhibited excellent predictive performance and consistency in
wind speed forecasting. Although the similarity score of Model 51 was slightly lower than
that of Model 43, it was higher than Model 39, which was the best-performing individual
model based on the training dataset. It is not surprising that Model 43 performed the
best for the test dataset as the time interval for this dataset was only 4 days (a time
interval that comprised only one data segment as defined previously). With reference to
Table 5.14, Model 43 appeared to be the best-performing individual model because of its
predictive performance on the third segment of the training dataset: indeed, Model 43
ranked first in the wind speed forecasting on this segment. Although the order of rankings
changed, the top five and 5-in-1 (ensemble) WRF models selected in accordance with
the evaluation metrics described above with reference to the training dataset remained,
nevertheless, the top six best-performing forecasting models when evaluated on the test
dataset. Furthermore, all these six WRF models outperformed Dr Wen’s WRF model
consistently.

Table 5.15. Model rankings for the 4 days of the test dataset according to the similarity scores.

Rank Model index 2 Similarity score

1 43 0.9856

2 51 0.9641

3 46 0.9489

4 39 0.9447

5 47 0.7364

6 42 0.6197

7 5 0.5713

8 23 0.5037

9 0 0.4994

10 36 0.4843

11 50 0.4840

12 31 0.4571

13 11 0.4562

14 28 0.4512
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Rank Model index 2 Similarity score

15 18 0.4251

16 35 0.4245

17 27 0.4127

18 41 0.4090

19 33 0.3947

20 22 0.3905

21 21 0.3786

22 6 0.3691

23 40 0.3656

24 30 0.3655

25 12 0.3631

26 29 0.3618

27 14 0.3607

28 7 0.3432

29 49 0.3421

30 25 0.3340

31 34 0.3304

32 8 0.3247

33 37 0.3137

34 19 0.3042

35 20 0.2991

36 32 0.2831

37 26 0.2801

38 1 0.2792

39 9 0.2771
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Rank Model index 2 Similarity score

40 16 0.2560

41 45 0.2537

42 17 0.2481

43 38 0.2306

44 48 0.2303

45 4 0.1804

46 2 0.1792

47 10 0.1708

48 15 0.1641

49 44 0.1510

50 3 0.1304

51 13 0.1132

52 24 0.0984

The complete segmental rankings of the 5-in-1 (ensemble), the top five, and Dr Wen’s
WRF models are shown in Table 5.16, by which the consistency of the outstanding wind
speed predictive performance of the 5-in-1 (ensemble) WRF model (Model 51) can be
verified.
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Table 5.16. Complete segmental rankings of the 5-in-1 (ensemble), the top five, and Dr Wen’s
WRF models as determined by using the 24-day dataset.

Model index 2 1st 4-day 2nd 4-day 3rd 4-day 4th 4-day 5th 4-day 6th 4-day

0 8 1 17 41 10 9

39 2 3 3 4 3 4

42 3 4 4 5 7 6

43 5 9 1 7 4 1

46 6 7 7 2 2 3

47 4 6 5 3 5 5

51 1 2 2 1 1 2

5.6 Wind Speed Forecasting Based on a 5-in-1 (En-

semble) WRF Model

As discussed in Section 5.5, a 5-in-1 (ensemble) WRF model was proposed for the wind
speed forecasting in this study. A comparison of the 5-in-1 (ensemble) wind speed forecasts,
the top 50 wind speed forecasts, Dr Wen’s wind speed forecasts, and the historical wind
speed measurements from the training dataset is shown in Figure 5.5, from which it can
be seen that the 5-in-1 (ensemble) wind speed forecasts generally fit the historical wind
speed measurements over the period of 20 days.
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Figure 5.5. Comparison of the 5-in-1 (ensemble) wind speed forecasts, the top 50 wind speed
forecasts, Dr Wen’s wind speed forecasts, and the historical wind speed measurements from the
20-day training dataset.

In order to evaluate the predictive performance of the 5-in-1 (ensemble) WRF model on
the 4-day test dataset, the MB, MAE, RMSE, IA, MAPE, and SMAPE for the wind speed
forecasting for each day in the test dataset were calculated according to Equations (3.9)
to (3.14). Besides, the 4-day average value of each evaluation metric was calculated as well.
In addition, the metric values for the wind speed forecasting by using Dr Wen’s WRF model
were added for a comparative analysis. All the evaluation results are shown in Tables 5.17
to 5.22, from which it can be found that the 5-in-1 (ensemble) WRF model, with the 4-day
average MB, MAE, RMSE, IA, MAPE, and SMAPE of 0.70 m/s, 1.29 m/s, 1.61 m/s,
0.83, 64.59%, and 42.15%, respectively, was superior to Dr Wen’s WRF model not only in
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the average predictive performance but also in the predictive performance on every single
forecast day in terms of all the model evaluation metrics. Moreover, a comparison of the
5-in-1 (ensemble) wind speed forecasts, Dr Wen’s wind speed forecasts, and the historical
wind speed measurements from the test dataset is shown in Figure 5.6.

Table 5.17. MBs for the wind speed forecasting by using the 5-in-1 (ensemble) and Dr Wen’s
WRF models applied to the 4-day test dataset.

MB (m/s)
Forecast day

Average
1 2 3 4

Model
5-in-1 (ensemble)
WRF model

1.58 0.12 0.61 0.48 0.70

Dr Wen’s
WRF model

2.93 0.96 1.74 1.01 1.66

Table 5.18. MAEs for the wind speed forecasting by using the 5-in-1 (ensemble) and Dr Wen’s
WRF models applied to the 4-day test dataset.

MAE (m/s)
Forecast day

Average
1 2 3 4

Model
5-in-1 (ensemble)
WRF model

1.79 1.23 1.08 1.05 1.29

Dr Wen’s
WRF model

3.20 1.63 1.84 1.20 1.96
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Table 5.19. RMSEs for the wind speed forecasting by using the 5-in-1 (ensemble) and Dr Wen’s
WRF models applied to the 4-day test dataset.

RMSE (m/s)
Forecast day

Average
1 2 3 4

Model
5-in-1 (ensemble)
WRF model

2.18 1.53 1.30 1.44 1.61

Dr Wen’s
WRF model

3.73 2.02 2.21 1.52 2.37

Table 5.20. IAs for the wind speed forecasting by using the 5-in-1 (ensemble) and Dr Wen’s WRF
models applied to the 4-day test dataset.

IA
Forecast day

Average
1 2 3 4

Model
5-in-1 (ensemble)
WRF model

0.66 0.77 0.94 0.95 0.83

Dr Wen’s
WRF model

-0.03 0.60 0.82 0.94 0.58

Table 5.21. MAPEs for the wind speed forecasting by using the 5-in-1 (ensemble) and Dr Wen’s
WRF models applied to the 4-day test dataset.

MAPE
Forecast day

Average
1 2 3 4

Model
5-in-1 (ensemble)
WRF model

97.04% 74.85% 46.89% 39.59% 64.59%

Dr Wen’s
WRF model

163.92% 112.20% 99.72% 43.06% 104.72%
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Table 5.22. SMAPEs for the wind speed forecasting by using the 5-in-1 (ensemble) and Dr Wen’s
WRF models applied to the 4-day test dataset.

SMAPE
Forecast day

Average
1 2 3 4

Model
5-in-1 (ensemble)
WRF model

56.31% 49.52% 33.07% 29.70% 42.15%

Dr Wen’s
WRF model

79.66% 55.87% 50.14% 32.97% 54.66%
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Figure 5.6. Comparison of the 5-in-1 (ensemble) wind speed forecasts, Dr Wen’s wind speed
forecasts, and the historical wind speed measurements from the 4-day test dataset.

5.7 Correcting Wind Speed Forecasts Based on an

ANFIS Model

As discussed in Section 5.6, the wind speed forecasts provided by the 5-in-1 (ensemble)
WRF model were obtained. Then, an ANFIS model was proposed here to correct these
wind speed forecasts. For this application, the input of the ANFIS model was the wind
speed forecasts provided by the 5-in-1 (ensemble) WRF model, and the output was the
historical wind speed measurements. During the training process based on the first 20-day
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wind speed data (the training and checking datasets), the ANFIS model learnt the implicit
relationship between the wind speed forecasts and measurements, so the output of this
model could provide corrected wind speed forecasts by inputting the wind speed forecasts
generated by the 5-in-1 (ensemble) WRF model. Subsequently, the wind speed forecasts
provided by the 5-in-1 (ensemble) WRF model for the test dataset were used as the inputs
to the trained ANFIS model—which, in turn, permitted the quantitative assessment of the
generalisation of the trained ANFIS model to the wind speed forecast data for which it
had not been trained.

In order to evaluate the predictive performance of the corrected 5-in-1 (ensemble) WRF
model on the test dataset, the MB, MAE, RMSE, IA, MAPE, and SMAPE for the wind
speed forecasting for each day in the test dataset were calculated according to Equa-
tions (3.9) to (3.14). Besides, the 4-day average value of each evaluation metric was
calculated as well. In addition, the metric values for the wind speed forecasting by using
the original 5-in-1 (ensemble) WRF model were added for a comparative analysis. All the
evaluation results are shown in Tables 5.23 to 5.28.

Table 5.23. MBs for the wind speed forecasting by using the corrected and original 5-in-1 (en-
semble) WRF models applied to the 4-day test dataset.

MB (m/s)
Forecast day

Average
1 2 3 4

Model

Corrected
5-in-1 (ensemble)
WRF model

0.93 0.02 0.03 -0.14 0.21

Original
5-in-1 (ensemble)
WRF model

1.58 0.12 0.61 0.48 0.70

215



Table 5.24. MAEs for the wind speed forecasting by using the corrected and original 5-in-1
(ensemble) WRF models applied to the 4-day test dataset.

MAE (m/s)
Forecast day

Average
1 2 3 4

Model

Corrected
5-in-1 (ensemble)
WRF model

1.35 0.91 0.90 1.13 1.07

Original
5-in-1 (ensemble)
WRF model

1.79 1.23 1.08 1.05 1.29

Table 5.25. RMSEs for the wind speed forecasting by using the corrected and original 5-in-1
(ensemble) WRF models applied to the 4-day test dataset.

RMSE (m/s)
Forecast day

Average
1 2 3 4

Model

Corrected
5-in-1 (ensemble)
WRF model

1.71 1.18 1.16 1.34 1.35

Original
5-in-1 (ensemble)
WRF model

2.18 1.53 1.30 1.44 1.61
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Table 5.26. IAs for the wind speed forecasting by using the corrected and original 5-in-1 (ensem-
ble) WRF models applied to the 4-day test dataset.

IA
Forecast day

Average
1 2 3 4

Model

Corrected
5-in-1 (ensemble)
WRF model

0.79 0.87 0.95 0.95 0.89

Original
5-in-1 (ensemble)
WRF model

0.66 0.77 0.94 0.95 0.83

Table 5.27. MAPEs for the wind speed forecasting by using the corrected and original 5-in-1
(ensemble) WRF models applied to the 4-day test dataset.

MAPE
Forecast day

Average
1 2 3 4

Model

Corrected
5-in-1 (ensemble)
WRF model

73.56% 56.39% 45.20% 39.69% 53.71%

Original
5-in-1 (ensemble)
WRF model

97.04% 74.85% 46.89% 39.59% 64.59%
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Table 5.28. SMAPEs for the wind speed forecasting by using the corrected and original 5-in-1
(ensemble) WRF models applied to the 4-day test dataset.

SMAPE
Forecast day

Average
1 2 3 4

Model

Corrected
5-in-1 (ensemble)
WRF model

47.08% 36.44% 31.03% 32.37% 36.73%

Original
5-in-1 (ensemble)
WRF model

56.31% 49.52% 33.07% 29.70% 42.15%

From Tables 5.23 to 5.28, it can be seen that the ANFIS-based wind speed correction
model significantly improved the accuracy of the wind speed forecasts on the basis of the
original 5-in-1 (ensemble) WRF model. In particular, the wind speed forecasting by using
the corrected 5-in-1 (ensemble) WRF model, with the 4-day average MB, MAE, RMSE,
IA, MAPE, and SMAPE of 0.21 m/s, 1.07 m/s, 1.35 m/s, 0.89, 53.71%, and 36.73%,
respectively, was superior to that by using the original 5-in-1 (ensemble) WRF model in
the average predictive performance in terms of all the model evaluation metrics. Besides,
for every single forecast day, the wind speed forecasting by using the corrected 5-in-1
(ensemble) WRF model performed better than that by using the original 5-in-1 (ensemble)
WRF model in all of the cases with three exceptions. Specifically, the MAE, MAPE, and
SMAPE for the wind speed forecasting by using the corrected 5-in-1 (ensemble) WRF
model were larger than those for the wind speed forecasting by using the original 5-in-1
(ensemble) WRF model on the fourth forecast day. Moreover, a comparison of the corrected
5-in-1 (ensemble) wind speed forecasts, the original 5-in-1 (ensemble) wind speed forecasts,
Dr Wen’s wind speed forecasts, and the historical wind speed measurements from the test
dataset is shown in Figure 5.7.
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Figure 5.7. Comparison of the corrected 5-in-1 (ensemble) wind speed forecasts, the original
5-in-1 (ensemble) wind speed forecasts, Dr Wen’s wind speed forecasts, and the historical wind
speed measurements from the 4-day test dataset.

5.8 Wind Power Forecasting Based on a 5-in-1 (En-

semble) WRF Model

As discussed in Sections 5.6 and 5.7, the wind speed forecasts provided by the original
5-in-1 (ensemble) WRF model and the corresponding wind speed forecasts corrected by
the ANFIS-based wind speed correction model were obtained. In this case, all the 4-day
original and corrected wind speed forecasts for the test dataset were separately input to the
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ANFIS-based power curve model created in Section 3.7, and then the corresponding wind
power forecasts could be acquired as the outputs of the power curve model. According
to Equations (3.9) to (3.12) and (3.15) to (3.18), the MBs, MAEs, RMSEs, IAs, accuracy
rates, and qualification rates for the wind power forecasting by using the original and
corrected 5-in-1 (ensemble) WRF models and their 4-day average values were calculated.
In addition, the metric values for the wind power forecasting by using Dr Wen’s WRF
model were added for a comparative analysis. The corresponding results are shown in
Tables 5.29 to 5.34.

Table 5.29. MBs for the wind power forecasting by using the corrected 5-in-1 (ensemble), the
original 5-in-1 (ensemble), and Dr Wen’s WRF models applied to the 4-day test dataset.

MB (kW)
Forecast day

Average
1 2 3 4

Model

Corrected
5-in-1 (ensemble)
WRF model

22.0 -7.9 -30.9 -49.7 -16.6

Original
5-in-1 (ensemble)
WRF model

90.1 15.2 49.5 57.9 53.2

Dr Wen’s
WRF model

268.8 64.6 168.2 146.7 162.1
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Table 5.30. MAEs for the wind power forecasting by using the corrected 5-in-1 (ensemble), the
original 5-in-1 (ensemble), and Dr Wen’s WRF models applied to the 4-day test dataset.

MAE (kW)
Forecast day

Average
1 2 3 4

Model

Corrected
5-in-1 (ensemble)
WRF model

91.1 38.5 72.9 108.6 77.8

Original
5-in-1 (ensemble)
WRF model

138.9 52.7 99.3 113.4 101.1

Dr Wen’s
WRF model

321.5 98.2 172.1 150.5 185.6

Table 5.31. RMSEs for the wind power forecasting by using the corrected 5-in-1 (ensemble), the
original 5-in-1 (ensemble), and Dr Wen’s WRF models applied to the 4-day test dataset.

RMSE (kW)
Forecast day

Average
1 2 3 4

Model

Corrected
5-in-1 (ensemble)
WRF model

184.9 59.2 111.0 164.1 129.8

Original
5-in-1 (ensemble)
WRF model

207.3 82.1 145.6 212.8 162.0

Dr Wen’s
WRF model

431.3 126.4 221.3 220.8 250.0
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Table 5.32. IAs for the wind power forecasting by using the corrected 5-in-1 (ensemble), the
original 5-in-1 (ensemble), and Dr Wen’s WRF models applied to the 4-day test dataset.

IA
Forecast day

Average
1 2 3 4

Model

Corrected
5-in-1 (ensemble)
WRF model

0.60 0.37 0.82 0.83 0.66

Original
5-in-1 (ensemble)
WRF model

0.66 0.32 0.81 0.83 0.65

Dr Wen’s
WRF model

0.28 0.12 0.68 0.86 0.48

Table 5.33. Accuracy rates for the wind power forecasting by using the corrected 5-in-1 (en-
semble), the original 5-in-1 (ensemble), and Dr Wen’s WRF models applied to the 4-day test
dataset.

Accuracy rate
Forecast day

Average
1 2 3 4

Model

Corrected
5-in-1 (ensemble)
WRF model

87.68% 96.05% 92.60% 89.06% 91.35%

Original
5-in-1 (ensemble)
WRF model

86.18% 94.52% 90.29% 85.82% 89.20%

Dr Wen’s
WRF model

71.25% 91.57% 85.24% 85.28% 83.34%

222



Table 5.34. Qualification rates for the wind power forecasting by using the corrected 5-in-1
(ensemble), the original 5-in-1 (ensemble), and Dr Wen’s WRF models applied to the 4-day test
dataset.

Qualification rate
Forecast day

Average
1 2 3 4

Model

Corrected
5-in-1 (ensemble)
WRF model

95.83% 100.00% 100.00% 95.83% 97.92%

Original
5-in-1 (ensemble)
WRF model

91.67% 100.00% 100.00% 89.58% 95.31%

Dr Wen’s
WRF model

64.58% 100.00% 89.58% 87.50% 85.42%

From Tables 5.29 to 5.34, it can be seen that the ANFIS-based wind speed correction
model significantly improved the accuracy of the wind power forecasts on the basis of the
original 5-in-1 (ensemble) WRF model. In particular, the wind power forecasting by using
the corrected 5-in-1 (ensemble) WRF model, with the 4-day average MB, MAE, RMSE,
IA, accuracy rate, and qualification rate of -16.6 kW, 77.8 kW, 129.8 kW, 0.66, 91.35%,
and 97.92%, respectively, was superior to that by using the original 5-in-1 (ensemble) and
Dr Wen’s WRF models in the average predictive performance in terms of all the model
evaluation metrics. Besides, for every single forecast day, the wind power forecasting by
using the corrected 5-in-1 (ensemble) WRF model performed better than or equal to that by
using the original 5-in-1 (ensemble) and Dr Wen’s WRF models in all of the cases with two
exceptions. Specifically, the IAs for the wind power forecasting by using the corrected 5-
in-1 (ensemble) WRF model were lower than those for the wind power forecasting by using
the original 5-in-1 (ensemble) WRF model on the first forecast day and Dr Wen’s WRF
model on the fourth forecast day, respectively. Moreover, a comparison of the corrected 5-
in-1 (ensemble) wind power forecasts, the original 5-in-1 (ensemble) wind power forecasts,
Dr Wen’s wind power forecasts, and the historical wind power measurements from the test
dataset is shown in Figure 5.8. By comparing Figures 5.7 and 5.8, it can be found that the
wind speed forecasting was less accurate than the wind power forecasting. This is mainly
because the wind speed varied between the values of 0 and cut-in wind speed (typically 3
to 4 m/s); however, when the wind speed was in this range, the wind turbine did not work,
and the corresponding wind power remained at 0, which significantly reduced the forecast
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error.

Figure 5.8. Comparison of the corrected 5-in-1 (ensemble) wind power forecasts, the original
5-in-1 (ensemble) wind power forecasts, Dr Wen’s wind power forecasts, and the historical wind
power measurements from the 4-day test dataset.

5.9 Summary

The WRF modelling, as a physical method for wind speed and wind power forecasting, is
presented in Chapter 5. First of all, a WPS programme was set up by editing a namelist.wps
file and completed by running three subprogrammes, namely geogrid, ungrib, and met-
grid. Specifically, the metgrid programme interpolated the gridded meteorological fields
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extracted by the ungrib programme to the model grids defined by the geogrid programme
horizontally. Similarly, a WRF programme was set up by editing a namelist.input file and
completed by running a real and a wrf programme. The real programme was an initialisa-
tion programme that took the 2D outputs created by the WPS programme and performed
the vertical interpolation for 3D meteorological fields and sub-surface soil data. Then the
boundary and initial condition files for each domain were produced and fed into the wrf
programme, the output files of which contained all the meteorological data, including the
wind speed forecasts needed in this research.

In the process of setting the parameters for the WRF model, it was found that some
parameters had a number of optional values, implying that there were different candidate
WRF models for the wind speed and wind power forecasting. The microphysics, cumulus,
planetary boundary-layer, surface-layer, and land-surface parameterisations were selected
as the critical physics options that needed to be determined. For each physics option, there
were many parameterisation schemes available. Owing to the WRF model restrictions and
applicability, the number of practical scheme combinations was 1,334, which was relatively
small compared with that of possible scheme combinations in mathematics (10,800). The
choices of the scheme combinations for the various physics options provide different WRF
models that generate different wind speed forecasts. Nevertheless, there are no rules for
selecting the parameterisation scheme for each physics option. Instead of an ad hoc method
previously applied, a systematic approach was proposed to select the WRF models. To
be precise, the entire set of 1,334 WRF models were applied to forecast the wind speeds
for the first day. Then, the obtained wind speed forecasts were evaluated by comparing
them with their corresponding historical wind speed measurements. Six evaluation metrics,
namely the MB, MAE, MAPE, SMAPE, RMSE, and IA, were used to assess the predictive
performance of the WRF models. For the purpose of finding the best-performing prediction
among the various WRF model forecasts, a TOPSIS scheme was applied to address this
multi-metric decision making problem. Finally, the top 50 WRF models were selected
in accordance with the similarity scores and applicability. In addition, the wind speed
forecasts provided by Dr Wen’s WRF model were utilised as a benchmark.

After that, the 50 best-performing WRF models were applied to generate the wind speed
forecasts for the remaining 23 days. By examining the overall and segmental predictive
performance of the WRF models on the 20-day training dataset, Models 39, 42, 43, 46,
and 47 were picked out as they not only outperformed the other models but also performed
consistently over all the data segments. Besides, a novel 5-in-1 (ensemble) WRF model was
constructed by combining the top five best-performing WRF models on the basis of the
weights (similarity scores) provided by the TOPSIS scheme. It was demonstrated that the
wind speed forecasts provided by the 5-in-1 (ensemble) WRF model outperformed those
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obtained from the top five and Dr Wen’s WRF models according to the overall predictive
performance on the training dataset. Although the 5-in-1 (ensemble) WRF model ranked
second for the test dataset, this model exhibited excellent predictive performance and
consistency in the wind speed forecasting on the six data segments.

For the wind speed forecasting, the 5-in-1 (ensemble) WRF model, with the 4-day
average MB, MAE, RMSE, IA, MAPE, and SMAPE of 0.70 m/s, 1.29 m/s, 1.61 m/s,
0.83, 64.59%, and 42.15%, respectively, was superior to Dr Wen’s WRF model not only in
the average predictive performance but also in the predictive performance on every single
forecast day in terms of all the model evaluation metrics. Additionally, an ANFIS model
was proposed to correct the wind speed forecasts provided by the 5-in-1 (ensemble) WRF
model. The wind speed forecasting by using the corrected 5-in-1 (ensemble) WRF model,
with the 4-day average MB, MAE, RMSE, IA, MAPE, and SMAPE of 0.21 m/s, 1.07 m/s,
1.35 m/s, 0.89, 53.71%, and 36.73%, respectively, was superior to that by using the original
5-in-1 (ensemble) WRF model in the average predictive performance in terms of all the
model evaluation metrics. Besides, for every single forecast day, the wind speed forecasting
by using the corrected 5-in-1 (ensemble) WRF model performed better than that by using
the original 5-in-1 (ensemble) WRF model in all of the cases with three exceptions.

By using the ANFIS-based power curve model created in Section 3.7, the wind speed
forecasts provided by the corrected 5-in-1 (ensemble), the original 5-in-1 (ensemble), and Dr
Wen’s WRF models were converted to the corresponding wind power forecasts. The wind
power forecasting by using the corrected 5-in-1 (ensemble) WRF model, with the 4-day
average MB, MAE, RMSE, IA, accuracy rate, and qualification rate of -16.6 kW, 77.8 kW,
129.8 kW, 0.66, 91.35%, and 97.92%, respectively, was superior to that by using the original
5-in-1 (ensemble) and Dr Wen’s WRF models in the average predictive performance in
terms of all the model evaluation metrics. Besides, for every single forecast day, the wind
power forecasting by using the corrected 5-in-1 (ensemble) WRF model performed better
than or equal to that by using the original 5-in-1 (ensemble) and Dr Wen’s WRF models
in all of the cases with two exceptions.
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Chapter 6

Multi-Hour Ahead Wind Power
Forecasting System

6.1 Comparison of Statistics-Based and Physics-Based

Forecasting Models

As discussed in Chapters 4 and 5, the direct persistence, indirect persistence, ARIMA,
and WRF-TOPSIS models were created for multi-hour ahead wind speed and wind power
forecasting and evaluated based on a real case of an operational wind turbine. In those
previous two chapters, the predictive performance of each wind power forecasting model
for different forecast time horizons is compared and analysed. In contrast, these four wind
power forecasting models will be compared with each other according to their predictive
performance on different forecast time horizons in this section.

The first three models belong to the class of statistics-based forecasting models. Their
characteristics can be summarised as simple models with low computational costs. There-
fore, applying these statistics-based forecasting models for each forecast time horizon was
computationally efficient. For example, for the 30-minute ahead wind power forecasting,
the statistics-based forecasting models could assimilate the wind speed and wind power
data at 00:00 and output the wind power forecasts at 00:30 and then assimilate the wind
speed and wind power data at 00:30 to provide the wind power forecasts at 01:00, and so
forth. In order to collect the wind power forecasts for a period of 1 day, each statistics-
based forecasting model had to be run 48 times. Since the test dataset covers 4 days in
total, each statistics-based forecasting model needed to be run 192 times in this case. For
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another example of the 4-hour ahead wind power forecasting, the statistics-based forecast-
ing models could assimilate the wind speed and wind power data at 00:00 and output the
wind power forecasts for the next 4 hours and then assimilate the wind speed and wind
power data at 04:00 to provide another set of wind power forecasts for 04:30 to 08:00, and
so forth. For a period of 4 days, the statistics-based forecasting models had to be run 24
times.

For the 24-hour ahead wind power forecasting, the statistics-based forecasting models
generated 48 wind power forecasts (at 30-minute intervals) for the next 24 hours at one
time. In consequence, this process needed to be repeated three more times in order to
provide all the wind power forecasts for the next 4 days. Similarly, the WRF-TOPSIS
model was applied in exactly the same way to provide the 24-hour ahead wind power
forecasts for the next 4 days. In particular, the WRF-TOPSIS model was run at 18:00
one day before the forecast day and was used to provide the wind power forecasts for 24
hours of the next day at one time. After three more repetitions of this process, all the wind
power forecasts could be obtained for the next 4 days. With respect to the other forecast
time horizons, it was impractical to re-run the WRF-TOPSIS model as in the case of the
statistics-based forecasting models simply because the computational costs associated with
the WRF-TOPSIS model runs were prohibitive. For instance, for the 6-hour ahead wind
power forecasting, the most rigorous way is to re-run the WRF-TOPSIS model every 6
hours, which means running the WRF-TOPSIS model four times a day or 16 times for the
4 days. Unfortunately, it was computationally prohibitive to run the WRF-TOPSIS model
multiple times a day.

In view of this, for any forecast time horizon in this study, the same wind power forecasts
were used to represent the predictive performance of the WRF-TOPSIS model. Once the
WRF-TOPSIS model generated the 48 wind power forecasts for 24 hours of the next day,
its daily mission was accomplished. For the 30-minute ahead wind power forecasting, the
statistics-based forecasting models updated their wind power forecasts every 30 minutes
within the 24-hour forecast period. However, this was not practical for the WRF-TOPSIS
model. Because this model had already provided the 48 wind power forecasts before the
next day, the wind power forecasts could be reported based on this information every 30
minutes without model re-runs. Similarly, for the other forecast time horizons, there was no
need for the WRF-TOPSIS model to be re-run in order to update its wind power forecasts
for 24 hours of the next day.

In addition, the NEA requires wind farms to forecast the wind power for 24 hours of the
next day with a minimum accuracy rate of 80% [100]. However, in reality, it is acceptable
if the forecast accuracy rate for a wind farm is lower than 80% for a day or a couple of
days because the forecasting performance of a wind farm is evaluated based on 1 month,
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and the monthly accuracy rate is the arithmetic mean of the daily accuracy rates for that
month. It is not statistically significant to evaluate the model performance based on 1 day.
This requirement of averaging the evaluation metrics over multiple days was employed in
the current study.

In order to compare the overall predictive performance of the proposed wind power
forecasting models, the 4-day average MBs, MAEs, RMSEs, IAs, accuracy rates, and
qualification rates for the multi-hour ahead wind power forecasting calculated in Chapters 4
and 5 are summarised in Tables 6.1 to 6.6, respectively.

Table 6.1. Four-day average MBs for the wind power forecasting by using the direct persistence,
indirect persistence, ARIMA, and WRF-TOPSIS models applied to the 4-day test dataset.

4-day average MB (kW) Direct
persistence
model

Indirect
persistence
model

ARIMA
model

WRF-
TOPSIS
model

Forecast

time

horizon

30 minutes -1.4 -0.5 -24.0 -16.6

1 hour -2.8 -2.0 -33.3 -16.6

1.5 hours -3.7 -3.0 -45.7 -16.6

2 hours -4.7 -4.0 -49.5 -16.6

3 hours -9.6 -9.1 -49.7 -16.6

4 hours -17.3 -17.1 -63.6 -16.6

6 hours -31.2 -31.5 -64.7 -16.6

8 hours -38.7 -39.7 -89.6 -16.6

12 hours -48.5 -49.7 -87.1 -16.6

24 hours -38.7 -40.0 -104.6 -16.6
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Table 6.2. Four-day average MAEs for the wind power forecasting by using the direct persistence,
indirect persistence, ARIMA, and WRF-TOPSIS models applied to the 4-day test dataset.

4-day average MAE (kW) Direct
persistence
model

Indirect
persistence
model

ARIMA
model

WRF-
TOPSIS
model

Forecast

time

horizon

30 minutes 48.6 50.8 49.0 77.8

1 hour 69.1 68.4 57.2 77.8

1.5 hours 80.3 79.8 68.9 77.8

2 hours 87.5 87.6 74.0 77.8

3 hours 95.5 95.1 78.3 77.8

4 hours 107.4 105.7 77.1 77.8

6 hours 116.4 115.4 100.5 77.8

8 hours 129.1 126.7 98.6 77.8

12 hours 157.3 155.2 111.8 77.8

24 hours 161.4 159.5 110.2 77.8
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Table 6.3. Four-day average RMSEs for the wind power forecasting by using the direct persistence,
indirect persistence, ARIMA, and WRF-TOPSIS models applied to the 4-day test dataset.

4-day average RMSE (kW) Direct
persistence
model

Indirect
persistence
model

ARIMA
model

WRF-
TOPSIS
model

Forecast

time

horizon

30 minutes 104.7 104.7 104.4 129.8

1 hour 139.8 138.9 115.0 129.8

1.5 hours 158.2 157.6 137.0 129.8

2 hours 167.7 166.7 142.8 129.8

3 hours 178.7 177.5 150.5 129.8

4 hours 191.7 189.5 154.4 129.8

6 hours 197.9 194.9 169.6 129.8

8 hours 214.6 210.5 179.0 129.8

12 hours 242.2 237.7 193.4 129.8

24 hours 259.1 254.0 195.6 129.8
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Table 6.4. Four-day average IAs for the wind power forecasting by using the direct persistence,
indirect persistence, ARIMA, and WRF-TOPSIS models applied to the 4-day test dataset.

4-day average IA Direct
persistence
model

Indirect
persistence
model

ARIMA
model

WRF-
TOPSIS
model

Forecast

time

horizon

30 minutes 0.82 0.82 0.78 0.66

1 hour 0.66 0.65 0.73 0.66

1.5 hours 0.56 0.55 0.54 0.66

2 hours 0.53 0.53 0.53 0.66

3 hours 0.54 0.54 0.52 0.66

4 hours 0.41 0.41 0.50 0.66

6 hours 0.42 0.42 0.40 0.66

8 hours 0.33 0.34 0.40 0.66

12 hours 0.18 0.18 0.34 0.66

24 hours 0.21 0.21 0.38 0.66
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Table 6.5. Four-day average accuracy rates for the wind power forecasting by using the direct
persistence, indirect persistence, ARIMA, and WRF-TOPSIS models applied to the 4-day test
dataset.

4-day average accuracy rate Direct
persistence
model

Indirect
persistence
model

ARIMA
model

WRF-
TOPSIS
model

Forecast

time

horizon

30 minutes 93.02% 93.02% 93.04% 91.35%

1 hour 90.68% 90.74% 92.33% 91.35%

1.5 hours 89.45% 89.49% 90.86% 91.35%

2 hours 88.82% 88.89% 90.48% 91.35%

3 hours 88.09% 88.17% 89.96% 91.35%

4 hours 87.22% 87.37% 89.71% 91.35%

6 hours 86.81% 87.01% 88.69% 91.35%

8 hours 85.69% 85.97% 88.06% 91.35%

12 hours 83.85% 84.15% 87.11% 91.35%

24 hours 82.73% 83.07% 86.96% 91.35%
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Table 6.6. Four-day average qualification rates for the wind power forecasting by using the direct
persistence, indirect persistence, ARIMA, and WRF-TOPSIS models applied to the 4-day test
dataset.

4-day average qualification rate Direct
persistence
model

Indirect
persistence
model

ARIMA
model

WRF-
TOPSIS
model

Forecast

time

horizon

30 minutes 98.96% 98.96% 99.48% 97.92%

1 hour 97.40% 97.40% 98.96% 97.92%

1.5 hours 96.35% 96.35% 97.92% 97.92%

2 hours 96.35% 96.35% 96.88% 97.92%

3 hours 93.75% 93.23% 96.35% 97.92%

4 hours 92.19% 93.75% 96.35% 97.92%

6 hours 94.79% 94.79% 93.75% 97.92%

8 hours 90.62% 91.15% 94.27% 97.92%

12 hours 90.10% 90.62% 92.19% 97.92%

24 hours 88.54% 89.06% 92.19% 97.92%

From Table 6.1, it can be found that for each forecast time horizon, the 4-day average
MB for the wind power forecasting by using the direct persistence model was extremely
close to that by using the indirect persistence model, and the 4-day average MB absolute
value for the ARIMA model was the largest one compared with those for the direct per-
sistence, indirect persistence, and WRF-TOPSIS models. Besides, the direct and indirect
persistence and WRF-TOPSIS models had the smallest 4-day average MB absolute val-
ues for the forecast time horizons ranging from 30 minutes to 3 hours and 4 to 24 hours,
respectively.

From Table 6.2, it can be found that the 4-day average MAE for the wind power
forecasting by using the direct persistence model was extremely close to that by using the
indirect persistence model for each forecast time horizon. Besides, the direct persistence
model had the smallest 4-day average MAE for the forecast time horizon of 30 minutes, and
the 4-day average MAEs for the direct and indirect persistence models were consistently
larger than those for the ARIMA and WRF-TOPSIS models starting from the forecast time
horizon of 1.5 hours. Moreover, the ARIMA and WRF-TOPSIS models had the smallest
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4-day average MAEs for the forecast time horizons of 1, 1.5, 2, and 4 hours and 3, 6, 8,
12, and 24 hours, respectively.

From Table 6.3, it can be found that the 4-day average RMSE for the wind power
forecasting by using the direct persistence model was extremely close or equal to that
by using the indirect persistence model for each forecast time horizon. Besides, the 4-day
average RMSEs for the direct and indirect persistence models were consistently larger than
those for the ARIMA and WRF-TOPSIS models starting from the forecast time horizon of
1 hour. Moreover, the ARIMA and WRF-TOPSIS models had the smallest 4-day average
RMSEs for the forecast time horizons ranging from 30 minutes to 1 hour and 1.5 to 24
hours, respectively.

From Table 6.4, it can be found that the 4-day average IA for the wind power forecasting
by using the direct persistence model was equal or extremely close to that by using the
indirect persistence model for each forecast time horizon. Besides, the direct and indirect
persistence and ARIMA models had the highest 4-day average IAs for the forecast time
horizons of 30 minutes and 1 hour, respectively. Moreover, the 4-day average IAs for the
WRF-TOPSIS model were consistently higher than those for the direct persistence, indirect
persistence, and ARIMA models starting from the forecast time horizon of 1.5 hours.

From Table 6.5, it can be found that the 4-day average accuracy rate for the wind
power forecasting by using the direct persistence model was extremely close or equal to
that by using the indirect persistence model for each forecast time horizon. Besides, the 4-
day average accuracy rates for the direct and indirect persistence models were consistently
lower than those for the ARIMA and WRF-TOPSIS models starting from the forecast
time horizon of 1 hour. Moreover, the ARIMA and WRF-TOPSIS models had the highest
4-day average accuracy rates for the forecast time horizons ranging from 30 minutes to 1
hour and 1.5 to 24 hours, respectively.

From Table 6.6, it can be found that the 4-day average qualification rate for the wind
power forecasting by using the direct persistence model was equal or extremely close to that
by using the indirect persistence model for each forecast time horizon. Besides, the 4-day
average qualification rates for the direct and indirect persistence models were consistently
lower than those of the ARIMA and WRF-TOPSIS models starting from the forecast time
horizon of 1 hour (except the forecast time horizon of 6 hours). Moreover, the ARIMA and
WRF-TOPSIS models had the highest 4-day average qualification rates for the forecast
time horizons ranging from 30 minutes to 1.5 hours and 1.5 to 24 hours, respectively.

A careful examination of Tables 6.1 to 6.6 shows that initially, the statistics-based
forecasting models performed very well and even better than the physics-based forecasting
model. Nevertheless, as the forecast time horizon increased, the predictive performance
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of the statistics-based forecasting models decreased significantly, and this was especially
so for the direct and indirect persistence models. As discussed above, the WRF-TOPSIS
model provided the same wind power forecasts for every forecast time horizon. The values
in the last column of each table (see Tables 6.1 to 6.6) kept unchanged as these values were
based on a single 24-hour ahead forecast only (viz., the WRF-TOPSIS model was run once
every day to provide a 24-hour ahead forecast). Nevertheless, the predictive performance
of the WRF-TOPSIS model (the physics-based forecasting model) was significantly better
than that of the statistics-based forecasting models as the forecast time horizon increased.

6.2 Model Determination for Each Forecast Time Hori-

zon

From the findings summarised in Section 6.1, it can be seen that the statistics-based
forecasting models outperformed the physics-based forecasting model in terms of shorter-
term wind power forecasting. In contrast, the physics-based forecasting model had more
advantages over longer forecast time horizons. For the purpose of determining the specific
model to be used for each forecast time horizon, the TOPSIS scheme was utilised to rank the
direct persistence, indirect persistence, ARIMA, and WRF-TOPSIS models with respect
to their predictive performance as evaluated by six metrics, namely the MB, MAE, RMSE,
IA, accuracy rate, and qualification rate, described in Section 3.5. The ranking results are
summarised in Table 6.7.

Table 6.7. Model rankings for each forecast time horizon according to the similarity scores.

Similarity score Rank 1 Rank 2 Rank 3 Rank 4

Forecast

time

horizon

30 minutes Direct
persistence
model
(0.9727)

Indirect
persistence
model
(0.9617)

ARIMA
model
(0.5034)

WRF-
TOPSIS
model
(0.2039)

1 hour ARIMA
model
(0.7086)

Indirect
persistence
model
(0.3620)

Direct
persistence
model
(0.3433)

WRF-
TOPSIS
model
(0.3414)

236



Similarity score Ranking 1 Ranking 2 Ranking 3 Ranking 4

1.5 hours ARIMA
model
(0.7177)

WRF-
TOPSIS
model
(0.5111)

Indirect
persistence
model
(0.2546)

Direct
persistence
model
(0.2435)

2 hours WRF-
TOPSIS
model
(0.8042)

ARIMA
model
(0.6587)

Indirect
persistence
model
(0.2701)

Direct
persistence
model
(0.2649)

3 hours WRF-
TOPSIS
model
(0.9391)

ARIMA
model
(0.6067)

Indirect
persistence
model
(0.2732)

Direct
persistence
model
(0.2656)

4 hours WRF-
TOPSIS
model
(0.9865)

ARIMA
model
(0.6230)

Indirect
persistence
model
(0.2713)

Direct
persistence
model
(0.2602)

6 hours WRF-
TOPSIS
model
(1.0000)

ARIMA
model
(0.3744)

Indirect
persistence
model
(0.2071)

Direct
persistence
model
(0.2013)

8 hours WRF-
TOPSIS
model
(1.0000)

ARIMA
model
(0.4394)

Indirect
persistence
model
(0.2206)

Direct
persistence
model
(0.2133)

12 hours WRF-
TOPSIS
model
(1.0000)

ARIMA
model
(0.4237)

Indirect
persistence
model
(0.1911)

Direct
persistence
model
(0.1898)

24 hours WRF-
TOPSIS
model
(1.0000)

ARIMA
model
(0.4805)

Indirect
persistence
model
(0.2191)

Direct
persistence
model
(0.2163)
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According to Table 6.7, it is evident that for the shortest forecast time horizons of
30 minutes and 1 hour, the statistics-based forecasting models performed better than the
physics-based forecasting model. The similarity scores of the direct and indirect persis-
tence models were comparable (indeed practically indistinguishable) for the 30-minute
ahead wind power forecasting: the direct persistence model ranked first. With reference
to Tables 6.1 to 6.6, the predictive performance of the direct persistence model for the
30-minute forecast time horizon was precisely the same as that of the indirect persistence
model in terms of the RMSE, IA, accuracy rate, and qualification rate. Moreover, the indi-
rect persistence model had a lower MB absolute value, while the direct persistence model
had a lower value of the MAE. As a consequence, it was difficult to determine which one
of these two statistics-based models was better in terms of their predictive performance
of the wind power for very short forecast time horizons. Nevertheless, it is clear that the
persistence models performed better than the ARIMA (time series) and WRF-TOPSIS
(physics-based) models. As a result, the persistence models should be used for 30-minute
ahead wind power forecasting (viz., for very short forecast time horizons).

For the 1-hour ahead wind power forecasting, the ARIMA model exhibited the best
predictive performance: the similarity score of this model was twice as large (approximately
or better) as those of the other models. Indeed, with reference to Tables 6.1 to 6.6, the
ARIMA model for the 1-hour forecast time horizon had the lowest MAE and RMSE and
the highest IA, accuracy rate, and qualification rate compared with the other models. The
only disadvantage was that this model had the largest MB absolute value. In other words,
the ARIMA model ranked first in five of the six evaluation metrics. In view of this, the
ARIMA model should be applied for 1-hour ahead wind power forecasting.

For the forecast time horizon of 1.5 hours, although the ARIMA model achieved the
highest similarity score among all the models, the similarity score of it was not much higher
than that of the WRF-TOPSIS model. With reference to Tables 6.1 to 6.6, the ARIMA
model for the 1.5-hour forecast time horizon had a larger MB absolute value and RMSE and
a lower MAE, IA, and accuracy rate in comparison with the WRF-TOPSIS model. Both
models had the same qualification rate. From these considerations, the only advantage
of the ARIMA model relative to the WRF-TOPSIS model for the 1.5-hour forecast time
horizon was that it had a lower MAE. Nevertheless, the WRF-TOPSIS model performed
better on all the other evaluation metrics. The only reason for the ARIMA model ranking
first is that the MAE was given too high a weighting as determined by the entropy method
used by the ranking process of the TOPSIS scheme. Therefore, it is recommended that
the WRF-TOPSIS model should be utilised for 1.5-hour ahead wind power forecasting.

For the forecast time horizons of 2, 3, 4, 6, 8, 12, and 24 hours, the ranking order of
the various forecasting models was the same. More specifically, the order of the ranking in
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terms of the similarity scores from best to worst is as follows: the WRF-TOPSIS, ARIMA,
indirect persistence, and direct persistence models. In particular, with the increasing
forecast time horizon, the similarity score of the WRF-TOPSIS model rose monotonically
until it reached a maximum value. For the wind power forecast time horizons greater
than or equal to 6 hours, the similarity score of the WRF-TOPSIS model attained a
value of 1.0000—implying that the WRF-TOPSIS model outperformed the ARIMA, direct
persistence, and indirect persistence models in terms of every single evaluation metric for
the predictive performance on the wind power forecasting 6, 8, 12, and 24 hours in advance.
In addition, for the forecast time horizons between 2 and 24 hours, the ARIMA model
consistently held the second place with the intermediate similarity scores, meaning that the
ARIMA model performed worse than the WRF-TOPSIS model but better than the direct
and indirect persistence models which remained at the bottom with pretty low similarity
scores, and the indirect persistence model consistently outperformed the direct persistence
model, although their similarity scores for each forecast time horizon were extremely close
to each other. Consequently, the WRF-TOPSIS model is the most appropriate model to be
employed for wind power forecasting with time horizons greater than or equal to 2 hours.

An examination of Tables 6.1 to 6.6 shows that the 4-day average MBs, MAEs, RMSEs,
IAs, accuracy rates, and qualification rates for the direct persistence, indirect persistence,
and ARIMA models progressively deteriorated with the increasing values of the forecast
time horizon—a result that is consistent with intuition. By taking the 4-day average
accuracy rate (see Table 6.5) as an example, a decreasing trend of predictive performance
with an increasing forecast time horizon should also be seen for the WRF-TOPSIS model.
This does not arise from the fact that all the values for the accuracy rate reported in
Table 6.5 for the WRF-TOPSIS model correspond only to the 24-hour ahead wind power
forecast (recall that the WRF-TOPSIS model was run only once each day to provide the 24-
hour ahead wind power forecast). In fact, if the WRF-TOPSIS model is re-run every 6 hours
to give a true 6-hour ahead wind power forecast, the 4-day average accuracy rate calculated
will be expected to be higher than that of the 24-hour ahead wind power forecast (viz.,
the 4-day average accuracy rate for the 24-hour ahead wind power forecast corresponds to
a lower bound for that of the 6-hour ahead wind power forecast). A similar conclusion can
be made with respect to the 4-day average MB, MAE, RMSE, IA, and qualification rate
for the 6-hour ahead wind power forecast compared with those for the 24-hour ahead wind
power forecast. Even so, it is essential to note that the WRF-TOPSIS model based on
the 24-hour ahead wind power forecast still outperformed the statistics-based forecasting
models for the 1.5-hour to 12-hour ahead wind power forecasts (even though the WRF-
TOPSIS predictive performance for the 24-hour ahead wind power forecast corresponds to
only the lower bound on the actual predictive performance for these smaller forecast time
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horizons). This result is even more compelling as it suggests that for wind power forecast
time horizons longer than 1 hour, the WRF-TOPSIS model is expected to provide the best
predictive performance of all the forecasting models.

6.3 Analysis of Statistics-Based and Physics-Based Fore-

casting Models

The persistence model is the simplest model to be used for wind speed or wind power
forecasting. This model has no adjustable parameters and requires the smallest computa-
tional effort of all the wind speed and wind power forecasting models considered herein.
However, the persistence model is only useful for very short forecast time horizons (no
more than 30 minutes). Indeed, the results presented above suggested that the direct and
indirect persistence models outperformed the ARIMA and WRF-TOPSIS models only for
the 30-minute ahead wind speed and wind power forecasting. Basically, the persistence
model relies on a naive assumption that the wind speed or wind power does not change
between the current and future times.

The ARIMA model is a classical statistics-based (time series) forecasting model that
is more sophisticated than the persistence model but still much simpler than the physics-
based forecasting model. The complexity and computational effort of the ARIMA model
are intermediate between those of the persistence and WRF-TOPSIS models. This study
demonstrated that the ARIMA model gave better predictive performance than the direct
persistence, indirect persistence, and WRF-TOPSIS models for the 1-hour ahead wind
power forecasting. Unlike the persistence model, the ARIMA model takes into account the
temporal correlation structure of the wind speed or wind power: as a result, it is expected
to provide better wind speed or wind power forecasts compared with the direct and indirect
persistence models for forecast time horizons longer than 30 minutes. Nevertheless, once
the forecast time horizon reached or exceeded 1.5 hours, the predictive performance of the
ARIMA model was worse than that of the WRF-TOPSIS (physics-based) model.

The physics-based WRF-TOPSIS model is the most sophisticated wind speed and wind
power forecasting model considered in the current study. This model has the largest number
of adjustable parameters of all the forecasting models studied herein and, moreover, incurs
the highest computational cost. The physics-based model uses the mathematical models
of the atmosphere to predict the weather (including wind velocity, temperature, humidity,
etc.) and, as such, incorporates the complete information of the spatial-temporal structure
of the atmospheric motions. As a consequence, the wind speed and wind power forecasts
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provided by the physics-based forecasting model were more reliable than those obtained
from the statistics-based forecasting models when the forecast time horizon was longer
than or equal to 1.5 hours (viz., the longer forecast time horizons).

6.4 Creation of a Multi-Hour Ahead Wind Power Fore-

casting System

As discussed in Section 6.2, the components of a multi-hour ahead wind power forecasting
system for each forecast time horizon were determined according to the results of the case
study. A complete architecture diagram of the multi-hour ahead wind power forecasting
system is shown in Figure 6.1. This wind power forecasting system consisted of a collection
of statistical, physical, and AI models. In particular, historical wind power measurements
were the only input data required for the direct persistence model, which could directly
provide 30-minute ahead wind power forecasts. Historical wind speed and wind power
measurements formed a training dataset that was used to train the ANFIS-based power
curve model, which provided a mapping for converting wind speed forecasts to wind power
forecasts. Moreover, historical wind speed measurements were the only input data for the
indirect persistence model, which could produce 30-minute ahead wind speed forecasts that
were then converted to 30-minute ahead wind power forecasts by using the ANFIS-based
power curve model. Similarly, historical wind speed measurements were the only input
data for the ARIMA model, which could generate 1-hour ahead wind speed forecasts that
were then converted to 1-hour ahead wind power forecasts by using the ANFIS-based power
curve model. Furthermore, static geographical and GFS gridded meteorological data were
the input data for the WRF-TOPSIS model, which could be employed to provide 1.5-hour
to 24-hour ahead wind speed forecasts with a temporal resolution of 30 minutes. These
forecasts together with the corresponding historical wind speed measurements formed a
training dataset that was used to train the ANFIS-based wind speed correction model,
which was designed explicitly to correct the original wind speed forecasts provided by
the WRF-TOPSIS model. Finally, the corrected 1.5-hour to 24-hour ahead wind speed
forecasts were converted to 1.5-hour to 24-hour ahead wind power forecasts with a temporal
resolution of 30 minutes by using the ANFIS-based power curve model.
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Figure 6.1. Architecture diagram of the multi-hour ahead wind power forecasting system.
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6.5 Evaluation of the Multi-Hour Ahead Wind Power

Forecasting System

In accordance with the architecture of the multi-hour ahead wind power forecasting system
shown in Figure 6.1, the system’s overall predictive performance was a combination of the
individual predictive performance of the direct persistence, indirect persistence, ARIMA,
and WRF-TOPSIS models. The MBs, MAEs, RMSEs, IAs, accuracy rates, and qualifi-
cation rates for the multi-hour ahead wind power forecasting system applied to the test
dataset and their 4-day average values are summarised in Tables 6.8 to 6.13, respectively.
An examination of these tables shows that for each evaluation metric, the multi-hour ahead
wind power forecasting system performed well. The accuracy rate is the only metric clearly
specified in the official document released by the NEA. Specifically, the accuracy rate for
4-hour ahead wind power forecasting needs to be no lower than 85%, and it should be
at least 80% for 24-hour ahead wind power forecasting. For the wind power forecasting
4 and 24 hours in advance in this study, the single-day accuracy rate for the proposed
multi-hour ahead wind power forecasting system ranged from 87.68% to 96.05%, and the
overall accuracy rate for the forecasting system was 91.35%. The multi-hour ahead wind
power forecasting system exceeded the predictive performance standards stipulated by the
NEA. Additionally, a comparison of the multi-hour ahead wind power forecasts provided
by the proposed forecasting system and the historical wind power measurements from the
test dataset is shown in Figure 6.2. A serious perusal of this figure reveals that the multi-
hour ahead wind power forecasts provided by the proposed forecasting system successfully
captured the changing trends of the actual wind power values. All of these study results
verified the reliability and accuracy of the multi-hour ahead wind power forecasting system.
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Table 6.8. MBs for the multi-hour ahead wind power forecasting system applied to the 4-day test
dataset.

MB (kW)
Forecast day

Average
1 2 3 4

Forecast

time

horizon

30 minutes
-0.1/
-2.1

-1.9/
-0.4

2.0/
-4.6

-5.4/
5.1

-1.4/
-0.5

1 hour -21.9 -10.2 -44.5 -56.8 -33.3

1.5 hours to 24
hours (every 30
minutes)

22.0 -7.9 -30.9 -49.7 -16.6

Table 6.9. MAEs for the multi-hour ahead wind power forecasting system applied to the 4-day
test dataset.

MAE (kW)
Forecast day

Average
1 2 3 4

Forecast

time

horizon

30 minutes
58.2/
54.7

26.6/
28.3

59.0/
64.2

50.7/
56.2

48.6/
50.8

1 hour 53.2 27.5 66.8 81.2 57.2

1.5 hours to 24
hours (every 30
minutes)

91.1 38.5 72.9 108.6 77.8
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Table 6.10. RMSEs for the multi-hour ahead wind power forecasting system applied to the 4-day
test dataset.

RMSE (kW)
Forecast day

Average
1 2 3 4

Forecast

time

horizon

30 minutes
199.4/
193.6

46.0/
45.9

90.9/
93.8

82.7/
85.4

104.7/
104.7

1 hour 186.5 44.3 101.6 127.7 115.0

1.5 hours to 24
hours (every 30
minutes)

184.9 59.2 111.0 164.1 129.8

Table 6.11. IAs for the multi-hour ahead wind power forecasting system applied to the 4-day test
dataset.

IA
Forecast day

Average
1 2 3 4

Forecast

time

horizon

30 minutes
0.74/
0.74

0.68/
0.68

0.90/
0.88

0.97/
0.97

0.82/
0.82

1 hour 0.64 0.57 0.82 0.90 0.73

1.5 hours to 24
hours (every 30
minutes)

0.60 0.37 0.82 0.83 0.66
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Table 6.12. Accuracy rates for the multi-hour ahead wind power forecasting system applied to
the 4-day test dataset.

Accuracy rate
Forecast day

Average
1 2 3 4

Forecast

time

horizon

30 minutes
86.71%/
87.09%

96.94%/
96.94%

93.94%/
93.74%

94.49%/
94.31%

93.02%/
93.02%

1 hour 87.57% 97.04% 93.23% 91.49% 92.33%

1.5 hours to 24
hours (every 30
minutes)

87.68% 96.05% 92.60% 89.06% 91.35%

Table 6.13. Qualification rates for the multi-hour ahead wind power forecasting system applied
to the 4-day test dataset.

Qualification rate
Forecast day

Average
1 2 3 4

Forecast

time

horizon

30 minutes
95.83%/
95.83%

100.00%/
100.00%

100.00%/
100.00%

100.00%/
100.00%

98.96%/
98.96%

1 hour 97.92% 100.00% 100.00% 97.92% 98.96%

1.5 hours to 24
hours (every 30
minutes)

95.83% 100.00% 100.00% 95.83% 97.92%
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Figure 6.2. Comparison of the multi-hour ahead wind power forecasts provided by the proposed
forecasting system and the historical wind power measurements from the 4-day test dataset. The
30-minute ahead wind power forecasts are obtained by using the direct and indirect persistence
(statistical + AI) models, the 1-hour ahead wind power forecasts are obtained by using the
ARIMA (statistical + AI) model, and the 1.5-hour to 24-hour ahead wind power forecasts are
obtained by using the ANFIS-corrected (ensemble) WRF-TOPSIS (physical + AI) model.

6.6 Summary

A multi-hour ahead wind power forecasting system consisting of an optimal combination
of statistical, physical, and AI models is created in Chapter 6. The statistics-based and
physics-based wind power forecasting models (viz., the direct persistence, indirect persis-
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tence, ARIMA, and WRF-TOPSIS models) generated in Chapters 4 and 5, respectively,
were compared with each other according to their predictive performance on different fore-
cast time horizons. For the purpose of determining the specific model to be used for each
forecast time horizon, the TOPSIS scheme was utilised to rank these statistical/AI and
physical/AI forecasting models with respect to their predictive performance as evaluated
by six metrics, namely the MB, MAE, RMSE, IA, accuracy rate, and qualification rate.
After a comparative analysis of these forecasting models, the direct and indirect persis-
tence models were shown to provide the best predictive performance for the very short
forecast time horizon of 30 minutes. The ARIMA model was demonstrated to provide
the best predictive performance for the 1-hour ahead wind power forecasting. However,
for the forecast time horizons ranging from 1.5 to 24 hours (with a 30-minute temporal
resolution), the corrected WRF-TOPSIS model performed the best among all the wind
power forecasting models. Finally, the construction of the multi-hour ahead wind power
forecasting system was completed, and the system architecture diagram is shown in Fig-
ure 6.1. A perusal of Tables 6.8 to 6.13 indicates that the multi-hour ahead wind power
forecasting system performed well for each evaluation metric, and it exceeded the predic-
tive performance standards stipulated by the NEA. Additionally, from the comparison of
the multi-hour ahead wind power forecasts and historical wind power measurements from
the test dataset (see Figure 6.2), it can be found that the multi-hour ahead wind power
forecasts provided by the proposed forecasting system successfully captured the changing
trends of the actual wind power values. All of these study results verified the reliability
and accuracy of the multi-hour ahead wind power forecasting system.
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Chapter 7

Conclusions and Future Work

In order to meet the requirements of the wind power industry, a novel multi-hour ahead
wind power forecasting system consisting of an optimal combination of statistical, physical,
and AI models was proposed in this research. The historical wind speed and wind power
measurements acquired from an operational wind turbine in a real wind farm located in
North China were used to train and evaluate the forecasting system.

First of all, an ANFIS was utilised to construct a power curve model that played the
role of mapping wind speed forecasts to wind power forecasts. Through a comparative
analysis, three key ANFIS model parameters, namely the type of membership functions,
number of membership functions, and number of training epochs, were determined to be
generalised bell-shaped, 3, and 10, respectively. The effectiveness of the selected ANFIS
model was verified as the model IA, accuracy rate, and qualification rate were 1.00, 98.87%,
and 100.00%, respectively. The 1.13% wind power prediction error, as characterised by the
accuracy rate, mainly resulted from the systematic errors, model errors, and neglect of
other variables that affected the wind power. The established power curve was sufficient
in this research.

Second, the persistence (statistics-based) modelling was presented for multi-hour ahead
wind speed and wind power forecasting. There are two ways of forecasting wind power
based on a persistence model. One is called direct forecasting. In this method, historical
wind power measurements are the only necessary data and are simply regarded as future
wind power forecasts. The other is indirect forecasting, in which historical wind speed
measurements are considered future wind speed forecasts that can be converted to wind
power forecasts by utilising the ANFIS-based power curve model. Both the direct and
indirect wind power forecasting were tested for 10 different forecast time horizons ranging
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from 30 minutes to 24 hours. The results revealed that the direct and indirect persistence
models performed quite well for the 30-minute ahead wind power forecasting. However,
with the rise in the forecast time horizon, the MB, MAE, RMSE, IA, accuracy rate, and
qualification rate for the wind power forecasting by using the direct and indirect persistence
models deteriorated.

Third, the ARIMA time series (statistics-based) modelling was applied for multi-hour
ahead wind speed and wind power forecasting. Through an exploratory and a confirma-
tory data analysis of the historical wind speed measurements, the ARIMA (2, 1, 1) model
was selected as the most appropriate model for the wind speed forecasting. The wind
speed forecasts provided by the ARIMA (2, 1, 1) model were converted to the wind power
forecasts by using the ANFIS-based power curve model. The wind power forecasting was
tested for 10 different forecast time horizons ranging from 30 minutes to 24 hours. It was
concluded that the ARIMA (2, 1, 1) model performed well for the 30-minute ahead wind
power forecasting. However, with the rise in the forecast time horizon, the 4-day average
MB absolute value, MAE, and RMSE for the wind power forecasting by using the ARIMA
(2, 1, 1) model increased gradually, while the corresponding 4-day average IA, accuracy
rate, and qualification rate went down.

Fourth, the WRF (physics-based) modelling was employed for multi-hour ahead wind
speed and wind power forecasting. The numerical weather forecasts provided by the WRF
model depended critically on the choice of a number of physical process subgrid-scale
parameterisation schemes that played a significant role in determining the model behaviour
and, as a result, offered a large initial ensemble of different possible WRF models that gave
various wind speed forecasts. A systematic approach was proposed to determine the critical
subgrid-scale parameterisation options that impacted the quality of the model predictions,
namely the amount of energy that reached the Earth’s surface, the subgrid-scale cumulus
cloud and convective development, the evolution of the planetary boundary layer and
surface layer, and the subgrid-scale orography. More specifically, the TOPSIS scheme
was employed to select the 50 best-performing WRF models from the 1,334 possibilities
(arising from the different physical parameterisation scheme combinations) according to
their predictive performance based on the first day of the training dataset. Following this
analysis, these 50 candidates were applied to the entire training dataset of the 20-day wind
speed measurements, and the top five WRF models were selected from them in accordance
with their similarity scores provided by the TOPSIS scheme. Subsequently, a novel 5-in-1
(ensemble) WRF model was constructed by combining the top five WRF models on the
basis of the weights (similarity scores) provided by the TOPSIS scheme. Furthermore,
another ANFIS was utilised to build a wind speed correction model exclusively for further
improving the wind speed forecasts obtained from the 5-in-1 (ensemble) WRF model. A
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comparative analysis demonstrated that the wind speed forecasts provided by the corrected
5-in-1 (ensemble) WRF model were superior to those obtained from the original 5-in-1
(ensemble) and Dr Wen’s (the benchmark) WRF models—assessed in terms of the average
performance of a number of evaluation metrics on the test dataset. Finally, the wind
speed forecasts provided by the corrected 5-in-1 (ensemble) WRF model were converted to
the wind power forecasts by using the ANFIS-based power curve model. As a result, the
superiority of the wind power forecasting by using the corrected WRF-TOPSIS model was
verified.

For the purpose of comprehensively evaluating the wind power predictive performance
of the statistical/AI and physical/AI forecasting models and determining the specific model
to be used for each forecast time horizon, the TOPSIS scheme was utilised to rank these
forecasting models with respect to their predictive performance for 10 different forecast time
horizons ranging from 30 minutes to 24 hours on the test dataset. After a comparative
analysis of these forecasting models, the direct and indirect persistence models were shown
to provide the best predictive performance for the very short forecast time horizon of 30
minutes. The ARIMA model was demonstrated to provide the best predictive performance
for the 1-hour ahead wind power forecasting. However, for the forecast time horizons
ranging from 1.5 to 24 hours (with a 30-minute temporal resolution), the corrected WRF-
TOPSIS model performed the best among all the wind power forecasting models.

Finally, the construction of the multi-hour ahead wind power forecasting system consist-
ing of all these model components was completed (see Figure 6.1). The multi-hour ahead
wind power forecasts provided by the proposed forecasting system successfully captured the
changing trends of the actual wind power values. It was demonstrated that the forecasting
system was reliable and exceeded the predictive performance standards stipulated by the
NEA. Moreover, the impacts of using the forecasting system for real-world applications are
obvious. Specifically, very short-term (30 minutes ahead) wind power forecasting is helpful
for wind turbine control, regulation actions, real-time grid operations, electricity market
clearing, and so on; short-term (1 to 24 hours ahead) wind power forecasting is beneficial to
power dispatch schedules, load smart decisions, operational security in electricity markets,
and so on. In addition, the forecasting system with an accuracy rate greater than 80% can
keep wind farms in China free of penalties. All of these benefits reveal that the proposed
forecasting system is of great practical relevance.

The primary contribution of this research is the novel WRF-TOPSIS ensemble model
strategy used to select and combine the best-performing WRF models from a vast ensemble
of possible models. Meteorological conditions and land use features can vary significantly
from one season to the next over the course of a year. Since these various factors affect the
predictive performance of WRF models based on various physical parameterisation scheme
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combinations, the final selection of WRF models may exhibit a seasonal variation—which
will be reflected in distinct WRF models and even the number of WRF models that need
to be combined. In other words, the same setup of the WRF-TOPSIS ensemble model
may not be optimal for the wind farm in a different season or another wind farm at a
different geographical location. In spite of this, the critical point herein is the systematic
methodology proposed to select and combine the various WRF models for producing the
most reliable and accurate wind speed and wind power forecasts. Some suggestions for the
future work on the enhancement of the current multi-hour ahead wind power forecasting
system are summarised as follows:

(1) Inputting 6-hourly GFS meteorological data to the WRF-TOPSIS model and exam-
ining whether the predictive performance is better than that of the direct persistence,
indirect persistence, and ARIMA models in terms of 30-minute and 1-hour ahead wind
power forecasting;

(2) Testing the proposed wind power forecasting system based on a set of four-season data
from the wind farm in China and investigating the necessity of seasonal forecasting
models;

(3) Applying the proposed methodology for multi-hour ahead wind power forecasting to
other wind farms at diverse (including offshore) locations and verifying the adaptability
of the methodology and necessity of ocean models for offshore wind farms;

(4) Comparing the predictive performance of high-resolution and coarse-resolution WRF
models and discussing the feasibility of coarse-resolution WRF models;

(5) Adding more types of meteorological data (such as wind direction, temperature, hu-
midity, and pressure) as the additional input variables to the proposed wind power
forecasting system;

(6) Integrating the proposed wind power forecasting system with a higher-resolution com-
putational fluid dynamics (CFD) model to model the terrain effects explicitly.
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Reston Filho. Different models for forecasting wind power generation: Case study.
Energies, 10(12):1976, November 2017.

[7] Radian Belu. Fundamentals and Source Characteristics of Renewable Energy Sys-
tems. Nano and Energy. CRC Press, Boca Raton, September 2019.

253



[8] Hans Georg Beyer, Detlev Heinemann, Harald Mellinghoff, Kai Mönnich, and Hans-
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[31] İrfan Ertuğrul and Nilsen Karakaşoğlu. Performance evaluation of Turkish cement
firms with fuzzy analytic hierarchy process and TOPSIS methods. Expert Systems
with Applications, 36(1):702–715, January 2009.

[32] Ulrich Focken, Matthias Lange, and Hans-Peter Waldl. Previento - A wind power
prediction system with an innovative upscaling algorithm. In Proceedings of the
European Wind Energy Conference & Exhibition 2001, volume 276, pages 826–829,
Copenhagen, July 2001. EWEA.

[33] Aoife M. Foley, Paul G. Leahy, Antonino Marvuglia, and Eamon J. McKeogh. Cur-
rent methods and advances in forecasting of wind power generation. Renewable
Energy, 37(1):1–8, January 2012.

[34] Robert Fullér. Introduction to Neuro-Fuzzy Systems, volume 2 of Advances in Soft
Computing. Springer, Heidelberg, January 2000.

[35] Wayne A. Fuller. Introduction to Statistical Time Series. Wiley Series in Probability
and Statistics. Wiley, New York, second edition, April 1996.

[36] C. Gallego, P. Pinson, H. Madsen, A. Costa, and A. Cuerva. Influence of local
wind speed and direction on wind power dynamics – Application to offshore very
short-term forecasting. Applied Energy, 88(11):4087–4096, November 2011.

[37] G. Giebel, L. Landberg, and T.S. Nielsen. The ZEPHYR project: The next gen-
eration prediction tool. In Proceedings of the European Wind Energy Conference &
Exhibition 2001, volume 1, pages 777–781, Copenhagen, July 2001. EWEA.

[38] Gregor Giebel, Richard Brownsword, Georges Kariniotakis, Michael Denhard, and
Caroline Draxl. The state-of-the-art in short-term prediction of wind power. A liter-
ature overview, January 2011.

[39] Gregor Giebel, Georges Kariniotakis, and Richard Brownsword. The state-of-the-art
in short term prediction of wind power from a Danish perspective. In Proceedings
of the 4th International Workshop on Large-Scale Integration of Wind Power and
Transmission Networks for Offshore Wind Farms, Billund, October 2003. Energy-
nautics GmbH.

256



[40] G. Gow. Short term wind forecasting in the UK. In Proceedings of the First IEA
Joint Action Symposium on Wind Forecasting Techniques, pages 3–10, Norrköping,
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