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Abstract

In this thesis we provide a critical examination of two methods which are used to
characterize medical images. Accordingly, this thesis is split into two main parts. First, we
take a look at the problem of designing efficient, compact image descriptors for content-based
image retrieval of digital histopathology slides. Our approach here is twofold, in that we
propose a frequency-based approach to encoding projection gradients and we study the
effect of separating histology slides into two colour components based on a typical staining
protocol. Our frequency-based approach is shown to be more effective in terms of search
performance and efficiency than the standard MinMax method of binary encoding often
employed in the literature. Furthermore, we find that by separating histopathology images
into their stain components, we see a significant improvement in search accuracy over the
use of greyscale images, and comparable, and often superior performance to the use of
three channel RGB colour images as inputs. The results in this part of the thesis not only
stand on their own as a solution for image search, they can also be applied to improve the
efficiency and performance of future research in this field.

In the second part of this thesis, we consider the use of fractal dimensions as a method
to characterize vascular networks, and other branching structures such as streams, and
trees. We discuss the self-similarity (or lack thereof) of branching structures, and provide
a clear argument against the use of the typical methods, such as the box-counting and
sandbox methods, to estimate fractal dimensions from finite images of branching networks.
Additionally, local slopes are used as a tool to illustrate the issues with these approaches
when they are applied to branching structures, such as computer-generated fractal trees
and retinal vascular networks. Some alternative approaches are suggested which could be
used for the characterization of complex branching structures, including vascular networks.



Acknowledgements

First and foremost, I would like to thank my supervisor, Dr. Edward Vrscay, for providing
both support and guidance throughout the many ups and downs we have encountered over
the course of my degree. Thanks to Dr. Vrscay I have never felt like I was in this alone. I
would also like to thank Dr. Hamid Tizhoosh for acting as my co-supervisor for a number
of years and providing valuable guidance and insights during that time.

I would like to thank Drs. Giang Tran, Mohammad Kohandel, Alexander Wong and
Giorgio Mantica for taking the time out of their busy schedules to sit on my examination
committee. Their time and inputs are greatly appreciated.

I would like to specifically thank Dr. Mohammad Kohandel, along with Dr. Michelle
Przedborski, for introducing me to the research dealing with fractal-based analysis of
vasculature images as well as many valuable discussions during the early stages of this part
of my research.

Sincere thanks must also go to Dr. Kenneth Falconer of the Mathematical Institute,
University of St. Andrews in Scotland, for his very helpful correspondence during the course
of my research relating to fractal dimensions and their estimation.

To my family and friends who have stuck by me throughout this long journey, thank
you for providing much needed balance in my life.

Finally, I acknowledge the financial support which I received throughout the duration of
my PhD. My research was supported in part by a Queen Elizabeth II Graduate Scholarship
in Science and Technology and by the Natural Sciences and Engineering Council of Canada
(NSERC) in the form of a Discovery Grant and a Canada Graduate Scholarship. The
Faculty of Mathematics and Department of Applied Mathematics, at the University of
Waterloo have also provided support in the form of teaching assistantships, for which I am
grateful.

vi



Table of Contents

List of Tables xi
List of Figures xii
1 Introduction 1

I A Compact Representation of Digital Histopathology Images
via Frequency-Based Encoded Local Projections and Digital

Stain Separation 4
2 Content-based Image Retrieval (CBIR) for Digital Histopathology 5
2.1 Digital Histopathology . . . . . . . . . .. .. ... .. ... .. ..., 6
2.1.1  Whole Slide Imaging . . . . . . . . ... ... ... ... ... 6

2.1.2  Quantitative Image Analysis: Opportunities and Challenges 8

2.2 Content-based Image Retrieval . . . . . . . . .. ... ... ... ... 8
2.2.1 Image Descriptors . . . . . . . . . .. Lo 9

2.2.2  Distance Functions for Image Search . . . . . ... ... ... ... 11

2.3 Literature Review . . . . . . . . .. L 14

3 Two Approaches to Generating Efficient Handcrafted Descriptors 17
3.1 A Frequency-based Approach . . . . . .. ... ... ... .. .. ..., 17

vii



3.1.1 Encoded Local Projections (ELP) . . . .. ... ... ... ..... 18

3.1.2  Frequency-based Encoded Local Projections (F-ELP) . . . ... .. 21
3.2 Digital Stain Separation . . . . . .. ... ... Lo 23
4 Experimental Results 26
4.1 Implementation Details . . . . . . .. ... o Lo 26
4.1.1 Data Sets & Image Preprocessing . . . . . . . ... ... ... ... 27
4.1.2 Computation of Image Descriptors . . . . . . .. .. ... .. ... 29
4.1.3 Evaluating Image Search Performance . . .. .. .. .. ... ... 30
4.1.4  Accuracy Calculations . . . . . ... .. ... ... ... 31
4.2 Evaluating the Effectiveness of the F-ELP
Descriptor . . . . . . 32
4.3 The Impact of Digital Stain Separation on Image Search Performance . . . 36
4.4  Comparison of Distance Functions for Image
Search . . . . . . . 38
4.5 Conclusions and Applications to Future Research . . . . . . . ... .. .. 40

II Estimating the Fractal Dimensions of Vascular Networks

and Other Branching Structures 43
5 The Basics of Fractal Geometry 44
5.1 Fractal Sets and Fractal Properties . . . . . . . ... ... ... .. .... 45
5.1.1  Self-Similarity and Statistical Self-Similarity . . . . . .. .. .. .. 48

5.1.2  Fractal Trees . . . . . . . . . L 50

5.2 Fractal Dimensions . . . . . . . .. ..o 52
5.2.1 Similarity Dimension . . . . . .. ... o oL 52

5.2.2 Hausdorff Dimension . . . . . . ... ... ... ... ... 54

5.2.3 Box-Counting Dimension . . . . . . . .. .. .. ... ... ..... 56

5.2.4 The Spectrum of Generalized Fractal Dimensions . . . . . . . ... 58

viil



6 Methods of Estimating Fractal Dimensions 61

6.1 The Box-Counting Method . . . . . . . .. . ... ... ... ... ..., 62
6.2 The Sandbox Method . . . . . . . . . . ... ... ... 64
6.3 The Generalized Sandbox Method . . . . . . . .. ... ... ... ... .. 65
6.4 Other Methods . . . . . . . . . . . 66
6.5 Local Slopes . . . . . . . . 67
7 Fractal Trees are Not Self-Similar 72
7.1 A Brief Review of the Literature on the Fractal Dimensions of Vascular
Networks . . . . . . . . 74
7.2 On the Self-Similarity (or Lack Thereof) of Fractal Trees and Other Branching
Structures . . . . . L 76
7.2.1 Theoretical Analysis Using Local Slopes . . . . . . ... ... ... 7
7.3 Computational Results . . . . . . . .. ... ... ... ... ... ... 80
7.3.1 Implementation Details . . . . . . .. ... ... ... ... ..... 80
7.3.2 Some Simple Examples . . . . . . . ... 0oL 83
7.3.3 STARE Retinal Vasculature Images . . . . . . . . . ... ... ... 89
7.3.4 Computer Generated Fractal Trees . . . . . .. .. ... ... ... 95
8 The Way Forward 99
8.1 Estimating Fractal Dimensions From Tree
Canopies . . . . ... 99
8.2 Direct Estimation of the Branching Parameters . . . . . . .. ... .. .. 103
8.3 A Simpler Approach - Do We Even Need Fractal Methods? . . . . . . . .. 105
9 Concluding Remarks 108
Letters of Copyright Permission 110
References 111

X



APPENDICES 121

A The Box-Counting Dimension of a Simple Fractal Tree and its Canopy 122



List of Tables

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

F1 & BAC results for kNN search (k = 15) using the ELP and F-ELP
descriptors computed for greyscale images from the IDC data set. . . . . . 33

F1 & BAC results for kNN search (k = 15) using the ELP and F-ELP
descriptors computed for H&E stain separated images from the IDC dataset. 33

F1 & BAC results for kNN search (k = 15) using the ELP and F-ELP

descriptors computed for RGB images from the IDC dataset. . . . . . . .. 34
GRR & BAC results for kNN search (k = 15) using the ELP and F-ELP
descriptors computed for greyscale images from the BreakHis data set. . . 34

GRR & BAC results for kNN search (k = 15) using the ELP and F-ELP
descriptors computed for H&E stain separated images from the BreakHis

dataset. . . . . . . 35
GRR & BAC results for kNN search (k = 15) using the ELP and F-ELP
descriptors computed for RGB images from the BreakHis data set. . . . . . 35
A list of the image descriptors used in this study and the corresponding
number of features computed. . . . . .. ... 36
The best KNN search (k = 15) accuracy for the IDC dataset taken over all
distance functions. . . . . .. .. 37
The best KNN search (k = 15) accuracy for the BreakHis dataset taken over
all distance functions. . . . . . . . . . ... 38

X1



List of Figures

2.1

3.1

3.2
3.3

3.4

4.1
4.2
4.3

4.4

5.1
2.2
5.3

0.4
2.5

Four sample WSI image patches scanned at 40x magnification. . . . . . .

A simple illustration of the discrete Radon transform applied to a finite
image. Zero-padding is added so that all projections are the same length. .

An illustration showing the use of the MinMax encoding scheme. . . . . . .

Sample histograms generated using the ELP and F-ELP methods with a
window sizeof n=9. . . . . ...

An illustration of the stain separation process. . . . . . . . . ... ... ..

A selection of sample image patches from the IDC data set. . . . . . .. ..
Sample image patches from the BreakHis dataset. . . . . . . . .. ... ..

A comparison of the average BAC ranking of distance functions for each
image descriptor on the IDC dataset. . . . . . . .. .. .. ... ... ...

A comparison of the average ranking of distance functions for each image
descriptor on the BreakHis dataset.. . . . . . . .. ... ... ... ....

The process of constructing the middle third Cantor set. . . . . . .. ...
Construction of the von Koch Curve. . . . . . . ... ... ... ... ...

Two additional fractal sets: (A) the Sierpinski triangle, and (B) a Cantor
A random von Koch curve. . . . . . . . .. ...
A simple branching generator with two branches (N = 2), branching angles

0, and 05, and contraction factors ry and ro. . . . ... ...

xii



2.6

5.7
2.8

6.1

6.2
6.3

6.4

7.1

7.2

7.3
74

7.5

7.6

7.7

7.8

7.9

A branching structure which results from four applications of the branching
generator shown in Figure 5.5. . . . . . . .. ... o000

[lustration of the similarity dimension for 1D and 2D objects. . . . . . ..

The spectrum of generalized dimensions computed for two fractal objects. .

A log-log plot of N(g) vs. € computed from a finite approximation of the
Sierpinski triangle. . . . .. ..o

Two finite approximations of the Sierpinski triangle. . . . . . . . . . . . ..

Computing the local slopes from a plot of N(g) vs. € for the image in in
Figure 6.2 (A). . . . . . .

A plot showing the local slopes resulting from the box-counting method for

the two finite approximations of the Sierpinski triangle shown in Figure 6.2.

Representative skeletonized images of three types of vascular networks. (A)
Healthy subcutaneous arteriovenous network. (B) Healthy subcutaneous
capillary network. (C) Tumour network. . . . . . . .. ... ... ...

Two log-log plots of N(g) vs. ¢ resulting from the box-counting method
applied to a finite approximation of the Sierpinski triangle. . . . . . . . ..

A sample image constructed to verify the results of Section 7.2.1. . . . ..

Local slopes resulting from the estimation of the fractal dimensions of
Figure 7.3 (A) using the generalized sandbox and box-counting methods.

Estimating the fractal dimensions of Figure 7.3 (A) using the generalized
sandbox and box-counting methods. (A) M(g) v.s. €. (B) M~!(e) v.s. €.
(C) N(€) ViSe €0 v v v o i

Two additional sample images generated to illustrate the main components
of a general branching structure. . . . . . . . ... ...

Plots showing the local slopes as a function of ¢4 for both images in Figure 7.6.
Slopes are computed using the generalized sandbox (Ds? and Dg?) and box-
counting methods (D). . . . . .. ...

Plots showing the local slopes resulting from the box-counting method as a
function of the upper box size (g5) for grids of varying line densities. . . . .

A typical healthy retinal vessel network segmented by (A) Adam Hoover
(AH) and (B) Valentina Kouzentsova (VK), and a typical pathological vessel
network segmented by (C) AH and (D) AK.. . . ... ... ... .....

xlil

51
23
60

63
69

70

71

75

82
84

84

85

86

86

88



7.10

7.11

7.12

7.13

8.1

8.2

Al
A2

Estimation of the fractal dimension of Image 0162 segmented by AH (Figure 7.9

(A)). 92
Estimation of the fractal dimension of Image 0162 segmented by VK (Figure 7.9
(B)). o o 94
Two images depicting finite approximations of binary fractal trees with (A)
r=0550=7% and (B) r=0550=2. ... .. .. .. ... ... .. 96

Plots showing the local slopes as a function of the upper box size €5 for four
distinct fractal trees. . . . . . . ..o 97

Plots showing the local slopes resulting from the box-counting and generalized
sandbox methods as a function of the upper box size e, for four distinct
fractal tree canopies. . . . . ... Lo 100

Plots showing the local slopes resulting from the box-counting and generalized
sandbox methods as a function of the upper box size e, for two statistically
self-similar fractal tree canopies. . . . . . . . . . ... ... 101

A fractal tree, T', with N = 2, a single scale factor r, and trunk length b. . 123
The canopy of T'. . . . . . . . . L 126

X1v



Chapter 1

Introduction

Due to significant advancements in image acquisition technologies over the last few decades,
the study of medical images has rapidly made its way to the digital world. As the
sheer volume of available data increases, computer-aided technologies for the analysis and
characterization of medical images are becoming increasingly relevant in order to leverage
all of the information which is now available [1]. In this thesis we provide an in-depth
examination of two particular approaches which have been used for the characterization of
medical images - the use of projection-based descriptors for content-based image retrieval
in digital histopathology, and the use of finite box-counting methods to estimate the fractal
dimensions of vascular networks and other naturally occurring branching structures. We
point out here that these approaches, and their respective applications, are not related to
each other, but are two disjoint topics which will be examined separately. As such, this
thesis is comprised of two distinct parts, each of which could be considered as a standalone
document in its own right.

In Part I we discuss the design of efficient image descriptors for the retrieval of similar
histopathological images. Histology slides are one of the more recent imaging modalities to
make the shift from analogue to digital, and they present some unique challenges which
require new solutions. For example, unlike most other medical imaging modalities, histology
slides are stained with dyes and contain colour information which is diagnostically relevant.
It is important that this colour information is considered when characterizing histopathology
images. In the pursuit of a compact and physically meaningful descriptor for histopathology
images, we propose a frequency-based approach to encoding local projection data, combined
with the separation of images into colour channels based on the stains present in the image.
We show that the frequency-based approach is an improvement over the binary encoding
method typically used in the literature. We also find that using stain separated image



components as inputs to the image search algorithm provides a significant improvement
over using greyscale images. The use of stain separated images provides comparable, and
often improved, results to using the standard RGB colour images as inputs, while also
resulting in descriptors which are more compact, thus reducing the storage requirements
and computation time needed for image search.

We note that the work described in this first part of the thesis corresponds to work
which was carried out from approximately 2018-2020 and resulted in the publications [I]
and [2]. In [1], the proposed approach was shown to be comparable, in terms of classification
performance, to the state-of-the-art at the time of publication, achieving a balanced accuracy
of approximately 80% on the publicly available IDC Kaggle data set [5]. That being said,
the development of image search algorithms for digital histopathology is a rapidly advancing
field. As better and larger data sets have become available, deep networks have become even
better at classifying them. For instance, in [0], published in 2021, classification accuracies
as high as 90% are reported for a number of tumour types using nearest neighbour search
applied to features extracted from a fine-tuned deep network. In this thesis, instead of
presenting the proposed approach as a complete and up-to-date solution for image search,
we focus on the aspects of the work which remain relevant and are applicable to future
developments in the field.

Part I is organized as follows. In Chapter 2 some relevant background information is
presented pertaining to content-based image retrieval for digital histopathology. In Chapter 3
we present our two proposed approaches for the computation of compact image descriptors
for digital histopathology. Finally, in Chapter 4 we include some experimental results on
two publicly available histopathology data sets which demonstrate the effectiveness of our
proposed approaches. In this chapter we also include a brief study on the impact of the
choice of distance function used to search for similar images.

In Part II of this thesis we shift our focus to fractal dimensions and the methods which
are used to estimate them from discrete images. The estimation of fractal dimensions has
been used as a tool to characterize complex objects, including medical images, for many
years. In particular, vascular networks with their hierarchical branching structure, are often
thought to resemble fractal trees, and as such are classified based on estimates of their fractal
dimensions and other fractal properties. In the literature, estimates of fractal dimensions
have been found to distinguish between healthy and pathological vascular networks in a
number of applications. In this work we present some words of caution regarding the use
of the usual methods, such as the well-known box-counting method, to estimate fractal
dimensions from branching structures (which includes vascular networks). This portion
of the thesis describes work which was done recently, between the years 2020-2022, and
culminated in the publication of [3].



Part II of this thesis is organized as follows. In Chapters 5 and 6 we present the necessary
theoretical background on fractal sets, fractal dimensions and the methods which are used
to estimate fractal dimensions. Specifically, in Chapter 5 we focus on fractal geometry and
fractal sets, and in Chapter 6 we describe the many computational methods which exist for
the estimation of fractal dimensions. In Chapter 7 we discuss specifically how branching
structures, although they may be fractal, are not self-similar, and how this limits our ability
to estimate their fractal dimensions using traditional approaches. Furthermore, we present
evidence supporting this claim, including computational results using computer-generated
images of fractal trees and real images of retinal vasculature. Chapter 8 concludes Part II,
and concludes this thesis, with a discussion on some alternative approaches to characterizing
the fractal properties of branching structures and suggestions on how research in this field
should proceed.



Part 1

A Compact Representation of Digital
Histopathology Images via
Frequency-Based Encoded Local
Projections and Digital Stain
Separation



Chapter 2

Content-based Image Retrieval
(CBIR) for Digital Histopathology

Histopathology, the examination of tissue under a microscope to study biological structures
as they relate to disease manifestation, has traditionally been carried out manually by
pathologists working in a lab. It is only somewhat recently that the technology has
advanced far enough that digitized histology slides have become widely available. With
the widespread availability of digital histopatholgy images, there is now a pressing need for
the development of automated technologies to relieve the workload on highly trained and
specialized pathologists. For instance, approximately 80% of all prostate biopsies performed
in the U.S. every year are benign, which suggests that prostate pathologists are likely
spending a large portion of their time analyzing benign tissue. Benign tissue is typically
easy to distinguish from cancerous tissue, therefore this represents a significant waste of
time and resources that could be better spent analyzing patients with cancer, specifically
focusing on cases where the disease is difficult to identify or classify [7, &].

As it stands, pathology diagnosis is primarily based on the subjective opinion of highly
educated pathologists. It has become increasingly clear that there is a need for quantitative
image-based analysis of digital histopathology slides to improve both efficiency and accuracy.
Quantitative assessments are important for both diagnostic purposes and in order to gain
a better understanding into the underlying biological mechanisms of specific diagnoses.
Consequently, computerized image analysis for digital histopathology has quickly become
an active area of research. To date, researchers have developed a number of methods to
accomplish specific tasks in pathological image analysis, such as image classification, image
segmentation and the detection of various pathologies in images. With extensive training



on data sets which have been annotated by experts, computers are able to complete these
tasks with good accuracy, however there is a hesitancy among the medical community
to adopt such solutions in practice. In the medical field there is a responsibility to the
patient first and a need to be able to justify each decision which is made. Therefore, it
is understandable that the complete removal of pathologists from the diagnostic process
is undesirable. Instead, it is preferable to consider how technology can be used to assist
pathologists in their work. One approach to doing so which is quickly becoming popular
is the development of systems which can efficiently and accurately retrieve similar images
from a database.

Specifically, content-based image retrieval (CBIR) is the process of searching for images
which share the same visual characteristics as a given query image. The identification
and analysis of similar images can assist pathologists in quickly and accurately obtaining
a diagnosis by providing a baseline for comparison. In particular, if the images in the
database have been previously diagnosed, pathologists can refer to the diagnostic and
treatment information of the retrieved images in order to guide their decision making [9].
This approach based on finding similar images is particularly effective for histopathology
applications as it does not necessarily rely on extensive amounts of annotated data. The
use of CBIR in digital histopathology, made possible by the ability to rapidly scan and
store large quantities of digital histopathology slides, has the ability to revolutionize the
landscape of pathology diagnosis for many years to come.

2.1 Digital Histopathology

It has been more than twenty years now since the first development of commercial whole-
slide imaging (WSI) scanners which have the ability to digitize entire pathology glass
slides [10]. In this time the technology has seen significant advances. Improvements in
modern WSI technology allow for the rapid digitization and storage of entire pathology
glass slides and as a result, digitized histopathology images are now widely available for
both clinical and research purposes. Similar to other forms of medical imaging, digital
histopathology has now become amenable to the application of computerized image analysis
and machine learning methods [7, &].

2.1.1 Whole Slide Imaging

The first WSI scanner was designed by James Bacus in 1994, however early WSI systems
were expensive and slow, taking over 24 hours to scan a single slide [10]. Since then, the
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technology has seen considerable improvements and there are now a number of commercial
WSI scanners available on the market which are capable of automatically generating high-
resolution scans of entire glass slides in minutes. Similarly, dramatic improvements in
storage capabilities and computational power make it possible to process these large WSI
datasets. With the recent FDA approval of WSI for primary diagnosis in the United States,
such devices are quickly gaining popularity among medical practitioners [10].

Whole slide scanners have four main components: a light source, slide stage, objective
lenses, and a high-resolution camera. Images of tissue sections are captured in a line-
scanning fashion and digitally assembled to form an image of the entire slide. In order to
reproduce the level of detail necessary for diagnostic and research applications, slides must
be captured at sufficiently high resolution and magnification. In an optical system, both the
magnification and resolution are determined by the properties of the objective lens used [11].
In a digital system, however, the the resolution of the camera sensor and the viewing
monitor also have an effect. The resulting resolution of depends on the aforementioned
device specific factors, however as an example, a typical whole slide image scanned at 40x
magnification has a resolution of approximately 0.25 pum per pixel. This means that just
a small one mm? area of slide consists of tens of millions of pixels, leading to extremely
large file sizes when capturing entire slides [12]. For standard viewing and analysis of slides,
scanning is typically done at 20x or 40x magnification, depending on the application. Even
higher magnifications (60x, 80X, etc...) are available on some highly specialized scanners,
but this is only used for very specific cases where such a high level of detail is needed [12].
Figure 2.1 shows some examples of image patches captured at 40x magnification. Each
image patch is only a small portion of the entire slide and gives an indication of how much
detail is present in these images.
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Figure 2.1: Four sample WSI image patches scanned at 40x magnification (from the publicly
available invasive ductal carcinoma (IDC) Breast Histopathology dataset [5]).



2.1.2 Quantitative Image Analysis: Opportunities and Challenges

One of the main challenges in computer aided analysis of digital histopathology images
is the enormous amount of data that algorithms must be able to deal with, compared
to radiology and other imaging modalities. For example, some of the largest radiological
data-sets are high-resolution chest CT scans which contain approximately 512 x 512 x 512
spatial elements, more than 100 million voxels. On the other hand, a single prostate biopsy
tissue sample digitized at 40x resolution is composed of approximately 15,000 by 15,000
elements, that is, approximately 225 million pixels. To put this in context, a single prostate
biopsy procedure contains anywhere between 12-20 biopsy samples, or approximately 2.5—4
billion pixels of data per patient study. Thus, unlike image analysis algorithms which have
been used for radiology, algorithms for histopathological image analysis must be designed
with efficiency in mind [7, 8].

In addition to large amounts of data, histopathological images present some other unique
challenges. For one, while radiological images are grey-scale, histopathological images are
typically stained with dyes to highlight certain features of the tissue. In order to properly
use the relevant colour information, a histopathological image analysis system must be able
to process colour images and determine relevant biological information from the presence of
different stain colours. A whole slide pathology sample typically covers a fairly small region
of the body at a very high resolution, meaning that the level of detail in these images is
very high. As a result, histopathology images are thought to have more in common with
textures than with radiological images which typically image larger regions of the body
with more defined structure. A good example of this difference is seen in [13], where the
results on three different data sets show that some traditional image retrieval methods
developed for natural images perform much better on radiological images (x-ray and CT)
than they do on the histopathological images used.

2.2 Content-based Image Retrieval

Content-based image retrieval, commonly denoted as CBIR, refers to the idea of using
information contained within images to index and search through large image databases.
The first notable research on CBIR occurred as far back as the early 1990s, and the field
has seen considerable growth since then. Since the beginning, CBIR has been proposed for
a wide variety of imaging applications, including weather forecasting, biological modelling,
and of course medical imaging, the subject of this thesis [11]. The use of CBIR for specific
medical imaging applications introduces some unique challenges, however there are also



some advantages. On the one hand, unlike commonplace images seen in the media which are
easily understood by the average viewer, a medical image is likely difficult for an untrained
viewer to make any sense of. This makes the development of CBIR algorithms difficult
since this research is typically undertaken by image processing researchers, not medical
practitioners. However, medical images are generally taken with a specific purpose in mind,
and lack the contextual ambiguity that may be present in other readily available images.
With medical images, it is also possible to take advantage of prior knowledge of anatomy
and disease manifestation that exists within the medical community [15].

An image search, or CBIR, algorithm consists of two main steps: 1. the calculation of
an image descriptor, and 2. the computation of a distance function or similarity measure
between the query image and the remaining images in the database. An image descriptor
is a mathematical description of the image that is used to capture relevant information in a
compact representation that is suitable for comparing similarity between images. A good
image descriptor should be designed carefully for the specific application at hand in order
to accurately describe the relevant contents of the image, and may include information
regarding the colour, texture, and shapes in an image, among other things. As we will
discuss in Section 2.2.1, image descriptors may be handcrafted (constructed manually) or
generated as the result of deep learning algorithms.

Given a collection of image descriptors corresponding to a set of images, the next step
is to assess the similarity between the input query image and the images in the database in
order to retrieve the most similar images to the query. This involves the computation of
some sort of distance between pairs of image descriptors. We note that when dealing with
images, the notion of distance (or similarity) is somewhat ambiguous. What makes two
images similar? For instance, we might consider two images to be similar if they depict
something similar, have many of the same pixels, or similar colours and patterns. Clearly,
the way in which we define a distance between images is highly dependent on the context
and a good CBIR algorithm will take this into consideration. In Section 2.2.2 we will
discuss some of the different distance functions which can be used to assess the similarity
of two images.

2.2.1 Image Descriptors

Very generally, an image descriptor is a quantitative description of an image which can be
used for the purposes of sorting, classifying and/or characterizing imaging data in some way.
A good image descriptor captures the essence of the image in an efficient manner. Typically,
image descriptors are represented as vectors in R” and are sometimes also referred to as



feature vectors. It is much easier, from a computational perspective, to compare feature
vectors than to compare entire images. There are two main types of image descriptors:
handcrafted descriptors and descriptors generated using deep learning methods, i.e. “deep
features”.

Handcrafted Descriptors

Image descriptors which result from the application of traditional image processing techniques,
i.e. not deep learning, are referred to as handcrafted descriptors. Handcrafted descriptors
have been used for both image classification and CBIR for many years [13]. A number of
standard image descriptors exist which work well on most natural images, however medical
images have unique properties and typically specific descriptors are tailored to particular
applications. Although handcrafted descriptors have been surpassed in performance by
deep features in many cases, trainable feature extraction methods such as deep networks
are not always feasible in the medical field due to a lack of large balanced sets of labelled
images. In addition, handcrafted descriptors provide a level of “explainability” which is not
provided by deep features. In the medical field, where images are used to make diagnoses,
this is important.

In general, handcrafted descriptors can be divided into two main types. The first are
“keypoint” or “dictionary” descriptors. These are based on describing visual points of interest
(keypoints) within the image. Some well known examples of keypoint descriptors include
the surface invariant feature transform (SIFT) [16], speeded-up robust features (SURF) [17]
and bag-of-visual words (BoVW) [18]. Keypoint descriptors have been found to be quite
successful for image classification, including classification of histopathological images [19].
However, they require extensive training to generate the required set of keypoints (or the
“dictionary”) and are thus not that practical when dealing with large quantities of data.

The second major class of handcrafted descriptors are “histogram”-based descriptors.
These are compact representations of images in the form of histograms, typically generated
by counting local patterns. These histograms are usually normalized and can be thought of
as the distribution of local patterns in the image. As a result, histogram descriptors are
easily generalized to apply to images of different sizes without the need to crop or resize the
images. Additionally, histogram descriptors do not require any training to generate, and
are typically compact and easy to compute. Two very well known histogram descriptors are
local binary patterns (LBP) [20] and histograms of oriented gradients (HOG) [21]. HOG
was originally designed for the detection of humans in natural images, while LBP was
originally designed for texture classification. Many variants of the LBP algorithm have been
proposed and found to be highly effective in a number of applications, including medical

10



image classification [13]. In this thesis we will primarily be concerned with histogram
descriptors due to their ease of computation and compact nature.

There are also some handcrafted descriptors which do not fall into either of these main
categories. The GIST descriptor [22] is one such example. The GIST descriptor is a
popular descriptor which is based on describing the “spatial envelope” of the scene. This is
accomplished by convolving the image with a set of Gabor filters at different scales and
orientations and constructing a vector based on the average values in local regions of each
feature map. The GIST descriptor is generally considered to be a good descriptor for
patterns and textures [23].

Deep Features

Although they will not be the focus of this work, it would be remiss not to touch on deep
features, as they are increasingly becoming the standard for image search and classification
in many fields. Deep features are image descriptors (feature vectors) generated from the
intermediate steps of a deep learning algorithm. To generate deep features for a data
set, a deep neural network, typically a convolutional neural network (CNN), is trained for
image classification and high-dimensional feature vectors are extracted from the pooling
or fully connected layers of the network. These types of methods have the potential to
have very high discrimination power, but suffer from high dimensionality and the need for
large volumes of balanced and labelled data to train the networks. When only a small
labelled data set is available, as is often the case in histopathology, it is common to utilize
networks which have been pre-trained on a larger data set (perhaps of natural images). To
improve performance on a specific data set, the parameters of the pre-trained network can
be fine-tuned using the data set of interest [13].

2.2.2 Distance Functions for Image Search

In order to search for and retrieve similar images, we need to define an appropriate distance
function between image descriptors. A distance function is a function which outputs
some measure of distance between elements of a set. The term distance function is often
synonymous with distance metric (or just metric) - a distance function which satisfies some
specific properties, such as the well-known triangle inequality. Distance metrics have many
nice theoretical properties, however, in practical applications it is common to use distance
functions which are not proper distance metrics, i.e. they don’t satisfy all of the required
properties. In this work we will use distance function to mean a function which assigns a
distance to pairs of elements in a set, but which is not necessarily a distance metric.

11



In Chapter 4 we will present some experimental results in which an image search
algorithm has been implemented with a number of different distance functions. Although
we don’t test every possible distance function (this would be impossible!), we test some of
the most common distance functions, as well as introducing an additional distance function
which is not typically used for image search, but has some desirable properties. Each of
these functions is described in more detail below. Throughout the following we will consider
x and y to be two descriptors of length n, i.e. @ = [x1,29,...,2,] and y = [y1, Y2, ..., Yn)-
We will also assume that « and y are comprised of non-negative real numbers, i.e. z;,7; > 0
forall i € {1,...,n}.

The L; Distance

The L, distance between x and y is defined as
i=1

and goes by many names, including the Taxicab distance, Cityblock distance, and the
Manhattan distance. These names are a reference to the grid layout of the streets in big
cities such as Manhattan. The L, distance between two points on such a grid is the shortest
distance that a taxi could take driving between them.

The Euclidean (L) Distance

The Euclidean (or L) distance is likely the most well-known distance function. In R? and
R? the Euclidean distance between two points is the length of the shortest straight line
which connects them. In the more general case of R", the Euclidean distance between two
vectors & and y is defined as

n 1/2
dy(@,y) = (Zm = y>> . (2.2)

i=1

The Euclidean distance is the standard for measuring distances in Euclidean space.
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The Chi-Squared Distance

The Chi-Squared (x?) distance comes from the x? test in statistics. It is defined as [24]

dolz,y) =23 (Gt i (2.3)

2 i1 (Iz +yi) .

The division by (z; + ;) in the sum weights differences between small values higher than
differences between large values.

The Cosine Distance

The cosine similarity of  and y is defined as [27]
sim(x,y) = cos(f), (2.4)

where 6 is the angle between the two vectors. Clearly we have —1 < sim(x,y) < 1 where
the maximum value indicates two vectors with an angle of zero between them (i.e. the most
similar). In order to compute a distance based on the cosine similarity we define

\/Zi:l T \/Zz‘:1 Y
The cosine distance defined in this way takes values from 0 < d.os(x,y) < 2. The cosine

distance is typically used when the magnitude of the vectors is not relevant (normalized
histograms, for example).

dcos(mvy) =1- COS(Q) =1-

The Correlation Distance

The correlation distance, as the name might suggest, is related to the correlation between
the two vectors & and y. Specifically, the correlation distance is defined as [27]

Z?:l (@ — pa)(yi — fty) y
\/Z?:l(xi - M$)2\/ZZL:1 (yi — Ny)Q' (2:6)

We note that this is very similar to the cosine distance between x and y, with the only
difference being that we subtract the corresponding mean from each vector.

dcorr(ma y) =1~
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The Hutchinson Distance

Finally, we will also investigate the use of a distance between two probability measures
(discrete or continuous) which is well-known in the mathematical literature, but which
has received very little attention in imaging applications, and no attention to date in
the field of digital histopathology. This distance, known by various names including the
Monge-Kantorovich distance and Hutchinson distance [26], is considered to be a good
measure of distance between measures or histograms. In [27] it is shown that in the finite
one-dimensional case, the Hutchinson distance can be computed by summing the absolute
value of the partial sums of the difference of the two measures, as follows

n—1 k
(x,y) =Y [ D (& —y) (2.7)
k=1 =1

where z and y are probability vectors of length n, i.e. > @, =1and Y y; =1. It is
interesting to note that the right hand side of Equation (2.7) is the L, distance between the
(discrete) cumulative distribution functions of the probability vectors  and y. Although
this does not extend to higher dimensions, this result is sufficient to allow us to compute
the Hutchinson distance between one-dimensional image descriptors in linear time.

As an illustration of the benefits of the Hutchinson metric, we consider the simple
example of two length n histograms each consisting of a single spike in different bins, j
and k, asinx:x; =1if 1 =5, x; =0 elsewhere and y : y; = 1 if i = k, y; = 0 elsewhere.
Intuitively, we might expect that the distance between these two histograms should depend
on the distance between the two spikes, however all of the distance metrics described above
would assign the same distance to & and y independent of the values of 5 and k. Due to its
cumulative nature, the Hutchinson distance is actually the exception to this rule, and we
can show that dg(x,y) =| j — k |. For certain image descriptors this may provide a better
measure of distance than some of the more commonly used distance measures.

2.3 Literature Review

Research into algorithms for effective image retrieval dates back to before the 1990’s, with
the field really taking off in the late 1990’s. Since then, an extraordinary number of papers
have been published proposing CBIR algorithms for various applications [14]. In particular,
medical imaging has often been cited as one of the main applications for image search
technologies in terms of the potential impact on the field [25]. Initial applications within
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the medical field focused on the use of CBIR to search for radiological images, such as X-ray
and CT scans. Thanks to the introduction of WSI technology and digital histopathology in
more recent years, extending these ideas to the more complex digital histopathology images
was the next logical step. We note, as did the authors of [14], that the volume of research
relating to CBIR over the years makes it unreasonable to provide a comprehensive review
of the related literature in just a single document. Instead, in this Section, we present
an overview of the more recent literature which served as the inspiration for our work.
Specifically, we outline the research relating to CBIR for digital histopathology images
ranging from around the mid-2010’s to the beginning of 2019, when we began our study.

Due to the nature of the medical field, specifically, the need for “explainability” in any
method used to come up with a diagnosis, and the lack of large balanced histopathology
data sets which are available, there has been a significant amount of research into the
design of handcrafted features for histopathology. For instance, in [29], a new method
of image search based on graph-theoretic descriptions is proposed specifically for digital
histopathology. While it is an interesting approach, this method suffers from issues of
computational complexity. Many have also proposed modifications of traditional image
descriptors for use on histopathological images, such as the hierarchical annular histogram
described in [30] and the BoVW approach with multiple dictionaries proposed in [31].
In [13], a new histogram descriptor based on encoding local Radon projections in local
neighbourhoods of images was proposed. This proposed Encoded Local Projections (ELP)
image descriptor was found to be particularly successful on histopathology images. In fact,
when applied to medical imaging applications, the ELP descriptor was shown to outperform
many well-known handcrafted features, and even some deep features [13]. We will discuss
the ELP descriptor in more detail in Chapter 3 as it has served as a starting point for our
work.

Of course, there has also been significant study into the development of deep features
for image search applications in histopathology. Although not the subject of this thesis, we
briefly mention some of the related literature here in order to provide context for our work.
One approach is to combine deep learning with more traditional approaches. For instance,
in [32], the authors combine the classic BoOVW approach with unsupervised feature learning
to create a “bag of learned features”. Others strictly use deep networks to generate features
for image search, however the high-dimensionality of the resulting features is often a concern

due to the so-called “curse of dimensionality”. In [33] and [34], manifold learning techniques
are used to learn lower dimensional representations of histopathology images for image
search. Taking a different approach, in [35], deep features are binarized to enable faster

searching. Due to the lack of large, balanced histopathological data sets, some researchers
consider fine-tuning neural networks which have been pre-trained using some other data
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Chapter 3

Two Approaches to (Generating
Efficient Handcrafted Descriptors

In this chapter we will take a closer look the process of generating efficient handcrafted
descriptors for digital histopathology. Due to its success on histopathology images, we use
the ELP image descriptor from [I3], mentioned in the previous section, as a starting point
for our work. As a result of our investigations, we propose two main innovations: the use
of a frequency-based approach to encode projection gradients and the separation of the
input images into physically meaningful colour channels. These two innovations stand on
their own as a practical approach to CBIR for digital histopathology, however, this is a
rapidly advancing field. We feel that the insights from our study are also applicable to the
development of new approaches in the future.

3.1 A Frequency-based Approach

The basic idea behind the ELP method is to encode local projections of an image using a
binary representation. A closer look reveals that the binary encoding used introduces some
redundancy in the method, which our frequency-based approach aims to reduce. Before
introducing our modified method, we first describe the ELP method in further detail. We
note that in Section 3.1.1 we describe the ELP method as applied to greyscale images
(where each pixel corresponds to a single intensity value). In Section 3.2 we describe how
the ELP method (and our proposed method) can be applied in a similar manner to images
with multiple colour channels.
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3.1.1 Encoded Local Projections (ELP)

The ELP descriptor uses an image transform called the Radon transform to capture the
shapes and patterns present in each image. The Radon transform is an integral transform
which is well known in the image processing field - as its inverse transform is used to
reconstruct images from CT scans. In addition to being used for the reconstruction of
images, the Radon transform has found many other uses related to image processing and
image analysis. It is particularly useful for detecting prominent lines/edges in images.

The Radon transform of a function f(z,y) is formally defined as

R(p,0) = /OO /00 f(z,y)0(p — xcos @ — ysinh)dxdy, (3.1)

where §(-) is the Dirac delta function. In the discrete case, as shown in Figure 3.1, the
Radon transform consists of taking multiple projections of an image along parallel lines at
varying angles 6. A projection in this case is defined as the sum of pixel values along a
given line in the image. By taking many such projections we define a new two dimensional
function of p and 0, R(p, ), where p = xcosf + ysin 6.

The goal of the ELP descriptor is to capture image attributes in local neighbourhoods.
Instead of computing the Radon transform of the entire image, projections are computed
over many small regions of the image. Consequently, the first step in the ELP algorithm is
the identification of a set of small local windows for processing. In order to find projections
which uniquely describe the patterns/textures in local neighbourhoods, only regions which
are sufficiently non-homogeneous so as to ensure projections contain something of interest
are considered. Letting W denote a local window of size n x n, the homogeneity, H, of
each window is calculated according to

H=1- Qni-ts \/Z Z (W —m)?, (3.2)

where m denotes the median pixel value of W and ny; is the number of bits used to encode
the image. A threshold, Ty, ranging from —oo < Ty < 1 is used to eliminate any windows
with high homogeneity.

Once the relevant set of local windows has been defined, it is necessary to determine over
which angles to compute projections. A good image descriptor for digital histopathology
should be rotationally invariant, as the orientation of a scan is not diagnostically relevant.
In pursuit of this goal, a unique angle is chosen in each window by which to “anchor” the
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Figure 3.1: A simple illustration of the discrete Radon transform applied to a finite image.
Zero-padding is added so that all projections are the same length.

projections. This anchor angle is chosen so as to find projections which capture significant
changes in the window. In [13], the authors propose to search for an angle 6*, along which
the Radon projection, p, has maximum amplitude over the entire Radon sinogram, i.e.

0* = argmax; max [R(p1,6;), ..., R(pjp|, 0:)] - (3.3)

For this fixed angle 6%, the projection p,. is computed by taking the Radon transform along
parallel lines p for the fixed anchor angle 6*, and p,. is referred to as the anchor projection.
Unfortunately, searching over many values of 6; to find 6* is prohibitively time-consuming.
Instead, in [13], when applying their method to a histopathology data set, the authors use
a more efficient method to approximate the anchor angle computation described above by
taking 6* as the median of the gradient directions present in the window. We also use this
implementation of the ELP method in our work.

In order to encode the meaningful information from the Radon projection in a compact
form, the authors choose to use “MinMax” encoding [38] applied to the gradient of the
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projection. Given a projection vector p of length n, its derivative p’, is approximated using
a finite difference, i.e. p'(k) = p(k + 1) — p(k). A binary encoding b is computed as

N J 0 ifp(i+1)>p(3)

b(i) = { 1 otherwise (3-4)
for all i € {1,2,...,n — 2}. Following binary encoding of the anchor projection gradient, b
is converted to an integer d, such that the histogram, h(d) can be incremented accordingly.
Figure 3.2 shows an example of how the MinMax encoding scheme works, converting a
projection gradient into a single integer value.

HE EEE B N NN B

Figure 3.2: An illustration showing the use of the MinMax encoding scheme. A projection
gradient (illustrated by a bar chart) is converted into a corresponding binary value. Empty
boxes indicate a zero in the binary encoding and black boxes indicate a one.

To collect more information from each spatial window, three additional projections
anchored to 6* are computed at equidistant angles given by: © = {9*, O+ 1,0+ 5,0" + %” )
Each projection is encoded, converted to a decimal and counted in the same manner. A
final histogram can then be generated in two ways, merging the histograms of all binarized
derivatives of projections along © into one histogram, or concatenating all four histograms
into one long histogram. In [13] the method of concatenation, detached histograms, is found
to have a slightly higher discrimination power, so this is what we consider for our work.

20



3.1.2 Frequency-based Encoded Local Projections (F-ELP)

As was previously mentioned, the ELP descriptor has had considerable success when applied
to digital histopathology data sets. That being said, the method does have some limitations.
In particular, the histograms which result from the binary encoding of the projections are
quite long. Instead of storing entire projections, as in the ELP method, we propose to
quantify the number of changes in each projection gradient and use this as an estimate of
local frequency. As a result, we refer to our method as the Frequency-based Encoded Local
Projections (F-ELP) method. While the original ELP method results in large histograms,
the size of our F-ELP histograms depends linearly on the local window size, which is
typically quite small. The compact nature of our descriptor is desirable from the perspective
of both memory usage for storage of descriptors and computation requirements when applied
to image retrieval and classification type tasks. The computation of our proposed F-ELP
descriptor follows the same overall steps as the ELP descriptor, with some modifications
along the way to improve rotational invariance, reduce sensitivity to shifts in the image
and reduce redundancy by encoding only the frequency information from each projection.
In the following, we go through each step of the algorithm, highlighting how our method
differs from the ELP method.

Identify local windows

Here, our method does not differ at all from the original ELP method. We choose a
threshold, Ty, and select all windows which are sufficiently non-homogeneous to be included
in our computation of the descriptor.

Determine the anchor angle, 6*

Similar to the ELP method, we seek a unique angle in each window by which to anchor our
projections. We do so by computing the image gradient, binning the gradient directions
into one degree intervals and selecting 6* to be the mode (most frequently occurring) of the
gradient directions. Our approach differs just slightly from the original method, in that we
choose to use the mode instead of the median to find the average angle. We do so as the
median is not invariant under circular shifts (i.e. angular rotations), whereas the mode is
invariant, so long as there is one unique angle which occurs at the highest frequency (i.e.
there exists a clearly dominant direction in the window).
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Compute the projection along 6*

As in the ELP method, we compute projections p,. by taking the Radon transform along
parallel lines p for the fixed anchor angle 68*. We also compute three additional equidistant
projections anchored to py..

Encode projections and create histogram

It is in the encoding of the projections where our algorithm differs the most notably from
the ELP method. Instead of encoding the entire gradient of each projection, we quantify
the gradient changes in the projection vector and use this to build our histogram. The
benefits of this modification are two-fold. Primarily, we remove the storage overhead
of encoding entire projections, and instead just capture the general trend (low or high
frequency) of the projections along each direction, resulting in much smaller histograms
which still perform very well. Our proposed method also avoids the use of a binary encoding
to capture the projections. This is beneficial as the binary encoding used by the ELP is
very sensitive to small shifts in the projection, i.e. a change in one binary bit can lead
to a very large difference in the resulting histogram. On the other hand, when the local
projection frequency changes, the resulting change in the F-ELP histogram reflects the size
of the frequency change.

Given a projection vector p of length n and its derivative p’, we compute the following
quantized encoding of the derivative,

gi)={ 1 if|p@) <T (3.5)

The three levels given in Eq. (3.5) indicate regions where the projection, p, is decreasing,
nearly constant (we use a small threshold, 7', here to ignore small fluctuations), and
increasing, respectively. Next, we count the number of transitions in q to get our estimate
of local frequency which will be an integer value, d which satisfies 0 < d < n — 2. Once we
have d we can increment the histogram h(d). Similar to the original ELP descriptor, we
obtain more information by computing three additional equidistant projections relative to
our anchor angle 8* and concatenate the results to generate the final histogram.

Figure 3.3 shows an example of both the ELP and F-ELP descriptors computed for
two sample images from the IDC dataset which clearly depict visually distinct samples. In
order to compute the pictured ELP and F-ELP descriptors a window size of n = 9 was
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Figure 3.3: Sample histograms generated using the ELP and F-ELP methods with a window
size of n = 9. In (A) we show an image patch from the IDC data set, with (B) and (C)
showing the resulting ELP and F-ELP histograms, respectively. Similarly, in (D) we have
another image patch, with corresponding ELP and F-ELP histograms in (E) and (F).

used and the input images were converted to greyscale, resulting in an ELP descriptor of
length 1024 and an F-ELP descriptor of length 32. Both histograms have been normalized
according to the Li-norm. From the figure we can see that the F-ELP descriptor, although
it has fewer bins, appears to show a more varied distribution. When looking at the ELP
histograms, we observe that the distribution is similar for both images, with differences
occurring in only a few bins. This indicates that there is some redundancy in this image
representation which is what we try to remove with the F-ELP method.

3.2 Digital Stain Separation

In the previous sections we discussed the application of the ELP and F-ELP descriptors to
greyscale (or intensity) images. Histopathology images, as shown in Figure 2.1, are generally
colour images. It is, of course, possible to convert colour images to their greyscale intensity
values and apply the methods directly as described above (as is done in [13]), however
in doing so we are leaving out some important information. Prior to imaging, histology
slides are stained to enhance the detail in tissues and cells, and thus the colours present in
an image are biologically meaningful. The obvious solution might be to incorporate the
colour information by computing a descriptor for each of the RGB colour channels, however
this doesn’t account for the variation in stain colouring which results from inconsistencies
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in tissue preparation, sample thickness and scanning procedures [39]. The most common
staining protocol used to stain histology slide in practice involves two chemical stains;
hematoxylin and eosin (H&E). Hematoxylin is a chemical which stains cell nuclei blue, and
eosin stains other structures varying shades of red and pink [10]. The amount of each of
these colours which appears in a slide and the size, shape and frequency at which they
appear are all relevant factors a pathologist might assess when making a diagnosis. For
this reason, we consider separating the input images into two colour components which
correspond to the amount of each stain present at each pixel. By working directly with the
hematoxylin and eosin components, we are able to adjust for differences in stain colours
across images from different sources.

A number of methods for the digital stain separation of H&E slides which perform quite
well already exist in the literature. Although their intended usage is for stain normalization
to control for variation in stain intensities and colours, these same methods are suitable
for our purposes. In this work we adopt the method proposed in [11], an extension of the
wedge finding method from [12]. Unlike some other methods which have been proposed for
stain separation of histopathology images [10] the proposed method does not require any
calibration or knowledge of the exact stain colours. Instead, it works by using the available
image data to estimate an H&E colour basis. Given that our method should ultimately be
applicable to data arising from multiple sources, this is an important feature of the stain
separation algorithm.

Figure 3.4 shows the results of applying the stain separation algorithm to a sample
image patch from the IDC data set. We can see from the original image in (A) how two
distinct structures are highlighted by the two stains. The images in (B) and (C) show the

(C)If' | = '.I

\

Figure 3.4: An illustration of the stain separation process. In (A) we show the original
H&E stained image, in (B) the separated hematoxylin component, and in (C) the eosin
component.

separated hematoxylin (blue/purple) and eosin (pink/red) components, respectively. These
images clearly illustrate the ability of the stain separation algorithm to accurately isolate
both components. Similar results were observed on other images in the data set.
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Given the resulting stain separated image components, we proceed as described in the
previous sections to compute an image descriptor for each component of of the image
separately. Since we are using two colour channels, this results in two histograms, hy and
hg which are concatenated to form the final longer histogram h = [hy hg]. We note that
this method can also be applied to generate histograms with any number of input colour
channels, where the length of the final histogram is obviously dependent on the number of
colour channels used. For instance, the standard three RGB colour channels can be used
as inputs and the resulting histograms concatenated to form h = [hg hg hp]. Later, in
Section 4.3, we will compare histograms generated using both the aforementioned H&E
colour channels and the standard RGB colour channels.
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Chapter 4

Experimental Results

In this chapter we will present some experimental results evaluating the effectiveness
of our proposed approaches. In order to clearly understand their effects, we will test
three different aspects of the image search process in isolation. First, in Section 4.2, we
evaluate our frequency-based approach to encoding projections by direct comparison of the
F-ELP descriptor with its predecessor, the ELP descriptor. In Section 4.3 we study the
effectiveness of separating the input images into their H&E colour channels, as compared
to using greyscale or RGB images as input. This comparison is done using some well-
known image descriptors, as well as the ELP and F-ELP descriptors specifically for digital
histopathology. Finally, in Section 4.4 we look at how the choice of distance function used
for image search impacts the results.

4.1 Implementation Details

In order to evaluate the performance of our proposed approaches we have implemented
our proposed descriptor along with some additional descriptors for comparison. We have
also implemented the digital stain separation algorithm using Matlab code from [11]. Two
publicly available annotated histopathology data sets were used to evaluate image search
performance. The relevant details of our implementation are described in the following.
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4.1.1 Data Sets & Image Preprocessing

For this study we use the invasive ductal carcinoma (IDC) data set from Kaggle, a popular
online community for data science and machine learning, and the BreakHis data set. Both
data sets consist of labelled breast histopathology images and are described in more detail
below. All images are provided in standard three channel RGB colour format. In order
to test image search performance on greyscale images we use the rgb2gray () function in
Matlab which converts RGB images to greyscale by extracting just the luminance values.

Invasive Ductal Carcinoma (IDC) Kaggle Data

The Invasive Ductal Carcinoma (IDC) dataset consists of digitized breast cancer slides
from 162 patients diagnosed with IDC at the University of Pennsylvania Hospital and the
Cancer Institute of New Jersey [5]. Each slide was digitized at 40x magnification, then
downsampled to a resolution of 4 um/pixel. The data set provides whole slide images split
into patches of size 50 pixels by 50 pixels in RGB colour space. The supplied data was
randomly split into three different subsets of 84 patients for training, 29 for validation
and 49 test cases for final evaluation. Ground truth annotation regarding the presence
of invasive ductal carcinoma (IDC) in each patch was obtained by manual delineation of
cancer regions performed by expert pathologists. Figure 4.1 shows some sample images
from the IDC data set. The images in the top row depict healthy tissue or non-invasive
tumour tissue, while the images in the bottom row depict samples of invasive tumour tissue

(i.e. IDC).

Figure 4.1: A selection of sample image patches from the IDC data set. The top row shows
negative examples (healthy tissue or non-invasive tumour tissue) and the bottom row shows
positive examples (IDC tissue).

Due to their small size, each individual image patch in the IDC data set may not
contain both hematoxylin and eosin stains. Since the stain separation algorithm learns
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the stain colours from the data, both stains must be present in the image for accurate
results. To ensure good performance on all image patches, we use the entire WSI to perform
stain separation and then split the image back into the original patches to compute image
descriptors. One further issue is that the stain separation algorithm used assumes that two
(and only two) stain components (H&E in our case) exist in the image. However, some
images were observed to have significant discolouration, such as large dark patches, and the
introduction of other colours not caused by H&E staining. The prevalence of such artefacts
negatively impacts the ability of the stain separation algorithm to provide good results for
some patients, so they were removed by searching for images which have minimal variation
across the RGB channels (i.e. large black or white regions). A total of 686 patches were
flagged and removed from the total data set, all of which were found to contain significant
artefacts or discoloration.

Breast Cancer Histopathology Database (Breakhis):

The Breast Cancer Histopathology Database (BreakHis) [13] was built as a collaboration
between researchers at the Federal University of Parana (UFPR) and the P&D Laboratory
- Pathological Anatomy and Cytopathology, in Parana, Brazil. To date, it contains 9,109
images of breast tumour tissue from 82 patients using four different magnification factors:
40x, 100x, 200%, and 400x. The images are provided in PNG format (3-channel RGB,
8-bit depth/channel) and are 700x460 pixels. The data is divided into two classes, benign
tumours and malignant tumours, with class labels provided by pathologists from the P&D
Laboratory. Within each class, further labelling is provided to indicate tumour types. The
data set consists of four histologically distinct benign tumours and four malignant tumour
types. These additional intra-class labels are not used in the current study. Figure 4.2
shows some sample image patches from the BreakHis data set. The top two rows depict
benign tumours, while the images in the bottom two rows show malignant tumours.

For our purposes, we will only use the subset of images taken at 40x magnification. This
subset of the data contains 1,995 images, of which 652 are benign and 1,370 are malignant.
Using methods provided by the authors of [13], the data has been split into a training set
(consisting of 70% of the data) and testing set (consisting of 30% of the data), with the
condition that there is no overlap of patients between the training and test data. The
results presented for the BreakHis data set in the following sections are the average of the
results over five trials where we have used the same five data folds from [413].
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Figure 4.2: Sample image patches from the BreakHis data set. The top two rows show
examples of benign tumours and the bottom two rows show malignant tumours.

4.1.2 Computation of Image Descriptors

In order to evaluate our proposed approaches we have computed the ELP and F-ELP
descriptors for the images in each of the aforementioned data sets. The ELP descriptor
was implemented based on Matlab code obtained from the authors of [13]. The F-ELP
descriptor was implemented in a similar fashion with changes based on the description in
Section 3.1.2. Based on the results for the ELP descriptor in [13] both algorithms were
implemented with a window size of n = 9. Local windows were selected in a non-overlapping
manner and a threshold of Ty = 1 was used to eliminate any homogeneous windows.

We note here that there is a small difference between the two algorithms in the
computation of the Radon projection gradients. As was shown in Figure 3.1, when
computing the Radon transform, zero-padding is added so that each projection is the
same length as the longest projections (which occur along the diagonals of the image).
This results in extraneous zeros lining the shorter projections which provide no useful
information. To compensate for this, in our algorithm we trim the projections to the same
size as the local windows, i.e. each projection has length n. As a result, the projection
gradients have length n — 1 and the overall length of the F-ELP descriptor is 4(n — 1) (due
to the four angles used). In the original code for the ELP algorithm, the Radon projections
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are trimmed to a length of n + 1, meaning that the corresponding projection gradients
have length n and the resulting length of the descriptor is 4 (2"~!) (again due to the four
angles used). For consistency with previous works we chose not to modify the original ELP
algorithm.

In addition to the ELP and F-ELP descriptors, in Section 4.3 we implement two
additional image descriptors for the purposes of comparison. We choose two descriptors
which have previously shown good performance on textures and patterns, the LBP descriptor
and the GIST descriptor. The LBP descriptor is a histogram descriptor which describes
each pixel by a binary pattern based on thresholding of the neighbouring pixels. The
resulting binary patterns are binned into a histogram. The LBP descriptor is described in
further detail in [20], and our implementation of the algorithm is based on this description.
The GIST descriptor, previously described in Section 2.2.1, was implemented using code
retrieved from the the publicly available Matlab toolbox for the LabelMe dataset [11]. All
four descriptors were normalized according to the L; norm.

4.1.3 Evaluating Image Search Performance

Evaluating the performance of an image search algorithm is actually quite a difficult task
as there is typically no ground truth information regarding the similarity of images in a
data set. The ideal scenario would be to have trained experts, i.e. pathologists in this case,
evaluate the results, however that is far too time-consuming and costly to be practical.
It is common, instead, to indirectly evaluate image search algorithms using classification
accuracy. To replicate the image search process, each query image is classified based on the
mode of the class labels of its closest neighbours (where the definition of closest neighbours
is dependent on the image descriptors and distance function used). If the classification
accuracy is high, then it is likely that the search algorithm is performing well. We note
that this approach to evaluating image search performance is more reliable when using data
sets which have highly specific labels (i.e. low intra-class variation).

More formally, the approach described above is referred to as the k-Nearest Neighbours
(kNN) algorithm [15]. The kNN algorithm involves searching through the training data
partition and classifying each query image based on the class of its k nearest neighbours.
In this work we implement the kNN algorithm using the built-in knnsearch() function
in Matlab which allows the distance function for search to be defined as an input. Each
distance function is implemented based on the definitions in Section 2.2.2.
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4.1.4 Accuracy Calculations

For consistency with previous works, we use different accuracy measures to evaluate the
success of the kNN algorithm for each data set.

IDC

For the IDC data, we use both the balanced accuracy (BAC) and F-measure (F1) to

evaluate classification accuracy [5]. The balanced accuracy is defined as
Sen + Spc
BAC — 2T 5P¢ (4.1)
2
where Sen is the sensitivity, or true positive rate,
number of true positives
Sen = - P — (4.2)
number of true positives + number of false negatives
and Spc is the specificity, or true negative rate,
number of true negatives
Spc = 8 (4.3)

number of true negatives + number of false positives

The F-measure, or F'1 score is the harmonic mean of precision and sensitivity. It is often
written as

2-Pr-Rc
Fl=——— 4.4
Pr+Rc’ (44)
where Pr is the precision,
Pr — number of true positives (4.5)

number of true positives + number of false positives’

and Rc is the recall, another name for the sensitivity, i.e. Equation (4.2).

BreakHis

For the BreakHis data, we compute patient scores and the global recognition rate, both
of which were introduced in [13]. If we let Np be the number of images of patient P and
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Nrec be the number of images of patient P that are correctly classified, then the patient
score for patient P is defined as

N
Patient Score = —— (4.6)
Np
and the global recognition rate (GRR) as
Patient
Global Recognition Rate = 2., Patient scores (4.7)

Total number of patients’

In addition to the global recognition rate we also compute the balanced accuracy as was
defined for the IDC data set in Equation (4.1).

4.2 FEvaluating the Effectiveness of the F-ELP
Descriptor

In this Section we demonstrate the effectiveness of our frequency-based approach to encoding
projection gradients. We have already commented on the compactness of descriptors
generated in this way, however in this section we will also show the F-ELP generally
provides better image search performance when compared with the ELP descriptor. To
generate these results, the kNN image search algorithm was tested using multiple values
of k. As expected, search performance tends to improve as k is increased, up to a point.
There is, of course, a balance to strike between including sufficient images to accurately
classify the query image, but not including images which are too dissimilar which may skew
the classification results. We found that setting k£ = 15 provided generally good results.
Therefore, in this and the following sections we present our findings using k = 15.

IDC

First, we present our results on the IDC data set. In Table 4.1 we show the resulting
accuracy measures (F'1 and BAC) for each descriptor. The best F'1 score and balanced
accuracy for each distance function, i.e. in each row, has been highlighted in bold. In
Table 4.1 the descriptors have been computed for greyscale versions of the images from the
data set. We can see that no matter which distance function is used for image search, the
F-ELP descriptor consistently outperforms the ELP descriptor, often by quite a significant
amount.
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Table 4.1: F1 & BAC results for kNN search (k = 15) using the ELP and F-ELP descriptors
computed for greyscale images from the IDC data set. The highest F'1 and BAC scores in each
row are indicated with bold text.

. . ELP F-ELP
Distance Function Jail BAC Jail BAC

Ly 0.1250 | 0.5304 | 0.4104 | 0.6156

Lo 0.2954 | 0.5788 | 0.4056 | 0.6139
Chi-Squared 0.1001 | 0.5243 | 0.4180 | 0.6192
Cosine 0.1165 | 0.5282 | 0.4092 | 0.6151
Correlation 0.1081 | 0.5262 | 0.4218 | 0.6199
Hutchinson 0.3839 | 0.6069 | 0.3976 | 0.6100

In Tables 4.2 and 4.3 we present similar results for the H&E stain separated images and
the original RGB colour images. In both cases we once again see that the F-ELP descriptor,
despite being significantly shorter in length, has higher discrimination power than the ELP
descriptor.

Table 4.2: F1 & BAC results for kNN search (k = 15) using the ELP and F-ELP descriptors
computed for H&E stain separated images from the IDC dataset. The highest F'1 and BAC scores
in each row are indicated with bold text.

. . ELP F-ELP
Distance Function 1 BAC 1 BAC

Ly 0.1054 | 0.5257 | 0.6609 | 0.7601

Lo 0.4194 | 0.6263 | 0.6598 | 0.7593
Chi-Squared 0.0599 | 0.5141 | 0.6697 | 0.7665
Cosine 0.0846 | 0.5203 | 0.6637 | 0.7623
Correlation 0.0688 | 0.5164 | 0.6660 | 0.7641
Hutchinson 0.4943 | 0.6589 | 0.6593 | 0.7591
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Table 4.3: F1 & BAC results for kNN search (k = 15) using the ELP and F-ELP descriptors
computed for RGB images from the IDC dataset. The highest F'1 and BAC scores in each row
are indicated with bold text.

. . ELP F-ELP
Distance Function Jail BAC Jail BAC

Ly 0.1445 | 0.5364 | 0.6369 | 0.7441

Lo 0.4280 | 0.6304 | 0.6338 | 0.7421
Chi-Squared 0.0946 | 0.5233 | 0.6343 | 0.7424
Cosine 0.1187 | 0.5295 | 0.6395 | 0.7458
Correlation 0.0984 | 0.5244 | 0.6404 | 0.7462
Hutchinson 0.4912 | 0.6569 | 0.6223 | 0.7339

BreakHis

In Tables 4.4, 4.5 and 4.6 we present similar results for the BreakHis data set. Again, the
best results for each distance function are highlighted in bold. We note that the balanced
accuracies are generally a bit lower on this data set compared to the previous results for
the IDC data set. This is to be expected due to the nature of the BreakHis data. The two
classes we are attempting to distinguish between are benign and malignant tumours, which
we expect to be more similar - visually - than the two classes of healthy and tumour tissue
present in the IDC data set.

Table 4.4: GRR & BAC results for kNN search (k = 15) using the ELP and F-ELP descriptors
computed for greyscale images from the BreakHis data set. The highest GRR and BAC scores in
each row are indicated with bold text.

Distance Function ELP F-ELP
GRR BAC GRR BAC

Ly 0.6893 | 0.5747 | 0.6955 | 0.5584

Lo 0.6888 | 0.5737 | 0.6902 | 0.5528
Chi-Squared 0.6947 | 0.5797 | 0.6954 | 0.5616
Cosine 0.6847 | 0.5700 | 0.6948 | 0.5559
Correlation 0.6867 | 0.5704 | 0.6882 | 0.5499
Hutchinson 0.7085 | 0.5898 | 0.6957 | 0.5568

On the BreakHis data set we observe that the F-ELP descriptor either performs very
similarly to, or outperforms, the ELP descriptor. In Tables 4.5 and 4.6 we see that when
more than one colour channel is used (i.e. when more diagnostically relevant information is
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included) the F-ELP descriptor provides a higher classification accuracy the majority of
the time. These results, once again, indicate that the frequency based approach used in
the F-ELP algorithm is a better approach than the standard MinMax approach used in
the ELP algorithm, both due to the resulting shorter histograms, and generally superior
performance.

Table 4.5: GRR & BAC results for kNN search (k = 15) using the ELP and F-ELP descriptors
computed for H&E stain separated images from the BreakHis data set. The highest GRR and
BAC scores in each row are indicated with bold text.

Distance Function ELP F-ELP
GRR BAC GRR BAC

14 0.7618 | 0.7008 | 0.7670 | 0.6978

Lo 0.7634 | 0.7006 | 0.7721 | 0.7031
Chi-Squared 0.7660 | 0.7060 | 0.7737 | 0.7033
Cosine 0.7618 | 0.7020 | 0.7718 | 0.7026
Correlation 0.7612 | 0.7011 | 0.7706 | 0.7025
Hutchinson 0.7387 | 0.6585 | 0.7631 | 0.6853

Table 4.6: GRR & BAC results for kNN search (k = 15) using the ELP and F-ELP descriptors
computed for RGB images from the BreakHis data set. The highest GRR and BAC scores in each
row are indicated with bold text.

Distance Function ELP F-ELP
GRR BAC GRR BAC

L4 0.6838 | 0.5901 | 0.7662 | 0.6941

Lo 0.6780 | 0.5839 | 0.7723 | 0.6980
Chi-Squared 0.6892 | 0.6008 | 0.7679 | 0.6969
Cosine 0.6873 | 0.5881 | 0.7749 | 0.7005
Correlation 0.6871 | 0.5884 | 0.7740 | 0.6988
Hutchinson 0.6873 | 0.5865 | 0.7701 | 0.7033

At this point it would be prudent to point out two additional observations which can
be made from the above results. Both of these observations will be investigated in further
detail in the following sections of this thesis:

1. We notice that image search performance is significantly improved by the use of
the H&E stain separated images as compared to greyscale images, and is generally
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comparable to using the original RBG images despite requiring only two colouring
channels (see Section 4.3).

2. The ELP descriptor appears to be much more sensitive to the choice of distance
function used in the image search algorithm than the F-ELP descriptor (see Section 4.4).

4.3 The Impact of Digital Stain Separation on Image
Search Performance

The main goal of the second part of this study is to investigate the effectiveness of using
stain separated images in isolation from the other parameters of the image search process.
To this end, we implement our proposed F-ELP descriptor and its predecessor, the ELP
descriptor, along with two additional descriptors which are known to perform well on images
of textures and patterns, the LBP descriptor [20] and the GIST descriptor [22]. We recall
that histopathology images, like those shown in Figure 2.1, are more like textures than
typical natural images. We compare the effects of using H&E stain separated images as
inputs for all four of these detectors. Table 4.7 lists each of the descriptors used and their
respective lengths on each set of input colour channels that we test. We have chosen a set
of descriptors with a wide variety of lengths, ranging from the very short LBP descriptor to
the much longer ELP histograms.

Table 4.7: A list of the image descriptors used in this study and the corresponding number of
features computed (i.e. the length of the feature vector).

Descriptor Number of Features
Greyscale | H&E Stains | RGB Image
ELP 1024 2048 3072
GIST 512 1024 1536
F-ELP 32 64 96
LBP 18 36 54

We note that the length of each image descriptor is dependent on certain parameters
of the algorithm. In this work the following parameters are used: the ELP and F-ELP
descriptors are implemented, as before, with a window size of n =9, the GIST descriptor,
by default, divides the image into a 4 x 4 grid and uses a filter bank of 32 Gabor filters,
and the LBP descriptor is computed using P = 16 neighbouring pixels at a radius of R = 2
pixels away from the centre pixel. We notice in Table 4.7 that as we increase the number of
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input colour channels from one to three, the length of the feature vectors increases. Given
that the computation time for the kNN search algorithm has linear dependency on feature
vector length [10], it is clear that for a fixed image descriptor, it is desirable to use fewer
colour channels, so long as this does not cause the overall search performance does not
suffer significantly.

IDC

In Table 4.8 we present the best global recognition rates and balanced accuracies for each
image descriptor and set of input colour channels for the IDC data set. For each descriptor,
and each set of input colour channels, the best accuracy, taken over all distance functions,
is presented. The highest F'1 score and balanced accuracy for each descriptor, i.e. in
each column, is highlighted in bold. As expected, since coloured images contain relevant
information which is lost when images are converted to greyscale, we observe that using
either the H&E stain separated images or the total RGB images is always an improvement
over using greyscale images.

Table 4.8: The best KNN search (k = 15) accuracy for the IDC dataset taken over all distance
functions. The top result in each column is highlighted in bold.

ELP GIST F-ELP LBP
1 BAC F1 BAC F1 BAC 1 BAC
Greyscale 0.3839 | 0.6069 | 0.5910 | 0.7207 | 0.4218 | 0.6199 | 0.5396 | 0.6825
H&E Stains 0.4943 | 0.6589 | 0.6283 | 0.7570 | 0.6697 | 0.7665 | 0.6887 | 0.7780
RGB Image 0.4912 | 0.6569 | 0.6147 | 0.7448 | 0.6404 | 0.7462 | 0.7125 | 0.7972

Colour Channels

A more interesting comparison comes from looking at the bottom two rows of the table,
comparing the use of the H&E images to the RGB images. We see that generally the
F'1 scores and balanced accuracies are similar (within one or two percentage points) for
both the H&E stain separated and RGB images. In most cases, we actually observe an
improved performance using the H&E image over RGB, despite the fact that the input
image has fewer colour channels, and thus the feature vector is shorter. Clearly using the
stain separated images is the superior choice, as the descriptors are more compact, and
performance is similar, if not improved compared to using the original images.
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BreakHis

Similarly, Table 4.9 presents the results comparing the use of greyscale, stain separated and
RGB images as inputs to the image search algorithm for the BreakHis data set. As before,
we note that the balanced accuracies are lower than those for the IDC data set.

Table 4.9: The best KNN search (k = 15) accuracy for the BreakHis dataset taken over all
distance functions. The top result in each column is highlighted in bold.

ELP GIST F-ELP LBP
GRR BAC GRR BAC GRR BAC GRR BAC
Greyscale 0.7085 | 0.5898 | 0.7128 | 0.5744 | 0.6957 | 0.5616 | 0.7051 | 0.5979
H&E Stains 0.7660 | 0.7060 | 0.7406 | 0.6286 | 0.7737 | 0.7033 | 0.7564 | 0.6885
RGB Image 0.6892 | 0.6008 | 0.7068 | 0.6090 | 0.7749 | 0.7033 | 0.7023 | 0.6219

Colour Channels

Once again, we observe a general increase in image search performance when more than
one input colour channel (H&E or RGB) is used as compared to the use of single channel
greyscale images as inputs. On this data set we see that the use of the stain separated
images often leads to a significant increase in classification accuracy over the RGB images.
It is likely that this observation is due to the fact that there is more variation in the
appearance of the H&E stain colours across the BreakHis data set than in the IDC data
set. This difference is apparent when we compare the images in Figure 4.1 and 4.2. As
expected, the benefits of using H&E stain-separation become more apparent when there
are significant variations in the stain colours, as we would expect to see when implementing
image search in practice on data from multiple sources.

4.4 Comparison of Distance Functions for Image
Search

Previously, we saw that the performance accuracy of the ELP descriptor was notably
affected by the choice of distance function used, whereas we did not see the same for the
F-ELP descriptor. In this section, we investigate this further by looking at how the choice
of distance function affects the results for all four descriptors tested. To do so, we introduce
a ranking of each distance function based on how it performs relative to the other distance
functions. For each search trial, i.e., each image descriptor and each selection of input
colour channels (greyscale, H&E, or RGB), we rank the distance functions based on their
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accuracy as a percentage of the maximum accuracy over all distance functions for that
particular search trial. We found that similar results and trends were observed regardless
of the input colour channels used, therefore in the following we present an average distance
ranking, which is the average of the distance ranking taken over the three possible choices
of input images.

As the balanced accuracy was computed for both the IDC and BreakHis data sets, we
present an average distance ranking based on the balanced accuracy resulting from each
search trial. We note that although we do not include them here, the results for the F'1
measure (IDC data) and global recognition rate (BreakHis data) are found to follow similar
trends.

IDC

First, we present our results on the IDC data set. Figure 4.3 shows the average ranking of all
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Figure 4.3: A comparison of the average BAC ranking of distance functions for each image

descriptor on the IDC data set.

six distance functions for each of the ELP, GIST, F-ELP and LBP descriptors. Somewhat
surprisingly, we observe that, in general, the variation in search accuracy across distance
functions is relatively low. It would be difficult to pinpoint any one distance function which
is better than the others. We do notice that, as we saw in Section 4.2 the ELP descriptor
appears to be the most sensitive to the choice of distance function, performing best when
the Hutchinson distance is used. For the other three descriptors, we see that the variation
in performance based on the choice of distance function is almost non-existent.
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BreakHis

In Figure 4.4 we show the average rankings of each distance function on the BreakHis
data. Once again, the overall change in the accuracy as a result of the choice of distance
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Figure 4.4: A comparison of the average ranking of distance functions for each image

descriptor on the BreakHis data set.

function is surprisingly low for all descriptors. On this data set, we we see that the ELP
descriptor performs similarly regardless of distance function, while the performance of the
GIST descriptor is slightly more variable. In all cases, the impact of the distance function
on search performance is small, and generally inconsistent across both descriptors and data
sets.

Our results comparing the use of various distance function for image search on both
the IDC and BreakHis data sets do not give any indication that one distance function is
necessarily superior for image search - even for a fixed choice of image descriptor. Over
many tests, we see only one scenario (the ELP descriptor applied to the IDC data) where
the choice of distance function significantly impacts the results. In the future, subjective
testing by experts of image search results may reveal more significant differences. However,
until that is possible, our results indicate that in practical applications where the algorithm
must generalize to data from multiple sources, the best choice is simply to use the distance
function which can be computed most efficiently.

4.5 Conclusions and Applications to Future Research

In Part I of this thesis we have carried out a critical examination of the design of an image
search algorithm for digital histopathology. Specifically, we have investigated the design of
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image descriptors, the use of digital stain separation algorithms to separate images into
physically meaningful colour components, and looked at how the choice of distance function
may impact the effectiveness of an image search algorithm. To this end, we propose an
image descriptor using a frequency-based encoding of local projection data, the F-ELP
descriptor. At the time of this work, the F-ELP descriptor was a significant improvement
over its predecessor, the ELP descriptor [13] and comparable to the state-of-the-art in the
field, including some deep learning algorithms. Although there have been advancements
in the field since then, some of the results of our study are still very applicable to future
developments.

Firstly, we have shown that our proposed frequency-based encoding of projection data
is more efficient and more effective than the standard MinMax binary encoding used to
generate histogram descriptors. We once again mention that due to the lack of large,
balanced data sets with detailed annotations and the need for “explainability” in the
medical field, there is still a need for handcrafted descriptors in the digital histopathology
space. For use in large scale medical applications these descriptors should be compact,
explainable, and generalizable to data from multiple sources. Our frequency-based method
of encoding transform data can be extended to efficiently encode any sort of projection or
image transform data, not just the Radon transform from the ELP method. Additionally,
the information from this method of encoding is more physically relevant than a binary
encoding, and therefore more explainable when it comes to justifying a diagnostic decision.

Arguably the most important contribution of this work is the result in Section 4.3
on using digitally stain separated images for image retrieval applications. After testing
on both the IDC and BreakHis data sets, we consistently find that separating images
into their H&E stain components leads to a significant increase in search performance
over simply using the greyscale images, as expected. More interestingly, we find that
using H&E separated images yields search accuracies within one or two percent of those
obtained with the original RGB images, despite the fact that the H&E images have only
two colour channels. In fact, superior performance is observed using the H&E images in
most tested scenarios. Given the improved computation speed afforded by using fewer
image channels, it is reasonable to conclude that using H&E stain separated images is
preferable to using the overall RGB images for image search. We expect that these results
will generalize to additional descriptors and approaches for the retrieval and classification of
digital histopathology images, even deep learning. In fact, in the years since the publication
of our results [2] others have used stain separation of digital histopathology images with
good results. For instance, in [39] the authors use stain separation in order to train CNNs
which can generalize to data with colour variations and in [17] stain separation is used
prior to computing texture features for the classification of breast cancer histopathological
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images.

Finally, we have tested our image search algorithm using a variety of distance functions,
from the simple L; and L, distance functions, to the more complex Hutchinson distance.
Somewhat surprisingly, we found that the choice of distance function did not have a
significant or consistent impact on the image search performance when tested using multiple
image descriptors and on two histopathology data sets. From this we conclude that in
applications where the goal is good performance on large data sets consisting of data from

multiple sources, the best choice is to use whichever distance function can be computed the
most efficiently.
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Part 11

Estimating the Fractal Dimensions of
Vascular Networks and Other
Branching Structures
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Chapter 5

The Basics of Fractal Geometry

Ever since Benoit Mandelbrot first coined the term fractal (from the Latin term fractus,
meaning broken) in 1975 [1&], mathematicians have struggled to reach a consensus as to the
formal definition of a fractal. In fact, Mandelbrot himself is purported to have proposed
multiple definitions. In his book The Fractal Geometry of Nature he states

A fractal is by definition a set for which the Hausdorff-Besicovitch dimension
strictly exceeds the topological dimension. [19] (p. 15),

yet only a few years later he is said to have retracted this definition, citing it as too
restrictive, and proposed the following instead

A fractal is a shape made of parts similar to the whole in some way. [50] (p.
11).

Even now, many years later, it would seem that we are no closer to having a single,
precise definition for what makes something a fractal. As Kenneth Falconer writes in the
introduction to his book, Fractal Geometry, 2014 :

... the definition of a ‘fractal’ should be regarded in the same way as a biologist
regards the definition of “life”. There is no hard-and-fast definition but just a
list of properties characteristic of a living thing... [51] (p. xxvii).

This then begs the question, what are these properties which are characteristic of fractals?
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5.1 Fractal Sets and Fractal Properties

Although the precise definition of a fractal is not clear - ask any mathematician, and surely
they will be able to provide you with a list of many well known fractal sets. Therefore,
in order to get an understanding of what is meant by the term fractal, we will begin by
looking at some common examples of fractal sets and making note of their properties. We
will see that these fractal sets are generally too irregular to be adequately described using
classical geometry, and are understood using the framework of fractal geometry.

The middle third Cantor set, often referred to as just the Cantor set, is one of the most
well known examples of a fractal set. It is easiest to explain the Cantor set by describing its
construction. We start with the unit interval [0, 1], which we denote by Fy, and construct a
new set, £, by removing the middle third of Ey. F; therefore consists of the two intervals
[O, %} and [%, 1}. Repeating the process, Es is obtained by removing the middle thirds of
these intervals so that Ey consists of the four intervals [0, %], [g, %], [%, g} and [g, 1]. We
continue in this way, constructing the set Ej by the removal of the middle third of each
interval in Ej_; such that each set Ej, consists of 2¥ intervals of length 37%. The Cantor set
is the limit of the sequence of sets Ej, shown in Figure 5.1, as k tends to infinity. It can be

shown that the Cantor set is an infinite (and uncountable) set [71]. We can see that the

Ly
I
B, —— @ — — —

Ey,
Figure 5.1: The process of constructing the middle third Cantor set.

resulting set is highly irregular and difficult to describe in classical terms. Here, we make
note of some interesting properties of the middle third Cantor set which we will see are
common properties possessed by most fractal sets.

1. The Cantor set is comprised of scaled copies of itself. For example, the parts of the

set in the intervals [0, %] and [%, 1} are each copies of entire set scaled by a factor of
%. This property is called self-similarity.

2. The Cantor set has a “fine structure”, i.e. as we zoom in on the set more detail
emerges.
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3. The Cantor set contains an uncountably infinite number of points, yet the length
of the set is zero. The size of the Cantor set is difficult to quantify using classical
metrics (such as length).

Another example of a well known fractal set is the von Koch Curve. Again, we start
with the unit interval, Ey = [0, 1], and construct the set in a recursive manner as shown
in Figure 5.2. On the first iteration FE is constructed by replacing the middle third of Fjy

Eo

E,

Es

Ey

Figure 5.2: Construction of the von Koch Curve.

with two line segments which would form an equilateral triangle with the removed line
segment. We repeat this process, replacing each line segment with the other two sides of an
equilateral triangle to construct the set Ej from Ej_;. If we let k approach infinity, then
this sequence of polygonal curves Ej approaches a limiting curve, which is called the von
Koch curve. The von Koch curve has many similarities with the middle third Cantor set
described above. We can see from Figure 5.2 that the limiting set will be comprised of four
copies of itself, each of which has been scaled by a factor of % Due to the recursive nature
of its construction, the von Koch curve possesses a fine structure - more detail emerges as
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we zoom in. In fact, we can show that each iteration E} has length given by

(1) -

and as we let k£ tend to infinity, the length of the limiting curve, i.e. the von Koch curve is

L = lim Ly = oo. (5.2)
k—o0
The von Koch curve has infinite length - in other words the von Koch curve is a non-rectifiable
curve.

On the other hand, if we estimate the area of the von Koch curve by covering the set
with square tiles of size €, X €, the area can be approximated as

where N(gi) is the number of tiles of size g5, required to cover the set. If we let g = 1/3%

then N(g;) = 4 and
%

The area of the set can be found by letting £ go to infinity, or letting the square tiles get
infinitesimally small, i.e.
A= lim A, =0. (5.5)
k—o00
The von Koch curve therefore has zero area, so neither its length nor area provides us
with any meaningful information. These results might indicate that the von Koch curve
is "thicker” than a curve (infinite length) and ”thinner” than a planar area (zero area)

and that a fractional (“fractal”) dimension somewhere between one and two may be better
suited to describe the set. We shall discuss this in more detail in Section 5.2.

Some other commonly recognized fractal sets can be constructed using similar recursive
procedures. One example is the Sierpinski triangle (see Figure 5.3 (A)), which is constructed
by the repeated removal of subsequently smaller inverted equilateral triangles from an initial
equilateral triangle. Another example is the equivalent of the Cantor set in R?, referred to
as a Cantor dust, shown in Figure 5.3 (B). We can see that each of these examples also
embodies similar properties to the Cantor set and the von Koch curve, as described above,
including an irregular geometry, self-similarity, a fine structure, and a size which is difficult
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Figure 5.3: Two additional fractal sets: (A) the Sierpinski triangle, and (B) a Cantor dust.

to quantify using traditional means. These are the properties we will generally keep in mind
when we refer to fractal sets, however not all fractal sets will necessarily have all of these
properties exactly. For instance, although many fractals have some degree of self-similarity,
in many cases the the similarity may be only approximate or statistical in nature.

We should note here that in the previous discussion the Cantor set and the von Koch
curve were described as the limits of recursive procedures involving generators. A generator,
G, is a set of rules pertaining to operations on sets, i.e. “remove the middle third of each
line segment”. This is one way of constructing fractal sets, however a more common method
of generating (and analysing) fractal sets is through the application of iterated function
systems (IF'S). Quite simply, an IFS is a system of contraction mappings which act on a set
in a parallel manner. The term iterated function system comes from M. Barnsley and S.
Demko [52], however the idea was first developed in an earlier paper by J. Hutchinson [53].
Although the study and application of iterated function systems is an interesting subject in
its own right, the generation of fractal sets is not the focus of this thesis, and thus these
ideas will not be discussed in further detail.

5.1.1 Self-Similarity and Statistical Self-Similarity

The notion of self-similarity will be of particular importance throughout the remainder of
this thesis, so we will spend a bit more time here describing the ways in which a set may be
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self-similar. In general, when we refer to a set as being self-similar or having some degree
of self-similarity, this means that it is comprised of parts which resemble (are similar to)
the whole in some way. Strict geometrical self-similarity, or just strict self-similarity, refers
to sets like the Cantor Set and von Koch curve in which the parts are exact copies of the
whole, transformed only by a scaling and/or rotation operation. Specifically,

A [set] is strictly self-similar if the [set] can be decomposed into parts which are
exact replicas of the whole. Any arbitrary part contains an exact replica of the
whole [set]. [51] (p. 21),

Strict self-similarity, like that described above, is a useful mathematical construct, but
highly unlikely to exist outside of specific man-made examples. More realistically, we
will have sets which are self-similar in an approximate or statistical sense. For example,
Figure 5.4 shows a random version of the von Koch curve. This set was constructed by
tossing a coin at each step in the generation process to determine whether or not the next
set of lines should point inward or outward. The strict self-similarity of the von Koch curve
in Figure 5.2 has been replaced with a statistical self-similarity - which means that if we
zoom in on small pieces of the curve they will have the same statistical distribution as the
whole set.

'vfy?v‘“ﬂ (Pf“‘\lfw

L

Figure 5.4: A random von Koch curve.

It is necessary to make an important distinction here between true self-similarity, which
arises from the type of infinite recursive procedure described in the previous section, and what
we will call “finite self-similarity”. In practice, we can only work with finite approximations
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of self-similar sets, where the self-similarity (whether it be strict, approximate, or statistical)
only holds down to some finite resolution (or scale). For instance, the sets Ej shown in
Figures 5.1 and 5.2 would be considered finitely self-similar as they appear self-similar when
examined with a finite resolution. Similarly, we can say the random von Koch curve shown
in Figure 5.4 is statistically self-similar down to the scale of the smallest line segment visible
in the figure.

5.1.2 Fractal Trees

Although many fractals do have all of the properties described previously, there are
exceptions which are still widely considered as fractals. Fractal trees are one such exception.
Fractal trees are of particular interest in many areas of research as tree-like structures
occur frequently in nature. For example, we observe branching in trees, rivers/streams, the
vascular system, branching airways in the lungs, etc... Due to their resemblance to fractal
trees, naturally occurring branching structures are often thought to have fractal properties
and, as we will see, many attempts have been made to characterize such structures using
fractal geometry.

A fractal tree is a set resulting from repeated application of a branching generator, like
the one shown in Figure 5.5, to the branches generated in the previous step. We can see

Figure 5.5: A simple branching generator with two branches (N = 2), branching angles 6,
and #,, and contraction factors r; and rs.

from Figure 5.6 that if we repeat the branching process indefinitely, each sub-tree emanating
off the main trunk will be a scaled and rotated copy of the tree itself. The tree resulting
from this process is referred to as an infinite binary (binary because there are two branches
generated on each iteration) fractal tree. A large number of distinct fractal trees can be
produced by varying the parameters of the branching generator, including the number of
branches created on each iteration (N), the length scaling ratios (71, e, etc...) and the
branching angles (6, 6, etc...).
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Figure 5.6: A branching structure which results from four applications of the branching
generator shown in Figure 5.5.

Although they are commonly referred to as fractals, fractal trees differ from the examples
of fractal sets we have seen so far. Even in the infinite case, fractal trees are not strictly
self-similar (i.e. made up of a union of scaled/rotated copies of themselves) due to the fact
that the trunk remains unchanged during the generation process. At best, fractal trees
can be viewed as the union of two scaled copies of themselves plus a trunk, which can be
thought of as a degenerate copy of the set, squashed infinitely thin in one direction. In
fact, the generator in Figure 5.5 can also be viewed as a special type of IFS - a two-map
IFS with condensation [55], where the condensation set, the trunk in this case, is a part of
the set which remains unchanged throughout the generation process. As a result of this
property, i.e. the presence of the unchanged trunk, fractal trees are sometimes referred to
as “non-uniform” fractals or fractals “with residue” [19]. This property will be important
later in the thesis in our discussion on the fractal dimensions of trees and other branching
structures.
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5.2 Fractal Dimensions

Dimension is, very roughly, a measure of how much space a set occupies near each of
its points [51]. The idea of assigning dimensions to sets can be traced back as far as
approximately 300 B.C.E. to the first recorded definition of points, surfaces and solids in
Euclid’s Elements [56]. Over the years this early definition of dimension has been updated
and refined to be more precise and to encompass a wider variety of objects and topological
spaces. One of the most common definitions of dimension used today is the topological
dimension (sometimes also known as the Lebesgue covering dimension). The topological
dimension of a set is defined based on how that set can be divided into smaller parts. In
ordinary Euclidean spaces (i.e. R!, R?, R?, etc...) points have topological dimension zero,
curves have dimension one, areas have dimension two and volumes have dimension three [57].
We note that the topological dimension of a set, by definition, is always an integer.

We have already alluded to the fact that that our usual measures of size/dimension are
not particularly informative when it comes to fractal sets. For instance, both the von Koch
curve and Sierpinski triangle, which have topological dimension one, can be shown to have
infinite length despite occupying zero area. Neither length nor area provides us with much
useful information about either of these sets. Typically, length is used to measure the size
of one-dimensional sets and area is used to measure the size of two-dimensional sets, so it
would seem that these two fractal sets are neither one dimensional nor two dimensional.
To reconcile this phenomena with our usual definition of dimension, the use of fractional
(or fractal) dimensions was proposed [58]. Fractal dimensions are one of the main tools of
fractal geometry which allow for the characterization and comparison of many fractal sets.
In simple terms, it is a measure of how an object fills the space it is contained in.

At this point it would be prudent to mention that there is not one singular definition of
the “fractal dimension” of a set - it is possible to define the dimension of a set in many
different ways and different definitions of dimension may even give different values for the
same set. The term “fractal dimension” is often misused, or used inconsistently, in the
literature. In fact, use of the term “fractal dimension” without further clarification should
always be treated with some skepticism.

5.2.1 Similarity Dimension
For strictly self-similar fractal sets we can compute something called the similarity dimension.

The similarity dimension is a measure of how the mass of a self-similar set changes as the
set is scaled. If we consider a self-similar set which is the union of N non-overlapping copies
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of itself such that each copy is scaled down by a factor of r < 1, then N and r are related
by the power law N = r~4™s where dimg is the similarity dimension.

Definition 5.2.1. The similarity dimension of a strictly self-similar set E is
—log(N) _ log(N)
log(r)  log (}) '

The similarity dimension can be applied to any strictly self-similar set, even those which
are not fractal, such as the standard Euclidean objects, lines, squares and cubes. First, let’s
consider a line. If we scale a line by a factor of one half, as shown in Figure 5.7, we can
see that two copies are required to form the original set. Therefore, N = 2 = (1/2)”" and
dimg = 1 according to Equation (5.6). Another way of thinking about this is that when
the line segment is scaled by a factor of one half, the mass of each scaled segment is also
scaled by one half, and thus we require two scaled copies to make up the whole set.

1

Figure 5.7: A line (a one dimensional object) can be split up into two copies of itself scaled
by one half, whereas we require four copies scaled by one half to make up a square (a two
dimensional object).

dimg(E) - (56)

:

1

2

:

Now, consider the square shown in Figure 5.7. If we scale the square by a factor of one
half we require four scaled copies to make up the whole set. This is because each scaled
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copy of the square has one quarter (or (1/2)2) the mass of the whole set. According to
Equation 5.6 this gives us dimg = 2 for the square. Our results for the similarity dimension
of a line and a square match up nicely with our usual notion of the dimensions of these
sets. A similar exercise yields dimg = 3 for a cube, as expected.

The similarity dimension is more interesting when it is applied to fractal sets. For
instance, we can see that the Cantor set from Figure 5.1 is composed of N = 2 copies of
itself each scaled by r = 1/3. Therefore, the similarity dimension of the Cantor set is

i —log(2) _ log(2)
* " log(1/3) ~ log(3)

This dimension captures the idea that the Cantor set is something between a collection of
points and a line. Similarly, the von Koch curve is made up of four copies of itself each
scaled by a factor of 1/3. The similarity dimension of the von Koch curve is therefore

~log(4) _ log(4)
log(1/3) ~ log(3)

a dimension between one and two, as expected. As we can see, the similarity dimension
allows for non-integer dimensions, providing more information about fractal sets than
the standard topological dimension. We can easily compute the similarity dimension for
all of the strictly self-similar fractals presented in the previous section. The Sierpinski
triangle, Figure 5.3 (A), has similarity dimension 108(3)/10g(2) = 1.585 and the Cantor dust
in Figure 5.3 (B) has similarity dimension 108(4)/10g(3) ~ 1.262, the same as the von Koch
curve. It is interesting to note here that despite having the same dimension, the von Koch
curve and Cantor dust are visually distinct sets and generated by very different processes.
Allowing for fractional dimensions gives us more information than the topological dimension,
but this does not mean that all sets with the same fractal dimension are the same (just like
not all one dimensional, or two-dimensional, etc..., sets are the same).

~ 0.631. (5.7)

dimg = ~ 1.262, (5.8)

For more general fractal sets which do not possess strict self-similarity, the similarity
dimension is not applicable. In these cases, there are other definitions of dimension, such
as the Hausdorff and box-counting dimensions.

5.2.2 Hausdorff Dimension

The Hausdorff dimension, also known as the Hausdorff-Besicovitch dimension, is the oldest
definition of a fractal dimension [51]. It is this definition of dimension which was referenced
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by Mandelbrot in his early definition of a fractal. Unlike the similarity dimension, the
Hausdorff dimension is defined for any set, regardless of self-similarity or other properties.
In order to define the Hausdorff dimension of a set F¥ C R", we will first need the following
definitions.

Definition 5.2.2. Given U C R", the diameter of U is |U| = sup{|z —y| : z,y € U}. In
other words, the diameter is the greatest distance between any two pairs of points in U.

Definition 5.2.3. If {U;} is a countable or finite collection of sets which cover E, i.e.

E C U2, such that 0 < |U;| < e for all i, then {U;} is an e-cover of E.

We will also need to define the Hausdorff measures of the set E. First we let
H:(E) = inf {Z \Ui|? : {U;} is an e-cover of E} . (5.9)
i=1

We can see that as € — 0, the set of possible e-covers of E' is reduced, so the infimum is
non-decreasing and thus approaches a limiting value. This limit is defined for any subset of
R™ and is called the s-dimensional Hausdorff measure of the set E.

Definition 5.2.4. The s-dimensional Hausdorff measure of E is defined as

H*(E) = lim H(E). (5.10)

e—0

The Hausdorff measures generalize the usual ideas of length, area and volume and it can
be shown [51] that, for subsets of R™, the n-dimensional Hausdorff measure is equivalent to
the n-dimensional volume (up to a multiplicative constant).

For most values of s the s-dimensional Hausdorfl measure takes on the value either 0 or
0o, with one critical value of s at which H*(E) jumps from oo to 0. This critical value is
referred to as the Hausdorfl dimension of E [51].

Definition 5.2.5. The Hausdorff dimension of the set E is the real number

dimg(E) =inf {s: H*(E) =0} =sup{s: H*(F) = oo} . (5.11)

In general, the Hausdorff dimension and the similarity dimension are not equal, instead
we have the following inequality

dimy(E) < dimg(E). (5.12)
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However, if E is a strictly self-similar set such that the copies (or the similarities) are
disjoint, then we will have equality between the two dimensions [55].

Although the Hausdorff dimension is well defined mathematically, it is difficult to
calculate, and even more difficult to estimate empirically for practical data sets which are
not, in general, strictly self-similar. For this reason, use of the Hausdorff dimension is
primarily limited to theoretical discussions, and other definitions of dimension are used
when dealing with real-world objects. The box-counting dimension, described below, is one
such dimension.

5.2.3 Box-Counting Dimension

The box-counting dimension is one of the most well known and widely used fractal dimensions
due its relatively intuitive formulation and ease of empirical estimation [51] via the aptly
named box-counting method (see Section 6.1). Once again, we consider F to be any
non-empty subset of R™ and we let N(g) be the number of sets in the smallest e-cover of E.

Definition 5.2.6. The lower box-counting dimension of a set E is defined as

—log N(¢)

dimg(F) = llgl_}lglf Tog(2) (5.13)
and the upper box-counting dimension of F is defined as
— , —log N(e)
dimp(F) = limsup ———— 5.14
() = imsup — 5 (5.14)

In most practical examples, the lower and upper box-counting dimensions are equal and
we have the following definition for the box-counting dimension.

Definition 5.2.7. The box-counting dimension of E is

, .. —logN(e)
Equation (5.15) implies that for small values of € we have
N()=cc*+0 (") ase—0 (5.16)

where c is a positive constant and s = dimg(F). In other words, the number of sets required
to cover E follows, at least approximately, a power law in € as ¢ gets small.
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Calculating N(e) can be difficult in practice, however it turns out that there are several
equivalent definitions which may be more convenient. According to [51], which includes a
proof of equivalence, we can define N(g) to be any of the following and get the same result
for dimg(FE):

i. The smallest number of sets of diameter at most € which cover E.
ii. The smallest number of closed balls of radius £ which cover E.
iii. The smallest number of cubes of side length ¢ which cover E.
iv. the largest of number of disjoint balls of radius € with centres in F.

v. The number of e-mesh cubes which intersect E.

This last definition requires us to define what is meant by an e-mesh.

Definition 5.2.8. The family of cubes in R™ of the form
[mye, (my 4+ 1)e] X -+ x [mye, (m, + 1)e], (5.17)

with myq, ..., m, integers, is called an e-mesh or e-grid.

We will see that this definition of the box-counting dimension in terms of the number of
e-mesh cubes which intersect the set is quite useful when it comes to empirical estimation
of the box-counting dimension.

A natural question to ask is how does the box-counting dimension relate to the Hausdorff
dimension. For many regular sets, the box-counting and Hausdorff dimension are equal,
however in general it can be shown [51] that the box-counting dimension is an upper bound
for the Hausdorff dimension:

dimy(E) < dimy(E) < dimp(E) (5.18)

with many examples where there is strict inequality. For example, the box-counting
dimension of the set {z, :z, =n,n=1,23,...} is 122 [57]. On the other hand the
Hausdorff dimension of this set is zero, as the Hausdorff dimension of any countable set is
zero [H1].
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5.2.4 The Spectrum of Generalized Fractal Dimensions

All of the fractal dimensions we have discussed so far have involved just a single scaling
exponent, however not all objects can be described with just one exponent - some objects
and systems exhibit multiple scaling relationships. It turns out that there exists an entire
spectrum of generalized dimensions, D, where ¢ € R, of which D, corresponds to the
box-counting dimension (also known as the capacity dimension) [59]. These generalized
dimensions arise from the study of multifractal theory, which involves the study of measures
defined over sets. For the purposes of this thesis, it will not be necessary to delve too deep
into the specifics of measure theory, so we will just state that a measure p on a set S is a
mapping which assigns real values to any subset U C S. For example, the measure of U C S
could be related to the size of U, or it could be related to the probability of visiting U in
some stochastic process. Multifractal theory is commonly associated with characterizing
complex distributions, such as the probability distribution on a strange attractor, the
distribution of growth probabilities on the external surface of a diffusion-limited aggregate,
or the spatial distribution of dissipative regions in a turbulent flow [60]. That being said,
multifractal behaviour can also arise from a uniform measure defined over a fractal set.
In this case we might think of the measure as representing a mass distribution defined
over the set, and these sets are sometimes referred to as geometric multifractals, or mass
multifractals [01, 62].

The generalized dimensions are closely related to the more well known f(«) singularity
spectrum, the hallmark of multifractal theory. Very briefly, the f(a) spectrum provides a
description of a multifractal measure both locally and globally by partitioning the support
of the measure into subsets S, which have local dimension (or singularity exponent) a. The
value f(«) is the Hausdorff dimension of S, for each non-empty subset S,. When the S,,
are non-empty and fractal over a range of exponents o, we have a multifractal measure.
On the other hand, if we think back to the simpler fractals sets described previously, such
as the Cantor set and von Koch curve, we can define a uniform measure over the set (i.e. a
uniform mass distribution) and it is clear that the f(«) spectrum will consist of a single
point with both « and f(«) equal to the Hausdorff dimension of the set. This type of a
fractal set is called a monofractal.

Another way of characterizing the scaling behaviour of a multifractal measure is to
compute the generalized fractal dimensions, D,, which correspond to the scaling exponents
of the ¢ moments of the measure [60]. The generalized dimensions are related to the
aforementioned f(«) spectrum by a Legendre transform, and are often easier to evaluate
for measures arising from empirical data. If we consider a measure p defined on £ C R",
cover E with N(g) boxes of size €, and let y; be the value of p over the i box, then we
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have the following definition.

Definition 5.2.9. The spectrum of generalized fractal dimensions, D, for q¢ € (—o0,00), is
given by

o log (XD ue)

D= q—1 El_i>1(1)1+ log(¢) (5.19)
for all ¢ € R.
In general it can be shown that
D, > D, for ¢ > ¢ (5.20)
with equality if and only if the measure is monofractal [59]. Therefore we can consider a

set to be multifractal if D, is a decreasing function of ¢. Figure 5.8 shows the spectrum of
generalized dimensions, D,, computed for two images; the Sierpinski triangle, a monofractal,
in (A), and a diffusion-limited aggregation (DLA) cluster in (B). DLA clusters are generally
considered to be multifractal structures [63]. We will discuss DLA clusters further later in
this work as they are often compared to vascular networks on the basis of having similar
“fractal dimensions”. We can see that for the Sierpinski triangle the values of D, are
reasonably constant, whereas for the DLA cluster they decrease with g. The D, values in
Figure 5.8 were computed using an implementation of the generalized sandbox method in
Matlab, the details of which can be found in Section 7.3.1.

In this thesis we will not concern ourselves very much with the theory of multifractals,
however we will investigate the estimation of the generalized fractal dimension for certain
special values of g. In particular, we will see that the dimension D,, also known as the
correlation dimension, is often used interchangeably with the box-counting dimension, Dy,
as an alternate means of estimating the “fractal dimension” of a set. Once again, we stress
that it is important to distinguish between the different definitions of the various fractal
dimensions - they can, and often do, have different values.
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Figure 5.8: The spectrum of generalized dimensions computed for two fractal objects: (A)
the Sierpinski triangle, a monofractal, and (B) a DLA cluster, a multifractal.
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Chapter 6

Methods of Estimating Fractal
Dimensions

A large variety of natural objects are thought to have fractal properties. For instance, in
Mandelbrot’s famous book from 1983, The Fractal Geometry of Nature, he claims that

... [cJlouds are not spheres, mountains are not cones, coastlines are not circles,
and bark is not smooth, nor does lightning travel in a straight line. [19] (p. 1).

At the time, Mandelbrot’s ideas on fractal geometry and its applications to the natural
world were novel, however, now a quick search reveals a plethora of articles on the fractal
properties of various natural objects - from clouds and mountains, to stream networks
and vascular networks, the latter being the subject of this thesis. Of course, none of these
natural objects can possibly be true fractals due to their finite nature, however, they may
appear to be fractal over certain ranges of scales. As such, fractal geometry is often used as
a tool to characterize and model such objects. One of the most common ways that fractal
geometry has been applied to natural objects is in the estimation of their fractal dimensions
as a means to characterize their complexity or level of irregularity.

The two primary methods for estimating fractal dimensions from finite images seen in
the literature are the box-counting method (by far the most common), and the sandbox
(or generalized sandbox) method. These two methods are often used interchangeably
to compute the “fractal dimension” of an image, however as previously mentioned, it is
important to remember that there are many ways to define a fractal dimension, and they
are not always equivalent. The box-counting method and sandbox method compute two
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different dimensions; the box-counting dimension (D, or capacity dimension) and the
correlation dimension (D,), respectively. In some cases - when the set is a monofractal -
these two definitions are equivalent, however when working with naturally occuring objects,
whether the object is monofractal, multifractal, or even if it is fractal at all, is not known
at the outset.

In order to estimate the dimensions of naturally occurring objects we work with digital
images of said objects. In this thesis we will be concerned with objects and structures which
can reasonably be represented by two-dimensional binary images, however the methods
described in the following sections can be extended to three dimensions by replacing boxes
with cubes. Additionally, the generalized sandbox method described in Section 6.2 can be
applied to estimate the multifractal properties of greyscale images, by treating the intensity
value of each pixel as a measure defined upon the set.

6.1 The Box-Counting Method

The box-counting method is likely the most well known and commonly used method to
estimate the box-counting dimension from binary images. We saw in Section 5.2.3 that,
when the limit exists, the box-counting dimension of a set £ C R" is given by

dimg(F) = lim M.

liy — 5 (6.1)

In practice the set E is replaced by a finite image, i.e. a discrete collection of pixels, which
lies in the plane. Such an image can, of course, only exhibit detail over a finite range of
scales and as such, in the finite case, we cannot expect the scaling relationship to hold in
the limit as ¢ — 0. Instead, in the finite case, we must locate the relevant range of scales
over which the scaling relationship holds. Over this range of scales, the set is covered with
a grid and the dimension is estimated from the slope of a log-log plot of N(¢) (the number
of boxes which intersect the set) vs. 1/e.

The idea is, that over this range of scales, we can treat the finite set as an approximation
for a (statistically) self-similar set, such that the scaling relationship holds at all scales,
and can effectively be extrapolated from this finite region down to the limit as ¢ — 0. We
note that in the finite case we require a stricter version of the scaling relationship from
Equation (5.16). Since we cannot take the limit as € goes to zero in the finite case, we must
have N(g) = ce™*, or at the very least N(e) ~ ce~*, for some finite range of ¢ values in order
to measure the scaling exponent, s, from the slope of the log-log plot. The box-counting
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method provides an estimate of the box-counting dimension, not of the finite set itself, but
of the fractal set which it approximates [64]. In this thesis we will use the notation D% to
refer to estimates of the box-counting dimension computed using the box-counting method.

In Figure 6.1 we show an example of the log-log plot of N (&) vs. & which arises from the
application of the box-counting method to a finite approximation of the Sierpinski triangle.
The Sierpinski triangle has a box-counting dimension of 108(3)/10g(2) &~ 1.585. From the figure
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Figure 6.1: A log-log plot of N(g) vs. € computed from a finite approximation of the
Sierpinski triangle.

we can see how the slope of a straight line fit through the data points provides a good
estimate of the box-counting dimension of the set. This plot was generated using Matlab
and a thorough discussion on our implementation of the box-counting method can be found
in Section 7.3.1. Despite its popularity and widespread use, the box-counting method is
not without its flaws. The algorithm is very sensitive to its parameters, including the box
sizes which are used. In Figure 6.1 we knew the dimension of the Sierpinski triangle, so it
was easy to find a range of scales over which this behaviour is present in the finite image.
In general, however, locating the correct range of scales over which the scaling relationship
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holds can be problematic - especially as many of the scaling relationships observed in nature
span fewer than two orders of magnitude [65]. This aspect of fractal dimension estimation
is mostly glossed over in the literature - it seems that most authors simply select a region
of the log-log plot of N(e) vs. 1/e which looks reasonably linear from which to estimate
dimension. This method is not particularly accurate for reasons which will be discussed in
further detail in Section 6.5 of this thesis.

Another issue with the box-counting method is the quantization error which arises from
the use of a grid consisting of finite box sizes. Although we saw in Section 5.2.3 that we get
the same result for the box-counting dimension whether we cover the set with the smallest
e-cover or an e-mesh, the proof of equivalence relies on taking the limit as € goes to zero.
In the finite case, the number of e-mesh cubes which intersect the set will depend on the
location and orientation of the image relative to the grid [64]. In practice the quantization
error is often reduced by translating the grid randomly or systematically and taking the
minimum value of N(g) over multiple grid orientations. It can also be reduced by using the
“enlarged box technique”, originally proposed in [66] and improved upon in [67]. There will,
however, always be some amount of quantization error due to the fact that we are using a
finite grid where the boxes are not allowed to shift relative to one another.

Finally, box-counting suffers from what are commonly referred to as “edge effects”,
referring to the boxes near the border of the set, which may intersect the set in only a
minor way. At large scales, these edge effects become increasingly prominent and may lead
to deflated estimates of dimension if they are not accounted for properly. Edge effects can
be mitigated somewhat by enforcing a minimum density before a box gets counted, or by
restricting boxes to the interior of the set, as in [68], however this approach requires quite
large sets in order to be practical.

6.2 The Sandbox Method

The sandbox method, as described in [(9], is often presented as an alternative method
of estimating the fractal dimension from an image. The sandbox method is a means of
estimating the correlation dimension, which is often the same, or similar to the box-counting
dimension, from finite images. In the sandbox method, occupied pixels are surrounded
by a box of size ¢ and the average mass (i.e. number of pixels) inside a box of size
is computed by averaging over the boxes surrounding each pixel in the set. Depending
on the implementation, the average mass may be computed over boxes surrounding all
occupied pixels or a selection of boxes with centres selected randomly according to a uniform
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distribution. Once again, we assume a (statistically) self-similar set, and so the average
mass, M (e), is assumed to scale (at least approximately) according to a power law,

M (e) = ce®, (6.2)

where ¢ is a positive constant. Once again, since we are working with a finite image, this
relationship is assumed to hold over some finite range of scales. The scaling exponent, s, is
estimated as the slope of the straight line fit to a log-log plot of M(e) vs. e.

The sandbox method suffers from the same issue as the box-counting method with
regard to the difficulty in locating the linear region of said plot. However, since the boxes in
the sandbox method are centred on individual pixels, issues encountered in the box-counting
method, e.g., quantization errors caused by the use of a fixed grid, are not encountered.
Typically, the sandbox method is more computationally expensive than the box-counting
method, however we note that the run time of the sandbox method depends on the density
of the image. Thus for sparse images, the sandbox method can actually be quite efficient.

6.3 The Generalized Sandbox Method

The sandbox method, as described above, is actually a special case of the generalized
sandbox method described in [61]. The generalized sandbox method is a method for
computing the spectrum of generalized fractal dimensions, D,. We recall from Section 5.2.4
that the definition of the generalized fractal dimensions comes from defining a measure
over a set. In Section 5.2.4 and in that which follows, we have assumed a uniform measure
defined over the set, such that the value of the measure over each box is analogous to
the mass (or number of pixels) contained within the box. According to the generalized
sandbox method, the dimension D, can be estimated as /(g - 1) times the slope of a log-log

plot of Wq_l(a) vs. €. By setting ¢ = 2 in the generalized sandbox method we recover
what is typically referred to as, simply, the sandbox method, an estimate of the correlation
dimension, D,. If we set ¢ = 0 in the generalized sandbox method, the result is another
approximation of the box-counting dimension, Dy. In this thesis we will use the notation
Dg? and D3P to refer to estimates made using the generalized sandbox method of Dy and
Dy, respectively.
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6.4 Other Methods

In addition to the generalized sandbox method for computing the spectrum of generalized
dimensions, a number of methods for applying multifractal theory to discrete sets have been
developed in the literature throughout the years [70]. The most natural way to estimate the
f () spectrum, as used in [71], is to directly estimate the singularity exponent at each point
x by estimating the slope of log (11;(¢)) as a function of log(¢) where p;(¢) is the amount of
measure (or mass) in a box of size € surrounding the i*" pixel. The dimension of the set
of points with singularity exponent «, i.e. f(a), is then estimated using the box-counting
method. A similar method of directly estimating the f(«) spectrum is called the histogram

method [72]. The set is covered with boxes of size ¢ and for each box we compute the
exponent
log (4
log(e)

where, again, j;(€) is the amount of measure (or mass) in the i box. If N, () is the
histogram of the values {a;(¢)},, f(«) can be estimated from estimates of the power law
scaling behaviour of N,(g). In other words, the slope of log (N,(¢)) as a function of log(e)
is used to estimate f(a).

In [60] the authors propose a different method of computing f(«) for a multifractal
measure P(x) by constructing a one-parameter family of normalized measures p(q) over
the set such that the value of 1(g) in the i*" box of size ¢ is given by

(Pi(e))*

pi(g,€) = P (6.4)

The Hausdorff dimension of the support of pu(q) is related to the entropy and we can
compute

iy 2iHi(a:€) log (g, €))
fla) = l*)O log(e)

(6.5)

where 11;(q, €) is the value of 1(g) in the i*" box of size . Similarly, the average value of
the singularity strength with respect to the measure u(q) can be computed as

iy 2 1i(9:2) og (Fi(€))
alg) = £—>0 log(e) '

(6.6)
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Equations (6.5) and(6.6) provide an alternative definition of the singularity spectrum. Once
again, the limiting values as ¢ — 0 are estimated based on the slopes of the relevant log-log
plots over some finite range of scales.

Finally, in [72] the wavelet transform modulus maxima (WTMM) method for estimating
the f(«a) spectrum of multifractal functions was introduced. In this method the singularity
spectrum is determined from estimates of the scaling behaviour of partition functions
defined based on the modulus maxima of the wavelet transform. This method can also
be extended to two-dimensional multifractal measures using the two-dimensional wavelet
transform, as was demonstrated in [73].

We shall not discuss these other methods of estimating fractal dimensions in further
detail in this thesis. Instead, our discussion will focus on the box-counting and sandbox
methods which are used with more regularity in the literature pertaining to fractal dimension
estimation of naturally occurring branching structures. We will, however, make an important
comment here, which is to draw attention to what all of the methods discussed in this
section have in common. Each method described above is based on the estimation of some
limiting value (the exponent of a power law scaling relationship specifically) by using linear
regression to estimate the slope from a logarithmic plot over a finite range of scales. This
means that, just as with the box-counting and generalized sandbox methods, the scaling
behaviour we are attempting to measure must be present and must hold reasonably constant
at finite scales. Consequently, the discussion which follows in relation to the box-counting
and generalized sandbox method applies to the methods described in this section as well.

6.5 Local Slopes

One of the main problems with the usual methods of estimating fractal dimensions from
finite images, is the difficulty in determining the optimal range of scales over which to
measure their scaling behaviour. When dealing with finite objects, they can, and often do,
display different scaling behaviour over different ranges of scales. An excellent example of
this phenomenon is illustrated in the video Fractals are typically not self-similar at the
15:40 mark [74]. A thin tube-like object is shown which appear one-dimensional when
viewed at large scales (low resolution), i.e. its mass scales according to length. However
as we zoom in, further detail is revealed and we can see that the surface of the tube is
actually two-dimensional. Finally, if we zoom in even further to a very fine resolution,
what looked like a surface is revealed to be a tightly wound helical coil, which is actually
one-dimensional. So what dimension is this object? If we attempt to estimate its dimension
using either the box-counting or sandbox methods, we will observe each of these scaling
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behaviours over different ranges of box sizes. We might think that we should look at the
smallest box sizes in accordance with the theoretical definition of dimension, however this
may not always capture the scaling behaviour we are interested in measuring.

As we have already discussed, naturally occurring objects may have fractal scaling
properties over some finite range of scales, and we can assign them a fractal dimension
by extrapolating this behaviour down to infinitesimally small scales, i.e. treating them
as approximations of strictly self-similar (or statistically self-similar) objects. Since the
behaviour we are interested in occurs over a finite range of scales, there will always be some
lower cut-off size at which point the scaling behaviour ceases to be present. At such small
scales, the object will appear to scale according to the dimension of its smallest constituent
part (whether that be individual pixels, line segments, or small two-dimensional regions). If
we were to use this smallest range of box sizes to estimate the dimension of our object, we
would of course measure the dimension of this smallest constituent part (which will always
be an integer). This is not incorrect, this is the true dimension of the finite object, however
it does not tell us anything about the scaling behaviour we were interested in measuring.
We note here that there will also be some upper cut-off size at which the scaling behaviour
will change. At large enough scales, any finite object will appear to be zero-dimensional as
the entire mass of the object fits into one single box [65].

As an example, in Figure 6.2 we present two images which approximate the Sierpinski
triangle, one of the fractals discussed in Section 5.1. Both images have been generated by
the repeated application of a set of contraction mappings - i.e. an iterated function system
(IFS). In (A) the procedure is iterated four times, leading to a very rough approximation of
the Sierpinski triangle, while in (B) the IFS is applied twenty times, yielding a very good
approximation. Clearly if we analyze the image in (A) using very small box sizes, the image
will appear one-dimensional, since we will resolve the individual line segments of which it
is made up of. On the other hand, the image in (B) displays the scaling behaviour of the
Sierpinski triangle down to a resolution of just a few pixels.

What this means is that in order to estimate the scaling behaviour we are interested
in, we need to first determine the range of scales over which it is present. It turns out
that this is actually quite difficult. In much of the literature, this region is determined by
looking directly at the log-log plot of either N(g) v.s. ¢ (box-counting method) or M (¢)
v.s. € (sandbox method) and choosing a region which looks reasonably linear. The r?
value (coefficient of determination) is often used to confirm the goodness of the linear fit.
Unfortunately, as has been pointed out in [75, 65, (4], the independence assumption of
linear regression does not hold for the box-counting or sandbox methods. The quantity
M (g) or N(¢) at a given box size depends on the value at previous sizes and consequently,
when the slope is estimated using regression, the r? values are inflated and may give a false
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(A) (B)

Figure 6.2: (A) A very rough approximation of the Sierpinski triangle, starting with the
outline of an equilateral triangle the recursive process is repeated just four times. (B) A
better approximation with twenty iterations.

sense that the underlying data is linear even when it is not.

Something which has been proposed in the past as a better method for finding the
linear regions of the log-log plots used in fractal dimension estimation [, 70], but has
not generally been adopted in the recent literature, is to compute the local slopes of these
log-log plots over small ranges of € values. In other words, to apply linear regression and
estimate the slope over a small discrete set of € values which satisfy e; < & < &9, as shown
in Figure 6.3. In this example we have illustrated the local slopes over two distinct regions
consisting of three ¢ values each. We see that the local slopes vary with ¢, indicating that
the scaling behaviour is not constant over the range of scales pictured.

In Section 7.3.1 we will discuss further the choice of these ¢ values and how that may
impact the results. Analysing the local slopes may provide us with a much clearer picture
of how the scaling behaviour of an object changes with the scale (or resolution) we use to
measure it. We can even plot the local slopes as a function of £ and use these plots as a
tool to identify regions of constant scaling behaviour. Figure 6.4 shows one such plot.

In Figure 6.4 we have plotted the local slopes resulting from the box-counting method
applied to each of the approximations of the Sierpinski triangle shown in Figure 6.2. The
local slopes have been plotted as a function of the upper box size, 5. We can see that
in both cases the local slopes settle around the theoretical dimension of the set, however
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Figure 6.3: Computing the local slopes from a plot of N(¢) vs. €. Here, the local slopes are
computed for the image in in Figure 6.2 (A).

the range of scales over which we observe this behaviour changes. This plot clearly shows
us that there is lower cut-off scale below which Figure 6.2 (A) appears one-dimensional,
whereas in Figure 6.2 (B) the fractal scaling relationship is present down to very small
scales. More details on how these plots were generated can be found in Section 7.3.1.
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Figure 6.4: A plot showing the local slopes resulting from the box-counting method for the
two finite approximations of the Sierpinski triangle shown in Figure 6.2.

71



Chapter 7

Fractal Trees (and Other Branching
Structures) are Not Self-Similar

As previously mentioned, estimates of fractal dimension have been used as a tool to
characterize all sorts of natural images over the years. In this thesis we are concerned
specifically with the estimation of the fractal dimensions of a particular class of objects,
namely branching structures, which are of particular interest for two reasons:

1. Branching patterns are ubiquitous in nature. For example we observe branching in
trees, rivers/streams, the vascular system, branching airways in the lungs, etc...

2. Due to the process by which they are generated, branching structures are not strictly
self-similar, yet they can still have fractal properties. Fractal trees, for instance, have
been shown to have a Hausdorff dimension which is greater than their topological
dimension in certain cases [19].

By means of a careful analysis of both the box-counting and sandbox methods, we will show
that the lack of strict self-similarity (or non-homogeneity) of fractal trees and other branching
structures causes the usual methods for estimating fractal dimensions to fail. Despite this,
one can find many studies which use these methods to estimate the fractal dimensions
of various branching structures, such as stream networks [77, 78], root systems [(1], and
vascular networks [79]. In these studies, fractal dimension is used to characterize the
complexity of branching patterns. Specifically, in the case of vascular networks, as we
discuss in detail in Section 7.1 below, the results have been found to distinguish between
healthy and diseased morphology, and thus used to draw conclusions about the fractal
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processes generating such networks. We propose that results such as these should be treated
with some skepticism as the methods used to estimate dimension rely on an assumption of
self-similarity which branching structures do not satisfy.

We also point out here that we are not alone in our questioning of the indiscriminate and
widespread application of fractal dimension estimation methods to images of natural objects.
In 1995, as the application of fractal theory to all sorts of naturally occurring structures was
becoming prevalent, the authors of [08] suggested a simpler explanation for the branching
patterns observed in retinal neurons which had previously been hypothesized to be fractal.
They showed, using a systematic approach, that such structures are space-filling, not fractal.
Later that same year, J.D. Murray cautioned against the use of fractal measurements to
draw conclusions about biological processes, noting that

The problem with a good name for a new field is that [...] inappropriate use
can raise unrealistic expectations as to its relevance and applicability. This is
particularly true for fractal theory which can be visually dramatic and can be
practised without much background or sophistication. [30] (p. 369).

Adding further support to the criticisms of fractal theory, in 1996, the authors of [31]
demonstrated that random distributions exhibit apparent fractal behaviour over a range of
scales consistent with the typical range observed in experimental measurements of fractal
objects. These early words of warning were not generally heeded, and studies on the
estimation of the fractal dimensions of natural objects have continued to appear. Amidst
these studies, some more recent criticisms have emerged including [65], in which the authors
discuss some of the difficulties in applying fractal methods to ecological data, concluding
that evidence of a scaling relationship which spans only a few orders of magnitude is not
sufficient evidence for true fractality, and [64], which cautions against computing fractal
dimensions of root systems without first rigorously testing for self-similarity, or statistical
self-similarity.

Before we continue, it should be noted here that the comments in the following sections
extend to multifractal methods as well since the determination of both the generalized
fractal dimensions and the f(«) curve depends on least-squares fitting of box-counting data
and thereby suffers from the same problems we will discuss.
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7.1 A Brief Review of the Literature on the Fractal
Dimensions of Vascular Networks

The primary motivation behind this work is the large volume of literature which exists
pertaining to the fractal dimensions and fractal properties of vascular networks. The
blood vascular system in humans and other animals is comprised of arterial and venous
trees, hierarchical branching structures which span a large range of scales and which are
connected at their extremities by the capillary network, the smallest vessels. Given their
complex and hierarchical structure, it is not surprising that many researchers in the medical
sciences have attempted to characterize vascular networks using fractal dimension and other
fractal measures. Fractal tree models have even been used to generate realistic simulations
of vascular networks [32]. Furthermore, a number of pathological conditions, including
cancers and degenerative diseases, lead to changes in vessel morphology and branching
structure. Tumour vasculature, for example, is known to be more chaotic in appearance
than healthy vasculature. The identification of tumour angiogenesis as a potential target for
the treatment of certain cancers has motivated many researchers to use fractal approaches
to try to understand the mechanisms by which tumour vasculature forms [79]. Fractal
properties, including fractal dimensions, have also been proposed as a tool to quantify both
the growth [33] and normalization [69, 84] of tumour vasculature.

In [85] and [69] the authors use both the box-counting and sandbox methods to measure
the fractal dimension of healthy and tumour vascular networks grown in mice bearing dorsal
skinfolds. A selection of sample images from the study in [35] are shown in Figure 7.1 where
we observe that healthy arteriovenous networks have a clear tree-like structure, healthy
capillary networks have a more uniform, grid-like appearance, and tumour networks, in which
arteries, veins and capillaries cannot be distinguished, appear more disordered. The authors
find good agreement between the box-counting and sandbox methods. Their measurements
show that the dimension of healthy vasculature is in agreement with that of diffusion-limited
aggregation (approximately 1.71), while the dimension of tumour vasculature agrees with
that of critical percolation clusters (approximately 1.896), and capillary networks are found
to have a dimension in the range 1.96 — 2, which is consistent with that of a 2-dimensional
object or a space-filling curve in two dimensions. They claim that the result for healthy
vasculature is in agreement with the accepted view of the angiogenic process, whereas the
results for tumour vasculature are used to form the basis of a novel hypothesis that tumour
angiogenesis is a local growth process. Additional results in [69] corroborate these results,
additionally showing that anti-angiogenic treatments applied to tumour vasculature lead to
decreased estimates of fractal dimension.
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Figure 7.1: Representative skeletonized images of three types of vascular networks. Bolded
lines represent the minimum path for each network. (A) Healthy subcutaneous arteriovenous
network. (B) Healthy subcutaneous capillary network. (C) Tumour network. Note: Figure
reproduced from [36] with permission.

A number of further studies have been performed on both experimental images of healthy
and tumour vasculature [87, 84, 88] as well as simulations of tumour vasculature [39, 83].
These studies, performed on different data sets, all tend to agree on the fractality of both
healthy and tumour vasculature, and when compared, tumour vasculature is consistently
found to have a greater dimension than healthy arteriovenous networks. That being said,
the specific numerical estimates of dimension across studies are somewhat less consistent.
Given the inconsistencies in imaging methods, image processing methods and in the
implementations of fractal dimension estimation methods, this is not surprising. One simply
has to look at Table 1 in [70] for an example of the variation in estimates of the fractal
dimension of healthy vasculature over the years.

Fractal dimension estimation methods have also been widely applied to imaging of
retinal vasculature, perhaps even more so than tumour vasculature, due to the ease
of high quality image acquisition. A number of studies have found the dimension of
healthy retinal vasculature to be consistent with that of diffusion limited aggregates (DLA
clusters) [90, 91, 92, 93], in line with what was found in [35] for healthy arteriovenous
networks in mice. Despite this, a fairly recent work [94] has reported much lower dimensions
on a fairly large database of retinal images. Some studies have also compared the retinal
vasculature of cognitively healthy patients to that of patients with degenerative diseases,
finding that estimates of dimension are lower for cognitively impaired patients [94, 95].

We make note here of a general observation that the results in the literature tend to find
that estimates of fractal dimension correlate positively with vessel density. For example, as
we saw in Figure 7.1, tumour networks appear much more dense than healthy vasculature,
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and capillaries, occurring at the smallest scales, have the highest vessel density. In [90]
and [97] a positive relationship between vessel density and estimated fractal dimension is
shown directly. A correlation between density and dimension is perhaps expected, since
fractal dimension is often considered a measure of how space-filling an object is. However,
it turns out that in the case of branching structures, estimates of fractal dimension are
directly influenced by the spacing between nearby branches, and consequently, the vessel
density. We will see why this is the case in the following sections.

7.2  On the Self-Similarity (or Lack Thereof) of Fractal
Trees and Other Branching Structures

Previously, we discussed fractal trees as an example of a class of mathematical objects
which are generally considered to be fractals despite not being strictly self-similar. More
generally, let’s consider the class of all branching structures, which includes but is not
limited to fractal trees. For the purposes of this work we will consider branching structures
to be objects which are generated by repeated branching (i.e. application of a branching
generator as described in Section 5.1.2) of a trunk (an infinitely thin line segment) into
scaled and rotated copies of itself. We will not require the same branching generator to be
applied on every iteration of branching, however we will require that N > 2 on at least some
iterations of the process to avoid the trivial case of a straight (or bent) line being considered
as a branching structure. We will also only consider trees which do not have branches with
significant overlap, as such trees may be completely space-filling, i.e. two-dimensional. We
make note here of the fact that grids and grid-like structures fall into our definition of
branching structures since we have not placed any restrictions on self-contacting branches.

Although some branching structures may have fractal properties, the very nature by
which they are generated precludes them from being self-similar. According to our definition
of strict self-similarity from Section 5.1.1, in order for a set to be strictly self-similar any
arbitrary part of the set must contain a copy of the whole set. If we consider an arbitrary
branching structure and select a portion of the set which lies on the trunk, then this subset
will be a straight line. Since we have specified N > 2 on at least some iterations of the
branching procedure, it is not possible that this portion of the set contains a copy of the
whole set, as it contains no branches. As we saw in our previous discussion on fractal trees,
some parts of the set may contain scaled copies of the whole, however it is not possible for a
branching structure to be truly self-similar. Moreover, the non-homogeneity of fractal trees
and general branching structures violates the self-similarity assumptions of the box-counting
method and multifractal approaches such as the generalized sandbox method and the other
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methods discussed in Section 6.4. As we will see, this directly impacts our ability to use
these methods to estimate their dimensions from finite approximations.

Realistic branching structures are, of course, not infinitely thin. In order to focus on
the structural information, images of branching structures are typically skeletonized prior
to the estimation of their fractal dimensions or other properties. In very simple terms, the
skeletonization process reduces a binary image to what is called its skeleton - a minimal
set of pixels which preserves the shape and connectivity of the original image. In the
case of branching structures, the skeleton is typically a connected set comprised of line
segments, like those shown in Figure 7.1 in the previous section. Some works do consider
the diameters of the branches in their analysis, however a similar argument shows that
such “thick” branching structures are also not self-similar. As a result, similar problems
in estimating the fractal dimension are found to persist regardless of whether images are
skeletonized or left in their original form. For simplicity, we will deal solely with skeletonized
branching structures in this work, noting that the discussions which follow apply more
generally to “thick” branching structures as well.

Before moving on, we reiterate that despite their lack of self-similarity, some trees are
in fact fractals and have a non-integer Hausdorff dimension. One way we can make sense
of this is to consider a fractal tree as the union of two parts. One part consists of the
trunk and the branches, and has dimension one, which is equal to its topological dimension.
The second part consists of just the tips of the branches - the so-called tree “canopy” -
which is strictly self-similar with dimension D. When D > 1, the scaling behaviour of the
canopy is dominant in the limit and the dimension of the whole tree is equal to D [19]. A
derivation of the box-counting dimension of a simple fractal tree which clearly illustrates
this phenomenon is presented in Appendix A. From the discussion above, one might assume
that measurements of the dimension of fractal trees would be underestimates of the true
dimension (as a result of the tree canopy not necessarily dominating in the finite case).
However, it turns out that the opposite is true due to transitions in the scaling relationship
which are observed at characteristic box sizes related to the density of branches in the
image.

7.2.1 Theoretical Analysis Using Local Slopes
In this section we will investigate how the lack of self-similarity of fractal trees and other
branching structures impacts the estimates of their dimensions resulting from traditional

methods like the box-counting and generalized sandbox methods. Let’s consider a binary
image which depicts a branching structure. Since we are considering a finite image this is,
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of course, at best a finite approximation of some infinite branching process, and as such is
made up of a finite number of finite line segments which form a connected set. Away from
the edges of the set (i.e. ignoring any edge effects), the mass in a box of size ¢ can always
be written as Ae, where A is some positive constant related to the number of line segments
which pass through the box and the angle at which they pass through. If A is constant
over some range of scales, then the object scales as a one-dimensional object, and this will
be reflected in the results of either the box-counting or sandbox methods.

Now, consider the image of a tree depicted earlier in Figure 5.6. If we cover the entire
image with very small boxes, we expect that most boxes will contain a single straight
line. Now imagine covering the set with slightly larger boxes - a good number of boxes
will contain two (or more) line segments due to branches which are sufficiently close to
each other so as to fit into a single box. This results in a change in the mass-scaling
relationship which violates the self-similarity assumption of both the box-counting and
generalized sandbox methods. We can use the framework of the generalized sandbox method
in order to gain some insight into how these transitions in the mass-scaling relationship
directly affect the results of estimating both the box-counting and correlation dimensions.
We recall here that the generalized sandbox method can be used to estimate all of the
generalized dimensions, including both Dy (the box-counting dimension) and D, (the
correlation dimension). Specifically, we will calculate the local slopes of the log-log plot of
M (¢) vs. € between pairs of consecutive ¢ values and investigate how these local slopes
change near a point of transition.

Consider an image, I, comprised of P pixels in total and denote the mass in a box of
size ¢ centred on the i*" pixel by M;(¢). For simplicity, we assume that ¢ is small enough
relative to the size of the image that we can ignore the edge effects which result from the
usual computational methods. We assume that I has some characteristic size €* such that
when £ < &* the mass-scaling relationship is constant everywhere, say M;(e) = Ae, and
when € > £* the scaling relationship in some fraction of the boxes transitions to a new
scaling relationship, M;(e) = Be. Note that A, B > 0. Now, consider two box sizes ¢; and
g9 which satisfy €; < " < 5. We can compute the average mass in a box of size €; as

Mer) = 5 Mie)
1 (7.1)

_P.p.Agl

:Afl.

Letting T' denote the fraction of boxes in which the scaling relationship transitions, we
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compute the average mass in a box of size €5 to be as follows,

M(Sg) = % Z MZ‘(€2)

i=1
1 (7.2)
= (TP Bey+ (1=T)- P Azy)
=T Bey+(1-T)- Ae,.
The dimension is estimated by computing the slope of the log-log plot of MY vs. box
size (). We set ¢ = 2 (for the correlation dimension) and compute the local slope between

the two points €, and &5, given by

_ log(M (e2)) — log(M (e1))
log(e2) — log(er)
log (L2240 (73)

Aeq

log (Z—j)

A,

For simplicity, we let m = £2 so that
€1

_ logm N log(T- B/A+(1-T)-A/A)
~ logm logm
log(1+7-(B—A)/A)

=1+ :
logm

AV
(7.4)

A similar argument can be made, setting ¢ = 0, to compute the local box-counting dimension
between box sizes €1 and &5 as
log(1+7T-(A—B)/B

logm

From Equations (7.4) and (7.5), we can see that the local slope will be greater than 1 if
B is greater than A, and less than 1 if A is greater than B. The impact of the transition
on the local slope, unsurprisingly, is dependent on 7', the fraction of pixels which transition
and, somewhat surprisingly, also depends on m, the ratio of the box sizes used in the
algorithm. If we increase m, i.e. use box sizes which are spaced further apart, the impact
of the transition on the local slope will be diminished. The results presented in this section
are specific to the generalized sandbox method, however we expect similar effects to be
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observed in the local slopes when applying the box-counting algorithm as well. It is not
possible to write down the exact local slopes for the box-counting algorithm since the
minimum number of boxes needed to cover an image depends not only on the average mass
distribution, but also the spatial locations of individual pixels. That being said, the total
mass of the image divided by the average mass in a box of size ¢ is a good approximation
of the number of boxes required to cover the image in most cases, and so the results for A
should roughly apply to the box-counting algorithm as well.

7.3 Computational Results

In this section we will present some computational results which illustrate the observations
of the previous section. In order to do so we have implemented both the box-counting and
generalized sandbox methods and directly computed the local slopes over small ranges of
box sizes for each of the estimated dimensions D%, D3t and Ds’. First, we will directly
validate the results from Section 7.2.1 using some very simple images, then we will see how
the same phenomenon extends to more complex branching structures by analysing images
of both retinal vasculature and simulated fractal trees.

7.3.1 Implementation Details

For the purposes of analysing the resulting local slopes, both the box-counting and
generalized sandbox methods have been implemented in Matlab according to the descriptions
in Sections 6.1, 6.2 and 6.3. Specifically, in our implementation of the generalized sandbox
method we used boxes centred on all occupied pixels in order to compute the average mass.
The publicly available FracLac software [98], a popular tool for the estimation of fractal
dimensions, was used as a baseline for developing our implementations of both methods.
Both methods were validated on a selection of well-known fractal images with good results.

Accuracy and Computational Cost

As might be expected, when both methods are implemented on images of standard fractals
we observe that the generalized sandbox method is generally more robust than the box-
counting method. Unfortunately, this increase in accuracy often comes at the expense of
higher computational cost. The run time of the box-counting method depends on the image
size, whereas the run time of the sandbox method depends on the number of foreground
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pixels in the image, i.e. both image size and image density. Typically this means that
the generalized sandbox method is quite a bit slower slower, however we note that when
working with very sparse images the generalized sandbox method may actually run faster
than the box-counting method. We note that the run time of the sandbox method can also
be improved by computing the average mass over a smaller selection of random centres, as
has been done with good results, for example, in [62].

Selection of Box Sizes

Both the box-counting and generalized sandbox methods rely on selecting a set of box sizes
over which to tabulate and fit the data. As we have already seen in our discussion regarding
local slopes, the selection of these box sizes can have a significant impact on the results.
In our implementation we allow for the selection of both a minimum and maximum box
size. The minimum box size is selected in pixels, and should be larger than the smallest
component of the image, whereas the maximum box size is selected as a percentage of the
total image size. For this purpose, the image size is defined as the minimum of the width
and height of the smallest rectangle which contains the foreground pixels of the image. It
is generally accepted that box sizes beyond about 50% of the image size should not be used
as they do not capture the scaling behaviour of the image accurately [98]. In addition to
setting the minimum and maximum box sizes, we also need to select which box sizes to
use within that range. The box sizes may be selected either according to a power law or
incremented linearly. Figure 7.2 shows the difference between these two options. When
we use power law scaling the box sizes are uniformly spaced on a log-log plot, meaning
that all scales are evenly weighted in the linear fit, however the gaps between the larger
box sizes can be quite large. This means that if the scaling behaviour we are looking for
only occurs over a small range of scales it might be completely missed. For that reason,
it is more common to use linearly incremented box sizes when applying the box-counting
or generalized sandbox method to real data where the scaling relationship is unknown at
the start. One drawback is that when we are dealing with larger box sizes, a small linear
change in the box size may not always cause a change in the value of N(g) (or M(e)), which
can lead to flat regions in the plot. To compensate for this, we apply a smoothing filter the
resulting data. The FracLac software [98] provides two different options for smoothing the
data, in our implementation we use what they call the “small” smoothing filter. Essentially,
for a given count (either N(g) or M(e)) we keep the smallest box size which has that count
and remove all other data points.
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Figure 7.2: Two log-log plots of N(g) vs. € resulting from the box-counting method applied
to a finite approximation of the Sierpinski triangle. In (A) the box sizes are chosen according
to a power law with base two, whereas in (B) the boxes are incremented linearly with a
spacing of five pixels.

Reducing Quantization Error and Edge Effects

To reduce the quantization error which results from the use of a finite fixed grid in the
box-counting method, we employ 100 random translations of the grid. The smallest value
of N(e) is taken over all of these grid orientations. In the generalized sandbox method, we
take the average mass over boxes centred on the foreground pixels of the image, so no such
grid translation is needed.

Both methods are susceptible to edge effects, especially at larger box sizes where boxes
near the edge of the image may contain only a few pixels. One way of dealing with this is
to use reasonably small box sizes (less than 50% of the image size as previously mentioned),
however we can also set a minimum density and require that each box contains at least
that density of pixels in order to be included in the count. We have set this parameter
to 10% of the overall image density in order to somewhat mitigate edge effects without
discounting too much of the image.
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Computing the Local Slopes

Although our implementations of the box-counting and generalized sandbox methods could
be used to compute a single number for a “fractal dimension”, that is not their main
purpose. Instead, we use the results of these programs to estimate the local slopes over
small subsets of the data, as described in Section 6.5. The method used to compute the
local slopes varies slightly depending on whether the box sizes scale according to a power
law or linearly. If the box sizes follow a power law, as shown in Figure 7.2 (A), then the
local slopes are computed over regions consisting of a fixed number of ¢ values. If the box
sizes scale in a linear fashion, then things are a little bit more complicated. In order to
fit regions of constant size on a log-log plot, we select box sizes from within the range
g1 < € < g9 such that ©2/z, is constant (or approximately constant). This way, in both cases
the local slopes are computed over a range of ¢ values satisfying ¢2/s; &~ m. Throughout this
thesis we will use the value m = 1.5 when computing the local slopes from the box-counting
and generalized sandbox methods. We also use the convention of plotting the local slopes
against the upper box size of the range, 5, as this provides a clear visualization of the scale
at which a transition in the scaling relationship first occurs.

7.3.2 Some Simple Examples

In order to explicitly verify the results of Section 7.2.1 we have constructed a simple image
in which a known fraction of pixels undergo a transition in the scaling relationship at
a given scale, ¢*. Such an image, comprised of three unevenly spaced line segments, is
shown in Figure 7.3 (A). As can be seen from the magnified illustration in Figure 7.3 (B),
when € > ¢* = 64 the mass-scaling relationship in the neighbourhood of the top two lines
(T' = 2/3 of the total pixels) transitions from M(e) = ¢ to M(g) = 2. This corresponds to
setting ' = 2/3, A =1 and B = 2 in Equations (7.4) and (7.5).

In Figures 7.4 (A) and (B), the local slopes (Ay and Ag) between two consecutive box
sizes are compared directly with Equations (7.4) and (7.5), respectively. To compute the
local slopes, a minimum box size of three pixels was used, and the maximum box size
was set to 50% of the image size. Box sizes were chosen according to a power law so that
£9/e1 =~ 1.5 for each region. We observe excellent agreement between the theoretical results
and the computational results from the generalized sandbox method at smaller box sizes.
As the box sizes are increased, we begin to see the computational results deviate from the
theory due to the edge effects which result from the use of computational methods.

Additionally, in Figure 7.4 (C), the local slopes from the box-counting method are
presented. As expected, the behaviour of the local slopes is similar to that which results
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Figure 7.3: A sample image constructed to verify the results of Section 7.2.1. (A) The
image contains three non-uniformly spaced lines. The top two lines are spaced 32 pixels
apart and the bottom two lines are spaced 700 pixels apart. (B) Since the generalized
sandbox method requires that boxes are centred on individual pixels, the transition from
M(e) = e to M(e) = 2¢ occurs when £ > 64.
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Figure 7.4: Estimating the fractal dimensions of Figure 7.3 (A) using the generalized
sandbox and box-counting methods. (A) The local slopes (Az) between £, and 5, plotted
as a function of the upper box size 5. The computational result is compared with the
theoretical result from Equation (7.4). (B) The local slopes (Ag) compared with the
theoretical result from Equation (7.5). (C) The local slopes (A%) computed using the
box-counting method.

from the generalized sandbox method, however we note that the spike in the local slopes
occurs earlier, at €9 = 32 instead of 64. Unlike the sandbox method, the box-counting
method does not require boxes to be centred on individual pixels, and as such, the transition
from a single line contained in a box to two lines within the same box occurs at a lower ¢
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value.

Figure 7.5 shows the corresponding log-log plots of M (g), M ~1(g) and N(e), respectively,
also computed for the image in Figure 7.3. As is usually done, the line of best fit has been
computed using linear regression on each data set, and the resulting slope (estimate of
the dimension) and corresponding 72 value are presented. We note that the r? values are
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Figure 7.5: Estimating the fractal dimensions of Figure 7.3 (A) using the generalized
sandbox and box-counting methods. (A) M(g) v.s. . (B) M~'(g) v.s. . (C) N(e) v.s. e.

close to one, which is usually interpreted as an indication of a good fit, however as we have
discussed this is not a good metric for box-counting data. For example all three data sets
presented here look reasonably linear at first glance, however if we take a closer look near
the critical value of €, we can clearly see a large deviation in the slope. This local spike
biases the estimate of the dimension upwards, despite the image in question clearly being
one-dimensional (a finite union of one-dimensional lines). If one simply used the log-log
plots to estimate the dimension of this set, as is usually done, without considering the
context added by the local slopes, the obvious conclusion would be that it is a fractal with
a dimension (box-counting and correlation) of approximately 1.09 — 1.12.

Although the results in Figure 7.4 verify our theoretical results quite nicely, the sample
image we used is simple and not necessarily representative of what we expect to see from
more complex branching structures. We now turn our attention to two additional sample
images, shown in Figure 7.6, for which the theoretical results would be much more difficult
to write down explicitly. However, the computational results illustrate the behaviour of the
local slopes of the main components present in branching structures. The pair of angled
lines in Figure 7.6 (A) are similar to a pair of branches emanating from a trunk in a tree-like
structure, and the uniform grid in Figure 7.6 (B) resembles a more structured capillary
network, not unlike Figure 7.1 (B). In Figure 7.7 we present the local slopes resulting from
the box-counting and generalized sandbox methods applied to these two images.

85



(A) | (B)

Figure 7.6: Two additional sample images generated to illustrate the main components of a
general branching structure. In (A) a modified version of Figure 7.3 (A) with the top two
lines at an angle of 0.1 radians from each other, and in (B) a simple grid with a uniform
line spacing of 32 pixels.
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Figure 7.7: Plots showing the local slopes as a function of 5 for both images in Figure 7.6.
Slopes are computed using the generalized sandbox (D3? and D3?) and box-counting methods
(D¥). (A) Local slopes for Figure 7.6 (A) - estimates of dimension yield D5’ = 1.1034,
Dg? = 1.0681 and D% = 1.0844. (B) Local slopes for Figure 7.6 (B) - estimates of dimension
yield D3P = 1.6484, D3 = 1.6471 and D" = 1.6453.

In Figure 7.7 (A) we see that when the two lines are placed at an angle, the local slopes
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gradually increase, as opposed to the single spike which we saw when they were placed
at a fixed distance from each other, i.e. parallel to each other. Instead of a single large
transition in the proportionality constant, we have a series of smaller transitions occurring at
increasingly large scales. Eventually we see the local slopes decrease back towards one when
the box sizes are large enough that edge effects become relevant. This type of behaviour is
akin to what we expect to observe in a more complex branching structure or fractal tree,
but with many sets of branches of different sizes/scales, each branch causing increases in
the average proportionality constant as we increase the scale.

In Figure 7.7 (B) we have the local slopes for a uniform grid with a line spacing of 32
pixels. A grid can be thought of as a special type of branching structure, in which there
is no scaling (i.e. the parameter r is exactly 1) and the branches touch at a single point.
Due to the lack of scaling, this set is not fractal (even if we consider an infinite number
of branches), it will always be one-dimensional. At small scales (i.e. in the limit as ¢
goes to zero) we see this reflected in the local slopes, however as we look at scales larger
than the line spacing of the grid, the local slopes rapidly increase due to transitions in
the proportionality constant, eventually settling near a slope of two. At sufficiently large
scales, a grid appears to fill space in the same way as a two-dimensional object, which is
consistent with the measurements on capillary networks in both [85] and [68]. We note
that the local slopes appear to approach the value two and then decrease as box sizes
are increased further; this is due to the ever-present edge effects resulting from the use of
discrete methods. Although it would not be correct to look at this plot and state that the
fractal dimension of a grid (or grid-like structure) is two, the local slopes do provide us
with some relevant information. They tell us that beyond some characteristic scale (in this
case £* = 32) the structure is space-filling (i.e. effectively two dimensional), not fractal,
which, as J.D. Murray writes,

. 18 a much more down to earth motivation if a branching structure is trying
to mazximise such things as spatial coverage without redundancy. [S0] (p. 369).

In order to more clearly visualize the effect that line spacing (or density) has on the
results of estimating the fractal dimensions of grid-like structures, we have computed the
local slopes for a number of images of grids, each with a different uniform line spacing.
We have used the box-counting method with boxes sizes ranging from one pixel to 10%
of the image size incremented linearly by two pixels. The local slopes are still computed
over regions which satisfy €2/e; &~ 1.5, however we have used more box sizes in order to
capture the changes in the scaling behaviour in more detail. Figure 7.8 (A) shows the
local slopes for five different grids with line spacing, n, ranging from n = 4 all the way
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Figure 7.8: Plots showing the local slopes resulting from the box-counting method as a
function of the upper box size (e5) for grids of varying line densities. In (A) we have the
local slopes for five different images of grids with line spacing ranging from n = 4 to n = 64.
In (B) we have the local slopes for a single grid with two different alternating line spacings,
ny = & and ny = 32.

to n = 64. From the plot in (A) we can see that for each grid the local slopes undergo
the same transition from one-dimensional to approximately two-dimensional, however the
location of the transition is dependent on the line spacing of the grid. Although there is
some smoothing due to computing the local slopes over a range of box sizes, the location of
the transition corresponds roughly with the line spacing of each grid. When dealing with
grid-like structures, we might call this size the characteristic scale of the structure, or in
certain applications the characteristic pore size [68]. Of course, in more complex branching
structures, there will be multiple scales (or pore sizes) present, each of which will have an
effect on the local slopes.

We note here that similar results to those shown in Figure 7.8 (A) are obtained using
the generalized sandbox method, however more variation in the local slopes is observed.
This is due to the fact that the generalized sandbox method requires that the boxes are
centred on each pixel. The different distances between each pixel and the corners of the grid
cause transitions in the average mass-scaling behaviour to occur at different scales leading
up to twice the characteristic spacing of the grid - we recall here the difference between
the locations of transitions in the local slopes between the box-counting and generalized
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sandbox methods as shown in Figure 7.4. This results in the local slopes looking “wavy’
at smaller scales. At first, this may seem to contradict our previous comments regarding
the robustness of the generalized sandbox method compared to the box-counting method,
however those comments were made with regard to the estimation of a consistent scaling
relationship. In this case, the scaling behaviour is non-constant, and the variation observed
in the local slopes is not a flaw of the method, it is just a difference between how transitions
in the scaling behaviour affect the local slopes resulting from both methods.

In Figure 7.8 (B) we show the local slopes resulting from the box-counting method
applied to an image of a grid constructed with two distinct line spacings, n; = 8 and
no = 32. These two line spacings are implemented in an alternating manner so that both
characteristic scales are represented equally in the image. We see two spikes in the local
slopes for this image, one around each characteristic scale. Only when the box sizes used
are larger than the largest characteristic scale present in the image, does the image appear
space filling, or approximately two-dimensional. With only two characteristic sizes (which
are not that close to each other), we are able to identify both spikes in the local slopes
plot. However when dealing with more complex branching structures there may be many
characteristic scales present, so the spike(s) in the local slopes may not always be so clear.
Instead, many spikes may blend together, giving the appearance of a more gradual increase
in the local slopes over many scales.

7.3.3 STARE Retinal Vasculature Images

In the previous section, we examined some simple examples to illustrate how changes in the
scaling relationship can lead to increases in the local slopes, and consequently misleading
results when attempting to estimate fractal dimensions from finite images. In this section,
we look at how this effect presents itself when dealing with images of natural branching
structures. As previously discussed, fractal dimension estimation methods have been
widely applied to images of vascular networks, including healthy arteriovenous networks,
tumour vasculature and both healthy and pathological retinal vasculature. In this section
we will examine a set of images from he STructured Analysis of the REtina (STARE)
Project [99]; a publicly available dataset consisting of approximately 400 raw color retinal
images. A number of works use the box-counting and generalized sandbox methods to
estimate the supposed fractal dimensions of these images [0, 92, 97]. Typically, healthy
retinal vasculature has been found to have a dimension of around 1.71, the same dimension
as DLA clusters, which has led to the widespread belief that retinal vasculature may form
via the same process [94]. There are two problems with this assumption:
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1. Retinal vasculature is a branching structure, and as such, violates the self-similarity
assumption of the box-counting and generalized sandbox methods. This means that
estimates of dimension made using these methods are flawed and may not relate to
any potential fractal properties of the structure.

2. It is possible for two very different objects to have the exact same (or similar) fractal
dimensions. For instance, the von Koch curve and Cantor dust, shown in Figures 5.2
and 5.3 (B), respectively, have the same dimension, yet it would be absurd to suggest
that these two sets are generated by the same process.

Within the STARE database there is a standard subset of twenty images which have
been manually segmented by two experts, Adam Hoover (AH) and Valentina Kouzentsova
(VK) [100]. It is this subset of images which have been analysed in the aforementioned
literature, and which we will consider in this work. Ten of the twenty standard images
represent healthy retinal vasculature, and ten represent retinal vasculature with pathological
manifestations. Samples of a typical normal image and a typical pathological image,
segmented by the two observers AH and VK, respectively, are shown in Figure 7.9. We see
that these images appear to be roughly space-filling and therefore we expect that, similar
to the grids seen in the previous section, they will scale approximately as two-dimensional
objects at large scales. We note that the images segmented by observer VK contain a much
higher level of detail, as can be seen in Figure 7.9, and consequently have a higher average
vessel density. This observation is consistent throughout the entire subset of the data and
noted in much of the literature pertaining to the STARE data set.

The images in Figure 7.9 show the vascular structure very clearly, however they are not
skeletonized. In order to extract just the structural information from the images we have
skeletonized them prior to working with them, as is done in much of the literature. We
have used the built-in bwskel () function in Matlab for skeletonization. In Figure 7.10 we
present the results of applying the box-counting and generalized sandbox methods to the
skeletonized version of Image 0162 segmented by observer AH. Linearly spaced box sizes
with an increment of ten pixels between them were used to compute plots showing the local
slopes and plots of M_l(s) vs. ¢ resulting from using the generalized sandbox method to
estimate Dy. In plots (A) and (B) we have used a minimum box size of one pixel and a
maximum box size of 50% of the image size in order to visualize the scaling behaviour of
the image over a large range of scales. From (A) we can see that the local slopes start out
near one when the box sizes are small - as expected since the image is comprised of line
segments - and gradually increase to a value near two as the box sizes are increased. This is
what we might expect based on our discussion in the previous section. A complex branching
structure, like the retinal vasculature in Image 0162, is a collection of many individual
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Figure 7.9: A typical healthy retinal vessel network (Image 0162) segmented by (A) Adam
Hoover (AH) and (B) Valentina Kouzentsova (VK), and a typical pathological vessel
network (Image 0001) segmented by (C) AH and (D) AK.

branches, like the pair of angled lines in Figure 7.6 (A), of varying lengths and angles. Each
branch causes increases in the local slopes over some range of scales corresponding to the
distances between the branches, along with the distances to neighbouring branches. All
together, this creates the appearance of continuously increasing local slopes until the box
sizes are large enough that the branching structure appears roughly space filling and the
local slopes settle at a slope of nearly two. In (B) we can also see this behaviour on the

plot of M (¢) vs. e fairly clearly.

Now, in Figures 7.10 (C) and (D) we have zoomed in on a smaller range of box sizes
based on visual observation of the plot from (B), as is typically done in the literature when
estimating fractal dimensions. In particular, plots (C) and (D) correspond to setting the
minimum box size to 20 pixels and the maximum box size to 20% of the image size. We
find that over this range of scales our estimate of the box-counting dimension Dy is 1.64,

91



(A)

(C)

Local Slope

Local Slope

* *
** KADAA AKX
A
I R LU 1YYV
16F s
x
14} A
*
12 A
X
IF %
0.8
0.6
0.4
X D;b
02} A Dy
% Db
0 1 1 1 1 1 ']
0 50 100 150 200 250 300
Upper Box Size (e2)
2
x
* *
18 Q X
1.6 F
4 A
x
14
1.2F
1k
0.8 F
0.6 F
0.4F
X ng
02} A DY
* Dbc
0 1 1 1 1 1 1 '
40 50 60 70 80 90 100 110

Upper Box Size (e2)

(B)

(D)

10°

1071 ¢

)

[

v (

1072 ¢

103k

=102}

\\\ A Data
———-Li fit
NN inear
S
N
N
N
N
N
N
NA
<
N
N A
slope = 1.47 SLA
r? = 0.9763 NCA
\
NA
a
N
10° 10 10?
€
A\\ A Data
\\ — — — - Linear fit
\
\
\
N\
Q\
"4
\
\
\
slope = 1.64 \é
r? = 0.9961 AN
hN
\
AN
A
\
EN
\
Al
1 1 1 1 1 1 1 2\
30 40 50 60 70 80 90 100

€

Figure 7.10: Estimation of the fractal dimension of Image 0162 segmented by AH (Figure 7.9
(A)). (A) Local slopes computed over box sizes from one pixel to 50% of the image size.

(B) M_l(a) v.s. € using box sizes from one pixel to 50% of the image size. (C) Local

slopes computed over box sizes from one pixel to 50% of the image size. (D) M_l(g) V.S, €
using box sizes from 20 pixels to 20% of the image size.

which happens to be very close to the result obtained for the same image in [94]. In (D) we
see that the data looks fairly linear over this range and the r? value is very high. Based



on the results in (D) alone, it would not seem unreasonable to state with confidence that
the box-counting dimension of this vascular structures is 1.64, yet from our plot in (A) we
know that the local slopes are rapidly increasing over this range of scales and the scaling
behaviour is not constant.

As expected, we observe the same general behaviour in the local slopes computed for
other images in the STARE data set, with changes only in the rate of increase in the local
slopes. Just as in the previous section when we analysed grids of varying densities, we see
that the rate at which the local slopes increase is related to the linear density of the image.
As an example, we consider the version of Image 0162 which was segmented by observer VK.
This image depicts the same branching structure, however, as was noted above, the images
segmented by VK contain more fine detail (i.e. more small vessels and therefore more small
gaps between vessels). Figure 7.11 shows the results of applying the box-counting and
generalized sandbox methods to the skeletonized version of this image. In plots (A) and

(B) we again have the local slopes and the corresponding log-log plot of H_l(a) VS. € over
the range of box sizes from one pixel to 50% of the image size. Here, we can clearly see
the transition of the structure from one-dimensional at low scales to space-filling at larger
scales, and we also note that this transition occurs earlier than it did in Figure 7.10.

In plots (C) and (D) we have the log-log plots of Mﬁl(a) vs. € over two smaller ranges
of box sizes. In (C) the box sizes range from 20 pixels to 20% of the image size, the same
parameters which were used to generate Figure 7.10 (D), and in (D) they range from ten
pixels to 15% of the image size. We see that both plots appear reasonably linear, and have
high r? values, despite the fact that the local slopes plot in (A) shows us that the slopes are
increasing rapidly over both ranges of box sizes. We also see that the slopes, or estimates
of dimension, over these two regions are quite different. It is easy to see how, without the
context added by the local slopes plot, one could end up with wildly different results for
the dimension of the same image just by using a different range of box sizes. Unfortunately
the box sizes used for fractal dimension estimation are rarely recorded in the literature,
making it fairly meaningless to compare the results across papers. Even within the same
paper, it is not always clear if the same box sizes were used across images in a data set.

Now, we draw our attention to the plot in (C). The resulting slope through the data
is 1.84, much higher than the result over the same range of scales for the same image
segmented by observer AH (shown in Figure 7.10 (D)). Although both images represent
the same branching structure, the additional detail included by observer VK causes spikes
in the local slopes to occur earlier, and thus when the same range of box sizes is used to
estimate dimension, the result is higher. We see time and time again in the literature that
branching structures with higher densities and more fine structure are found to have a
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Figure 7.11: Estimation of the fractal dimension of Image 0162 segmented by VK (Figure 7.9
(B)). (A) Local slopes computed over box sizes from one pixel to 50% of the image size.

(B) M '(¢) v.s. & using box sizes from one pixel to 50% of the image size. (C) M ' (¢) v.s.

e using box sizes from 20 pixels to 20% of the image size. (D) M_l(s) v.s. € using box
sizes from 10 pixels to 15% of the image size.

higher fractal dimension. In fact, in [94], which analyses the STARE data set, the images
segmented by observer VK are noted to have a higher dimension than those segmented
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by AH. This, despite the fact that both images are of the same underlying structure, the
image segmented by VK simply contains one or two more iterations of branching. If an
image is truly a finite approximation of an underlying fractal set - why should adding more
detail change its fractal dimension?

The effect of density and characteristic pore sizes explains much of the success that
has been found using fractal dimension estimation to classify branching structures found
in nature. Images of pathological retinal vasculature, for instance, are typically found
to have a lower dimension than healthy vasculature, and it turns out that pathological
retinal vasculature is less dense than healthy retinal vasculature [97]. Another example is
the classification of healthy and tumour vasculature networks using estimates of fractal
dimension. As discussed in Section 7.1, tumour vasculature is consistently found to have a
higher dimension than healthy vasculature, and as shown in Figure 7.1, tumour vasculature
generally has a much higher vessel density than healthy vasculature. It would seem that
classification of such branching structures using estimates of fractal dimension has been
successful in the past, not because of any fractal properties of the structures, but because the
methods used are indirectly measuring vessel density.

7.3.4 Computer Generated Fractal Trees

In this section we will show via computational examples that, as expected, the box-counting
and generalized sandbox methods do not yield accurate estimates of the fractal dimension of
computer generated fractal trees. Since it is not possible to know the theoretical dimension
of real images of natural branching structures, such as the retinal vasculature images of the
previous section, the results in this section provide the most compelling evidence against
using these methods to estimate the fractal dimensions of branching structures in general.

We have implemented an iterative branching process in Matlab in order to generate
finite approximations of fractal trees, specifically binary fractal trees (i.e. N = 2). Two
such images are shown in Figure 7.12, each containing nine iterations of branching. We
see that these trees correspond to the special case of #; = 6y = 0 and r; = ro = r of the
branching generator shown in Figure 5.5. For » > 0.5, and small enough such that the tree
is non-overlapping, the theoretical dimension (Hausdorff and box-counting) of each tree is
given by

_log(V) _log(2)
log(1/r)  log(1/r)

A derivation of this result for the box-counting dimension is presented in Appendix A.
We note here that when r = 0.5 the dimension of the tree is one (by any definition of

(7.6)
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Figure 7.12: Two images depicting finite approximations of binary fractal trees with (A)
r=0.550=7%, and (B) r = 0.55, 0 = %’T
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dimension), however, despite having an integer dimension, we will still refer to this as a
fractal tree as it is a limiting case. In Figure 7.12 we have shown two trees with the same
branching length ratio, = 0.55, however in (A) the branching angle is 7/3 and in (B) it is
2n /3. These two trees are visually quite distinct, with the tree in (A) expanding to fill a
large two-dimensional area, while the tree in (B) folds in on itself and as a result occupies
a smaller area and has a higher line density. Despite this, these two trees have the same
“fractal dimension” - as we see in Equation 7.6, the dimension does not depend on the
branching angle.

In Figure 7.13 we present plots showing the local slopes resulting from the box-counting
and generalized sandbox methods for four distinct approximations of binary fractal trees.
To generate these plots we applied both methods to images of simulated trees similar to
those shown in Figure 7.12, however, in order to avoid artefacts in the images near the
branch tips the initial trunk length was chosen such that the length of the outermost
branches would be greater than a single pixel. As a result, each tree used approximately
fills a 8192 x 8192 image. In computing the local slopes we set the minimum box size to
be one pixel and the maximum at 50% of the image size. The box sizes were once again
incremented in a linear manner by fifty pixels in order to sufficiently capture the changes
in the scaling behaviour over the entire range of scales. The plots are cropped to show
box sizes up to only 1000 pixels so that the scaling behaviour can be compared across the
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Figure 7.13: Plots showing the local slopes as a function of the upper box size ¢, for four
distinct fractal trees with the following branching parameters: (A) r = 0.5, = %, (B)
r=050=2 (C)r=0556=2% and (D) r=0.55 0= 2.

same range of scales for each tree. In plots (A) and (B) we have the local slopes for trees
with the same length ratio, » = 0.5, and different branching angles, § = 7/3 and 0 = 27/3,
respectively. In (C) and (D) the length ratio is increased to r = 0.55 and again we have
0 = 7/3 and 6 = 27/3. Consequently the dimension of the trees in (A) and (B) is D = 1,
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while the dimension of the trees in (C) and (D) is D ~ 1.1594. In each plot this theoretical
dimension is indicated by a horizontal dashed line.

Since the trees are composed of finite line segments, at small scales we see that the
local slopes are approximately equal to one, as expected. Although the local slopes do
pass through the true dimension of each tree briefly, we see that the slopes continue to
increase well beyond this point in every case due to the transitions in the scaling relationship
described in Section 7.2.1. We notice that, despite the trees having the same theoretical
dimension, the local slopes in (B) increase more rapidly than those in (A), and similarly for
(D) compared to (C). This is a result of the trees with the larger branching angle, § = 27/3,
having a higher line density and thus smaller gaps between branches, as was shown in
Figure 7.12. Although the theoretical dimension is unaffected by the change in branching
angle, the local slopes clearly show us the difference in density between these visually
distinct trees. At some point we see that the edge effects start to compete with the increases
in slope causing somewhat of a “false plateau” at some fractional value between one and two.
If we were to take this plateau as evidence of a consistent scaling relationship and estimate
the fractal dimension from these plots we see that we would significantly overestimate
the dimension of these trees. We note here that these trees are less space-filling than the
vasculature images from the previous section, and as such we do not see two-dimensional
behaviour, even at fairly large scales. As we can see in Figure 7.12, some regions of the tree
(namely the trunk) appear one-dimensional even at very large scales.
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Chapter 8

Characterizing Naturally Occurring
Branching Structures: The Way
Forward

The results of the previous section leave us with some obvious questions. How do we
reconcile our results with our knowledge that fractal trees are indeed fractal? One might
wonder if it is even possible to measure the theoretical dimension from finite image of a
fractal tree directly, and if so, how? The scaling properties of the tree are surely encoded
in the image in some way. At this point, we recall that a fractal tree can be thought of
as the union of a one-dimensional object (the trunk and branches) and a D-dimensional
object (the tree canopy, or ’leaves’). Although the entire tree is not strictly self-similar, it
is easy to show that the canopy, which is similar to a Cantor dust (see Figure 5.3 (B)), is
self-similar. As a result, we might expect our usual methods of estimating the dimension to
be successful if applied directly to finite approximations of the tree canopy.

8.1 Estimating Fractal Dimensions From Tree
Canopies

In order to construct finite approximations of the canopies corresponding to the four binary

fractal trees discussed in the previous section, we simply extract the endpoints of the

upper branches from the image of the tree itself. This can be done very simply using
the bwmorph () function in Matlab to extract all of the endpoints and removing the single
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endpoint corresponding to the trunk. Each image of a tree canopy is comprised of exactly
512 branch tips, represented by a single pixel (or point) in the image. Figure 8.1 shows
the local slopes plots resulting from the box-counting and generalized sandbox methods
applied to each fractal tree canopy. As before, we used box sizes ranging from one pixel
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Figure 8.1: Plots showing the local slopes resulting from the box-counting and generalized
sandbox methods as a function of the upper box size €5 for four distinct fractal tree canopies.
(A)r=050=x/3. (B)r=20.50=2r/3. (C)r =055 0=mx/3. (D)r=0.55,

0 =2m/3.
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to 50% of image size, incremented linearly by fifty pixels at a time. The local slopes were
computed over a range of box sizes satisfying e5/e; ~ 1.5, as usual. At small scales, the
canopies appear roughly zero-dimensional, which is to be expected as in the finite case the
canopy is a finite collection of points. As we increase the box sizes, we see that the local
slopes increase and hover around the true box-counting dimension of the canopy (and thus
the tree itself). We note that the canopy images are quite sparse, so we see dips and peaks
in the local slopes when the change in box sizes is small compared to the scales present
in the image. In general, there is a fine balance to strike between using many box sizes
(resulting in more variability in the local slopes) and using too few box sizes (and thus not
being able to clearly see if/where there is a plateau in the local slopes).

The examples in Figure 8.1 illustrate how we can use the box-counting and generalized
sandbox methods to estimate the fractal dimensions of perfectly self-similar canopies.
However, more realistically, we expect the canopies of naturally occurring branching
structures to be statistically self similar at best. Figure 8.2 shows the same results for
the box-counting and generalized sandbox methods applied to two images depicting finite
approximations of statistically self-similar tree canopies. We can can construct tree canopies
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Figure 8.2: Plots showing the local slopes resulting from the box-counting and generalized
sandbox methods as a function of the upper box size €5 for two statistically self-similar
fractal tree canopies. In (A) r ~ U(0.51,0.59), § = Z and in (B) r = 0.55, § ~
U(r/3—-0.1,7/3+0.1).

with statistical self-similarity by introducing some randomness into the branching process.
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In both cases we have fixed the bifurcation ratio as N = 2, and varied either the branching
length ratio, r, or the branching angle, 6, randomly. We will use the notation C'4 and Cg
to denote the infinite sets which have been approximated by the finite canopies used to
generate plots (A) and (B), respectively. To generate the canopy Cj4, the value of r has
been chosen from a uniform distribution on each iteration, such that the mean value is
7 = 0.55, and € has been fixed at a value of 7/3. The canopy Cp was generated using a fixed
value of r = 0.55 and 6 chosen from a uniform distribution with mean value § = /5. The
theoretical box-counting dimension for each (infinite) canopy is indicated by a horizontal
line on the corresponding plot.

We point out here that when dealing with statistically self-similar sets we need to be
careful when evaluating the theoretical dimensions. The theoretical dimensions of the two
canopies, C'4 and Cp, are close in value, but are not equal. When r is varied, as in Cy, we
must treat r as a random variable in our derivation of the dimension. With r chosen from
the uniform distribution described above, we can apply Theorem 15.2 from [51] to show
that, with probability one, the box-counting (and Hausdorff) dimension of the canopy is s,
where s is the solution to the expectation equation

E[2r] = 1. (8.1)

Solving this expression for r ~ U(0.51,0.59) gives us s ~ 1.1597, i.e. the box-counting
dimension of the set C'4 is

dimp(Ca) ~ 1.1597. (8.2)

When 7 is fixed and 6 is chosen randomly, things are a little bit simpler. In this case, as
long as we choose values of € such that the tree remains non-overlapping, we can use the
same argument from Appendix A to show that

log(2
dimp(Cp) = 108(2) 1 1504 (8.3)

~ log(1/7)

As before, we observe that at large enough scales the local slopes hover nicely around the
true box-counting dimension of the canopy, even when we only have statistical self-similarity.
Based on the results in this section we might expect that if natural branching structures are
in fact statistically self-similar, then we should be able to estimate their fractal dimensions
by applying traditional fractal dimension estimation methods to their canopies, if those
canopies are present in the image. We have seen that this method is applicable to “nice”
simulations of fractal trees, however when attempting to extend this to natural branching
structures we must keep the following points in mind:
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1. In reality, branching structures are typically 3-dimensional and common practice is to
produce 2-dimensional images by projecting a slice of the structure onto the 2-D plane.
This causes overlap and disrupts the spatial organization of the canopy. To measure
the dimension of a 3-dimensional canopy would require 3-D volumetric images, which
typically are much more costly and time-consuming to generate.

2. Unless a very large number of generations of branching are imaged, the tree canopy
will be a very sparse set. This leads to wavy behaviour in the local slopes, as observed
in Figures 8.1 and 8.2, making it difficult to identify a plateau. Most real-life branching
structures do not contain a particularly large number of generations, or if they do, it
is at a scale too small to resolve with standard imaging techniques.

3. Related to the above point, edge effects will be particularly prevalent since every
point of the canopy may be considered as an edge, once again making it difficult to
identify a plateau accurately. As we have seen (Figure 7.12), edge effects can lead to
false plateaus for non-homogeneous sets.

4. Finally, as was shown in [81], random distributions of points can appear fractal over
certain ranges of scales. As such, one should only apply fractal dimension estimation
methods if there is reasonable cause to assume (statistical) self-similarity.

Although we have seen that the box-counting and generalized sandbox methods can be used
to successfully estimate the dimensions of simulated fractal tree canopies, it is unlikely that
these methods will be successful when applied to images of natural branching structures.
Perhaps one day, with further advances in the quality of imaging data, this may be a
possibility, but for now other means of characterizing natural branching structures should
be considered.

8.2 Direct Estimation of the Branching Parameters

If we continue with the assumption that the branching structures we see in nature do
in fact have fractal properties, then we might consider directly estimating the branching
parameters in order to estimate their fractal dimensions. We know from Equation (7.6)
that (for certain values of the branching parameters) the box-counting (and Hausdorff)
dimension of a fractal tree depends on both the bifurcation ratio, N, and the length ratio,
r, of the branching generator. There is some research, pertaining to the study of fluvial
landscapes (i.e. stream and river networks), on estimating these parameters directly from
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images of branching structures [101, 77, ]. In this field of study, fluvial landscapes are
considered as tree-like structures and it is common to use a numbering system to order the
branches in a hierarchical fashion. Most commonly used is the Strahler stream order, in
which branches are ordered from the outside in such that all outermost branches are of
order one and subsequent parent branches are ordered based on the order of their children.
Using this ordering system, with u representing the branch order, the bifurcation ratio can
be defined as
Ny

b Nu+1 ( )

where N, and N, are the number of branches of order u and u + 1, respectively. Similarly,
the length ratio can be defined as
L,

= 8.5
L Lu—l ( )

where L, and L, _; are the mean length of branches of order v and u — 1, respectively.

Fluvial branching networks are typically assumed to follow Horton’s Laws [102, 77]
which state that the bifurcation and length ratios are constant within a given catchment
(geographical area). If this is true then this implies strict self-similarity of the branching
network and it is easy to show that [77]

log(N) _ log(rg)
log(1/r)  log(rr)

For branching networks which are strictly self-similar, or at least approximately self-similar,
direct computation of rg and r; from the data could be a reliable method with which to
estimate their fractal dimensions. Typically, natural branching structures are not strictly
self-similar, and so values of rg and r are computed by averaging over the entire structure.
Let us use the notation

(8.6)

dimg = dimg = dimpg =

_ log(7B)

Dy = ——
log(77)

) (8-7)

where 75 and 77, are the average values of rp and ry, to denote estimates of the dimension
computed in this way.

Now, from our discussion in the previous section we know that the estimate D:-
in Equation (8.7) does not always correspond exactly to the fractal dimension of the
corresponding branching structure. In the more realistic case of statistical self-similarity,
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the theoretical dimension will be the solution to an expectation equation similar to the
one in Equation (8.1). That being said, there is only a fairly small range of branching
parameters which generate non-overlapping (i.e. physically realizable) trees. Therefore,
for most realistic distributions, the value D; should provide a good approximation of the
theoretical dimension of branching structures - as we saw in the example from the previous
section.

An added benefit of using the value D; to classify branching structures is that, if we
strip away the pretence that its value corresponds to a fractal dimension, we can use this
value to characterize the complexity of a wide variety of branching structures - not just
those with fractal properties. For instance, branching structures which satisfy rz < rp,
can be shown to have finite length and thus a dimension of one. This means that fractal
dimensions provide us with no way to distinguish between such branching structures, yet
estimates of Dy will vary and thus allow for better classification of these sets. We may also
gain further information by examining how D; varies over different regions of the structure,
or even more specifically how each of the branching parameters, rg and ry, varies over the
structure.

We should make note here that the practicality of this method does, once again, rely
on the quality and nature of the imaging data which one has available. Most branching
structures which occur naturally are three dimensional and projected into two dimensions
for imaging, which can result in significant overlap in the images. In order to accurately
estimate the ratios rg and ry from an image of a branching structure we require minimal
overlap of the branches in the two-dimensional projection, or three-dimensional data in
order to avoid the issue of overlap entirely.

8.3 A Simpler Approach - Do We Even Need Fractal
Methods?

Based on the above discussions, it is clear that estimating the fractal dimensions of naturally
occurring branching structures is a much more nuanced and difficult problem than many
previous works have suggested. Consequently, one may start to wonder if all of this is
even worthwhile. Branching networks aside, how many natural structures are sufficiently
self-similar over a large enough range of scales that we might have a chance to truly estimate
their fractal dimensions and what do we stand to gain by doing so? It would seem that the
question we really want to ask ourselves is: why are we estimating the fractal dimensions of
naturally occurring objects in the first place? Once again, quoting J.D. Murray from [30],
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a paper which asked similar questions,

A particular and widespread misconception about fractal theory arises because it
can create objects which look remarkably like many natural structures such as
trees, weeds, flowers, butterfly wing patterns and so on, and this is often taken
to be a biological explanation of how these structures and patterns are formed.
Although fractal-like patterns may be reasonable graphical representations of
such natural shapes, they say essentially nothing about the biological processes
and mechanisms which are involved in their development. [S0] (p. 369).

Indeed, this assessment has been echoed by others, including A. Bejan, the inventor of
“constructal theory” - see, for example, [103], Section 1.2, “The Hardest Questions.” As we
have noted previously, it is possible (and quite common) for multiple very different objects
to have the same (or very similar) fractal dimensions. Therefore, fractal dimension alone
does not allow us to draw conclusions about the process by which a structure was generated
or even necessarily its visual appearance (consider the appearance of the von Koch curve
and Cantor dust as an example).

Going forward, what we can say for certain is that methods like the box-counting and
generalized sandbox methods cannot be used to estimate fractal dimensions from finite
images of branching structures. This is due to the non-homogeneity of branching structures
in general. As such, the values resulting from these methods should not be referred to as
the fractal dimension of the structure or used to make claims about the biological processes
used to generate such networks. Fractal geometry certainly has its place, however it is
important to distinguish between theoretical fractal sets and natural objects which may
appear approximately fractal over finite ranges of scales. An understanding and respect
for this difference is imperative when considering the application of fractal theory to real
objects. Our thoughts on this matter are nicely summarized by one final quotation from
Kenneth Falconer,

The distinction between ‘natural fractals’ and the mathematical ‘fractal sets’
that might be used to describe them was emphasised in Mandelbrot’s original
essay, but this distinction seems to have become somewhat blurred. There are
no true fractals in nature. (There are no true straight lines or circles either!) If
the mathematics of fractal geometry is to be really worthwhile, then it should be
applicable to physical situations. [51] (p. xxix).

With all that being said, the results from previous studies, using what we now know are
flawed methods, can still provide us with some useful information on how to characterize
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branching structures. For instance, a positive correlation has generally been observed
between vessel density and estimates of the box-counting or sandbox dimension. There
are many examples in the literature in which estimates of fractal dimensions were found
to correlate well with some morphological property of branching structures, for example,
distinguishing between healthy and tumour vasculature or pathological and normal retinal
vasculature. Perhaps what this tells us is that, following the principle of Occam’s Razor, we
don’t need a complicated fractal theory to distinguish between such branching structures.
Instead, perhaps simpler measurements, such as average vessel density or local measures
of density may be sufficient. Furthermore, as we have seen, analysis of the local slopes
plots resulting from the box-counting and generalized sandbox methods can provide more
context regarding the spatial density of images and the presence of characteristic scales.
Figures 7.7 and 7.8 in this thesis, and the results of [68] provide a good example of this
phenomenon, in which the characteristic pore size of a space-filling network is evident from
the local slopes plot.
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Chapter 9

Concluding Remarks

This thesis consists of two distinct parts, each of which is dedicated to the examination of
a particular approach used to characterize a specific type of medical image. Part I focusses
on the design of efficient image descriptors for digital histopathology. The examination of
pre-existing methodology led to the proposal of two approaches to improve the image search
performance of the projection-based ELP descriptor, a descriptor which was previously shown
to perform well at retrieving similar histopathology images. First, a careful analysis of the
ELP method revealed some weaknesses in the method, such as long histograms, redundancy,
and a lack of rotational invariance. Based on this analysis, an improved frequency-based
encoding was proposed to generate shorter and more meaningful histograms. Additionally,
the use of stain-separated and RGB colour images as inputs to generate descriptors was
investigated and found to lead to a significant improvement in image search performance
over the greyscale images which were used in prior works. Improvements were observed
using colour images to generate four different image descriptors, indicating that the benefits
of using colour images as inputs extends beyond just the ELP descriptor, but could apply
to any and all image descriptors which have been developed for digital histopathology, and
to those which will be developed in the future.

In Part IT of the thesis, a close look into the methods used to estimate fractal dimensions
from images of natural structures revealed a significant flaw in these methods - the
assumption of self-similarity which is required for these methods to work. Further analysis
showed that branching structures, a class which encompasses many natural objects -
including complex vascular networks - are inherently not self-similar due to the branching
process by which they are formed. Although such structures may have a well-defined
fractal dimension when their limiting behaviour is considered, they exhibit non-constant
scaling behaviour over finite scales. Therefore, standard methods such as the box-counting
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and sandbox methods were found to be an ineffective means of estimating their fractal
dimensions. In fact, computational examples showed that estimates of the fractal dimensions
of branching structures yielded by these methods are highly dependent on the scales which
are used in the estimation. Some alternative means of characterizing naturally occurring
branching structures were suggested.

Although the two methods described above are quite unrelated - apart from their use
to characterize medical images - both were analysed with the goal of gaining a deeper
understanding of the exact mechanisms which lead to their success (or failure as it turns
out in Part IT). It is the hope of the author that the lessons learned from this work will be
used to improve future research efforts in both areas.
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Appendix A

The Box-Counting Dimension of a
Simple Fractal Tree and its Canopy

In this section we derive an expression for the box-counting dimension of a simple fractal
tree, T. For ease of notation, we shall use D to refer to the box-counting dimension,
dimp(T), of the tree throughout this Appendix.

Consider the tree T', as shown in Figure A.1, with N =2,0, =60, =60, and ri =ry =7r
and let the length of the trunk be given by b. First we compute the total length L of the
set T' to see if /where a fractal dimension is necessary. From Figure A.1 we see that the
length can be expressed in terms of the trunk-length b as a geometric series,

L = b+2rb+4r*b+8r3b+ - --
= bl42r 42480 4], (A1)
The above series converges for 0 < r < %, in which case,

b
1 =27

(A.2)

The length L is finite for 1 <r < % and infinite for r > %, which tells us that the dimension
D of Tis 1 for r < %, ie.,

1
Dzl, O§T<§. (A3)

Since the length of T is infinite for r» > %, we expect that D > 1 for % < r < 1 and that the

case r = % will have to be considered separately. In the following discussion we assume
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Figure A.1: A fractal tree, T, with NV = 2, a single scale factor r, and trunk length b.
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values of r sufficiently low such such that the two primary subtrees of 7' do not overlap.

The set T can be considered as a union of its trunk and its two major subtrees, i.e.,
T=TUT,. (A4)

We'll let Nq(€) and Ny(€) be the number of square tiles of side length e needed to cover Tj
and Ty, respectively. The number of e-tiles needed to cover the trunk is given exactly by

Ny(e) = 2. (A.5)

€

so that
N(e) = Ni(€) + Nao(e) = g + Ny(e) . (A.6)

is the number of e-tiles needed to cover T. Now, we consider covering T, with tiles of side
length 7" = re. Since each subtree is an r-scaled copy of T, we have the following:

Ny(re) = 2N (e), (A7)

and the total number of tiles of side length " = re needed to cover the entire set 1" is given
by

N(re) = 7% +2N(e). (A.8)

We’ll now employ the basic scaling relation,
N(re) =~ N(e)r™?, as e—0". (A.9)
Substitution of (A.9) into (A.8) yields
b
N(e)r P ~ 2N (e) + o s e 0t . (A.10)
€

Now divide both sides by N(e),

b
D9 +, A1l
r —|—T€N(€) as € — 0 ( )
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If the set T has box-counting dimension D, then
N(e)~Be? as e— 0", (A.12)

where B > 0 is a constant. (It is, in fact, this relation that is responsible for the basic
scaling relation in Equation (A.9).) Substitution of this relation into (A.11) yields,

b
r P~ 24 EED_I , as e—07". (A.13)

e Case No. 1: D > 1. Then €?~! = 0 as ¢ — 0% so that

rP=2 — |D

log 2 1
_ % ~, S <r<r, (A.14)

where 7* < 1 is the value of r at which the two subtrees of 7" intersect. (r* depends
upon the value of 6 defining the generator of 7. A discussion of this relationship is
beyond the scope of this paper.) Note that in the limit r — %, D — 1. We expect
that Equation (A.14) holds in the case r = 3.

e Case No. 2: D=1. For all e — 0",

1 b
- =24+ — Al
r +BT’ (A.15)

which can be rearranged to give the following result,

b 1
B=—— —. Al
a2 0<r<2 (A.16)

But from Equation (A.2), we have
B=1L. (A.17)
Substitution of this result into Equation (A.12) yields
N(e) = —, (A.18)

which makes sense: When D = 1, the set T" has finite length L. The number of e-tiles
needed to cover 7' is given by Equation (A.18).
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Summary of results: The fractal dimension D of the set T is

=

1

* DN

’ (A.19)

.

<r<
<r<

r

D(r):{ log2 ’

1
logl/r? 2

Note that the above result can easily be extended to the more general case of N > 2
branches. The log 2 in Equation (A.19) is simply replaced by log N.

The canopy C of the fractal tree T' is the set of all limit points of the sequences of
endpoints of the branches generated by the infinite application of the branching generator —
essentially the set of all “tips” of the tree T'. The canopy of the fractal tree T of Figure A.1
is shown in Figure A.2.

Figure A.2: The canopy of T.

Each of the two “halves” of the canopy C' shown in Figure A.2 is a contracted and
translated copy of the set C. The contraction factor is . As such, C' is a self-similar fractal.
The usual scaling argument for such self-similar fractals yields the following result for the
dimension D¢ of the canopy C":

~ log2
~logl/r’

De(r) 0<r<r. (A.20)

This may be combined with Equation (A.19) to yield the following interesting result,

D(r) =max{D¢c(r),1}, 0<r<r*. (A.21)
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In other words, if the fractal tree T is truly fractal a la Mandelbrot, i.e., D > 1, then
D = D¢, the fractal dimension of its canopy. Equation (A.21) is a particular case of a more
general result for box-counting dimensions of inhomogeneous self-similar sets [104]. Finally,
we mention that in the case of unskeletonized trees, i.e. where the trunk and branches are
“thick” and therefore two-dimensional, the dimension of T is

D(r) =max{D¢c(r),2}, 0<r<r. (A.22)
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