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Abstract

To navigate stochastic and changing environments, people need to keep track of on-
going probabilities as those probabilities are subject to change. Two distinct theories of
mental-model updating are compared. In trial-by-trial updating models, every sample is
immediately integrated into a working estimate of the probability. In change-point de-
tection, a single estimate of the probability is maintained until evidence accumulates to
reject that model to adapt a new model. Disentangling these theories of updating frequen-
cies has been difficult due to a confound found in previous tasks. Participants have been
given their last response as their default response, and this has made it easier for them
to maintain the same estimate rather than update it. This favours change-point models.
To address whether response-maintenance is due to the extra effort it takes to update a
response, participants were separated into two groups. In the Automatic condition, partic-
ipants were given their old response as default. In the Manual condition, participants were
given no default and were asked to generate a new estimate of the probability every trial.
While offering a default response was found to partially explain response maintenance in
previous tasks, it did not fully explain it. Participants in the Manual group showed spon-
taneous meticulous response maintenance over long series of trials despite being asked to
respond anew every trial. This suggests that the hypothesis-testing strategy developed in
the change-point detection literature is a fundamental component of probability estimation
and is not an artifact of previous task designs.
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Chapter 1

Introduction

The ability to learn the statistics of environments is crucial for survival. While it may
seem unassuming at first, the importance of the ability to represent relative probabilities
of events is quite profound. Expectation can resolve ambiguities, speed processing, or be
used to make predictions about future events. Even basic perceptual processes use learned
probability distributions. Something as simple as resolving a signal to a particular event
uses probabilistic information. As an illustrative example, take the ability to parse speech
signal into phonetic segments. Any given language has a set of segments (consonants and
vowels) which are units combined to form words. When language-users are given acoustic
signal, the sound they report hearing is pulled towards the centers of phonemic activity
[1]. This is an advantage if an utterance is noisy, because the most likely speech given the
signal will be what is heard [2].

Understanding how probability distributions are learned using limited sets of samples
is an open question. It is further complicated by the fact that probabilities change; they
change over times, places, and abstract spaces. In order for humans to adapt flexibly
to different environments, they need to be able to respond appropriately to these condi-
tional probabilities. Returning to the example of speech, the same phonemic signal will be
processed differently under different contexts. Phonological explanations for speech pro-
ductions are primed by higher order information such as semantic context or the speech
patterns of the particular speaker [3].

Learning whether conditions have changed and new probabilities apply is not an easy
problem. Changes in the hidden process generating samples may have no outward indica-
tion. When this state information is absent, learning different probabilities is constrained
to detecting differences in the stochastic hidden process. That is, in distinguishing between
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unlikely episodes of events, and changes in probabilities. Changes in probabilities can oc-
cur at any level of stochasticity. A first order stochastic process is a process where there
is a single fixed probability distribution on possible events generating samples. A second
order stochastic process is a process where this probability distribution itself varies. Any
higher level of stochasticity is a change in the super-structure that determines the changes
in levels of stochasticity below.

In a laboratory setting, people are quite adept at rapidly responding to hidden changes
in at least doubly stochastic processes [4, 5, 6, 7, 8, 9, 10, 11]. This ability is found
in mice as well as humans [12, 13]. This cross-species ability suggests that detecting
change in probabilities is a fundamental perceptual skill. In these nonstationary probability
estimation experiments, participants are given a series of samples drawn from a hidden
generative process. This process is subject to hidden changes at distinct change-points.
At a change-point, the active probability switches to a new distribution and samples start
to be generated from the new distribution. Participants respond readily to these sudden
changes even if they are unmarked by other events.

Given nonstationary environments where probabilities change, two hypotheses are con-
trasted to explain how people update their estimates of probabilities. Either people use
every sample to update their estimate of the probability, or they fix an estimate and
accumulate samples which determine whether the probability has since changed. This dis-
tinction corresponds loosely to the difference between two learning principles identified by
Gallistel et al. [4]. These are referred to as trial-by-trial updating (where one trial corre-
sponds to one sample and updating occurs every trial) and change-point detection (where
probabilities are taken to be static over many trials (runs) until change-points mark discrete
jumps from one probability distribution to another).

Until recent work by Gallistel et al. [4], frequency of mental model updating has not
been specifically investigated. Instead, for reasons discussed below, trial-by-trial updating
has been assumed. As identified by Gallistel et al., it is quite difficult to disentangle the
two hypotheses given existing literature. One reason is that, in early versions of this task,
participants were asked to guess the value of the next sample. This is instead of more
directly being asked to describe the distributions directly (e.g. [10, 8, 14]). This required
additional work by the researcher to infer the participant estimates of the probability
distribution. This additional work implies a number of assumptions needing to be made
by the researcher. These assumptions may not have an established resolution. For example,
it is still unknown how guesses generated from estimated probability distributions relate
to those distributions [15].

Gallistel et al. argue that asking for guesses particularly impedes inference to probabil-
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ity estimation in the most common nonstationary probability estimation task. The simplest
stochastic process, the Bernoulli process, is often used in these probability estimation ex-
periments. The Bernoulli process is defined by a single parameter, p, which determines
the probabiliy of one of two binary outcomes represented by the set [0,1]. Given only
binary-state estimates of the next dot, to infer a probability estimate, researchers need to
integrate over multiple responses to determine the average estimated binary sample. This
has poor temporal resolution regarding the frequency with which participants update their
estimates of the probabilities.

Apart from a single early case [11], only a recent emerging literature, following Gallistel
et al. [4], asks participants to estimate the Bernoulli process parameter with each new
sample. This provides the temporal resolution required to distinguish the two hypotheses
proposed above. In these tasks, participants are asked to imagine they are drawing coloured
balls out of an urn. They are asked to estimate the proportion of coloured dots in the urn
determining their chance of drawing either colour. To estimate the proportion, they are
asked to set a slider at the bottom of the display. Each end of the slider represents 100%
of the dots being of either colour and any setting in-between those extremes represents
the estimated proportion of coloured dots in the urn. This way, with each new sample,
participants can adjust their estimates of the probability over a continuous scale.

This new task paradigm has allowed for better distinction between mental model up-
dating which occurs with each sample and mental model updating which is delayed until
the previous mental model is found inadequate. To understand the strengths of the com-
peting hypotheses, the next section explores the history underlying the early acceptance
of trial-by-trial models and the emergence of a competing change-point detection model.

1.1 Historical Precedent: Delta-Rule

In the past, probability estimates of stepwise nonstationary stochastic processes have been
explained by use of the delta-updating rule to generate estimates of the probability [10, 16,
8, 9, 14]. The delta-updating model is one of a set of models called trial-by-trial updating
models. On every trial where a new sample is generated or an event occurs, the running
estimate kept by the model is updated to make the event more likely.

pt+1 = pt + αδ

According to the delta rule, probability pt+1 at time t is the previous estimate of the
probability pt plus α the learning rate times the δ error.
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In the delta model, the error of the model given the most recent sample is used to
update the model. The previous model will have an associated expectation which the
actual outcome, the particular sample, will be some distance from. The difference between
the expected and actual outcome will determine the fastest way which the probability
estimate needs to be improved to make the most recently observed data more likely. This
is the error. It is multiplied by a learning rate and added to the previous estimate of the
probability. This produces the new estimate. Delta-model learning can be understood as
a stochastic approximation of gradient ascent [17].

An advantage of the delta rule model is its computational simplicity. This makes it
easy to extend to possible neurological models which could realize its principles of opera-
tion. Neurological models exist which connect the delta-updating rule to prediction errors
registered in the anterior cingulate cortex [18]. Another advantage of the delta rule model
which makes it neurologically plausible is that it also does not require extensive memory to
store recent events. All retained information from previous samples is contained recursively
in the current estimate of the probability.

A disadvantage of the delta-rule updating model is that it introduces a trade-off between
rapid response to changes in probability and steady accumulation of more information
over time [4]. With a fixed learning rate, the weight of any particular sample used in the
current estimate of the probability decreases geometrically with distance from the most
recent sample. This fixes how much information is used for an estimate at any given time.
If the learning rate is low, the delta model accumulates a lot of information to generate its
current estimate of the probability. If the learning rate is high, the delta model responds
rapidly to unusual events which may mark discrete jumps in the underlying generative
process.

This trade-off can be mitigated, however, if the learning rate is not fixed. Nassar
et al. [8] for example, simplify optimal Bayesian learning and produce a model with a
variable learning rate. The learning rate is a function of other estimated variables which
determine how confident one can be about the current estimate of the probability. The
more confidence in a current estimate, the less any new sample sways this estimate. In the
model proposed by Nassar et al., the learning rate is a function of the current estimated
run-length (a longer run means a lower learning rate) and the estimated hazard rate or
expected frequency of change-points (a higher hazard rate means a higher learning rate).
Thus, because these estimates are also updated trial-by-trial, the learning rate varies along
with estimates of the probability.

Human estimates of probability indeed show variable learning rates. Moreover, these
learning rates vary with the learning rates of the optimal Bayesian observer. The more
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narrow the posterior distribution around the optimal Bayesian estimate, that is, the more
confident the optimal Bayesian learner is about their particular estimate of the probability,
the lower a human learning rate will be. Because the model provided by Nassar et. al is a
reduced optimal Bayesian change-point detection algorithm, human learning rates are also
predicted by this adapted delta model [8].

Another strategy for adaptive learning rates is a two-kernel model [4]. Instead of
having a single estimate of the probability as determined by a delta-rule model with a
fixed learning rate, there are two ongoing estimates both using the delta-rule model but
each using a different learning rate. The slow learning rate model is used by default. This
is because, most of the time, it is desirable to use as much information as possible to
determine one’s current estimate of the probability. Whether to switch from one model
to the other is determined by the magnitude of the difference between the two learning
models. A large difference between the two estimates signals a steep change in the fast-
learning model. This is likely to have been caused by the probability having changed.

1.2 Change-point Detection

Despite being computationally simple and neurologically realizable, delta-updating trial-
by-trial models have been met more recently with criticism. In particular, Gallistel et
al. [4] offers a series of strong arguments against them. These arguments are made on
both theoretical and empirical grounds. On theoretical grounds, Gallistel et al. identify
a number of shortcomings trial-by-trial models have which would make their use disad-
vantageous to an adaptive organism. On empirical grounds, Gallistel et al. find distinct
qualitative patterns in human estimates of probability which they could not reproduce
given the delta-updating model.

One of the most important of these empirical phenomena identified by Gallistel et al. is
the low frequency with which humans update their estimates of probability. Participants
adjust their estimates less often than on every trial. Instead of changing responses with
each new piece of evidence, participants hold the same estimate of the probability steady
over longer series of trials. Only intermittently, after runs of a maintained estimate, do
participants then use large steps to update their estimates. Gallistel et al. identify this
as a step-hold pattern which is illustrated in Figure 1.1. This step-hold response pattern
is a robust finding across previous research [11, 6, 5]. Estimates of the probability are
maintained more often than the Bayesian benchmark [6].

The distinct step-hold pattern of participant estimates, Gallistel et al. [4] argues is
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Figure 1.1: Illustration of a step-hold pattern in participant estimates of probability.
In this representative task, a participant is asked to estimate the mean value of a

Gaussian distribution generating the samples they observe. On the y-axis is the value of
the sample observed. On the x-axis is trial number. Each dot represents one sample

drawn from the Gaussian distribution on one trial. The solid horizontal lines represents
the participant’s estimate of the mean of the Gaussian distribution on each trial. At the
half-way point, indicated by the vertical dashed line, the mean of the true Gaussian

changes. Only after several trials have passed does the participant’s estimate of the mean
also change. This is because they were accumulating evidence over many samples to

conclude that the mean has changed. The long period of trials before a change is made is
the step-width. The change in estimate is the step-height.
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evidence of discrete hypothesis testing. According to a hypothesis testing account of prob-
ability estimation, people adopt mental models as static estimates of the state of the world
which explains current observations. These estimates of the underlying generative distri-
bution remain fixed over samples. It is not until enough evidence accumulates that would
be inconsistent with a current working model that a person finally rejects the previous
distinct mental model and adapts a new model.

The principle of hypothesis testing can be related to temporally extended doubly
stochastic processes via change-point detection algorithms [4]. In change-point detection
for time-series, the discrete hypotheses are the probabilities active for discrete runs between
distinct change-points. For the active estimate of the running probability, one hypothesis
is adapted to explain the set of samples seen since the most recent purported change-point.
This hypothesis is contrasted with the probability that a change-point has occurred and
the probability has changed since. The defining feature of change-point models is that they
insert discrete change-points between hypothesized runs of fixed probability.

Step-hold response patterns are taken as evidence for the suspending of mental model
updating until sufficient evidence has accumulated to reject the working hypothesis. This
suspension of belief-updating recalls the distinction between surprise and updating [19].
Surprise relates to the unlikeliness of an event given a working probability model. O’Reilley
et al. characterize it by an event’s Shannon information. Surprise does not need to lead
to any updating. Updating is the difference between the prior estimate of the probability
before the recent sample and posterior estimate of the probability after the new information
alters the estimate. It is thus related to the impact the observation had on the running
estimate of the probability. O’Reilley et al. measure it using the Kullback-Liebler (KL)
divergence between the previous and new estimate.

O’Reilley et al. [19] used a saccade task to dissociate two pathways for surprise and
updating. Surprise was localized to the Inferior Parietal Lobule (IPL), corresponding
to immediate preparation for a change in motor response to unexpected stimuli on the
current trial. In contrast, updating events involved the Intraparietal Sulcus (IPS) and
Anterior Cingulate Cortex (ACC). These brain regions were theoretically recruited for more
permanent alteration of expectation in future trials. This learning was theoretically being
mediated through the noradrenergic system from the locus coeruleus. The identification of
two separate pathways for surprise and updating supports the theory that mental model
updating can be suspended if the running hypothesis has not been rejected.

Gallistel et al. [4] argue that there are other empirical phenomena which can only be
explained by change-point detection over trial-by-trial updating. Humans can have second
thoughts and take back an inserted change-point from the time series; they can change
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their mind that the probability has changed and revert back to their old estimate of the
probability. In the task given by Gallistel et al., participants were asked to press a button
if they detected the probability had changed. The first five participants all spontaneously
reported at the conclusion of the task that there were times they changed their mind about
pressing the button. While they believed for some trials that the probability had changed,
retrospectively they inferred that they had only witnessed an unlikely series of events and
they should have maintained their old estimate. This is only consistent with a model that
proposes distinct change-point detection.

Second-thoughts reveal a deeper phenomenon active in participant estimates of proba-
bility over time: retrospective inference. Gallistel et al. [4] argue that change-point detec-
tion is particularly good for information compression and retrospective inference. Using
the delta rule, information over time is stored as a series of estimates that are contingent
on the value of the data on any given trial. Memory for this series of estimates is unique
to each event. In contrast, when discrete change-points are inserted throughout the time
series, memory storage is a much smaller set of summary statistics representing blocks of
time. As Gallistel et al. [4] summarizes, the efficiency of change-point detection is similar
to a principle used for lossless data compression. Redundant signal can be removed from
data if the common information is stored once. Instead of maintaining a series of similar
estimates across a time series, change-point detection stores summary statistics and the
differences between runs. This way, recollection of the series of events, is compressed to a
shorter list of summary statistics.

Apart from the empirical phenomena, a further argument for change-point detection
is that it is a strategy that would be an advantage in a natural setting and thus it had a
potential evolutionary function. Similar to a variable learning rate, change-point detection
is sensitive to the amount of data that should be considered in the current estimate of
the probability. However, unlike a variable learning rate, it considers precisely only those
data points which are relevant to the current estimate of the probability. In contrast,
for example, in the model proposed by Nassar, the current estimate of the probability is
approximated to be a weighted estimate of the marginal of all possible run-lengths.

1.2.1 IIAB Model

This line of reasoning clearly establishes a strong argument that humans use a version
of change-point detection to generate their estimates of probabilities. However, change-
point detection algorithms can take on many forms. An online ideal Bayesian observer for
optimal change-point detection on time-series data has been developed [20, 21]. However,
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as the time series expands, the algorithm rapidly grows in computational complexity and
memory demand. Given a known hazard rate, computations increase linearly with run-
length [20]. However, if the hazard rate needs to be estimated, computational complexity
increases exponentially [21]. This rapid growth in computational expense arguably makes
it neurologically implausible and thus it is unlikely to be the strategy adopted by humans.

To vastly reduce this complexity of the optimal (full Bayesian) solution, Gallistel et
al. [4] offers a computationally elegant approximation of optimal Bayesian change-point
detection. This model is referred to as the ’If It Aint Broke’ (IIAB) model. In the IIAB
model, estimates of the probability are not changed unless the current estimate is broke, or
in other words, not sufficiently predictive of the most recent data. This title distinguishes
it from a trial-by-trial updating model where updating is constant. In the IIAB model, if
the current estimate is found to be broke, then a change-point is inserted into the time
series. Around each change-point, the probabilities estimates to be active during those
runs are the optimal estimates given those run-lengths.

There are key differences between optimal Bayesian change-point detection and the
IIAB model. Foremostly, in optimal Bayesian online change-point detection, when new
change-points are inserted, this takes into account every possible intersection of all previous
possible change-point locations. Any new change-point is the change-point that makes
the previously seen data most likely given all possible previous change-point locations.
Online consideration of all possible previous runs is made possible by recursive storage of
information in a message-passing updating algorithm [20].

In contrast, in the IIAB model, there is no message-passing algorithm; there are no
nodes representing all possible run-lengths for the current trial. Instead, a single estimate
of the progression of change-points over the task is considered. On any given trial, if
a decision is made about inserting a change-point, only three hypotheses are compared.
These possible changes include whether to add a change-point since the most recent change-
point, whether to take away the last change-point, or whether to move the most recent
change-point somewhere else.

Further detail elucidates the full algorithm. Online IIAB inference is a two-stage pro-
cess. The first stage is a threshold process, which prevents probability re-estimation and
adjustment from occurring every trial. The second stage is the change-point estimation
subroutine outlined above, which determines whether to insert, remove, or shift a change-
point.

In the IIAB model, the threshold procedure first determines whether the model is
broke and needs adjustment. A statistic, ’E’, is calculated by taking the product of two
variables. One portion of the product is the KL divergence (see [22]) between the estimated
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probability distribution and the observed distribution of the most recent samples. The
other part of the product is the estimated run-length or in other words the number of
trials which have occurred since the last purported change-point. This product is intended
to represent the probability that there has been a new change-point since the previous one.
If the product, E, exceeds a threshold, the algorithm initiates its updating subroutine. E
is left as a free-parameter to be fit to participant data.

The subroutine also is a two-step process. It first tests whether to insert a change-point
and then it tests whether to remove the last change-point. Both tests are implemented as
Bayes Factors (see [23]). Each Bayes Factor compares a one-parameter model to a three-
parameter model. The one parameter model represents the hypothesis that there has been
no change-point. The one parameter to be fit is the estimate of the probability for the
set of samples seen since the last change-point. The three-parameter model represents the
hypothesis that there is one more change-point to be inserted. Two of the parameters are
the probabilities surrounding the change-point and the remaining parameter is the location
of the change-point. A threshold on the Bayes Factor to insert or remove a change-point
is another free-parameter in the IIAB model.

1.3 Model Comparison

The IIAB model substantiates a learning algorithm, based on change-point detection, which
could explain participant estimates of probabilities over time series. Being a fully developed
learning algorithm with free-parameters, the estimates produced by the IIAB model can
be compared with estimates produced by delta-updating models.

As reviewed, the standard delta-updating model was criticized for updating too fre-
quently, and Gallistel et al [4] rule it out by this account. However, the general delta-rule
learning algorithm can be appended to introduce hypothesis testing and the insertion of
change-points. To append the model and prevent constant updating, a simple thresh-
old procedure can be added to a delta-updating model, transforming it into a two-stage
process. The first, new added step, determines whether to update the estimate of the
probability to the estimate made by the delta-updating model. Unlike the IIAB model
where estimates are optimal given change-point locations, in a two-step delta-model, esti-
mates around inserted change-points are taken from the delta-rule updating model. Across
several studies, adding such a threshold to a trial-by-trial updating model does improve
the fit of its estimates [24, 6, 7]. This suggests that it is possible that human estimates are
updated trial-by-trial but a threshold prevents those updates from becoming the current
working estimate.
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Gallistel et al. [4] argue that a simple threshold procedure is not sufficient to explain
participant mental model updating. They argue that there are qualitative behavioral
patterns in participant adjustments to their previous estimates that cannot be replicated
using a two-step delta-updating model. Forsgren et al. counter that this argument was
made too hastily. They argue that the model comparison conducted by Gallistel et al. [4]
did not sufficiently explore the available parameter space for their model fits. Qualitative
behavioral patterns can indeed be reproduced by trial-by-trial model updating algorithms
given a more exhaustive exploration of the available parameter space.

To further bolster the argument for two-step trial-by-trial updating methods, Forsgren
et al. argue that Gallistel neglected to quantitatively compare the fit of different models
participant data. Comparing the IIAB model to the delta model with various added
threshold procedures, Forsgren et al. found that by far the best fitting learning algorithm
was in fact a delta-learning model with an added drift-diffusion threshold procedure.

Because the best fit to participant estimates was the delta-updating model, Forsgren
et al. argue that trial-by-trial probability estimation has not been ruled out as the method
by which people update their estimates of probabilities.

One argument is of particular interest to us, and is the focus of the present study. Fors-
gren et al. critique the use of the identified step-hold pattern as an argument for change-
point detection. Instead of this being evidence of mental model maintenance, Forsgren et
al. offer an alternative account. In previous task designs, on each trial as participants are
asked to update their estimate of the probability, they are given their old response as their
default response. This Forsgren et al. argue, introduces a potential confound. It is more
effortful to update one’s response on the slider than it is to leave it in its default posi-
tion. This may introduce a motor effort-to-respond threshold which prevents participants
from making adjustments to their probability estimates. This would produce the same
step-hold patterns originally identified by Gallistel et al. Thus, participant response main-
tenance may not reflect true suspended belief updating, but rather may reflect a threshold
introduced by the motor cost of adjusting the slider. This potential confound in previous
task designs further obscures the original question of whether evidence is immediately in-
tegrated into working mental models or whether hypotheses are maintained over samples
and discretely switched between.

1.4 Current Study

The current study was designed to address this confound. The same Bernoulli estimation
task was adapted from previous research. Participants were split into two conditions. In the
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first condition, as in previous research designs, participants were given their last response as
their default response on every single trial. In the second condition, participants were given
no default response at all; they were asked to respond anew every trial. The removal of the
default response was to standardize the motor procedure required for both maintaining and
updating a response. It also removed the implicit suggestion to adapt a previous estimate
as one’s current estimate.

Previous task designs have also been administered over ten blocks of 1000 trials. This
results in participants eventually completing 10,000 trials. This also introduces the same
potential issue that belief updating is confounded with the effort it takes to update one’s
response. Such a long and tedious set of sessions may decrease vigilance over the course of
the full task. This may reduce slider adjustments, which Gallistel et al. indeed did note
occurred over the course of the task although they explained this as learning the hazard
rate. To mitigate this confound, participants in our study were only given 999 trials. In
part, this decision was made because participants were asked to do the study at home
alone, where they may have been distracted by other tasks during the study had it taken
too long.

These changes to the task design were introduced in order to determine whether in-
creased motor effort to update responses fully explains the response-maintenance step-hold
pattern found robustly in previous versions of this task. If it is the case that response main-
tenance persists despite changes in the task design, this suggests that it is more likely an
intentional decision on the part of the participant to maintain the same estimate.

We did not give additional assistance to participants who chose to realign their estimate
on one trial to their estimate on their last. Because participants are given the additional
task of precisely realigning their estimate on one trial with their last estimate, this intro-
duces a source of error. Participants who intend to maintain the same estimate may miss
their last estimate by some margin. This will cause deviations in response from trial to
trial even while the participant’s true estimate remains the same. Thus, participants who
are asked to respond every trial may change their estimates of the Bernoulli parameter by
small amounts more often than do participants given a default response. These additional
adjustments however would be due to added noise around response-maintenance rather
than reflecting true new updating events.

New updating events ought to make the most recent sample more likely. Unlike noise,
updates to one’s estimate are presumably going to be in a direction consistent with the most
recent sample rather than inconsistent with it. If participants given no default response
genuinely update more often, they would make more sample-consistent adjustments to
their recent estimates than do participants given a default response. In contrast, if it is
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noise added to participant responses, any new adjustments would be just as likely to be
sample-inconsistent as sample-consistent.

Thus, while the participants who are forced to respond anew every trial may make more
adjustments, whether these adjustments reflect true intended updating events or noise can
be determined by whether those adjustments tend to be sample-consistent. If participants
do make more adjustments which are in-line with recent events, this will indicate that
an effort threshold has been removed and participants are genuinely updating more often.
If participants make more adjustments but those adjustments are just as likely to be
sample-inconsistent as they are to be sample-consistent, this would suggest that they are
intending to maintain their response. If response maintenance is intended but deviations
occur, this would still support response-maintenance as a natural component of mental
model updating. Indeed, if step-hold patterns persist in human estimates when no default
response is provided, then this supports the conclusion that a thresholded updating process
is not due to effort but is more intrinsic to human probability estimation methods.
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Chapter 2

Methods

2.1 Demographics

Participants were recruited from the University of Waterloo student body and offered
research participation credit as compensation for their participation. All participants gave
informed consent and the study was cleared by the Universitys Office of Research Ethics
(ORE 42844).

The study was conducted online. The experiment used a University of Waterloo server.
It was coded in PHP and Javascript and used elements from the JsPsych library [25]. A
total of 229 participants enrolled; 56 participants left before experiment completion. 173
(111 female, 55 Male, 6 no response, and 1 non-binary) completed the task. Only data
from participants who completed the task was used for analyses. Mean age was 20.42 (SD
= 2.2), with a range of to 17 to 33.

2.2 Preliminaries and Practice Trials.

Two independent data collections were run. Both had the same procedures with some
minor variations noted below. Participants were first informed that the task was expected
to take one hour, and this was followed by an online informed consent procedure. Next
participants responded to some demographic questions. A set of practice trials began the
experimental procedure. After completing the practice trials and the full experimental
task, participants were asked about their impressions of the task and debriefed.
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2.3 Experimental Procedures

The task was the same for both data cohorts, but for the second collection we shortened
the instructions and included a progress-bar. We also gave feedback on the practice trials
in the second cohort; if participants performed too poorly on the first five trials, they were
asked to start again. Since the experimental protocol for the task itself did not change, for
the following analyses, the separate samples are collapsed and both cohorts are used.

2.4 Task Details

The trial display (see Figure 2.1) consisted of a box in the middle of the screen which
contained 25 dots. Before a participant had made any response, the colour of the dots was
greyed out. Below the box, a slider recorded the participant’s estimate of red to blue dots.
After the first click the portion of the slider-bar which represented the proportion of red
dots became red, and the opposite portion of the slider became blue. The proportion of
the dots in the urn also responded to slider movements to show a matched proportion of
red and blue.

Figure 2.1: Experimental display
On every trial a red or blue dot floated out of a box. Participants were asked to adjust
the slider to represent their estimate of the proportion of red to blue dots in the box.
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2.4.1 Practice Trials

Participants were given 30 practice trials to practice placing their mark on the slider. For
practice trials, a grey line was drawn on the slider and participants were asked to click
on the line. The position of this target in the practice trials was randomly chosen. The
precision of participants’ clicks was used as a measure of their tolerance for slight errors in
accuracy for the subsequent task.

2.4.2 Experiment Trials and Conditions

There were 999 trials, split up into 3 blocks of 333 trials. After 333 trials, a screen would
appear informing the participant that they were on a break.

On each trial participants witnessed a coloured dot float out of the urn. The slider
below the urn represented their estimate of the proportion of colored dots in the urn for
that trial. Changes in estimates required adjusting the slider position.

For those trials where adjustments were made, adjustments were classified by their di-
rection and magnitude. Adjustment direction could be either sample-consistent or sample-
inconsistent. For a sample-consistent adjustment, a participant changed their Bernoulli es-
timate to make the most recently observed dot colour more likely. For a sample-inconsistent
adjustment, a participant moved their slider in the opposite direction of the dot colour.
For instance, if the most recent dot had been red and the participant decreased their es-
timate of red this would be a ”sample-inconsistent” adjustment. Adjustments of zero size
correspond to response maintenance and are not considered ’adjustments’ for our purposes.
As well as a direction, any adjustment was also associated with a magnitude, referring to
the number of slider positions over which the participant moved their estimate.

The slider had a total of 101 possible settings representing the range of proportions of
coloured dots from 0 to 100 percent. Once a participant was satisfied with their estimate,
they would click the ’Continue’ button, below the slider, to move on to the next trial.

The colour of the dot that floated out from the urn could be red or blue. The prob-
ability of either color was randomly determined by selecting uniformly from 0 to 1. This
probability changed in an unannounced fashion with the length of the run before the next
change point chosen uniformly from 1 to 100.

Participants were in one of two conditions: ’Automatic’ or ’Manual’. As in previous
research using this task (e.g.[4, 24, 6, 5]) participants in the Automatic condition were
given their last response as their default response on each trial. For these participants, at
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the onset of a new trial, the position of the slider was simply maintained from the previous
trial. Participants could simply click the ’Continue’ button to move onto the next trial. In
contrast, participants in the Manual group were given no default response at all and were
asked to respond anew on every trial. They were presented a grey slider with a mark at
the location of their prior estimate. They were explicitly informed that to maintain their
most recent estimate, they needed to click on this line. If participants attempted to click
the ’Continue’ button without adjusting the slider, they were given an error message in
red text which read ’Please indicate your response on the slider’.

2.4.3 Exclusion

Only those participants who performed the task correctly and well, following the given
instructions, were to be included in the analysis. Previous research has already established
that participants are overwhelmingly capable of performing very well on this task (see [4]).
The present study was concerned with the way these accurate estimates are generated,
specifically, how quickly participants incorporate new data to update their estimates of the
probability. Thus, exclusion criteria were directed towards removing participants who mis-
understood the task, were distracted during the task, who did not show sufficient vigilance
to perform well on the task, or those who performed the task poorly for other reasons.
Whether participants correctly followed instructions was measured by their accuracy on
the task and the length of time it took them to complete the task.

For accuracy, the unstandardized beta coefficient was used, predicting the true Bernoulli
parameter from the participants estimates of the Bernoulli parameter. This gave a measure
of how close a participant’s estimates of the Bernoulli parameter were to the true Bernoulli
parameter.

Accuracy was segmented into performance per block and exclusion criteria concentrated
on these segments. The segmentation was due to a bifurcation of participants in later blocks
into good and poor performers. As can be seen in Figure 2.2, a cluster of participants
who do not appear to attempt to do the task emerges by the third block. Pictured is an
apparently bimodal distribution, with one cluster of participants with near zero correlation
with the true Bernoulli parameter and another cluster of participants with higher sample-
consistent correlations.

Such emerging poor performance was attributed to a fatigue effect, where some partic-
ipants over the course of the task became less engaged with the assigned task. In order
for a participant to be included in the analysis, their estimates of the Bernoulli parameter
would need to significantly predict the true Bernoulli parameter across all three blocks.
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Figure 2.2: Histograms of participant accuracy separated by block.

The critical accuracy beta coefficient, .108, corresponded to a significance test with alpha
value of 0.05. Participants whose accuracy fell below this critical value on any of the three
blocks were excluded. Of the 84 participants in the Manual group, 44 were excluded on
these criteria. Of the 89 Automatic condition participants, 32 were excluded. The total
number participants removed for failing to meet the accuracy criteria was thus 76.

The length of time it took participants to complete the task ranged from 3.25 minutes
to 22.57 hours. Outliers were not identified using the standard deviation of task duration
because this statistic would be disproportionately pulled upwards by extremely long task
times. Instead, quartiles, which are much less sensitive to outliers, were used. Participants
who took longer than 1.5 times the inter-quartile range (IQR) over the 3rd quartile were
excluded. A total 10 participants took more than 91.71 minutes to complete the task.
Of these participants, 5 had already been excluded for failing to meet accuracy criteria,
so only an additional 5 participants were removed on the account of taking too long to
complete the task. The number of participants in the final sample was thus 92. Task
duration ranged from 5.17 minutes to 85.41 minutes.
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Chapter 3

Results

3.1 Survey Responses

Participants completed the task from home unsupervised, and thus it is possible that
they were discretely engaged in other activities while they were doing the task. At task
completion, participants were asked to type in a box any secondary activities they had
been engaging with during their participation. Of the 173 participants who completed
the experiment, 83 participants reported engaging with a secondary activity during the
task. Of these 83 participants, 41 reported listening to music, 14 reported engaging with
a second media (such as listening to a podcast or watching a television show), 4 reported
engaging in a social activity (such as talking to a friend), 7 reported attending to phone
notifications, and 7 reported engaging in a miscellaneous activity (such as eating dinner
or petting a cat). Whether a participant was engaged in another activity did not predict
accuracy F (1,171) = 0.112, p = 0.739, task duration F (1,171) = 0.91 0.341, nor number of
times the task window lost focus F (1,171) = 0.459, p = 0.499. In the final sample, within
the 92 included participants, 45 reported engaging with another activity during the task.
Of these participants, 18 reported listening to music, 7 reported engaging with a second
media, 2 reported engaging in a social activity (such as talking to a friend), 4 reported
attending to phone notifications, and 5 reported engaging in a miscellaneous activity

19



3.2 Practice Trials

Of the 173 participants who finished the task, 44 perfectly aligned their response with the
provided practice line and thus made no errors on the practice trials. Within the subgroup
of the 92 participants who met inclusion criteria, 32 made no errors on the practice trials.
Within this group of included participants, the median number of errors was 2 out of the
total 30 practice trials; the range of number of errors was from 0 to all 30 of the trials.
Participants can easily maintain their prior response when they choose to.

Only the Manual group was asked to re-click the slider on every trial, and thus their
task was more comparable to practice trials. The Manual group took significantly longer on
practice trials (t(30)=8.05, p <0.001) and corrected their adjustments significantly more
often( 26%) than in the full task (M=9 percent of trials; t(30)=3.56, p<0.001).

3.3 Effects of Condition on Task Performance

Of primary concern was the question of whether providing participants a default response
introduced an effort threshold preventing frequent updating. This was first tested by
comparing the number of adjustments made by the Automatic group to the number of
total adjustments made by the Manual group. If the default response introduced an ef-
fort threshold to the Automatic group, we would expect to see the Manual group make
more adjustments than the Automatic group. Consistent with such an effect, a t-test es-
tablished that condition significantly changed frequency of response maintenance: Manual
participants adjusted their responses away from the previous trial significantly more often
than did Automatic participants (t(90) = 7.09, p < 0.001; Figure 3.1). Average number
of adjustments for the Manual group was 705.03 trials out of the full 999 trials. For the
Automatic group it was 320.96.

Given that Manual participants make more adjustments, it was next investigated
whether these additional adjustments were in-line with recent evidence.

For each adjustment size of the report slider we computed the average number of ad-
justments made by the Automatic group. This created a vector representing the Automatic
group’s average number of adjustments per each adjustment size. To isolate the differences
between groups in their distribution of adjustments, for each participant in the Manual
group for each adjustment size, we subtracted the Automatic group average number of
adjustments. These residual vectors for each Manual participant represent adjustments
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Figure 3.1: Boxplot showing group differences in total number of adjustments

Manual participants made of more than the average Automatic participant and are re-
ferred to as ’added adjustments’.

To first determine whether these added adjustments were in-line with recent events,
the number of added adjustments was collapsed over adjustment size, preserving only
adjustment direction. A simple paired t-test determined that, when Manual participants
make more adjustments, those adjustments were significantly more likely to be sample-
consistent than sample-inconsistent t(36) = 2.87, p = 0.007.

A Chi square test determined that the proportion of adjustments being sample-inconsistent
was unusually high for added adjustments compared to regular adjustments X (1) = 58.72,
p < 0.001. For Automatic participants, the percent of adjustments made over the course
of the task which were sample-inconsistent was 10%. For Manual participant added ad-
justments this was 35%.

Next, it was investigated how much of new Manual participant responses could be
attributed to either the noise or true new updating hypotheses.

We fit a mixture model to the number of Manual participant added adjustments and
compared this mixture model to a model with only a single Gaussian random variable. Non-
linear model fitting was done using R’s nls function [26]. The single Gaussian model was fit
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using a mean fixed at zero. The mixture model was composed of two Gaussian distributions.
For one Gaussian, the mean was fixed at zero, for the other Gaussian the mean was allowed
to vary and entered as a free parameter. Both fit models are shown in Figure 3.2.The
mixture model provided a substantially better fit to the Manual group’s residual added
adjustments than did the single Gaussian model. The AIC decrease was 200.58. This
evidence supports the hypothesis that the adjustments which Manual participants made
more of consisted of two distributions: one of noise around intended response maintenance,
and one of increased disposition to make sample-consistent adjustments in-line with recent
evidence.

Given the best-fit mixture model, the area under the distribution represents the total
number more adjustments the Manual group made over the Automatic group. The area
considered excludes adjustments of zero size, because these would not be considered ad-
justments. Of the total area of 321.26 added adjustments, 38 % (124.05) was contributed
by the Gaussian distribution representing noise, and 61.40 % (197.31) was contributed by
the Gaussian distribution representing true intended updating events. The mean of the
Gaussian distribution representing true updating events was 1.2. This represents that,
those updating events which the Manual group made more of, on average, were 1.2 slider
positions over from their previous response.

3.4 Individual Variability within Conditions

While these marginal effects of group on number of adjustments are significant, there
were also large within-group differences. Particularly tellingly, some Manual participants
made fewer adjustments than did the average Automatic condition participant. The result
of this is that their number of ’added’ adjustments was negative. This reflects them
having actually made fewer adjustments. Individual total number of added adjustments
in the Manual group ranged from -170.18 to 666.82. Figure 3.3 shows four of such Manual
participants, each maintaining their previous estimate more than 73.08% of the time. Two
Manual participants who made the fewest number of adjustments per their group are not
shown. These participants each made zero and two total adjustments over the full task.

Figure 3.4 shows analogously meticulous Automatic participants, who made more ad-
justments than the average Manual participant.

The range of the Automatic total number of adjustments was 41 to 993. For the Manual
group the range was 159 to 996.

Figure 3.5 displays, by group, the range of number of adjustments over the task and the
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Figure 3.2: Compared model fits for Manual participant added adjustment distributions
Manual participant added adjustments over the course of the task. Adjustment size is
delineated in slider units, where an adjustment size of one corresponds to a shift in one’s
Bernoulli parameter estimate by one of the 100 slider positions. Each red dot represents
the added adjustments of one Manual participant at a particular adjustment size. The
red line represents the average for the entire Manual group. The black line represents the
best-fit curve for each of the two models that were fit to participant data: the just noise
model and the mixture model. The vertical grey line blocks the section where no data was
available for model fitting. Adjustments of zero size do not qualify as added adjustments
and would not be valid to compute.

23



Figure 3.3: Performance over task of Manual participants who made the fewest adjustments
Four Manual participants with the highest frequencies of response maintenance. Each

row corresponds to a participant, and each column corresponds to a block (left is Block 1,
right is Block 3). On the y-axis is the Bernoulli parameter, and on the x-axis is trial

number. The dashed line corresponds to the true Bernoulli parameter on these trials. The
coloured line corresponds to the participant’s estimates on these trials. Sample-consistent
adjustments (in-line with recent evidence) are green; sample-inconsistent adjustments are

in red. Response maintenance (no adjustment) is in yellow.
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Figure 3.4: Performance over task of Automatic participants who made the most adjust-
ments
Four Automatic participants, meeting inclusion criteria, with the highest frequencies of
adjustments. Each row corresponds to a participant, and each column corresponds to a
block (left is Block 1, right is Block 3). On the y-axis is the Bernoulli parameter, and on
the x-axis is trial number. The dashed line corresponds to the true Bernoulli parameter
on these trials. The coloured line corresponds to the participant’s estimates on these

trials. Sample-consistent adjustments (in-line with recent evidence) are green;
sample-inconsistent adjustments are in red. Response maintenance (no adjustment) is in

yellow.
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extent to which these adjustments were sample-consistent. In the Automatic group, there
is a clear strict correspondence between the adjustment rates. When Automatic partici-
pants make more adjustments, this corresponds to them making more sample-consistent
adjustments. This is represented by how tightly the Automatic group points align with
the diagonal line across the plot. This relationship contrasts the pattern seen in the Man-
ual participants. Consistent with the noise added to their responses, Manual participants
who made more adjustments often correspondingly also made substantially more sample-
inconsistent adjustments.
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Figure 3.5: Number of sample-consistent adjustments by number of total adjustments
Each participant’s number of sample-consistent adjustments plotted against their total
number of adjustments. Red dots represent Manual participants; blue dots represent

Automatic participants.

To perform statistical analyses, number of sample-consistent adjustments was not used
due to its dependence on total number of adjustments. Instead, proportion of sample-
consistent adjustments was used. Figure 3.6 displays the unexpected non-linear relation-
ship visible in the Automatic participant data. For only the Automatic group, there is a
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significant correlation between number of adjustments and proportion of those adjustments
being sample-consistent, F (1, 48) = 20.25, p < 0.001, R2 = 0.296. This correlation is not
significant for the Manual group, F (1, 30) = 1.23, p = 0.276. To test the non-linearity of
the relationship, adding the log transform of the number of adjustments to the regression
equation significantly improved the fit of the model, F (1,47) = 16.66, p < 0.001, R2 =
0.476. When Automatic participants make few adjustments, those adjustments may be
just as likely to be sample-consistent as sample-inconsistent. However, as Automatic par-
ticipants make more adjustments, it rapidly becomes the case that those adjustments are
almost always sample-consistent.

Figure 3.6: Proportion of sample-consistent adjustments by number of total adjustments
Each participant’s number of total adjustments over the task plotted against the
percentage of these responses being sample-consistent. Red dots represent Manual

participants; blue dots represent Automatic participants.
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Chapter 4

Discussion

4.1 Study Overview

We were interested in whether response maintenance patterns in previous research could
be explained by the extra effort it takes to update one’s response. We compared two
conditions: one where participants were given their last response as default and another
where they were given no default response at all. If it were the case that providing default
responses introduces a threshold to response updating, then participants in the Manual
group should update their responses more often than the Automatic group. Consistent
with this effect, Manual group participants on average made more adjustments to their
previous estimate than did participants in the Automatic group.

However, these added adjustments are not a pure measure of increased updating events.
Our experimental design introduced an additional task for the Manual group. Only Manual
participants had to precisely re-align their slider with a grey bar in order to maintain an
exact estimate from trial to trial. Performance in the practice trials indicated that it
was certainly possible for Manual participants to maintain a response if they so intended.
However, it is also possible that this additional task added noisy deviations around intended
response maintenance.

Two hypotheses were distinguished to explain added adjustments in the Manual group.
According to the noise hypothesis, when Manual participants intended to maintain the
same estimate, sometimes they tolerated some deviation from one trial’s estimates to the
next. This produced differences in estimates that did not mark true intention to update
a response. In contrast, according to the true new updates hypothesis, an effort threshold
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prevented Automatic participants from making as many adjustments to their estimate
as often as their mental models changed. When this threshold was removed, response
maintenance became no easier than response updating for Manual participants. Manual
participants made new adjustments which corresponded to true intended updating events.

The two hypotheses were distinguished by the proportion of adjustments which were
sample-consistent or sample-inconsistent. If added adjustments were just noise, they should
be equally likely to be in-line with recent evidence as contrary to it. If added adjustments
marked true new updating events, then they should be sample-consistent. Our data support
both hypotheses partly explaining Manual participant added adjustments. There was both
added noise and new updating events.

Consistent with the true new updating events hypothesis, added adjustments in the
Manual group were more likely to be sample-consistent than sample-inconsistent. Consis-
tent with the added noise hypothesis, sample-inconsistent events were more common in
Manual participant added adjustments than in Automatic regular adjustments.

To estimate the proportion of adjustments contributed by either hypothesis, a mixture
model was fit to Manual participant added adjustments. To represent the hypothesis
that Manual participant added adjustments were only noise and not true updating events,
a Gaussian distribution with a mean fixed at zero was fit to the Manual participant’s
added adjustments. The mean fixed at zero forced the best-fit Gaussian to estimate that
adjustments were just as likely to be in-line with or contrary to recent events. In contrast
to the added noise hypothesis, the alternative hypothesis was that the Manual group added
adjustments represented more frequent updating. This hypothesis was also represented as
a Gaussian distribution, but with the mean entered as a free-parameter and allowed to
vary away from zero and thus be sample-consistent. A mixture model composed of both
the noise and the updating hypothesis represented the hypothesis that added adjustments
reflect both noise and true new updates.

Model fit was substantially improved between the just-noise model and the mixture
model. This suggests that Manual participants both had noise added to their intended
response maintenance and that they genuinely intended to update their responses more
often. Interpreting the statistics extracted from this mixture model can be meaningful, but
caution should be exercised when it comes to accepting the particular numeric quantities.
According to the best fit mixture model, 40% of new updates were noise and 60% of
new updates were true new updating events. The average adjustment size of these new
updates was estimated to be 1.2 slider-units, of the total available 100 slider positions. The
small size of these adjustments is consistent with the removed effort threshold hypothesis.
Adjustments at this scale would be negligible if a participant hurried through the task.

29



The previous discussion covers average group differences. However, the effect of the con-
dition manipulation was certainly not uniform across participants. Within groups there
was a tremendous amount of individual variation in task strategy. Both the Automatic and
Manual group number of total adjustments spanned almost the full range of possible num-
ber of trials. There are particularly striking cases of particularly meticulous participants.
Before exclusions, six Manual participants updated their estimates less often than did the
average Automatic participant. Two of these participants did not update their response
at all and are not considered to have shown meticulous response maintenance. Because
these two participants maintained the estimate at 50% red 50% blue throughout the entire
task, this behavior is taken as indication that these participants had a firm belief in their
complete and unshakable uncertainty.

Four remaining Manual participants updated less often than Automatic participants.
This Manual participant meticulous response maintenance is taken as evidence that, despite
it being more effortful, these participants truly intended to maintain the same estimate of
the probability over series of trials. This is despite possible perturbations to the estimate
from unpredictable events driven by the stochasticity of the process. This suggests that
thresholds introduced by previous task design does not fully explain why participants
demonstrate step-hold patterns in their probability estimates. Response maintenance can
appear spontaneously and can be apparently quite intentional and effortful.

Automatic participant responses were found to be more clean than Manual participant
responses. Plotting Automatic participant adjustments against sample-consistent adjust-
ments more cleanly shows the full continuous range of the possible updating frequencies
from trial-by-trial to threshold updating.

An unexpected non-linear effect was found only in the Automatic group regarding the
proportion of their adjustments being sample-consistent. When Automatic participants
made few adjustments, those adjustments may be just as likely to be sample-consistent
as sample-inconsistent. When adjustments are rare, it is more sporadic whether those
adjustments correspond to incorporating the most recent event. However, when Automatic
participants made any more than very few adjustments, those adjustments tended to be
over 90% sample-consistent.

Sample-inconsistent adjustments may be surprising in the Automatic group. The Auto-
matic group is never forced to respond, and so we would expect that Automatic participant
adjustments mark true intent to update their estimates of the probability. If recent ev-
idence is being used to update probability estimates, the most recent sample should be
what determines the direction of the update. However, sample-inconsistent adjustments
are a common finding in previous versions of this task. Forsgren et al. estimate that the
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proportion of sample-inconsistent updating is around 25%.

In our study, we found that sample-inconsistent adjustment frequency was related to
number of total adjustments made by Automatic participants. We explain the relationship
as there being a tighter temporal correspondence between mental model updating and
slider response updating in Automatic participants who update often. When adjustments
are infrequent in the Automatic group, adjustments may be delayed. Prompter response
time would be expected for participants whose estimates are more swayed by recent events.
This explanation is consistent with a hypothesis offered by Forsgren et al [24]. By their
account, sample-inconsistent responses are due to a variable threshold preventing prompt
updating. On one trial where the threshold is high, evidence may push the estimate to
change by a substantial amount, but no adjustment is made. If, by chance, the threshold
on the next trial is lower, even while the evidence pushes the estimate in another direction,
the substantial shift in estimate from the previous trial still determines the adjustment
direction. Thus, adjustments inconsistent with the most recent evidence are due to a
time-delay in updating caused by a variable threshold.

The large amount of individual variation within groups speaks to a continuity of up-
dating strategies which ranges from immediate updating following recent evidence to only
intermittent stepped updating following accumulated evidence. Thus, regardless of spe-
cific learning algorithm, response maintenance seems to reflect true mental model updating,
rather than is it exclusively explained by there being a motor cost to response updating.
The presence of participants who update nearly every trial suggests that the mental model
updating mechanism at least allows for immediate updating, and so it cannot be the case
that the updating mechanism precludes immediate incorporation of evidence to mental
models.

4.2 Explaining Spontaneous Response Maintenance

Some participants in the Manual condition showed spontaneous response maintenance, de-
spite it being the more effortful strategy. This step-hold pattern cannot be explained by
increased effort to update a response. Rather, there may be other reasons that updating
is infrequent. One possibility was proposed by both Gallistel. et al [4] and Khaw et al.
[6]. There may be a cognitive cost to updating. It may be computationally expensive to
compute a new estimate of the probability. Adding a threshold procedure turns proba-
bility estimation to a two-step process; the updating subroutine is only engaged when a
participant makes the binary decision to update on that trial. Thus, the cost of updating
is made exclusive to only those trials an update occurs.
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This explanation only holds if mental model updating can be delayed and does not
occur with each sample. This rules it out as an explanation for step-hold updating if the
learning algorithm used to generate estimates is a trial-by-trial model. However, Forsgren
et al. [24] found that the best fit to their participant estimates was a indeed two-step
trial-by-trial updating model. An explanation for intermittent updating is still needed if
the updating subroutine is not computationally expensive and occurs with each sample
anyway.

One possibility is that a fixed estimate produces a more stable reference point to com-
pare incoming statistics of new samples to. As an estimate of a probability stabilizes over
accumulating evidence, fixing an estimate over several trials may prevent the estimate
from drifting towards a new mean if the stochastic process suddenly changes. A fixed ref-
erence point for hypothesis comparison may make differences between first-order stochastic
processes more discriminable.

Another potential benefit to response maintenance was proposed by Gallistel et al. [4]
and was reviewed earlier. Estimating runs over which a stochastic process remained fixed
allows for more efficient storage of information that is not tied to every single data point.
This strategy is good for retrospective inference. Taking the mean of a set of samples is less
noisy than the samples themselves. Remembering a set of runs with estimated stochastic
processes will allow a person to make inferences about the general pattern observed as it
unfolded over time.

There are thus benefits to adding a threshold procedure to prevent updating. This is
whether or not the generating of new estimates is a subroutine only engaged when the
threshold is met.

4.3 Relating Response Maintenance to Hypothesis Test-

ing

Suspended updating by the above account is a consequence of hypothesis testing. In
suspended updating, different explanatory hypotheses are discretely switched between re-
sulting in runs of a maintained estimate. This response maintenance is not, to be clear,
an inevitable consequence of hypothesis testing.

Thus far, trial-by-trial updating and hypothesis testing have been presented as if they
are mutually contradictory. After all, if every sample is used to update a response, then
samples are not being accumulated. Much like trial-by-trial updating can be made into
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change-point detection given a threshold procedure, change-point detection more closely
resembles trial-by-trial updating if the threshold procedure is removed. Adjustments can
occur every trial. This is because new samples still contain information about the hidden
stochastic process, even if it that process is assumed to be fixed. Samples can be used to
amend hypotheses by minor amounts even while the model estimates that the underlying
probability has not changed. Volatility in estimates, given a fixed change-point location is
especially true in the early stages where a new change-point has just been inserted.

This becomes apparent when the threshold procedure is removed from the IIAB model
and adjustments to probabilities begin to occur at every trial. This is because the updating
subroutine uses optimal estimates of the probability, regardless of whether a change-point
was added, removed, shifted, or left alone. Optimal estimates of the probability are going
to incorporate the most recent evidence and thus be partially altered by it.

Hypothesis testing is thus separable from whether updating occurs with each sample
or not. As identified by Forsgren et al [24], the main difference between the delta-rule
model and the IIAB model is the weight assigned evidence. In the delta-rule model, more
weight is assigned to recent evidence, whereas in the IIAB model, all data since the last
change-point is given equal weight.

The increased optimality of the IIAB model probability estimates requires extensive
memory. In the task Gallistel et al. [4] assigned to participants, the average run-length
was 200 trials. The required average memory store for the IIAB model updating subroutine
was thus 400 trials. This memory requirement is sensitive to the precise location of each
dot in the time series. The advantage of this increased optimality is questionable; delta-rule
model estimates are so near optimal they are hardly discriminable from optimal Bayesian
change-point detection estimates [27].

This kind of trial-by-trial variation in change-point detection model estimates is distinct
from true trial-by-trial updating in one particularly distinctive way. Models which use
change-points to estimate probability will probably weigh incoming samples less and less
the further a sample is from the estimated change-point location. An optimal change-
point detection algorithm will want to use as much gathered evidence as possible to make
estimates of current probabilities and will not be pulled around by recent events if it
estimates that the generative process has not changed. It would thus be expected that over
long runs, adjustment size will decrease as estimates converge. This is unlike a delta-rule
model with a fixed learning rate, where adjustments would depend only on error. Empirical
data support the change-point detection method here. As previously discussed, variable
adjustment strength, such as implied by change-point detection algorithms is consistent
with the finding that participant learning rates decrease as the most likely run-length
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increases [8, 27].

This does not however indicate that change-point detection algorithms best explain
participant estimates. A delta-model algorithm with a variable learning rate, for instance,
would also explain this decrease in adjustment size [8]. Furthermore, an empirical finding
which draws into question the use of optimal change-point detection algorithms is learning
rates are certainly not optimal [7]. In particular, once the optimal Bayesian observer
estimates stabilize via converging to the true probability over a run, human estimates
remain more volatile citecarrabin2021. Human estimates are more subject to change given
recent evidence than is optimal given the accumulated evidence thus far. This may be
explained by a residual epistemic uncertainty in human estimates. If the inference process
is imperfect and known to produce unreliable estimates, then there will always be an
advantage to relying more heavily on recent events. This exaggerated uncertainty given
the weight of evidence is consistent with previous research finding that, while human
estimates are near accurate, the confidence that people claim confidence in those estimates
is severely underweighted [28]. Weighting events by their recency will ensure that a model
is kept relevant. This is a natural advantage offered by the delta-rule model. It is also
possible to adjust change-point detection algorithms to weigh recent events more heavily
if estimates of epistemic uncertainty are part of the equation.

Overall, there being response maintenance in participant responses is not sufficient to
determine whether change-point detection and hypothesis testing occurs.

4.4 Expanding the Notion of Hypothesis Testing

Hypothesis testing as a probability estimation tool has been presented quite simply and
has not been fully explored. It has a broader role to play in mental model updating
which requires elucidation. Thus far, hypothesis testing has been related to two-step
processes for mental model updating. In two-step mental model updating, hypothesis
testing occurs at the first stage where it is detected whether a change in probability is likely
to have occurred. This simple use-case severely limits the potential offered exclusively
by incorporating hypothesis testing into mental model updating. This potential is only
touched upon by Gallistel et al.’s treatment of the method.

A simple point about accumulating information for hypothesis testing should first be
made. In the IIAB model, using the KL divergence, the estimated probability distribution
is compared to the observed probability distribution. This observed probability distribution
is the data accumulated since the last purported change-point. However, this means that as
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long as no new change-point is inserted, the influence of recent samples on the estimated
probability distribution decreases with distance from the change-point. Therefore, the
effect of samples declines rapidly over time, making the estimated distribution increasingly
slow to pick up potential sudden changes in probability. This is an issue if the model is
meant to quickly and optimally detect changes in probability.

In the IIAB model, the decreased weight of new evidence on the observed distribution
is counterweighted by a second measure. E is calculated by taking the product of the KL
divergence and the number of observations made since the most recent estimated change-
point. This means that the larger the sample size, the more likely the model is to detect
a change. However, while the change-point threshold may then inevitably be reached, this
may have less to do with recent data, and more to do with the number of samples that
have passed. This is does not then represent a pure accumulation of model error. For the
model to be sensitive to sudden changes, a leaky integration model, such as is offered by
the delta-updating rule may fare better. This will discount information stretching back in
time before the probability changed. Another alternative, offered by Forsgren et al. [24],
is using drift diffusion as the threshold procedure.

4.4.1 Incremental Single Model Adjustment versus Model Com-
parison

There is a hidden premise in hypothesis testing which requires uncovering. Hypothesis
testing using a threshold procedure is not as simple as determining whether data are
sufficiently unlikely given a working model. This is the point delicately made by Griffiths
and Tenenbaum [29]. Hypothesis testing requires there being an alternative model which
better explains the data than the current model. This requires at least simultaneous
entertainment of two hypotheses at any one time. Comparing the relative plausibility of
more than one model resembles model comparison in a posterior distribution. That is,
even with trial-by-trial updating, a single estimate of the probability does not store all the
information relevant to the stochastic process. More than one explanation must be held
simultaneously in mind in order to detect that there is a better model to be moved to.

This implicated necessary model comparison is quite profound. Its necessity has been
obscured due to the simplicity of the doubly stochastic Bernoulli process. In the Bernoulli
estimation task, updating estimates is very straightforward and follows a single trajectory.
A better estimate which weighs the most recent event more strongly is derived simply by
moving the current estimate of the probability more towards one or the other extreme. The
success of the delta-model in explaining human estimates of the probability may have more
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to do with the simplicity of the assigned task than its generalizable applicability. Heilbron
and Meyneil [30] argue that, in these tasks, flat delta-model estimates which conveniently
forget the past and rely on recent data are too close to optimal Bayesian learning to truly
discriminate between the two strategies. The delta-model is able to generate estimates
from its previous estimates so effectively because, unless the current estimate is at the
extreme, an alternative better fitting model is always implied by each individual sample.

But deriving that there exists a better fitting model and thus the current model no
longer applies is not typically so straightforward. When the model is more complex, a
single sample, for example, cannot be assumed to imply the new better-fitting mental
model. Probabilities can change in more ways than could be implicated by single samples.
Moreover, even if multiple samples are available, storing previous information in a running
estimate of a model and incrementally updating that model to the nearest best-fitting
model has a number of other disadvantages. There are issues with storing information as
the current estimate and there are issues with only incrementally updating a single working
model. These disadvantages are developed below and hypothesis testing is offered as an
alternative account.

Information Contained in Multiple Samples

The simplest critique of trial-by-trial updating is that single samples cannot reliably be used
to determine the trajectory of hypothesis updating. Any single sample may be ambiguous
in implication. For example, consider the case where a distribution is assumed to be
bimodal. Any particular event has two possible interpretations; either one or the other
mean has shifted. A delta-model updating algorithm will not know which parameters to
change to make the recent sample more likely if those parameters are correlated.

This calls into question trial-by-trial updating if trial-by-trial is taken to mean that
every sample is used independently to immediately generate a better estimate of the prob-
ability. However, it should be noted that this does not rule out delta-rule updating. If
the model is complex enough to require converging information from multiple samples, it
should be noted that the delta updating model can be amended to operate on multiple
samples. If single samples underdetermine the next best fitting model, delta-rule mental
model updating may rely on a window over multiple samples. However, the limitation of
the delta-rule model is not solely due to its trial-by-trial implementation. There is informa-
tion that can be extracted from multiple samples which cannot be detected by a delta-rule
model.

The delta-rule model assumes the form of the frequency distribution it is using to
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represent events. When new data arrives, this distribution is updated to make those
events more likely. The delta-rule model assumes a class of models and uses its constraints
to improve the current working estimate of the probability. However, it is possible for the
form of the stochastic process to itself change.

As an example, consider the case where a unimodal distribution changes to a bimodal
distribution. If a unimodal distribution is assumed, the delta-rule model would become
more volatile and would be pulled sporadically between two means. This does not occur
in human estimates. Humans are quite capable of tracking changes in distributions which
require multiple samples to detect. For instance, they can notice a change from a unimodal
to a bimodal distribution [31] or a narrow distribution to a wide distribution [32].

In general, humans can infer the broader classes of models which their particular prob-
ability estimates are instances of. They can learn the general form of a probability distri-
bution and the rules that govern how the distribution changes [29, 33, 34, 35].

As discussed, the delta-rule updating model cannot learn these sorts of constraints on
models. Constraints on models are not themselves not contained in the model but rather
determine the form of models and determine how information is used to update those
models. Constraint learning thus operates outside of delta-model learning. No incremental
updating is possible if what is learned is rules for updating. Rules for updating here refers
to how the class of possible probability models is constrained such that the future evidence
is used to find a better fitting model within a class. When different classes of models
account for the same data, here the importance of hypothesis testing becomes evident.
When models in two different classes account for recent samples differently, some method
must be used to determine which model is preferable.

One method of switching between classes of models or adopting different constraints on
postulated distributions is hierarchical Bayesian inference. The hierarchy in hierarchical
Bayesian inference refers to the structure of the hypothesis space that classes of models
exist within. Moving a level up in hierarchical hypothesis space means making a model
less complex or less specific. Moving a level down in hypothesis space means constraining
the model, making it more specified. An example of a model increasing in complexity is
adding a predictor to a regression equation. The model gets more complex as its estimates
of a variable depend on context, but model predictions become more precise. The more
complex model produces better estimates for the expected values of the dependant variable.

Hierarchical Bayesian inference offers a method to distinguish which model ought to
be adopted to explain recent evidence (see [29] or [34] for more detail). Increasing model
complexity tends to increase model fit. Samples are better explained by the increased
explanatory power of increasingly specified models. However, there is a trade-off between
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model-fit to previous observations and model generalizability to future data; this is the
concern with overfitting models.

The real ingenuity of the hierarchical Bayesian approach is in the solution it offers to
overfitting. Hierarchical Bayesian reasoning naturally favours simpler models. This has
been referred to as the size principle [34] and the minimum principle [36]. Gallistel et al.
[4] describe the principle as a built-in Occam’s razor. In hierarchical Bayesian reasoning, a
complex model with more parameters is given the same prior likelihood as a simpler model
with fewer parameters. Complex models distribute their probability over a larger space
and marginalize over more sub-optimal parameterizations. The increase in fit offered by
the intersections of parameters is counteracted by the smaller weight assigned to the best
fits and the averaging of fit over a broader hypothesis space. This creates a bias against
more complex models.

To ground the broad discussion back in the current research, it is worthwhile to explore
how the Bernoulli process used in this task itself exists implicitly in a hierarchical model
space. The single parameter in the Bernoulli process represents a constraint on a higher-
order class of binary stochastic processes. In a Bernoulli process, samples are independent
and identically distributed (IID). That means that, given the Bernoulli process, each dot
color is independent of the last dot colour. However, this is a special case of a broader
class of possible transition probabilities. It is possible that both dot colors have different
probabilities of being followed by either dot color. In a Bernoulli process, those probabilities
happen to be shared over the previous states.

The two transition probabilities being uniform across previous states is a constraint
on the broader class of models which a Bernoulli process is a subset of. But people are
capable of learning either individual transition probabilities [37] or collapsed transition
probabilities (as in this Bernoulli task). This suggests that they can entertain multiple
explanations for the same data and apply different constraints at different times. This
suggests that humans can move around hierarchical hypothesis space.

Of note, transition probabilities in such an increasingly complex Bernoulli task have
been used to argue that hierarchical reasoning is necessary part of tracking nonstationary
processes. Heilbron and Meyneil [30] argue that previous tasks have been too simple to
truly distinguish flat from hierarchical reasoning. The experimental design used to argue
this point was similar to previous experimental work using Bernoulli processes, however,
two transition probabilities were used rather than was the one probability assumed to
be uniform across previous draws. The probabilities changed together at distinct change-
points. This created a dependency between the two transition probabilities; if a change was
detected in one transition probability, a change in the other transition probability could be
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inferred. Only the hierarchical inference algorithm could be sensitive to this dependency.
Human estimates, like only the hierarchical learning model, were sensitive to these parallel
change-points.

It has thus far been argued that relying on single samples to update estimates is too
severe a restriction on the set of possible inferences that can be obtained from sample
information. Trial-by-trial updating is limited partly because single samples are not enough
to determine the direction a model needs to change in. Statistical information obtained
from multiple coincident samples may go so far as to implicate shifts in the constraints on
the probability model currently being used to determine the probability of events. This
kind of model updating is not possible given a flat delta-rule updating model. Rather,
model comparison seems to be required.

Information Stored in Working Estimate

This next section further problematizes the delta-updating model by arguing that stor-
ing information in a current estimate of the probability and incrementally updating this
estimate is insufficient to account for how estimates must be updated by humans. Some
hypotheses cannot be moved to via incremental updating of a single working estimation
in an assumed parameter space. Information is lost when only the current estimate of a
working mental model is used. If only one working estimate of probabilities is remembered
the explanatory power of completely disparate hypotheses may be lost and unrecoverable.

Previously, constraint learning was only discussed in the context of coincident samples
being suspiciously well explained by a particular model. This seems to imply that learning
constraints also implies a best-fit model. This is not so. Constraints can be on the broader
hypothesis space without themselves implicating one best-fit explanatory model or even
a particular class of models. Information may ambiguously support a number of distinct
hypotheses or disparate models.

In psychology there exists a term which is used to describe the case where evidence
ambiguously supports a number of discrete hypotheses: confounds. Information contained
in samples is often confounded. Evidence for more than one explanation can be explained
away by an alternative hypothesis when new evidence is gathered.

Humans are quite capable of learning constraints on models through ambiguous infor-
mation. For example, Griffiths and Tenenbaum [38] had participants rate the likelihood
that objects were ’blickets’ based on the output of a ’blicket detector’. In the indirect
screening-off condition, participants watched two objects go into the detector. The blicket
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detector went off, signaling the presence of at least one blicket. This information ambigu-
ously supports three potential hypotheses. Either one or the other or both objects going
into the machine are blickets. In the subsequent trial, participants watched one object go
into the blicket detector and the blicket detector did not go off. They correctly inferred
that the other object that did not go through the machine was likely to have been the
blicket.

No estimate of the probability of each item being a blicket supported this conditional
inference that the absence of a blicket signal from one object implicated the blicket status
of the other object. Rather, the information gained in the previous trials determined
constraints on the set of probable worlds which could be inferred given further information.
The meaning of the previous information did not determine a single mental model which
recursively stored previous information from the time series. Rather, it determined the
way in which information about one state of affairs related to another state of affairs.

Explanatory models accounting for the same evidence equally well can differ from one
another quite dramatically. There may be no smooth incremental improvement between
models over the parameter space if only an intersection of parameters determines that the
model fits well. This will be the case if it is particular intersections of states of affairs
that best account for data, rather than there being a monotonic increase in model fit given
any incremental shift in parameters. However, humans are quite capable of switching
between two explanatory models which account for the data very differently. This ability
is apparent, for example, in bistable perception [39].

To return the discussion to the nonstationary doubly stochastic processes, a neuro-
logically plausible account of multiple hypothesis comparison (rather than single estimate
incremental updating) has been offered for time-series data. This is particle sampling
[40, 7, 10]. Particle sampling is a Monte Carlo approximation of optimal Bayesian infer-
ence for time-series data. Rather than there being a single estimate of the probability which
is updated according to incoming evidence, multiple simultaneously entertained hypotheses
are represented by a number of particles. The proportion of particles currently entertained
represents the strength of each hypothesis. The number of particles per hypothesis is what
is updated with incoming sample information. The distribution of particles approximates
the posterior distribution over the hypothesis space of explanatory models [10]. Of par-
ticular interest, Prat-Carrabin et al. [7] fit a number of different models to participant
estimates of a doubly stochastic stepwise nonstationary process. The models include a
particle filter model, but also many of the other models proposed by various authors dis-
cussed above [8, 21, 6]. They found that a particle filter model best described participant
estimates.
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That Which Constitutes a Sample

Finally, it is also worth noting that identifying units that count as samples can itself be
learned through probabilistic inference. Single samples are necessary to update a trial-
by-trial model to make those samples more probable, but sometimes the segmentation
of information into discrete units is itself probabilistic inference. In statistical learning,
transition probabilities are learned and used to segment continuous streams into categorical
units. This method of inference was first proposed to explain parsing acoustic signal
into language. Rather than there being distinct pauses in speech between words as one
might expect, word boundaries are more consistently marked by the low probability of the
phonological transitions between words in sound sequences [41].

Within a perceptual unit, events are highly predictable, and it is the low transition
probabilities at the end of the unit which signals its end [42]. Hard, Recchia and Tversky
[43] use the same principle to explain how it is we segment an unfolding event into sub-
procedural actions. The ends of actions are also marked by low transition probabilities
between action subroutines. If a person is engaging in an activity, for example, doing
laundry, their actions are highly predictable. However there is increased entropy at the
boarder of actions where it becomes more variable what a person engages in next.

Summary

Even while the delta-rule model offers a number of advantages for simple model updating,
there must also be a more sophisticated mechanism detecting more complex changes in
probabilities over time. As a general principle for updating estimates of probabilities as
they change over time, the delta-rule fails to explain all possible probabilistic inferences.
The principle of hypothesis testing as used in change-point detection algorithms has much
broader applications. Hypothesis testing is implied by more general and sophisticated
models which can detect highly complex changes in probabilities over time. While optimal
hierarchical Bayesian inference may be computationally intractable, its approximations
such as particle filtering [10] offer a neurologically plausible account of human estimation
[40] and they have been found to fit human estimates better even than delta-updating
models [7].
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4.5 Conclusion

In our experiment, effort was not sufficient to explain response maintenance. Despite an
increase in motor cost, some participants nonetheless maintained their estimates over long
series of trials. They did not use each sample to update their estimates of the probability.
Response maintenance, despite increased difficulty, emerged naturally in some participant
estimates of the probability. But this strategy is not universal. Individual variation was
large in both groups. In the Automatic participant data, a large range of updating frequen-
cies is particularly evident. This supports there being a larger range of updating strategies.
It is certainly possible, given a simple learning task, to use each piece of evidence to up-
date a mental model. However, the possibility of altering models to incorporate incoming
evidence and improve a working model should not be over-generalized.

Our data suggest response maintenance is not an artifact of previous designs but points
to a genuine strategy for probability estimation. This is consistent with previous litera-
ture finding improved model fitting given two-step probability estimation procedures for
which a threshold prevents immediate updating. This is also consistent with previous lit-
erature which finds that human beings are sensitive to probability structures which are not
determined by single samples and only become likely when sufficient evidence accumulates.
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