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Abstract

Text simplification is a task in the natural language processing field that alters a given text
to reduce the structural and lexical complexity of the text while preserving the underlying
meaning.

We can classify existing text simplification approaches into generative and revision-
based methods. Through explicit edit operations such as word deletion and lexical substitu-
tion, revision-based strategies iteratively simplify a given text in multiple steps. However,
generative approaches generate simplified sentences from a complex sentence in one step.
Generative models do not have explicit edit operations but learn implicit edit operations
from data. Revision-based methods are more controllable and interpretable than generative
models. On the other hand, generative models can apply more complex edits (such as
paraphrasing) to a given text compared to the revision-based method.

We propose GRS: an unsupervised approach to sentence simplification that combines
text generation and text revision. We start with an iterative framework in which an input
sentence is revised using explicit edit operations such as word deletion and add paraphrasing
as a new edit operation. This allows us to combine the advantages of generative and revision-
based approaches. Paraphrasing captures complex edit operations, and the use of explicit
edit operations in an iterative manner provides controllability and interpretability.

We demonstrate the advantages of GRS compared to existing methods. To evaluate
our model, we use Newsela and ASSET datasets that contain high-quality complex-simple
sentence pairs and are commonly used in the literature. The Newsela dataset contains 1,840
news articles re-written for children at five different readability standards. The ASSET
dataset comprises 2,359 sentences from English Wikipedia. GRS outperforms all unsu-
pervised methods on the Newsela dataset and bridges the gap between revisions-based and
generative models on ASSET datasets.
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Chapter 1

Introduction

Text simplification is the task of reducing the complexity and improving the readability
of text while preserving its meaning. This is beneficial for persons with reading disabili-
ties [12], non-native speakers, people with low literacy, and children. Furthermore, other
natural language processing (NLP) tasks can use simplification as a pre-processing step,
such as summarization [13], parsing [14], and machine translation [15].

Intuitively, humans simplify a sentence in multiple ways. One may reduce the complex-
ity of text by replacing the difficult words with simpler synonyms, removing unimportant
information, paraphrasing, or splitting the sentence. We can also change the structure of
the sentence to make it simpler. Sometimes even elaborating on some parts of the sentence
can help the reader to understand the text better. Figure 1.1 illustrates an example from the
Newsela corpus [16] in which professional editors simplify sentences. In this example, the
phrase “with exceptions for the infirm” is considered peripheral information and has been
removed by the editor. In addition, the phrase “are required to offer” is paraphrased and
replaced with “should do”. Also, the word “daily” is changed to “a day”.

Sentence simplification models can be categorized into generative and revision-based
models. Generative approaches produce a simple sentence from a complex sentence in one
step, in an auto-regressive way [17–21]. Revision-based methods iteratively edit a given
sentence using a sequence of explicit edit operations such as word deletion, lexical substi-
tution, and reordering [11, 22–24]. While generative models learn complex edit operations
implicitly from data, the explicit edit operations performed by revision-based approaches
can provide more control and interpretability. By learning from data, generative models
can perform phrase-level complex substitutions by paraphrasing different constituents of a
given sentence; however, revision-based approaches can not paraphrase, and they can only
substitute difficult words with simpler ones without considering the context.

Simplification methods can also be categorized as supervised or unsupervised. Su-
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Figure 1.1

pervised methods tend to have better performance, but require aligned complex-simple
sentence pairs for training [17–19, 21, 25, 26]. Unsupervised methods do not need such
training data but do not perform as well [11, 20, 27].

Recently, Kumar et al. [11] proposed an unsupervised revision-based model that iter-
atively revises the complex sentence by applying edit operations (such as deletion, lexical
simplification, and reordering) on different constituents of the sentence. This iterative
simplification makes their approach more interpretable since we can obtain the intermedi-
ate simplified sentences and trace the modifications applied to a sentence. On the other
hand, Martin et al. [25] proposed an unsupervised generative model that uses a BART [28]
model. BART (Bidirectional Auto-Regressive Transformers) model is a state-of-the-art
pre-trained language model that can generate text. Martin et al. [25] fine-tuned the BART
model on paraphrase sequences. Using the BART model, they can perform more complex
simplification edits and obtain better results than revision-based models.

Motivated by the shortcomings of generative and revision-based approaches, our goal
is to design a hybrid simplification system with both directions’ advantages. In essence, we
want to have a model that is interpretable, controllable, unsupervised, and able to perform
phrase-level complex substitutions by paraphrasing.

In this work we propose GRS: a new approach to bridge the gap between generative
and revision-based methods for unsupervised sentence simplification. The insight is to
introduce paraphrasing as an edit operation within an iterative revision-based framework,
which was proposed by Kumar et al. [11]. For paraphrasing, we use a fine-tuned BART
model [28] with lexically-constrained decoding [29–31]. This decoding technique allows
us to put strict constraints on certain words in the input sentence such that they are not
generated in the paraphrased sentence. Using this technique, we put these constraints on
the complex fragments of a sentence, thus simplifying the sentence through paraphrasing
in a controlled manner. Treating paraphrasing as an edit operation applied to a sentence
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Chapter 1. Introduction

fragment introduces computation overhead since there may be many candidate fragments
to choose from. To avoid the computational overhead of repeatedly performing constraint-
based decoding using various combinations ofwords to paraphrase, GRS includes a complex
component detector to identify the most appropriate words to paraphrase.

GRS is unsupervised in the sense that it does not require aligned complex-simple sen-
tence pairs, but it uses supervised models. The paraphrasing model requires paraphrasing
corpora, and the complex component detector requires two unlabeled corpora, one con-
taining more complex sentences than the other. However, collecting paraphrasing data and
unaligned simplification data is simpler than collecting aligned complex-simple pairs. The
GRS model only supports the English language. This thesis is based on our work [32]
published at the Findings of the 60th Annual Meeting of the Association for Computational
Linguistics (ACL 2022).

To summarize, we present the following contributions:

• We design an unsupervised, controllable, and interpretable text simplification sys-
tem that combines revision-based and generative text simplification approaches by
integrating a paraphrasing edit operation into an iterative revision-based framework.

• We evaluate our method on ASSET [33] and Newsela [16] datasets using SARI [34]
evaluation metrics. Newsela and ASSET datasets are composed of complex-simple
sentence pairs and are commonly used in the literature for training and evaluation.
SARI is an evaluation metric for text simplification that compares the output sentence
against the reference sentence and the original input sentence. We show that our
approach outperforms all unsupervised sentence simplificationmodels on theNewsela
dataset. On the ASSET dataset, we are the second-best model among unsupervised
models, but we bridge the gap between generative and revision-based methods. We
also conducted a human evaluation study and showed that human evaluation is aligned
with the automatic assessment on the ASSET dataset.

• We devised a novel unsupervisedmethod to obtain complex components of a sentence
automatically. We evaluate the proposed complex component detector and conduct
an ablation study to show the effectiveness of this module in our system.

• We do a controllability study on GRS and show that we can control various factors of
the simplification system. Also, we conduct an analysis to show how frequently the
GRS system uses each edit operation on average.

• We release the open-source implementation of the GRS model at https://github.
com/imohammad12/GRS.
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• We also release all submodels that we have used in theGRSmethod. These submodels
are neural models used in different parts of the GRS system and are uploaded at
http://huggingface.co/imohammad12. The online demos of these models are
also available at the provided link.
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Chapter 2

Preliminaries

This chapter discusses some important NLP concepts and models, such as pretrained
language models used throughout the GRS system. Pretrained language models are trained
using unsupervised data; thus, we have used them in different components of the GRS
design, such as the paraphrasing operation (Section 4.2.2) and the GRS score function
(Section 4.3).

In Section 2.1, we define the language models. Section 2.2 discusses the sequence-to-
sequence models and how the RNN and transformer architectures work. Understanding
transformer models will give us the background knowledge needed to comprehend the pre-
trained language models (e.g., the Bert [8] model) that have enabled transfer learning in
NLP. In Section 2.3, we discuss the benefits of pretrained language models and explicate
the Bert pretrained model.

2.1 Language Models

Programming languages can be specified using formal rules, but natural languages are not
designed like programming languages. There is no standard specification for natural lan-
guages. Instead of defining formal specifications for natural language, we use probabilistic
models to learn the model of a language from examples.

Language models are probabilistic models that can predict the next word (or sequence of
words) in the sequence, given words that come before it. Given the sequence B containing
words F1, F2, ..., F<, a language model assigns a probability %LM (F1, . . . , F<) to the
whole sentence. The following equation shows howa languagemodel obtains the probability
of a sentence:

%LM(B) = %LM (F1, . . . , F<) =
<∏
8=1

%LM (F8 | F1, . . . , F8−1) (2.1)

5
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Language models may be created using statistical or neural methods. Today neural
network-based models are preferred since they perform better than classical statistical
models. The number of words the model takes into account when predicting the next word
depends on the model’s complexity. Neural language models can incorporate much more
context than classical statistical models.

Language models are not just used to generate text. Language models are a core
component for many real-world NLP tasks such as machine translation that need language
understanding.

2.2 Sequence to Sequence (Seq2Seq) Models

What is a Seq2Seq model?

Seq2Seq [1] models take a sequence as input and generate another sequence as output. For
example, a Seq2Seq model can take an English sentence and generate a French sentence.
Today these generative models are used in various NLP tasks such as text simplification,
question answering, and conversational agents.

Figure 2.1 A Sequence to Sequence model that takes the “ABC” sequence as input and produces
“WXYZ” sequence as output. Image takes from Sutskever et al. [1]

Figure 2.1 illustrates a Seq2Seq model. These models are composed of two parts; an
encoder and a decoder. The encoder takes an input sentence - =

(
G1, G2, . . . , G |- |

)
, and then

the decoder generates an output sentence . =
(
H1, H2, . . . , H |. |

)
. Generating a sentence in

the decoder is done in an autoregressive way. This means that in each time step, the decoder
outputs a single word. In each step, the decoder gets the incomplete sentence generated
so far as input and produces the following word in the sentence. Essentially the decoder
creates one probability distribution over all vocabulary in each decoding step. The training
loss function is defined using these probability distributions. The model outputs the word
with the highest probability during inference in each step. The probability of the output
sentence . given the input sentence - is:

6



Chapter 2. Preliminaries

%(. | -) =
|. |∏
C=1

% (HC | H1:C−1, -) (2.2)

% (HC+1 | H1:C , -) = softmax
(
W;<hC

)
(2.3)

Where W;< ∈ R|+ |×3 . |+ | is vocabulary size, and 3 is the hidden size of the model. hC

is the hidden state vector generated by the autoregressive decoder in step Cth. W;<, the
language model weights, converts a hidden state vector generated by the decoder to a vector
of vocabulary size.

There are different architectures for Seq2Seq models. All of them use neural networks
in their structures. Recurrent Neural Networks (RNNs) [35] were proposed earlier and are
substituted by better architectures in recent years. Vaswani et al. [36] proposed Transformer
models and today the Transformer model and its extensions are used for addressing various
natural language understanding problems. In the following we will explain RNN (2.2.1),
RNN with attention (2.2.2), and Transformer (2.2.3) models.

2.2.1 RNN

Figure 2.2 An RRN model that translates a given English sentence into a French sentence. The
image is a modified version from Tracey [2].

An RNN cell takes two inputs in each time step:

1. The vector representation of a word (xC)

7
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2. The hidden state generated in the previous time-step (hC−1)

Then the RNN cell generates a new hidden state for current time step (hC) and this hidden
sate vector is given as input to the RNN cell in the next step. RRNs can process inputs of
any length. The following equation shows how an RNN cell works:

hC = 502C

(
WℎℎhC−1 +WℎGxC + b

)
(2.4)

In this equation hC , hC−1, xC , and 502C refer to the hidden state vector in step Cth, the
hidden state vector in step C − 1th, vector representation of the input word in step Cth, and an
activation function respectively. Wℎℎ,WℎG , and b are weights and biases that are shared in
all time steps. Figure 2.2 illustrates an RNN model used for machine translation task. The
encoder of this model takes the words in the input sentence one by one in each time step.
After taking the last word in the input sentence, the hidden state generated by the encoder
in this time step (time step 4 in Figure 2.2) is given to the decoder. In the first decoding
time step the decoder’s RNN cell takes the last hidden state of the encoder and a start token
(<GO> token in Figure 2.2) as input. In the next time steps the decoder’s RNN cell takes the
hidden state vector (hC−1) and the generated output word of the previous time step. In the
decoder we use the hidden state vectors to generate output words. Equation 2.3 shows how
we use a hidden state generated by the decoder of a Seq2Seq model to obtain a probability
distribution over all vocabulary in each decoding step. We select the most probable word as
the output word in each time step. Generally, during training instead of giving the generated
word in previous time step, we give the ground truth word (target output) to the decoder’s
RNN.

2.2.2 RNN with Attention

As mentioned in the previous section, the decoder receives the last hidden state vector
(called the "context" vector) of the encoder to generate the output sentence. The decoder
should generate the output sentence using this context vector, and it becomes hard for the
decoder to remember all parts of the input sentence while generating the output. Bahdanau
et al. [4] and Luong et al. [3] proposed the attention method to help the model focus on
relevant sections of the input sentence in each decoding step. The attention mechanism
allows the decoder of an RNN model in each step to utilize all hidden states of the encoder
instead of just using the last hidden state vector (context vector) generated by the encoder.
In essence, the decoder can pay attention to different parts of the input sentence according
to the current decoding step.

In the Cth decoding step, the hidden state vector of the decoder (ℎC
3
) is obtained using

Equation 2.4. Then for each hidden state of the encoder, we calculate an attention weight
(0C8). The following formula shows how an attention weight is calculated.

8
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Figure 2.3 Attention mechanism in RNN models. The image is taken from Luong et al. [3]

0C8 = softmax
(
score

(
ℎ84, ℎ

C
3

) )
(2.5)

score
(
ℎ84, ℎ

C
3

)
=

(
ℎC3

))
,0ℎ

8
4 (2.6)

0C8 indicates the attention weight associated with the 8th input word in the Cth decoding
step.ℎC

3
and ℎ84 refer to the hidden state of the decoder in time step C and the hidden state

of the encoder in time step 8, respectively. ,0 is randomly initialized and updated during
training. After calculating all attention weights in Cth step of decoding, we calculate the
context vector 2C as the weighted average over all encoder hidden state vectors:

2C =

|X|∑
8=1

0C8ℎ
8
4 (2.7)

In this equation |X| refer to the length of input sequence. We use a simple concatenation
layer to aggregate the information from both the context (2C) and the hidden state (ℎC

3
)

vectors to construct an attentional hidden state vector (ℎ̃C
3
):

ℎ̃C3 = tanh
(
,2

[
2C ; ℎC3

] )
(2.8)

9
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Figure 2.4 This image illustrates the attention weights of an RNN with an attention layer on the
machine translation task. The words in the original sentence (English) and the produced translation
(French) are represented in the x-axis and y-axis of the plot, respectively. Each pixel shows 08 9 ,
which is the amount of attention that the model paid to the 9-th word of the input sentence in the 8-th
decoding step. The image is taken from Bahdanau et al. [4].

The weight,2 is randomly initialized and updated during training. Then using the,B

weight and the softmax layer, we obtain a probability distribution over all vocabulary to
predict the output word in the Cth decoding step:

? (HC | H1:C−1, -) = softmax
(
,B ℎ̃

C
3

)
(2.9)

Figure 2.4 illustrates how the attention mechanism works in RNN models.

2.2.3 Transformers (Self-Attention)

In 2017 Vaswani et al. [36] proposed the Transformer model, which is now widely used
in the NLP field and in other AI areas such as computer vision and time series analysis.
Vaswani et al. [36] proposed a new attention method called self-attention. When the model
is processing a word, the self-attention mechanism allows the model to concentrate on other
words in the input sentence that correlates to that word. Using this method, the Transformer
model can obtain a better encoding for the current processing word by paying attention to
other relevant words in the input sentence. Figure 2.5 shows the self-attention weights of
the Transformer model for two given sentences. The two sentences are:
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Figure 2.5 This image illustrates the self-attention weights of a transformer model. Attention weights
are reflected by color intensity. The image is taken from Doshi [5]

• The cat drank the milk because it was hungry.

• The cat drank the milk because it was sweet.

In the first example the word “it” refers to “cat”, but in the second example “it” refers
to “milk”. Figure 2.5 shows that the self-attention mechanism helps the model attend to
related words when processing the word “it”. This example is taken from Doshi [5].

Like previous models, the Transformer model has an encoding module and a decoding
module. The encoding module is a stack of six encoders and the decoding module is a stack
of six decoders. Figure 2.6 illustrates the structure of the transformer model. All encoder
layers have the same architecture but they do not share the learning weights. Like encoders,
all decoder layers also have the same structure but different weights. As shown in Figure 2.7,
each encoder layer is composed of a self-attention and a feed forward sublayer. In addition to
the feed forward and self-attention sublayers, the decoder has an encoder-decoder attention
sublayer. In the following we will explain all these sublayers.

Self-Attention

Consider that the matrix - ∈ R=×3model contains the embeddings of = input tokens (a token
can be either a word or a smaller chunk of a word) and 3model is the dimension of the
each embedding vector. In each self-attention sublayer we have three weight matrices;
,& ∈ R3model ×3: ,, ∈ R3model ×3: , and ,+ ∈ R3model ×3E . By multiplying the matrix X by
each of these weights we obtain queries (&), keys ( ), and values (+):

11
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Figure 2.6 This image illustrates the structure of the Transformer model. The image is taken from
Alammar [6].

& = -,&

 = -, 

+ = -,+

(2.10)

Queries, keys and values are given as input to an Attention function:

Attention(&,  ,+) = softmax
(
& )
√
3:

)
+ (2.11)

We calculate the attention for a set of queries simultaneously by using matrix multipli-
cation. In the attention function, the dot products of each query with all keys are calculated
and divided by

√
3: . Then the results are given to a softmax function. The softmax scores

are used as attention weights on values (+). In fact, by multiplying the softmax score matrix
by the values matrix (+), we sum up weighted value vectors for each positions in the input
sequence. The output of the attention function would be a matrix of shape = (number of
input tokens) by 3E. The resulting matrix will then be given to a regular feed-forward neural
network.

Each encoder layer has a self-attention and a feed-forward neural network with different
weights. The input to the first encoder is the embedding vectors of input tokens (-), but
the other encoders receive the output of the previous encoder (the one below) as input.

12
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Figure 2.7 This image illustrates the structure of the encoders and decoders layers inside the encoding
and decoding modules of the Transformer model. The image is taken from Doshi [5]

There are some further details regarding the self-attention sublayer. For instance, the
paper introduces the "multi-headed" attention mechanism. Also, in each encoder, there are
residual connections and layer-normalization steps. We do not mention these details and
refer the interested readers to the original paper ([36]).

Encoder-Decoder-Attention

The structure of a decoder layer is very similar to an encoder layer. As illustrated in Figure
2.7, a decoder layer has one additional sublayer called the “Encoder-Decoder-Attention”
sublayer. The structure of the self-attention and feed-forward sublayers inside encoders
and decoders are the same. The attention function used in the encoder-decoder-attention
sublayer is the same as the attention function (Equation 2.11) of a self-attention sublayer,
but their inputs are different. In fact, for the encoder-decoder-attention sublayer, the keys
and values are from the output of the last encoder layer of the encoding module (the stack
of encoders), but the queries are from the previous decoding layer (the decoder below). A
decoder can pay attention to all positions in the input sequence using the encoder-decoder-
attention sublayer. The intuition behind the encoder-decoder-attention sublayer is similar
to the regular attention mechanism used in RNNs; the decoder should be able to attend
to different positions of the input sequence in the encoder while generating the output se-
quence. The self-attention sublayer inside the decoder layer allows the decoder to attend to
the generated tokens so far.

In the end, the decoding module (the stack of decoders) will generate a hidden state
vector for each position. The hidden state vectors are given to a linear layer followed by
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a softmax layer like other autoregressive models. Equation 2.3 shows how a hidden state
vector is converted to a vector of vocabulary size.

2.3 Pretrained Language Models

Transformer models are relatively large models with multiple hyperparameters that need a
considerable amount of supervised data to be trained. For example, in the original setting
[37], the transformer model was trained on a translation dataset (WMT 2014 [38]) with al-
most 1 million sentence pairs. Obtaining this amount of supervised data needs considerable
human effort.

In many machine learning areas, Transfer Learning methods have helped researchers
train accurate models with limited supervised data. Using transfer learning techniques, we
can store the knowledge obtained from solving one task and apply it to another similar task.
For example, consider that we train a model for classifying dogs and cats. A trained image
classification model has learned how to find the generic features in the images. This model
can be used as a pretrained model and then fine-tuned on another dataset to classify ants
and wasps. Transfer learning techniques can reduce supervised data needed for training a
model, the training time, and the generalization error.

2.3.1 BERT

In 2018, the BERT model was proposed by Devlin et al. [8]. Bert is a language repre-
sentational model used for many NLP tasks such as text classification, question answering,
and named-entity recognition. Training the Bert model has two steps: pretraining and
fine-tuning steps. First, the model is pretrained on unlabeled text, and then the model is
fine-tuned for a specific downstream task using supervised data. The pretraining step is the
same for all downstream tasks, and there is no need to modify the model’s architecture for
each downstream task. We can transfer the language knowledge the model learned in the
pretraining step to the various downstream tasks. The Bert model helped researchers obtain
a very effective transfer learning method in NLP.

Model Architecture

The architecture of the Bert model is basically the encoding module (the stack of encoders)
of the transformer model. In the Bert Base model 12 encoder layers and in the Bert Large
model 24 encoder layers are stacked on top of each other (Figure 2.8). The structure of
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Figure 2.8 This image illustrates the structure of the Bert model. The image is taken from Alammar
[7].

Bert’s encoder layers is the same as encoder layers in the transformer model. As show in
Figure 2.8, the Bert model receives a sequence of tokens and generates a representation
(hidden state vector) for each input token. In the following we will discuss how these hidden
vectors are used in each downstream task.

Pretraining

All decoders in seq2seq models, including the transformer decoder, generate text auto-
regressively. The auto-regressive models generate tokens in one direction (left to right or
right to left), but the Bert model is a bidirectional model that jointly considers both left
and right contexts. The left-to-right models are trained using traditional language modeling
objectives. However, the Bert model introduced the “masked language model" objective,
a new method for training a deep bidirectional model. They randomly mask some input
tokens in a given sentence and ask the model to predict the masked tokens. For instance,
assume that the second position in the input sequence is randomly selected to be masked.
Instead of giving the original token to the model, [MASK] token is given to the model in
this position. Then the last hidden vector corresponding to the masked position is used to
predict the actual correct word in this position. In order to create a probability distribution
over all vocabulary, the hidden vector is multiplied by a language model weight followed by
a softmax layer like other language models (Equation 2.3). No supervised data is needed to
train a model with a masked language model objective.

Capturing the relationship between sentences in a corpus is crucial for downstream tasks
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Figure 2.9 This image shows the pretraining and fine-tuning steps for the Bert model. Bert model
architecture is not modified for each downstream task, and the pretraining process is the same for
all tasks. [CLS] is a special token always given as the first input token, and [SEP] is a special
token that separates two pieces of text (e.g., separating two sentences in the next sentence prediction
pretraining task or the question and answer in the question answering downstream task). The image
is taken from Devlin et al. [8].

such as question answering or natural language inference (NLI). Natural language inference
is an NLP task in which we have a “hypothesis" and a “premise," and we want to find if the
“hypothesis" is true, false, or undetermined given the “premise." The model can not learn
the relationship between sentences by the masked language model objective. To address
this problem, Devlin et al. [8] used the “next sentence prediction" task for training the
Bert model, which is also an unsupervised task. In this task, two sentences separated by a
[SEP] token are given to the model, and the model should predict if these two sentences are
consecutive or not. 50% of the time, the second sentence is the following sentence coming
after the first sentence in the original corpus, and 50% of the time, it is not. In the Bert
model, a special [CLS] token is always given as the first input token (Figure 2.8). The final
hidden vector state corresponding to the [CLS] token is used to predict if the two given
sentences are consecutive or not.

Fine-Tuning

Unlike pretraining, the fine-tuning step is inexpensive and fast but needs supervised data.
During fine-tuning, we should give task-specific input to the model and pass the output of
the Bert model (the hidden vectors of the last encoder layer) to an output layer to train the
whole Bert and the output layer end-to-end. For tasks like natural language inference (NLI)
or question answering (QA) that contain two pieces of text, the [SEP] token separates the
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two text fragments in the input. Also, the [CLS] token is always added in front of the input
sequence. Depending on the downstream task, the final hidden vectors of different positions
are given to an output layer. For text classification tasks such as sentiment analysis or NLI,
the output of the [CLS] (which stands for classification) is given to an output layer. The
output layer can be a neural network with a softmax activation layer to obtain probability
distribution over classes. For token-level tasks such as sequence tagging, the final hidden
vectors of all positions are given to an output layer. We refer the interested readers to the
original paper [8] for more detail.
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Related Work

In this chapter, we review the related work in text simplification. First, we have a short
review of early non-neural methods (Section 3.1). Then we classify recent neural methods
into five categories (Section 3.2 to Section 3.6) and discuss each separately. Recent previous
work can be categorized into generative or revision-based methods. Also, each method is
either supervised or unsupervised. As previously explained, generative models provide less
controllability; however, a few new techniques have added controllability to the generative
methods. We discuss controllable generative methods in Section 3.4.

3.1 Non-neural Methods

Early work on simplification relied on rules, e.g., to split or shorten long sentences [39–41].
Later work treated simplification as a monolingual phrase-based machine translation (MT)
task [42, 43], in which the source language is the complex text and the target language is the
simple text. Probabilistic syntax-based machine translation [44] and phrase-based machine
translation [43, 45] approaches use statistical methods to learn simplification operations
from complex-simple sentence pairs.

Recent work, reviewed below, leverages neural models in a generative and revision-
based manner.

3.2 Supervised Generative Methods

Supervised generative methods employ Seq2Seq [46] models to learn simplification oper-
ations from aligned complex-simple sentence pairs. Inspired by the success of Seq2Seq
neural machine translation models, Nisioi et al. [47] applied a Seq2Seq model for text
simplification. Building on a Seq2Seq model, Zhang and Lapata [17] used reinforcement
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learning to optimize a reward based on simplicity, fluency and relevance. Recent methods
build on transformer [36] models, by integrating external databases containing simplifica-
tion rules [48], using an additional loss function to generate diverse outputs [19], combining
syntactic rules [26], and conditioning on length and syntactic and lexical complexity fea-
tures [21]. Generally, supervised models have reported better accuracy and generalized
better in the text simplification domain. However, they require a large number of complex-
simple pair sentences to be trained, which is not easy to obtain.

3.3 Unsupervised Generative Methods

Unsupervised generative methods, rely on non-aligned complex and simple corpora. Zhao
et al. [27] leverage a back-translation framework in unsupervised machine translation and
used non-aligned corpora instead of aligned complex-simple sentence pairs. Surya et al.
[20] used an unsupervised style transfer paradigm, and Martin et al. [25] used a pre-trained
BARTmodel fine-tuned on paraphrased sentence pairs for addressing the text simplification
problem.

3.4 Controllable Generative Methods

Controllable generative methods produce outputs at specified grade levels [49, 50], or apply
syntactic or lexical constraints on the generated sentences [21, 25]. Controllable generative
methods generate the output text with some constraints and specifications, but the generation
process is still done in one step; thus, these models do not provide any insights into the
simplification process. In contrast, revision-based methods simplify a sentence in multiple
steps with explicit edit operations and provide a simplification path leading to the final
sentence.

3.5 Supervised Revision-Based Methods

Supervised revision-based methods use complex-simple sentence pairs to learn where to
apply edit operations. Alva-Manchego et al. [22] use keep, replace, and delete edit opera-
tions. Agrawal et al. [24] proposed a revision-based non-autoregressive model that refines
a sentence in multiple steps using a fixed pipeline of edit operations to generate sentences
appropriate for specific grade levels. Omelianchuk et al. [51] proposed an iterative non-
autoregressive model that predicts token-level edit-operation using a tagging system. Dong
et al. [23] proposed a hybrid method with explicit edit operations in an end-to-end genera-
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tive model. Though these methods are more interpretable and controllable than generative
methods, they still require complex-simple sentence pairs for training.

3.6 Unsupervised Revision-Based Methods

Unsupervised revision-based methods such as Narayan and Gardent [52] apply a pipeline
of edit operations (e.g. lexical simplification, sentence splitting, and phrase deletion) in
a fixed order. Kumar et al. [11] presented an unsupervised revision-based approach by
modelling text simplification as an unsupervised search problem. Unsupervised methods
usually perform worse than supervised methods.

While our method also uses a revision-based framework and an unsupervised search
strategy, we integrate a generative paraphrasing model into the framework to leverage the
strengths of both text generation and text revision approaches.
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Combining Generation and Revision in
Unsupervised Sentence Simplification

4.1 Overview

Our solution, GRS, iteratively revises a given complex sentence by applying edit operations
on sentence fragments. Multiple candidate simplifications are produced and evaluated using
a scoring function in each iteration, and the best candidate is selected. The selected sentence
acts as the input to the next iteration. This process continues until none of the candidate
sentences are simpler than the input sentence.

Figure 4.1 gives an overview of GRS. GRS uses two edit operations: paraphrasing
(Section 4.2.2; guided by the complex component detector described in Section 4.2.3) and
deletion (Section 4.2.1). We apply a search algorithm to navigate through the search space
of candidate sentences. In each iteration, edit operations generate candidate sentences, and
the best sentence is selected based on the score function. The scoring function (Section
4.3) guides our search for the best simplification, using soft and hard constraints on sim-
plicity, linguistic acceptability, and meaning preservation. Given a score for each candidate
sentence, we filter out those candidates that do not improve the score of the input sentence
by some threshold. The threshold depends on the edit operation from which the candidate
sentence has been created (Section 4.4).

We have used multiple supervised components in our model. However, our model is
unsupervised in the context of simplification since we have not used any complex-simple
sentence pair in our approach. These supervised components compose the score function
and the paraphrasing operation.
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Figure 4.1 An overview of GRS. Given a complex input sentence, simplifications are iteratively
produced via paraphrasing and deletion, with paraphrasing guided by the complex component
detector. Sentences passing a filter (Equation 4.4) are candidates for input to the next iteration.

4.2 Edit Operations

Given an input sentence in each iteration, the GRS edit operation (i.e., paraphrasing and
deletion) generates multiple candidate sentences in parallel. All the candidate sentences are
evaluated using the score function. Finally, only one of the candidate sentences is selected
at the end of each iteration and given as input in the next iteration. Hence, each iteration
will apply just one edit operation to the sentence (deletion or paraphrasing). In the next
iteration, either of these two operations can be applied to the sentence again. So the order of
edit operations is not fixed, and they can be applied to a sentence many times in any order.
Figure 4.2 illustrates two iterations of the GRS model and performed edit operations. In the
following, we will discuss each edit operation in more detail.

4.2.1 Deletion

Deletion aims to remove peripheral information to make sentences simpler. The Deletion
operation is composed of two sub-operations: removal and extraction. Inspired by Kumar
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Figure 4.2 Two iterations of GRS are applied to the given complex sentence. In the first iteration,
the deletion operation revised the sentence, and then the paraphrasing operation simplified the
sentence in the next iteration. In the second iteration, the complex component detector identified
the complex fragments (“announcement” and “massive”) and passed them as negative constraints to
the paraphrasing model. This example demonstrates the interpretability of GRS through building a
simplification path leading to the final sentence.

et al. [11], we use the constituency tree of the input sentence to obtain all constituents from
different depths of the parse tree. These constituents can be deleted (removal) or selected as
a simplified candidate sentence (extraction). The removal sub-operation creates new candi-
date sentences by removing each of these phrases from the input sentence. The extraction
sub-operation selects phrases as candidate sentences, which helps the model extract the
main clause and drop peripheral information. Figure 4.3 demonstrates a constituency parse
tree. All clause-level and phrase-level constituents (i.e., phrasal categories) such as S (sen-
tence), VP (verb phrase), and NP (noun phrase) can be deleted or selected as a simplified
sentence. For example in Figure 4.3 the constituent “with exceptions for the infirm” can be
deleted from the sentence and the revised sentence will be “All adult Muslims are required
to offer Salat prayers five times daily. ”. Also, in the example in Figure 4.2 the deletion
operation dropped the phrase “burying 25 nepalese sherpa guides under sheets of ice the
size of houses” from the complex input sentence.
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Figure 4.3 Constituency parse tree is used for deletion operation.

Input Constraints Paraphrase
This myth involves three misconceptions. 	 misconceptions This myth has three false ideas.
This myth involves three misconceptions. 	 involves The myth has three misconceptions.

How often do earthquakes occur? 	 occur How often are earthquakes happening?
How often do earthquakes occur? 	 occur,often What frequency do earthquakes happen?
How often do earthquakes occur? 	 How What frequency do earthquakes occur?

Table 4.1 Outputs from a constrained decoding model trained on PARABANK paraphrasing dataset
[10]. Negative constraints are denoted by 	. With constrained decoding techniques, the seq2seq
paraphrasing model can be forced not to generate some specific words while preserving the meaning
of the input sentence. Examples are taken from [10].

4.2.2 Paraphrasing

By adding paraphrasing to an iterative simplification search framework, we benefit from
context-aware modifications of generative approaches in a revision-based method. We use
a pre-trained BART model [28], fine-tuned on a small subset of ParaBank 2 paraphrasing
dataset [53]; however, any paraphrasing auto-regressive model can be used instead.

During inference, we use lexical-constrained decoding [29–31] to place negative con-
straints on complex words and phrases in the input sentence. Negative constraints are words
that the paraphrasing model is forced not to generate during decoding. Table 4.1 demon-
strates how the constrained decoding method works when applied in the decoding phase
of a Seq2Seq paraphrasing model. Consider that any autoregressive model can use this
technique during its decoding stage to prevent generating some specific words or tokens.
Figure 4.2 shows an example in which an input sentence was paraphrased to exclude two
complex words (negative constraints): “massive” and “announcement”. We explain how to
choose negative constraints below, with the help of the complex component detector.
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Figure 4.4 One of the attention matrices of the DeBERTa complex-simple classifier (head 11 of the
second layer). Attention weights are reflected by color intensity. The input sentence in this example
is “below are some useful links to facilitate your involvement." We used BertViz [9] to visualize
attention weights. The demonstration is for the attention matrix of head 11 of the second layer.

4.2.3 Complex Component Detector (CCD)

4.2.3.1 Why do we need a complex component detector?

In a brute-force search strategy for simple sentences, a complex sentencemay be paraphrased
using many combinations of negative constraints to find a simplified version of the given
complex sentence among many paraphrased sentences. To reduce the running time of the
simplification process, GRS includes a complex component detector, which reduces the
number of times calling the paraphrasing model. In GRS, before paraphrasing a sentence,
the complex component detector predicts the best negative constraints; then, the sentence
and the predicted negative constraints are given to the paraphrasing model to generate a
new candidate sentence. As a result, the paraphrasing operation is called only once per
iteration of GRS, using the predicted negative constraints, avoiding the expensive process
of repeatedly paraphrasing the input using different combinations of negative constraints.

4.2.3.2 How to obtain an unsupervised complex component detector?

First, we implemented a complex-simple classifier that gives a simplicity probability to a
given sentence. We only require two corpora (non-aligned) with different complexity levels
to train this classifier. Reid and Zhong [54] showed that it is possible to extract style-specific
sections of a sentence using the attention layers of a style classifier. Similarly, we use the
attention layers of our complex-simple classifier to extract the complex components from a
given input sentence. We fine-tune the pre-trained DeBERTa model [55] as our complex-
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simple classifier. In section 5.2 we have provided more detail about the classifier model
and the used dataset. Figure 4.4 illustrates one of the attention heads of the second layer of
DeBERTa. This visualization shows that the word “faciliate” was attended to more than the
other words in the given sentence. We use this intuition and devise a formula (Equations 4.1
and 4.2 below) to detect complex words by analyzing attention weights.

BERT [56] and its extensions (e.g. DeBERTa) add a [CLS] token to the beginning and
a [SEP] token to the end of each sentence (as shown in Figure 4.4). In these models, the
hidden states of the [CLS] token in the last layer are used for classification tasks. In our
complex-simple classifier, we found that the attention paid by the [CLS] token in the second
layer to other words in the sentence can help us detect complex components. Equations
4.1 and 4.2 demonstrate how we extract complex components from attention head matrices
of the second layer of the classifier. Here, A[�!(]

ℎ,8
refers to the amount of attention the

[CLS] token in the ℎth attention head of the second layer pays to the 8th token of the input
sentence. # and � refer to the length of the input sentence and the number of attention
heads, respectively. 28 defines whether the 8th token is complex or not. If 28 = 1, then this
token will be set as a negative constraint. )̄ is a threshold used for finding complex tokens.
In the example demonstrated in Figure 4.4, only 28, which refers to the word “facilitate", is
a complex token.

)̄ =

∑�−1
ℎ=0

∑#−1
8=0 A[�!(]

ℎ,8

#
(4.1)

28 =

{
1, if

∑�−1
ℎ=0 A[�!(]

ℎ,8
≥ )̄

0, otherwise
(4.2)

On the whole, the paraphrasing operation receives a sentence as input, and before calling
the paraphrasing model, the input sentence is given to the complex component detector.
After specifying the negative constraints (complex words), the paraphrasing model rewrites
the input sentencewithout generating the negative constraints using the lexically-constrained
decoding technique. The output of the paraphrasing operation is just one candidate sentence.

4.3 Scoring Function

Candidates generated by our two edit operations may not be correct regarding linguistic
acceptability. Furthermore, important information from the original sentence may have
been removed. We use a score function to evaluate the simplicity of the candidate sentence
and filter out non-grammatical candidates or sentences that are not conceptually similar to
the original sentence. The score function is composed of three components.
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4.3.1 Meaning Preservation (�<?)

A good text simplification model does not sacrifice the meaning of the original sentence
to obtain a simple sentence. The meaning preservation module of the score function
calculates the semantic similarity between the original sentence and a given candidate
sentence. First, we use the method proposed in Reimers and Gurevych [57] to obtain
the semantic representations of the sentences. We then use the cosine similarity measure
between the original and the candidate sentence representations. Our meaning preservation
measure acts as a hard filter. A hard filter assigns a zero score to candidate sentences that
do not pass a certain threshold. Section 5.7 discusses the effects of different values for this
threshold on the generated outputs. By changing this threshold, we can control how much
the model is conservative.

4.3.2 Linguistic Acceptability (�;0)

By removing some components of a complex input sentence, the output sentence may
become nonsensical. To check the linguistic acceptability of the generated sentences, we
train a classifier on the CoLA (the corpus of linguistic acceptability) [58] dataset. This
classifier measures the probability that a given sentence is grammatical. This module, like
the meaning preservation module, is used as a hard filter in the score function.

4.3.3 Simplicity ((B8<?)

This module evaluates the simplicity of a given candidate and is a soft constraint. It
does not consider the original sentence while evaluating the simplicity of the candidate,
so an oversimplified sentence may also receive a high simplicity score. For obtaining the
simplicity score of a given text, we use the complex-simple classifier mentioned in Section
4.2.3, which computes the simplicity probability of a sentence.

These three measures together evaluate the quality of each candidate sentence, as shown
in Equation 4.3. In this equation, (, (B8<?, �;0, �<?, 2, and > refer to the score function,
simplicity module, linguistic acceptability hard filter, meaning preservation hard filter,
candidate sentence, and the original sentence, respectively. Outputs of the hard filters are
zero or one ('0=64 : {0, 1}) and the output of the simplicity module is between zero and
one ('0=64 : (0, 1)).

((2) = (B8<? (2) ∗ �<? (2, >) ∗ �;0 (2) (4.3)
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4.4 Simplification Search and Stopping Criteria

The GRS simplification system is an iterative search in the space of candidate sentences
(Figure 4.1). The unsupervised search method is inspired by Kumar et al. [11], but with
different simplification operations and a different score function. Given a complex input
sentence, paraphrasing and deletion operations generate candidate sentences separately. In
each iteration, the paraphrasing operation creates only one candidate sentence, as described
in Section 4.2.2, whereas the deletion operation generates multiple candidate sentences
(Section 4.2.1). Candidates sentences are then evaluated according to the scoring function.
Those candidates that do not improve the score of the input sentence by some threshold are
filtered out. The threshold depends on the edit operation that the candidate sentence has
been created from. In Equation 4.4, C>? is the threshold associated with operator >?. (,
2, and 2′ refer to the score function, the candidate sentence, and the input sentence in the
current iteration, respectively. Candidate sentences having scores lower than ((2′) ∗ C>? will
be removed. Among sentences that have passed the operation filters, the sentence having
the highest score will be given to the system again in the next iteration. This iterative
search algorithm continues until no candidate sentence can pass the filters and improve the
input sentence in the current iteration, which is the best candidate sentence in the previous
iteration.

((2) > ((2′) ∗ C>? (4.4)
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Experiments

This chapter discusses various experiments, analysis, and ablation studies, as well as the
experimental setup. Sections 5.1, 5.2, and 5.3, discuss the used datasets, the training details
of various models used in the system, and the evaluation metrics. Section 5.4 explains
the existing simplification models with which we have compared GRS. In Sections 5.5 and
5.6 we evaluate GRS and compare it with existing approaches using automatic and human
evaluation, respectively. Section 5.7 illustrates a controllability study on the GRS system.
In Section 5.8, we evaluate the complex component detector and discuss an ablation study
by replacing the complex component detector with a simpler module in the GRS system.
Section 5.9 provides an analysis of the simplification search.

5.1 Datasets

We use the Newsela [16] and ASSET datasets [33] to evaluate GRS against existing
simplification methods. Newsela contains 1840 news articles for children at five reading
levels. We use the split from Zhang and Lapata [17], containing 1129 validation and 1077
test sentence pairs. ASSET includes 2000 validation and 359 test sentences pairs. Each
sentence has ten human-written references.

5.2 Training Details

5.2.1 Paraphrasing Model

Wefine-tune a pre-trained BARTmodel [28] implemented byWolf et al. [59]. To do this, we
use a subset of the ParaBank 2 paraphrasing dataset [53] containing 47,000 pairs. The data
used for fine-tuning the model influences how the model rewrites the sentence. We observe
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that a conservative paraphrasing model helps us to control the generated output. This is
because such a model is better at specifically changing only words provided as negative
constraints. Thus, for fine-tuning the BART model, we select paraphrasing sentence pairs
that are semantically similar to each other. The Parabank v2.0 dataset has up to 5 paraphrases
per reference. From all possible pairs for each reference, we select the pair that are more
semantically similar to each other since they have few differences. For calculating the
semantic similarity of sentence pairs, we use the model from Reimers and Gurevych [57]
to obtain sentence embeddings, and then we use cosine-similarity to find the most similar
sentence pairs in each reference. Consider that the lexically-constrained decoding method
used in the simplification search is independent of the paraphrasing model.

The BART model is composed of a 12-layer encoder and a 12-layer decoder, each
layer containing 16 attention heads. The model’s hidden size is 1024, and the tokenizer
vocabulary size is 50265. We use a batch size of 8 (per device). It took approximately 1.5
hours to fine-tune the model using three NVIDIA 2080 Ti GPUs.

5.2.2 Complex-Simple Classifier

We use a pre-trained DeBERTa [55] model implemented by Wolf et al. [59]. This model is
composed of a 12-layer self-attentional encoder, each layer containing 12 attention heads.
The model’s hidden size is 768, and the tokenizer vocabulary size is 30522. To fine-tune the
DeBERTa model for the binary classification task, we use the Newsela-Auto dataset [60].
To train the classifier, we use the AdamW [61] optimizer with a learning rate of 5 × 10−5

and a batch size of 16. Note that we do not use the alignment between complex-simple
sentence pairs in the Newsela-Auto dataset. Thus, our complex-simple classifier can be
trained on any text corpora with different complexity levels. It took approximately one
hour to fine-tune the classifier using a single NVIDIA 2080 Ti GPU. The accuracy of this
classifier is 78.46.

5.2.3 Meaning Preservation Module of the Scoring Function

To obtain contextual embeddings of sentences, we use the SentenceTransformers [57]
framework, specifically, the paraphrase-mpnet-base-v2 pre-trained model.

5.2.4 Linguistic Acceptability Module of the Scoring Function

To score the linguistic acceptability of a sentence, we fine-tune a pre-trained DeBERTa
model [55] for a binary classification task on the CoLA (the corpus of linguistic accept-
ability) [58] dataset. It contains 10,657 sentences, each labelled either as grammatical or
ungrammatical. The configuration and training hyperparameters of this classifier are the
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same as the complex-simple classifier explained above. It took approximately 30 minutes
to fine-tune the model using a single NVIDIA 2080 Ti GPU. On the validation set, the
accuracy of the model is 79.33.

5.2.5 Simplification Search and Score Function

The threshold associated with paraphrasing (C?0A) is 0.8, and the thresholds related to the
removal (C3;−A<) and extraction (C3;−4G) sub-operations of the deletion operation are 1.1,
and 1.25, respectively. The score function’s meaning preservation (�<?) and linguistic
acceptability (�;0) thresholds are 0.7 and 0.3, respectively. We obtained these values using
the validation set. These values are used for both ASSET and Newsela datasets.

5.3 Evaluation Metrics

To evaluate GRS and other models, we use SARI [34] as our primary metric. SARI (System
output Against References and against the Input sentence) evaluates the quality of the output
text by calculating how often the output text correctly keeps, inserts, and deletes n-grams
from the complex sentence, compared to the reference text, where 1 ≤ n ≤ 4. We report the
overall SARI score, as well as individual SARI scores corresponding to n-grams correctly
added (ADD), deleted (DELETE) and kept (KEEP); the overall SARI score is the mean
of these three scores. We also report the FKGL score, which only considers the output
sentence, not the source and reference sentences. It is computed based on sentence length
and the number of syllables for each word in the sentence. We use the EASSE package [62]
to calculate SARI and FKGL. We do not use the BLEU metric [63] since Sulem et al. [64]
showed that BLEU does not correlate well with simplicity.

5.4 Competing Models

We evaluate GRS with different configurations: only deletion - GRS: DL(RM+EX), only
paraphrasing - GRS: PA, and both deletion and paraphrasing - GRS: PA+DL(RM+EX). We
also consider the complex sentence itself as a trivial baseline, denoted by ‘Identity Baseline’.
TheASSET dataset containsmultiple references for a sentence, sowe also calculate an upper
bound for a given evaluation metric, which we denote as ‘Gold Reference’. To calculate
the ‘Gold Reference’ score, each reference is selected once, and the scores are calculated
against others. Finally, we average across all the reference scores to obtain the final ‘Gold
Reference’ score. ‘Gold Reference’ scores for the Newsela dataset cannot be calculated
since only one reference sentence is available.
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Model SARI ↑ Add ↑ Delete ↑ Keep ↑ FKGL ↓ Len
Identity Baseline 12.24 0.00 0.00 36.72 8.82 23.04
Unsupervised Models
Zhao et al. [27] 37.20 1.51 73.53 36.54 3.80 11.78
Kumar et al. [11] 38.36 1.01 77.58 36.51 2.81 9.61
Martin et al. [25] 38.29 4.44 76.02 34.42 4.65 12.49
GRS: DL (RM + EX) 37.52 0.66 69.45 42.44 3.93 12.64
GRS: PA 36.42 3.44 69.55 36.28 5.79 19.08
GRS: PA + DL (RM + EX) 40.01 3.06 80.43 36.53 3.20 11.72
Supervised Models
Narayan and Gardent [45] 34.73 0.77 73.22 30.21 4.52 12.40
Zhang and Lapata [17] 38.03 2.43 69.47 42.20 4.78 14.36
Dong et al. [23] 39.28 2.13 77.17 38.53 3.80 10.92
Zhao et al. [27] 39.14 2.80 74.28 40.34 4.11 11.63
Martin et al. [25] 41.20 6.02 81.70 35.88 2.35 9.22

Table 5.1 Comparison of supervised and unsupervised simplification models on the Newsela test
set. PA and DL refer to paraphrasing and deletion, respectively. RM and EX refer to the removal
and extraction sub-operations of the deletion operation. ↑ denotes the higher the value, the better. ↓
denotes the lower the value, the better.

We also compare GRSwith existing approaches. From unsupervised methods, we select
unsupervised generative models that use Seq2Seq models Surya et al. [20], Zhao et al. [27].
We also compare with Martin et al. [25], which leverages pretrained language models and
a large paraphrase pair dataset, and Kumar et al. [11], an iterative revision-based method
with several explicit edit operations (deletion, lexical substitution and reordering).

From supervised methods, we start with Narayan and Gardent [45] and Xu et al. [34],
which use phrase-basedMTmodels. We also consider Seq2Seq generative methods: Zhang
and Lapata [17], which uses reinforcement learning, and Martin et al. [21, 25], Zhao et al.
[27], which use Seq2Seq transformer models. Next, we select Omelianchuk et al. [51], a
recent supervised revision-based method. Finally, we consider Dong et al. [23], a hybrid
approach using explicit edit operations in a generative framework.

5.5 Automatic Evaluation

Tables 5.1 and 5.2 illustrate the results on Newsela and ASSET, respectively. We report the
overall SARI score, the individual scores of three operations used in SARI score, the FKGL
score, and the average length of the output sentences. To evaluate previous methods, we
obtained their output sentences on ASSET and Newsela from the respective project Github
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pages or by contacting the respective authors, followed by calculating the SARI and FKGL
scores using the EASSE package (described in Section 5.3). One exception is Omelianchuk
et al. [51]: since they also used the EASSE package, we copied their reported ASSET scores
in Table 5.2, but they did not report the average sentence length.

For Newsela, using paraphrasing and deletion together (GRS: PA + DL(RM+EX))
gives the best performance on the SARI metric. On the Newsela dataset, our best model
outperforms previous unsupervised methods and achieves +1.6 SARI improvement. It also
outperforms all supervised methods except Martin et al. [25].

For ASSET, even though Martin et al. [25] perform better than our best model, we
improve the performance over Kumar et al. [11] by +3.6 SARI points and close the gap
between revision-based and generative approaches. Compared to supervised models, our
unsupervised model again outperforms others except Martin et al. [25] and Omelianchuk
et al. [51]. For the ASSET dataset, we observe that our model with only paraphrasing (GRS
(PA)) has the best SARI score.

Analyzing the results, we observe that simplification is done differently by human
annotators in Newsela than in ASSET. In Newsela, removal of peripheral information
through content deletion happens more aggressively. The average reference sentence length
is 12.75 compared to 23.04 for the source sentences. Figure 4.2 demonstrates one such
example from the Newsela dataset. In this example, two long phrases have been removed
from the beginning and the end of the source sentence (compare the source sentence with
reference). However, in ASSET, content removal is conservative and can be handled by
paraphrasing alone. The average reference sentence length is 16.54 compared to 19.72 for
the source sentences. Simplifications in ASSET focus on lexical simplification, sentence
splitting and word reordering.

Martin et al. [25] leverage a pretrained BARTmodel [28] and fine-tune it on a paraphras-
ing dataset containing 1.1 million sequence pairs. Unlike traditional paraphrasing datasets
that are structured at the sentence level, their paraphrasing dataset contains multiple sen-
tences in a sequence, thus allowing the model to learn a sentence splitting operation as well.
Thus, they outperform the previous best unsupervised models on ASSET. On Newsela, both
GRS and the model from Kumar et al. [11] perform better than Martin et al. [25] since they
include an explicit removal edit operation that focuses only on content deletion. Martin
et al. [25] instead do not explicitly perform content removal and only do content deletion
by way of paraphrasing. Finally, Kumar et al. [11] does not perform well on ASSET since
they do not perform paraphrasing. Our new design thus combines the advantages of both
revision-based and generative approaches.
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Model SARI ↑ Add ↑ Delete ↑ Keep ↑ FKGL ↓ Len
Identity Baseline 20.73 0.00 0.00 62.20 10.02 19.72
Gold Reference 44.89 10.17 58.76 65.73 6.49 16.54
Unsupervised Models
Surya et al. [20] 35.19 0.83 45.98 58.75 7.60 16.81
Zhao et al. [27] 33.95 1.99 42.09 57.77 7.51 18.80
Kumar et al. [11] 36.67 1.29 51.33 57.40 7.33 16.56
Martin et al. [25] 42.42 7.15 61.32 58.77 7.49 16.36
GRS: DL (RM + EX) 37.90 0.89 62.32 50.50 4.17 11.18
GRS: PA 40.41 7.00 62.37 51.88 6.70 17.94
GRS: PA + DL (RM + EX) 37.40 3.89 67.46 40.85 3.45 10.69
Supervised Models
Narayan and Gardent [45] 34.65 1.3 59.24 43.41 5.18 10.95
Xu et al. [34] 37.11 5.07 45.21 61.06 7.95 20.50
Zhang and Lapata [17] 36.59 2.38 50.10 57.30 7.66 14.37
Zhao et al. [48] 38.67 4.36 51.37 60.29 7.73 18.36
Dong et al. [23] 34.95 2.40 42.69 59.73 8.38 16.49
Martin et al. [21] 40.13 6.53 50.84 62.99 7.29 19.49
Zhao et al. [27] 35.15 2.22 45.32 57.91 7.83 16.14
Martin et al. [25] 44.05 10.93 61.91 59.30 6.13 18.49
Omelianchuk et al. [51] 43.21 8.04 64.25 57.35 6.87 ——-

Table 5.2 Comparison of supervised and unsupervised simplification models on the ASSET test set.
PA and DL refer to paraphrasing and deletion, respectively. RM and EX refer to the removal and
extraction sub-operations, the sub-operations of the deletion operation. ↑ denotes the higher value,
the better. ↓ denotes the lower value, the better.

5.6 Human Evaluation

We randomly selected 30 sentences from the ASSET test set for human evaluation. Fol-
lowing [19], we measure Fluency (whether the sentence is grammatical and well-formed),
Simplicity (whether it is simpler than the complex sentence), and Adequacy (whether it
keeps the meaning of the complex sentence).

We recruited four volunteers to assess the sentences based on the defined metrics
and evaluate the performance of various models, including GRS. We provided thorough
instruction to the volunteers. In the instruction, we gave multiple examples and discussed
how they should mark sentences based on the defined criteria. They were given enough
time to evaluate all the sentences. Also, we answered their questions during the evaluation
process and randomly checked some of their evaluations to ensure they had done their
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CCD-module Adequacy ↑ Simplicity ↑ Fluency ↑ Average ↑
Reference 4.29 4.08 4.76 4.37
GRS(PA) 3.98 4.04 4.47 4.17
Surya et al. [20] 3.57 3.48 4.32 3.79
Zhao et al. [27] 3.89 3.27 4.54 3.89
Martin et al. [25] 3.95 4.17 4.78 4.30
Kumar et al. [11] 3.15 3.56 4.15 3.62
Zhang and Lapata [17] 3.67 3.64 4.69 4.00

Table 5.3 Human evaluation on the ASSET dataset. Adequacy, simplicity, and fluency are human
evaluation metrics, and in the fourth column, the average of these metrics is shown. Each row
represents a simplification model. Human evaluation scores are based on a 1–5 Likert scale. ↑
denotes the higher value, the better.

duties correctly. We estimated the time needed to evaluate all given sentences and paid
the volunteers accordingly. Results are shown in Table 5.3. All models are unsupervised
except Zhang and Lapata [17].

The fourth column in Table 5.3 shows the average score of all three metrics used in the
human evaluation. According to the average scores, MUSS [25] has the best performance,
followed by GRS. The human evaluation demonstrates that the automatic evaluation (SARI
scores shown in Table 5.2) is aligned with human evaluation scores. GRS has the best
performance inmeaning preservation (Adequacy). This may be because we have a relatively
conservative paraphrasing model. Also, GRS evaluated in this study is only leveraging
paraphrasing, and this version is the most conservative.

5.7 Controllability

By manipulating the thresholds for the components of the score function and the edit
operations, we can control the amount of deletion, paraphrasing, and the trade-off between
simplicity and meaning preservation. We show the results in Table 5.4 using the GRS (PA
+ DL) model and the Newsela test set. The column labels have the same meaning as in
Tables 5.1 and 5.2.

5.7.1 Meaning Preservation Threshold

As mentioned in Section 4.3, meaning preservation is a hard filter in our score function.
We assign a zero score to candidate sentences having a similarity score lower than the
meaning preservation threshold when compared to the original sentence. As the meaning
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preservation threshold increases, candidate sentences less similar to the original sentence
are pruned. Sentences more similar to the original sentence have higher Keep and lower
Delete SARI scores. The SARI Add score increases since paraphrasing is prioritized over
deletion. Finally, the length of the output sentences increases since the model becomes
more conservative.

5.7.2 Removal Threshold of Deletion Operation

This threshold is described in Equation 4.4. By increasing this threshold, the SARI Keep
score increases and the SARI Delete score decreases, which also results in increased average
length. This is consistent with our intuition about the deletion operation. The SARI Add
score increases as well since a higher deletion threshold makes the model conservative on
deletions and thus candidates from the paraphrasing operation are more likely to be selected.

5.7.3 Paraphrasing Threshold

This threshold is described in Equation 4.4. Reducing this threshold results in more
aggressive paraphrasing. Thus, we observe an increase in the SARI Delete and Add scores
since paraphrasing replaces complex words and phrases with simpler ones. In fact, the
complex component detector used in the paraphrasing operation detects the complex words
and then these complex words are removed by the constrained paraphrasing model. This is
the reason why reducing the paraphrasing threshold helps the deletion score to be increased.
However, by reducing the paraphrasing threshold the keeping score reduces, and we should
find the best value that maximizes the overall SARI score.

5.7.4 Linguistic Acceptability Threshold

Like meaning preservation, linguistic acceptability is a hard filter in our score function
(Section 4.3). We assign a zero score to candidate sentences having a linguistic acceptability
score lower than the linguistic acceptability threshold. As the linguistic acceptability
threshold increases, more candidate sentences receive a zero score. This results in a more
conservative model that makes fewer changes to the input sentences because the original
sentences are already linguistically acceptable. By increasing the linguistic acceptability
threshold, the SARI Deletion score drops and the SARI Keep score increases. Also, this
results in longer sentences.
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Value SARI ↑ Add ↑ Delete ↑ Keep ↑ FKGL ↓ Len
Effect of Meaning Preservation Threshold (�<?)

0.25 38.18 2.15 84.64 27.76 0.42 7.68
0.5 39.49 2.30 83.58 32.59 1.63 8.99
0.6 39.78 2.59 81.94 34.80 2.46 10.29
0.7 39.99 3.16 79.81 36.99 3.27 12.16
Effect of the Removal Threshold of Deletion Operation (C3;−A<)
0.9 37.33 1.93 82.72 27.34 2.19 8.58
1.0 38.03 2.20 81.63 30.25 2.53 9.80
1.1 40.01 3.06 80.43 36.53 3.20 11.72
1.2 39.98 3.15 79.96 36.85 3.26 12.07

Effect of the Paraphrasing Threshold (C?0A)
0.8 39.99 3.16 79.81 36.99 3.27 12.16
0.9 40.01 3.15 79.55 37.31 3.32 12.24
1.0 39.42 2.69 75.03 40.54 3.84 12.99
1.1 38.55 1.97 70.47 43.23 4.11 13.50

Effect of the Linguistic Acceptability Threshold (�;0)
0.6 39.42 3.06 78.19 37.00 3.65 12.54
0.7 39.52 3.00 77.98 37.57 3.68 12.67
0.8 39.69 3.08 77.60 38.40 3.79 12.85
0.9 38.41 2.93 76.87 38.42 4.04 13.04

Table 5.4 Impact of paraphrasing, deletion, meaning preservation, and linguistic acceptability
thresholds on the Newsela dataset.

5.8 Complex Component Detector Evaluation

To show the effectiveness of the proposed Complex Component Detector (CCD) mentioned
in Section 4.2.3, we evaluate the CCD module on the Complex Word Identification (CWI)
task. The task is defined as a sequence tagging problem in which each word in a sentence
is tagged as complex or not complex. We use the test set of CWIG3G2 [65], a profession-
ally written news dataset. As explained in Section 4.2.3, the CCD module used in GRS
(denoted by Att-Cls) operates by interpreting the attention matrix of the second layer of
the complex-simple classifier. We also compare with the lexical simplification operation of
Kumar et al. [11], denoted by LS-CCD. It uses the IDF scores to find complex words in a
sentence.

37



GRS: Combining Generation and Revision in Unsupervised Sentence Simplification

Model SARI ↑ Add ↑ Delete ↑ Keep ↑ FKGL ↓ Len
ASSET

Identity Baseline 20.73 0.00 0.00 62.20 10.02 19.72
Gold Reference 44.89 10.17 58.76 65.73 6.49 16.54
GRS(PA, CCD:LS-CCD) 37.80 5.59 57.39 50.44 7.17 18.75
GRS(PA, CCD:Att-Cls) 40.41 7.00 62.37 51.88 6.70 17.94

Newsela
Identity Baseline 12.24 0.00 0.00 36.72 8.82 23.04
GRS(PA+DL(RM), 39.30 2.87 78.18 36.85 3.39 13.54
CCD:LS-CCD)
GRS(PA+DL(RM), 39.61 3.18 79.13 36.52 3.45 13.43
CCD:Att-Cls)

Table 5.5 Comparison of GRS versions that use different Complex Component Detectors (CCD)
on ASSET and Newsela. PA and DL refer to paraphrasing and deletion, respectively. RM refers
to removal, which is the sub-operation used in deletion operation. ↑ denotes the higher value, the
better. ↓ denotes the lower value, the better.

CCD-module Acc ↑ Rec ↑ Prec ↑ F1 ↑
LS-CCD 84.67 37.36 70.51 48.84
Att-Cls 84.58 47.95 72.59 57.75

Table 5.6 Performance of different Complex Component Detectors (CCD) on the Complex Word
Identification (CWI) task. CWIG3G2 dataset has been used for this evaluation. LS-CCD andAtt-Cls
refer to the CCD module obtained from Lexical Simplification edit operation of Kumar et al. [11]
and the original CCDmodule used in GRS design explained in Section 4.2.3, respectively. ↑ denotes
the higher value, the better.

Table 5.6 shows the complex word identification performance of the two CCD modules
on CWIG3G2. Att-Cls outperforms LS-CCD in recall, precision, and the F1 score. Tables
5.5 demonstrates the performance of GRS with different CCDmodules on ASSET [33] and
Newsela [16] test sets. On both datasets, the GRS model using Att-Cls has higher deletion
and addition scores compared to the GRS model using LS-CCD. The overall SARI score is
considerably higher when using Att-Cls on ASSET.

5.9 Simplification Search Analysis

GRS is an interpretable unsupervised simplification method in which we can trace the
simplification process. That is, we know which edit operation is applied on a given complex
sentence in each iteration. Table 5.7 demonstrates how many simplification iterations were
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Model Iterations/Sent PA-iterations DL-iterations
(all-Operations) RM EX

Newsela
GRS: PA 4.72 4.72 – –
GRS: DL 0.79 – 0.46 0.33
GRS: PA + DL 4.40 3.72 0.37 0.31

ASSET
GRS: PA 4.18 4.18 – –
GRS: DL 1.05 – 0.54 0.51
GRS: PA + DL 3.79 2.94 0.39 0.45

Table 5.7 Analysis of edit operation used during simplification search, showing the average number
of simplification iterations of GRS and the average share of each edit operation. PA and DL
refer to paraphrasing and deletion, respectively. RM and EX refer to the removal and extraction
sub-operations of the deletion operation.

needed to simplify a complex sentence, on average, in the Newsela and ASSET datasets.
We also show the average frequency of each operation to simplify a given sentence.

Table 5.7 illustrates that when both edit operations are allowed (GRS:PA+DL), almost
four simplification iterations are applied to a sentence, and paraphrasing is generally more
common than deletion.
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Conclusions and Future Work

In this work, we propose GRS, an unsupervised, interpretable, and controllable approach
for sentence simplification. We observe that sentence simplification approaches can be
categorized into two generative and revision-based approaches. Each of these methods has
its advantages. Edit-based methods provide more interpretability and controllability but are
restricted by some explicit edit operations. These explicit edit operations are pre-defined;
however, the generative models learn implicit edit operations from data. Generative are
less interpretable and controllable but can perform more complex substitutions using neural
components.

Text simplification approaches can also be categorized into two supervised and un-
supervised methods. Supervised methods use complex-simple sentence pairs; however,
unsupervised methods do not use such data.

We propose GRS, an unsupervised method that combines generative and revision-based
methods and has the advantage of both methods.

We provide the following contributions and insights:

• We propose a method that simplifies a complex sentence using two pre-defined
operations: paraphrasing and deletion.

• We design a hybrid text simplification system that lies between generative and
revision-based methods. We integrate a generative paraphrasing model with a
lexically-constrained decoding technique into a revisions-based framework.

• GRS system is interpretable since it provides a simplification path leading to the
final sentence (Figure 4.2). We find that the deletion operation is more effective on
the Newsela dataset; however, on the ASSET dataset, the paraphrasing operation is
more effective. These insights can be obtained from our interpretable model without
analyzing manually.
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• The GRS system gives control over various factors of the simplification process.
Table 5.4 illustrates the controllability of our model. Having controllability can be
beneficial for generating simplified sentences for different sets of target audiences
with different needs.

• We empirically show that our model outperforms all unsupervised models on the
Newsela dataset. Also, GRS reduced the gap between generative and revision-based
unsupervised models on the ASSET dataset.

• We propose an unsupervised method for finding complex words in a sentence. The
proposed complex component detector applies a novel technique to interpret the at-
tention layers of a transformer model. The ablation study on the proposed complex
component detector (Table 5.5) demonstrates that this module is essential for obtain-
ing decent simplification results. Also, we have evaluated the complex component
detector on the complex word identification (CWI) task (Table 5.6).

• We release the open-source implementation of the GRS model at https://github.
com/imohammad12/GRS.

• We also release all the fine-tunedmodels that we have used in theGRS. The paraphras-
ing model, the complex-simple classifier, and the linguistic acceptability classifier are
uploaded at http://huggingface.co/imohammad12. The online demo of these
models is also available at the provided link.

6.1 Future Work: Unsupervised Generative Text Simpli-
fication with Deep Reinforcement Learning

Moving forward, we think there are multiple ways to expand on our work. One of the
most promising directions is to apply reinforcement learning (RL) to the unsupervised
text simplification problem using the unsupervised components proposed in this thesis.
In fact, the GRS unsupervised score function can be used as an unsupervised reward in
a reinforcement learning framework. In the following, we will discuss this idea in more
detail.

6.1.1 The General Idea

Reinforcement Learning (RL) is about making decisions optimally. When a machine learns
to play a game such as chess using RL, it learns the optimal behavior in an environment
to gain maximum reward. In the chess example, the reward can be winning or losing, and
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the environment can be the chess game playground and rules. Text generation is also about
decisions the model makes while generating an output sentence. Consider a generative
text simplification model. When the model generates a simple sentence given a complex
sentence, in each decoding step, it makes a decision: the model selects a word between all
possible words. The model may make good or bad decisions (i.e., generating appropriate
or not appropriate words). Like the chess game, the text simplification model should
receive a reward (feedback) after generating the sentence. We know there are multiple
ways to evaluate the simplicity of a generated text. For instance, we can use the SARI
evaluation metric or the unsupervised GRS score function (Section 4.3). The evaluation
metric can be considered the reward function we need to optimize in the text simplification
problem using RL. A generative text simplificationmodel can use RL algorithms to learn the
optimal behavior that leads to the maximum simplicity reward. We can train the generative
text simplification model without supervised data using an unsupervised reward function,
such as the GRS score function. The general idea would be to obtain an unsupervised
generative text simplification method by training a model with RL algorithms and using the
unsupervised GRS score function; however, there are some obstacles to obtaining this goal.
In the following, we will discuss the idea and the obstacles in more detail and provide some
possible solutions.

How an Reinforcement Learning problem is defined?

In reinforcement learning problems, we have an agent that interacts with an environment.
In each step, the agent takes action according to the current state and then goes to another
state. Based on the final state that the agent ends up in, it receives a reward. If the final
state is a decent state, the agent receives positive feedback (high rewards); otherwise, it
gets negative feedback (low rewards). At first, the agent selects actions based on a random
policy; gradually, it improves the policy to maximize the reward. The final goal is to find
the optimal policy that maximizes the final reward.

How to formalize text generation as a Reinforcement Learning problem?

Text generation can be considered as a reinforcement learning problem in which the model
is the agents and the selected words in each step are the actions that the agent takes. In step
C, the state is defined based on the given input sentence (-) and the generated sentence so
far (H1:C−1) . The model (agent) selects a word ĤC ∈ + (+ is the vocabulary) based on policy
%'! ( ĤC | Ĥ1:C−1, -). When the output sentence is completed (final state), the score of the
output sentence is calculated (reward). The model may also receive some rewards during
generating a sentence.

In general, it is not practically possible to use reinforcement learning in text generation
since the space of actions in each step is very large (i.e. the large vocabularies). Hence,
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instead of using a random policy, with which the agent should explore a lot to learn how
to maximize the reward, we should start with a trained policy. Previous work that used
reinforcement learning for text simplification [17, 66] first trained the model on complex-
simple sentence pairs in a supervised way (using cross entropy loss), and then improved
the pre-trained model by using reinforcement learning. However, we do not want to use
complex-simple sentence pairs in the pre-training step; therefore, we can use a pretrained
paraphrasing model fine-tuned on a paraphrasing dataset (described in Section 4.2.2).

6.1.2 RL for Text Generation

Reinforcement learning (RL) has been applied to various NLP tasks in recent years. Ranzato
et al. [67] used the REINFORCE algorithm [68] to address two main problems of Seq2Seq
generative models, trained with regular supervisedmethods: 1) Exposure Bias whichmeans
that during training, the model is only exposed to training data distribution, as opposed to
the inference phase in which the words are drawn from the model distribution. 2) Loss-
Evaluation Mismatch which related to the problem that the training loss of supervised
methods (like cross entropy loss) is word-level while inference evaluation metrics like
BLEU [69] and SARI [70] are sequence-level metrics. Using reinforcement learning
algorithms, BLEU is directly optimized for translation [67, 71], ROGUE is optimized for
summarizing [67, 72, 73] , and SARI is optimized for text simplification [17].

6.1.3 Shortcoming of Previous Work on Text Simplification with RL:
Supervised Data

Previous work on text generation and simplification that used RL in their systems utilized
supervised data in different steps. Most methods trained a base model on supervised data
(with cross-entropy loss function) and then used RL algorithms to improve the performance
of the basemodels. The reward function used in their RL algorithms also utilized supervised
data. Zhang and Lapata [17] and Nakamachi et al. [66] are the only two works that used
RL for text simplification. They first trained a Seq2Seq model on a large amount of
aligned simplification data and then fine-tuned the base model with RL algorithms to
improve performance and text diversity. The reward function of their RL algorithm needs
supervised data because the rewards were based on the SARI score, and calculating SARI
needs reference sentences. For having an unsupervised method, we should:

1. have a base model that has not been trained on supervised data.

2. use an unsupervised reward function.
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6.1.4 Possible Solution for Unsupervised Generative Text Simplifica-
tion with RL

Ziegler et al. [74] used pretrained language models (e.g., Bert) as the base model (before
the reinforcement learning step). As explained in Section 2.3, unsupervised large corpora
are used for training these language models. Following Ziegler et al. [74], we can start with
a pretrained language model, fine-tuned on paraphrasing data to obtain an unsupervised
base model, and then use an RL algorithm (e.g., PPO [75] algorithm) to optimize a simpli-
fication reward. The pre-trained language model can be the paraphrasing model used in the
GRS paraphrasing operation (Section 4.2.2). By optimizing a simplification reward with
reinforcement learning, we will update (fine-tune) the paraphrasing model to simplify the
sentences instead of just paraphrasing. Instead of using the SARI score as the simplification
reward, which needs complex-simple sentence pairs, we can use the GRS unsupervised
score function (Section 4.3) as the unsupervised simplification reward.

Although our method will utilize a powerful language model fine-tuned on paraphrase
sentence pairs, it will not use any aligned simplification dataset. Gathering high-quality
paraphrasing data is less complicated than collecting complex-simple sentence pairs.

Unsupervised Reward

The challenging part of the text simplification problem is to make a sentence simple while
preserving the original meaning. In fact, there is a trade-off between simplicity andmeaning
preservation. The unsupervised simplification reward reflects how a generated sentence is
suitable according to the trade-off between simplicity and meaning preservation. We want
to learn a policy that can maximize this reward by fine-tuning the paraphrasing model using
reinforcement learning. Following the structure used in the GRS score function (Section
4.3), the unsupervised reward can be comprised ofmeaning preservation, text simplicity, and
linguistic acceptabilitymodels. No complex-simple sentence pairs will be used in the reward
function, so the reward is unsupervised in the context of text simplification. Following [74],
we can add a KL-divergence penalty to the calculated reward to prevent the learning policy
from moving too far from the original paraphrasing model. This penalty term will help the
learning policy to remain faithful to what it has learned in the pre-training phase. Using
KL-divergence in reward, the proposed model will generate sentences similar to the original
paraphrasing model while trying to use paraphrase fragments that are simpler to increase
the simplicity score. The meaning preservation, simplicity, and linguistic acceptability
modules are explained in Section 4.3.
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