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Abstract

Social choice theory is concerned with aggregating the preferences of agents into a single

outcome. While it is natural to assume that agents have cardinal utilities, in many contexts,

we can only assume access to the agents’ ordinal preferences, or rankings over the outcomes.

As ordinal preferences are not as expressive as cardinal utilities, a loss of efficiency is

unavoidable. Procaccia and Rosenschein [39] introduced the notion of distortion to quantify

this worst-case efficiency loss for a given social choice function.

We primarily study distortion in the context of election, or equivalently clustering

problems, where we are given a set of agents and candidates in a metric space; each agent

has a preference ranking over the set of candidates and we wish to elect a committee of k

candidates that minimizes the total social cost incurred by the agents.

In the single-winner setting (when k = 1), we give a novel LP-duality based analysis

framework that makes it easier to analyze the distortion of existing social choice functions,

and extends readily to randomized social choice functions. Using this framework, we show

that it is possible to give simpler proofs of known results. We also show how to efficiently

compute an optimal randomized social choice function for any given instance. We utilize

the latter result to obtain an instance for which any randomized social choice function has

distortion at least 2.063164. This disproves the long-standing conjecture that there exists

a randomized social choice function that has a worst-case distortion of at most 2.

When k ≥ 2, it is not possible to compute an O(1)-distortion committee using purely

ordinal information. We develop two O(1)-distortion mechanisms for this problem: one

having a polylog(n) (per agent) query complexity, where n is the number of agents; and

the other having O(k) query complexity (i.e., no dependence on n). We also study a much

more general setting called minimum-norm k-clustering recently proposed in the clustering

literature, where the objective is some monotone, symmetric norm of the the agents’ costs,

and we wish to find a committee of k candidates to minimize this objective. When the norm

is the sum of the ` largest costs, which is called the `-centrum problem in the clustering

literature, we give low-distortion mechanisms by adapting our mechanisms for k-median.

En route, we give a simple adaptive-sampling algorithm for this problem. Finally, we show
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how to leverage this adaptive-sampling idea to also obtain a constant-factor bicriteria

approximation algorithm for minimum-norm k-clustering (in its full generality).
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Chapter 1

Introduction

In many applications, ranging from elections to network design problems, we wish to

aggregate the preferences of agents in a given system and select an outcome that maximizes

social welfare (i.e. the total value gained by the agents) or minimizes social cost (i.e. the

total cost incurred by the agents). While we typically assume that agent preferences are

captured by a cardinal utility function that assigns a numerical value to each outcome, in

many contexts we only have access to ordinal information, namely the agents’ preferences,

or rankings over the outcomes. There are many reasons why such situations may arise;

perhaps the most prominent is that the agents themselves may find it difficult to place

numerical values on the possible outcomes [7]. It is also possible that, due to privacy

and/or security concerns, the system designer is required to, or wishes to elicit less sensitive

information. As ordinal preference rankings are not as expressive as cardinal utilities, a loss

of efficiency in terms of the quality of the outcome computed is inevitable. Procaccia and

Rosenschein [39] introduced the notion of distortion to quantify the worst-case efficiency

loss for a given social choice function.

To describe this notion, and the underlying algorithm-design issues more meaningfully,

we first consider the context of election problems, wherein each agent has a preference

ordering over the set of candidates and we wish to elect a committee of k candidates that

minimizes the social cost (i.e., the sum of costs incurred by the agents). More precisely,

an instance of an election problem (C, A, σ) consists of a set of agents (or voters) C, a set
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of alternatives (or candidates) A, and a preference profile (a tuple giving the preference

ordering for each agent), σ. The cost incurred by an agent i when candidate a ∈ A is

chosen is denoted as d(i, a).

Following recent work, we will restrict our attention to metric social choice problems.

In the metric setting, the agents and candidates are points in a metric space (C ∪ A, d),

where d : (C ∪ A)2 → R≥0 is a distance function satisfying the triangle inequality. This

assumption models many applications, including those in which agents prefer alternatives

that are ideologically similar to them, and hence, d(i, a) can be intepreted as the ideological

distance between agent i and alternative a. As the preference profile σ arises from the

underlying cardinal costs induced by the metric, we will assume that d is consistent with

σ; that is, for any a, b ∈ A, i ∈ C, if i prefers a over b (denoted a �i b), then d(a, i) ≤ d(b, i).

A social choice function maps a preference profile σ to a single alternative f(σ) ∈ A, i.e.,

specifies a solution to the 1-committee selection problem. The notion of distortion is akin

to the notion of approximation ratio in the standard cardinal setting; for a given social

choice function f , the distortion of f is the worst case ratio (over all instances) of the social

cost of the candidate chosen by f over the minimum social cost. More formally, we define

distortion(f) = sup
σ

sup
d/ σ

∑
j∈C d(f(σ), j)

mino∈A
∑

j∈C d(o, j)

where d / σ denotes that d is consistent with σ. Abusing notation slightly, given an

instance (C, A, σ), we say that a ∈ A is a ρ-distortion candidate with respect to σ if∑
j∈C d(a,j)

mino∈A
∑
j∈C d(o,j)

≤ ρ. Note that if f(σ) is always a ρ-distortion candidate for any preference

profile σ, then f is a ρ-distortion social choice function.

The following example will illustrate this definition, and help us appreciate the diffi-

culties that one faces when designing low-distortion social choice functions. One of the

simplest and most natural social choice functions to consider is the plurality voting rule,

wherein each agent casts one vote for their favourite candidate, and the candidate with the

most number of votes is chosen. However, as shown by Example 1.1 (originally given by

Anshelevich et. al [6]), the distortion of the plurality voting rule is Ω(m), where m = |A|
is the number of candidates.

Example 1.1. Let m > 2. The set of candidates is A = {a, b1, . . . , bm−1} and the set of

agents (voters) is C = Sa∪̇Sb1∪̇ · · · ∪̇Sbm−1 , where Sc is the set of agents whose top choice is
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c ∈ A. For ease of notation, we will write Sb = Sb1∪̇ · · · ∪̇Sbm−1 . For some constant q ≥ 1,

|Sa| = q + 1 and |Sbi | = q for i = 1, . . . ,m − 1. Note that the number of candidates is m

and the number of voters is mq + 1. The preference rankings of the agents is:

• j : a � b1 � · · · � bm−1 for j ∈ Sa

• j : bi � b1 � · · · � bi−1 � bi+1 � · · · � bm−1 � a for j ∈ Sbi , for i = 1, . . . ,m− 1

According to the preference profile σ that is defined above, a is the unique winner according

to the plurality voting rule. Consider the metric (C ∪A, d) defined by the following graph.

The squares denote candidates and the dark circles indicate the location of all agents in

the specified set. The distance between a pair of agents/candidates is the length of the

shortest path in the graph. Notice that, in this graph, b1, . . . , bm−1 are colocated (and

hence d(bi, bj) = 0 for any i, j ∈ {1, . . . ,m − 1}). The cost incurred by the agents when

b1, . . . , bm−1a

Sa Sb

10 0

Figure 1.1: Definition of d in Example 1.1

a is chosen is |Sa| · 0 + |C − Sa| · 1 = (m − 1) · q. The cost incurred by agents when bi is

chosen (for some i ∈ {1, . . . ,m− 1}) is |Sa| · 1 + |C − Sa| · 0 = q + 1. So,∑
j∈C d(j, a)

mino∈A
∑

j∈C d(j, o)
≥ (m− 1)q

q + 1
≥ m− 1

2

and thus a is an Ω(m)-distortion candidate with respect to σ.

Another popular voting rule, which we will study in Chapter 3, is the Copeland voting

rule. In this rule, the score of each candidate is the number of pairwise elections she has

won; a candidate with the highest Copeland score wins the election. For the instance in

Example 1.1, b1 wins every pairwise election; that is, for any candidate c 6= b1, at least half

of the agents prefer b1 to c. A candidate who wins all pairwise elections is a Condorcet

winner, and it can easily be shown that if a is Condorcet winner,
∑
j∈C d(j,a)

mino∈A
∑
j∈C d(j,o)

≤ 3 for

any d that is consistent with σ.
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We sketch the proof of this fact, primarily to give some intuition as to how one could

establish an upper bound on the quantity maxd / σ

∑
j∈C d(j,a)

mino∈A
∑
j∈C d(j,o)

. Suppose a ∈ A is a

Condorcet winner (for the instance (C, A, σ)); consider any o 6= a and d consistent with

σ. We will show that
∑

j∈C d(j, a) ≤ 3
∑

j∈C d(j, o). The cost incurred by any agent j

who prefers a over o is easy to bound, as d(j, a) ≤ d(j, o). It remains to bound d(j, a)

for agents who prefer o over a; we do so using the triangle inequality. Since d satisfies

the triangle inequality, d(a, o) ≤ d(a, j) + d(j, o) for any j ∈ C and hence if j prefers a

over o, d(a, o) ≤ 2d(j, o). Since a is a Condorcet winner, at least n
2

agents prefer a over

o, and thus d(a, o) ≤
∑
j∈C:a�jo

2d(j,o)

n
2

. Furthermore, |{j ∈ C : o �j a}| ≤ n
2
, and hence

|{j ∈ C : o �j a}| · d(a, o) ≤ n
2
· 2
n
·
∑

j∈C:a�jo 2d(j, o). Thus,∑
j∈C

d(j, a) ≤
∑
j∈C

d(j, o) +
∑

j∈C:o�ja

d(a, o) ≤
∑
j∈C

d(j, o) +
∑

j∈C:a�jo

2d(j, o) ≤ 3
∑
j∈C

d(j, o)

In cases where the instance admits a Condorcet winner, (such as Example 1.1), the

Condorcet winner is an obvious 3-distortion candidate. However, a well-known fact in social

choice theory is that a Condorcet winner need not always exist. Furthermore, in order to

bound the distortion of a social choice function f , we must bound maxd / σ

∑
j∈C d(j,f(σ))

mino∈A
∑
j∈C d(j,o)

for all preference profiles σ (including those that do not admit a Condorcet winner). As

it is difficult to reason about an arbitrary preference profile σ, bounding the distortion of

a social choice function is a non-trivial task.

Given this sobering observation, it is perhaps surprising that O(1)-distortion (and in

fact, 3-distortion) social choice functions exist [24] for the 1-median problem.

1.1 Our contributions

The main focus of this thesis is the problem of electing low-distortion k-committees. We

begin, in Chapter 3, with the single-winner setting (k = 1) and give a novel LP-duality

based analysis framework that makes it easier to analyze the distortion of existing social

choice functions. Previously, Kempe [28] has also presented such a framework, however our

framework is much simpler. Using this framework, we give simpler proofs of some known

results.
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While there is a tight bound of 3 on the distortion achievable by deterministic social

choice functions [6, 24], obtaining tight bounds on the best distortion achievable by ran-

domized SCFs is an open question. We do not know if randomized social choice functions

can achieve asymptotically better distortion (as |C|, |A| grow) than deterministic SCFs,

and a longstanding conjecture is that there exists a randomized SCF of distortion at most

2.

We formulate an LP to find an instance-wise optimal randomized social choice function;

i.e., the LP computes, for a given instance, the randomized SCF with smallest distortion.

(Note that this is fairly straightforward for deterministic SCFs, since the number of pos-

sible outputs for a given instance is a finite set, but for randomized SCFs, there is an

infinite collection of distributions to search from.) Using this LP, we disprove the above

conjecture by finding an instance for which the LP-optimum is larger than 2. We note that

this conjecture has also been independently refuted by Charikar and Ramakrishnan [22],

however our approach is quite different from theirs, and the instance-optimal LP we work

with may be of independent interest.

For the k-committee selection problem (or equivalently, the k-median clustering prob-

lem) when k > 1, it is not possible to compute a O(1)-distortion committee using purely

ordinal information [10]. We devise O(1)-distortion mechanisms for this k-median problem

that use a limited number of value queries per agent, where a value query takes a pair of

points i, j as input, and returns the distance d(i, j) between them.

For simplicity, we consider the setting A = C here (as is often the case in clustering).

Clearly, by making n = |A| = |C| value queries per agent, or O(n2) queries in all, we can

infer d precisely. We devise mechanisms with substantially better query complexity than

this trivial bound that obtain O(1)-distortion. To the best of our knowledge, our results

are the first results establishing upper bounds on distortion for k-median when k > 1.

• In Chapter 5, we devise a mechanism with O(log n log k) queries per agent. This is

based on a general reduction to the cardinal setting that is quite generic, and is of

independent interest.

• A pertinent question that arises is whether one can obtain per-agent query complexity
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that is independent of n. In Chapter 5, we answer this question affirmatively by

devising a mechanism that makes O(k) queries per agent.

Our mechanisms above are randomized mechanisms, that achieve O(1) distortion with

constant success probability.

We next consider more general k-clustering problems, where the objective to be min-

imized is a monotone, symmetric norm of the agents’ costs (a norm f is monotone, if

f(x) ≤ f(y) whenever 0 ≤ x ≤ y, and symmetric if f(v) = f(π(v)) for any permutation

π). In Chapter 6, we consider the `-centrum problem, wherein we seek to minimize the

sum of the ` largest costs. (The underlying norm here is called the Top` norm: Top`(v)

is the sum of the ` largest entries of v in absolute value.) We adapt our k-median mech-

anisms to obtain analogous results for `-centrum: we obtain O(1)-distortion mechanisms

with per-agent query complexities of O(log k log n) (see Theorem 6.2.4) and O(k log `) (see

Theorem 6.3.13). The latter result is obtained via a simple and elegant adaptive-sampling

algorithm.

Finally, in Chapter 7, we consider the completely general setting where the objective

is an arbitrary monotone, symmetric norm, a problem called minimum-norm k-clustering,

and show how to leverage the adaptive-sampling idea to obtain a constant-factor bicriteria

approximation algorithm for this problem (see Theorem 7.0.10).

The primary focus of this thesis is the k-committee selection problem; however, we

note that it is also possible to obtain low query-complexity, O(1)-distortion mechanisms

for other social cost minimization problems. We defer these results to Appendix B.

1.2 Related work

The distortion of social choice functions was first studied by Procaccia and Rosenschein

[39]. In this thesis, we restrict ourselves to the metric social choice setting, where we assume

that the agents and candidates are points in a metric space (C ∪ A, d). The distortion of

social choice functions in the metric setting was first studied by Anshelevich, Bharadwaj,

and Postl [6], who proved that the Copeland voting rule has a distortion of 5. They also
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showed that every deterministic social choice function has a distortion of at least 3, and

conjectured that there exists a deterministic social choice function with distortion of at

most 3. The matching uncovered set is an elegant construction that arose during the quest

for a 3-distortion social choice function. It was first introduced by Munagala and Wang [37],

who proved that any candidate in the matching uncovered set is a 3-distortion candidate

(Kempe [28] also showed this using an LP-duality based framework). The conjecture was

ultimately resolved by Gkatzelis, Halpern, and Shah [24], who gave a 3-distortion social

choice function and in doing so, also proved that the matching uncovered set is not empty.

More recently, Kizilkaya and Kempe gave a much simpler 3-distortion social choice function

[30].

The distortion of randomized social choice functions in the metric setting has also been

studied. Notably, Anshelevich and Postl [8] gave a simple randomized social choice function

that has a distortion of 3 − 2
|C| , and Kempe and Gkatzelis et. al gave randomized social

choice functions that achieve a distortion of 3 − 2
|A| [29, 24]. A longstanding conjecture

was that there exists a randomized social choice function that achieves a distortion of 2;

as noted earlier, this conjecture was refuted independently by our work [40] and Charikar

and Ramakrishnan [22].

The work most closely related to ours is Caragiannis, Shah, and Voudouris [18], who

also study a metric multiwinner election problem wherein one seeks to elect a committee

of k winners so as to minimize the sum of costs incurred by the agents. They consider

the setting where the cost of an agent for a committee is her distance from the q-th

closest alternative in the committee. They show that the distortion of any social choice

correspondence is unbounded when q ≤ k
3
, but one can give a Θ(n)-distortion voting rule

when q ∈ (k
3
, k

2
], and a O(1)-distortion voting rule when q > k

2
. Our approach is different

in that we only consider the setting where q = 1; however, we circumvent the impossibility

result by using a limited amount of cardinal information. The metric multiwinner election

problem has also been studied by Goel, Hulett, and Krishnaswamy [25] and Chen, Li, and

Wang [23], however these models are quite different from ours; Chen et. al assume that

the locations of the candidates are public knowledge, and Goel et. al’s model assumes that

the cost of an agent for a committee is the sum of her distances from every member of the

committee.
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There have been many other interesting directions pursued in the metric distortion

literature. Anagnostides, Fotakis, and Patsilinakos [5] studied the distortion of metric

social choice functions when incomplete ordinal information is provided. They also studied

the problems where we are given partial rankings over the candidates, and where we do

not have the preference ranking of all voters. Goel, Krishnaswamy, and Munagala [26]

studied the distortion of the Copeland voting rule and other social choice functions under

the max`∈[n] Top` objective (which they call the fairness ratio).

So far, we have only discussed work done in the social-cost-minimization setting. A

significant amount of work has also been done in the social-welfare-maximization setting.

In the social welfare maximization setting (where we do not have the metric assumption),

Caragiannis and Procaccia [17] showed that the Plurality rule has a distortion of O(m2),

which was later proven to be the best possible among all deterministic voting rules by

Caragiannis, Filos-Ratsikas, Nath, and Voudouris [16]. Borodin, Halpern, Latifian, and

Shah [13] studied the problem of selecting a committee of size k when given the top-t

preferences of the voters over the candidates. There has also been work done pertaining to

other optimization problems. Notably, Anshelevich and Sekar [9] combine randomization

with an intuitive greedy algorithm to design a 1.6-distortion algorithm for maximum weight

matching; using similar techniques, Abramowitz and Anshelevich [1] gave O(1)-distortion

algorithms for a sizeable class of graph optimization problems (including maximum weight

spanning tree, maximum b-matchings, etc.).

In light of these results, a natural question to ask is whether eliciting a small amount of

additional cardinal information from the agents can yield better algorithms. Amanatidis,

Birmpas, Filos-Ratsikas, and Voudouris [4] studied mechanisms for single winner elections

in the social-welfare maximization setting that elict a few value or comparison queries per

agent. In the social cost minimization setting, Abramowitz, Anshelevich, and Zhu [2] stud-

ied metric single winner elections when some aggregated cardinal information is available.

Anshelevich and Zhu studied some graph optimization problems in the setting where the

locations of the candidates are known, but the locations of the voters is private information

[10]. However, to the best of our knowledge, little is known regarding the performance of

mechanisms that elicit (a few) queries per agent in the social cost minimization setting.

The committee selection problem we study in this thesis has strong connections to
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k-clustering, and many of the mechanisms we design will use clustering algorithms as sub-

routines. Moreover, in Chapters 6 and 7 we present adaptive sampling algorithms for

the `-centrum and minimum-norm k-clustering problems. In the `-centrum k-clustering

problem, one seeks to open k centers so as to minimize the sum of the `-largest assign-

ment costs. Thus, this problem captures both the k-median clustering problem (wherein

one seeks to minimze the sum of all assignment costs) and the k-center clustering problem

(where one wishes to minimize the maximum assignment cost). The `-centrum and its gen-

eralization, the ordered k-median problem, have been extensively studied in the Operations

Research literature (see, e.g., [11, 32, 38] and the references within). The first O(log n)-

approximation algorithms for `-centrum and the ordered k-median problems were given

by Tamir [42] and Aouad and Segev [11] respectively. Within the past few years, Byrka,

Sornat, and Spoerhase [15], and Chakrabarty and Swamy [19] gave the first constant-factor

approximations for these two problems. More recently, Chakrabarty and Swamy [20] gave

the first constant factor approximation algorithm for the minimum-norm k-clustering prob-

lem. Using LP-techniques, they devised a (408 + ε)-approximation algorithm that opens

exactly k centers. Note that the minimum-norm k-clustering problem generalizes many

well-studied k-clustering problems, including `-centrum and ordered k-median.

9



Chapter 2

Preliminaries

2.1 Social choice theory

Social choice theory is concerned with aggregating the preferences of multiple individuals

or agents into a single outcome. Let C be a set of n agents, and let A be a finite set of

alternatives. For a1, a2 ∈ A, and i ∈ C, we say that a1 �i a2 if agent i prefers alternative

a1 to a2. Agent i’s preference relation induces a preference ordering �i, which is a total

ordering on A. We denote the top choice of i ∈ C as top(i,�i), or just top(i) when �i is

clear from the context. Similarly, We denote the top choice of i ∈ C when restricted to

S ⊆ A as topS(i,�i), or just topS(i) when �i is clear from the context. Let L be the set of

total orders on A. A preference profile σ = (�1, . . . ,�n) ∈ L is a tuple giving a preference

ordering for each agent.

As alluded to earlier, we are interested in settings where the ordinal preferences σ are

a result of the underlying cardinal utility functions of the agents. To be more precise,

we will assume that the agents and alternatives are points in a metric space (C ∪ A, d),

where d : (C ∪A)2 → R≥0 is a distance function satisfying the triangle inequality. The cost

incurred by an agent i when alternative a ∈ A is chosen is the distance between herself and

a, which we will denote as d(i, a). As the preference profile σ arises from the underlying

cardinal costs induced by the metric, we will assume that d is consistent with σ; that is,

for any a, b ∈ A, i ∈ C, if a �i b, then d(a, i) ≤ d(b, i).

10



Definition 2.1.1 (Social Choice Functions and Correspondences [41]). A social choice

function (SCF) f : L → A is a function which maps a preference profile σ to a single

alternative in A. A social choice correspondence (SCC) f : L → 2A is a function which

maps a preference profile σ to a subset of alternatives in A 1.

We introduce a piece of non-standard terminology and say that f is a social choice k-

correspondence, or simply k-correspondence, if f : L→ Ak, i.e., f maps preference profiles

to subsets of A of size k. Notice that every social choice k-correspondence is a social choice

correspondence, and a social choice 1-correspondence is in fact a social choice function.

Thus, the problem(s) described in Chapter 1 can be regarded as the problem of finding a

good social choice k-correspondence. As ordinal preference rankings are not as expressive

as cardinal utilities, a loss of efficiency, in terms of the quality of the outcome computed, is

inevitable. Procaccia and Rosenschein [39] introduced the notion of distortion to quantify

the worst-case efficiency loss for a given social choice function. This notion extends readily

to social choice correspondences.

Definition 2.1.2 (Distortion of a Social Choice k-Correspondence). Let f : L→ Ak be a

social choice k-correspondence. We define the distortion of f to be

distortion(f) = sup
σ

sup
d/ σ

∑
j∈C d(j, f(σ))

minS⊆Ak
∑

j∈C d(j, S)

where d / σ denotes that d is consistent with σ.

As we will see in Chapter 4, for k ≥ 3, any social choice k-correspondence has un-

bounded distortion, so algorithms need to use some additional cardinal information to

achieve bounded distortion. We will therefore work with mechanisms, which are algo-

rithms that can make additional queries. The following definition of a mechanism is a

slight modification of the definition given by Amanatidis, Birmpas, Filos-Ratsikas, and

Voudouris [4].

1It is natural to ask whether a social choice correspondence can simply be viewed as an SCF with an

expanded alternative-set 2A. This is not quite true because even though in many settings, an ordering

over A can be used to naturally induce an ordering over 2A, this does not capture the space of all possible

orderings of 2A
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Definition 2.1.3 (Mechanism [4]). A mechanism M = (Q, f, k) with access to a query

oracle takes as input a preference profile σ and returns a k-subset of A. It consists of

an algorithm Q that, given an input preference profile σ, adaptively makes queries to the

query oracle, and a function f that takes the input σ, the set of queries and their answers,

and outputs a k-subset of A (i.e., a solution).

Since the output of M depends on the underlying distance function d we will often

writeM(σ|d) to denote the output ofM given σ and a metric d that is consistent with σ.

To be clear, the mechanism is not provided d as input; however, the answers provided by

the querying algorithm Q, and hence the final output of the mechanism does depend on

d. We also extend the notion of distortion to mechanisms in the natural manner.

Definition 2.1.4 (Distortion of a Mechanism). Let M = (Q, f, k) be a mechanism. We

define the distortion of M to be

distortion(M) = sup
σ

sup
d/ σ

∑
j∈C d(j,M(σ|d))

minS⊆Ak
∑

j∈C d(j, S)

where d / σ denotes that d is consistent with σ.

Finally, we note that many of the mechanisms we design in this thesis will be ran-

domized. For a randomized mechanism, wherein the solution returned is a random vari-

able (or equivalently, where the output is a distribution over solutions), the most natu-

ral notion of distortion is the worst-case ratio between the expected cost of the solution

returned and the optimum. However, in Chapters 5 and 6, we will use the somewhat

weaker notion, where we say that a randomized mechanism has distortion of at most ρ if

supσ supd/ σ

∑
j∈C d(j,M(σ|d))

min
S⊆Ak

∑
j∈C d(j,S)

≤ ρ with constant probability.

2.2 k-clustering

When designing low-distortion mechanisms for the committee selection problem, we will

often use k-clustering algorithms as subroutines of our mechanisms. We introduce the

pertinent clustering problems here.
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For a vector v, we use v↓ to denote v with its coordinates sorted in non-increasing order.

For v ≥ 0, the Top-` cost of v, denoted Top`(v), is the sum of the ` largest entries of v.

Equivalently, Top`(v) =
∑`

i=1 v
↓
i . A norm f : Rn → R satisfies (i) f(x) = 0 iff x = 0; (ii)

f(x + y) ≤ f(x) + f(y) for all x, y ∈ Rn (triangle inequality); and (iii) f(λx) = |λ|f(x)

for all x ∈ Rn, λ ∈ R (homogeneity). We say that f is symmetric if f(v) = f(v↓) for all

v ∈ Rn. A monotone norm f satisfies f(x) ≤ f(y) whenever 0 ≤ x ≤ y.

In the k-clustering problem, we have an integer k ≥ 0 and a metric space (C, d), where

C is a set of n agents and d(i, j) is the distance between two agents i and j. We wish

to open a set of centers S ⊆ C, and assign each agent to its nearest open center in S.

The distance between an agent j and its nearest open center in S, denoted d(j, S), is the

assignment/connection cost incurred by j under the current solution. Thus, a set of open

centers S induces an assignment cost vector, denoted d(C, S), where d(C, S)j = d(j, S) is

the assignment cost incurred by agent j under S. Two classical k-clustering problems are

the k-center and k-median problems. In the k-center problem, we wish to minimize the

largest assignment cost, whereas in the k-median problem, we wish to minimize the sum

of all assignment costs. A generalization of these two clustering problems is the `-centrum

k-clustering problem (or simply `-centrum), in which we wish to open k centers so as to

minimize the sum of the ` largest assignment costs. In minimum-norm k clustering, we

wish to minimize f(d(C, S)), where f is a monotone symmetric norm, and d(C, S) is the

assignment cost vector induced by S. Notice that Top` is a monotone symmetric norm, so

`-centrum is a special case of minimum-norm k-clustering.

In general, the Top` objective can be difficult to work with, due to its non-separable

nature: the contribution of an agent depends on the assignment costs incurred by the

other agents. In order to design a good algorithm for the `-centrum problem, we must first

overcome this inherent dependence on the relative ordering of the agents with respect to

assignment cost. As a means to this end, we will consider the proxy function introduced

by Chakrabarty and Swamy [20]. The following basic result will be quite useful.

Claim 2.2.1 (Claims 6.1 and 6.2 in [20]). For any v ∈ Rn
+, ρ ∈ R, Top`(v) ≤ ` · ρ +∑n

j=1(vj−ρ)+. Moreover, if v↓` ≤ ρ ≤ (1+ε)v↓` , then `·ρ+
∑n

j=1(vj−ρ)+ ≤ (1+ε)·Top`(v).

Claim 2.2.1 shows that for a suitable choice of ρ, the function ` · ρ +
∑n

j=1(vj − ρ)+
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serves as a good proxy for Top`(v). The key benefit of this proxy function is that for a

fixed ρ, the ` · ρ term is a constant, and so we can work with the expression
∑

j(vj − ρ)+,

which is separable across the coordinates.
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Chapter 3

The single-winner problem (k = 1)

In the single winner election problem, we are given a set of agents C and a set of candidates

(or alternatives) A that are located in a metric space (C∪A, d), where d(i, a) is the distance

from agent i to candidate a. We would like to choose a candidate a ∈ A that minimizes

the social cost (i.e.
∑

j∈C d(j, a)). As a clustering problem, this is precisely the 1-median

problem. Note however that we only know σ, the preference profile of the agents over the

candidates. Recall that we define the distortion of a social choice function (SCF) f to be

distortion(f) = supσ supd/ σ

∑
j∈C d(j,f(σ))

mina∈A
∑
j∈C d(j,a)

.

A longstanding question was whether there exists a social choice function with distortion

at most 3. This was recently resolved by Gkatzelis, Halpern, and Shah [24], who defined

a social choice function PluralityMatching and proved that it has distortion at most 3. In

fact, this is the best possible bound; as shown by the following example, originally given by

Anshelevich, Bhardwaj, Elkind, Postl, and Skowron [6], the distortion of any social choice

function must be at least 3.

Example 3.1. Consider a social choice function f , and an instance (C, A, σ), where A =

{x, y}. Let n = |C|
2

. Suppose n
2

of the agents prefer x over y (the other n
2

agents prefer

y over x) and assume, without loss of generality, that f(σ) = x. Consider the metric

(C ∪ A, d) defined by the following graph. The squares denote candidates and the dark

circles indicate the location of all agents in the specified set (xy = {j ∈ C : x �j y},
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yx = {j ∈ C : y �j x}). The distance between a pair of agents/candidates is the length of

the shortest path in the graph. Notice that d is consistent with the preference profile σ.

xy

yx xy

10 1

Figure 3.1: Definition of d in Example 3.1

The social cost when x is chosen is n
2

+ n
2
· 2 = 3n

2
. On the other hand, the social cost

when y is chosen is n
2
. Thus,

∑
j∈C d(j,x)∑
j∈C d(j,y)

= 3. Since the assumption that f(σ) = x was

without loss of generality, and this is a metric that is consistent with σ, the distortion of

f is at least 3.

In general, proving an upper bound on the distortion of a social choice function f can

be a strenuous task; hence, analysis frameworks for proving bounds on the distortion of

SCFs are valuable. Kempe gave such a framework [28], based on LP duality with the intent

of simplifying and unifying certain proofs, but even this framework is somewhat involved.

We present an LP-duality based analysis framework that is much simpler than Kempe’s

framework. In the deterministic setting, we show that it is possible to give simpler proofs

of known distortion bounds using our framework. We also show that this framework

can be leveraged to derive a simple sufficient condition for 3-distortion candidacy (see

Lemma 3.1.5). Our framework has the added benefit that it generalizes readily to the

randomized setting. Finally, we formulate an LP that computes, for any given instance,

a randomized social choice function with optimal distortion (see (Best-Dist)). Using this,

we obtain an instance for which the minimum achievable distortion is at least 2.063164,

thereby disproving a widely-believed conjecture that there exists a randomized social choice

function of distortion at most 2. (We note that independently and concurrently, Charikar

and Ramakrishnan [22] have also disproved this conjecture: they obtain a slightly better

bound of 2.1126, but their techniques are quite different; in particular, they do not obtain

an instance-optimal randomized SCF).
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3.1 LP-duality based analysis framework

In order to bound the distortion of a social choice function f , we wish to be able to compute

the value of max
d/ σ

∑
j∈C d(a,j)∑
j∈C d(o,j)

for any a, o ∈ A. This quantity can be computed by solving the

following linear program. In all linear programs presented in this section, we will define

variables dij which represent the distance d(i, j), for any i, j ∈ C ∪ A. Let m = |A| be the

number of candidates and n = |C| be the number of agents, and let altσ(k, r) denote the

rth ranked outcome in agent k’s ordering, �k∈ σ.

max
∑
j∈C

daj (Qσ
ao)

s.t.
∑
j∈C

doj ≤ 1 (3.1)

daltσ(j,r),j ≤ daltσ(j,r+1),j ∀j ∈ C, ∀r ∈ [m− 1] (3.2)

di1i2 ≤ di1i3 + di2i3 ∀i1, i2, i3 ∈ A (3.3)

dj1j2 ≤ dj1j3 + dj2j3 ∀j1, j2, j3 ∈ C (3.4)

dj1j2 ≤ di1j1 + di1j2 ∀i1 ∈ A, j1, j2 ∈ C (3.5)

di1j1 ≤ di1j2 + dj1j2 ∀i1 ∈ A, j1, j2 ∈ C (3.6)

di2j ≤ di1j + di1i2 ∀i1, i2 ∈ A, j ∈ C (3.7)

di1i2 ≤ di1j + di2j ∀i1, i2 ∈ A, j ∈ C (3.8)

d ≥ 0 (3.9)

Constraint (3.1) normalizes
∑

j∈C doj, which allows us to avoid writing a ratio in the

objective. Constraint (3.2) ensures that the metric d is consistent with the preference

profile σ. Constraints (3.3)-(3.9) enforce that d is a metric (i.e., it satisfies the triangle

inequality and non-negativity).

In order to prove that distortion(f) ≤ ρ, it would suffice to show that, for all σ and for all

o ∈ A, (Qσ
f(σ),o) has an optimal value of at most ρ (this is equivalent to maxd/ σ

∑
j∈C d(j,a)∑
j∈C d(j,o)

≤ ρ

for all o ∈ A). One way to do this would be to demonstrate a dual solution of value at most
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ρ. Unfortunately, the dual of (Qσ
ao) can be difficult to interpret. Kempe’s LP-duality based

framework [28] addresses this challenge by considering a restricted set of dual solutions,

which can be interpreted as flows in a particular network. Alternatively, we can work

with a relaxation of (Qσ
ao); the dual of this relaxation will have fewer variables, and hence

hopefully be of a simpler form and easier to interpret.

To construct an appropriate relaxation of (Qσ
ao), we note that the constraints (3.3)-(3.8)

describe four types of 3-sets or “triangles”: triangles consisting of three agents (3.4), two

agents and a single candidate (3.5)-(3.6), one agent and two candidates (3.7)-(3.8), and

triangles consisting of three candidates (3.3). (Note that given (3.2), constraint (3.7) is non-

trivial when i1 �j i2). We can obtain a relaxation of (Qσ
ao) with fewer constraints by only

enforcing the triangle inequality for triangles consisting of one agent and two candidates,

and furthermore, where one of the candidates is o. The motivation behind this relaxation

is that various proofs can be viewed in terms of leveraging the triangle inequality with only

these types of triangles.

More formally, define T (σ, o) := {(j, i1, i2) : i1, i2 ∈ A : i1 6= i2, i1 �j i2, o ∈ {i1, i2}, j ∈
C}. We obtain the following LP from (Qσ

ao) by dropping all constraints (3.3)-(3.6), as well

as the constraints (3.7)-(3.8) that correspond to triangles that are not in T (σ, o).

max
∑
j∈C

daj (P σ
ao)

s.t.
∑
j∈C

doj ≤ 1 (3.10)

daltσ(j,r),j ≤ daltσ(j,r+1),j ∀j ∈ C, ∀r ∈ [m− 1] (3.11)

di2j ≤ di1j + di1i2 ∀(j, i1, i2) ∈ T (σ, o) (3.12)

di1i2 ≤ di1j + di2j ∀(j, i1, i2) ∈ T (σ, o) (3.13)

d ≥ 0 (3.14)

As (P σ
ao) is a relaxation of (Qσ

ao), any upper bound for OPT(P σ
ao) is also an upper bound

for OPT(Qσ
ao). We will use (Dσ

ao), the dual of (P σ
ao), to demonstrate upper bounds for

OPT(P σ
ao). For ease of notation, let T = T (σ, o). The indicator variable I[i=altσ(k,r)] = 1 if
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i is the rth ranked outcome in �k, and 0 otherwise. The dual of (P σ
ao) is given below. For

notational convenience, we define β0,k = βn,k = 0 (so they are not variables in the following

LP).

min γ (Dσ
ao)

s.t.
∑

T=(k,·,i)∈T

(α1,T − α2,T )−
∑

T=(k,i,·)∈T

(α1,T + α2,T ) + β1kI[i=altσ(k,1)]

+
n∑
r=1

(βr+1,k − βr,k)I[i=altσ(k,r+1)] − βn−1,kI[i=altσ(k,n)]

+ γI[i=o] ≥ I[i=a] ∀k ∈ C, ∀i ∈ A (3.15)∑
T∈T :T=(·,i1,i2) or (·,i2,i1)

(α2,T − α1,T ) ≥ 0 ∀i1, i2 ∈ A (3.16)

α, β, γ ≥ 0 (3.17)

In (Dσ
ao), γ corresponds to the primal constraint (3.10), the β-variables correspond to

the primal constraints (3.11), and the α1,· and α2,· variables correspond to the primal

constraints (3.12) and (3.13) respectively.

It will be helpful to interpret a feasible solution to (Dσ
ao) as a flow in the following

network. For every j ∈ C, consider a flow in Nj (Figure 3.2) from the source o to the sink

a, which has a demand, i.e., net in-flow requirement, of 1. The −α2,(j,i1,i2) variables can

be interpreted as additional charges on i1 and i2; constraint (3.15) requires that the net

in-flow for node a must be at least 1, and for all other nodes, the net in-flow must be at

least 0.

19



∑
T=(j,top(j),·) or
T=(j,·,top(j))

α2,T

altσ(j, 1)

∑
T=(j,o,·) or
T=(j,·,o)

α2,T

o
altσ(j,m)

βm−1,jβr,jβr−1,jβ1,j

α1,T1

α1,T2

Figure 3.2: Network Nj corresponding to constraint (3.15)

When routing flow from o to a in Nj, the black β·j arcs can be used without incurring

any additional cost. Sending flow via the red α1,T -arcs does incur a cost; by constraint

(3.16), the amount of flow sent along any α1,(j,i1,i2)-arc must be charged to α2,T ′ for some

T ′ = (·, i1, i2) or (·, i2, i1) ∈ T . This additional
∑

T=(j,i,·) α2,T charge on an agent j is

indicated in Figure 3.2 as a red number inside the square corresponding to candidate i.

Finally, γ is the sum of the total flow departing from o and the α2,T -charges on o.

To be more concrete, consider the following instance (C, A, σ) with C = {j1, j2, j3} and

A = {a, o}. In this example and in the sequel, for any x, y, z ∈ A, we use xy to denote the

set of agents who prefer x to y (i.e. xy = {j ∈ C : x �j y}) and xyz = {j ∈ C : x �j y �j
z}. The preference profile σ is ao = {j1, j3} and oa = {j2}. That is, j1 and j3 prefer a to

o, while j2 prefers o to a. We can construct the following feasible dual solution, which has

γ = 3 (proving that OPT(Dσ
ao) ≤ 3 for this instance).
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(a) Nj1
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(b) Nj2

a
o

11

(c) Nj3

Figure 3.3: Dual solution for |ao| ≥ |oa|

As depicted in Figure 3.3, in Nj3 , one unit of flow is sent from o to a using β·,j3 arcs.

In Nj2 , one unit of flow is sent from o to a using an α1,(j2,o,a) arc. The cost of this usage

is charged to j1, and hence we have α2,(j1,a,o) = 1 (this is denoted as the red 1 inside the

a and o nodes in Figure 3.3a). Finally, in Nj1 , we route 2 units of flow from o to a along

β·,j1 arcs (1 unit of flow is to satisfy the demand of a, and the other unit is to neutralize

the charge of 1 on a). To compensate for the total amount of flow leaving o, as well as the

additional charge of 1 on o, we must have γ = 3.

This example can be generalized to prove that, for any instance with |ao| ≥ |oa|,
OPT(Dσ

ao) ≤ 3. Since |ao| ≥ |oa|, we can match every j ∈ oa with a unique j′ ∈ ao.

The flow for j is as depicted in Figure 3.3b; the cost incurred by using the α1,(j,o,a)-arc is

charged to j′, whose flow is as depicted in Figure 3.3a. Finally, the flow for agents in ao

who have not been matched to an agent in oa is as depicted in Figure 3.3c.

Fact 3.1.1. If |ao| ≥ |oa|, then OPT(P σ
ao) ≤ 3

In the rest of this section, we will demonstrate how this framework can be used to give

simpler proofs of some known results.
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3.1.1 Copeland

A popular voting rule is the Copeland rule. In this rule, the score of each candidate is

the number of pairwise elections she won; a candidate with the highest Copeland score is

returned. Anshelevich, Bhardwaj, and Postl [6] proved that the distortion of the Copeland

voting rule is 5. We use our analysis framework to give a simpler proof that the distortion

of Copeland’s rule is at most 5.

Theorem 3.1.2. Let (C, A, σ) be an instance of the single winner election problem and let

a be a Copeland winner. Then OPT(Dσ
ao) ≤ 5 for all o ∈ A \ {a}.

Proof. Recall that for x, y, z ∈ A, xy = {j ∈ C : x �j y} and xyz = {j ∈ C : x �j y �j z}.
Let a ∈ A be a Copeland winner, and let o ∈ A \ {a}. If |ao| ≥ |oa|, then by Fact 3.1.1,

OPT(Dσ
ao) ≤ 3. Otherwise, if |ao| < |oa|, there exists b ∈ A \ {a, o} such that |ab| ≥ |ba|

and |bo| ≥ |ob| [36].

We now utilize b to construct a dual solution of value at most 5. We first describe the

construction at a high level. We define a set S such that (1) |ao \ S| ≥ |oa \ S| and (2) we

can partition S into pairs (i, j) such that the α1,T -arcs used in Ni are charged to nodes in

Nj and vice versa. As |ao \ S| ≥ |oa \ S|, for j 6∈ S, we can use the same construction as

shown in Figure 3.3. Then, if we can show that the total cost on the source node in Nj is

at most 5 for all j ∈ S, our dual solution would have value γ ≤ 5.

Claim 3.1.3. There always exists a set S ⊆ oab ∪ boa such that |S ∩ oab| = |S ∩ boa| and

|ao \ S| ≥ |oa \ S|.

Proof. First, consider the case where |oab| ≤ |boa| define S to be a set containing all

agents in oab and |oab| agents from boa. Then, |ao \ S| = |ao| and |oa \ S| = |oa| − |S|.
Furthermore, |oab| = |boa ∩ S|. Since S ⊆ oa and |oa| = |oab|+ |oba|+ |boa|, we have

|oa \ S| = |oba|+ |boa \ S|
= |oba|+ |boa| − |boa ∩ S|
≤ |ba| − |boa ∩ S|
≤ |ab| − |oab| ≤ |ao| = |ao \ S|
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where the last inequality is because ab \ oab = aob ∪ abo ⊆ ao.

The argument for the other case, where |boa| < |oab|, is similar. Define S to be a

set containing all agents in boa and |boa| agents from oab. Once again, |ao \ S| = |ao|
and |oa \ S| = |oa| − |S|. Furthermore, |boa| = |oab ∩ S|. Since S ⊆ oa and |oa| =

|oab|+ |oba|+ |boa|, we have

|oa \ S| = |oba|+ |oab \ S|
= |oba|+ |oab| − |oab ∩ S|
≤ |ob| − |oab ∩ S|
≤ |bo| − |boa| ≤ |ao| = |ao \ S|

where the last inequality is because bo \ boa = abo ∪ bao ⊆ ao.

Let S ⊆ C be a set satisfying the conditions of Claim 3.1.3. Given such a set S, we can

define a dual solution with γ = 5. We partition S into pairs {i`, j`}, where i` ∈ oab ∩ S
and j` ∈ boa∩ S. Note that this is well-defined as S ⊆ oab ∪̇ boa and |S ∩ oab| = |S ∩ boa|.
The flow and charges in Ni` and Nj` are depicted in Figure 3.4.

1

o

1

a b

22

2

(a) Ni`

2

b

2

o a

22

1

(b) Nj`

Figure 3.4: Dual solution for j ∈ S

As shown in the above figure, the 2 units of flow sent along the α1,(i`,o,b)-arc in Ni` are

charged to j` (i.e., α2,(j`,b,o) = 2). Similarly, the 1 unit of flow sent along the α1,(j`,o,a)-arc in

Nj` is charged to i` (i.e., α2,(i`,o,a) = 1). Since |ao\S| ≥ |oa\S|, we can use the construction

given in Figure 3.3 for j 6∈ S. Note that the sum of the total charge and amount of flow

departing from the source node is at most 5 in Nj for all j ∈ S, and is at most 3 for all

j 6∈ S; hence, γ = 5, so OPT(Dσ
ao) ≤ 5.
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3.1.2 Matching uncovered set

One important construction in the distortion literature is the matching uncovered set [37,

24, 28]. Munagala and Wang [37] proved that any candidate in the matching uncovered

set is a 3-distortion candidate, and recently, Gkatzelis et. al proved that the matching

uncovered set is not empty (thus resolving the deterministic optimal metric distortion

conjecture). Construct a bipartite graph Hao on a node set consisting of two disjoint

copies of C, which form the bipartition. There is an edge (i, j) in Hao if and only if there

exists x ∈ A such that a �i x and x �j o. Then, the matching uncovered set is precisely

the set of all a ∈ A such that there exists a perfect matching in Hab for all b ∈ A.

Since our distortion upper bounds are constructed using a relaxation of (Qσ
ao), it

is pertinent to ask whether a candidate a in the matching-uncovered set also satisfies

OPT((P σ
ao)) ≤ 3 for all o ∈ A. We give a simple proof that this is indeed the case.

Theorem 3.1.4. Let a be a candidate in the matching uncovered set. Then, OPT(P σ
ao) ≤ 3

for all o ∈ A.

Proof. Since a is a candidate in the matching uncovered set, for any o ∈ A, Hao has a

perfect matching. Fix any o ∈ A and let M be a perfect matching in Hao. We will

construct a dual solution with γ = 3. Notice that for every agent i, there is a copy of i on

the “left” as well as on the “right”. We show a separate flow for each copy of i on the left

and on the right, and the final flow in Ni will be the sum of these flows. Furthermore, the

flow for the left-copy of i, may use an α1,· arc, and charge this usage to a right-copy of a

different agent. The flow for the right-copy of i may be used to satisfy an α2,· charge on i.

This is illustrated by the following concrete example. Let M be a perfect matching of

Hao and let (i, j) ∈ M , where i is a node on the left of Hao and j is a node on the right.

There exists some x ∈ A such that a �i x and x �j o. Then, the flow for the left-copy of

i is given in Figure 3.5a and the flow for the right-copy of j is given in Figure 3.5b.
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(b) Flow for right-copy of j in Nj

Figure 3.5: Dual solution for Theorem 3.1.4

Applying this construction to all (i, j) ∈ M , and taking the sum of the left and right

flows in Ni for all i ∈ C yields a dual solution with γ = 3, so OPT(Dσ
ao) ≤ 3. So, if Hao

has a perfect matching, OPT(P σ
ao) ≤ 3. Since a is in the matching uncovered set, Hao has

a perfect matching for all o ∈ A, so OPT(P σ
ao) ≤ 3 for all o ∈ A.

As a corollary, if a is a candidate that could be chosen by Gkatzelis et. al’s social choice

function (PluralityMatching) [24], OPT(P σ
ao) ≤ 3 for all o ∈ A. However, the converse is

not true; as shown by the following example, it is possible for a to have OPT(P σ
ao) ≤ 3 for

all o ∈ A, but not be in the matching-uncovered set.

Example 3.2. Consider the following instance with four agents {1, 2, 3, 4} and three can-

didates {a, b, o}, where the preference profile for agent 1 is o � a � b, for agents 2 and 3

is b � o � a, and for agent 4 is a � b � o. Figure 3.6 gives a feasible solution to (Dσ
ao),

so OPT(P σ
ao) ≤ 3. Since |ab| = |ba|, by Fact 3.1.1, OPT(P σ

ab) ≤ 3, so a is a 3-distortion

candidate. However, Hao does not have a perfect matching (as {2, 3} is a deficient set) so

a is not in the matching uncovered set.
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3.1.3 A sufficient condition for OPT(P σ
ao) ≤ 3

As noted above, there can be a candidate a outside the matching-uncovered set for which

we still have maxo∈A OPT(P σ
ao) ≤ 3. So it is useful to try to understand when such a

bound applies. In this section, we use our analysis framework to derive a general suffi-

cient condition for this. Later, we show that when |A| ≤ 3, this condition is also neces-

sary. (Thus, when |A| ≤ 3, we obtain a tight characterization of alternatives a for which

maxo∈A OPT(P σ
ao) ≤ 3).

Condition (∗): There exists b ∈ A \ {a, o}, |ao| ≥ max {|boa| − |oab|, |oab|}+ |oba|.

Lemma 3.1.5. If Condition (∗) holds, then OPT(P σ
ao) ≤ 3.

Proof. Suppose Condition (∗) holds. Then, there exists b ∈ A \ {a, o} such that |ao| ≥
2 max

{
|boa|

2
− |oab|, 0

}
+ |oab| + |oba|. We will prove that OPT(P σ

ao) ≤ 3 by constructing

a feasible solution to (Dσ
ao) of value at most 3.

Case 1 : |oab| ≥ |boa|
2

. Since |oab| is an integer, |oab| ≥
⌈
|boa|

2

⌉
. Define S to be a set

containing boa,
⌈
boa
2

⌉
agents from oab, and

⌈
boa
2

⌉
agents from ao (note that this is well-

defined as
⌈
boa
2

⌉
≤ |oab| ≤ |ao|). For now, assume |boa| is even. We can partition S into

disjoint groups of 4 agents {i, j, k1, k2} where i ∈ oab ∩ S, j ∈ ao ∩ S, k1, k2 ∈ boa ∩ S.

In Figure 3.6, the colours indicate which nodes the α1,T -arc usage has been charged to.

For instance, the cost of sending 1 unit of flow along the α1,(k1,o,a) arc is charged to Ni,
as α2,(i,o,a) = 1 (Figures 3.6a and 3.6b). Similarly, the cost of routing 2 units along the

α1,(i,o,b)-arc is charged to the b and o nodes for agents k1 and k2. If |boa| is odd, there will

be one group of 3 agents, {i, j, k} with i ∈ oab ∩ S, j ∈ ao ∩ S, k ∈ boa ∩ S. In this case,

the flow for this last group will be as depicted in Figure 3.7.
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Figure 3.6: Partial dual solution for {i, j, k1, k2}
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Figure 3.7: Partial dual solution for {i, j, k} (if |boa| is odd)
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Notice that the total cost incurred by o in N` for any agent ` ∈ S is at most 3, so we can

construct a dual solution with γ = 3 when restricted to S. Moreover, as we show below,

we have |oa \ S| ≤ |ao \ S|, so we can use the construction given in Fact 3.1.1 for C \ S.

We have

|oa \ S| = |oba|+ |oab \ S|+ |boa \ S|
= |oba|+ |oab| − |oab ∩ S| as boa ⊆ S

≤ |ao| − |oab ∩ S| as |ao| ≥ |oab|+ |oba|
= |ao| − |ao ∩ S| = |ao \ S|

Case 2 : |oab| < |boa|
2

. Then, |ao| ≥ |boa| + |oba| − |oab| Define S to be a set containing

oab, 2|oab| agents from boa, and |oab| agents from ao (note that this is well defined as

2|oab| < |boa| and |oab| ≤ |boa| − |oab| ≤ |ao|). As before, we can partition S into disjoint

groups of 4 agents {i, j, k1, k2} where i ∈ oab ∩ S, j ∈ ao ∩ S, k1, k2 ∈ boa ∩ S, and use

the same strategy as depicted in Figure 3.6. Thus, we can construct a dual solution with

γ = 3 when restricted to S. Furthermore, as before we show that |oa \ S| ≤ |ao \ S|, and

hence we can use the construction given in Fact 3.1.1 for C \ S. We have

|oa \ S| = |oba|+ |boa \ S|+ |oab \ S|
= |oba|+ |boa| − |boa ∩ S| note that oab ⊆ S

≤ |ao|+ |oab| − |boa ∩ S| as |ao| ≥ |boa|+ |oba| − |oab|
= |ao| − |oab|
= |ao| − |ao ∩ S| = |ao \ S|

Surprisingly, Condition (∗) is in fact necessary when m = 3. We prove this by con-

structing primal solutions to (P σ
ao). While Condition (∗) per se does not generalize beyond

m = 3, it is plausible that this style of argument can be useful in other situations. In the

sequel, we assume the set of candidates is A = {a, o, b}.
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Lemma 3.1.6. Suppose m = 3, with A = {a, o, b}, and OPT(P σ
ao) ≤ 3. Then, Condition

(∗) holds, i.e., we have |ao| ≥ max {|boa| − |oab|, |oab|}+ |oba|

Proof. Case 1 : |boa|
2
− |oab| < 0. In this case, we wish to show that

|ao| ≥ max {|boa| − |oab|, |oab|} + |oba| = |oab| + |oba|. Consider the metric d̃ defined by

following graph. The squares denote candidates and the dark circles indicate the location

of all agents in the specified set. The distance between a pair of agents/candidates is the

length of the shortest path in the graph.

boa

o

b

ao
a

oa \ boa

1

1

1

1

1

0

Figure 3.8: Metric d̃ when 2|oab| > |boa|

Scaling the distances by 1
|ao|+|boa| yields a feasible solution to (P σ

ao). The value of this

solution is∑
j∈C

daj = |ao| · 1

|ao|+ |boa|
+ |boa| · 3

|ao|+ |boa|
+ |oa\boa| · 2

|ao|+ |boa|
= 1+2 · |oa|

|ao|+ |boa|

If OPT(P σ
ao) ≤ 3 then the value of any primal solution must be at most 3, so we obtain

the following necessary condition.

1 +
2 · |oa|
|ao|+ |boa|

≤ 3 =⇒ |oa| ≤ |ao|+ |boa|

Equivalently, |ao| ≥ |oa| − |boa| = |oab|+ |oba|.

Case 2 : |boa|
2
−|oab| ≥ 0. In this case, we will show that |ao| ≥ 2 max

{
|boa|

2
− |oab|, 0

}
+

|oab|+ |oba| = |boa| − |oab|+ |oba|. Consider the metric d̃ defined by following graph. As

before, the squares denote candidates and the dark circles indicate the location of all agents
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in the specified set. The distance between a pair of agents/candidates is the length of the

shortest path in the graph.

b, o

ao, oab

a

oa \ oab

110

Figure 3.9: Metric d̃ when 2|oab| ≤ |boa|

Scaling the distances by 1
|ao|+|oab| yields a feasible solution to (P σ

ao). The value of this

solution is∑
j∈C

daj = (|ao|+ |oab|) · 1

|ao|+ |oab|
+ |oa \ oab| · 2

|ao|+ |oab|
= 1 + 2 · |oa \ oab|

|ao|+ |oab|

If OPT(P σ
ao) ≤ 3 then the value of any solution to (P σ

ao) must be at most 3 so the following

is a necessary condition:

1 + 2 · |oa \ oab|
|ao|+ |oab|

≤ 3 =⇒ |ao|+ |oab| ≥ |oa \ oab|

Equivalently, |ao| ≥ |boa|+ |oba| − |oab|.

3.2 Randomized social choice functions

So far, we have only considered deterministic social choice functions. However, it has been

shown that, for the metric single winner determination problem, randomized social choice

functions (SCFs) can be strictly more powerful than deterministic mechanisms [8, 24, 29].

In particular, Gkatzelis et. al [24] give a randomized SCF whose distortion is 3 − 2
m

. A

long-standing conjecture is that there exists a randomized social choice function that has

a worst-case distortion of at most 2.

We develop a linear program that computes an instance-optimal randomized social

choice function, i.e., a distribution that achieves minimum distortion for a given instance.
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Using this, we present a simple instance, where the optimal distortion achievable by ran-

domized SCFs is strictly larger than 2 (roughly 2.063164) thereby disproving the above

conjecture. This result appears as the ArXiv paper [40]. This conjecture has also been

refuted independently and concurrently by Charikar and Ramakrishnan [22], who also give

a slightly tighter lower bound. However, our techniques differ significantly from theirs and,

in particular, our LP for computing an instance-optimal randomized social choice function

may be of independent interest.

A randomized social choice function f maps a preference profile σ to a distribution over

the candidates A. For a randomized social choice function f , we define

distortion(f) = sup
σ

sup
d/ σ

E
[∑

j∈C d(f(σ), j)
]

mino∈A
∑

j∈C d(o, j)

3.2.1 Computing an instance-optimal randomized SCF

In this section we give a linear program which, given a preference profile σ, computes an

instance-optimal randomized social choice function. In order to do so, we first consider

the adversary’s problem: Given a preference profile σ, randomized SCF f , and optimal

candidate o, the adversary wishes to compute a metric d that is consistent with σ and

maximizes
E[
∑
j∈C d(f(σ),j)]∑
j∈C d(o,j)

. This can be done by solving the linear program (Rσ
qo), where q

is the distribution over the candidates specified by f(σ). As before, m = |A|, n = |C|, and

we use altσ(k, r) to denote the rth ranked outcome in �k∈ σ.

max
∑
i∈A

∑
j∈C

qidij (Rσ
qo)

s.t.
∑
j∈C

doj ≤ 1 (3.18)

daltσ(j,r),j ≤ daltσ(j,r+1),j ∀j ∈ C, ∀r ∈ [m− 1] (3.19)

dij ≤ dik + djk ∀i, j, k ∈ C ∪ A (3.20)

d ≥ 0 (3.21)
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Constraint (3.18) normalizes
∑

j∈C doj (allowing us to avoid having a ratio in the objec-

tive). The remaining constraints are precisely constraints (3.2)-(3.9) in (Qσ
ao); constraint

(3.19) ensures that the metric d is consistent with the preference profile σ, and constraints

(3.20)-(3.21) enforce that d is a metric. The optimal solution d is a metric that maximizes
E[
∑
j∈C df(σ)j ]∑
j∈C doj

=
∑
i∈F

∑
j∈C qidij∑

j∈C doj
.

We now return to our original task, which is to compute an instance-optimal randomized

SCF. Equivalently, we wish to compute an optimal distribution q ∈ ∆A that minimizes

maxo∈A OPT(Rσ
qo). Notice that (Rσ

qo) is of the form mind{cTd : Aod ≤ bo, d ≥ 0}, where c

depends linearly on q and only Ao and bo depend on the choice of o. The dual of (Rσ
qo) is

(D̃σ
qo): miny{yT bo : yTAo ≥ c, y ≥ 0}. So, the problem of computing an instance-optimal

randomized SCF is equivalent to

min
q∈∆A

max
o∈A

OPT(Rσ
qo) = min

q∈∆A

min{γ : OPT(Rσ
qo) ≤ γ ∀o ∈ A}

= min
q∈∆A

min{γ : ∀o ∈ A ∃yo ≥ 0 s.t. (yo)TAo ≥ cT , (yo)T bo ≤ γ}

where the last equality follows due to LP-duality. Note that c = Hq above, where H

is a matrix whose rows are indexed by A × C and whose columns are indexed by A: we

have Hij,i = qi for all i ∈ A, j ∈ C. Thus, we obtain the following LP for finding an

instance-optimal randomized SCF.

min γ (Best-Dist)

s.t. (yo)TAo − qTHT ≥ 0 ∀o ∈ A (3.22)

γ − (yo)T bo ≥ 0 ∀o ∈ A (3.23)∑
i∈A

qi ≥ 1 (3.24)

yo, q ≥ 0 ∀o ∈ A (3.25)

(Note that in (Best-Dist), we have replaced
∑

i qi = 1 with an inequality. This is

inconsequential: it is easy to see that one may assume that an optimal solution satisfies

the inequality tightly).
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The interested reader can find the explicit expansion of (Best-Dist) in Appendix A. For

the purposes of taking the dual of (Best-Dist), it will however be much easier to retain the

above form. Let do ∈ RA×C
+ denote the dual variables corresponding to (3.22), wo ∈ R+ be

the dual variables corresponding to (3.23), and ϕ denotes the dual variable corresponding

to (3.24). The dual of (Best-Dist) is then

max ϕ

s.t. Aodo − bowo ≤ 0 ∀o ∈ A (3.26)∑
o

wo ≤ 1 (3.27)

ϕe−HT (
∑
o∈A

do) ≤ 0 (3.28)

ϕ, do, wo ≥ 0 ∀o ∈ A (3.29)

This LP, and hence the dual of (Best-Dist), is equivalent to

max ϕ (Best-Dist-Dual)

s.t.
∑
o∈A

∑
j∈C

dooj ≤ 1 (3.30)

ϕ−
∑
o∈A

∑
j∈C

doij ≤ 0 ∀i ∈ A (3.31)

doaltσ(j,r),j ≤ doaltσ(j,r+1),j ∀j ∈ C ∀r ∈ [m− 1]∀o ∈ A (3.32)

doij ≤ doik + dojk ∀i, j, k ∈ C ∪ A ∀o ∈ A (3.33)

ϕ, do ≥ 0 ∀o ∈ A (3.34)

3.2.2 A lower bound for the distortion of randomized SCFs

We show that, for any randomized social choice function f , distortion(f) ≥ 2.063164.

Theorem 3.2.1. There exists an instance (C, A, σ) such that, for any randomized social

choice function f , supd/ σ
E[
∑
j∈C d(f(σ),j)]

mino∈A
∑
j∈C d(o,j)

≥ 2.063164.
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Proof. We show this by designing an instance and a feasible solution to (Best-Dist-Dual)

of objective value at least 2.063164.

Consider the following instance with C = {1, 2, 3, 4, 5, 6, 7} and A = {a, b, c, d, e, f, g}.
The preference profile σ is given by

1, 2, 3 : c � e � b � a � f � g � d, 4, 5, 6 : d � g � f � a � e � b � c,

7 : b � a � f � g � e � c � d

For this instance, OPT(Best-Dist) = 2.063164 – that is, for any randomized social choice

function f , supd/ σ
E[
∑
j∈C df(σ)j ]

mino∈F
∑
j∈C doj

≥ 2.063164. The instance-optimal distribution q is

qa = 0.039301 qb = 0.121723 qc = 0.388299 qd = 0.291224

qe = 0.107872 qf = 0.029475 qg = 0.022107

We can verify that OPT(Best-Dist) ≤ 2.063164 via the following solution to the dual

(Best-Dist-Dual), which has value 2.063164. The dual variables da, db, . . . , dg can be in-

terpreted as metrics, which are represented by the graphs given below. In this solution,

agents with the same preference rankings are colocated – namely, agents in C1 = {1, 2, 3}
are colocated and agents in C2 = {4, 5, 6} are colocated.
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Figure 3.10: An optimal solution to the dual of (Best-Dist)
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(a) For any i, j ∈ C ∪ A, daij is the shortest-

path distance in the above graph, where

Ma = 0.014507
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(b) For any i, j ∈ C ∪A, dbij is the shortest-

path distance in the above graph, where

Mb = 0.020955
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(c) For any i, j ∈ C ∪ A, dcij is the shortest-

path distance in the above graph, where

Mc = 0.038866
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Md Md
Md Md

(d) For any i, j ∈ C ∪A, ddij is the shortest-

path distance in the above graph, where

Md = 0.051820
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(e) For any i, j ∈ C ∪ A, deij is the shortest-

path distance in the above graph, where

Me = 0.013433
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(f) For any i, j ∈ C ∪ A, dfij is the shortest-

path distance in the above graph, where
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(g) For any i, j ∈ C ∪ A, dgij is the shortest-

path distance in the above graph, where

Mg = 0.025791
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3.2.3 Extending the analysis framework to randomized SCFs

By the same argument given in section 3.1, in order to prove that distortion(f) ≤ ρ for a

randomized social choice function f , it would suffice to show that (Rσ
f(σ),o) has an optimal

value of at most ρ for all o ∈ A, as this would imply that supd/ σ
E[
∑
j∈C d(f(σ),j)]

mino∈A
∑
j∈C d(o,j)

≤ ρ. We

could show this by demonstrating a dual solution of value at most ρ, however, (Best-Dist)

is difficult to interpret. Instead, as before, we will consider the relaxation of (Rσ
qo) obtained

by dropping all triangle-inequality constraints (3.20) that do not correspond to triangles

in T (σ, o) := {(j, i1, i2) : i1, i2 ∈ A : i1 6= i2, i1 �j i2, o ∈ {i1, i2}, j ∈ C}. This yields the

following LP.

max
∑
i∈A

∑
j∈C

qidij (P σ
qo)

s.t.
∑
j∈C

doj ≤ 1 (3.35)

daltσ(j,r),j ≤ daltσ(j,r+1),j ∀j ∈ C ∀r ∈ [m− 1] (3.36)

di2j ≤ di1j + di1i2 ∀(j, i1, i2) ∈ T (σ, o) (3.37)

di1i2 ≤ di1j + di2j ∀(j, i1, i2) ∈ T (σ, o) (3.38)

d ≥ 0 (3.39)

Note that the constraints of (P σ
qo) are precisely the constraints of (P σ

ao); it is only the

objective function that is different. Consequently, the dual of (P σ
qo), (Dσ

qo), is very similar

to (Dσ
ao), and the only change is that the RHS of (3.40) is now qi instead of 1.
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min γ (Dσ
qo)

s.t.
∑

T=(k,·,i)∈T

(α1,T − α2,T )−
∑

T=(k,i,·)∈T

(α1,T + α2,T ) + β1kI[i=altσ(k,1)]

+
n−2∑
r=1

(βr+1,k − βr,k)I[i=altσ(k,r+1)] − βn−1,kI[i=altσ(k,n)]

+ γI[i=o] ≥ qi ∀k ∈ C,∀i ∈ A (3.40)∑
T∈T :T=(·,i1,i2) or (·,i2,i1)

(α2,T − α1,T ) ≥ 0 ∀i1, i2 ∈ A (3.41)

α, β, γ ≥ 0 (3.42)

As before, a feasible solution to (Dσ
qo) can be interpreted as a flow in Nj (Figure 3.2).

The only difference between a feasible solution to (Dσ
qo) and a feasible solution to (Dσ

ao)

is that every node i now has a demand of qi (whereas in the deterministic setting, the

only sink was the node corresponding to a, which had a demand of 1). Thus, the analysis

framework presented in Section 3.1 extends readily to randomized social choice functions.
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Chapter 4

Multiwinner selection and the

k-median problem

Given the existence of a 3-distortion social choice function when electing a single winner,

a natural question to ask is whether similar results can be obtained if one wishes to elect

a committee of k candidates, for any k ≥ 2. More formally, in the k-winner selection

problem, we are given a set of agents C and candidates (or alternatives) A. We assume

that the agents and candidates lie in a metric space (C ∪A, d), where d : (C ∪A)2 → R≥0 is

a distance function satisfying the triangle inequality. The cost incurred by an agent j ∈ C
when a committee S ⊆ A is elected is d(j, S) = mins∈S d(j, s). Our objective is to choose a

committee S consisting of k winners from A so as to minimize
∑

j∈C d(j, S). As discussed

in Chapter 2, we can extend the definition of distortion to this setting; given a social choice

k-correspondence f : L → [A]k (where L is the set of total orders on A and [A]k denotes

the k-subsets of A), the distortion of f is

distortion(f) = sup
σ

sup
d/ σ

∑
j∈C d(j, f(σ))

minS⊆[A]k
∑

j∈C d(j, S)

For the rest of this thesis, we will restrict our attention to peer-selection, wherein A = C.
Anshelevich and Zhu showed that, when k = 2, any social choice k-correspondence has a

distortion of at least Ω(n) [10]. As proved by the following theorem, even in this restricted
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setting there does not exist a social choice k-correspondence with bounded distortion when

k ≥ 3. We note that this result has also been proved independently by Caragiannis, Shah,

and Voudouris [18].

Theorem 4.0.1. For k ≥ 3, there exists an instance (C, A, σ) with A = C such that any

social choice k-correspondence for the k-winner selection problem has unbounded distortion.

Proof. Consider the following instance with four clients where A = C = {w, x, y, z}. The

preference rankings are

w : x � y � z x : w � y � z y : z � x � w z : y � x � w

The following metrics d1 and d2 are consistent with this preference ranking:

w, x y z
1 1

(a) For any i, j ∈ C, d1(i, j) is the shortest

path distance in the above graph.

w x y, z1 1

(b) For any i, j ∈ C, d2(i, j) is the shortest

path distance in the above graph.

Figure 4.1: A k-winner selection instance with unbounded distortion

The optimal solution when considering d1 is to choose {x, y, z} as our committee –

this solution incurs a social cost of 0. Moreover, any other committee incurs a social cost

of at least 1. On the other hand, the optimal solution under d2 is to choose {w, x, y}
as our committee. This solution incurs a social cost of 0, and any other solution incurs

a social cost of at least 1 (with respect to d2). Since the (ordinal) information provided

to us is insufficient to differentiate between d1 and d2, the distortion of any social choice

k-correspondence is unbounded on this instance.

Remark 4.0.2. Consider the problem of computing a minimum cost k-Forest in the metric

space (C, d). A purely-ordinal algorithm for this problem takes (C, σ) as input, and yields

a forest consisting of k components. The counterexample given in the proof of Theorem

4.0.1 also illustrates that the distortion of any purely-ordinal algorithm for the k-Forest

problem is also unbounded, for k ≥ 3.
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The upshot of the above discussion is that a good mechanism for the k-winner selection

problem that has bounded distortion cannot rely only upon ordinal information, and must

use some additional cardinal information.

4.1 Two k-median algorithms

As noted earlier, if we knew the true underlying metric, the k-winner selection problem

described above is in fact equivalent to the k-median clustering problem, wherein one

has a set of clients C, facilities F (which corresponds to the set of alternatives, A), and

wishes to open a set of k centers in F , S, so as to minimize
∑

j∈C d(j, S). Due to this

strong relationship between the two problems, we will refer to k-median and k-winner

selection interchangeably throughout the rest of this thesis. The k-median problem is very

well studied in the theoretical computer science literature (see, for instance, [14] and the

references within). We will, however, restrict our attention to two algorithms that will be

particularly important in the following chapters.

The first algorithm is a straightforward extension of Meyerson’s online algorithm for

facility location [35] (with uniform facility opening costs). In the facility location problem,

there is no constraint on the number of facilities/centers that can be opened, but every

facility has an opening cost fi, which must be paid if the facility is selected.

Algorithm 1: Online facility location algorithm with uniform costs [35]

Data: Facility cost f , Sequence of clients x1, . . . , xn

1 S ← {x1}
2 for i = 2, . . . , n do

3 δi = d(xi, S)

4 Add xi to S with probability min(1, δi/f)

5 end

6 return S

In the proof of Theorem 2.1, Meyerson [35] proves the following result.

Theorem 4.1.1 ([35]). Let x1, . . . , xn be a sequence of clients in random order. Let

C∗1 , . . . , C
∗
k be the clusters induced by an optimal solution. Let S be the set of centers
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opened by Algorithm 1. Then, for every cluster C∗i , E
[
|S ∩ C∗i |f +

∑
j∈C∗i

d(j, S)
]
≤

5f + 8
∑

j∈C∗i
d(j, c∗i ).

We briefly give a sketch of Meyerson’s analysis here, and defer the precise details of the

proof to Chapter 6, where we modify Algorithm 1 to handle more general objectives. Let

C∗ be a cluster induced by the optimal solution. One can define the core of C∗ to be the

|C∗|/2 points closest to the cluster center. If, at any point, a center is opened within the

core of C∗, the cost incurred by any other client in C∗ under S is comparable to the cost it

incurs under the optimal solution. Moreover, the expected cost incurred by the core-clients

(i.e., clients in the core of C∗) before a center in the core of C∗ is opened is at most f .

Finally, E[δb] for any client b that is not in the core of C∗ can be bound in terms of E[δg]

(where g is the last core-client preceding b). Combining these claims yields the final bound

on the expected cost of every cluster. An immediate corollary of this theorem is that the

number of centers opened in each cluster is not too large either.

Corollary 4.1.2. Let x1, . . . , xn be a sequence of clients in random order. Let C∗1 , . . . , C
∗
k

be the clusters induced by an optimal solution. Let S be the set of centers opened by

Algorithm 1. Then, for every cluster C∗i , E [|S ∩ C∗i |] ≤ 5 + 8 ·
∑
j∈C∗

i
d(j,c∗i )

f
.

An (α, β)-bicriteria approximation algorithm for the k-median problem yields a set of

centers S such that
∑

j∈C(d(j, S)) ≤ α ·OPT, and |S| ≤ βk. Algorithm 1 can be adapted

to obtain a constant-factor bicriteria approximation algorithm for the k-median problem,

by setting the facility opening cost to be f = L
k
, where L is a Θ(1)-estimate of the cost of

an optimal k-median solution.

Corollary 4.1.3. Let x1, . . . , xn be a sequence of clients in random order. Let C∗1 , . . . , C
∗
k

be the clusters induced by an optimal k-median solution. Let S be the set of centers opened

by Algorithm 1 with f = L
k

. Then, E
[∑

j∈C d(j, S)
]
≤ 5L + 8 · OPT, and E [|S|] ≤(

5 + 8 · OPT
L

)
k.

Another elegant algorithm for k-means clustering and k-median clustering was given

by Aggarwal, Deshpande, and Kannan [3]. Aggarwal et. al showed that a simple adaptive
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sampling algorithm yields a (O(1), O(1))-bicriteria approximation for the k-means problem.

As they observed in their paper, the algorithm extends readily to the k-median setting.

Algorithm 2: Adaptive sampling algorithm for k-median [3]

1 S0 ← ∅
2 for i = 1, . . . , τ(k +

√
k) do

3 Sample si with probability proportional to d(si, Si−1)

4 Update Si ← Si−1 ∪ {si}.
5 end

6 Return Sτ(k+
√
k)

Theorem 4.1.4 (Aggarwal, Deshpande, and Kannan (2009)). If τ = 16(k +
√
k), Al-

gorithm 2 yields a
(

20, 16
(

1 + 1√
k

))
-bicriteria approximation for the k-median problem,

with constant probability.

Once again, we will give a sketch of the proof here, and defer the precise argument to

Chapters 6 and 7, where we extend the adaptive sampling algorithm to the `-centrum and

minimum-norm settings respectively. Let C∗ be a cluster induced by the optimal solution.

Once again, the core of C∗ consists of the points that are close to the cluster center. We

say that C∗ is good, if the total cost incurred by the clients in C∗ under the current solution

is comparable to the cost they incur under the optimal solution (otherwise, we say that

C∗ is a bad cluster). As we have mentioned earlier, opening a center in the core of C∗

causes the cost of all other clients in C∗ to be small. That is, if C∗ is currently a bad

cluster, and we open a center in its core, then it will become a good cluster. The key

insight of the analysis of Aggarwal et. al is that, as we are choosing the next center to

open with probability proportional to the distance from the client to the currently open

centers, either the cost of our current solution will be within some constant factor of OPT,

or, with constant probability we will open a center in the core of some bad cluster. Then,

by using concentration inequalities, one can argue that after O(k) centers are opened, all

clusters will be good with constant probability.
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Chapter 5

k-median with limited value queries

In the previous chapter, we concluded our discussion of low-distortion algorithms for k-

median by noting that any such algorithm must use some additional cardinal information

(in addition to the preference profile σ). It will be helpful to recall the definition of a

mechanism in this context.

Definition 2.1.3 (Mechanism [4]). A mechanism M = (Q, f, k) with access to a query

oracle takes as input a preference profile σ and returns a k-subset of A. It consists of

an algorithm Q that, given an input preference profile σ, adaptively makes queries to the

query oracle, and a function f that takes the input σ, the set of queries and their answers,

and outputs a k-subset of A (i.e., a solution).

While different query models have enjoyed varying levels of success for some social-

welfare maximization problems [4, 34], little is known for the social cost minimization

setting. One of the most natural queries is to directly ask the agent for the exact distance

between herself and given candidate. We refer to such queries as value queries. In this

chapter, we give mechanisms that elicit a limited number of value queries from the agents

(we assume that the preference profile σ is provided as input).
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5.1 A blackbox reduction to the cardinal setting

If the true underlying metric is (approximately) known, this problem would be reduced

to the cardinal k-median problem, which is a well-studied and well-understood problem.

Hence, it would be ideal if we had techniques to leverage this understanding and export

existing (cardinal) k-median algorithms to low-distortion mechanisms. As queries can be

taxing on the agents, our reduction should require only a few queries per agent. Clearly,

using O(n) queries per agent, hence O(n2) queries in total, we can infer the underlying

metric exactly, so our goal is to perform significantly fewer queries than this, namely o(n)

queries, or a query complexity that is independent of n. In this section, we give a blackbox

reduction to the (cardinal) k-median problem using polylog(n) queries per agent; later

in this chapter, we will discuss how to improve its query complexity. We will consider a

somewhat more general setting, where each agent comes with a positive integer weight,

which denotes the number of co-located agents. Thus, the k-median cost of a set of centers

S is
∑

iwid(i, S), where d(i, S) is the distance between i and the closest open center in S.

Let d∗ denote the true underlying metric (which we do not know). Given an α-

approximate estimate B of OPT, an upper bound on OPT(d∗), for any given point i,

we consider all distances d ≥ B
αwin

and compute all points whose distance from i lies in

(d, (1 + ε)]. The idea is that we can approximate d∗(i, j) by any distance in this interval,

and this would only lose a (1 + ε)-factor in the cost. For points with d∗(i, j) ≤ B
αwin

, we

can estimate their distance by any d ≤ B
αwin

; this can incur an additive loss of at most

wi · B
αwin

= B
αn

, when considering the total cost of the wi points co-located with i. Thus,

if we have any metric d̃ compatible with these estimates, then d̃ is “close enough” to d∗

so that working with d̃ results in only a small loss, and so we can run our algorithm for

cardinal k-median on d̃.

In the sequel, we will use OPT(d∗) to denote the value of an optimal solution with

respect to d∗; when the metric is clear from the context, we will simply write OPT.
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Algorithm 3: A blackbox reduction to k-median

Input: A set of n agents C with preference profile σ, and non-negative, integer

weights {wj}j∈C; d∗ denotes the true underlying metric (which we do not

know).

A constant B such that B ∈ [OPT(d∗), α ·OPT(d∗)]

A ρ-approximation algorithm A for solving k-median on the weighted

instance

1 for i ∈ C do

2 Define Bi,0 = ρ(1 + 3ε) · B
wi

, qi :=
⌈
log1+ε(

αwiBi,0·n
εB

)
⌉

3 Compute Si,` = {j ∈ C : d∗(i, j) ≤ Bi,0(1 + ε)−`} for ` = 0, . . . , qi

4 end

5 Compute d̃ such that d̃ is a valid metric and also satisfies the following constraints:

(1) d̃(i, j) ≥ Bi0 for all j /∈ Si,0.

(2) (1 + ε)−(`+1)Bi0 ≤ d̃(i, j) ≤ (1 + ε)−`Bi0 for all j ∈ Si,` \ Si,`+1,

i ∈ C, ` ∈ {0, . . . , qi − 1}

(3) d̃(i, j) ≤ εB
αn·wi for all j ∈ Si,qi

return A(C, w, d̃)

Theorem 5.1.1. Let d∗ be the true underlying metric, and let F be the set of centers

opened by Algorithm 3. Then,∑
j∈C

wjd
∗(j, F ) ≤ (ρ(1 + 2ε) + ε)OPT(d∗)

Furthermore, Algorithm 3 can be implemented using O(log(n) · log(αρ ·n)/ε) value queries

per agent.

Proof. Let OPT(d̃) denote the value of an optimal k-median solution computed with re-

spect to d̃. The following fact is immediate from the definition of d̃.
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Fact 5.1.2. For any i, j ∈ C, if d∗(i, j) ≤ Bi,0, then d∗(i, j)−κi ≤ d̃(i, j) ≤ (1+ε)d∗(i, j)+

κi, where κi = εB
αwin

.

Given this, we show that for a set of centers T , if d∗(i, T ) ≤ Bi,0 for all i ∈ C, the d̃-cost

of T is a good approximation of the d∗-cost of T , and vice versa.

Claim 5.1.3. Let T ⊆ C such that d∗(i, T ) ≤ Bi,0 for all i ∈ C. Then,

(a)
∑

j∈C wj d̃(j, T ) ≤ (1 + ε)
∑

j∈C wjd
∗(j, T ) + εOPT(d∗)

(b)
∑

j∈C wjd
∗(j, T ) ≤

∑
j∈C wj d̃(j, T ) + εOPT(d∗)

Proof. Since d∗(i, T ) ≤ Bi,0 for all i ∈ C, by Fact 5.1.2,∑
j∈C

wjd
∗(j, T )−

∑
j∈C

wjκj ≤
∑
j∈C

wj d̃(j, T ) ≤ (1 + ε)
∑
j∈C

wjd
∗(j, T ) +

∑
j∈C

wjκj

where κi = εB
αwin

. Since B
α
≤ OPT(d∗),

∑
j∈C wjκj ≤ εOPT(d∗), so we obtain (a) and (b)

as required.

Let F ∗ be the set of centers opened by an optimal solution with respect to d∗. By

Claim 5.1.3(a),

OPT(d̃) ≤
∑
j∈C

wj d̃(j, F ∗) ≤ (1 + 2ε) ·OPT(d∗)

Let F be the set of centers opened by A(C, w, d̃). In order to use Claim 5.1.3, we

must show that d∗(j, F ) ≤ Bi,0 for all j ∈ C. We prove that this property holds for any

ρ-approximate solution (with respect to d̃).

Claim 5.1.4. Let T ⊆ C. If
∑

j∈C wj d̃(j, T ) ≤ ρ ·OPT(d̃), d∗(i, T ) ≤ Bi,0 for all i ∈ C.

Proof. Suppose, to arrive at a contradiction, that there exists j ∈ C such that d∗(j, T ) >

Bj,0. Then, d̃(j, T ) > Bj,0 and hence∑
i∈C

wid̃(i, T ) ≥ wj · d̃(j, T ) ≥ wjBj,0 > ρ(1 + 2ε)OPT(d∗) ≥ ρ ·OPT(d̃)
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Recall that F is a ρ-approximate solution (with respect to d̃). As
∑

j∈C wj d̃(j, F ) ≤
ρ · OPT(d̃), and OPT(d̃) ≤ (1 + 2ε)OPT(d∗),

∑
j∈C wj d̃(j, F ) ≤ ρ(1 + 2ε)OPT(d∗). By

Claims 5.1.3 and 5.1.4,
∑

j∈C wjd
∗(j, F ) ≤ (ρ(1 + 2ε) + ε)OPT(d∗).

Query Complexity : Algorithm 3 uses queries to determine Si,` for all i ∈ C, ` = 0, . . . , qi.

As we have the preference ranking for each agent, we have a list of agents sorted in non-

decreasing order of their distance from i. Hence, to compute Si,`, we can use binary

search to determine maximal r1, r2 such that r1 < r2 and d∗(i, altσ(r1)) ≤ Bi,0(1 + ε)−` ≤
d∗(i, altσ(r2)). Then, Si,` = {j ∈ C : altσ(r1) �i j �i altσ(r2)}. The total number of value

queries required to compute Si,` in this manner is O(log n), and hence the total number of

value queries (per agent) that is needed to determine each of Si,0, . . . , Si,qi for a fixed agent

i is O(qi · log n) = O(log(n) · log(αρ · n)/ε).

As we will see in Section 5.3, we may not always be able to obtain a lower bound on the

optimal value of weighted instance we are considering. In such settings, we can work with

an upper bound on the optimal value, U , and still obtain the following modified guarantee.

Theorem 5.1.5. Let U ≥ OPT(d∗) and B ∈ [U, αU ]. As before, let d∗ be the true

underlying metric, and let F be the set of centers opened by Algorithm 3. Then,∑
j∈C

wjd
∗(j, F ) ≤ (ρ(1 + 2ε) + ε)U

Furthermore, Algorithm 3 can be implemented using O(log(n) · log(αρ ·n)/ε) value queries

per agent.

5.2 Computing an estimate of OPT

In order to use the blackbox reduction to k-median (Algorithm 3), we must know B, a

reasonable estimate of OPT. To compute such an estimate, we leverage the fact that

OPT is at least the cost of a minimum-cost k-Forest, and is at most n times the cost of a

minimum-cost k-Forest.
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Claim 5.2.1. Let OPTk−MCF denote the cost of a minimum-cost k-Forest, and let

OPTk−median denote the cost of an optimal k-median solution. Then,

OPTk−MCF ≤ OPTk−median ≤ n ·OPTk−MCF

Proof. Any k-median solution is a forest on k components (where the edges are between

each agent and its assigned cluster center), so OPTk−MCF ≤ OPTk−median. Let F ∗ be

a minimum cost k-Forest. We can derive a k-median solution by choosing an arbitrary

cluster center in each of the components induced by F ∗, and assigning all clients in the

cluster to this opened center. As we are preserving the components induced by F ∗, due to

the triangle inequality, the cost of this clustering is at most n · cost(F ∗) = n ·OPTk−MCF .

Thus, OPTk−median ≤ OPTk−MCF .

So, if we knew OPTk−MCF , the value of a minimum-cost k-Forest, then

B = n ·OPTk−MCF would satisfy OPT ≤ B ≤ n ·OPT.

If d(i, j) was known for all i, j ∈ C, an optimal minimum-cost k-Forest could be

computed easily using Boruvka’s algorithm. Boruvka’s algorithm is a greedy minimum

spanning tree (MST) algorithm, where at each stage, the cheapest edge incident to each

(super)node is added and components are contracted into supernodes. The algorithm ter-

minates when there is one supernode left. Given the MST, T , returned by Boruvka’s

algorithm (run with a fixed tie-breaking rule on the edges), we can remove the edges of T

in non-increasing order of cost, until we obtain a forest with exactly k components; this is

a minimum-cost k-Forest.

Of course, we do not know d(i, j) for all i, j ∈ C. Querying the value of d(i, j) for all

i, j ∈ C is computationally taxing on the agents, as this would take Ω(n) queries per agent.

However, in order to run Boruvka’s algorithm, we do not need to know the cost of all

edges; we only need to know the minimum cost edge incident to each supernode. Hence, as

we will show, only a few value queries are needed to run Boruvka’s algorithm. The precise

algorithm for computing the value of a minimum-cost k-Forest is given below.
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Algorithm 4: Minimum cost k-Forest via Boruvka’s algorithm

1 Fix a tie-breaking rule on the edges (that will be used in all subsequent edge-cost

comparisons).

2 F ← ∅
3 V1 ← C
4 E1 ← {{i, j} : i, j ∈ C}
5 t← 1

6 while |Vt| > 1 do

7 for S ∈ Vt do

8 For each v ∈ S, query the value of mine∈δ(v)∩δ(S) d(e)

9 Add e = arg mine′∈δ(S) d(e′) to F

10 end

11 Contract the components of Gt = (Vt, F ∩ Et) into supernodes to get the

(multi)graph Gt+1 = (Vt+1, Et+1)

12 t← t+ 1

13 end

14 Sort F in non-increasing order of cost and remove edges in F until exactly k

components are left

15 return
∑

e∈F d(e)

Lemma 5.2.2. Algorithm 4 requires O(log n) queries per agent.

Proof. Consider S ∈ Vt. For each v ∈ S, we know which edge attains mine∈δ(v)∩δ(S) d(e) (as

we have the preference profile σ), so one value query is sufficient to compute the value of

mine∈δ(v)∩δ(S) d(e). Given this, we can readily compute e = arg mine′∈δ(S) d(e′). Since each

v ∈ C belongs to exactly one supernode of Vt, we incur the cost of one query per agent per

iteration.

Since |Vt+1| ≤
⌈
|Vt|
2

⌉
, the while-loop (lines 6-13) terminates after O(log n) iterations;

notice that the cost of every edge in F is known, so no additional value queries are needed in

steps 14 and 15 of the algorithm. Thus, we make a total of O(log n) queries per agent.
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Combining this with the blackbox reduction of the previous section yields the following

mechanism. Given the preference profile σ, compute B using Algorithm 4 and return the

output of Algorithm 3 (when provided C, σ, unit weights, B, and an O(1)-approximation

algorithm for k-median as input). By Theorem 5.1.1, this is an O(1)-distortion mechanism

that uses O(log2(n)) queries per agent.

5.3 Improving query complexity

For a constant ε > 0, the query complexity of using the O(n)-approximate estimate of

OPT directly with Algorithm 3 is O(log2 n); intuitively, this is due to the quality of our

estimate of OPT, and the number of agents in our instance. Hence, in order to improve the

query complexity, we should sparsify our instance before applying Algorithm 3. We can

do this by using the bicriteria approximation algorithms for k-median that were described

in Section 4.1.

Given a set S of O(k) candidates, S induces a partition {Pj}j∈S of C (where Pj consists

of all agents whose closest candidate is j, breaking ties in some arbitrary but consistent

way). The weighted instance induced by S consists of the O(k) agents in S and {wj}j∈S
where wj = |Pj|. It is known that a good solution with respect to the weighted instance

yields a good solution with respect to the original instance (see, for instance, the argument

given by Charikar et. al [21])

Fact 5.3.1. Let S ⊆ C be a set such that
∑

j∈C d(j, S) ≤ α · OPT. Then, if OPT′ is the

optimal value of the weighted instance, OPT′ ≤ 2(1 + α)OPT, and the solution obtained

by running a ρ-approximation algorithm for k-median on the weighted instance induced

by S has cost at most (α + 2ρ(1 + α)) ·OPT with respect to the original instance.

Thus, if we obtain a constant factor bicriteria approximate solution for k-median using

only a few value queries, we can apply the blackbox reduction to this sparsified instance.

Unfortunately, we cannot use the cost of the bicriteria approximate solution as an estimate

for OPT; since we may choose more than k candidates, the cost incurred by this approx-

imate solution may in fact be strictly less than OPT. Nonetheless, running Algorithm
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3 on the sparsified instance still yields a saving in the number of queries, even if we use

B ∈ [OPT, n ·OPT], as it has only O(log k) weighted points.

It remains to show how to obtain a bicriteria approximate solution, without using

too many queries. Recall Meyerson’s algorithm for online facility location (Algorithm

1), wherein a center is opened at xi with probability min{1, d(xi, S)/f} (S is the set of

currently opened centers).

Corollary 4.1.3. Let x1, . . . , xn be a sequence of clients in random order. Let C∗1 , . . . , C
∗
k

be the clusters induced by an optimal k-median solution. Let S be the set of centers opened

by Algorithm 1 with f = L
k

. Then, E
[∑

j∈C d(j, S)
]
≤ 5L + 8 · OPT, and E [|S|] ≤(

5 + 8 · OPT
L

)
k.
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Mechanism 5: O(1)-distortion, O((log(1/δ) + log k) log n)-query mechanism for

k-median
Input: Preference profile σ

1 B ← n ·
∑

e∈T d
∗(e), where T is the min cost k-Forest returned by Algorithm 4

2 Obtain a random sequence of agents x1, . . . , xn via shuffling

3 S ← ∅
4 for i = 1, . . . , dlog2 ne+ 1 do

5 Li ← 2i−1 ·B/n
6 f ← Li

k

7 repeat log(1/δ) times

8 S ← {x1}
9 for j = 2, . . . , n do

10 Query xj for the value of d∗(xj, topS(xj))

11 Add xj to S with probability min{1, d∗(xj, topS(xj))/f}
12 end

13 if |S| ≤ 52k then

14 S ← S ∪ {S}
15 end

16 end

17 end

18 Choose S ∈ arg min
S′∈S

∑
j∈C d

∗(j, S ′); {Pj}j∈S is the partition induced by S

19 For j ∈ S, wj ← |Pj|
20 S ← Algorithm3(S, σ, {wj}j∈S, B,A) where A is an O(1)-approximation algorithm

for k-median.

21 return S

In step 10, we compute δi = d(xi, S) by querying d(xi, topS(xi)), which is the distance

between xi, and the candidate in S that is closest to xi.

Theorem 5.3.2. Mechanism 5 is an O(1)-distortion mechanism for k-median that requires

O((log(1/δ) + log k) log n) value queries per agent, and has a success probability of at least
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1− δ.

Proof. Let ε ∈ (0, 1] be a constant. Notice that in lines 7-16, we are running Meyerson’s

algorithm (Algorithm 1) log(1/δ) times for a given Li (which serves as our estimate for

OPT). Moreover, since we know that OPT ≤ B ≤ n · OPT, there exists some i∗ ∈
{1, . . . , dlog2 ne} such that OPT ≤ Li∗ ≤ 2 ·OPT.

It suffices to show that the with probability at least 1− δ, one of the solutions returned

by Meyerson’s algorithm when f = Li∗/k opens at most 52k centers, and induces a total

connection cost of at most 72OPT(d∗). By Corollary 4.1.3 and Markov’s inequality, the

connection cost induced by the output of Meyerson’s algorithm when f = Li∗/k is at

most 4 · 18OPT with a probability of 3
4
; and the number of centers opened is at most

4 · 13k = 52k, with a probability of 3
4
. Hence, by Union bound, with a probability of at

least 1
2
, the solution returned by Meyerson’s algorithm is a (72, 52)-bicriteria approximate

k-median solution. Since we run Meyerson’s algorithm log(1/δ) times, with probability at

least 1− δ, there exists S ∈ S such that
∑

j∈C d
∗(j, S) ≤ 72 ·OPT and |S| ≤ 52k. As noted

before, this S yields a sparsified (weighted) instance.

We would like to apply the blackbox reduction (Algorithm 3) to this sparsified instance.

However, it is possible that OPT′, the optimal value of the weighted instance is less than

OPT, and hence OPT′ ≤ B ≤ n·OPT′ may not hold. By Fact 5.3.1, OPT′ ≤ 2(72+1)OPT;

if we take U = 146OPT, U ≤ 146B ≤ n · U , and hence we can apply Theorem 5.1.5.

This yields a 146(ρ(1 + 2ε) + ε)-approximate solution to the original instance, where ρ

is the approximation factor of the k-median algorithm used in step 20. In particular, if

we use Byrka et. al’s (2.675 + ε)-approximation algorithm (which has the current-best

approximation factor for k-median), we obtain a solution of cost at most 146((2.675 +

ε)(1 + 2ε) + ε)OPT(d∗).

Query Complexity : The steps which require value queries are lines 4-18, and the call to

Algorithm 3 in line 20. The total number of queries made in lines 4-17 is O(log(1/δ) ·
log(n)). Since |S| = O(log(1/δ) · log n), the number of queries per agent to find S ∈
arg min

S′∈S

∑
j∈C d

∗(j, S ′) is at most O(log(1/δ) · log n) queries per agent. Finally, since the

weighted instance given as input to Algorithm 3 in line 20 consists of O(k) points and
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B ∈ [OPT, n·OPT], this step takes at most O(log n log k/ε) queries per agent (by Theorem

5.1.1).

5.4 Query complexity independent of n

In some applications, the number of agents can be much larger than k; hence, a natural

question to ask is whether there exists a mechanism whose query complexity is independent

of n. We can leverage Aggarwal et. al’s adaptive sampling algorithm (Algorithm 2), which

does not require an estimate of OPT in order to compute a bicriteria solution. Recall

that this algorithm successively chooses the candidate with probability proportional to

the distance from the set of currently chosen candidates. For a given agent j and set of

candidates S, the distance from j to S is d(j, topS(j)), which can be computed using one

value query.
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Mechanism 6: O(1)-distortion, O(log(1/δ)k)-query mechanism for k-median

Input: Preference profile σ

1 S ← ∅
2 repeat log(1/δ) times

3 S ← ∅
4 for i = 1, . . . , 16(k +

√
k) do

5 for j ∈ C do

6 Query j for the value of d∗(j, topS(j))

7 end

8 Sample si with probability proportional to d∗(si, S)

9 Update S ← S ∪ {si}
10 end

11 S ← S ∪ {S}
12 end

13 Choose S ∈ arg min
S′∈S

∑
j∈C d(j, S ′); {Pj}j∈S is the partition induced by S

14 for j ∈ S do

15 Query d∗(i, j) for all i ∈ S \ {j}
16 end

17 S̄: output of (3 + ε)-approximation algorithm for k-median on the (cardinal)

weighted instance (S,w, d) where wj = |Pj| for all j ∈ S
18 return S

Theorem 5.4.1. Mechanism 6 is an O(1)-distortion mechanism for k-median that requires

O(log(1/δ)k) value queries per agent, and has a success probability of at least 1− δ.

Proof. Notice that in lines 2-12, we are running Aggarwal, Deshpande, and Kannan’s

adaptive sampling algorithm (Algorithm 2) log(1/δ) times. So, with probability at least

1 − δ, by Theorem 4.1.4, there exists S ∈ S such that
∑

j∈C d
∗(j, S) ≤ 20 · OPT. Finally,

given this (20, 16(1 + 1√
k
))-bicriteria approximate k-median solution, we query all pairwise

distances for i, j ∈ S and obtain S by solving the weighted instance induced by S using a

(3 + ε)-approximation algorithm for k-median; by Fact 5.3.1,
∑

j∈C d
∗(j, S) ≤ (20 + 42(3 +
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ε))×OPT.

Query Complexity : The steps which require value queries are lines 2-12, and lines 14-16.

The total number of value queries made in lines 14-16 is O(k) queries per agent in S (since

|S| = O(k)). Since the inner loop in lines 2-12 makes 16(k +
√
k) + 1 queries per agent,

the total number of queries per agent that are made in lines 2-12 is O(log(1/δ) · k). Thus,

the total number of queries per agent is O((log(1/δ) + 1) · k).
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Chapter 6

Beyond social cost minimization:

O(1)-distortion algorithms for the

`-centrum problem

Until now, we have exclusively considered social cost minimization problems where one

seeks to minimize the total cost incurred by the agents. However, depending on the appli-

cation, this utilitarian objective may not be the appropriate choice. For instance, in some

settings where fairness is important, we may wish to consider an egalitarian objective and

minimize the maximum cost incurred by any agent. The utilitarian and egalitarian objec-

tives are special cases of the Top` objective, wherein one wishes to minimize the sum of the

` largest costs incurred by the agents. When ` = 1 and ` = n we recover the egalitarian

and utilitarian objectives respectively.

In this chapter, we study the problem of electing a committee of k candidates that

minimizes the sum of the ` largest costs incurred by the agents. We will refer to `-centrum

and k-winner selection under the Top` objective interchangeably throughout the rest of

this thesis. When k = 1, there exists a social choice function that has a distortion of at

most 3 with respect to the Top` objective [24]. For k > 3, the example in Chapter 4 shows

that distortion of any social choice correspondence is unbounded; hence, as with k-median,

we will focus our attention on designing a mechanism that uses a limited number of value
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queries. As before, let M = (Q, f, k) be a mechanism. In the Top` setting, we define the

distortion of M to be

distortion(M) = sup
σ

sup
d/ σ

Top`(d(C,M(σ|d)))

minS⊆Ck Top`(d(C, S))

where d / σ denotes that d is consistent with σ.

We adapt the ideas used to design the k-median mechanisms presented in Chapter 5

to obtain O(1)-distortion mechanisms for the `-centrum problem with analogous query

complexities. Specifically, we show the following.

– One of the insights in Chapter 5 was that if we could approximate the true metric

d∗ with a simulated metric, then we can run any approximation algorithm for the

cardinal setting on the simulated metric. This idea applies to `-centrum as well. In

Section 6.1, we design a blackbox reduction to the cardinal setting (see Algorithm

7), by suitably adapting the reduction in Section 5.1 (Algorithm 3) for the k-median

problem. Utilizing this reduction directly in conjunction with an O(1)-approximation

algorithm for `-centrum (in the cardinal setting) yields an O(1)-distortion mechanism

with O(log2 n) per-agent query complexity (Theorem 6.2.4).

– In Section 6.2, we obtain an improved query complexity of O(polylog(k)·log(n)). The

key idea here is to show that Meyerson’s algorithm, which yields a constant-factor

bicriteria solution for k-median (given a suitable estimate of OPT), can be adapted to

obtain a similar guarantee for `-centrum. As before, running the blackbox reduction

followed by an `-centrum algorithm on the sparsified weighted instance obtained by

consolidating points at the centers output by Meyerson’s algorithm then yields the

improved query complexity.

– In Section 6.3 we devise a mechanism with query complexity independent of n. First,

we show that the adaptive-sampling approach for k-median (Algorithm 2) can be

leveraged in a novel fashion to obtain a constant-factor bicriteria approximation

for `-centrum, given a suitable guess of a certain statistic of the optimal solution.

Running an `-centrum approximation algorithm on the weighted instance resulting

from this bicriteria solution then yields an O(1)-distortion mechanism with O(k log `)

queries per agent.
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In the context of the `-centrum problem, a weighted instance consists of a set of agents,

C, with non-negative weights {wi}i∈C. Each weighted point i with integer weight wi ≥ 0

denotes wi co-located points. Then, the cost vector induced by a solution T , which we

denote as d(C, T |w), is a vector in RW , where W =
∑

iwi, and the Top` cost is the Top`-

norm of this vector. For a set S ⊆ C, the weighted instance induced by S is (C, {wi}i∈C)
where wi = 0 if i /∈ S, and wj = |Pj| otherwise (recall that Pj are the agents in C that have

been assigned to j ∈ S).

In the k-median setting, we heavily utilized Fact 5.3.1, which asserts that we will not

incur a large cost when working with the sparsified instance, instead of the original instance.

We will prove that an analogous statement holds for the `-centrum problem as well.

Lemma 6.0.1. Let S ⊆ C such that the Top` value of d(C, S), the assignment cost vector

induced by S, is at most α ·OPT. Let OPT′ be the optimal value for the `-centrum problem

on the weighted instance induced by S, and OPT be the optimal value of the original

instance. Then,

1. OPT′ ≤ 2(α + 1)OPT

2. If T is a ρ-approximate solution with respect to the weighted instance, Top`(d(C, T )) ≤
(α + 2ρ(α + 1)) ·OPT

Proof. We first prove that (a) holds. Let T ∗ be an optimal solution for the original instance,

and denote the optimal value of the original instance as OPT. Let T̃ be the projection of

T ∗ onto S, that is, the centers obtained by mapping each point in T ∗ to the closest center

in S. We show an upper bound on Top`(d(C, T̃ |w)), the Top`-cost of the weighted instance

with respect to T̃ . Consider any subset of ` points, Q (where we take the weights into

consideration, i.e., we take some w′i points from each i ∈ S, where
∑

i∈S w
′
i = `).

For each i ∈ Q, let xS(i) be the point that i is co-located with in the weighted instance,

and x∗(i) be the center in T ∗ that is closest to i. By the triangle inequality,∑
i∈Q

d(xS(i), T̃ ) ≤
∑
i∈Q

d(xS(i), i) +
∑
i∈Q

d(i, x∗(i)) +
∑
i∈Q

d(x∗(i), T̃ )
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The first term,
∑

i∈Q d(xS(i), i), is the cost incurred when we move each i ∈ Q from xS(i)

to its original location; this is at most Top`(d(C, S)). The second term,
∑

i∈Q d(i, x∗(i)), is

the cost of moving each i ∈ Q from its original location to x∗(i), its closest center in T ∗;

the cost of this step is at most OPT. Finally,
∑

i∈Q d(x∗(i), T̃ ) is the cost of moving the

points their centers in T ∗ to their closest open centers in T̃ . The cost of this step can be

bounded by moving each relevant point in T ∗ to T̃ – so we incur an additional cost of at

most OPT + Top`(d(C, S)). Putting this together, we have∑
i∈Q

d(xS(i), T̃ ) ≤
∑
i∈Q

d(xS(i), i) +
∑
i∈Q

d(i, x∗(i)) +
∑
i∈Q

d(x∗(i), T̃ ) ≤ 2Top`(d(C, S)) + 2OPT

As this holds for any `-subset Q, Top`(d(C, T̃ )) ≤ 2(OPT+Top`(d(C, S))) ≤ 2(α+1)OPT.

It remains to prove that (b) holds. For any solution, T , of Top` cost Z for the weighted

instance, the cost of T for the original instance is at most Z + Top`(d(C, S)) (this is an

upper bound on the cost of moving the ` weighted points to their original locations).

Since OPT′ ≤ 2(α + 1)OPT, for any ρ-approximate solution T for the weighted instance,

Top`(d(C, T )) ≤ (α + 2ρ(α + 1))OPT.

6.1 A blackbox reduction for the Top` setting

In the k-median setting, we observed that, if the true underlying metric is (approximately)

known, we can leverage existing (cardinal) k-median algorithms. Given a reasonable es-

timate of OPT, Algorithm 3 allowed us to construct a simulated metric that, in a sense,

approximated the true underlying metric. With a few modifications, we can extend this

blackbox reduction to the Top` setting.

The key difference between Algorithm 7 and the blackbox reduction for k-median

(Algorithm 3) is that instead of working with the provided positive weight wi, we use

w′i = min(wi, `); this ensures that at most ` agents co-located at i can contribute to the

Top`-cost.
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Algorithm 7: A blackbox reduction to the `-centrum problem

Input: A set of n agents C with preference profile σ, and non-negative, integer

weights {wj}j∈C; d∗ denotes the true underlying metric (which we do not

know).

A constant B such that B ∈ [OPT(d∗), α ·OPT(d∗)]

A ρ-approximation algorithm A for solving `-centrum on the weighted

instance

1 for i ∈ C do

2 Define w′i = min(wi, `), Bi,0 = ρ(1 + 3ε) · B
w′i

, qi :=
⌈
log1+ε(

αw′iBi,0·`
εB

)
⌉

3 Compute Si,r = {j ∈ C : d∗(i, j) ≤ Bi,0(1 + ε)−`} for r = 0, . . . , qi

4 end

5 Compute d̃ such that d̃ is a valid metric and also satisfies the following constraints:

(1) d̃(i, j) ≥ Bi0 for all j /∈ Si,0.

(2) (1 + ε)−(r+1)Bi0 ≤ d̃(i, j) ≤ (1 + ε)−rBi0 for all j ∈ Si,r \ Si,r+1,

i ∈ C, r ∈ {0, . . . , qi − 1}

(3) d̃(i, j) ≤ εB
α`·w′i

for all j ∈ Si,qi

return A(C, w′, d̃)

Theorem 6.1.1. Let d∗ be the true underlying metric, and let F be the set of centers

opened by Algorithm 7. Then,

Top`(d
∗(j, F |w)) ≤ (ρ(1 + 2ε) + ε)OPT(d∗)

Furthermore, Algorithm 7 can be implemented using O(log(n) · log(αρ ·n)/ε) value queries

per agent.

Proof. The proof of this theorem is analogous to the proof of Theorem 5.1.1; for the sake

of brevity, we will emphasize the differences and omit the redundant details. Let OPT(d̃)
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denote the value of an optimal `-centrum solution computed with respect to d̃. Fact 5.1.2

still holds (if we substitute wi with w′i and define κi = εB
α`w′i

). Given this, we can show the

following claim

Claim 6.1.2. Let T ⊆ C such that d∗(i, T ) ≤ Bi,0 for all i ∈ C. Then,

(a) Top`(d̃(C, T |w)) ≤ (1 + ε)Top`(d
∗(C, T |w)) + εOPT(d∗)

(b) Top`(d
∗(C, T |w)) ≤ Top`(d̃(C, T |w)) + εOPT(d∗)

Proof. Let Q be a set of ` agents (where we take the weights into consideration, i.e., we

take some w′i points from each i ∈ S, where
∑

i∈S w
′
i = `). Since d∗(i, T ) ≤ Bi,0 for all

i ∈ C, by Fact 5.1.2,

∑
i∈Q

d∗(i, T ) ≤ (1 + ε)
∑
i∈Q

d̃(i, T ) +
∑
i∈Q

w′iκi ≤ (1 + ε)Top`(d̃(C, T |w)) +
∑
i∈Q

w′iκi

Since |Q| = `,
∑

i∈Qw
′
iκi ≤ ` · εOPT(d∗)

`
. As this holds for any `-subset Q,

Top`(d̃(C, T |w)) ≤ (1 + ε)Top`(d
∗(C, T |w)) + εOPT(d∗)

The proof of (b) is identical, and hence omitted.

Moreover, by Claim 6.1.2(a), OPT(d̃) ≤ (1+2ε)·OPT(d∗). We now show that d∗(j, T ) ≤
Bi,0 for all j ∈ C, for any ρ-approximate solution (with respect to d̃).

Claim 6.1.3. Let T ⊆ C. If Top`(d̃(C, T |w)) ≤ ρ ·OPT(d̃), d∗(i, T ) ≤ Bi,0 for all i ∈ C.

Proof. Suppose, to arrive at a contradiction, that there exists j ∈ C such that d∗(j, T ) >

Bj,0. Since w′j ≤ `, at least w′j agents who contribute to the Top` objective incur a

connection cost of d(j, T ) or larger, so,

Top`(d̃(C, T |w))| ≥ w′j · d̃(j, T ) ≥ w′jBj,0 > ρ(1 + 2ε)OPT(d∗) ≥ ρ ·OPT(d̃)

which is a contradiction.
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Let F ∗ be the set of centers opened by an optimal solution with respect to d∗ and let F

be the set of centers opened by A(C, w′, d̃). By Claims 6.1.2 and 6.1.3, Top`(d
∗(C, F |w)) ≤

(ρ(1 + 2ε) + ε)OPT(d∗).

Query Complexity : As done in Algorithm 3, we can combine binary search with queries

Si,r for all i ∈ C, r = 0, . . . , qi. The total number of value queries required to compute

Si,r in this manner is O(log n), and hence the total number of value queries (per agent)

that is needed to determine each of Si,0, . . . , Si,qi for a fixed agent i is O(qi · log n) =

O(log(n) · log(αρ`n)/ε).

One can show that following guarantee also holds for Algorithm 7; the proof of this propo-

sition is almost identical to the proof of Theorem 6.1.1, and hence omitted.

Theorem 6.1.4. Let U ≥ OPT(d∗) and B ∈ [U, αU ]. As before, let d∗ be the true

underlying metric, and let F be the set of centers opened by Algorithm 7. Then,

Top`(d
∗(j, F |w)) ≤ (ρ(1 + 2ε) + ε)U

Furthermore, Algorithm 7 can be implemented using O(log(n) · log(αρ ·n)/ε) value queries

per agent.

In order to use this blackbox reduction to `-centrum, we must know B, a reasonable

estimate of OPT. To compute such an estimate, we leverage the fact that the cost of

an optimal k-median solution is at least the cost of the optimal `-centrum solution, and

at most n times the cost of the optimal `-centrum solution. In Chapter 5, we saw that

we can compute OPTk−MCF using O(log n) queries per agent (using Algorithm 4); by

this argument, OPT`-centrum ≤ n · OPTk−MCF ≤ n2 · OPT`-centrum. Combining this with

Algorithm 7 yields the following mechanism. Given the preference profile σ, compute

OPTk−MCF using Algorithm 4 and return the committee selected by Algorithm 7 (when

provided C, σ, unit weights, B = n ·OPTk−MCF , and an O(1)-approximation algorithm for

`-centrum as input). By Theorem 6.1.1, this is an O(1)-distortion mechanism that uses

O(log2(n)/ε) queries per agent.

64



6.2 Improving query complexity

Once again, in order to improve the query complexity of our mechanism, we will sparsify

our instance using a bicriteria approximation algorithm. In Chapter 5, we showed that

Meyerson’s algorithm for online facility location and Aggarwal et. al’s adaptive sampling

algorithms could be used to sparsify the instance (using relatively few value queries per

agent). In this section, we show that Meyerson’s algorithm for online facility location can

be extended to solve the `-centrum k-clustering problem as well. This allows us to devise

a mechanism that is analogous to Mechanism 5 for the Top` setting.

Algorithm 8: Extension of Meyerson’s OFL algorithm for `-centrum k-clustering

Input: Sequence of agents x1, . . . , xn,

A constant B such that OPT ≤ B ≤ α ·OPT

1 S ← {x1}
2 f = B

k

3 for i = 2, . . . , n do

4 δi =
(
d(xi, S)− 3 · B

`

)+

5 Add xi to S with probability min(1, δi/f)

6 end

7 return S

Theorem 6.2.1. Let OPT be the optimal value of an `-centrum k-clustering on C. If the

order of agents is random, the expected number of facilities opened by Algorithm 8 is at

most 26k, and the expected cost is at most 15B + 14OPT.

Proof of Theorem 6.2.1 (Adapted from [35]). The key to adapting Meyerson’s algorithm

to the Top`-setting is the fact that, as stated in Chapter 2, the Top` cost of a vector

v ∈ Rn can be well-approximated by the separable proxy function ` · t +
∑n

i=1(vi − t)+,

under a suitable choice of t. Given an estimate B of the optimum value, one can use

t = B/`, and therefore focus on the second term
∑n

i=1(vi − t)+. Roughly speaking, we

can then treat (d(j, S) − t)+ as the connection cost when running Meyerson (where S is

the set of currently open centers). However, certain complications arise since this does not

65



quite satisfy the triangle inequality, and therefore we actually work with connection-cost

expression (d(j, S)− 3t)+. Our analysis will bound the expected value of this expression,

which then also yields a bound on the expected Top`-cost (via Claim 2.2.1)

Let S∗ be the centers opened by an optimal `-centrum solution, and let C∗1 , . . . , C
∗
k be

the clusters induced by S∗. Suppose that S be the set of centers opened by Algorithm 8.

For an agent p ∈ C, Sp ⊆ S is the set of currently open centers when p is considered, and

hence δp = (d(p, Sp)− 3 · B
`
)+. For ease of exposition, we will define t` := B

`
.

Consider cluster C∗i , with cluster center c∗i . For i = 1 . . . , k, we define the average

`-radius of C∗i to be r`(C
∗
i ) =

∑
j∈C∗i

(d(j,c∗)−t`)+
|C∗| . The `-core of C∗i is

core`(C
∗
i ) = {j ∈ C∗i : (d(j, c∗)− t`)+ ≤ 2r`(C

∗
i )}

We follow Meyerson’s approach [35] and bound the expected cost incurred by the agents

in core`(C
∗
i ) and not in core`(C

∗
i ) separately. To be precise, we bound E[min(δg, f)] for all

g ∈ core`(C∗i ), and then bound E[min(δb, f)] for agents b ∈ C∗ \ core`(C∗i ) in terms of the

cost of the last core-agent preceding b.

We begin by bounding
∑

j∈core`(C∗i ) E[min(δj, f)]. Once a center gj∗ ∈ core`(C
∗
i ) has

been opened, we have δj ≤ (d(j, c′)−3t`)
+ ≤ (d(j, c∗i )−2t`)

+ +(d(c′, c∗i )− t`)+ ≤ (d(j, c∗i )−
t`)

+ + 2r`(C
∗
i ), for every subsequent j ∈ C∗i . It remains to bound E[min(δg, f)] for core-

agents g that precede gj∗ . To this end, we use the following lemma proved by Liberty et.

al [33]

Lemma 6.2.2 (Lemma 2.1 in [33]). We are given a sequence X1, . . . Xn of n independent

experiments. Each experiment succeeds with probability pi ≥ min{Ai/B, 1} where B ≥ 0

and Ai ≥ 0 for all i = 1, . . . , n. Let t be the (random) number of consecutive unsuccessful

experiments before the first successful one, then:

E

[
t∑
i=1

Ai

]
≤ B

The events of opening centers at core-agents are independent when we condition on the

sequence in which core-agents are considered, the centers opened outside the core, and the

number of core-agents considered before a center is opened for the first time. To be precise,
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let q = |core`(C∗i )| (so q ≥ |C∗i |
2

) and let g1, . . . , gq be the order in which the core-agents in

core`(C
∗
i ) are considered. Let gj∗ be the first core-agent at which a center is opened. For

i = 1, . . . , j∗ − 1, the probability of opening a center at gi is
min(δgi ,f)

f
; hence, by Lemma

6.2.2,
j∗−1∑
i=1

E [min(δgi , f)] ≤ f

where the expectation is conditioned on the above events. Since min(δgj∗ , f) ≤ f , we have∑
g∈core`(C∗i )

E[min(δg, f)] ≤ 2f +
∑

g∈core`(C∗i )

(
(d(g, c∗i )− t`)+ + 2r`(C

∗
i )
)

(6.1)

We now bound E[min(δb, f)] for an agent b ∈ C∗i \core`(C∗i ). First, if b precedes all core

agents, we simply bound min(δb, f) by f . Note that this case happens with probability
1
q+1
≤ 2
|C∗i |

.

Suppose b is preceded by some core-agent g. Let Sg be the set of centers that are open

immediately after g is considered. By the triangle inequality, δb ≤ (d(b, Sg) − 3t`)
+ ≤

(d(b, c∗i )− t`)+ + (d(g, c∗i )− t`)+ + (d(g, Sg)− t`)+. Moreover, as g ∈ core`(C∗i ), (d(g, c∗i )−
t`)

+ ≤ 2r`(C
∗
i ). We consider two cases here:

– If d(g, Sg) > 4t`, (d(g, Sg)− t`)+ ≤ 3(d(g, Sg)−3t`)
+. Combining this with the earlier

bound on δb yields

δb ≤ (d(b, c∗i )− t`)+ + 2r`(C
∗
i ) + 3(d(g, Sg)− 3t`)

+ = (d(b, c∗i )− t`)+ + 2r`(C
∗
i ) + 3δg

Since no center is open at g, min{δg, f} = δg. Thus, δb ≤ (d(b, c∗i )− t`)+ + 2r`(C
∗
i ) +

3 min(δg, f).

– If d(g, Sg) ≤ 4t`, δb ≤ (d(b, c∗i )− t`)+ + 2r`(C
∗
i ) + 3t`.

We now utilize these to bound E[min(δb, f)] by conditioning on the order in which core-

agents appear. Let g1, . . . , gq be this ordering. We also condition on the first core-agent (if

one exists) for which d(g, Sg) ≤ 4t`; let gt denote this agent. Let prev(b) denote the last

core-agent that precedes b (if no such agent exists, prev(b) = ∅).
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Claim 6.2.3. Conditioned on the above events, we have Pr[prev(b) = ∅] = 1
q+1

, and for

any g ∈ core`(C∗i ), Pr[prev(b) = g] = 1
q+1

.

Proof. This follows due to the ordering of the agents; because the order of the agents is

random, each candidate for prev(b) in {∅} ∪ core`(C∗i ) is equally likely.

So, conditioned on the above events, we have

E[min(δb, f)] ≤ Pr[prev(b) = ∅] · f + (d(b, c∗i )− t`)+ + 2r`(C
∗
i )

+
t−1∑
i=1

Pr[prev(b) = gi]3E[min(δgi , f)] +

q∑
i=t

Pr[prev(b) = gi] · 3t`

≤ 2f

|C∗|
+ (d(b, c∗i )− t`)+ + 2r`(C

∗
i ) +

2

|C∗i |
∑

g∈core`(C∗i )

3E[min(δg, f)]

+
2

|C∗i |
· |C∗i \ core`(C∗i )| · 3t`

(where the expectation in the final inequality is again conditioned on the above events).

Summing over all non-core agents gives the following. Note that |C∗i \ core`(C∗i )| ≤ |C∗i |
2

.

We have

∑
b∈C∗i \core`(C∗i )

E[min(δb, f)] ≤ f +
∑

b∈C∗i \core`(C∗i )

(d(b, c∗i )− t`)+ + |C∗i \ core`(C∗)| · 2r`(C∗i )

+ 3
∑

g∈core`(C∗i )

E[min(δg, f)] + 3|C∗i \ core`(C∗i )| · t`

Summing over all core and non-core agents, and over all clusters C∗1 , . . . , C
∗
k yields∑

j∈C

E[min(δj, f)]

≤ 9kf +
k∑
i=1

4
∑
p∈C∗i

(d(p, c∗i )− t`)+ + 10|C∗i | · r`(C∗i ) + 3|C∗i \ core`(C∗i )| · t`
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Recall that S∗ is the set of centers opened by an optimal solution and t` = B
`
. Since

OPT ≤ B ≤ α · OPT, the `th largest assignment cost induced by S∗ is at most B
`
,

and hence |{j ∈ C : d(j, S∗) > t`}| ≤ `. So,
∑k

i=1 |C∗i \ core`(C∗i )| ≤ `. Furthermore,∑
j∈C(d(j, S∗) − t`)

+ ≤ OPT and for any i ∈ [k], |C∗i | · r`(C∗i ) =
∑

j∈C∗i
(d(j, c∗i ) − t`)

+.

Using these facts, we simplify the bound given above:∑
j∈C

E[min(δj, f)] ≤ 9kf + 14OPT + 3B (6.2)

We note that the above bound is independent of the conditioning, which can hence be

removed. We can use (6.2) to establish an upper bound on the expected (connection) cost

induced by our solution S, as well as the expected size of S. Recall that Top`(d(C, S)) ≤
` · 3t` +

∑
j∈C(d(j, S)− 3t`)

+, and f = B
k

. We have

E [Top`(d(C, S))] ≤ E

[
` · 3t` +

∑
j∈C

(d(j, S)− 3t`)
+

]

≤ 3B +
k∑
i=1

∑
j∈C∗i

E[min(δj, f)]

≤ 3B + 9kf + 14OPT + 3B ≤ 15B + 14OPT

We can also derive the following bound on the expected size of S.

k∑
i=1

E[|S ∩ C∗i |] ≤
k∑
i=1

∑
p∈C∗i

E[min(δp, f)]

f
≤ 9kf + 14OPT + 3B

f
≤ 26k
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Mechanism 9: O(1)-distortion, O((log(1/δ) + log k) log n)-query mechanism for

`-centrum
Input: Preference profile σ

1 B ← n ·
∑

e∈T d
∗(e), where T is the min cost k-Forest returned by Algorithm 4

2 Obtain a random sequence of agents x1, . . . , xn via shuffling

3 S ← ∅
4 for i = 1, . . . , dlog2 n

2e+ 1 do

5 Li ← 2i−1 ·B/n
6 f ← Li

k

7 repeat log(1/δ) times

8 S ← {x1}
9 for j = 2, . . . , n do

10 Query xj for the value of d∗(xj, topS(xj))

11 δj =
(
d∗(xj, topS(xj))− 3 · Li

`

)+

12 Add xj to S with probability min(1, δj/f)

13 end

14 if |S| ≤ 108k then

15 S ← S ∪ {S}
16 end

17 end

18 end

19 Choose S ∈ arg min
S′∈S

Top`(d
∗(C, S ′)); {Pj}j∈S is the partition induced by S

20 For j ∈ S, wj ← |Pj|
21 S ← Algorithm7(S, σ, {wj}j∈S, B,A) where A is an O(1)-approximation algorithm

for `-centrum

22 return S

Theorem 6.2.4. Mechanism 9 is an O(1)-distortion mechanism for `-centrum that re-

quires O((log(1/δ) + log k) log n) value queries per agent, and has a success probability of

at least 1− δ.
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Proof. Let ε ∈ (0, 1] be a constant. Notice that in lines 7-17, we are running Algorithm

8 log(1/δ) times for a given Li (which serves as our estimate for OPT). Moreover, since

we know that OPT ≤ B ≤ n2 · OPT, there exists some i∗ ∈ {1, . . . , dlog2 n
2e} such that

OPT ≤ Li∗ ≤ 2 ·OPT.

It suffices to show that the with probability at least 1− δ, one of the solutions returned

by Meyerson’s algorithm when f = Li∗/k opens at most 108k centers, and induces a total

connection cost of at most 180OPT(d∗). By Theorem 6.2.1 and Markov’s inequality, the

Top` cost of the output of Algorithm 8 when f = Li∗/k is at most 4 · 44OPT with a

probability of 3
4
; and the number of centers opened is at most 4 · 26k = 104k, with a

probability of 3
4
. Hence, by Union bound, with a probability of at least 1

2
, the solution

returned by Meyerson’s algorithm is a (176, 104)-bicriteria approximate k-median solution.

Since we run Meyerson’s algorithm log(1/δ) times, with probability at least 1 − δ, there

exists S ∈ S such that Top`(d
∗(C, S)) ≤ 176 · OPT and |S| ≤ 104k. As noted before, this

S yields a sparsified (weighted) instance.

We would like to apply the blackbox reduction (Algorithm 7) to this sparsified instance.

However, as before, it is possible that OPT′, the optimal value of the weighted instance

is less than OPT, and hence OPT′ ≤ B ≤ n · OPT′ may not hold. By Lemma 6.0.1,

OPT′ ≤ 2(176 + 1)OPT; if we take U = 354OPT, U ≤ 354 ≤ n · U , and hence we can

apply Theorem 6.1.4. This yields a 354(ρ(1 + 2ε) + ε)-approximate solution to the original

instance, where ρ is the approximation factor of the k-median algorithm used in step 21.

In particular, if we use Chakrabarty and Swamy’s (5 + ε)-approximation algorithm for the

`-centrum problem, we obtain a solution of cost at most 354((5 + ε)(1 + 2ε) + ε)OPT(d∗).

Query Complexity : The steps which require value queries are lines 4-18, line 19, and

the call to Algorithm 7 in line 21. The total number of queries made in lines 4-18 is

O(log(1/δ) · log(n)). Since |S| = O(log(1/δ) · log n), the number of queries per agent to

find S ∈ arg min
S′∈S

Top`(d
∗(C, S ′)) is at most O(log(1/δ) · log n) queries per agent. Finally,

since the weighted instance given as input to Algorithm 7 in line 21 consists of O(k) points,

B ∈ [OPT, n2 ·OPT], this step takes at most O(log n log k) queries per agent (by Theorem

6.1.4).
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6.3 Adaptive sampling for `-centrum k-clustering

The core of Mechanism 6 is Aggarwal, Deshpande, and Kannan’s adaptive sampling algo-

rithm for k-median clustering (Algorithm 2). A natural question is whether this adaptive

sampling algorithm yields a constant-factor bicriteria approximation for the more general

`-centrum. If this were true, then Algorithm 2 would also yield a constant-factor bicriteria

approximation for k-center, as it is a special case of `-centrum when ` = 1. However, as

illustrated by Theorem 6.3.1, if τ = O(1), even for k = 2 there exist instances for which

the Algorithm 2 can be arbitrarily bad for k-center.

Theorem 6.3.1. For any constant τ ≥ 1, L > 1, ε > 0, there exists an instance I =

(C, d, k) such that Pr[Top1(d(C, S)) < L · OPT] < 2ε, where S is the set of centers τk

opened by running Algorithm 2 on I and OPT is the value of an optimal k-center solution

for the instance I.

Proof. Let the set of agents be C = C1 ∪ {j∗}, where |C1| > 2τ + 1
ε
· 2τL. For all i, j ∈ C1,

d(i, j) = 1, and for all j ∈ C1, d(j, j∗) = L. Notice that this defines a valid metric. Fix

k = 2. An optimal solution for 2-center would be to open one center in C1, and one center

at j∗; this solution has a cost of 1, so OPT = 1. For any S ⊆ C, if Top1(d(C, S)) < L =

L ·OPT, then d(j∗, S) < L; but since d(i, j∗) = L for all i ∈ C \ {j∗}, this is only possible

if j∗ ∈ S.

Let Si−1 be the set of centers opened by the end of step i − 1 of the d-sampling

algorithm, and let si be the center opened in step i. Pr[si = j∗|j∗ /∈ Si−1] = L
|C1|−|Si−1|+L ≤

L
|C1|−2τ+L

< ε
2τ

. By Union bound, Pr[j∗ ∈ S|j∗ /∈ S1] < |S| · ε
2τ

= ε. Assuming that

the first center is chosen uniformly at random, Pr[j∗ /∈ S1] = n−1
n

, where n = |C|, so

Pr[j∗ ∈ S] = Pr[j∗ ∈ S1] + Pr[j∗ ∈ S|j∗ /∈ S1] · Pr[j∗ /∈ S1] < 1
n

+ ε < 2ε. Hence,

Pr[Top1(d(C, S)) < L ·OPT] ≤ Pr[j∗ ∈ S] < 2ε.

Unlike k-center, in k-median, each agent contributes exactly d(j, S) to the objective.

Intuitively, Algorithm 2 works for k-median because we are sampling the next center to

open with probability proportional to this individual contribution. This, however, is not

the case when we try to use Algorithm 2 for k-center, as illustrated by the instance given
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in the proof of Theorem 6.3.1. In this instance, if the first center is opened in C1, any

good algorithm should open the other center at j∗, as after the first center is opened in

C1, agents in C1 no longer contribute to the cost of the current solution (until after a

center at j∗ is opened). However, as argued previously, Algorithm 2 fails to do this with

non-negligable probability. In general, the `-centrum objective is not so easily separable

into individual contributions. As only the agents corresponding to the ` largest assignment

costs contribute to the objective, the contribution of an agent depends on the assignment

costs incurred by the other agents. In order to design a good adaptive sampling algorithm

for the `-centrum problem, we must first overcome this inherent dependence on the relative

ordering of the agents with respect to assignment cost. As a means to this end, we will

Chakrabarty and Swamy’s proxy function [20].

Notice that the contribution of an agent j to ` · βt∗` +
∑

j∈C(d(j, S) − βt∗`)
+ can be

viewed as (d(j, S)−βt∗`)+. Thus, Chakrabarty and Swamy’s proxy function eliminates the

dependence on the relative ordering of the agents, and allows us to decompose an upper

bound on the objective value of a given solution S in terms of “individual contributions”

of the agents. So, at each step of our adaptive sampling algorithm, we sample the next

center to open with probability proportional to this contribution. For ease of exposition,

we present the adaptive sampling algorithm under the assumption that t∗` is known; later,

we will show how to relax this assumption. We will show that this adaptive sampling

algorithm gives a constant factor bicriteria approximation for the `-centrum problem. Let

β, τ be some parameters that we will choose later.

Algorithm 10: Adaptive sampling algorithm for `-centrum

Input: An `-centrum instance (C, d)

t`: a guess for t∗`
1 S0 ← ∅ ;

2 for i = 1, . . . , τ(k +
√
k) do

3 Sample si with probability proportional to (d(si, Si−1)− βt`)+

4 Update Si ← Si−1 ∪ {si}.
5 end

6 Return Sτ(k+
√
k)
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Theorem 6.3.2. Let S be the set of centers opened by Algorithm 10 and suppose that

t∗` ≤ t` ≤ max{(1 + ε)t∗` , ε · OPT
`
}. Let ρ be a constant that is strictly larger than 30.

Then, there exists suitable parameters such that |S| = O(k) and with constant probability,

Top`(d(C, S)) ≤ ρ ·OPT .

Proof. Let α, β, γ, κ be constants that we will choose later, and define

τ =
((

1− max{β,γ}
ρ

)
· α−1

2κα

)−1

. We wish to show that after opening τ(k +
√
k) centers,

Top`(d(C, S)) ≤ ρ · OPT, with constant probability. We outline the proof approach here.

Let C∗1 , . . . , C
∗
k , with centers c∗1, . . . , c

∗
k respectively, be the k clusters induced by the op-

timal solution, S∗. If we could show that for every cluster C∗q ,
∑

j∈C∗q
(d(j, S) − βt`)+ ≤

γ
∑

j∈C∗q
(d(j, c∗q)− t`)+, then we would be able to show that the Top` cost of S is within a

constant factor of OPT. To be precise,

Definition 6.3.3. A cluster C∗q is `-good, if
∑

j∈C∗q
(d(j, S)−βt`)+ ≤ γ

∑
j∈C∗q

(d(j, c∗q)−t`)+

Claim 6.3.4. If every cluster is `-good,

Top`(d(C, S)) ≤ max{(1 + ε)β, (γ + ε)} · Top`(d(C, S∗))

Proof. If t` ≤ (1 + ε)t∗` ,

Top`(d(C, S)) ≤ ` · βt` +
∑
j∈C

(d(j, S)− βt`)+

≤ ` · β(1 + ε)t∗` + γ
∑
j∈C

(d(j, S∗)− t∗`)+

≤ max{(1 + ε)β, γ} · Top`(d(C, S∗))

Otherwise, t` ≤ ε · OPT
`

. Then,

Top`(d(C, S)) ≤ ` · βt` +
∑
j∈C

(d(j, S)− βt`)+

≤ ` · εOPT

`
+ γ

∑
j∈C

(d(j, S∗)− t∗`)+

≤ (γ + ε) · Top`(d(C, S∗))
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So, we wish to show that, at termination, all clusters are `-good with constant proba-

bility. If a cluster is not `-good, we say that it is `-bad. Notice that if a cluster is `-good

in step i, it remains `-good in all subsequent steps. We will show that, with constant

probability, we turn at least one `-bad cluster into an `-good cluster in each step.

Let si be the center opened in step i, and let C∗ be the optimal cluster such that

si ∈ C∗; furthermore, let c∗ be the center of C∗. We define r`(C
∗) =

∑
j∈C∗ (d(j,c∗)−t`)+

|C∗| .

There are two cases to consider here. If c∗ is close to one of the currently open centers, we

say that C∗ is `-close; otherwise, we say that C∗ is `-far.

Definition 6.3.5. Let C∗q be a cluster with center c∗q. If d(c∗q, Si) ≤ κ ·max{t`, r`(C∗q )}, we

say that the cluster C∗ is `-close at step i; otherwise, C∗q is `-far.

As done by Aggarwal et. al, we will show that, with constant probability, a point is

selected from the core of a bad cluster. However, unlike Aggarwal et. al, we define the

core of a cluster differently, depending on if it is an `-close or `-far cluster.

Definition 6.3.6. The `-core of an `-close cluster C∗q , whose center is c∗q, is core`(C
∗
q ) =

{j ∈ C∗q : d(j, c∗q) ≤ t`}. The `-core of an `-far cluster C∗q is core`(C
∗
q ) = {j ∈ C∗q :

(d(j, c∗q)− t`)+ ≤ α · r`(C∗q )}

When the context is clear, we will refer to the `-core of C∗ as simply the core of

C∗. If si belongs to the core of C∗, C∗ becomes `-good, as
∑

j∈C∗(d(j, si) − βt`)
+ ≤∑

j∈C∗(d(j, c∗)− t`)+ + |C∗|(d(si, c
∗)− t`)+ ≤

∑
j∈C∗(d(j, c∗)− t`)+ + α|C∗|r`(C∗) ≤ (1 +

α)
∑

j∈C∗(d(j, c∗)− t`)+, where the second inequality is because si ∈ core`(C∗). Hence, we

want to show that, with constant probability, si belongs to the core of an `-bad cluster C∗.

Lemma 6.3.7. Let Si−1 be the set of currently opened centers, and let si be sampled with

probability proportional to (d(si, Si−1)−βt`)+. Then, Top`(d(C, Si−1)) ≤ ρ ·Top`(d(C, S∗)),

or si is in the `-core of an `-bad cluster, with constant probability.

Proof of Lemma 6.3.7. If Top`(d(C, Si−1)) ≤ ρ · Top`(d(C, S∗)), we are done – so assume

that Top`(d(C, Si−1)) > ρ ·Top`(d(C, S∗)). We first show that with constant probability, si

is in an `-bad cluster.

Claim 6.3.8. Pr[si ∈ `-good cluster] ≤ max{β,γ}
ρ
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Proof of Claim 6.3.8. By definition of `-good clusters,∑
C∗ `-good

∑
j∈C∗

(d(j, Si−1)− βt`)+ ≤
∑

C∗ `-good

γ ·
∑
j∈C∗

(d(j, c∗)− t`)+

so,

Pr[si ∈ `-good cluster] =

∑
C∗ is `-good

∑
j∈C∗(d(j, Si−1)− βt`)+∑

j∈C(d(j, Si−1)− βt`)+

≤
βt` · `+

∑
C∗ is `-good γ ·

∑
j∈C∗(d(j, c∗)− t`)+

βt` · `+
∑

j∈C(d(j, Si−1)− βt`)+

≤ max{β, γ} · Top`(d(C, S∗))
ρ · Top`(d(C, S∗))

=
max{β, γ}

ρ

where the third inequality is because βt` · `+
∑

j∈C(d(j, Si−1)−βt`)+ ≥ Top`(d(C, Si−1)) >

ρ · Top`(d(C, S∗)) by Claim 2.2.1.

So, with constant probability, C∗ is an `-bad cluster. If C∗ is `-close, we can show that

si ∈ core`(C∗) with constant probability.

Claim 6.3.9. Pr[C∗ is `-close, si /∈ core`(C∗)] ≤ κ+β
ρ

Proof of Claim 6.3.9. If C∗ is `-close, core`(C
∗) = {j ∈ C∗ : d(j, c∗) ≤ t`}. As t` is at least

the value of t∗` , the `th largest assignment cost induced by the optimal solution,

|{j ∈ C : d(j, S∗) > t`}| ≤ |{j ∈ C : d(j, S∗) > t∗`}| ≤ `

so the probability that si /∈ core`(C∗) is small.

Pr[C∗ `-close, d(si, c
∗) > t`]

=

∑
C∗q `-close

∑
j /∈core`(C∗q )(d(j, Si−1)− βt`)+∑

j∈C(d(j, Si−1)− βt`)+

≤
` · βt` +

∑
C∗q `-close

∑
j /∈core`(C∗q )(d(j, c∗q) + d(c∗q, Si−1)− βt`)+

Top`(d(C, Si−1))

≤
` · βt` +

∑
C∗q `-close |C∗q \ core`(C∗q )| · (d(c∗, Si−1)− t`)+

Top`(d(C, Si−1))

+

∑
C∗q `-close

∑
j /∈core`(C∗q )(d(j, c∗q)− t`)+

Top`(d(C, Si−1))
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Notice that
∑

C∗q `-close |C∗q \ core`(C∗q )| ≤ |{j ∈ C : d(j, S∗) > t`}| ≤ `. Furthermore, for

every `-close cluster C∗q , d(c∗q, Si−1) ≤ κmax{t`, r`(C∗q )}, so∑
C∗q `-close

|C∗q \ core`(C∗q )| · (d(c∗q, Si−1)− t`)+ ≤ ` · κt` + κ
∑

C∗q `-close

∑
j∈C∗q

(d(j, c∗q)− t`)+

≤ κ · Top`(d(C, S∗))

Thus,

Pr[C∗ is `-close, si /∈ core`(C∗)] ≤
(κ+ β) · Top`(d(C, S∗))

ρ · Top`(d(C, S∗))
=
κ+ β

ρ

The other case is that C∗ is `-far.

Claim 6.3.10. Pr[si ∈ core`(C∗)|C∗ `-far, C∗ `-bad] ≥ α−1
ακ

Proof of Claim 6.3.10. If C∗ is `-far, core`(C
∗) = {j ∈ C∗ : (d(j, c∗) − t`)+ ≤ α · r`(C∗)}.

As

|C∗| · r`(C∗) ≥
∑

j /∈core`(C∗)

(d(j, c∗)− t`)+ ≥ |C∗ \ core`(C∗)| · αr`(C∗)

we have that |core`(C∗)| ≥ α−1
α
· |C∗|. Combining this fact with the triangle inequality

yields

Pr[si ∈ core`(C∗)|C∗ `-far, C∗ `-bad] =

∑
j∈core`(C∗)(d(j, Si−1)− βt`)+∑

j∈C∗(d(j, Si−1)− βt`)+

≥
∑

j∈core`(C∗)(d(c∗, Si−1)− d(j, c∗)− βt`)+∑
j∈C∗(d(j, c∗) + d(c∗, Si−1)− βt`)+

≥ |core`(C
∗)| · (d(c∗, Si−1)− αr` − (β + 1)t`)

|C∗| · (r` + (d(c∗, Si−1)− t`))

≥ α− 1

α
· d(c∗, Si−1)− αr` − (β + 1)t`

r` + d(c∗, Si−1)− t`

The third inequality is because d(j, c∗)− t` ≤ r` for all j ∈ core`(C∗). Note that

d(c∗, Si−1)− αr`(C∗)− (β + 1)t`
r`(C∗) + d(c∗, Si−1)− t`
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is an increasing function of d(c∗, Si−1). Since C∗ is an `-far cluster, d(c∗, Si−1) > κ ·
max{t`, r`(C∗)}, so

d(c∗, Si−1)− αr`(C∗)− (β + 1)t`
r`(C∗) + d(c∗, Si−1)− t`

≥ κ ·max{t`, r`(C∗)} − αr`(C∗)− (β + 1)t∗`
r`(C∗) + κ ·max{t`, r`(C∗)} − t`

≥ 1

κ

Finally, we can establish a lower bound on Pr[C∗ `-bad, si ∈ core`(C∗)] using Claims 6.3.8

- 6.3.10.

Pr[C∗ `-bad, si ∈ core`(C∗)]
= Pr[C∗ `-bad, C∗ `-close]− Pr[C∗ `-bad, C∗ `-close, si /∈ core`(C∗)]

+ Pr[C∗ `-bad, C∗ `-far, si ∈ core`(C∗)]

Note that Pr[C∗ `-bad, C∗ `-close]+Pr[C∗ `-bad, C∗ `-far] = Pr[C∗ `-bad] ≥ 1−max{β,γ}
ρ

.

Suppose Pr[C∗ `-bad, C∗ `-close] ≥ 1
2
·
(

1− max{β,γ}
ρ

)
. Then,

1

4
·
(

1− max{β, γ}
ρ

)
≥ (κ+ β)

ρ
≥ Pr[C∗ `-bad, C∗ `-close, si /∈ core`(C∗)],

and hence we have

Pr[C∗ `-bad, si ∈ core`(C∗)]
≥ Pr[C∗ `-bad, C∗ `-close]− Pr[C∗ `-bad, C∗ `-close, si /∈ core`(C∗)]

≥ 1

4
·
(

1− max{β, γ}
ρ

)
.

Otherwise, Pr[C∗ `-bad, C∗ `-far] ≥ 1
2
·
(

1− max{β,γ}
ρ

)
, and hence

Pr[C∗ `-bad, si ∈ core`(C∗)]
≥ Pr[si ∈ core`(C∗)|C∗ `-bad, C∗ `-far] · Pr[C∗ `-bad, C∗ `-far]

≥
(

1− max{β, γ}
ρ

)
· α− 1

2κα
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Thus,

Pr[C∗ `-bad, si ∈ core`(C∗)] ≥
(

1− max{β, γ}
ρ

)
· α− 1

2κα

Moreover, this argument holds for any choice of positive constants α, β, γ, κ that satisfies

α > 1, γ ≥ α + 1, β ≥ 2, 1
4

(
1− max{β,γ}

ρ

)
≥ κ+β

ρ
, κ ≥ α + β + 2, and ρ ≥ max{(1 +

ε)β, (γ + ε)}.

Thus, we have shown that Top`(d(C, Si−1)) ≤ ρ · Top`(d(C, S∗)), or si is in the `-core

of an `-bad cluster, with constant probability. Let Bad`i is the set of `-bad clusters in step

i; since opening a center in the `-core of a cluster causes the cluster to become `-good,

if Top`(d(C, Si−1)) > ρ · Top`(d(C, S∗)), then by Lemma 6.3.7, |Bad`i | > |Bad`i+1|, with

constant probability. Furthermore, using Aggarwal et. al’s argument [3], we can show that

after τ(k +
√
k) centers are opened, |Bad`

τ(k+
√
k)
| = 0 with constant probability.

Lemma 6.3.11 (Aggarwal et. al [3] (Paraphrased)). Let B0 ⊇ B1 ⊇ · · · ⊇ B(k+
√
k)/p

be a chain of subsets such that B0 = {C∗1 , . . . , C∗k}, and Pr[|Bi| > |Bi+1|] ≥ p. Then,

Pr[|B(k+
√
k)/p| = 0] ≥ 1− e−p/4

Proof of Lemma 6.3.11 (Adapted from [3]). We wish to prove that, with constant proba-

bility, B(k+
√
k)/p = ∅. For each step i, define a binary random variable Xi, where Xi = 1 if

|Bi| = |Bi+1| and 0 otherwise. Note that E[Xi] ≤ 1−p. We define Ji :=
∑i

j=1(Xj−(1−p)).
Since Ji+1 − Ji ≤ 1 and E[Ji|J0, . . . , Ji−1] ≤ Ji−1, J0, . . . , J(k+

√
k)/p are super-martingale.

So, we can apply Asuma-Hoeffding’s inequality to obtain that Pr[J(k+
√
k)/p ≥ J0 + δ] ≤

exp{−δ2/2((k +
√
k)/p)}. Thus, Pr

[∑(k+
√
k)/p

j=1 (1−Xj) ≥ k
]
≥ 1 − exp

{
− pk2

2(k+
√
k)

}
≥

1− e−p/4.

Notice that if
∑(k+

√
k)/p

j=1 (1 − Xj) ≥ k, there are at least k steps where Xj = 0; since

|B0| ≤ k and each time Xj = 0, |Bj| − 1 ≥ |Bj+1|, this implies that B(k+
√
k)/p = ∅.

Thus, either Top`(d(C, Sτ(k−
√
k))) ≤ ρ · Top`(d(C, S∗)) or, by Lemma 6.3.11, there are no

`-bad clusters with constant probability.

In particular, if t∗` ≤ t` ≤ max{33t∗` ,
32OPT

`
} and we set α = 1.92, β = 2, γ = 2.92, κ = 5.92,

and τ = 28, we get a (35, 28(1 + 1/
√
k))-bicriteria approximation.
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Corollary 6.3.12. If t∗` ≤ t` ≤ max{33t∗` ,
32OPT

`
}, β = 2, and τ = 28, Algorithm 10 yields

a solution that opens 28(k +
√
k) centers and has cost at most 35 · OPT, with constant

probability.

It remains to show how to compute t` such that t̃` ∈ T such that t∗` ≤ t̃` ≤ max{(1 +

ε)t∗` , ε · OPT
`
}. Let t∗1 be the value of the largest assignment cost induced by the optimal

k-center solution. Then, t∗1 ≤ OPT ≤ ` · t∗1, so t∗` ≤ OPT ≤ ` · t∗1 and ε · t
∗
1

`
≤ ε · OPT

`
≤ ε · t∗1.

Hence, there exists t̃` ∈ {`t∗1 · (1 + ε)−r : r = 0, . . . , log1+ε(
`2

ε
)} such that t∗` ≤ t̃` ≤

max{(1 + ε)t∗` , ε · OPT
`
}. The benefit of defining a set of guesses in terms of t∗1 is that we

can easily compute a 2-approximate k-center solution by repeatedly opening a center at

the agent that is the farthest away from the currently open centers.
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Mechanism 11: O(1)-distortion, O(k log(1/δ) log `)-query mechanism for `-

centrum

1 S1 ← ∅
2 repeat k times

3 for j ∈ C do

4 Query j for the value of d∗(j, topS1(j))

5 end

6 Choose s ∈ arg maxj∈C d
∗(j, topS1(j)) and update S1 ← S1 ∪ {s}

7 end

8 t1 ← maxj∈C d
∗(j, S1)

9 S ← ∅
10 for t` ∈ T = {`t1 · (1 + ε)−r : r = 0, . . . , log1+ε(

2`2

ε
)} do

11 repeat log(1/δ) times

12 S ← ∅
13 for i = 1, . . . , 28(k +

√
k) do

14 for j ∈ C do

15 Query j for the value of d∗(j, topS(j))

16 end

17 Sample si with probability proportional to (d∗(si, S)− 2t`)
+

18 Update S ← S ∪ {si}
19 end

20 S ← S ∪ {S}
21 end

22 end

23 Choose S ∈ arg min
S′∈S

∑
j∈C d

∗(j, S ′); {Pj}j∈S is the partition induced by S

24 for j ∈ S do

25 Query d∗(i, j) for all i ∈ S \ {j}
26 end

27 S̄: output of (5 + ε)-approximation algorithm for `-centrum on the (cardinal)

weighted instance (S,w, d) where wj = |Pj| for all j ∈ S
28 return S
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Theorem 6.3.13. Mechanism 11 is an O(1)-distortion mechanism for `-centrum that

requires O(k log(1/δ) log `) value queries per agent, and has a success probability of at least

1− δ.

Proof. In lines 2-6, we run the 2-approximation algorithm for k-center to compute t1.

Since t1
2
≤ OPT ≤ ` · t1, there exists t̃` ∈ T such that t∗` ≤ t̃` ≤ max{(1 + ε)t∗` , ε · OPT

`
}.

By Theorem 6.3.2, since we run Algorithm 10 log(1/δ) times with t̃`, we will obtain a

(35, 28(1 + 1√
k
))-bicriteria approximate `-centrum solution, S, with probability at least

1− δ. Given this solution, we query all pairwise distances for i, j ∈ S and use Chakrabarty

and Swamy’s algorithm [20] to obtain S, a (5 + ε)-approximate solution to the weighted

instance induced by S. By Lemma 6.0.1, Top`(d(C, S)) ≤ (35 + (5 + ε)2(35 + 1))OPT(d∗).

Query Complexity : The total number of queries per agent in lines 2 - 21 is O(k + log(`) ·
log(1/δ)·k). The total number of value queries made in lines 24-26 is O(k) queries per agent

in S (since |S| = O(k)). Thus, the total number of queries per agent is O(log(1/δ)k log `).
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Chapter 7

Adaptive sampling for

minimum-norm k-clustering

We now describe how to extend our approach for `-centrum to obtain a (ρ,O(1))-bicriteria

approximation for minimum-norm k-clustering. Recall that in this problem, we seek to

open a set of centers, S, that minimizes f(d(C, S)), where f is a monotone symmetric

norm.

Theorem 7.0.1 (Theorem 2.4 in [27]). If x, y ∈ Rn
+ are such that Top`(x) ≤ α ·Top`(y)+β

for all ` ∈ [n], where α, β ≥ 0, then h(x) ≤ α · h(y) + β · h(1, 0, . . . , 0) for any monotone,

symmetric norm h : Rn → Rn
+.

Theorem 7.0.1 suggests the following strategy for controlling the f -cost of a solution.

For a given ` ∈ [n], let OPT`-centrum denote the Top`-cost of an optimal `-centrum solution.

If we can construct a solution S such that Top`(d(C, S)) ≤ α · OPT`-centrum for all ` ∈ [n],

then f(d(C, S)) ≤ α · f(d(C, S ′)), for any S ′ ⊆ C : |S ′| ≤ k. In fact, such a set S would be

an α-approximate solution with respect to any monotone symmetric norm. Kumar and

Kleinberg [31] proved that, if Top`(d(C, S)) ≤ α·OPT`-centrum for all ` ∈ [n], |S| = Ω(k log n)

– so we cannot hope for this property to hold if O(k) centers are opened.

We will still strive to simultaneously control the Top` cost of our solution for all ` ∈ [n]

– except, instead of comparing the Top`-cost of our solution against OPT`-centrum, we will
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compare it against Top`(d(C, S∗)), where S∗ is the set of centers opened by an optimal

solution with respect to the min-norm objective. By the following corollary of Theorem

7.0.1, this weaker property is in fact sufficient to enforce that the value of f(d(C, S)) will

not be too large.

Corollary 7.0.2. Let f be a monotone symmetric norm, and let S∗ be the set of centers

opened by an optimal k-clustering solution that minimizes f . Let S ⊆ C. If Top`(d(C, S)) ≤
ρ · Top`(d(C, S∗)) for all ` ∈ [n], f(d(C, S)) ≤ ρ · f(d(C, S∗)).

Instead of considering all ` ∈ [n], we can restrict our attention to POSn,δ := {min{d(1+

δ)se, n} : s ≥ 0} (when the context is clear, we will simply write POS). This only causes a

loss of a (1 + δ)-factor.

Theorem 7.0.3 (Claim 2.6 in [27]). If Top`(d(C, S)) ≤ ρ·Top`(d(C, S∗)) for all ` ∈ POSn,δ,
f(d(C, S)) ≤ ρ(1 + δ) · f(d(C, S∗)).

This observation motivates the following naive algorithm: Let S` be the solution ob-

tained by running Algorithm 10, for every ` ∈ POS. Then, if S =
⋃
i∈POS Si,

Top` (d (C, S)) ≤ ρ · Top`(d(C, S∗)) for all ` ∈ POS, so f(d(C, S)) ≤ ρ(1 + δ) · f(d(C, S∗)).
However, |S| = Θ(|POS| · k) = Θ(k log n), so this naive approach gives a (O(1), O(log n))-

bicriteria approximation. To reduce the number of centers opened by this approach, we

note the following. First, for any ` ∈ POS, we can terminate the adaptive sampling algo-

rithm the first time that Top` (d (C, Si)) ≤ ρ ·Top`(d(C, S∗)). Secondly, sometimes opening

one center can improve the Top`-cost of the solution for multiple ` simultaneously.

At each step i, we will maintain Li = {` ∈ POS : Top` (d (C, Si)) > ρ ·Top`(d(C, S∗))}.
Note that the Top`-cost of our current solution can only improve in each step, so Li ⊇ Li+1.

Furthermore, if Li = ∅ in some step, Top` (d (C, Si)) ≤ ρ · Top`(d(C, S∗)) for all ` ∈ POS,

so f(d(C, Si)) ≤ ρ(1 + δ) · OPT, and hence we would be done. Our ultimate goal is to

show that, with some constant probability, Li = ∅ after O(k) centers are opened. For

any ` ∈ [n], let t∗` be the `th largest assignment cost induced by the optimal solution (to

the minimum-norm k-clustering problem). We will work with a non-increasing threshold

vector ~t that satisfies t∗` ≤ t` ≤ max{(1 + ε)t∗` , ε ·OPT`−centrum/`} for all ` ∈ [n].
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Recall that a cluster C∗q is `-good if
∑

j∈C∗q
(d(j, S) − βt`)+ ≤ γ

∑
j∈C∗q

(d(j, c∗q) − t`)+

(where β, γ are constants that we fix later). We define Badi to be the set of clusters that

are `-bad for some ` ∈ Li. Notice that it is possible for some cluster C∗ /∈ Badi to be

`-bad for some ` /∈ Li. In this case, it is neither likely, nor necessary, for us to choose a

point in the `-core of C∗, as the Top`-cost of the current solution is already good, for this

particular `. We will show that in any step i, if Li 6= ∅, |Badi| > |Badi+1| with some

constant probability. Once |Badi| = 0, it is necessarily true that Li = ∅. In the `-centrum

setting, we argued that |Bad`i | > |Bad`i+1| by showing that at each step, we chose a point

from the `-core of an `-bad cluster. Now, instead of considering a single `, we wish to show

that the center opened in step i is in the `-core of some C∗ ∈ Badi for all ` ∈ Li, as then

C∗ /∈ Badi+1

Lemma 7.0.4. Let `∗i = max`∈Li `, and let si be the center opened in step i. If si ∈
core`∗i (C

∗) then C∗ becomes `-good for all ` ∈ Li.

Proof. Consider any ` ∈ Li. If d(si, c
∗) ≤ t`, then clearly, C∗ is `-good. Otherwise, since

si ∈ core`∗i (C
∗) and d(si, c

∗) > t` ≥ t`∗i , C
∗ is `∗i -far and `-far, so

(d(si, c
∗)− t`)+ = (d(si, c

∗)− t`∗i )
+ − (t` − t`∗i )

≤
∑

j∈C∗(d(j, c∗)− t`∗i )
+

|C∗|
− (t` − t`∗i )

≤
∑
j∈C∗

(d(j, c∗)− t`)+

|C∗|

where the second inequality is because si ∈ core`∗i (C
∗) and the last inequality is because

(d(j, c∗)− t`)+ ≥ (d(j, c∗)− t`∗i )
+ − (t` − t`∗i ), for any j ∈ C∗.

Since `∗i ∈ Li−1, Top`∗i (d(C, Si−1)) > ρ · Top`∗i (d(C, S∗)) – so if si is sampled with

probability proportional to (d(si, Si−1) − βt`∗i )
+, by Lemma 6.3.7, si lies in the `∗i -core of
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an `∗i -bad cluster, with constant probability. This motivates the following algorithm.

Algorithm 12: Adaptive sampling algorithm for min-norm k-clustering (when t∗

is known)

1 S0 ← ∅
2 L1 ← POS

3 for i = 1, . . . , τ(k +
√
k) do

4 `∗i ← max`∈Li `

5 Sample si with probability proportional to (d(si, Si−1)− βt`∗i )
+

6 Update Si ← Si−1 ∪ {si}
7 Update Li+1 ← {` ∈ POS : Top`(d(C, Si)) > ρ · Top`(d(C, S∗))}
8 end

9 return Sτ(k+
√
k)

Lemma 7.0.5. If Li 6= ∅, |Badi| > |Badi+1| with constant probability.

Proof. Note that since Li 6= ∅, `∗i is well-defined. Let si be the new center that is opened

in step i. Then, by Lemma 6.3.7, si lies in the `∗i -core of an `∗i -bad cluster, C∗, with

constant probability. Note that C∗ ∈ Badi, since C∗ is an `∗i -bad cluster, and `∗i ∈ Li.
Furthermore, by Lemma 7.0.4, if si ∈ core`∗i (C

∗), C∗ becomes `-good for all ` ∈ Li ⊇ Li+1;

so C∗ /∈ Badi+1. Thus, |Badi| > |Badi+1| with constant probability.

Corollary 7.0.6. After τ(k +
√
k) steps, Lτ(k+

√
k) = ∅ with constant probability.

If Badi = ∅, Li = ∅, so this corollary follows immediately from Lemma 7.0.5 and Lemma

6.3.11.

It remains to show how to compute a threshold vector that is a good guess of (t∗1, . . . , t
∗
n).

Chakrabarty and Swamy proved that one can obtain such a polynomial-sized set of candi-

date threshold vectors that contain a good guess of (t∗1, . . . , t
∗
n) [20].

Lemma 7.0.7 (Lemma 6.9 in [20]). Suppose that we can obtain in polynomial time a

(polynomial-size) set A ⊆ R containing a value ρ satisfying t∗1 ≤ ρ ≤ (1 + ε)t∗1. Then, in

time O(|A| · |POS| · max{(n
ε
)O(1/ε), n1/δ}) = O(|A| · max{(n

ε
)O(1/ε), n1/δ}), we can obtain
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a set T ⊆ RPOS
+ that contains a valid threshold vector t̃ such that t̃ is in non-increasing

order, and t∗` ≤ t̃` ≤ (1 + ε)t∗` for all ` ∈ POS.

In fact, we can show that in our setting, there exists a set A of size O(1
ε

log n) satisfying

the conditions of Lemma 7.0.7. As aforementioned, a 2-approximate solution for k-center

can be computed by (deterministically) opening a center at the client farthest away from

the currently open centers. Let S∗1 be the set of k centers opened by this algorithm. We

claim that Top1(d(C, S∗)) = t∗1 ≤ n · Top1(d(C, S∗1)). Suppose not. Then, Top`(d(C, S∗)) ≥
t∗1 > n · Top1(d(C, S∗1)) ≥ Top`(d(C, S∗1)) for all ` ∈ [n], and so f(d(C, S∗1)) < f(d(C, S∗)),
a contradiction. So, 1

2
Top1(d(C, S∗1)) ≤ t∗1 ≤ n · Top1(d(C, S∗1)), and hence the set A =

{1
2
top1(d(C, S∗1)) ·(1+ε)i : i = 0, 1, . . . , dlog1+ε 2ne} contains ν such that t∗1 ≤ ν ≤ (1+ε)t∗1.

Corollary 7.0.8. We can obtain a set T ⊆ RPOS
+ of size O(1

ε
· log(n) ·max{(n

ε
)O(1/ε), n1/δ})

that contains a valid threshold vector t̃ such that t̃ is in non-increasing order, and t∗` ≤
t̃` ≤ (1 + ε)t∗` for all ` ∈ POS.

Given a good guess of t∗, we must also be able to compute a good estimate of

Top`(d(C, S∗)) for all ` ∈ POS. Ibrahimpur and Swamy [27] showed that, given t̃ such

that t∗` ≤ t̃` ≤ (1 + ε)t∗` for all ` ∈ POSn,δ, one can compute a (1 + δ)(1 + ε)-approximate

guess of Top`(d(C, S∗)) for any ` ∈ [n].

Lemma 7.0.9 (Lemma 2.8 (a) and (b) in [27]). Let u ∈ Rm
≥0, and v ∈ RPOS

≥0 be a non-

increasing vector. Let h : Rm → R≥0 be a monotone, symmetric norm. Let ε, κ > 0. The

expansion of v, vexp ∈ Rm
≥0, is given by vexpi := vi for i ∈ POS, and vexpi = vprev(i) for

i ∈ [m] \ POS.

(a) If u↓` ≤ v` for all ` ∈ POS, then Topi(u) ≤ Topi(v
exp) for all i ∈ [m], and hence,

h(u) ≤ h(vexp).

(b) If v` ≤ (1 + ε)u↓` + κ for all ` ∈ POS, then Topi(v
exp) ≤ (1 + δ)(1 + ε)Topi(u) + iκ

for all i ∈ [m], and hence, h(vexp) ≤ (1 + δ)(1 + ε)h(u) +mκ · h(1, 0, . . . , 0).
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Algorithm 13: Adaptive sampling algorithm for minimum norm k-clustering

Input: A minimum-norm k-clustering instance (C, d, k, f)

A set T of non-increasing threshold vectors s.t. ∃~t ∈ T with t∗` ≤ ~t` ≤ (1 + ε)t∗`
for all ` ∈ POS

1 S ← ∅
2 for ~t ∈ T do

3 S0 ← ∅
4 L1(~t)← POS

5 for i = 1, . . . , τ(k +
√
k) do

6 `∗i ← max`∈Li(~t) `

7 Sample si with probability proportional to (d(si, Si−1)− β~t`∗i )
+

8 Update Si ← Si−1 ∪ {si}
9 Update Li+1(~t)←

{
` ∈ POS : Top`(d(C, Si)) > ρ · (1 + ε) · Top`(~t

exp)
}

10 end

11 S ← S ∪ {Sτ(k+
√
k)}

12 end

13 return arg minS∈S f(d(C, S))

Theorem 7.0.10. Let S be the set of centers opened by Algorithm 13 and let ρ be a constant

that is strictly larger than 30. Then, there exists suitable parameters such that |S| =

O(k) and with constant probability, Top`(d(C, S)) ≤ ρ(1 + δ)2(1 + ε)2 ·OPT with constant

probability. Furthermore, this algorithm can be implemented in O(ε−1 ·max{(n
ε
)O(1/ε), n1/δ}·

k2 log n) time.

Proof of Theorem 7.0.10. Let α, β, γ, κ be fixed constants satisfying α > 1, γ ≥ α + 1,
1
4

(
1− max{β,γ}

ρ

)
≥ κ+β

ρ
, and κ ≥ α + β + 1, and define τ =

((
1− max{β,γ}

ρ

)
· α−1

2κα

)−1

.

There exists a threshold vector t̃ ∈ T such that t∗` ≤ t̃` ≤ (1 + ε)t∗` for all ` ∈ POS.

Consider the iteration when t̃ is used as the guess for the threshold vector. In this iteration,

if ` /∈ Li(t̃), Top`(d(C, S)) ≤ ρ(1+ε)·Top`(t̃
exp) ≤ ρ·(1+δ)(1+ε)2·Top`(d(C, S∗)), where the

last inequality is due to Lemma 7.0.9. By Corollary 7.0.6, Lτ(k+
√
k)(t̃) = ∅ with constant

probability – so with constant probability, Top`(d(C, S)) ≤ ρ(1 + δ)(1 + ε)2 ·Top`(d(C, S∗))
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for all ` ∈ [n], and hence by Theorem 7.0.3, f(d(C, S)) ≤ ρ(1 + δ)2(1 + ε)2 ·OPT .

It remains to prove the bound on the running time of this algorithm. Given a candidate

threshold vector ~t, the innermost loop of Algorithm 13 runs in O(k2) time. Since, by Corol-

lary 7.0.8, we can obtain a set T ⊆ RPOS
+ such that |T | = O(log1+ε n ·max{(n

ε
)O(1/ε), n1/δ})

and T contains a valid threshold vector t̃ that is a good guess of t∗, the runtime of Algorithm

13 is O(ε−1 max{(n
ε
)O(1/ε), n1/δ} · k2 log n).

In particular, if we set α = 1.92, β = 2, γ = 2.92, and κ = 5.92, we get a (35(1 + ε), 28(1 +

1/
√
k))-bicriteria approximation, as stated by the following corollary.

Corollary 7.0.11. If β = 2 and τ = 28, Algorithm 13 yields a solution that opens 28(k+√
k) centers and has cost at most 35(1 + δ)2(1 + ε)2 ·OPT, with constant probability.
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Chapter 8

Conclusions and Future Work

In this thesis, we saw O(1)-distortion mechanisms for the k-median problem that use

relatively few value queries per agent. We also saw low-distortion mechanisms for the `-

centrum (with a slightly worse query complexity); en route, we developed a simple sampling

algorithm for the `-centrum k-clustering problem, which we were able to extend to the

minimum-norm setting as well. For the single-winner (1-median) problem, we gave a

novel LP-duality based analysis framework that makes it easier to analyze the distortion

of existing social choice functions. Using this framework, we gave simpler proofs of some

known results. We also showed that this framework readily extends to randomized social

choice functions.

There are a few interesting questions left open by this work. Perhaps the most obvious

question is whether there exists O(1)-distortion mechanisms for the problems studied in

this thesis that require fewer queries per agent. Another important question is whether one

can give a lower bound on the number of queries that is required by any O(1)-distortion

mechanism for the k-median problem. As the agents lie in a metric space, information

regarding the distance between a pair of agents can be obtained without directly querying

the agents, as queried edges can be used to infer bounds on the unqueried edges (via

the triangle inequality). This highly correlated nature of the underlying distances makes it

difficult to establish a lower bound on the number of queries required by an O(1)-distortion

mechanism.
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In this thesis, we have only studied the value query model, where we can ask an agent

for the exact distance between herself and another agent. However, in some applications,

computing the exact distance between a candidate and herself is difficult for the agent,

and instead, it is easier for her to identify which candidates are at a distance of at most r

from her location. We will refer to such queries as ball queries. The blackbox reductions

we used (Algorithms 3 and 7) can in fact be implemented using O(log n) ball queries per

agent. The difficulty lies in computing an initial estimate of OPT, as it is a non-trivial

task to grasp the magnitude of the edge costs using relatively few ball queries. One could

also consider other types of queries (e.g. the threshold queries used by Ma et. al [34],

comparison queries used by Amanatidis et. al [4]), or other sources of limited cardinal

information (e.g. aggregated information regarding voter passion as used by Abramowitz

et. al [2]).

We also exclusively considered adaptive query models – that is, each query made by

our mechanism depends on the answers to the previous queries. A pressing question is

whether it is possible to design O(1)-distortion mechanisms that make a limited number

of non-adaptive queries, i.e. queries that are determined by the instance (C, σ) alone, and

not the answers to the previous queries.

In the single winner setting, a long-standing open question is whether there exists a

randomized social choice function with distortion at most 3 − ε for some fixed constant

ε > 0. It is also unclear whether the current lower bound of approximately 2.11 [22] is

the best bound possible. Similar to how we derived a sufficient condition for 3-distortion

candidacy in Chapter 3, it may also be possible to derive similar sufficient conditions for

the randomized setting, using our analysis framework. It would be very interesting to see

if one could bound the gap between (Qσ
ao) and its relaxation (P σ

ao).
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Appendix A

Expansion of (Best-Dist)

The expansion of (Best-Dist) is given below. We use T`A to denote the set of triangles

i, j, k ∈ C ∪ A that contain ` candidates. More precisely, T0A denotes triangles consisting

of three agents, T1A denotes triangles consisting of a single candidate and two agents,

T2A = {(j, i1, i2) : j ∈ C, i1, i2 ∈ F, i1 6= i2, i1 �j i2}, and T3A denotes triangles consisting

of three candidates.
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min γ (A.1)

s.t.
∑

T=(i,j,·)∈T1A

(−α(1),o
1,T + α

(1),o
2,T − α

(1),o
3,T ) +

∑
T=(i,·,j)∈T1A

(−α(1),o
1,T − α

(1),o
2,T + α

(1),o
3,T )

+
∑

T=(j,·,i)∈T2A

(α
(2),o
1,T − α

(2),o
2,T ) +

∑
T=(j,i,·)∈T2A

(−α(2),o
1,T − α

(2),o
2,T ) + βoj1I[i=altσ(j,1)]

+

n−2∑
r=1

(βoj,r+1 − βoj,r)I[i=altσ(j,r+1)] − βoj,m−1I[i=altσ(j,m)]

+ γI[i=o] ≥ qi ∀j ∈ C, ∀i, o ∈ A (A.2)∑
T=(i1,i2,·)∈T3A

(α
(3),o
1,T − α

(3),o
2,T − α

(3),o
3,T ) +

∑
T=(i1,·,i2)∈T3A

(−α(3),o
1,T + α

(3),o
2,T − α

(3),o
3,T )

+
∑

T=(·,i1,i2)∈T3A

(−α(3),o
1,T − α

(3),o
2,T + α

(3),o
3,T ) (A.3)

+
∑

T∈T2A:i1,i2∈T
(α

(2),o
2,T − α

(2),o
1,T ) ≥ 0 ∀i1, i2, o ∈ A (A.4)

∑
(j1,j2,·)∈T0A

(α
(0),o
1,T − α

(0),o
2,T − α

(0),o
3,T ) +

∑
(j1,·,j2)∈T0A

(−α(0),o
1,T + α

(0),o
2,T − α

(0),o
3,T )

+
∑

(·,j1,j2)∈T0A

(−α(0),o
1,T − α

(0),o
2,T + α

(0),o
3,T ) (A.5)

+
∑

(·,j1,j2)∈T1A

(α
(1),o
1,T − α

(1),o
2,T − α

(1),o
3,T ) ≥ 0 ∀j1, j2 ∈ C, ∀o ∈ A (A.6)

∑
i∈A

qi ≥ 1 (A.7)

α(0),o, α(1),o, α(2),o, α(3),o, βo, γ, q ≥ 0 ∀o ∈ A (A.8)
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Appendix B

Low distortion algorithms for other

social cost minimization problems

In the earlier chapters, we have exclusively studied the k-median/k-winner selection problem.

However, the notion of distortion can also be extended to purely-ordinal algorithms and mech-

anisms for other social cost minimization problems as well. To be precise, in this class of opti-

mization problems, a solution induces a cost for each agent, and the objective is to minimize the

total sum of costs incurred by the agents.

Definition B.0.1 (Distortion of algorithms and mechanisms for arbitrary SCM problems). Con-

sider a social cost minimization problem and let A and M = (Q, f, k) be a purely-ordinal algo-

rithm and mechanism respectively. Let χ(C, σ) be the set of feasible solutions for a given instance.

We define the distortion of A and M to be

distortion(A) = sup
σ

sup
d/ σ

∑
j∈C cost(j,A(σ); d)

minS∈χ(C,σ)

∑
j∈C cost(j, S; d)

distortion(M) = sup
σ

sup
d/ σ

∑
j∈C cost(j,M(σ|d); d)

minS∈χ(C,σ)

∑
j∈C cost(j, S; d)

where d / σ denotes that d is consistent with σ.

In this chapter we design low-distortion mechanisms and purely-ordinal algorithms for other

social cost minimization problems.
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B.1 Minimum spanning tree

We have already seen (in Remark 4.0.2) that the distortion of any purely-ordinal algorithm for

the minimum cost k-Forest problem is unbounded, for k ≥ 3. Given this result, a natural question

is whether there exists a purely-ordinal algorithm for minimum spanning tree problem that has

bounded distortion.

Lower bound for the general (non-metric) case

Without the metric assumption, the distortion of any purely-ordinal MST algorithm is un-

bounded. To see this, consider the following example (similar to [1, Example 1]).

Example B.1. Let (C, σ) be an instance with C = {u1, u2, v1, v2}. The preference profile σ is

u1 : v1 � u2 � v2 u2 : v2 � u1 � v1 v1 : u1 � v2 � u2 v2 : u2 � v1 � u1

The following figure shows two cost vectors, c(1) and c(2), which are consistent with σ. The

optimal solution under each cost vector is depicted in red.

u1 u2

v1 v2

0

0 0
1

1

1

(a) Cost vector c(1)

u1 u2

v1 v2

1

0 0
1

1

0

(b) Cost vector c(2)

Figure B.1: An MST instance with unbounded distortion

As shown in Figure B.1, for both c(1) and c(2), the cost of an optimal solution is 0, and

any other spanning tree will have strictly positive cost. Since a purely ordinal algorithm cannot

differentiate between c(1) and c(2), the distortion of any purely ordinal algorithm for MST is

unbounded.
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A purely-ordinal algorithm for the metric case

For the metric MST problem, any spanning tree is an (n− 1)-approximate solution, so a purely-

ordinal algorithm is guaranteed to have bounded distortion. We show that a purely-ordinal

analogue of Kruskal’s algorithm has a slightly better bound (namely n
2 ), though we conjecture

that this bound can be significantly improved for this algorithm.

If d(i, j) was known for all i, j ∈ C, an MST could be computed easily using Kruskal’s greedy

algorithm: repeatedly choose the least-cost edge whose endpoints are in different components,

until we have a spanning tree. Of course, we do not know d(i, j) for all i, j ∈ C. However, as

observed by Anshelevich and Sekar [9], given the preference profile σ, it is possible to obtain a set

of edges that is guaranteed to contain a maximum/minimum-cost edge. Anshelevich and Sekar

introduced the notion of undominated edges in the context of a maximization problem. As we

are interested in a minimization problem, we will work with the following modified definition.

Definition B.1.1 (Undominated edge). An edge {x, y} ∈ E′ is undominated with respect to E′

if d(x, y) ≤ d(x, z) for all {x, z} ∈ E′ and d(x, y) ≤ d(y, z) for all {y, z} ∈ E′.

Observe that any minimum-cost edge of E′ is an undominated edge with respect to E′. One

can obtain a set of undominated edges by using Anshelevich and Sekar’s procedure [9].

Algorithm 14: Procedure for finding undominated edges [9]

1 U ← ∅
2 for x ∈ C do

3 Let y be the agent closest to x such that {x, y} ∈ E ′. Let z be the agent

closest to y such that {y, z} ∈ E ′

4 if x = z then

5 U ← U ∪ {x, y}
6 end

7 Repeat this process with z. Either, at some point we will get a single edge

(a, b), or we will get a cycle (in which case add all edges of the cycle to U .)

8 end

9 return U
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The main idea of Algorithm 15 is to run a greedy algorithm where, instead of choosing the

minimum cost edge, we choose an undominated edge; these edges, by definition, should be of

relatively low cost.

Algorithm 15: Algorithm for MST

1 F ← ∅
2 E ′ ← {{i, j} : i, j ∈ C}
3 U = {undominated edges in E ′}
4 while (C, F ) has more than 1 components do

5 Choose e∗ ∈ U
6 F ← F ∪ {e∗}
7 E ′ ← E ′ \

⋃
Ci component of F

E(Ci)

8 U ← {undominated edges in E ′}
9 end

10 return F

Theorem B.1.2. Algorithm 15 is a n
2 -distortion algorithm for (metric) MST.

Proof. Consider an arbitrary instance (C, σ), and assume distinct edge costs (this assumption is

without loss of generality, as we can fix a tie-breaking rule on the edges). Let T be the solution

returned by Algorithm 15, (C, d∗) be the true underlying metric, and T ∗ be the MST with respect

to (C, d∗). Since T is a spanning tree, |δ(j) ∩ T | = 1 for every j ∈ C. Furthermore, T only

consists of undominated edges – and hence, the minimum-cost edge incident to each vertex must

be added. Since, for all j ∈ C, the minimum cost edge in δ(j) must be in T ∗, |T ∗ ∩ T | ≥
⌊
n
2

⌋
.

For e = uv ∈ T \ T ∗, there exists a u-v path Puv in T ∗, and since the edge costs satisfy the

triangle inequality, d∗(u, v) ≤
∑

e′∈Puv d
∗(e′) ≤ OPT. Thus,

∑
e∈T d

∗(e) ≤ |T \ T ∗| · OPT ≤(
n− 1−

⌊
n
2

⌋)
·OPT ≤ n

2 ·OPT.

However, this bound is unlikely to be tight. We conjecture that the distortion of Algorithm

15 is much lower than n
2 .

Conjecture B.1.3. Algorithm 15 is a 2-distortion algorithm for MST.
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B.2 Other social cost minimization problems

Recall that we can extend the notion of mechanisms and distortion to arbitrary social cost min-

imization problems. The blackbox reduction given in Chapter 3 can be used to obtain an O(1)-

distortion mechanism using O(log2 n) value queries per agent for any social-cost minimization

problem provided that (1) there exists an O(1) polynomial-time approximation algorithm for the

problem, (2) one can compute B, a good estimate of OPT using O(log2 n) value queries per agent,

and (3) given this estimate B, Claim 5.1.4 holds.

Depending on the problem, it may not be possible to compute an estimate using so few value

queries. We suggest a different approach using spanners that has a worse query complexity than

Algorithm 3, but avoids this bootstrapping issue altogether. A t-spanner of G = (V,E) is a

(sparse) subgraph (V,ES), ES ⊆ E such that for any u, v ∈ V , if d(u, v) is the distance between

u and v in G and Puv is the shortest u, v-path in (V,ES), d(u, v) ≤
∑

e∈Puv d(e) ≤ 3 · d(u, v).

Baswana and Sen [12] gave a simple randomized algorithm for computing a 3-spanner.

Algorithm 16: Randomized 3-spanner algorithm [12]

1 ES ← ∅
2 R: random sample of C chosen by picking each vertex independently with

probability 1√
n
.

3 C1, . . . , Ck: clusters induced by R (by assigning C \ R to the closest center in R)

4 for j ∈ C \ R do

5 ES ← ES ∪ {(j, i) : i �j topR(j)}
6 end

7 for j ∈ C do

8 for Ci : j 6∈ Ci do

9 ES ← ES ∪ {(j, topCi(j))}
10 end

11 end

12 return ES

Theorem B.2.1 (Baswana and Sen [12]). ES is a 3-spanner, and for any j ∈ C, E[|ES |] = 2n
√
n.
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Theorem B.2.2. For any social cost minimization problem where the objective is a monotone,

subadditive function of the (metric) distances between agents, there exists a O(1)-distortion (ran-

domized) mechanism that requires O(
√
n) value queries per agent (amortized).

Proof. Let ES be the set of edges returned by Algorithm 16. Assume that |ES | ≤ 4n
√
n (notice

that by Markov’s inequality, if Algorithm 16 is repeated O(1) times, we will obtain ES of size

at most 4n
√
n with constant probability). For each {u, v} ∈ ES , we query u for the value of

d(u, v). On average, this requires a total of at most 4
√
n value queries per agent (amortized).

We can define a simulated metric d̃ where d̃(u, v) is the shortest-path distance between u and v

in (C, ES), for any u, v ∈ C. Moreover, as ES is a 3-spanner, if d is the true underlying metric,

d(u, v) ≤ d̃(u, v) ≤ 3d(u, v) for any u, v ∈ C. So, for any minimization problem where the objective

is a monotone, subadditive function of d, we can work with d̃ instead of d, losing only a factor

of 3. Thus, for such problems, we can obtain an O(1)-distortion (randomized) mechanism that

requires O(
√
n) queries per agent (amortized).
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