
Improved Slow Feature Analysis for
Process Monitoring

by

Hussein Saafan

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Chemical Engineering

Waterloo, Ontario, Canada, 2022

© Hussein Saafan 2022

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners. I understand that my thesis may
be made electronically available to the public.

ii

Statement of Contributions

This thesis consists in part of two manuscripts written for publication, which are co-
authored by my supervisor and I:

Citations:

[1] Saafan, H., & Zhu, Q. (2022). Improved Manifold Sparse Slow Feature Analysis for
Process Monitoring. Computers & Chemical Engineering, 107905.

[2] Saafan, H., & Zhu, Q. (2021, May). Comprehensive Monitoring with Incremental Slow
Feature Analysis. In 2021 American Control Conference (ACC) (pp. 917-922). IEEE.

The detailed authorship contributions are

Hussein Saafan: Co-development and implementation of the MSSFA algorithm and frame-
work in [1] and the IncSFA based monitoring scheme in [2]. Writing and editing of the
manuscripts for [1] and [2].

Qinqin Zhu: Co-development of the MSSFA algorithm and framework in [1] and the IncSFA
based monitoring scheme in [2]. Writing and editing of the manuscripts for [1] and [2].

iii

Abstract

Unsupervised multivariate statistical analysis models are valuable tools for process mon-
itoring and fault diagnosis. Among them, slow feature analysis (SFA) is widely studied
and used due to its explicit statistical properties, which aims to extract invariant fea-
tures of temporally varying signals. This inclusion of dynamics in the model is important
when working with process data where new samples are highly correlated to previous ones.
However, the existing variations of SFA models cannot exploit increasingly tremendous
data volume in modern industries, since they require the data to be fed in as a whole in
the training stage. Further, sparsity is also desirable to provide interpretable models and
prevent model overfitting.

To address the aforementioned issues, a novel algorithm for inducing sparsity in SFA
is first introduced, which is referred to as manifold sparse SFA (MSSFA). The non-smooth
sparse SFA objective function is optimized using proximal gradient descent and the SFA
constraint is fulfilled using manifold optimization. An associated fault detection and diag-
nosis framework is developed that retains the unsupervised nature of SFA. When compared
to SFA, sparse SFA (SSFA), and sparse principal component analysis (SPCA), MSSFA
shows superior performance in computational complexity, interpretability, fault detection,
and fault diagnosis on the Tennessee Eastman process (TEP) and three-phase flow facility
(TPFF) data sets. Furthermore, its sparsity is much improved over SFA and SSFA.

Further, to exploit the increasing number of collected samples efficiently, a covariance
free incremental SFA (IncSFA) is adapted in this work, which handles massive data effi-
ciently and has a linear feature updating complexity with respect to data dimensionality.
The IncSFA based process monitoring scheme is also proposed for anomaly detection. Fur-
ther, a new incremental MSSFA (IncMSSFA) algorithm is also introduced that is able to
use the same monitoring scheme. These two algorithms are compared against recursive
SFA (RSFA) which can also process data incrementally. The efficiency of IncSFA-based
monitoring is demonstrated with the TEP and TPFF data sets. The inclusion of sparsity in
the IncMSSFA method provides superior monitoring performance at the cost of a quadratic
complexity in terms of data dimensionality. This complexity is still an improvement over
the cubic complexity of RSFA.

iv

Acknowledgements

Firstly, I would like to thank my supervisor, Professor Zhu, whose guidance and ex-
pertise has been invaluable to me. I would also like to thank and acknowledge NSERC
and the University of Waterloo for funding my research activities. Finally, I would like to
thank my friends and family for giving me the strength to succeed in my education.

v

Dedication

This thesis is dedicated to my family that supported me throughout my last six years
of post secondary education as well as the eighteen years before that.

vi

Table of Contents

List of Tables x

List of Figures xi

List of Abbreviations xiv

1 Introduction 1

1.1 Process Data . 1

1.2 Current Process Monitoring Techniques . 2

1.3 Research Outcomes . 3

1.4 Thesis Outline . 4

2 Background Information 5

2.1 Mathematical Background . 5

2.2 Slow Feature Analysis . 7

2.3 Incremental Algorithms . 9

2.4 Sparsity . 9

2.4.1 Proximal Algorithms . 10

2.4.2 Manifold Optimization . 12

2.4.3 Sparse Slow Feature Analysis . 12

2.5 Anomaly Detection . 13

vii

2.6 Fault Diagnosis . 14

2.7 Case Studies . 14

2.7.1 Tennessee Eastman Process . 14

2.7.2 Three Phase Flow Facility . 18

3 Manifold Sparse Slow Feature Analysis 21

3.1 The Proposed Algorithm . 21

3.2 Alternative Regularization . 22

3.3 Fault Detection & Diagnosis Framework 24

3.4 Tennessee Eastman Process Case Study . 26

3.4.1 Sparsity & Interpretability . 26

3.4.2 Complexity & Runtime . 29

3.4.3 Fault Detection . 30

3.4.4 Fault Diagnosis . 38

3.4.5 Alternative Regularization . 39

3.5 Three Phase Flow Facility Case Study . 43

3.5.1 Fault Detection . 43

3.5.2 Fault Diagnosis . 48

3.6 Conclusions . 51

4 Incremental Process Monitoring 52

4.1 IncSFA . 52

4.1.1 Candid Covariance-Free Incremental PCA 52

4.1.2 Covariance-Free Incremental Minor Component Analysis 53

4.2 IncSFA Based Process Monitoring . 53

4.3 Incremental MSSFA . 55

4.4 Tennessee Eastman Process Case Study . 57

4.4.1 Sparsity & Interpretability . 57

viii

4.4.2 Complexity & Runtime . 61

4.4.3 Fault Detection . 64

4.4.4 Fault Diagnosis . 67

4.5 Three Phase Flow Facility Case Study . 72

4.5.1 Fault Detection . 72

4.5.2 Fault Diagnosis . 77

4.6 Conclusions . 80

5 Conclusions 81

5.1 Recommendations . 82

References 83

APPENDICES 88

A Determining the Lipschitz Constant 89

B SSFA Instability 90

ix

List of Tables

2.1 Fault descriptions of the TEP data set . 16

2.2 TEP variable descriptions . 17

2.3 TPFF operating set points . 18

2.4 TPFF fault set descriptions . 19

2.5 TPFF variable descriptions . 20

3.1 Comparison of FDRs and FARs for the batch algorithms using the TEP
dataset . 34

3.2 Comparison of FDRs and FARs for different regularization methods 44

3.3 Comparison of FDRs and FARs for the batch algorithms using the TPFF
dataset . 48

4.1 Comparison of FDRs and FARs for the incremental algorithms using the
TEP dataset . 65

4.2 Comparison of FDRs and FARs for the incremental algorithms using the
TPFF dataset . 77

x

List of Figures

2.1 Soft thresholding function . 11

2.2 Diagram of the Tennessee Eastman Process 15

3.1 MSSFA process monitoring framework . 27

3.2 Transformation matrices of batch algorithms 28

3.3 Training times of the batch algorithms for a varying number of input signals
and constant number of features extracted 31

3.4 Training times of the batch algorithms for a varying number of extracted
features and constant number of input signals 32

3.5 SFA monitoring statistics for IDV(4) . 33

3.6 SSFA monitoring statistics for IDV(4) . 35

3.7 SPCA monitoring statistics for IDV(4) . 35

3.8 MSSFA monitoring statistics for IDV(4) 36

3.9 SFA monitoring statistics for IDV(11) . 36

3.10 SSFA monitoring statistics for IDV(11) . 37

3.11 SPCA monitoring statistics for IDV(11) 37

3.12 MSSFA monitoring statistics for IDV(11) 38

3.13 SFA fault diagnosis results for IDV(4) . 39

3.14 SSFA fault diagnosis results for IDV(4) . 40

3.15 SPCA fault diagnosis results for IDV(4) 40

3.16 MSSFA fault diagnosis results for IDV(4) 41

xi

3.17 SFA fault diagnosis results for IDV(11) . 41

3.18 SSFA fault diagnosis results for IDV(11) 42

3.19 SPCA fault diagnosis results for IDV(11) 42

3.20 MSSFA fault diagnosis results for IDV(11) 43

3.21 Transformation matrices of MSSFA using different regularization methods . 45

3.22 SFA monitoring statistics for case 1 of fault 1 46

3.23 SSFA monitoring statistics for case 1 of fault 1 46

3.24 SPCA monitoring statistics for case 1 of fault 1 47

3.25 MSSFA monitoring statistics for case 1 of fault 1 47

3.26 SFA fault diagnosis results for case 1 of fault 1 49

3.27 SSFA fault diagnosis results for case 1 of fault 1 49

3.28 SPCA fault diagnosis results for case 1 of fault 1 50

3.29 MSSFA fault diagnosis results for case 1 of fault 1 50

4.1 Incremental process monitoring framework 56

4.2 Sparsity fraction of IncMSSFA during training 59

4.3 Transformation matrices of incremental algorithms 60

4.4 Training times of the incremental algorithms for a varying number of input
signals and constant number of features extracted 62

4.5 Training times of the incremental algorithms for a varying number of ex-
tracted features and constant number of input signals 63

4.6 RSFA monitoring statistics for IDV(4) . 64

4.7 IncSFA monitoring statistics for IDV(4) . 66

4.8 IncSFA SVD monitoring statistics for IDV(4) 66

4.9 IncMSSFA monitoring statistics for IDV(4) 67

4.10 RSFA monitoring statistics for IDV(11) . 68

4.11 IncSFA monitoring statistics for IDV(11) 68

4.12 IncSFA SVD monitoring statistics for IDV(11) 69

xii

4.13 IncMSSFA monitoring statistics for IDV(11) 69

4.14 RSFA fault diagnosis results for IDV(4) . 70

4.15 IncSFA fault diagnosis results for IDV(4) 70

4.16 IncSFA SVD fault diagnosis results for IDV(4) 71

4.17 IncMSSFA fault diagnosis results for IDV(4) 71

4.18 RSFA fault diagnosis results for IDV(11) 72

4.19 IncSFA fault diagnosis results for IDV(11) 73

4.20 IncSFA SVD fault diagnosis results for IDV(11) 73

4.21 IncMSSFA fault diagnosis results for IDV(11) 74

4.22 RSFA monitoring statistics for case 1 of fault 1 75

4.23 IncSFA monitoring statistics for case 1 of fault 1 75

4.24 IncSFA SVD monitoring statistics for case 1 of fault 1 76

4.25 IncMSSFA monitoring statistics for case 1 of fault 1 76

4.26 RSFA fault diagnosis results for case 1 of fault 1 78

4.27 IncSFA fault diagnosis results for case 1 of fault 1 78

4.28 IncSFA SVD fault diagnosis results for case 1 of fault 1 79

4.29 IncMSSFA fault diagnosis results for case 1 of fault 1 79

B.1 Comparison of SSFA and MSSFA T 2 monitoring results for TEP IDV(4)
when trained using normalized and unormalized data 91

xiii

List of Abbreviations

AIC Akaike information criterion 16

APGD accelerated proximal gradient descent 10, 21, 22, 81

CCA canonical-correlation analysis 3

CCIPCA candid covariance-free incremental principal component analysis 52, 53, 55, 59,
61

CDC complete decomposition contribution 25, 26, 38, 67

CIMCA covariance-free incremental minor component analysis 52, 53, 61

df degrees of freedom 6

FAR false alarm rate 30, 43, 45, 64, 72, 74

FDR fault detection rate 30, 33, 43, 45, 64, 72, 74

FISTA fast iterative soft thresholding algorithm 10, 29

ICA independent component analysis 1, 3

IncMSSFA incremental manifold sparse slow feature analysis 4, 57, 59–61, 64, 67, 72, 74,
77, 80–82

IncSFA incremental slow feature analysis 3, 4, 9, 52, 53, 55, 57, 59–61, 64, 67, 72, 74, 80,
81

ISTA iterative soft thresholding algorithm 10

xiv

MSSFA manifold sparse slow feature analysis 4, 21, 22, 24, 26, 29, 30, 38, 45, 48, 51, 57,
80–82, 89, 90

PCA principal component analysis 1–3, 16, 26

PDF probability density function 5

PGD proximal gradient descent 10

PLS partial least squares 1

RSFA recursive slow feature analysis 3, 4, 9, 55, 57, 59–61, 64, 67, 72, 74, 80, 81

SFA slow feature analysis 3, 4, 7–9, 12, 13, 21, 26, 28–30, 33, 38, 39, 45, 48, 51, 53, 80, 81

SPCA sparse principal component analysis 2, 4, 13, 26, 28–30, 33, 45, 51, 81

SPE squared prediction error 13, 33

SSFA sparse slow feature analysis 3, 4, 12, 21, 26, 28–30, 38, 39, 45, 48, 51, 81, 90

SVD singular value decomposition 8, 9, 29, 53, 59–61, 64, 67, 72, 74

TEP Tennessee Eastman process 4, 14, 18, 26, 29, 30, 39, 51, 57, 61, 80, 81, 90

TPFF three-phase flow facility 4, 18, 43, 45, 51, 72, 80, 81

xv

Chapter 1

Introduction

Technology has always shaped society, from the Agricultural Revolution 10000 years ago
that turned hunters into farmers [1] to the First Industrial Revolution 260 years ago that
signalled the end of feudalism. There have been two other industrial revolutions since
that time. The second was powered by oil and electricity and led to automobiles and
mass production. The third introduced electronics and increased automation. The Fourth
Industrial Revolution is taking place right now and bringing with it technologies such as
green energy, 3D printing, and genetic engineering [2].

This revolution has brought with it an immense amount of data which has been invalu-
able in its contribution to artificial intelligence. In the context of process control, this data
comes in the form of sensor readings and could be used to make inferences about quality,
efficiency, and safety. These new capabilities have the potential to increase the resource
efficiency and flexibility of manufacturing processes as well as allowing for individualization
on demand.

1.1 Process Data

Process data presents a series of requirements for any analysis technique. The first of
these is that the technique should consider the time variance of data. In processes, the
current data sample can be highly dependent on the previous samples. Many methods
such as principal component analysis (PCA) [3], partial least squares (PLS) [4], and in-
dependent component analysis (ICA) [5] make the implicit assumption that data is static
and independent in temporal scale, which is not valid for most industrial processes.

1

The technique should also be able to adapt to new scenarios. It is unlikely that data
representing all operating conditions is available. Faults can occur for all sorts of reasons
and gathering ample data for each of these faults could be costly or infeasible. In addition to
this, the normal operating conditions can change due to changes to the product, equipment,
or environment. This might also affect how the data changes when presented with faults.

The actions and conclusions of the technique should also be explainable to humans.
Industrial environments, especially chemical plants, have the potential to be great hazards
when operated improperly. For quality optimization, a qualified engineer should be able to
understand why the technique wants to make a certain change before giving final approval.
In fault detection, the engineer should be able to understand why the technique detected
a fault and where the fault has occurred.

Another possible requirement is computational and storage efficiency. If a technique
requires the storage of large amounts of historical data, it may not be feasible for many
industrial environments. In addition to this, the actions and conclusions of a technique
may be time sensitive. More complex techniques would require the use of more expensive
hardware to meet this need.

1.2 Current Process Monitoring Techniques

Broadly speaking, process monitoring techniques can be split into two categories, super-
vised and unsupervised. Supervised techniques require additional information about train-
ing data. This could come in the form of labels that indicate when a fault has occurred
or labels that indicate exactly which fault is occurring. Unsupervised techniques do not
require any labelled data which is desirable when working with process data as gathering
data about every operating condition or fault that may arise would prove intractable.

One of the most popular unsupervised techniques is PCA. PCA finds a set of orthogonal
vectors with each successive vector pointing in the direction of maximal variance once the
effect of the previous vectors has been removed from the data [3]. This can be viewed as
a linear transformation, and a reduction of the number of dimensions of the data can be
performed by only keeping the first few columns of the transformation matrix [6].

There are many extensions to PCA, one which is important to process data monitoring
is dynamic PCA which augments the original data by appending copies of the previous
samples to the current sample [6]. This technique allows for the incorporation of dynamic
relationships into PCA. The same technique can be applied to other algorithms by passing
them the augmented data matrix as the input. Another extension is sparse principal

2

component analysis (SPCA) which adds an objective of maximizing the number of 0 values
in the transformation matrix [7]. This allows for the transformation to be understood by
humans which is important in process monitoring where the input signals have physical
meaning. PCA and dynamic PCA based techniques have been used extensively for process
monitoring applications such as in [8, 9, 10, 11, 12].

Other techniques include ICA and canonical-correlation analysis (CCA). ICA is related
to PCA except that instead of finding vectors in the direction of maximal variance, the
vectors are chosen such that their statistical dependence is minimized [5]. CCA aims to
find linear relationships between two sets of variables [13]. These models have been studied
in the context of process monitoring such as in [14, 15, 16] for ICA and [17, 18, 19] for
CCA.

The focus of this thesis will be on another technique called slow feature analysis (SFA).
SFA is set apart from these methods by the inclusion of process dynamics in its formula-
tion. SFA finds a transformation of input signals to features that minimizes the speed (i.e.
the sum of squares of its first derivative) of the features [20]. Additional modifications to
SFA exist to tackle different problems. Algorithms such as incremental slow feature anal-
ysis (IncSFA) [21] and recursive slow feature analysis (RSFA) [22] are able to update the
model with single sample inputs. This is useful for online training as when a new normal
operating condition is encountered, the model can update itself rather than requiring re-
training. This also prevents the need for keeping large stores of historical data in memory
or storage. Another modification is sparse slow feature analysis (SSFA) [23] which creates
sparse transformation matrices. Some works that use SFA for process monitoring include
[22, 23, 24, 25].

Most of the unsupervised process monitoring works mentioned here will make use of
statistical distributions such as the Hotelling T 2 distribution [26] along with their associated
control limits to label data as normal or abnormal. Going one step further, some works
will introduce a fault diagnosis model which will provide information about where or why
the fault occurred. The unsupervised approaches presented in [27] will assign blame to the
input signals that had the highest contribution to the monitoring statistics.

1.3 Research Outcomes

A framework that fulfills the requirements of process data is desired. This framework would
include process dynamics, be able to make incremental updates, and provide a sparse model
of the process.

3

A novel sparse algorithm called manifold sparse slow feature analysis (MSSFA) is de-
veloped with a corresponding monitoring and diagnosis framework. This algorithm makes
use of proximal algorithms to induce sparsity. It also uses manifold optimization to fulfill
the constraints of SFA based algorithms and efficiently arrive at a solution. This algorithm
provides superior computational complexity, interpretability, fault detection, and fault di-
agnosis performance when compared with SFA, SSFA, and SPCA using the Tennessee
Eastman process (TEP) and three-phase flow facility (TPFF) data sets.

After this, a process monitoring and fault diagnosis framework is developed for use
with IncSFA. This scheme is meant to exploit the superior computational complexity of
IncSFA for process monitoring applications. Another incremental version of MSSFA called
incremental manifold sparse slow feature analysis (IncMSSFA) is then developed. The
monitoring and diagnosis framework that was developed for IncSFA is used here to great
effect. IncMSSFA is the only SFA algorithm that is both incremental and sparse. This
algorithm and framework is able to fulfill all the process data requirements outlined above.
IncMSSFA had better interpretability, fault detection, and fault diagnosis performance
than both RSFA and IncSFA using the TEP and TPFF sets. It could not achieve the linear
complexity of IncSFA, but its quadratic complexity was lower than the cubic complexity
of RSFA.

1.4 Thesis Outline

The rest of this thesis is outlined as follows. Chapter 2 provides a background on some
selected topics that are important to the rest of the thesis. After this, Chapter 3 describes
the MSSFA algorithm in detail, provides a corresponding monitoring scheme, and an in-
vestigation into its performance when compared with other sparse algorithms. Chapter
4 details the incremental process monitoring scheme that was developed for IncSFA and
introduces the new IncMSSFA algorithm. These algorithms, along with RSFA, are com-
pared to determine which incremental algorithm is better for process monitoring. Finally,
Chapter 5 sums up the findings and provides some recommendations for future work.

4

Chapter 2

Background Information

2.1 Mathematical Background

It is assumed that the reader has at least an introductory background in both statistics and
linear algebra. The following section will cover some specific concepts that are important
for the remainder of this thesis.

Covariance measures how two variables interact with each other. The covariance is
positive if there is a trend in which both variables increase or decrease in tandem, and it is
negative if there is a trend in which increases in one variable are observed with decreases in
the other. It is useful to be able to represent the covariance of all variables in a matrix. For
a data matrix X ∈ Rm×n that consists of n sample columns each containing m variables,
the covariance matrix is calculated using Equation (2.1) [28].

Cov(X) =
1

n− 1
XX> (2.1)

This matrix is symmetric and each entry Cov(X)i,j is the covariance between the ith and
jth variable. The variance of each variable is found along the diagonal. The covariance
matrix is also positive semi-definite [28] which is defined in Equation (2.2).

M is Positive Semi-Definite⇔ x>Mx ≥ 0 ∀ x ∈ Rm (2.2)

A Gaussian distribution is a continuous statistical distribution whose probability den-
sity function (PDF) takes the form of Equation (2.3) where µ is the mean and σ2 is the

5

variance [29].

f(x) =
1

σ
√

2π
exp

[
−1

2

(
x− µ
σ

)2
]

(2.3)

The standard normal distribution is a Gaussian distribution that has a mean of 0 and a
variance of 1 [29].

The distribution of the sum of squares of k random variables that are each distributed
according to a standard normal distribution is called the χ2 distribution and has k degrees of
freedom (df) [29]. The F distribution is the distribution of the quotient of two independent
random variables that are each distributed according to a χ2 distribution and divided by
their respective df [29]. This has df k1 and k2 where k1 is the df of the numerator and k2

is the df of the denominator.

For convenience as well as succinctness of notation, restrictions are sometimes placed
on algorithm inputs. The most common of these for process monitoring is assuming that
the mean of input signals is 0. To adhere to this restriction, data is preprocessed before
being used in the algorithm. For algorithms that take the whole data set as an input, this
can be done by determining the means beforehand. For incremental algorithms, the mean
can be updated according to Equation (2.4) for variable x?i and step n.

x̄i(n) = x̄i(n− 1) +
x?i (n)− x̄i(n− 1)

n
(2.4)

Another less common restriction is that each signal has a variance of 1. The same prepro-
cessing steps can be performed with the incremental variance calculated using Equation
(2.5).

s2
i (n) =

n

n− 1

∑n
j=1 x

?
i (j)

2

n
−

(∑n
j=1 x

?
i (j)

n

)2
 (2.5)

This requires keeping running tallies of the number of samples, x?i , and (x?i)
2. The data

points are then recalculated as in Equation (2.6).

xi(n) =
x?i (n)− x̄i

si
(2.6)

Some algorithms may whiten the data which means applying a linear transformation such
that the transformed data has a covariance matrix equal to the identity matrix of the same
size. There are infinitely many ways to whiten data and some of these can be found in [30].

6

An incremental estimation of the covariance matrix can be found using Equation (2.7).

Cov(X)(n) =
1

n− 1

n∑
j=1

(x?(j)− x̄(j)) (x?(j)− x̄(j))> (2.7)

Alternatively, the incremental estimations in Equations (2.4), (2.5), and (2.7) can be
updated using a learning rate θ which will skew the estimations to be more representative
of recent samples rather than the whole data set.

x̄(n) = (1− θ) x̄(n− 1) +θ x?(n) (2.8)

s2(n) = (1− θ) s2(n− 1) +θ (x?(n)− x̄(n))2 (2.9)

Cov(X)(n) = (1− θ) Cov(X)(n− 1) +θ (x?(n)− x̄(n)) (x?(n)− x̄(n))> (2.10)

2.2 Slow Feature Analysis

SFA is an unsupervised learning method that transforms a set of m input signals into J
slow features where J ≤ m [20]. Assuming that the input signals have a mean of 0, a
sample is denoted as x(t) = [x1(t), x2(t), . . . , xm(t)]>. SFA finds a set of transformations
G(x) = [g1(x), g2(x), . . . , gJ(x)]> that minimizes the speeds of the features y(t) = G(x(t)).
This can be restated as the following optimization problem.

min
gj

∆(yj)
.
= 〈ẏ2

j 〉t = 〈[gj(x(t))− gj(x(t− 1))]2〉t (2.11)

Subject to

〈y2
j 〉t = 1 (2.12)

〈yjy′j〉t = 0 ∀ j′ < j (2.13)

The angle brackets denotes averaging over time 〈f〉t = 1/t
∫ t

0
f(t)dt and the dot accent

denotes the first derivative ḟ = (d/dt)f(t). The variance constraint in Equation (2.12)
prevents trivial solutions of y = c where c is some constant. The decorrelation constraint
in Equation (2.13) ensures that information is not repeated across features.

Here, input signals refer to outputs from process sensors such as temperature, pressure,
and flow rate. Features are variables which are functions of these input signals which
contain latent information about the process. Just as pressures might fluctuate over time,
so will these features. The slowness of these features is the frequency at which these
fluctuations occur.

7

SFA proposes that the slowest features contain important information about the process
while the fastest features contain noise. By extracting the slowest J features, a reduction
in dimension is performed with minimal loss of information. A criterion for choosing J was
proposed in [24] which only keeps the features that are slower than the fastest q fraction
of input signals. The equation for this is

J = card{yi|∆(yi) < maxqj{∆(xj)}} (2.14)

where card is cardinality and counts the number of elements in a set.

For a linear transformation, the features are a weighted combination of the input signals
y = W>x. Matrices X ∈ Rm×n and Y ∈ RJ×n can be used to denote input signals and
features for all n samples. Using an additional matrix D that is equivalent to taking the
first backward difference, SFA can be restated as the following optimization problem.

min
W

Tr
(
W>BW

)
(2.15)

Subject to

W>AW = I (2.16)

where A = Cov(X) and B = Cov(XD). This problem can be solved analytically using
Algorithm 1 [24] where SVD(M) is the singular value decomposition (SVD) of a matrix.

Algorithm 1: SFA(X, J)

Data: X ∈ Rm×n, J ∈ N
Result: W ∈ Rm×J ,Y ∈ RJ×n

Cov(X)← 1
n−1

XX>;

U,S,U> ← SVD(Cov(X));

Q← US−
1
2 ;

Z← Q>X;

Ż← ZD; /* D is the first backward difference matrix */

Cov(Ż)← 1
n−1

ŻŻ
>

;

P,Ω,P> ← SVD(Cov(Ż));
W← (QP)[1→m,1→J]; /* Only first J columns */

Y ←W>X;

8

2.3 Incremental Algorithms

It is desirable to have a model that can be updated incrementally given a new sample. One
reason for this is that such a model can adapt itself when faced with new situations. This
is advantageous for process monitoring as data about every operating condition or fault
type is no longer needed; the model can be updated whenever these are first encountered.
Incremental updates also mean that older samples can be discarded which reduces the
memory and storage requirements which in turn reduces the cost of implementing such
methods. These models also remove the need to feed in the whole training set at once
which can become intractable for large data sets.

One incremental SFA based algorithm is RSFA which updates the transformation ma-
trix at each iteration. This is done by incrementally updating the covariance matrices. The
first SVD operation of SFA is replaced with the rank-one modification algorithm and the
second SVD operation is replaced with the orthogonal iteration procedure. This algorithm
was developed in [22] with a process monitoring scheme. This algorithm suffers from high
complexity which is cubic in terms of the number of input signals. In Chapter 4, an alter-
native algorithm called IncSFA [21] is adapted for process monitoring. The algorithm was
originally applied to high dimensional visual input streams and has a linear complexity in
terms of the number of input signals.

2.4 Sparsity

Another desirable model property is sparsity. For techniques such as SFA, sparsity is
defined as having a high proportion of 0 values in the transformation matrix. As mentioned
previously, the features of SFA are linear combinations of all input signals. Since input
signals correspond to physical properties in process monitoring, these models are often
difficult to interpret. A sparse model is much easier to interpret and can provide valuable
insight into the process. In addition to this, sparsity prevents overfitting of the model to
the training data.

Sparsity is measured by the l0 norm which is a count of the number of non-zero values
in a matrix. The inclusion of the l0 norm leads to NP-hard problems [31] which is why a
relaxation to the l1 norm is often performed. The l1 norm is a sum of the absolute value
of each entry of a matrix. The sparse SFA problem with this relaxation can be stated as

9

the following optimization problem.

min
W

Tr
(
W>BW

)
+ ||W||1 (2.17)

Subject to

W>AW = I (2.18)

2.4.1 Proximal Algorithms

This inclusion of the l1 norm causes issues by creating a non-smooth objective function.
Some specialized algorithms have been created to deal with non-smooth optimization.
Some of these are proximal algorithms which are named after the proximal operator that
they use. This operator is a convenient shorthand which is defined in Equation (2.19) [32].

proxµg(v) = arg min
x

(
g(x) +

1

2µ
||x− v||22

)
(2.19)

In this equation µ is a parameter that controls the trade-off of minimizing the function g(x)
and remaining close to the point v. The proximal operator for the l1 norm is equivalent to
the soft thresholding operator Tµ(x) which is defined as

(Tµ(x))i = sgn(xi) max({|xi| − µ, 0}) (2.20)

where sgn(·) is the sign function [32]. A depiction of this function can be found in Figure
2.1.

When objective functions take the form

min f(x) + g(x) (2.21)

where f : Rn → R and g : Rn → R ∪ {+∞} are convex and f is differentiable, they can
be solved using proximal gradient descent (PGD). This method is outlined in Algorithm 2
[32]. If ∇f is Lipschitz continuous with constant L, this will converge at a rate of O(1/k)
when using a fixed step size µ ∈ (0, 1/L]. An extension of this method that includes an
extrapolation step is described in Algorithm 3 which converges at a rate of O(1/k2) under
the same step size constraint [32]. This method is called accelerated proximal gradient
descent (APGD).

For sparse problems with a sparsity hyperparameter γ of the form

min
x

(1/2)||Ax− b||22 + γ||x||1 (2.22)

PGD and APGD are alternatively named the iterative soft thresholding algorithm (ISTA)
and the fast iterative soft thresholding algorithm (FISTA) respectively [32].

10

Figure 2.1: Soft thresholding function

Algorithm 2: PGD(x0, µ,∇f(x),proxµg(x))

Data: x0, µ,∇f(x),proxµg(x)
Result: xk+1

xk+1 ← x0;
while stopping criterion not met do

xk ← xk+1;
xk+1 ← proxµg(xk − µ∇f(xk));

end

Algorithm 3: APGD(x0, µ,∇f(x),proxµg(x))

Data: x0, µ,∇f(x),proxµg(x)
Result: xk+1

xk ← 0; /* 0 vector */

xk+1 ← x0;
while stopping criterion not met do

xk−1 ← xk;
xk ← xk+1;

yk+1 ← xk + k
k+3

(xk − xk−1);

xk+1 ← proxµg(yk+1 − µ∇f(yk+1));

end

11

2.4.2 Manifold Optimization

According to [33] “a differentiable manifold is a topological space on which there are defined
coordinates allowing basic notions of differentiability”. Charts are used as bijections from
subsets of the manifold set to open subsets of Euclidean space [33]. Using this notion,
efficient numerical algorithms can be designed for problems with a manifold structure.

The Stiefel manifold which is the set of all n× p orthonormal matrices

St(p, n) = {X ∈ Rn×p|X>X = I} (2.23)

is one commonly encountered manifold structure [34]. The generalized Stiefel manifold is
a related structure that takes the form of Equation (2.24) [34].

StG(p, n) = {X ∈ Rn×p|X>GX = I} (2.24)

This is the same structure as the SFA constraint of Equation (2.16).

An elegant manifold optimization method is the line search algorithm outlined in Al-
gorithm 4 [34]. This requires the use of an operator Rx(η) called the retraction which is a
smooth mapping of elements from the tangent bundle of a manifold at the point x, TxM,
onto the manifoldM itself. These operators are specific to the manifold being studied and
one such operator for the generalized Stiefel manifold is the Cholesky QR-based retraction
of [35] outlined in Algorithm 5 where Chol(M) is the Cholesky factorization of a matrix.

Algorithm 4: ManifoldLineSearch(t, x0, T (x), Rx(η))

Data: t ∈ R > 0, x0 ∈M, T (x) :M→ TM, Rx(η) : TxM→M
Result: xk+1 ∈M
xk+1 ← x0;
while stopping criterion not met do

xk ← xk+1;
ηk ← T (xk);
xk+1 ← Rxk(tηk);

end

2.4.3 Sparse Slow Feature Analysis

SSFA is an algorithm that is used to solve the problem presented in Equation (2.17)
[23]. Instead of optimizing this equation directly, the objective function is transformed

12

Algorithm 5: CholeskyQRRetraction(G,X,η)

Data: G,X ∈ StG,η ∈ TXStG
Result: Y ∈ StG
Z← (X + η)>G(X + η);

L,L> ← Chol(Z);

Y ← (X + η)L−1;

into a regression formula in the same manner as SPCA [7]. Two matrices are optimized
in alternating order before a transformation back into the SFA form is performed. The
transformation is computationally complex, and the algorithm is intractable for large data
sets. The sparsity of the transformation matrix is also low which means the algorithm is
not fully exploiting the advantages of sparse algorithms. Instability also arises for data
that has not been normalized. A novel algorithm for the sparse SFA problem that solves
these issues is introduced in Chapter 3.

2.5 Anomaly Detection

Unsupervised process monitoring techniques detect anomalous behaviour by detecting
when samples exceed some confidence interval on a distribution. If individual variables
are assumed to be distributed according to a Gaussian distribution, they can be recentered
and rescaled to the standard normal distribution. This allows for the use of the multivari-
ate χ2 and F distributions to generate confidence intervals. In practice, only the upper
limit of the confidence interval (called the control limit or critical value) is needed to detect
anomalous behaviour for these 2 distributions since the individual random variables are
squared.

Monitoring indices are calculated using sampled data and are then compared against
their respective control limit. The Hotelling T 2 and the related S2 indices were introduced
to SFA in [24]. The T 2 index is used to detect static anomalies while the S2 index is used to
detect dynamic anomalies. Other monitoring indices include the squared prediction error
(SPE) and combined index which are discussed in [27].

13

2.6 Fault Diagnosis

It should be noted that while fault detection is another commonly used name for anomaly
detection, not all anomalies are faults. For example, if a model was trained on one operating
condition only but encountered another normal operating condition during testing, it may
(depending on how closely related the two operating conditions are) raise an alarm. A
qualified engineer would then judge the alarm and determine the appropriate course of
action. This is why fault diagnosis is an important aspect of process monitoring as it will
provide the engineer with information as to why the alarm was raised.

A generalized monitoring index is introduced in [27] for fault diagnosis. Using this
index, individual signal contributions to the index can be found. Consequently, when a
fault has occurred, the contribution values indicate the contribution of each signal to the
fault. This information can be used by a qualified engineer to perform a root cause analysis
and diagnose the anomalous behaviour.

2.7 Case Studies

2.7.1 Tennessee Eastman Process

The Tennessee Eastman process (TEP) data set is a simulated data set based on a real
industrial process [36]. The process uses 5 different input chemicals to create 2 products
in 2 separate chemical reactions as well as one byproduct which is produced by 2 different
chemical reactions. The main unit operations of this process are a reactor, a stripper,
a vapor-liquid separator, a condenser, and a compressor. Since this is a real process,
more specific information such as what the different chemicals are has been removed to
protect proprietary data. A modified version with a closed-loop plant-wide control scheme
is commonly used as a benchmark in process monitoring research [9]. Some fault detection
and process monitoring research that uses this data set includes [23, 24, 37, 38, 39]. A
diagram of the process with the associated sensors and controllers is shown in Figure 2.2.

The data set includes 22 pairs of training and testing sets which are labelled as IDV(0)-
IDV(21) with IDV(0) corresponding to normal operating conditions. The remaining 21
sets simulate different types of faults starting at sample 160 of each set. The types of
faults include step changes, random variations, slow drifts, and sticking. The descriptions
of these faults are reproduced from [36] in Table 2.1. Since the algorithms used here
are unsupervised, they are trained using only the training data for the normal operating
condition (IDV(0)).

14

Figure 2.2: Diagram of the Tennessee Eastman Process

15

The first 22 measured variables and all 11 manipulated variables are used from this
data set. These variables are described in Table 2.2. Additionally, 2 lagged samples are
appended to the training data as in dynamic PCA [6] to allow time invariant models to
capture temporal relationships. The exact number of lags can be chosen with various
methods such as auto-correlation analysis [40, 41], Akaike information criterion (AIC)
[42, 43], and cross-validation. With these lagged samples, each sample vector is structured
as:

x(t) = [x1(t), . . . , x33(t), x1(t− 1), . . . x33(t− 1), x1(t− 2) . . . x33(t− 2)]>

Table 2.1: Fault descriptions of the TEP data set
Fault Label Description Fault Type

IDV(0) Normal Operation -
IDV(1) A/C feed ratio, B composition constant (stream 4) Step
IDV(2) B composition, A/C ratio constant (stream 4) Step
IDV(3) D Feed Temperature Step
IDV(4) Reactor cooling water inlet temperature Step
IDV(5) Condenser cooling water inlet temperature Step
IDV(6) A feed loss (stream 1) Step
IDV(7) C header pressure loss (stream 4) Step
IDV(8) A, B, C feed composition (stream 4) Random Variations
IDV(9) D feed temperature (stream 2) Random Variations
IDV(10) C feed temperature (stream 4) Random Variations
IDV(11) Reactor cooling water inlet temperature Random Variations
IDV(12) Condenser cooling water inlet temperature Random Variations
IDV(13) Reaction kinetics Slow Drift
IDV(14) Reactor cooling water valve Sticking
IDV(15) Condenser cooling water valve Sticking
IDV(16) Unkown Unkown
IDV(17) Unkown Unkown
IDV(18) Unkown Unkown
IDV(19) Unkown Unkown
IDV(20) Unkown Unkown
IDV(21) Unkown Unkown

16

Table 2.2: TEP variable descriptions
Variable Description Units

XMEAS(1) A Feed (stream 1) kscmh
XMEAS(2) D Feed (stream 2) kg/hr
XMEAS(3) E Feed (stream 3) kg/hr
XMEAS(4) A and C Feed (stream 4) kscmh
XMEAS(5) Recycle Flow (stream 8) kscmh
XMEAS(6) Reactor Feed Rate (stream 6) kscmh
XMEAS(7) Reactor Pressure kPagauge
XMEAS(8) Reactor Level %
XMEAS(9) Reactor Temperature ◦C
XMEAS(10) Purge Rate (stream 9) kscmh
XMEAS(11) Product Sep Temp ◦C
XMEAS(12) Product Sep Level %
XMEAS(13) Prod Sep Pressure kPagauge
XMEAS(14) Prod Sep Underflow (stream 10) m3/hr
XMEAS(15) Stripper Level %
XMEAS(16) Stripper Pressure kPagauge
XMEAS(17) Stripper Underflow (stream 11) m3/hr
XMEAS(18) Stripper Temperature ◦C
XMEAS(19) Stripper Steam Flow kg/hr
XMEAS(20) Compressor Work kW
XMEAS(21) Reactor Cooling Water Outlet Temp ◦C
XMEAS(22) Separator Cooling Water Outlet Temp ◦C

XMV(1) D Feed Flow (stream 2) -
XMV(2) E Feed Flow (stream 3) -
XMV(3) A Feed Flow (stream 1) -
XMV(4) A and C Feed Flow (stream 4) -
XMV(5) Compressor Recycle Valve -
XMV(6) Purge Valve (stream 9) -
XMV(7) Separator Pot Liquid Flow (stream 10) -
XMV(8) Stripper Liquid Product Flow (stream 11) -
XMV(9) Stripper Steam Valve -
XMV(10) Reactor Cooling Water Flow -
XMV(11) Condenser Cooling Water Flow -

17

2.7.2 Three Phase Flow Facility

The three-phase flow facility (TPFF) data set [41] is another benchmark data set. This
facility is meant to provide air, water, and oil into a pressurized system. Unlike the
TEP set, there are multiple normal operating conditions. The system switches between
these operating conditions during the training data. Depending on the test set, a single
operating condition is used, or the condition is varied. In total, there are 20 different
operating conditions (combinations of the set-points in Table 2.3). The descriptions of the
fault sets are described in Table 2.4. The 24 process variables are presented in Table 2.5.
The information in these tables has been reproduced from [41].

Since the 2-inch riser is only used for the 6th fault case, both the pressure measurement
at PT417 and fault case 6 were excluded for this case study. Fault case 2 was also excluded
in the discussion since every method presented in [41] and in this work failed to produce
adequate monitoring results. The number of lags chosen for this data set is 2 resulting in
a total of 69 input signals.

Table 2.3: TPFF operating set points
Air Flowrate (m3/s) Water Flowrate (kg/s)

0.0208 0.5
0.0278 1.0
0.0347 2.0
0.0417 3.5

- 6.0

18

Table 2.4: TPFF fault set descriptions
Data
set

Air Flowrate
(m3/s)

Water Flowrate
(kg/s)

Fault Start
(s)

Fault End (s)

Fault 1: Air line blockage (Incipient)
1.1 Varying Varying 1566 5181
1.2 0.0417 2.0 657 3777
1.3 0.0208 3.5 691 3691

Fault 2: Water line blockage (Incipient)
2.1 Varying Varying 2244 6616
2.2 0.0278 2.0 476 2656
2.3 0.0417 3.5 331 2467

Fault 3: Top separator input blockage (Incipient)
3.1 Varying Varying 1136 8352
3.2 0.0278 2.0 333 5871
3.3 0.0208 3.5 596 9566

Fault 4: Open direct bypass (Incipient)
4.1 Varying Varying 953 6294
4.2 0.0417 2.0 851 3851
4.3 0.0208 3.5 241 3241

Fault 5: Slugging Conditions (Intermittent)
5.1 Varying Varying 686/1772 1172/2253
5.2 Varying Varying 1633/7031/8057 2955/7553/10608

Fault 6: Pressurization of 2” line (Abrupt)
6.1 Varying Varying 1723 2800
6.2 Varying Varying 1037 4830

19

Table 2.5: TPFF variable descriptions
Variable Location Description Units

1 PT312 Air delivery pressure MPa
2 PT401 Pressure in the bottom of the riser MPa
3 PT408 Pressure in top of the riser MPa
4 PT403 Pressure in top separator MPa
5 PT501 Pressure in 3 phase separator MPa
6 PT408 Diff. pressure (PT401-PT408) MPa
7 PT403 Differential pressure over VC404 MPa
8 FT305 Flow rate input air Sm3/s
9 FT104 Flow rate input water kg/s
10 FT407 Flow rate top riser kg/s
11 LI405 Level top separator m
12 FT406 Flow rate top separator output kg/s
13 FT407 Density top riser kg/m3

14 FT406 Density top separator output kg/m3

15 FT104 Density water input kg/m3

16 FT407 Temperature top riser °C
17 FT406 Temperature top separator output °C
18 FT104 Temperature water input °C
19 LI504 Level gas-liquid 3 phase separator %
20 VC501 Position of valve VC501 %
21 VC302 Position of valve VC302 %
22 VC101 Position of valve VC101 %
23 PO1 Water pump current A
24 PT417 Pressure in mixture zone 2” line MPa

20

Chapter 3

Manifold Sparse Slow Feature
Analysis

3.1 The Proposed Algorithm

To address the issues in SSFA that were discussed in Section 2.4.3, a new algorithm was
created called manifold sparse slow feature analysis (MSSFA). The sparse SFA objective
(Equation (2.17)) function can be rewritten as

min
W

f(W) + g(W) (3.1)

where

f(W) = Tr
(
W>BW

)
(3.2)

g(W) = ||W||1 (3.3)

In this formulation, the function f(W) is differentiable and convex while g(W) is non-
differentiable and convex. This means that APGD can be used to optimize the function.

The problem with using accelerated proximal gradient descent (APGD) directly is that
the algorithm will most likely produce a matrix that does not meet the sparse SFA con-
straint (Equation (2.18)). The constraint can be rewritten as

W ∈ StA(J,m) (3.4)

where

StA(J,m) = {X ∈ Rm×J |X>AX = I} (3.5)

21

The Cholesky QR-based retraction can then be used to meet the constraint by placing
the solution on the manifold StA(J,m). MSSFA iterates between optimizing the objective
function and meeting the constraint until convergence.

The first step is to perform an extrapolation using the previous solution as in APGD

Uk = Wk−1 +
k

k + 3
(Wk−1 −Wk−2) (3.6)

where k is the number of iterations and W0 is the first J columns of an identity matrix of
size m.

To meet the constraint of Equation (2.18), a retraction is performed

Vk = RUk
(αkηk) (3.7)

where the step size is chosen as

αk =
1

k + 3
(3.8)

to diminish over time. The direction ηk is the gradient of f(W) from the objective function
divided by its Lipschitz constant in the same manner that the direction of APGD is chosen.
The derivation of the Lipschitz constant can be found in Appendix A.

ηk = − 1

L
∇
(
Tr
(
W>BW

))
= − BW

||B||F
(3.9)

The notation || · ||F denotes the Frobenius norm.

The proximal operator of the l1-norm is then applied to Vk using the reciprocal of the
Lipschitz constant as the threshold value to obtain a sparse solution.

Wk = proxL−1||·||1 (Vk) = T(2||B||F)−1 (Vk) (3.10)

Equations (3.6) - (3.10) are repeated until the transformation matrix converges. Pseu-
docode for the algorithm can be found in Algorithm 6.

3.2 Alternative Regularization

Other regularization methods exist which can also be used to prevent overfitting. The
regularizing function g(W) can be modified to any regularization with an efficient or closed

22

Algorithm 6: MSSFA(W0,X)

Data: W0 ∈ RJ×m,X ∈ Rm×n

Result: Wk ∈ Rm×J

A← Cov(X);
B← Cov(XD); /* D is the first backward difference matrix */

L← 2||B||F ;
Wk−1 ← 0J×m; /* Zero matrix */

Wk ←W0;
while stopping criterion not met do

Wk−2 ←Wk−1;
Wk−1 ←Wk;

Vk ←Wk−1 + k
k+3

(Wk−1 −Wk−2);

αk ← 1
k+3

;

ηk ← − 2
L
BW;

Uk ← CholeskyQRRetraction(A,Vk, αkηk);
/* sgn, max, and | · | are element-wise operations */;
Wk ← sgn(Uk) max{|Uk| − 1

L
IJ×m,0J×m}; /* I is the identity matrix */

end

23

form solution to its proximal operator. One common regularization in machine learning is
l2 regularization

g(W) =
1

2
||W||22 (3.11)

whose proximal operator is the shrinkage operator [32].

proxµg(v) =

(
1

1 + µ

)
v (3.12)

The advantage of this regularization is that the function is strictly convex and has a unique
minimum [31]. However, it does not promote sparsity [31].

Another regularization is the elastic net which combines both l1 and l2 regularization
methods.

g(W) = ||W||1 +
γ

2
||W||22 (3.13)

This regularization combines the proximal operators of the l1 and l2 norms [32].

proxµg(v) =

(
1

1 + µγ

)
proxµ||·||1(v) (3.14)

Elastic net is strictly convex, and it promotes sparsity. The disadvantage here is that an
additional hyperparameter γ must be chosen.

3.3 Fault Detection & Diagnosis Framework

The first step in the fault detection and diagnosis framework is to gather data during the
normal operation of a process. Here, normal operation means that the process is produc-
ing good quality product and is not showing any anomalous behaviour. For real world
processes, choosing this data requires knowledge of the specific process and its expected
behaviour. This data is used in Algorithm 6 to find a transformation matrix W. This can
be used to generate the feature matrix Y = W>X. The matrices X and Y, along with
the hyperparameters q and α can be used to calculate J as in Equation (2.14). After the
MSSFA model is obtained, the corresponding monitoring framework can be developed to
detect anomalies in the test data.

First, the monitoring index T 2 is calculated using the output features

T 2 = y(t)>y(t) (3.15)

24

and its control limit is based on the F distribution [9]

τT 2 =
J(n− 1)(n+ 1)

n(n− J)
Fα(J, n− J) (3.16)

where α is the confidence level. Exceeding this limit indicates that the model has deviated
from its normal steady state behaviour. For the works presented in this thesis, α is set to
0.99.

The first backward difference of the features Ẏ = YD are then calculated. The speeds
of the features can then be calculated as

ωi =
1

n− 1

n−1∑
j

(Ẏi,j)
2 (3.17)

for each feature i. These speeds are then used to create the matrix Ω whose entries are
Ωi,i = ωi and 0 everywhere else. These can be used to calculate the other monitoring index
S2.

S2 = ẏ(t)>Ω−1ẏ(t) (3.18)

Its control limit is also based on the F distribution [24].

δS2 =
J(n− 2)n

(n− 1)(n− J − 1)
Fα(J, n− J − 1) (3.19)

Exceeding this limit indicates that the model has encountered a dynamic anomaly.

These indices can be generalized as

IndexM(x) = x>Mx (3.20)

with the following matrices for the T 2 and S2 indices.

MT 2 = WW> (3.21)

MS2 = WΩ−1W> (3.22)

This general index can be decomposed into the individual input signal contributions
according to the complete decomposition contribution (CDC) [27] method

CDCi = x>M
1
2ξiξ

>
i M

1
2 x (3.23)

25

where ξi is a vector of the same dimension as x which is equal to 1 at the ith position
and 0 everywhere else. For the S2 index, ẋ is used rather than x in Equations (3.20) and
(3.23).

During the online stage, new samples are transformed into features using the learned
transformation matrix. These features can be used to calculate the T 2 and S2 statistics
according to Equations (3.15) and (3.18). Both values exceeding their control limit is an
indication that an abrupt anomaly has been encountered. If only the T 2 value exceeds
its control limit, it indicates that there has been a slow drift away from normal operating
conditions. If only the S2 value exceeds its control limit, it indicates that a dynamic
anomaly has been encountered. When any anomaly is encountered, an alarm is raised and
fault diagnosis using the CDC method is performed. The results of this diagnosis are sent
to a qualified engineer who would then decide what step to take next. A flowchart of the
MSSFA monitoring and diagnosis framework can be found in Figure 3.1.

3.4 Tennessee Eastman Process Case Study

3.4.1 Sparsity & Interpretability

The sparsity of the various models was tested by extracting the first 55 features of the
TEP data set. Additionally, the SPCA algorithm of the Scikit-learn package was used
[44, 45] in conjunction with PCA monitoring scheme from [46] for comparison to the SFA
based algorithms. 55 principal components were extracted for SPCA. The training data
was normalized to ensure that scale had no effect on the weighting of the variables.

Only SPCA and MSSFA showed true sparsity (values exactly equal to 0). Approxi-
mate sparsity was measured by counting values below a certain threshold as sparse. This
threshold was set to 10−12 and the sparsity of a model was calculated as

Sparsity Fraction =
card{wi,j | |wi,j| ≤ 10−12}

mJ
(3.24)

where wi,j is a value in the transformation matrix W>. The sparsity fractions were 0,
0.290, 0.953, and 0.758 for SFA, SSFA, SPCA, and MSSFA respectively.

Visualizations of the transformation matrices can be found in Figure 3.2. In this figure,
the white spaces indicate sparse values. The values are well distributed in SSFA and SPCA.
SFA seems to favor a few input signals in all of its features. MSSFA focuses on the first
half of the input signals. This makes sense considering the 2 lagged samples that were

26

Figure 3.1: MSSFA process monitoring framework

27

Figure 3.2: Transformation matrices of batch algorithms

appended to the data. Since SFA based algorithms inherently consider process dynamics,
the additional slowness from including these signals may not outweigh the increase in
sparsity from excluding them.

To get a sense of how interpretable the models are, the makeup of the slowest feature
can be examined. For SFA, the largest 10 contributors to the slowest feature accounted
for 87.34% of the total contributions. These contributions were the levels and liquid prod-
uct flows of the stripper and separator. This would indicate that the feature models the
effect that manipulating the liquid flow has on the level of the two unit operations. The
interpretability suffers however when considering that these variables make significant con-
tributions to most features as seen in Figure 3.2.

The largest 10 contributors to the slowest feature of SSFA accounted for only 61.24%
of the total contributions. At first glance, it would seem that this feature models process
inputs as the feed flow rates of the reactor feed and inlet streams 1 and 3 are 6 of the
10 largest contributors. The interpretation is less clear when considering that the largest
contributor overall with a contribution of 18.07% is the stripper steam valve from the
second lagged sample.

The first principal component of SPCA had 90.47% of its contributions from 10 vari-
ables. This component most likely models the change in pressure across samples as the
pressures of the stripper, reactor, and product separator for the current and lagged samples
were 9 of the 10 largest contributors. Unlike the other SFA based algorithms, SPCA must

28

make use of these lagged samples to model process dynamics.

Only 6 variables accounted for the slowest feature of MSSFA demonstrating the supe-
rior interpretability of this model. This feature models the relationship between reactor
pressure and process inputs. The 6 variables it uses are the reactor pressure, reactor feed
rate, and the inlet streams 1-4. While streams 1-3 combine with the recycle to form the
reactor feed, stream 4 is fed into the stripper. Stream 4 is most likely included since its
flow is regulated by the reactor level indicator in the control scheme.

The makeup of the features impacts input signal contributions when performing fault
diagnosis. They also give meaning to the slow features themselves. For example, in the
MSSFA model, a spike in the slowest feature value would indicate anomalous behaviour
in the reactor inputs and resulting pressure. Interpretability also provides insight into the
process itself by showing the relationships of input signals in the process.

3.4.2 Complexity & Runtime

The computational complexity of an algorithm is an important consideration when working
with larger data sets. In this section, the complexity of the algorithms investigated will be
given in terms of the number of input signals m, the number of samples n, and the number
of desired output features J . For these algorithms J ≤ m and in general, it is expected
that m < n. Additionally, for SSFA and MSSFA, the number of algorithm iterations k and
FISTA iterations k′ are included.

For SFA, the largest costs incurred come from the creation of the covariance matrix
which is O(nm2) and SVD which is O(m3) leading to a complexity of O(nm2 +m3). The
inclusion of sparsity leads to a higher complexity for both SSFA and MSSFA. SSFA com-
plexity arises from the use of SVD, the transformation of data at each iteration O(knm2J),
and the use of FISTA O(kk′m2J) for a final complexity of O(m3 + knm2J + kk′m2J).
MSSFA shows an improved complexity of O(nm2 + km2J) which is due to the calculation
of a covariance matrix and the retraction at each iteration O(km2J). This beats the cu-
bic complexity of SFA for low values of J . The complexity of SPCA is given in [44] as
O(km2 + kJ2 max{n,m}+ kmJ max{

√
m,n}).

Each algorithm was applied to the TEP training set to determine their runtimes. The
algorithms were asked to extract 10 features from this set as the number of lagged samples
was varied resulting in m values ranging from 33-330. The number of samples n ranged
from 500-491 due to each additional lagged sample reducing n by 1. A second experiment
was performed using a fixed lag number of 2 resulting in 99 input signals. The number

29

of extracted features J were then varied from 9-99. For both experiments, the algorithms
were all run 5 times and the average times of those runs was taken.

The SFA based algorithms were implemented in Python using the NumPy package
[47] and the code was run on a 3.60GHz Intel i3-9100F CPU. The runtimes of the two
experiments are plotted in Figures 3.3 and 3.4. Note that both graphs use a logarithmic
scale for runtime.

The fastest algorithm was SFA for all values across both experiments. It did not change
for the varying J values since it always extracts m features. This was consistent with the
complexity given above. The runtime of MSSFA had the next fastest runtimes, and it
approached the runtime of SFA as the value of m increased. This is consistent with their
complexities as SFA is cubic in terms of m while MSSFA is only quadratic. It showed
non-linear increase with J as the increase in J demands that more iterations be run for
convergence which results in a larger k value. SPCA and SSFA were in competition for
the slowest spot as the m values were varied. However, as J increased, the difference
in runtimes was more dramatic and SSFA was found to be the slowest. Just like with
MSSFA, the nonlinear increase can be attributed to the dependence of k and k′ on J . The
unintuitive shape of the SPCA trends may be attributable to the random initialization of
two matrices used in that algorithm.

3.4.3 Fault Detection

The algorithms were trained using the IDV(0) set of the TEP data. The fault detection
rate (FDR) and false alarm rate (FAR) values were found using the T 2 monitoring statistic.
FDR is the fraction of faulty samples that were correctly identified and FAR is the fraction
of normal samples that were identified as faults. Higher FDR and lower FAR values indicate
superior performance.

The criterion mentioned in Equation (2.14) was used to determine the J values of the
SFA based algorithms with q = 0.1. These were found to be 55, 74, and 85 for SFA, SSFA,
and MSSFA respectively. The number of principal components kept in SPCA was chosen
as 48 to retain 90% of the variance in the original signals. The results of these algorithms
can be found in Table 3.1. In this table, bolded values indicate the best performance on
each set but no values are bolded in the case of a tie.

MSSFA had the best FAR for almost all test sets and had the best average FDR and
FAR. This is due to its inclusion of dynamics as a SFA based algorithm and its lack of
overfitting as a sparse model. SSFA did show a superior FDR in some of the more difficult
test sets but the associated increase in FAR for those sets shows that this was most likely

30

Figure 3.3: Training times of the batch algorithms for a varying number of input signals
and constant number of features extracted

31

Figure 3.4: Training times of the batch algorithms for a varying number of extracted
features and constant number of input signals

32

Figure 3.5: SFA monitoring statistics for IDV(4)

due to a lack of sensitivity. The dynamic nature of the SFA based algorithms allowed them
to outperform SPCA in terms of FDR.

All algorithms performed poorly on IDV(3), IDV(9), and IDV(15). These faults do
not cause the process to significantly deviate from its normal operating condition, and so
generic monitoring methods can not be used to accurately identify them [24].

As a case study, the monitoring statistics of IDV(4) and IDV(11) were plotted. Both
IDV(4) and IDV(11) are changes in the reactor cooling water inlet temperature, but a step
change happens in IDV(4) while random variations happen in IDV(11). The IDV(4) plots
are Figures 3.5 - 3.8 and the IDV(11) plots are Figures 3.9 - 3.12. In these figures, the solid
horizontal black line is the control limit and the vertical dashed line indicates the start of
the fault.

All the algorithms detected the introduction of IDV(4). This is characterized both by
the step change in T 2 values indicating the move to a new operating condition and the
spike in S2 values indicating an abrupt change in the model. SFA and SPCA however
had their T 2 values return to below the limit after the initial change which degraded their
performance. The SPE values of SPCA were better able to distinguish the two operating
conditions.

33

Table 3.1: Comparison of FDRs and FARs for the batch algorithms using the TEP dataset
SFA SSFA SPCA MSSFA

Test Set FDR FAR FDR FAR FDR FAR FDR FAR
IDV(0) 0.000 0.037 0.000 0.217 0.000 0.048 0.000 0.017
IDV(1) 1.000 0.044 0.998 0.032 0.998 0.000 0.999 0.000
IDV(2) 0.970 0.025 0.985 0.000 0.990 0.006 0.988 0.000
IDV(3) 0.046 0.057 0.386 0.342 0.051 0.006 0.044 0.032
IDV(4) 0.514 0.013 1.000 0.070 0.665 0.019 1.000 0.006
IDV(5) 1.000 0.013 0.496 0.070 0.294 0.019 1.000 0.006
IDV(6) 1.000 0.019 1.000 0.000 0.994 0.006 1.000 0.000
IDV(7) 0.921 0.006 1.000 0.070 1.000 0.032 1.000 0.006
IDV(8) 0.876 0.057 1.000 0.272 0.980 0.006 0.982 0.013
IDV(9) 0.038 0.051 0.348 0.437 0.058 0.095 0.029 0.063
IDV(10) 0.858 0.019 0.736 0.057 0.482 0.019 0.941 0.019
IDV(11) 0.690 0.025 0.881 0.108 0.755 0.025 0.899 0.000
IDV(12) 0.998 0.025 1.000 0.241 0.991 0.013 0.999 0.000
IDV(13) 0.942 0.019 0.964 0.019 0.952 0.000 0.961 0.006
IDV(14) 1.000 0.038 0.960 0.114 1.000 0.019 1.000 0.006
IDV(15) 0.336 0.082 0.346 0.044 0.121 0.032 0.204 0.019
IDV(16) 0.822 0.019 0.758 0.620 0.294 0.152 0.964 0.025
IDV(17) 0.956 0.038 0.956 0.203 0.924 0.013 0.979 0.006
IDV(18) 0.906 0.013 0.942 0.025 0.901 0.032 0.908 0.000
IDV(19) 0.978 0.013 0.339 0.127 0.434 0.000 0.995 0.000
IDV(20) 0.715 0.044 0.764 0.013 0.626 0.000 0.918 0.000
IDV(21) 0.239 0.044 0.606 0.152 0.564 0.025 0.586 0.019

Average 0.753 0.032 0.784 0.147 0.670 0.026 0.828 0.011

34

Figure 3.6: SSFA monitoring statistics for IDV(4)

Figure 3.7: SPCA monitoring statistics for IDV(4)

35

Figure 3.8: MSSFA monitoring statistics for IDV(4)

Figure 3.9: SFA monitoring statistics for IDV(11)

36

Figure 3.10: SSFA monitoring statistics for IDV(11)

Figure 3.11: SPCA monitoring statistics for IDV(11)

37

Figure 3.12: MSSFA monitoring statistics for IDV(11)

The performance of the algorithms on IDV(11) was mixed. All algorithms were able to
detect at least some spikes corresponding to the random variations, with some detecting
more than others. SSFA also raised a few false alarms before the introduction of the fault.
MSSFA achieved the highest rate of fault detection without raising any false alarms. For
all algorithms, the S2 values spiked as the operating conditions changed showing lots of
abrupt anomalies that would correspond to random variations.

3.4.4 Fault Diagnosis

The case studies of IDV(4) and IDV(11) were used to assess the fault diagnosis perfor-
mance of the various algorithms. For each algorithm, the CDC contributions of the top
5 contributors were plotted over a certain range. For IDV(4), the range was chosen to
coincide with the introduction of the step change.

These plots can be found in Figures 3.13 - 3.16. The algorithms correctly diagnosed the
fault and placed the blame of the alarm on the reactor temperature and reactor cooling
water flow. SFA also showed some contribution from the unrelated stripper steam flow.
SSFA showed contributions from the condenser cooling water flow which is also unrelated

38

Figure 3.13: SFA fault diagnosis results for IDV(4)

to the fault.

Figures 3.17 - 3.20 show the contributions for IDV(11) at around sample 210. This
was considered a long enough period after the introduction of the fault to allow the ran-
dom variations to affect the whole system. The challenge now becomes to differentiate
from these secondary effects and correctly diagnose the fault. SFA now shows additional
significant contributions from the product separator pressure. The performance of SSFA
diagnosis suffered with the stripper underflow and condenser cooling water flow showing
major contributions to the fault. The remainder of the algorithms had a similar diagnosis
performance as their IDV(4) counterparts.

3.4.5 Alternative Regularization

The l2 and elastic net regularization methods were implemented and compared against the
l1 regularization. For elastic net, γ was set to 1. The J values were found to be 61 and 91
for l2 and elastic net respectively.

The TEP set was used to compare the fault detection performance of the various
methods and the results can be found in Table 3.2. l2 regularization outperforms or matches

39

Figure 3.14: SSFA fault diagnosis results for IDV(4)

Figure 3.15: SPCA fault diagnosis results for IDV(4)

40

Figure 3.16: MSSFA fault diagnosis results for IDV(4)

Figure 3.17: SFA fault diagnosis results for IDV(11)

41

Figure 3.18: SSFA fault diagnosis results for IDV(11)

Figure 3.19: SPCA fault diagnosis results for IDV(11)

42

Figure 3.20: MSSFA fault diagnosis results for IDV(11)

the other methods in FDR in each set, but it also has the worst FAR values for each set.
The opposite is true with elastic net as it has the best FAR values but the worst FDR
values. l1 values either match the other methods or they lie in between them for both
FDR and FAR values. The lower FAR values of l1 and elastic net provide evidence to the
benefits of sparsity.

The sparsity of the algorithms was also compared. Visualizations of the transformation
matrices is plotted in Figure 3.21. As expected, the l2 regularization did not provide a
sparse solution. The l1 and elastic net arrived at similar solutions and had equal sparsity
fractions of 0.758.

3.5 Three Phase Flow Facility Case Study

3.5.1 Fault Detection

The models were trained on the TPFF data set using training sets 2 and 3 as recommended
by [41]. According to the criterion given in Equation (2.14), a q value of 0.1 meant that

43

Table 3.2: Comparison of FDRs and FARs for different regularization methods
l1 l2 Elastic Net

Test Set FDR FAR FDR FAR FDR FAR
IDV(0) 0.000 0.017 0.000 0.087 0.000 0.009
IDV(1) 0.999 0.000 1.000 0.025 0.999 0.000
IDV(2) 0.988 0.000 0.994 0.044 0.986 0.000
IDV(3) 0.044 0.032 0.174 0.234 0.018 0.019
IDV(4) 1.000 0.006 1.000 0.057 1.000 0.000
IDV(5) 1.000 0.006 1.000 0.057 1.000 0.000
IDV(6) 1.000 0.000 1.000 0.044 1.000 0.000
IDV(7) 1.000 0.006 1.000 0.019 1.000 0.000
IDV(8) 0.982 0.013 0.989 0.057 0.981 0.000
IDV(9) 0.029 0.063 0.144 0.184 0.014 0.025
IDV(10) 0.941 0.019 0.952 0.057 0.931 0.000
IDV(11) 0.899 0.000 0.950 0.057 0.880 0.000
IDV(12) 0.999 0.000 0.999 0.038 0.999 0.000
IDV(13) 0.961 0.006 0.968 0.032 0.960 0.000
IDV(14) 1.000 0.006 1.000 0.044 1.000 0.000
IDV(15) 0.204 0.019 0.371 0.076 0.144 0.006
IDV(16) 0.964 0.025 0.965 0.196 0.954 0.013
IDV(17) 0.979 0.006 0.981 0.082 0.978 0.006
IDV(18) 0.908 0.000 0.920 0.038 0.909 0.000
IDV(19) 0.995 0.000 1.000 0.025 0.991 0.000
IDV(20) 0.918 0.000 0.921 0.025 0.916 0.000
IDV(21) 0.586 0.019 0.692 0.114 0.549 0.013

Average 0.828 0.011 0.858 0.072 0.819 0.005

44

Figure 3.21: Transformation matrices of MSSFA using different regularization methods

17, 61, and 14 features were extracted for SFA, SSFA, and MSSFA respectively. SPCA
extracted 8 principal components to retain 90% of the variance. The detection results of
the algorithms are given in Table 3.3.

For this data set, SFA showed the lowest FAR values across almost all data sets and
its average FDR was better than both SSFA and SPCA. MSSFA had the best FDR per-
formance for almost all the data sets but its average FAR was only better than SSFA and
comparable to SPCA. The poor combined performance of SPCA seems to indicate that
the dynamics are important to the proper modelling of this process.

The case study for the TPFF set was chosen to be the first case of the first fault which
is a gradual closing of the air line valve while the air and water flow rates are varied. The
monitoring statistics for the different algorithms can be found in Figures 3.22 - 3.25. The
challenge with this case and TPFF as a whole is to model a process with multiple operating
conditions.

SFA, SSFA, and SPCA were insensitive and could not detect the anomalous behaviour
until it became very apparent. SSFA actually decreased its T 2 value when the fault ap-
peared and did not increase again until more than halfway through the fault. SFA did
have some early detections, but it would be hard to differentiate these from the similar
spikes encountered before the fault was introduced. In encompassing the different oper-
ating conditions, these models became too generic and could not differentiate between a
normal and abnormal change. MSSFA had the best performance by being able to detect

45

Figure 3.22: SFA monitoring statistics for case 1 of fault 1

Figure 3.23: SSFA monitoring statistics for case 1 of fault 1

46

Figure 3.24: SPCA monitoring statistics for case 1 of fault 1

Figure 3.25: MSSFA monitoring statistics for case 1 of fault 1

47

Table 3.3: Comparison of FDRs and FARs for the batch algorithms using the TPFF dataset
SFA SSFA SPCA MSSFA

Test Set FDR FAR FDR FAR FDR FAR FDR FAR
Fault 1

Case 1 0.687 0.083 0.493 0.150 0.284 0.088 0.876 0.069
Case 2 0.700 0.074 0.421 0.200 0.308 0.234 0.813 0.203
Case 3 0.450 0.046 0.298 0.159 0.197 0.114 0.704 0.117

Fault 3
Case 1 0.988 0.057 0.997 0.490 0.982 0.190 0.992 0.175
Case 2 0.565 0.044 0.989 0.652 0.906 0.727 0.993 0.682
Case 3 0.987 0.073 0.995 0.308 0.984 0.257 0.996 0.220

Fault 4
Case 1 0.875 0.224 0.579 0.349 0.409 0.048 0.919 0.255
Case 2 0.727 0.113 0.201 0.137 0.175 0.217 0.905 0.284
Case 3 0.806 0.171 0.325 0.475 0.248 0.346 0.898 0.300

Fault 5
Case 1 0.358 0.664 0.705 0.931 0.618 0.968 1.000 1.000
Case 2 0.418 0.042 0.797 0.454 0.516 0.167 0.764 0.124

Average 0.687 0.145 0.618 0.391 0.512 0.305 0.896 0.312

the fault earlier than all other models. The combined inclusion of sparsity and dynamics
seemed to be well suited to this case.

3.5.2 Fault Diagnosis

The fault diagnosis results of case 1 of fault 1 was investigated and the results were plotted
in Figures 3.26 - 3.29. The range around the removal of the fault was chosen for two
reasons. The algorithms all detected this fault at different points and at this sample range,
the T 2 values peaked, and all models are in agreement that a fault was present. Since the
fault was present for a long period, any secondary effects were well established at this point
meaning that the models must be able to distinguish these from the primary effects.

SFA pointed to the air delivery pressure and pressure at the bottom of the riser as the
culprits which was the correct diagnosis. It also showed S2 contributions from unrelated
variables such as a level indicator and valve on the 3 phase separator. SSFA and MSSFA
correctly diagnosed the problem without including any unrelated contributions. MSSFA

48

Figure 3.26: SFA fault diagnosis results for case 1 of fault 1

Figure 3.27: SSFA fault diagnosis results for case 1 of fault 1

49

Figure 3.28: SPCA fault diagnosis results for case 1 of fault 1

Figure 3.29: MSSFA fault diagnosis results for case 1 of fault 1

50

however managed to limit its diagnosis to only 3 variables, with the rest providing 0
contribution to the monitoring statistic. The SPCA SPE contributions did include the air
delivery pressure but also the differential pressure on a valve far from the source of the
fault at a similar magnitude. Its T 2 diagnosis was wrong as it pointed to the flow rate at
the top of the riser as the culprit.

3.6 Conclusions

In this section, the effect of model sparsity was explored. A novel sparse SFA based algo-
rithm called MSSFA was developed. This algorithm used proximal algorithms and manifold
optimization to minimize the sparse SFA objective while adhering to its constraints. In
addition to this algorithm, a fault detection and diagnosis framework was introduced. Us-
ing the TEP and TPFF data sets, MSSFA was compared with SFA, SSFA, and SPCA It
was shown that MSSFA achieves improved interpretability and time complexity over the
other algorithms, and was able to produce a more sparse model than SSFA. MSSFA also
achieved superior monitoring and diagnosis performance as demonstrated by the TEP and
TPFF case studies.

51

Chapter 4

Incremental Process Monitoring

4.1 IncSFA

IncSFA was developed for use on high dimensional visual inputs. Its linear complexity in
terms on data dimensionality is attractive for process monitoring. This efficiency is useful
for processes that have a lot of input variables or a high sample rate. It is achieved through
the use of two covariance free algorithms: candid covariance-free incremental principal
component analysis (CCIPCA) and covariance-free incremental minor component analysis
(CIMCA).

4.1.1 Candid Covariance-Free Incremental PCA

The whitening matrix can be updated using CCIPCA [48] for each sample point. Con-
ceptually, CCIPCA works by “pulling” the principal components into the direction of the
sample. The magnitude of the projection of the sample onto the current principal compo-
nent estimate determines the strength of this pull.

vi(t) = (1− θ)vi(t− 1) + θ

[
ui(t) · vi(t− 1)

||vi(t− 1)||
ui(t)

]
(4.1)

After this, the projection of the sample onto this principal component is subtracted from
the sample.

ui+1(t) = ui(t)−
[

ui(t) · vi(t)
||vi(t)||

]
vi(t)

||vi(t)||
(4.2)

52

This new sample is then used to extract the next principal component. Once all principal
components are extracted, the whitening matrix can be calculated [21].

U =

[
v1

‖v1‖
,

v2

‖v2‖
. . . ,

vK
‖vK‖

]
(4.3)

Si,j =

{
‖vi‖ i = j

0 i 6= j
(4.4)

Q = US−1/2 (4.5)

4.1.2 Covariance-Free Incremental Minor Component Analysis

CCIPCA cannot be used in place of the second SVD step in SFA as the directions of
lowest variance are desired. Instead, CIMCA [21] can be used with the first derivative of
the whitened input signals ż. The vector ci is used to move the current observation into
a space where the previous minor components become principal components so that the
next minor component can be extracted.

c1(t) = 0 ∈ RK (4.6)

ci(t) = γ
i−1∑
j=1

(pj(t) · pi(t−1))pj(t) (4.7)

In this equation, γ is the largest eigenvalue of the derivative signals and can be found using
one iteration of the CCIPCA algorithm. The columns of the transformation matrix P are
then updated using the learning rate θ and normalized as follows.

ai(t) = (ż(t)>pi(t− 1))ż(t) + ci(t) (4.8)

pi(t) =
(1− θ)pi(t− 1)− θai(t)
‖(1− θ)pi(t− 1)− θai(t)‖

(4.9)

4.2 IncSFA Based Process Monitoring

A process monitoring framework was developed for IncSFA. The framework includes the
calculation of the monitoring statistics, control limits, and fault diagnosis contributions.

The first issue that arises in an incremental monitoring scheme is the calculation of
J . This is resolved by extracting m features and then dynamically removing the fastest

53

m − J features once J is calculated. For high dimensional data, m? < m features can be
extracted if J does not exceed m?. In the case where it does exceed it, J will be set to m?

which may degrade performance. After J is set, model updates can be made using only J
features.

The calculation of J requires calculating the variance of ẋ and ẏ with Equation (2.9).
The learning rate used in this chapter is

θ = max

{
1

k + 2
, c

}
(4.10)

for update k and some constant minimum rate c. Setting this value too high will result in
instability, and setting it too low will require more training data for convergence. Cross
validation methods may be used to tune this parameter. For the investigations presented
here, c was set to 10−4. Using the learned variances, J can be found with Equation (2.14).

Once J has been chosen, calculating T 2 is straightforward.

T 2 = y(t)>y(t) (4.11)

Calculating S2 however requires Ω.

S2 = ẏ(t)>Ω−1ẏ(t) (4.12)

This can be estimated as a matrix with the variances of ẏ along its diagonal and zeros
everywhere else.

Ωi,j =

{
s2
ẏi

i = j
0 i 6= j

(4.13)

To calculate the control limits, n is taken as the number of samples the model was fed
before it converged. The confidence level α is taken as a constant, although it would be
simple to change α if desired as that would only mean calculating the control limits again.

τT 2 =
J(n− 1)(n+ 1)

n(n− J)
Fα(J, n− J) (4.14)

δS2 =
J(n− 2)n

(n− 1)(n− J − 1)
Fα(J, n− J − 1) (4.15)

Since the operation of finding the matrix square root is computationally expensive,
the M matrices for fault diagnosis are only calculated if the model has converged or if a

54

training sample triggers an alarm. The signal contributions can then be found with the
following equations.

CDCT 2,i = x>(WW>)
1
2ξiξ

>
i (WW>)

1
2 x (4.16)

CDCS2,i = ẋ>(WΩ−1W>)
1
2ξiξ

>
i (WΩ−1W>)

1
2 ẋ (4.17)

The framework can be split into 2 parts. The first part is training where new samples
are used to update the model, n, Ω, and the control limits. The second part is testing
where the model is used to transform new samples, calculate T 2 and S2, and perform fault
diagnosis if necessary. Once the model has converged, only the testing part is required.

If T 2 has exceeded the control limit but S2 has not, a slow drift anomaly has occurred.
Essentially, the process has gradually changed its operating condition. If S2 has exceeded
the control limit but T 2 has not, a dynamic anomaly has occurred. This means that the
dynamics of the process have changed without any significant change to the operating con-
dition. When both of these statistics exceed their limits, an abrupt anomaly has occurred.
This means that there has been a sudden change that caused a change in the operating
condition.

Once any alarm has triggered, intervention by an engineer is required. In the case of a
true fault, the relevant standard operating procedures would be performed before monitor-
ing is resumed. In the case that a new normal operating condition has been encountered,
model training would be resumed. A flowchart of the process monitoring scheme can be
found in Figure 4.1.

4.3 Incremental MSSFA

The benefits of incremental algorithms has been discussed previously in Section 2.3. In
practice, the incremental algorithms discussed are insufficient. The cubic complexity of
RSFA updates prohibits its use for high dimensional data sets. For IncSFA, the complexity
is ostensibly linear in terms of the input signals and quadratic in terms of the extracted
features. However, when more than a few extracted features are required (as is typical for
process monitoring applications), the CCIPCA algorithm suffers from stability issues and
alternative methods that are more computationally expensive are required for whitening
the data. This issue can be seen in Figure 6 of [48] where the correctness of eigenvectors
starts to drop off after the first 5 are extracted.

An incremental algorithm was developed that does not suffer from these stability issues
and lowers the complexity of updates in terms of the number of input signals from cubic to

55

Figure 4.1: Incremental process monitoring framework

56

quadratic. In addition to this, this algorithm also provides a sparse model allowing for the
simultaneous exploitation of sparsity and incremental updates. This algorithm is based on
MSSFA and is called IncMSSFA.

IncMSSFA estimates the covariance matrices in the same manner as RSFA by using
Equations (2.8) and (2.10). With each new sample, one iteration of MSSFA is performed.
Each update has a time complexity of O(m2J) which is the cost of the retraction. This
algorithm lacks the linear complexity of IncSFA, but the benefits of sparsity are more
important for process data where the dimensionality is relatively low. The incremental
monitoring scheme developed in Section 4.2 can be applied to this algorithm.

One issue that arises in the implementation of this algorithm is that the covariance
matrix may not be positive definite especially for early samples which means that the
retraction cannot be performed. This constraint arises from the Cholesky decomposition
step. This is fixed by adding a small value ε to the diagonal of the matrix

A← A + εI (4.18)

where I is the identity matrix. The value used for the investigations was 10−6.

In addition to this change, the calculation of the step size αk from MSSFA is replaced
with α = 1. Unlike in batch MSSFA, IncMSSFA is optimizing onto a moving target due
to the covariance matrix updates. The removal of the diminishing step size allows the
solution to move along with the target.

It may be beneficial to estimate the variance of the data as in Equation (2.9) to ensure
the varying scales do not negatively impact the performance of the model. In the cases
investigated, this did not have a significant effect on results, but it may be needed when the
scales of the inputs vary more dramatically. A one-step update of IncMSSFA is described
in Algorithm 7.

4.4 Tennessee Eastman Process Case Study

4.4.1 Sparsity & Interpretability

The sparsity of the incremental models was tested by extracting the first 55 features of
the TEP data set. Additionally, the training data was normalized to prevent the variable
scales from affecting the weighting of the variables.

57

Algorithm 7: IncMSSFA(W,W(t− 1),x?,x(t− 1), x̄, s2,A,B,y(t− 1),Ω, θ, ε)

Data: W ∈ RJ×m,W(t−1) ∈ RJ×m,x? ∈ Rm,x(t−1) ∈ Rm, x̄ ∈ Rm, s2 ∈ Rm,A ∈
Rm×m,B ∈ Rm×m,y(t− 1) ∈ RJ ,Ω ∈ RJ×J , k ∈ N, θ ∈ R > 0, ε ∈ R > 0

Result: W ∈ Rm×J ,x ∈ Rm, x̄ ∈ Rm, s2 ∈ Rm,A ∈ Rm×m,B ∈ Rm×m,y ∈
RJ ,Ω ∈ RJ×J

x̄← (1− θ)x̄ + θx?;
s2 ← (1− θ)s2 + θ(x? − x̄)2;

x← x?−x̄
s

;
ẋ← x− x(t− 1);
A← (1− θ)A + θxx>;
B← (1− θ)B + θẋẋ>;
L← 2||B||F ;

V←W + k
k+3

(W −W(t− 1));

η ← − 2
L
BW;

U← CholeskyQRRetraction(A + εIm×m,V,η);
/* sgn, max, and | · | are element-wise operations */;
W← sgn(U) max{|U| − 1

L
IJ×m,0J×m};

y←W>x;
ẏ← y − y(t− 1);
Ω← (1− θ)Ω + θdiag(ẏ2);

58

Figure 4.2: Sparsity fraction of IncMSSFA during training

The sparsity was calculated using Equation (3.24). As expected, both RSFA and
IncSFA had a sparsity fraction of 0. IncMSSFA had a sparsity fraction of 0.661 and
the sparsity fraction over the course of training is plotted in Figure 4.2. The sparsity drops
off rapidly as the solution moves away from the initial guess of the identity matrix and
then increases until it plateaus.

A visualization of the transformation matrices was plotted in Figure 4.3. The white
spaces in this figure denote sparse values. RSFA and IncMSSFA values are well distributed
across the matrix.

IncSFA had interesting results with most of the features being approximately equal to
each other. This may arise from the use of CCIPCA as it tends to become increasingly
unstable as the number of extracted components increase. This instability is due to a
step in the algorithm where the projection of the sample onto the previous components
is subtracted from the sample. The CCIPCA step can be replaced with an incremental
estimation of the covariance matrix and a SVD step. This new algorithm will be referred
to as IncSFA SVD. Using this algorithm solves the issues of stability but also removes

59

Figure 4.3: Transformation matrices of incremental algorithms

the linear complexity of the algorithm. The transformation matrix of IncSFA SVD is
distributed more evenly and does not show any of the anomalous behaviour of IncSFA.

The top 10 contributors to the slowest feature were extracted to determine how inter-
pretable the feature was. The slowest feature of RSFA may model the effect of manipulating
the stripper steam valve. This can be seen as the 10 largest contributors which account
for 34.76% of the feature are the stripper steam valve, steam flow, temperature, and pres-
sure for the current and lagged samples. It is difficult to be sure about this interpretation
because the reactor pressure is the 10th largest contributor and there is still 65.24% of
contributions split across the rest of the variables.

IncSFA was similar in interpretability with the largest 10 contributors accounting for
36.32% of the feature. The feature seems to model the effect of the recycle stream on the
separator pressure as the variables include the compressor work, recycle valve, and the
separator pressure in the current and lagged samples. The interpretability of IncSFA SVD
was actually worse for the slowest feature as the largest 10 contributors made up 27.31% of
the total contributions. These variables were the flow rates of streams 2, 3, 4, and 10, the
reactor temperature and cooling water flow, the compressor recycle valve, and the product
separator underflow.

IncMSSFA is very easy to interpret as the stripper level and stripper liquid product
flow for the first lagged sample contribute 49.18% and 49.17% respectively. The obvious
interpretation here is that this feature models the effect that liquid flowing out of the

60

stripper has on the level of liquid inside the stripper.

4.4.2 Complexity & Runtime

This section details the computational complexity of the incremental algorithm updates.
This complexity is given in terms of the number of input signals m and the number of
desired output features J .

For RSFA, the algorithm has a complexity of O(m3) which is due to the rank one mod-
ification step [22]. IncSFA complexity is O(m+ J2) with the quadratic complexity coming
from the CIMCA algorithm [21]. When SVD is introduced, the complexity drastically
increases to O(m3 + J2). The complexity of IncMSSFA is O(m2J) due to the manifold
retraction.

The TEP training set was used to determine the runtimes of the incremental algorithms.
In the first experiment, the number of lagged samples was varied so that the number of
input signals m ranged from 33-330. This experiment extracts 10 features from the set.
Another experiment was done with a fixed lag number of 2 resulting in 99 input signals.
The number of extracted features J was varied from 9-99. Both experiments ran each
algorithm 5 times and averaged the runtimes.

All algorithms were implemented in Python using the NumPy package [47] for matrix
operations and the code was run on a 3.60GHz Intel i3-9100F CPU. The runtimes for the
two experiments were plotted on logarithmic graphs in Figures 4.4 and 4.5.

From the first plot, it can be seen that RSFA and IncSFA SVD had the sharpest in-
creases in runtime which was expected from the cubic complexity in terms of m. IncMSSFA
also showed a less drastic nonlinear increase which corresponds to its quadratic complex-
ity in terms of m. IncSFA runtime is fairly stable with increasing m values due to its
linear complexity. It tends to be slower than IncMSSFA since the CIMCA and CCIPCA
algorithms were implemented natively in Python while NumPy operations such as the
Cholesky decomposition are vectorized and run using more efficient precompiled C code.
Nevertheless, the trend is still apparent with IncSFA overtaking the other algorithms at
higher m values. When the J values were varied, both IncSFA and IncSFA SVD showed
the nonlinear increase expected from the quadratic complexity of the CIMCA algorithm.
IncMSSFA had less dramatic increase owing to its linear complexity in terms of J . RSFA
was fairly stable as its complexity does not depend on J .

61

Figure 4.4: Training times of the incremental algorithms for a varying number of input
signals and constant number of features extracted

62

Figure 4.5: Training times of the incremental algorithms for a varying number of extracted
features and constant number of input signals

63

Figure 4.6: RSFA monitoring statistics for IDV(4)

4.4.3 Fault Detection

IDV(0) training data was used to train each algorithm and the FDR and FAR values were
found using the T 2 monitoring statistic. Equation (2.14) was used to determine the J values
of each algorithm. These values were found to be 64, 99, 89, and 86 for RSFA, IncSFA,
IncSFA SVD, and IncMSSFA respectively. The monitoring results of these algorithms can
be found in Table 4.1.

The results of IncSFA were insensitive to faults leading to poor FDR performance and
FAR values of 0 for every test set. The addition of sparsity had a positive effect on moni-
toring performance with IncMSSFA having all FAR values except for IDV(0) and IDV(9)
equal to 0 along with the best average FDR performance. IncSFA SVD outperformed
RSFA in both FDR and FAR.

The monitoring statistics of IDV(4) and IDV(11) were plotted as a case study. The
faults are a step change and random variations in the reactor cooling water inlet tempera-
ture. The monitoring statistic are plotted in Figures 4.6 - 4.9 for IDV(4) and Figures 4.10
- 4.13 for IDV(11). The solid horizontal black lines in these figures are the control limits
and the vertical dashed lines indicate when the faults are introduced.

Except for IncSFA, the algorithms were able to detect the start of the fault for IDV(4).

64

Table 4.1: Comparison of FDRs and FARs for the incremental algorithms using the TEP
dataset

RSFA IncSFA IncSFA SVD IncMSSFA
Test Set FDR FAR FDR FAR FDR FAR FDR FAR
IDV(0) 0.000 0.041 0.000 0.000 0.000 0.045 0.000 0.001
IDV(1) 0.998 0.013 0.496 0.000 0.999 0.013 0.999 0.000
IDV(2) 0.985 0.013 0.088 0.000 0.985 0.013 0.985 0.000
IDV(3) 0.064 0.006 0.000 0.000 0.058 0.019 0.001 0.000
IDV(4) 1.000 0.038 0.000 0.000 1.000 0.019 1.000 0.000
IDV(5) 0.294 0.038 0.165 0.000 0.302 0.019 1.000 0.000
IDV(6) 0.994 0.006 0.991 0.000 1.000 0.006 1.000 0.000
IDV(7) 1.000 0.019 0.279 0.000 1.000 0.006 1.000 0.000
IDV(8) 0.980 0.019 0.639 0.000 0.980 0.013 0.979 0.000
IDV(9) 0.071 0.120 0.000 0.000 0.070 0.076 0.001 0.006
IDV(10) 0.759 0.025 0.116 0.000 0.810 0.038 0.876 0.000
IDV(11) 0.940 0.032 0.000 0.000 0.915 0.032 0.848 0.000
IDV(12) 0.992 0.006 0.720 0.000 0.992 0.032 0.999 0.000
IDV(13) 0.952 0.006 0.776 0.000 0.958 0.000 0.955 0.000
IDV(14) 1.000 0.019 0.000 0.000 1.000 0.019 1.000 0.000
IDV(15) 0.091 0.057 0.000 0.000 0.082 0.038 0.040 0.000
IDV(16) 0.552 0.139 0.049 0.000 0.868 0.108 0.898 0.000
IDV(17) 0.969 0.044 0.265 0.000 0.976 0.032 0.978 0.000
IDV(18) 0.915 0.038 0.870 0.000 0.914 0.044 0.905 0.000
IDV(19) 0.708 0.013 0.000 0.000 0.974 0.000 0.980 0.000
IDV(20) 0.718 0.013 0.202 0.000 0.814 0.013 0.905 0.000
IDV(21) 0.485 0.038 0.071 0.000 0.486 0.051 0.469 0.000

Average 0.737 0.034 0.273 0.000 0.771 0.029 0.801 0.000

65

Figure 4.7: IncSFA monitoring statistics for IDV(4)

Figure 4.8: IncSFA SVD monitoring statistics for IDV(4)

66

Figure 4.9: IncMSSFA monitoring statistics for IDV(4)

False alarms can be seen in RSFA and IncSFA SVD as T 2 values exceeded the control limit
before the introduction of the fault. IncMSSFA did not have these false alarms and kept
its T 2 value far below the limit before the introduction of the fault.

Similar performance was observed with IDV(11). IncSFA was again unable to detect
the fault and IncMSSFA lacked the false alarms present in both RSFA and IncSFA SVD.

4.4.4 Fault Diagnosis

The case studies above are continued here to assess the fault diagnosis performance of the
incremental algorithms. The CDC contributions were calculated, and the top 5 contributors
over a given range were plotted. The range for IDV(4) coincides with the introduction of
the fault.

The fault diagnosis plots are located in Figures 4.14 - 4.17 for IDV(4). Except for
IncSFA, the algorithms were able to correctly diagnose the result by pointing to the reactor
temperature and reactor cooling water flow as the main culprits for the fault. IncSFA SVD
and IncMSSFA showed contributions from the reactor cooling water outlet temperature,
which is related to fault, to their S2 values.

67

Figure 4.10: RSFA monitoring statistics for IDV(11)

Figure 4.11: IncSFA monitoring statistics for IDV(11)

68

Figure 4.12: IncSFA SVD monitoring statistics for IDV(11)

Figure 4.13: IncMSSFA monitoring statistics for IDV(11)

69

Figure 4.14: RSFA fault diagnosis results for IDV(4)

Figure 4.15: IncSFA fault diagnosis results for IDV(4)

70

Figure 4.16: IncSFA SVD fault diagnosis results for IDV(4)

Figure 4.17: IncMSSFA fault diagnosis results for IDV(4)

71

Figure 4.18: RSFA fault diagnosis results for IDV(11)

The IDV(11) diagnosis performance was the same as the IDV(4) performance. The
contributions can be found in Figures 4.18 - 4.21. The range chosen here was around
sample 210 to allow the random variations to affect the whole system. Any secondary
effects present after 50 samples did not affect the performance of these algorithms.

4.5 Three Phase Flow Facility Case Study

4.5.1 Fault Detection

Training sets 2 and 3 of the TPFF data were used to train the incremental algorithms.
This was also done in the original paper by [41]. Table 4.2 shows the monitoring results of
the incremental algorithms.

For these algorithms, IncSFA showed the worst performance as it labelled almost every
sample as faulty. When this is excluded, IncMSSFA had the best average FDR along with
the best FDR in almost every set. IncSFA SVD had the lowest FAR values for almost
every set but its average FDR was the worst out of the 4 incremental algorithms. RSFA

72

Figure 4.19: IncSFA fault diagnosis results for IDV(11)

Figure 4.20: IncSFA SVD fault diagnosis results for IDV(11)

73

Figure 4.21: IncMSSFA fault diagnosis results for IDV(11)

had a larger average FDR and FAR than IncSFA SVD but did not come close to the FDR
of IncMSSFA.

Case 1 of fault 1 was used as a case study. This fault case is a gradual closing of the air
line valve with varying air and water flow rates. The monitoring statistic for the different
algorithms can be found in Figures 4.22 - 4.25. Since both the training and test set each
contain multiple operating conditions, it is important for the algorithm to accurately model
the process instead of providing the model that best fits the training data.

All the models were able to detect the fault eventually as it grew large enough. RSFA
and IncSFA SVD detected it very late. IncSFA was too sensitive and labelled all the data
as faulty. In trying to fit itself to the changing operating conditions as it encountered them
during training, this model was unable to establish what constituted a normal operating
condition. IncMSSFA had a few false alarms before the fault was introduced, but it was
able to detect the fault almost immediately after its introduction.

74

Figure 4.22: RSFA monitoring statistics for case 1 of fault 1

Figure 4.23: IncSFA monitoring statistics for case 1 of fault 1

75

Figure 4.24: IncSFA SVD monitoring statistics for case 1 of fault 1

Figure 4.25: IncMSSFA monitoring statistics for case 1 of fault 1

76

Table 4.2: Comparison of FDRs and FARs for the incremental algorithms using the TPFF
dataset

RSFA IncSFA IncSFA SVD IncMSSFA
Test Set FDR FAR FDR FAR FDR FAR FDR FAR

Fault 1
Case 1 0.303 0.023 1.000 1.000 0.266 0.026 0.780 0.058
Case 2 0.325 0.088 1.000 1.000 0.303 0.080 0.806 0.111
Case 3 0.203 0.067 1.000 1.000 0.197 0.063 0.594 0.069

Fault 3
Case 1 0.987 0.077 1.000 0.998 0.987 0.059 0.991 0.112
Case 2 0.677 0.239 1.000 1.000 0.699 0.160 0.693 0.388
Case 3 0.993 0.092 1.000 1.000 0.993 0.073 0.993 0.148

Fault 4
Case 1 0.529 0.022 1.000 1.000 0.415 0.018 0.918 0.237
Case 2 0.218 0.070 1.000 1.000 0.146 0.069 0.887 0.080
Case 3 0.290 0.167 1.000 1.000 0.223 0.155 0.893 0.190

Fault 5
Case 1 0.543 0.764 1.000 1.000 0.407 0.733 0.613 0.906
Case 2 0.457 0.007 1.000 1.000 0.339 0.000 0.623 0.025

Average 0.502 0.147 1.000 1.000 0.452 0.131 0.799 0.211

4.5.2 Fault Diagnosis

The case study above is continued here by assessing the fault diagnosis capability of the
incremental algorithms. The diagnosis range was chosen to be at the removal of the fault
since this allowed the fault to establish secondary effects across the system forcing the
models to distinguish these from the primary effects. The diagnosis plots are found in
Figures 4.26 - 4.29.

IncMSSFA was the only incremental algorithm that correctly diagnosed this fault show-
casing the benefits of sparsity. IncMSSFA even limited its diagnosis to 2 variables for T 2.
For S2, 2 other variables that were related to the fault but further from the source provided
negligible contributions. The other models provided incorrect diagnosis results pointing
to the differential pressure on a valve connected to the 2 phase separator along with the
density, pressure, and flow rate at the top of the riser.

77

Figure 4.26: RSFA fault diagnosis results for case 1 of fault 1

Figure 4.27: IncSFA fault diagnosis results for case 1 of fault 1

78

Figure 4.28: IncSFA SVD fault diagnosis results for case 1 of fault 1

Figure 4.29: IncMSSFA fault diagnosis results for case 1 of fault 1

79

4.6 Conclusions

In this section, incremental model updates were explored. A monitoring framework for
IncSFA was developed. In addition to this, an incremental extension of MSSFA termed
IncMSSFA was introduced. These two algorithms were compared with another incremental
SFA algorithm called RSFA. It was shown that IncSFA had the best complexity out of all
the incremental algorithms investigated. The sparsity and interpretability investigation
showcased the benefits of sparsity that were introduced with IncMSSFA. The investigation
also showed the unstable nature of IncSFA. During the TEP and TPFF case studies,
IncMSSFA achieved superior monitoring and diagnosis performance.

80

Chapter 5

Conclusions

In this thesis, MSSFA, a novel sparse SFA based algorithm was developed. SFA is well
suited to process monitoring due to its explicit inclusion of process dynamics in its formu-
lation. Sparse models are able to prevent overfitting and improve interpretability which
are important for process monitoring. This new algorithm was created to improve upon
SSFA which showed instability, poor monitoring performance, and low sparsity. The non-
smooth objective function of sparse SFA and the SFA constraints were solved using APGD
and manifold optimization. A fault detection and diagnosis framework was introduced to
this algorithm. The TEP and TPFF data sets were then used to compare MSSFA with
SFA, SSFA, and SPCA. MSSFA achieved improved interpretability and time complexity
over the other algorithms, and was able to produce a more sparse model than SSFA. Case
studies of the TEP and TPFF sets demonstrated the superior monitoring and diagnosis
performance of MSSFA.

After this, SFA based incremental models were investigated. Incremental learning al-
lows for adaptive models, removes the need to store historical data, and the need to feed
in all training data at once which can be intractable for large data sets. To take advantage
of the linear IncSFA complexity, a monitoring framework was developed for the algorithm.
Another algorithm based on MSSFA and called IncMSSFA was introduced. IncMSSFA
is the only incremental SFA based algorithm designed to produce sparse models. The
performance of another incremental algorithm, RSFA, was compared to both IncSFA and
IncMSSFA. With its linear complexity, IncSFA beat out the quadratic complexity of In-
cMSSFA and the cubic complexity of RSFA. As expected, IncMSSFA was the only model
to achieve sparsity which also gave it superior interpretability. IncMSSFA also had the
best monitoring and diagnosis performance of all the incremental algorithms for the TEP
and TPFF case studies.

81

5.1 Recommendations

The next step for MSSFA/IncMSSFA is to include non-linearity in the model. The naive
way to do this is to perform a nonlinear expansion on the input samples. Other ways to
include this could be through the use of kernel or hierarchical methods. An investigation
into these various methods is required to determine the best course of action.

Hierarchical methods have also been used to tackle high dimensional data sets; most
commonly videos. The addition of sparsity into this domain may prove beneficial. The
signals here correspond to pixels rather than physical values and so the interpretability
aspect is not as important, but the prevention of overfitting is still relevant. In general,
applying the models developed here to other application domains is worthy of investigation.

Another recommendation is to detail the convergence properties of the presented algo-
rithms. This would require a more comprehensive education in the fields of topology and
optimization, specifically the topics of manifolds and proximal algorithms.

Finally, it would also benefit the public to provide a more stream lined, efficient, and
user-friendly implementation of these algorithms for practical use. One way to do this is
to emulate NumPy and implement the algorithms in C for efficiency while providing an
API to Python for ease of use.

82

References

[1] L. S. De Camp, The ancient engineers. Barnes & Noble Publishing, 1990.

[2] M. Xu, J. M. David, S. H. Kim, et al., “The fourth industrial revolution: Opportunities
and challenges,” International journal of financial research, vol. 9, no. 2, pp. 90–95,
2018.

[3] H. Hotelling, “Analysis of a complex of statistical variables into principal compo-
nents.,” Journal of educational psychology, vol. 24, no. 6, p. 417, 1933.

[4] V. E. Vinzi, W. W. Chin, J. Henseler, H. Wang, et al., Handbook of partial least
squares, vol. 201. Springer, 2010.

[5] P. Comon, “Independent component analysis,” 1992.

[6] W. Ku, R. H. Storer, and C. Georgakis, “Disturbance detection and isolation by
dynamic principal component analysis,” Chemometrics and intelligent laboratory sys-
tems, vol. 30, no. 1, pp. 179–196, 1995.

[7] H. Zou, T. Hastie, and R. Tibshirani, “Sparse principal component analysis,” Journal
of computational and graphical statistics, vol. 15, no. 2, pp. 265–286, 2006.

[8] B. R. Bakshi, “Multiscale pca with application to multivariate statistical process mon-
itoring,” AIChE journal, vol. 44, no. 7, pp. 1596–1610, 1998.

[9] L. H. Chiang, E. L. Russell, and R. D. Braatz, Fault detection and diagnosis in in-
dustrial systems. Springer Science & Business Media, 2000.

[10] W. Li, H. H. Yue, S. Valle-Cervantes, and S. J. Qin, “Recursive pca for adaptive
process monitoring,” Journal of process control, vol. 10, no. 5, pp. 471–486, 2000.

83

[11] Y. Dong and S. J. Qin, “A novel dynamic pca algorithm for dynamic data modeling
and process monitoring,” Journal of Process Control, vol. 67, pp. 1–11, 2018.

[12] Q. Jiang and X. Yan, “Parallel pca–kpca for nonlinear process monitoring,” Control
Engineering Practice, vol. 80, pp. 17–25, 2018.

[13] D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor, “Canonical correlation analysis: An
overview with application to learning methods,” Neural computation, vol. 16, no. 12,
pp. 2639–2664, 2004.

[14] J.-M. Lee, C. Yoo, and I.-B. Lee, “Statistical process monitoring with independent
component analysis,” Journal of process control, vol. 14, no. 5, pp. 467–485, 2004.

[15] Z. Ge and Z. Song, “Performance-driven ensemble learning ica model for improved
non-gaussian process monitoring,” Chemometrics and Intelligent Laboratory Systems,
vol. 123, pp. 1–8, 2013.

[16] Y. Xu, S.-Q. Shen, Y.-L. He, and Q.-X. Zhu, “A novel hybrid method integrating ica-
pca with relevant vector machine for multivariate process monitoring,” IEEE Trans-
actions on Control Systems Technology, vol. 27, no. 4, pp. 1780–1787, 2018.

[17] Z. Chen, S. X. Ding, K. Zhang, Z. Li, and Z. Hu, “Canonical correlation analysis-based
fault detection methods with application to alumina evaporation process,” Control
Engineering Practice, vol. 46, pp. 51–58, 2016.

[18] Y. Liu, B. Liu, X. Zhao, and M. Xie, “A mixture of variational canonical correlation
analysis for nonlinear and quality-relevant process monitoring,” IEEE Transactions
on Industrial Electronics, vol. 65, no. 8, pp. 6478–6486, 2017.

[19] Q. Zhu, Q. Liu, and S. J. Qin, “Concurrent quality and process monitoring with
canonical correlation analysis,” Journal of Process Control, vol. 60, pp. 95–103, 2017.

[20] L. Wiskott and T. J. Sejnowski, “Slow feature analysis: Unsupervised learning of
invariances,” Neural computation, vol. 14, no. 4, pp. 715–770, 2002.

[21] V. R. Kompella, M. Luciw, and J. Schmidhuber, “Incremental slow feature analysis:
Adaptive low-complexity slow feature updating from high-dimensional input streams,”
Neural Computation, vol. 24, no. 11, pp. 2994–3024, 2012.

[22] C. Shang, F. Yang, B. Huang, and D. Huang, “Recursive slow feature analysis for
adaptive monitoring of industrial processes,” IEEE Transactions on Industrial Elec-
tronics, vol. 65, no. 11, pp. 8895–8905, 2018.

84

[23] C. Shang, X. Huang, F. Yang, and D. Huang, “Sparse slow feature analysis for en-
hanced control monitoring and fault isolation,” in 2019 1st International Conference
on Industrial Artificial Intelligence (IAI), pp. 1–6, IEEE, 2019.

[24] C. Shang, F. Yang, X. Gao, X. Huang, J. A. Suykens, and D. Huang, “Concurrent
monitoring of operating condition deviations and process dynamics anomalies with
slow feature analysis,” AIChE Journal, vol. 61, no. 11, pp. 3666–3682, 2015.

[25] H. Zhang, X. Tian, and X. Deng, “Batch process monitoring based on multiway global
preserving kernel slow feature analysis,” Ieee Access, vol. 5, pp. 2696–2710, 2017.

[26] H. Hotelling, “The generalization of student’s ratio,” in Breakthroughs in statistics,
pp. 54–65, Springer, 1992.

[27] C. F. Alcala and S. J. Qin, “Analysis and generalization of fault diagnosis methods
for process monitoring,” Journal of Process Control, vol. 21, no. 3, pp. 322–330, 2011.

[28] P. J. Olver, C. Shakiban, and C. Shakiban, Applied linear algebra. Springer, 2018.

[29] A. M. Mood, Introduction to the Theory of Statistics. McGraw-hill, 1950.

[30] A. Kessy, A. Lewin, and K. Strimmer, “Optimal whitening and decorrelation,” The
American Statistician, vol. 72, no. 4, pp. 309–314, 2018.

[31] I. Rish and G. Grabarnik, Sparse modeling: theory, algorithms, and applications. CRC
press, 2014.

[32] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and Trends in optimiza-
tion, vol. 1, no. 3, pp. 127–239, 2014.

[33] J. M. Lee, B. Chow, S.-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey,
D. Knopf, P. Lu, F. Luo, et al., “Manifolds and differential geometry,” Topology,
vol. 643, p. 658, 2009.

[34] P.-A. Absil, R. Mahony, and R. Sepulchre, “Optimization algorithms on matrix man-
ifolds,” in Optimization Algorithms on Matrix Manifolds, Princeton University Press,
2009.

[35] H. Sato and K. Aihara, “Cholesky QR-based retraction on the generalized stiefel
manifold,” Computational Optimization and Applications, vol. 72, no. 2, pp. 293–308,
2019.

85

[36] J. J. Downs and E. F. Vogel, “A plant-wide industrial process control problem,”
Computers & chemical engineering, vol. 17, no. 3, pp. 245–255, 1993.

[37] M. Grbovic, W. Li, P. Xu, A. K. Usadi, L. Song, and S. Vucetic, “Decentralized fault
detection and diagnosis via sparse pca based decomposition and maximum entropy
decision fusion,” Journal of Process Control, vol. 22, no. 4, pp. 738–750, 2012.

[38] K. Liu, Z. Fei, B. Yue, J. Liang, and H. Lin, “Adaptive sparse principal component
analysis for enhanced process monitoring and fault isolation,” Chemometrics and In-
telligent Laboratory Systems, vol. 146, pp. 426–436, 2015.

[39] X. Xiu, Y. Yang, L. Kong, and W. Liu, “Data-driven process monitoring using struc-
tured joint sparse canonical correlation analysis,” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 68, no. 1, pp. 361–365, 2020.

[40] P.-E. P. Odiowei and Y. Cao, “Nonlinear dynamic process monitoring using canonical
variate analysis and kernel density estimations,” IEEE Transactions on Industrial
Informatics, vol. 6, no. 1, pp. 36–45, 2009.

[41] C. Ruiz-Cárcel, Y. Cao, D. Mba, L. Lao, and R. Samuel, “Statistical process moni-
toring of a multiphase flow facility,” Control Engineering Practice, vol. 42, pp. 74–88,
2015.

[42] S. Valle, W. Li, and S. J. Qin, “Selection of the number of principal components: the
variance of the reconstruction error criterion with a comparison to other methods,”
Industrial & Engineering Chemistry Research, vol. 38, no. 11, pp. 4389–4401, 1999.

[43] E. L. Russell, L. H. Chiang, and R. D. Braatz, “Fault detection in industrial pro-
cesses using canonical variate analysis and dynamic principal component analysis,”
Chemometrics and intelligent laboratory systems, vol. 51, no. 1, pp. 81–93, 2000.

[44] R. Jenatton, G. Obozinski, and F. Bach, “Structured sparse principal component
analysis,” in Proceedings of the Thirteenth International Conference on Artificial In-
telligence and Statistics, pp. 366–373, JMLR Workshop and Conference Proceedings,
2010.

[45] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

86

[46] S. Gajjar, M. Kulahci, and A. Palazoglu, “Real-time fault detection and diagno-
sis using sparse principal component analysis,” Journal of Process Control, vol. 67,
pp. 112–128, 2018.

[47] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Courna-
peau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H.
van Kerkwijk, M. Brett, A. Haldane, J. F. del Ŕıo, M. Wiebe, P. Peterson, P. Gérard-
Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E.
Oliphant, “Array programming with NumPy,” Nature, vol. 585, pp. 357–362, Sept.
2020.

[48] J. Weng, Y. Zhang, and W.-S. Hwang, “Candid covariance-free incremental principal
component analysis,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 25, no. 8, pp. 1034–1040, 2003.

[49] E. Oja, “Principal components, minor components, and linear neural networks,” Neu-
ral networks, vol. 5, no. 6, pp. 927–935, 1992.

[50] Y. Zhang, H. Zhou, S. J. Qin, and T. Chai, “Decentralized fault diagnosis of large-
scale processes using multiblock kernel partial least squares,” IEEE Transactions on
Industrial Informatics, vol. 6, no. 1, pp. 3–10, 2009.

[51] G. Li, S. J. Qin, and D. Zhou, “Geometric properties of partial least squares for process
monitoring,” Automatica, vol. 46, no. 1, pp. 204–210, 2010.

[52] Q. Jiang, X. Yan, H. Yi, and F. Gao, “Data-driven batch-end quality modeling and
monitoring based on optimized sparse partial least squares,” IEEE Transactions on
Industrial Electronics, vol. 67, no. 5, pp. 4098–4107, 2019.

[53] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, “Industry 4.0,” Business
& information systems engineering, vol. 6, no. 4, pp. 239–242, 2014.

87

APPENDICES

88

Appendix A

Determining the Lipschitz Constant

A function is Lipschitz continuous with constant L if it satisfies

|g(x)− g(y)| ≤ L|x− y| (A.1)

for some norm and any values x and y.

For the purposes of the MSSFA algorithm, g = ∇Tr(W>BW).

∇Tr(W>BW) = BW + B>W (A.2)

Since covariance matrices are symmetric, B> = B.

g(W) = 2BW (A.3)

The left side of the Lipschitz condition is then

||2BW1 − 2BW2|| = 2||B(W1 −W2)|| (A.4)

after using the distributive property of matrix multiplication and taking the constant out
of the norm. The following inequality holds when using a norm with the sub-multiplicative
property such as the Frobenius norm.

2||B(W1 −W2)||F ≤ 2||B||F ||W1 −W2||F (A.5)

The right side of this inequality is the same as the right side of the Lipschitz condition
with L = 2||B||F .

89

Appendix B

SSFA Instability

When the models were trained, data had to be preprocessed for the batch algorithms so
that input signals had a mean of 0. For most of the algorithms, the variance of input
signals had no significant effect on the performance of the model. This is because the
models explicitly or implicitly include data whitening. However, SSFA showed numerical
instability and provided unreliable results. To remedy this and provide a fair comparison,
all the models had the input signals scaled to a variance of 1. The instability can be
seen using the monitoring performance for IDV(4) of the TEP data set in Figure B.1.
MSSFA monitoring results are also plotted here to show a comparison. The scale and
general shape of the plots for normalized and unnormalized data are approximately equal
for MSSFA while they drastically differ for SSFA.

90

Figure B.1: Comparison of SSFA and MSSFA T 2 monitoring results for TEP IDV(4) when
trained using normalized and unormalized data

91

	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Process Data
	Current Process Monitoring Techniques
	Research Outcomes
	Thesis Outline

	Background Information
	Mathematical Background
	Slow Feature Analysis
	Incremental Algorithms
	Sparsity
	Proximal Algorithms
	Manifold Optimization
	Sparse Slow Feature Analysis

	Anomaly Detection
	Fault Diagnosis
	Case Studies
	Tennessee Eastman Process
	Three Phase Flow Facility

	Manifold Sparse Slow Feature Analysis
	The Proposed Algorithm
	Alternative Regularization
	Fault Detection & Diagnosis Framework
	Tennessee Eastman Process Case Study
	Sparsity & Interpretability
	Complexity & Runtime
	Fault Detection
	Fault Diagnosis
	Alternative Regularization

	Three Phase Flow Facility Case Study
	Fault Detection
	Fault Diagnosis

	Conclusions

	Incremental Process Monitoring
	IncSFA
	Candid Covariance-Free Incremental PCA
	Covariance-Free Incremental Minor Component Analysis

	IncSFA Based Process Monitoring
	Incremental MSSFA
	Tennessee Eastman Process Case Study
	Sparsity & Interpretability
	Complexity & Runtime
	Fault Detection
	Fault Diagnosis

	Three Phase Flow Facility Case Study
	Fault Detection
	Fault Diagnosis

	Conclusions

	Conclusions
	Recommendations

	References
	APPENDICES
	Determining the Lipschitz Constant
	SSFA Instability

