
Sandwich and probe problems for excluding paths

Celina M. H. de Figueiredo1a, Sophie Spirklb

aCOPPE, Universidade Federal do Rio de Janeiro, Brazil
Email: celina@ cos. ufrj. br

bPrinceton University, Princeton, NJ 08544
Email: sspirkl@ princeton. edu

Abstract

Let Pk denote an induced path on k vertices. For k ≥ 5, we show that
the Pk-free sandwich problem, partitioned probe problem, and unpartitioned
probe problem are NP -complete. For k ≤ 4, it is known that the Pk-free
sandwich problem, partitioned probe problem, and unpartitioned probe prob-
lem are in P .
Keywords: graph sandwich problem, probe problem, partitioned probe
problem, unpartitioned probe problem

1. Introduction

All graphs in this paper are finite and simple. Let G be a graph. GC

denotes the complement of G, obtained from G by replacing each edge with a
non-edge and vice versa. For X ⊆ V (G), G|X denotes the induced subgraph
of G with vertex set X. For X, Y ⊆ V (G) with X ∩ Y = ∅, we say that
X is complete to Y if for all x ∈ X, y ∈ Y , xy ∈ E(G); we say that X
is anticomplete to Y if for all x ∈ X, y ∈ Y , xy 6∈ E(G). For v ∈ V (G),
X ⊆ V (G) \ {v}, we say that v is complete (anticomplete) to X if {v} is
complete (anticomplete) to X.

Let G1 = (V1, E1), G2 = (V2, E2), then G2 is a supergraph of G1 if V1 = V2
and E1 ⊆ E2. A pair (G1, G2) of graphs so that G2 is a supergraph of G1
is called a sandwich instance. The edges in E1 are called forced, while the
edges in E2 \ E1 are optional. A graph G is called a sandwich graph for the
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sandwich instance (G1, G2) if G2 is a supergraph of G and G is a supergraph
of G1. For a graph G and a set E ′ of edges with both endpoints in V (G),
G ∪ E ′ denotes the supergraph G′ = (V (G), E(G) ∪ E ′) of G, and G \ E ′

denotes the graph G′′ = (V (G), E(G) \ E ′), and G is a supergraph of G′′.
Let P be a graph property. We define the complementary property PC

by saying that G satisfies PC if and only if GC satisfies P .
The P recognition problem is the problem of deciding whether a

given graph G satisfies P . The P sandwich problem is the following: For
a given sandwich instance (G1, G2), does there exist a sandwich graph G
for (G1, G2) so that G satisfies P? This generalization of the recognition
problem was introduced by Golumbic and Shamir [4]. The sandwich prob-
lem becomes the recognition problem when G1 = G2, and thus, if the P
recognition problem is NP -complete, so is the P sandwich problem.

Let G, G′ be a pair of graphs such that G′ is a supergraph of G. Then G′

is a (P, N)-probe graph for G if (P, N) is a partition of V (G), N is a stable
set in G, and every edge in E(G′) \ E(G) has both of its endpoints in N .

For a graph property P , a graph G = (V, E) is a P probe graph with
partition (P, N) if there exists a (P, N)-probe graph G′ for G such that G′

satisfies P . A graph G is a P probe graph if there exists a partition (P, N)
of its vertex set such that G is a P probe graph with partition (P, N). The
vertices in P are called probes, and the vertices in N are called non-probes.

For a graph property P , the P partitioned probe problem is the
following: Given a graph G = (V, E), and a stable set N ⊆ V , is G a P
probe graph with partition (V \N, N)? The partitioned probe problem was
first introduced in [6, 7] for interval graphs because of its applications to the
physical mapping of DNA.

The P partitioned probe problem with input graph G = (V, E) and stable
set N ⊆ V is a special case of the P sandwich problem in which E(G1) = E
and the edges in E(G2) \ E(G1) are precisely the edges between all pairs of
distinct vertices in N .

Note that the sandwich problem and the partitioned probe problem are
invariant under taking complements in the following sense. The first state-
ment is shown in [5].

Lemma 1. The PC sandwich problem is NP -complete if and only if the P
sandwich problem is. The PC partitioned probe problem is NP -complete if
and only if the P partitioned probe problem is.
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Proof. An instance (G1, G2) is a Yes instance for PC sandwich problem if
and only if (GC

2 , GC
1 ) is a Yes instance for the P sandwich problem. The

same is true for the P partitioned probe problem: A graph G with partition
(P, N) is a Yes instance for the P partitioned probe problem if and only if
the graph G′ arising from GC by removing all edges with both endpoints in
N with the partition (P, N) is a Yes instance for the PC partitioned probe
problem.

Let P be a graph property. The P unpartitioned probe problem is
the following: Given a graph G, is G a P probe graph? We also consider the
P unpartitioned probe problem in the complement: Given a graph
G, is GC a PC probe graph? In other words, in the unpartitioned probe
problem, the goal is to decide whether there is a stable set N in G and a set
of edges E ′ with both endpoints in N such that G ∪ E ′ satisfies P , whereas
in the unpartitioned probe problem in the complement, the goal is to decide
whether there is a clique N in G and a set of edges E ′ with both endpoints in
N such that G \E ′ satisfies P . Therefore, these problems are not equivalent
in general.

Forbidden induced subgraph sandwich problems have been considered
in [3] and then further studied in [2], which considered the complexities of
partitioned and unpartitioned probe problems as well. In several papers,
probe problems have been considered with respect to subclasses of perfect
graphs, and the perfect graph sandwich problem is the only remaining open
sandwich problem in the seminal paper by Golumbic et al. [5].

In the present paper, we consider sandwich and probe problems for ex-
cluding paths. We let Pk denote an induced path on k vertices. The graph P C

5
is called a house. For k ≥ 5, we show that the Pk-free sandwich problem, par-
titioned probe problem, and unpartitioned probe problem are NP -complete.
For k ≤ 4, it is known that the Pk-free sandwich problem, partitioned probe
problem, and unpartitioned probe problem are in P . The paper is organized
as follows. In Section 2, we give some reductions. In Section 3, we consider
the sandwich and probe problems for P3, P4, P5 and P6; and in Section 4, we
consider Pk, k ≥ 6.

2. Reductions

Let G be a graph and let x, y ∈ V (G) be distinct vertices. Then x and y
are twins if N(x)\{y} = N(y)\{x}. They are adjacent twins if x is adjacent

3



to y, and non-adjacent twins otherwise. Note that if x, y are adjacent twins
in G, then they are non-adjacent twins in GC . For k ≥ 4, Pk does not contain
twins.

We will use the following results from [2].

Theorem 2 ([2]). For 3-connected graphs F 6= Kn, if the F -free sandwich
problem is NP -complete, so is the F -free partitioned probe problem.

Theorem 3 ([2]). For 2-connected graphs F 6= Kn, if the F -free partitioned
probe problem is NP -complete, so is the F -free unpartitioned probe problem.

By taking complements in Theorem 2 and applying Lemma 1, we also
obtain the following.

Corollary 4 ([2]). Let F be a graph such that F C 6= Kn and F C is 3-
connected. If the F -free sandwich problem is NP -complete, so is the F -free
partitioned probe problem.

Theorem 5. Let H be a graph that does not contain any adjacent twins.
If the H-free partitioned probe problem is NP -complete, so is the H-free
unpartitioned probe problem.

Proof. Let G with partition (P, N) be an instance for the H-free partitioned
probe problem, and let G′ arise from G by adding an adjacent twin for every
vertex in P ; call this set of new vertices P ′. For every vertex v ∈ P , we let
v′ denote its adjacent twin in P ′. We claim that G is a Yes instance for the
H-free partitioned probe problem if and only if G′ is a Yes instance for the
H-free unpartitioned probe problem.

Let E be a set of edges with both endpoints in N so that (V (G), E(G)∪E)
is H-free, and suppose for a contradiction that G′′ = (V (G′), E(G′) ∪ E) is
not H-free. Let S ⊆ V (G′) induce a subgraph isomorphic to H in G′′. Since
H contains no adjacent twins, it follows that S does not contain v and v′

for any v ∈ P , since v and v′ are adjacent twins in G′′. Therefore, we may
assume that if S contains a vertex in {v, v′} for some v ∈ P , then S contains
v and not v′, and so S ⊆ N ∪ P . But then S ⊆ V (G), and so S induces a
subgraph isomorphic to H in (V (G), E(G)∪E). This is a contradiction and
it follows that G′′ is H-free.

For the converse direction, let N ′ ⊆ V (G′) be a stable set, and let E ′ be
a set of edges with both endpoints in N ′ so that G′′ = (V (G′), E(G′) ∪ E ′)
is H-free. Since N ′ is a stable set in G′, N ′ does not contain v and v′ for
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any v ∈ P , and since they are adjacent twins, we may assume (by adjusting
E ′ accordingly) that N ′ ∩ P = ∅. Let E denote the set of edges in E ′ with
both endpoints in N . It follows that (V (G), E(G)∪E) = G′′|V (G), since E ′

contains no edge with an endpoint in P . Thus (V (G), E(G) ∪ E) is H-free,
which proves the claim.

Since the size of G′ is at most twice the size of G, this reduction takes
polynomial time; the result of the theorem follows.

By taking complements in Theorem 5, we obtain the following:

Corollary 6. Let H be a graph that does not contain any non-adjacent twins.
If the H-free partitioned probe problem is NP -complete, so is the H-free
unpartitioned probe problem in the complement.

Proof. Let H be a graph that does not contain any non-adjacent twins. Then
HC does not contain any adjacent twins. Suppose that the H-free parti-
tioned probe problem is NP -complete. Then, by Lemma 1, the HC-free
partitioned probe problem is NP -complete. Now by Theorem 5, the HC-free
unpartitioned probe problem is NP -complete, which means that the H-free
unpartitioned probe problem in the complement is NP -complete.

3. Short paths

We first consider the P3-free case and the P4-free case. Here, the sand-
wich problem and both probe problems can be solved in polynomial time, as
Theorem 7, Lemma 8 and Theorem 9 show.

Theorem 7 ([3]). The P3-free sandwich problem and partitioned probe prob-
lem can be solved in polynomial time.

We prove the following simple lemma for completeness.

Lemma 8. The P3-free unpartitioned probe problem can be solved in polyno-
mial time.

Proof. Let G be a graph, and consider the following algorithm: Let G′ be a
copy of G. Let N = ∅. While there is an induced P3 with vertices x, y, z in
order in G′, add x, z to N and xz to E(G′). If N is a stable set in G, then
this algorithm yields a (V (G) \N, N)-probe graph G′ for G which is P3-free.
For the converse direction, note that if there is a P3-free probe graph G′′
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for G with partition (P ′′, N ′′), then at every step of the algorithm, G′′ is a
supergraph of G′, and hence N ⊆ N ′′. Thus, if such a G′′ exists, then N is
stable. This concludes the proof.
Theorem 9 ([5, 1]). The P4-free sandwich problem, partitioned probe problem
and unpartitioned probe problem can be solved in polynomial time.

From [2], we know the following:
Theorem 10 ([2]). The C4-free partitioned probe problem is NP -complete.

We now review a construction given in [3] which we will use to prove that
the house-free sandwich problem is NP -complete, and which is used in [3] to
prove the following in the case that k = 4.
Theorem 11 ([3]). The Ck-free sandwich problem is NP -complete for all
fixed k ≥ 4.

Let (X, C) be a 3Sat instance with a set X = {x1, . . . , xn} of variables
and a set C = {c1, . . . , cm} of clauses such that each clause contains exactly
three variables. We follow the notation of [3], but we use `j

q for a literal in the
3Sat instance and lj

q for a vertex of the constructed gadget from the 3Sat
instance (instead of using lj

q for both).
Before giving a detailed definition of the construction, we briefly describe

how it works. For every variable xi of (X, C), we will define a set Xi, which
consists of a four-cycle of forced edges, along with two optional edges, which
form the diagonals of this four-cycle. At least one of these optional edges
is present in every C4-free sandwich graph for our instance, and which of
the diagonal edges is present will correspond to whether xi is true or false.
For every clause cj of (X, C), and every literal `j

q ∈ {xi, xi} in cj, we add
two gadgets

{
rj

q1, . . . , rj
q4

}
and

{
sj

q1, . . . , sj
q4

}
, which are designed to provide

a copy of xi if xi is true and if xi is false, respectively. For cj, we add a
four-cycle with vertex set

{
pj

1, . . . , pj
4

}
, which has one forced edge, and one

optional edge for each literal. It follows that if there is a set of optional edges
that we can add to create a C4-free sandwich graph G, then there is a truth
assignment in which for every clause cj, not all three optional edges among{
pj

1, . . . , pj
4

}
are present in G, and hence cj contains a true literal.

Later, we will slightly modify the 3Sat instance in order to be able to
say more about the structure of the constructed sandwich instance.

We let (G1(X, C), G2(X, C)) be a sandwich instance with vertex set V ,
where V contains
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• for each variable xi ∈ X a set Xi = {xi
1, xi

2, xi
1, xi

2};

• for each clause cj = (`j
1 ∨ `j

2 ∨ `j
3) in C, a set Cj = Aj ∪ Bj where

Aj =
{
pj

1, . . . , pj
4

}
and Bj = ⋃

q=1,2,3

{
lj
q, tj

q, sj
q1, . . . , sj

q4, rj
q1, . . . , rj

q4

}
.

We define the following sets of edges for 1 ≤ i ≤ n, 1 ≤ j ≤ m, q ∈ {1, 2, 3}.

• X i = {xi
1x

i
1, xi

2x
i
1, xi

2x
i
2, xi

1x
i
2};

• Lj =
{
pj

1l
j
1, lj

1p
j
2, pj

2l
j
2, lj

2p
j
3, pj

3l
j
3, lj

3p
j
4

}
;

• T j =
{
pj

1t
j
1, tj

1p
j
2, pj

2t
j
2, tj

2p
j
3, pj

3t
j
3, tj

3p
j
4

}
;

• P j =
{
pj

4p
j
1

}
;

• Aj
q =

{
pj

qs
j
q1, pj

q+1s
j
q3, lj

qr
j
q1, tj

qr
j
q3

}
;

• Sj
q =

{
sj

q1s
j
q2, sj

q2s
j
q3, sj

q3s
j
q4, sj

q4s
j
q1

}
;

• Rj
q =

{
rj

q1r
j
q2, rj

q2r
j
q3, rj

q3r
j
q4, rj

q4r
j
q1

}
;

• if `j
q = xi, Bj

q =
{
xi

1s
j
q2, xi

2s
j
q4, xi

1r
j
q2, xi

2r
j
q4

}
;

• if `j
q = xi, Bj

q =
{
xi

1r
j
q2, xi

2r
j
q4, xi

1s
j
q2, xi

2s
j
q4

}
;

• X i
∗ = {xi

1x
i
2, xi

1x
i
2};

• P j
∗ =

{
pj

1p
j
2, pj

2p
j
3, pj

3p
j
4

}
;

• Qj
q =

{
lj
qt

j
q, sj

q1s
j
q3, sj

q2s
j
q4, rj

q1r
j
q3, rj

q2r
j
q4

}
.

We let

E(G1(X, C)) =
⋃

1≤i≤n

X i ∪
⋃

1≤j≤m,q∈{1,2,3}
(Lj ∪ T j ∪ P j ∪ Aj

q ∪ Sj
q ∪Rj

q ∪Bj
q)

and

E(G2(X, C)) \ E(G1(X, C)) =
⋃

1≤i≤n

X i
∗ ∪

⋃
1≤j≤m,q∈{1,2,3}

(P j
∗ ∪Qj

q).
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This construction is shown in Figure 1. The edges in set E(G1(X, C)) cor-
respond to the solid edges, and the edges in set E(G2(X, C)) \E(G1(X, C))
correspond to the dotted edges. A C4-free sandwich graph corresponds to a
selection of the dotted edges that, when added to the solid edges, makes the
graph C4-free.

p11

l11

p12

l12

l13

p14

p13

t11

t12

t13

s114

s113

s112

s111

r114

r113

r112

r111

s124

s123

s122

s121

r124

r123

r122

r121

s134

s133

s132

s131

r134

r133

r132

r131

x1
1

x1
2

x1
2

x1
1

x3
1

x3
2

x3
2

x3
1

x2
1

x2
2

x2
2

x2
1

p21

l21

p22

l22

l23

p24

p23

t21

t22

t23

s214

s213

s212

s211

r214

r213

r212

r211

s224

s223

s222

s221

r224

r223

r222

r221

s234

s233

s232

s231

r234

r233

r232

r231

x4
1

x4
2

x4
2

x4
1

x5
1

x5
2

x5
2

x5
1

Figure 1: Example from [3] of the constructed instance (G1(X, C), G2(X, C)) for X =
{x1, . . . , x5} , C = {c1, c2} and c1 = (x1 ∨ x2 ∨ x3), c2 = (x4 ∨ x5 ∨ x3). Solid edges are
forced, and dotted edges are optional.

The following follows immediately from the construction.
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Lemma 12. For every 3Sat instance in which each clause contains exactly
three variables, the graph G = (V (G1(X, C)), E(G2(X, C)) \ E(G1(X, C)))
of optional edges is a forest, and each connected component consists either of
an edge, a single vertex, or a three-edge path.

Theorem 13 ([3]). Let (X, C) be a 3Sat instance in which each clause
contains exactly three variables. The instance (G1(X, C), G2(X, C)) is a Yes
instance for the C4-free sandwich problem if and only if (X, C) is a Yes
instance for 3Sat.

A house can be constructed from a four-cycle by adding a new vertex
adjacent to two consecutive vertices of the cycle. By adding such a new
vertex to every possible C4 in the sandwich instance we constructed, we
obtain the following result:

Theorem 14. The house-free sandwich problem is NP -complete. It is NP -
complete to decide if (G1, G2) is a Yes instance for the C4-free sandwich
problem or a No instance for the house-free sandwich problem.

Proof. Let (X, C) be an instance of 3Sat in which each clause contains
exactly three variables. Let (G′1, G′2) arise from (G1(X, C), G2(X, C)) by
adding a new vertex of degree two for each edge uv ∈ E(G1(X, C)), which
defines a new set W . The new set W contains |E(G1(X, C))| vertices, each
w ∈ W is associated with an edge e(w) ∈ E(G1(X, C)), and for each w ∈ W ,
e(w) = uv, we add edges uw and wv to G′1 and G′2. It follows that since e(w)
is in every sandwich graph for every w ∈ W , no w ∈ W is in a four-cycle in
any sandwich graph for (G′1, G′2).

Suppose that (G′1, G′2) is a Yes instance for the house-free sandwich prob-
lem, and let G be a house-free sandwich graph for (G′1, G′2). Suppose that
G \ W contains a four-cycle with vertex set {a, b, c, d}. By Lemma 12, it
follows that one of its edges, say ab, is in E(G1(X, C)). Let w ∈ W with
e(w) = ab, then {a, b, c, d, w} induces a house in G, a contradiction. It
follows that G \ W is a C4-free sandwich graph for (G1(X, C), G2(X, C)),
proving that (G′1, G′2) is a Yes instance for the C4-free sandwich problem.
By Theorem 13, it follows that (X, C) is a Yes instance for 3Sat.

Conversely, suppose that (X, C) is a Yes instance for 3Sat. Then, by
Theorem 13, it follows that there exists a sandwich graph G for (G1(X, C), G2(X, C))
such that G is C4-free. Let E = E(G) \ E(G1(X, C)), and let G′ = G′1 ∪ E.
Suppose that G′ contains a four-cycle. Since no vertex in W is in a four-
cycle as observed above, it follows that G′ \W contains a four-cycle. But
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G′ \W = G, a contradiction. Thus G′ is C4-free, and hence house-free. This
proves that (G′1, G′2) is a Yes instance for the C4-free and the house-free
sandwich problem.

We have proved that (X, C) is a Yes instance for 3Sat if and only if
(G′1, G′2) is a Yes instance for the house-free sandwich problem if and only
if (G′1, G′2) is a Yes instance for the C4-free sandwich problem. Since 3Sat
is NP -complete, it follows that the house-free sandwich problem is NP -
complete.

To prove the following statement, we replace the vertex set of our previous
instance by a stable set N , and add two types of gadgets corresponding to
forced edges and non-edges of the previous instance, respectively:

Theorem 15. The house-free partitioned probe problem is NP -complete.

Proof. In Theorem 14, we proved that the problem of deciding if (G1, G2) is
a Yes instance for the C4-free sandwich problem or a No instance for the
house-free sandwich problem is NP -complete.

Let (G1, G2) be a sandwich instance. Let E1 = E(G1), E2 = E(G2). We
construct an instance G′, N for the house-free partitioned probe problem as
follows. We start from a stable set N which is in bijection with the vertices
of G1, and for every pair u, v of distinct vertices in N , we add the following:

• if uv ∈ E1, we add vertices a, b, c with N(a) = {u, v, c} , N(b) = {u, v}
and N(c) = {a, u};

• if uv 6∈ E2, we add vertices a, b, c with N(a) = {u, b, c}, N(b) = {a, c},
N(c) = {a, b, v}.

Let P = V (G′) \N .
Suppose that (G1, G2) is a Yes instance for the C4-free sandwich problem,

and let H be a C4-free sandwich graph for (G1, G2). Let H ′ = G′ ∪ E(H).
Then H ′|N is C4-free. Suppose that H ′ is not house-free. Then H ′ contains
a four-cycle using a vertex x in P . Suppose that x was added by the first
bullet, for uv ∈ E1, then uv ∈ E(H ′). If x = b or x = c, then x has exactly
two neighbors, and they are adjacent; consequently x is not in a four-cycle.
Therefore, x = a, but neither b nor c are in a four-cycle, but two neighbors
of a are in a four-cycle. This is a contradiction, since a has degree three. It
follows that x is not in a four-cycle, a contradiction. Thus x was added by
the second bullet, and it follows that x 6= b, so we may assume that x = a.
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Since b is not in a four-cycle, it follows that the four-cycle containing x also
contains c, u and v. But uv 6∈ E2 and so uv 6∈ E(H ′), a contradiction. This
proves that H ′ is C4-free, and in particular, house-free. So G′, N is a Yes
instance for the house-free partitioned probe problem.

Now suppose that G′, N is a Yes instance for the house-free partitioned
probe problem, and let H ′ be a house-free (P, N)-probe graph for G′. Let
uv ∈ E1, then uv ∈ E(H ′), because otherwise u, v together with the vertices
added for u, v in the first bullet induce a house in H ′. Let uv 6∈ E2, then
uv 6∈ E(H ′), because otherwise u, v together with the vertices added for u, v
in the second bullet induce a house in H ′. It follows that H ′|N is a house-free
sandwich graph for (G1, G2), and so (G1, G2) is not a No instance for the
house-free sandwich problem.

Thus, we have reduced the problem from Theorem 14 to the house-free
partitioned probe problem, and it follows that the house-free partitioned
probe problem is NP -complete.

By taking complements in Theorem 15, we obtain the following.

Corollary 16. The P5-free partitioned probe problem is NP -complete.

Our next goal is to show that the P6-free sandwich problem is NP -
complete.

Lemma 17. The 3Sat problem is NP -complete even when restricted to in-
stances in which no negations appear in clauses of length three (but negations
may occur in clauses of length two).

Proof. Let (X, C) be a 3Sat instance and suppose that there exist i, j such
that xi occurs in Cj, where Cj has length three. We replace xi by a new
variable y in Cj, and add two clauses (xi ∨ y) and (xi ∨ y). The two new
clauses are satisfied if and only if y = xi, and so (X, C) is satisfiable if and
only if the new instance is. This does not create any new clauses of length
three. Thus, by adding at most 3|C| new variables and 6|C| new clauses,
we can transform (X, C) into an equivalent 3Sat instance with the required
restrictions. This proves the result.

We use the following result, a tool in the proof of Theorem 13:

Lemma 18 ([3]). Let (X, C) be a 3Sat instance in which every clause con-
tains exactly three variables. Let (x1, . . . , xn) be an assignment of the vari-
ables. Then the following are equivalent:
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• (X, C) is satisfied by the assignment (x1, . . . , xn);

• there is a C4-free sandwich graph G for (G1(X, C), G2(X, C)) with
xi

1x
i
2 ∈ E(G) if and only if xi is true in the assignment (x1, . . . , xn).

The following is a list of every possible four-cycle in a sandwich graph for
(G1(X, C), G2(X, C)):

• pj
1p

j
2p

j
3p

j
4, pj

qt
j
qp

j
q+1l

j
q, pj

qs
j
q1s

j
q3p

j
q+1, lj

qr
j
q1r

j
q3t

j
q;

• sj
q1s

j
q2s

j
q3s

j
q4, rj

q1r
j
q2r

j
q3r

j
q4, xi

1x
i
1x

i
2x

i
2;

• if xi occurs in position q in Cj, xi
1s

j
q2s

j
q4x

i
2, xi

1r
j
q2r

j
q4x

i
2;

• if xi occurs in position q in Cj, xi
1r

j
q2r

j
q4x

i
2, xi

1s
j
q2s

j
q4x

i
2.

The following lemma shows how to modify our construction in order to
use it to decide if a 3Sat instance (X, C) with xi ∈ X has a satisfying
assignment in which xi is false. We accomplish this by removing all vertices
designed to represent xi and its copies, and by turning every edge pj

qp
j
q+1

corresponding to the literal `j
q = xi from an optional edge into a forced edge.

Lemma 19. Let (X, C) be a 3Sat instance in which every clause contains
exactly three variables, and let xi ∈ X such that every occurrence of xi in C
is non-negated (i. e. the literal xi does not occur). We let Vi denote the set
of vertices that are either in Xi or of the form lj

q, tj
q, rj

qk or sj
qk for a clause

cj = (`j
1∨`j

2∨`j
3) where k ∈ {1, 2, 3, 4}, `j

q = xi, and j ∈ {1, . . . , m}. We let Ei

denote the set of edges pj
qp

j
q+1 for a clause cj = (`j

1∨ `j
2∨ `j

3) with `j
q = xi and

j ∈ {1, . . . , m}. We define a sandwich instance (Gi
1(X, C), Gi

2(X, C)) with
V (Gi

d(X, C)) = V (Gd(X, C)) \ Vi and Gi
d(X, C) = Gd(X, C)|V (Gi

d(X, C)) ∪
Ei for d = 1, 2. Then (X, C) is satisfied by an assignment such that xi is false
if and only if there is a C4-free sandwich graph for (Gi

1(X, C), Gi
2(X, C)).

Proof. By Lemma 18, (X, C) is satisfied by an assignment such that xi is false
if and only if there is a C4-free sandwich graph G for (G1(X, C), G2(X, C))
with xi

1x
i
2 6∈ E(G). Since G is C4-free, this implies that xi

1x
i
2 ∈ E(G).

Let cj = (`j
1 ∨ `j

2 ∨ `j
3) such that `j

q = xi for some q ∈ {1, 2, 3} and j ∈
{1, . . . , m}. Then rj

q2r
j
q4 6∈ E(G), for otherwise

{
xi

1, rj
q2, rj

q4, xi
2

}
induces a

four-cycle in G. Therefore, rj
q1r

j
q3 ∈ E(G), and so lj

qt
j
q 6∈ E(G). This implies
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that pj
qp

j
q+1 ∈ E(G). Consequently, G|V (Gi

1(X, C)) is a C4-free sandwich
graph for (Gi

1(X, C), Gi
2(X, C)).

For the converse direction suppose that G is a C4-free sandwich graph for
(Gi

1(X, C), Gi
2(X, C)) and let F denote the set of edges xi

1x
i
2 and rj

q1r
j
q3, sj

q2s
j
q4

for j ∈ {1, . . . , m}, q ∈ {1, 2, 3} such that cj = (lj
1 ∨ lj

2 ∨ lj
3) such that lj

q = xi.
Then G′ with V (G′) = V (G1(X, C)) and E(G′) = E(G1(X, C)) ∪ E(G) ∪ F
is a sandwich graph for (G1(X, C), G2(X, C)) with xi

1x
i
2 6∈ E(G). Moreover,

G′ is C4-free by construction. By Lemma 18, it follows that (X, C) has a
satisfying assignment in which xi is false.

We now consider the P6-free sandwich problem. Our strategy is as fol-
lows. We switch to the P C

6 -free sandwich problem. Every possible P C
6 in our

instance will consist of a possible four-cycle with vertex set {a, b, c, d} in the
instance (G1, G2) as in Lemma 19, along with a vertex e adjacent to b and c,
where bc is a forced edge and b-d-e-a-c is a P C

5 , and a vertex f adjacent to
either {d, e, a, c} or {b, d, e, a}. Note that if there are two vertices, f and f ′,
such that f is adjacent to {d, e, a, c} and f ′ is adjacent to {b, d, e, a}, then
there is a possible P C

6 that does not use all vertices of the four-cycle. To
avoid this problem, our main goal is to identify sets E∗, V ∗ such that E∗

is a set of forced edges and contains an edge of every possible four-cycle of
(G1, G2), and V ∗ is a stable set of vertices in G2 that contains an endpoint
of every edge in E∗. Then we add a vertex e to every edge bc in E∗, and add
a vertex f with neighbors {d, e, a, c} if b ∈ V ∗, and with neighbors {b, d, e, a}
if c ∈ V ∗.

Theorem 20. The P6-free sandwich problem is NP -complete.

Proof. Let (X ′, C ′) be a 3Sat instance as in Lemma 17. We may assume
that (X ′, C ′) contains no clauses containing exactly one variable. Let (X, C)
arise from (X ′, C ′) by adding a new variable x0 to X, and by replacing every
clause cj = (`j

1∨ `j
2) of length two in C ′ by (x0∨ `j

1∨ `j
2) if `j

1 and `j
2 are either

both negated or both non-negated, and by (`j
1∨x0∨`j

2) otherwise. We remark
that the order matters for the remaining of the proof (for the construction of
set V ∗ below). Then (X, C) has a satisfying assignment in which x0 is false
if and only if (X ′, C ′) has a satisfying assignment. Furthermore, every clause
in C contains exactly three variables.

Let V0, E0, (G0
1(X, C), G0

2(X, C)) as in Lemma 19. Then (G0
1(X, C), G0

2(X, C))
has a C4-free sandwich graph if and only if (X ′, C ′) is satisfiable. Let |C| = m;

13



and for j ∈ {1, . . . , m}, let cj = (`j
1 ∨ `j

2 ∨ `j
3) denote the jth clause of C. We

let E∗ denote the following set of edges:

• for xi ∈ X ′, xi
1x

i
1;

• for xi ∈ X ′, and q, j such that xi = `j
q, xi

1r
j
q2, rj

q1r
j
q4, rj

q1l
j
q, sj

q4x
i
2, sj

q4s
j
q1;

• for xi ∈ X ′, and q, j such that xi = `j
q, xi

1s
j
q2, sj

q1s
j
q4, sj

q1p
j
q, rj

q4x
i
2, rj

q4r
j
q1;

• if x0 does not occur in cj, pj
1p

j
4, pj

1l
j
1, pj

3l
j
2, pj

3l
j
3, pj

1s
j
11, pj

3s
j
31, pj

3s
j
23;

• if cj = (x0 ∨ xi ∨ xk), pj
1p

j
4, pj

3l
j
2, pj

3l
j
3, pj

3s
j
31, pj

3s
j
23;

• if cj = (x0 ∨ xi ∨ xk), pj
1p

j
4, lj

2p
j
3, lj

3p
j
3, lj

2r
j
21, lj

3r
j
31;

• if cj = (xi ∨ x0 ∨ xk), pj
1p

j
4, pj

1l
j
1, lj

3p
j
3, pj

1s
j
11, lj

3r
j
31; and

• if cj = (xi ∨ x0 ∨ xk), pj
4p

j
1, pj

4l
j
3, lj

1p
j
2, lj

1r
j
11, pj

4s
j
33.

We let V ∗ denote the following set of vertices:

• for xi ∈ X ′, xi
1;

• for xi ∈ X ′, and q, j such that xi = `j
q, rj

q1 and sj
q4;

• for xi ∈ X ′, and q, j such that xi = `j
q, sj

q1 and rj
q4;

• if x0 does not occur in cj, pj
1 and pj

3;

• if cj = (x0 ∨ xi ∨ xk), pj
1 and pj

3;

• if cj = (x0 ∨ xi ∨ xk), pj
1, lj

2 and lj
3;

• if cj = (xi ∨ x0 ∨ xk), lj
3 and pj

1; and

• if cj = (xi ∨ x0 ∨ xk), lj
1 and pj

4.

By construction, E∗ and V ∗ have the following properties:

• E∗ ⊆ E(G0
1(X, C));

• for every four-cycle in a sandwich graph for (G0
1(X, C), G0

2(X, C)), E∗

contains an edge of the cycle;
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• V ∗ is a stable set in G0
2(X, C); and

• every edge in E∗ has an endpoint in V ∗.

These properties are easily verified from the construction using the addi-
tional restrictions on (X, C). Let (G′1, G′2) arise from (G0

1(X, C), G0
2(X, C))

by adding a vertex w(e) for every edge e ∈ E∗ with NG′
1
(w(e)) = NG′

2
(w(e)) =

{u, v} where e = uv. Let (G1, G2) arise from (G′1, G′2) by adding a vertex v′

for every vertex v ∈ V ∗ with NG1(v′) = NG2(v′) = V (G1) \ {v, v′}, i. e. the
set V ′ = {v′ : v ∈ V ∗} is a clique.

We claim that (G1, G2) is a Yes instance for the P C
6 -free sandwich prob-

lem if and only if (G0
1(X, C), G0

2(X, C)) is a Yes instance for the C4-free
sandwich problem (which, by Lemma 19 is true if and only if (X ′, C ′) is a
Yes instance for 3Sat).

Suppose that G is a P C
6 -free sandwich graph for (G1, G2). Let G′ =

G|V (G0
1(X, C)). Suppose that G′ contains an induced four-cycle with vertex

set {a1, a2, a3, a4} and edge set {a1a2, a2a3, a3a4, a4a1}. Then E∗ contains an
edge of this four-cycle; without loss of generality, say a1a2 ∈ E∗. This implies
that one of a1, a2 ∈ V ∗, say a1 ∈ V ∗. But then a′1-a1-a3-w(a1a2)-a4-a2 is an
induced P6 in GC , a contradiction. So G′ is a C4-free sandwich graph for
(G0

1(X, C), G0
2(X, C)).

Conversely, suppose that G is a C4-free sandwich graph for (G0
1(X, C), G0

2(X, C)).
Let G′ = G1 ∪ E(G). Suppose that the complement of G′ contains an
induced P6 with vertices a1, . . . , a6 in this order along the path. Then
V ′ ∩ {a1, . . . , a6} ⊆ {a1, a6}, since every interior vertex has at least two non-
neighbors. Suppose first that V ′ ∩ {a1, . . . , a6} = {a1, a6}. Then a2, a5 ∈ V ∗,
but a2 is adjacent to a5, a contradiction, since V ∗ is a stable set. It follows
that |V ′ ∩ {a1, . . . , a6} | ≤ 1, and so G′ \ V ′ contains a P C

5 , and thus an
induced four-cycle. Since G is C4-free, it follows that there is a vertex in
V (G′) \ (V ′ ∪ V (G)) which is contained in an induced four-cycle in G′ \ V ′.
Thus there exists an edge e ∈ E∗ such that w(e) is in an induced four-cycle
in G. But w(e) has exactly two neighbors in G′ \ V ′, and they are adjacent
in every sandwich graph G′ \V ′ for (G′1, G′2), it follows that w(e) is not in an
induced four-cycle in G′ \ V ′. This is a contradiction, and it follows that G′

is P C
6 -free.
This implies that the P C

6 -free sandwich problem is NP -complete, and by
taking complements, it follows that the P6-free sandwich problem is NP -
complete.
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4. From short paths to longer paths

Lemma 21. For k ≥ 5, if the Pk-free sandwich is NP -complete, then the
Pk+2-free sandwich problem is NP -complete.
Proof. Let (G1, G2) be an instance of the Pk-free sandwich problem, and for
i ∈ {1, 2} let G′i arise from Gi by adding, for each vertex v in V (Gi), a new
vertex v′ with N(v′) = v.

Suppose that (G1, G2) is a Yes instance for the Pk-free sandwich problem.
Let H be a Pk-free sandwich graph for (G1, G2). Let H ′ = G′1 ∪ (E(H) \
E(G1)) = G′1 ∪ E(H). Then H ′|V (G1) is Pk-free. Suppose that H ′ is not
Pk+2-free, and let Q be an induced path on k + 2 vertices in H ′. Then
V (H ′) \ V (G1) contains a vertex in V (Q) of degree at least two. But every
vertex in V (H ′) \ V (G1) has degree one in H ′, a contradiction. This proves
that H ′ is Pk+2-free, and so (G′1, G′2) is a Yes instance for the Pk+2-free
sandwich problem.

Conversely, suppose that (G′1, G′2) is a Yes instance for the Pk+2-free
sandwich problem. Let H ′ be a Pk+2-free sandwich graph for (G′1, G′2). Then
H ′|V (G1) is a Pk-free sandwich graph for (G1, G2), because if there was a
Pk in H ′|V (G1) with endpoints u, v ∈ V (G1), then adding u′, v′ to this path
would yield a Pk+2 in H ′, a contradiction. So (G1, G2) is a Yes instance for
the Pk-free sandwich problem.
Theorem 22. For k ≥ 5, the Pk-free sandwich problem, partitioned probe
problem, and unpartitioned probe problem in the graph and in the complement
are NP -complete.
Proof. For the sandwich problem, this follows from Corollary 16 for k = 5,
since the partitioned probe problem is a special case of the sandwich problem,
and from Theorem 20 and Lemma 21. For the partitioned probe problem,
this follows from Corollary 16 for k = 5, and from Corollary 4 for k ≥ 6,
since P C

k is 3-connected for k ≥ 6.
Since Pk, k ≥ 5, does not contain twins, the NP -completeness for the

unpartitioned problem in the graph and in the complement follows from
Theorem 5 and Corollary 6, respectively.

5. Concluding remarks

We have resolved the complexity of the sandwich problem, partitioned
probe problem, unpartitioned probe problem, and unpartitioned probe prob-
lem in the complement for the property of being Pk-free for all k ∈ N. This
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is a special case of the more general question for which graphs H the above-
mentioned problems for the property of being H-free is NP -complete, and
for which they can be solved in polynomial time.

We further compare the complexities of the sandwich problem, parti-
tioned probe problem, unpartitioned probe problem, and unpartitioned probe
problem in the complement, and establish a new sufficient condition for the
hardness of the partitioned probe problem to imply that the other problems
are also hard.
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