Sandwich and probe problems for excluding paths

Celina M. H. de Figueiredo ${ }^{1 a}$, Sophie Spirkl ${ }^{\text {b }}$
${ }^{a}$ COPPE, Universidade Federal do Rio de Janeiro, Brazil Email: celina@cos.ufrj.br
${ }^{b}$ Princeton University, Princeton, NJ 08544
Email: sspirkl@princeton. edu

Abstract

Let P_{k} denote an induced path on k vertices. For $k \geq 5$, we show that the P_{k}-free sandwich problem, partitioned probe problem, and unpartitioned probe problem are $N P$-complete. For $k \leq 4$, it is known that the P_{k}-free sandwich problem, partitioned probe problem, and unpartitioned probe problem are in P.

Keywords: graph sandwich problem, probe problem, partitioned probe problem, unpartitioned probe problem

1. Introduction

All graphs in this paper are finite and simple. Let G be a graph. G^{C} denotes the complement of G, obtained from G by replacing each edge with a non-edge and vice versa. For $X \subseteq V(G), G \mid X$ denotes the induced subgraph of G with vertex set X. For $X, Y \subseteq V(G)$ with $X \cap Y=\emptyset$, we say that X is complete to Y if for all $x \in X, y \in Y, x y \in E(G)$; we say that X is anticomplete to Y if for all $x \in X, y \in Y, x y \notin E(G)$. For $v \in V(G)$, $X \subseteq V(G) \backslash\{v\}$, we say that v is complete (anticomplete) to X if $\{v\}$ is complete (anticomplete) to X.

Let $G_{1}=\left(V_{1}, E_{1}\right), G_{2}=\left(V_{2}, E_{2}\right)$, then G_{2} is a supergraph of G_{1} if $V_{1}=V_{2}$ and $E_{1} \subseteq E_{2}$. A pair $\left(G_{1}, G_{2}\right)$ of graphs so that G_{2} is a supergraph of G_{1} is called a sandwich instance. The edges in E_{1} are called forced, while the edges in $E_{2} \backslash E_{1}$ are optional. A graph G is called a sandwich graph for the

[^0]sandwich instance $\left(G_{1}, G_{2}\right)$ if G_{2} is a supergraph of G and G is a supergraph of G_{1}. For a graph G and a set E^{\prime} of edges with both endpoints in $V(G)$, $G \cup E^{\prime}$ denotes the supergraph $G^{\prime}=\left(V(G), E(G) \cup E^{\prime}\right)$ of G, and $G \backslash E^{\prime}$ denotes the graph $G^{\prime \prime}=\left(V(G), E(G) \backslash E^{\prime}\right)$, and G is a supergraph of $G^{\prime \prime}$.

Let \mathcal{P} be a graph property. We define the complementary property \mathcal{P}^{C} by saying that G satisfies \mathcal{P}^{C} if and only if G^{C} satisfies \mathcal{P}.

The \mathcal{P} RECOGNItion problem is the problem of deciding whether a given graph G satisfies \mathcal{P}. The \mathcal{P} sandwich problem is the following: For a given sandwich instance $\left(G_{1}, G_{2}\right)$, does there exist a sandwich graph G for $\left(G_{1}, G_{2}\right)$ so that G satisfies \mathcal{P} ? This generalization of the recognition problem was introduced by Golumbic and Shamir [4]. The sandwich problem becomes the recognition problem when $G_{1}=G_{2}$, and thus, if the \mathcal{P} recognition problem is $N P$-complete, so is the \mathcal{P} sandwich problem.

Let G, G^{\prime} be a pair of graphs such that G^{\prime} is a supergraph of G. Then G^{\prime} is a (P, N)-probe graph for G if (P, N) is a partition of $V(G), N$ is a stable set in G, and every edge in $E\left(G^{\prime}\right) \backslash E(G)$ has both of its endpoints in N.

For a graph property \mathcal{P}, a graph $G=(V, E)$ is a \mathcal{P} probe graph with partition (P, N) if there exists a (P, N)-probe graph G^{\prime} for G such that G^{\prime} satisfies \mathcal{P}. A graph G is a \mathcal{P} probe graph if there exists a partition (P, N) of its vertex set such that G is a \mathcal{P} probe graph with partition (P, N). The vertices in P are called probes, and the vertices in N are called non-probes.

For a graph property \mathcal{P}, the \mathcal{P} partitioned probe problem is the following: Given a graph $G=(V, E)$, and a stable set $N \subseteq V$, is G a \mathcal{P} probe graph with partition $(V \backslash N, N)$? The partitioned probe problem was first introduced in [6, 7] for interval graphs because of its applications to the physical mapping of DNA.

The \mathcal{P} partitioned probe problem with input graph $G=(V, E)$ and stable set $N \subseteq V$ is a special case of the \mathcal{P} sandwich problem in which $E\left(G_{1}\right)=E$ and the edges in $E\left(G_{2}\right) \backslash E\left(G_{1}\right)$ are precisely the edges between all pairs of distinct vertices in N.

Note that the sandwich problem and the partitioned probe problem are invariant under taking complements in the following sense. The first statement is shown in (5).

Lemma 1. The \mathcal{P}^{C} sandwich problem is $N P$-complete if and only if the \mathcal{P} sandwich problem is. The \mathcal{P}^{C} partitioned probe problem is $N P$-complete if and only if the \mathcal{P} partitioned probe problem is.

Proof. An instance $\left(G_{1}, G_{2}\right)$ is a YES instance for \mathcal{P}^{C} sandwich problem if and only if $\left(G_{2}^{C}, G_{1}^{C}\right)$ is a YES instance for the \mathcal{P} sandwich problem. The same is true for the \mathcal{P} partitioned probe problem: A graph G with partition (P, N) is a YES instance for the \mathcal{P} partitioned probe problem if and only if the graph G^{\prime} arising from G^{C} by removing all edges with both endpoints in N with the partition (P, N) is a YES instance for the \mathcal{P}^{C} partitioned probe problem.

Let \mathcal{P} be a graph property. The \mathcal{P} unpartitioned probe problem is the following: Given a graph G, is G a \mathcal{P} probe graph? We also consider the \mathcal{P} unpartitioned probe problem in the complement: Given a graph G, is G^{C} a \mathcal{P}^{C} probe graph? In other words, in the unpartitioned probe problem, the goal is to decide whether there is a stable set N in G and a set of edges E^{\prime} with both endpoints in N such that $G \cup E^{\prime}$ satisfies \mathcal{P}, whereas in the unpartitioned probe problem in the complement, the goal is to decide whether there is a clique N in G and a set of edges E^{\prime} with both endpoints in N such that $G \backslash E^{\prime}$ satisfies \mathcal{P}. Therefore, these problems are not equivalent in general.

Forbidden induced subgraph sandwich problems have been considered in [3] and then further studied in [2], which considered the complexities of partitioned and unpartitioned probe problems as well. In several papers, probe problems have been considered with respect to subclasses of perfect graphs, and the perfect graph sandwich problem is the only remaining open sandwich problem in the seminal paper by Golumbic et al. [5].

In the present paper, we consider sandwich and probe problems for excluding paths. We let P_{k} denote an induced path on k vertices. The graph P_{5}^{C} is called a house. For $k \geq 5$, we show that the P_{k}-free sandwich problem, partitioned probe problem, and unpartitioned probe problem are $N P$-complete. For $k \leq 4$, it is known that the P_{k}-free sandwich problem, partitioned probe problem, and unpartitioned probe problem are in P. The paper is organized as follows. In Section 2, we give some reductions. In Section 3, we consider the sandwich and probe problems for P_{3}, P_{4}, P_{5} and P_{6}; and in Section 4, we consider $P_{k}, k \geq 6$.

2. Reductions

Let G be a graph and let $x, y \in V(G)$ be distinct vertices. Then x and y are twins if $N(x) \backslash\{y\}=N(y) \backslash\{x\}$. They are adjacent twins if x is adjacent
to y, and non-adjacent twins otherwise. Note that if x, y are adjacent twins in G, then they are non-adjacent twins in G^{C}. For $k \geq 4, P_{k}$ does not contain twins.

We will use the following results from [2].
Theorem $2([2])$. For 3-connected graphs $F \neq K_{n}$, if the F-free sandwich problem is $N P$-complete, so is the F-free partitioned probe problem.

Theorem 3 ([2]). For 2-connected graphs $F \neq K_{n}$, if the F-free partitioned probe problem is NP-complete, so is the F-free unpartitioned probe problem.

By taking complements in Theorem 2 and applying Lemma 1 , we also obtain the following.

Corollary 4 ([2]). Let F be a graph such that $F^{C} \neq K_{n}$ and F^{C} is 3connected. If the F-free sandwich problem is $N P$-complete, so is the F-free partitioned probe problem.

Theorem 5. Let H be a graph that does not contain any adjacent twins. If the H-free partitioned probe problem is $N P$-complete, so is the H-free unpartitioned probe problem.

Proof. Let G with partition (P, N) be an instance for the H-free partitioned probe problem, and let G^{\prime} arise from G by adding an adjacent twin for every vertex in P; call this set of new vertices P^{\prime}. For every vertex $v \in P$, we let v^{\prime} denote its adjacent twin in P^{\prime}. We claim that G is a YES instance for the H-free partitioned probe problem if and only if G^{\prime} is a YES instance for the H-free unpartitioned probe problem.

Let E be a set of edges with both endpoints in N so that $(V(G), E(G) \cup E)$ is H-free, and suppose for a contradiction that $G^{\prime \prime}=\left(V\left(G^{\prime}\right), E\left(G^{\prime}\right) \cup E\right)$ is not H-free. Let $S \subseteq V\left(G^{\prime}\right)$ induce a subgraph isomorphic to H in $G^{\prime \prime}$. Since H contains no adjacent twins, it follows that S does not contain v and v^{\prime} for any $v \in P$, since v and v^{\prime} are adjacent twins in $G^{\prime \prime}$. Therefore, we may assume that if S contains a vertex in $\left\{v, v^{\prime}\right\}$ for some $v \in P$, then S contains v and not v^{\prime}, and so $S \subseteq N \cup P$. But then $S \subseteq V(G)$, and so S induces a subgraph isomorphic to H in $(V(G), E(G) \cup E)$. This is a contradiction and it follows that $G^{\prime \prime}$ is H-free.

For the converse direction, let $N^{\prime} \subseteq V\left(G^{\prime}\right)$ be a stable set, and let E^{\prime} be a set of edges with both endpoints in N^{\prime} so that $G^{\prime \prime}=\left(V\left(G^{\prime}\right), E\left(G^{\prime}\right) \cup E^{\prime}\right)$ is H-free. Since N^{\prime} is a stable set in G^{\prime}, N^{\prime} does not contain v and v^{\prime} for
any $v \in P$, and since they are adjacent twins, we may assume (by adjusting E^{\prime} accordingly) that $N^{\prime} \cap P=\emptyset$. Let E denote the set of edges in E^{\prime} with both endpoints in N. It follows that $(V(G), E(G) \cup E)=G^{\prime \prime} \mid V(G)$, since E^{\prime} contains no edge with an endpoint in P. Thus $(V(G), E(G) \cup E)$ is H-free, which proves the claim.

Since the size of G^{\prime} is at most twice the size of G, this reduction takes polynomial time; the result of the theorem follows.

By taking complements in Theorem 5, we obtain the following:
Corollary 6. Let H be a graph that does not contain any non-adjacent twins. If the H-free partitioned probe problem is NP-complete, so is the H-free unpartitioned probe problem in the complement.

Proof. Let H be a graph that does not contain any non-adjacent twins. Then H^{C} does not contain any adjacent twins. Suppose that the H-free partitioned probe problem is $N P$-complete. Then, by Lemma 1, the H^{C}-free partitioned probe problem is $N P$-complete. Now by Theorem 5, the H^{C}-free unpartitioned probe problem is $N P$-complete, which means that the H-free unpartitioned probe problem in the complement is $N P$-complete.

3. Short paths

We first consider the P_{3}-free case and the P_{4}-free case. Here, the sandwich problem and both probe problems can be solved in polynomial time, as Theorem 7. Lemma 8 and Theorem 9 show.

Theorem 7 ([3]). The P_{3}-free sandwich problem and partitioned probe problem can be solved in polynomial time.

We prove the following simple lemma for completeness.
Lemma 8. The P_{3}-free unpartitioned probe problem can be solved in polynomial time.

Proof. Let G be a graph, and consider the following algorithm: Let G^{\prime} be a copy of G. Let $N=\emptyset$. While there is an induced P_{3} with vertices x, y, z in order in G^{\prime}, add x, z to N and $x z$ to $E\left(G^{\prime}\right)$. If N is a stable set in G, then this algorithm yields a $(V(G) \backslash N, N)$-probe graph G^{\prime} for G which is P_{3}-free. For the converse direction, note that if there is a P_{3}-free probe graph $G^{\prime \prime}$
for G with partition $\left(P^{\prime \prime}, N^{\prime \prime}\right)$, then at every step of the algorithm, $G^{\prime \prime}$ is a supergraph of G^{\prime}, and hence $N \subseteq N^{\prime \prime}$. Thus, if such a $G^{\prime \prime}$ exists, then N is stable. This concludes the proof.
Theorem 9 ([5, []). The P_{4}-free sandwich problem, partitioned probe problem and unpartitioned probe problem can be solved in polynomial time.

From [2], we know the following:
Theorem 10 ([2]). The C_{4}-free partitioned probe problem is NP-complete.
We now review a construction given in [3] which we will use to prove that the house-free sandwich problem is $N P$-complete, and which is used in [3] to prove the following in the case that $k=4$.
Theorem 11 ([3]). The C_{k}-free sandwich problem is NP-complete for all fixed $k \geq 4$.

Let (X, C) be a 3 Sat instance with a set $X=\left\{x_{1}, \ldots, x_{n}\right\}$ of variables and a set $C=\left\{c_{1}, \ldots, c_{m}\right\}$ of clauses such that each clause contains exactly three variables. We follow the notation of [3], but we use ℓ_{q}^{j} for a literal in the 3SAT instance and l_{q}^{j} for a vertex of the constructed gadget from the 3SAT instance (instead of using l_{q}^{j} for both).

Before giving a detailed definition of the construction, we briefly describe how it works. For every variable x_{i} of (X, C), we will define a set X_{i}, which consists of a four-cycle of forced edges, along with two optional edges, which form the diagonals of this four-cycle. At least one of these optional edges is present in every C_{4}-free sandwich graph for our instance, and which of the diagonal edges is present will correspond to whether x_{i} is true or false. For every clause c_{j} of (X, C), and every literal $\ell_{q}^{j} \in\left\{x_{i}, \overline{x_{i}}\right\}$ in c_{j}, we add two gadgets $\left\{r_{q 1}^{j}, \ldots, r_{q 4}^{j}\right\}$ and $\left\{s_{q 1}^{j}, \ldots, s_{q 4}^{j}\right\}$, which are designed to provide a copy of x_{i} if x_{i} is true and if x_{i} is false, respectively. For c_{j}, we add a four-cycle with vertex set $\left\{p_{1}^{j}, \ldots, p_{4}^{j}\right\}$, which has one forced edge, and one optional edge for each literal. It follows that if there is a set of optional edges that we can add to create a C_{4}-free sandwich graph G, then there is a truth assignment in which for every clause c_{j}, not all three optional edges among $\left\{p_{1}^{j}, \ldots, p_{4}^{j}\right\}$ are present in G, and hence c_{j} contains a true literal.

Later, we will slightly modify the 3SAT instance in order to be able to say more about the structure of the constructed sandwich instance.

We let $\left(G_{1}(X, C), G_{2}(X, C)\right)$ be a sandwich instance with vertex set V, where V contains

- for each variable $x_{i} \in X$ a set $X_{i}=\left\{x_{1}^{i}, x_{2}^{i}, \bar{x}_{1}^{i}, \bar{x}_{2}^{i}\right\}$;
- for each clause $c_{j}=\left(\ell_{1}^{j} \vee \ell_{2}^{j} \vee \ell_{3}^{j}\right)$ in C, a set $C_{j}=A_{j} \cup B_{j}$ where $A_{j}=\left\{p_{1}^{j}, \ldots, p_{4}^{j}\right\}$ and $B_{j}=\bigcup_{q=1,2,3}\left\{l_{q}^{j}, t_{q}^{j}, s_{q 1}^{j}, \ldots, s_{q 4}^{j}, r_{q 1}^{j}, \ldots, r_{q 4}^{j}\right\}$.

We define the following sets of edges for $1 \leq i \leq n, 1 \leq j \leq m, q \in\{1,2,3\}$.

- $X^{i}=\left\{x_{1}^{i} \bar{x}_{1}^{i}, x_{2}^{i} \bar{x}_{1}^{i}, x_{2}^{i} \bar{x}_{2}^{i}, x_{1}^{i} \bar{x}_{2}^{i}\right\} ;$
- $L^{j}=\left\{p_{1}^{j} l_{1}^{j}, l_{1}^{j} p_{2}^{j}, p_{2}^{j} l_{2}^{j}, l_{2}^{j} p_{3}^{j}, p_{3}^{j} l_{3}^{j}, l_{3}^{j} p_{4}^{j}\right\}$;
- $T^{j}=\left\{p_{1}^{j} t_{1}^{j}, t_{1}^{j} p_{2}^{j}, p_{2}^{j} t_{2}^{j}, t_{2}^{j} p_{3}^{j}, p_{3}^{j} t_{3}^{j}, t_{3}^{j} p_{4}^{j}\right\}$;
- $P^{j}=\left\{p_{4}^{j} p_{1}^{j}\right\}$;
- $A_{q}^{j}=\left\{p_{q}^{j} s_{q 1}^{j}, p_{q+1}^{j} s_{q 3}^{j}, l_{q}^{j} r_{q 1}^{j}, t_{q}^{j} r_{q_{3}}^{j}\right\}$;
- $S_{q}^{j}=\left\{s_{q 1}^{j} s_{q 2}^{j}, s_{q 2}^{j} s_{q 3}^{j}, s_{q 3}^{j} s_{q 4}^{j}, s_{q 4}^{j} s_{q 1}^{j}\right\}$;
- $R_{q}^{j}=\left\{r_{q 1}^{j} r_{q 2}^{j}, r_{q 2}^{j} r_{q 3}^{j}, r_{q 3}^{j} r_{q 4}^{j}, r_{q 4}^{j} r_{q 1}^{j}\right\} ;$
- if $\ell_{q}^{j}=x_{i}, B_{q}^{j}=\left\{x_{1}^{i} s_{q 2}^{j}, x_{2}^{i} s_{q 4}^{j}, \bar{x}_{1}^{i} r_{q 2}^{j}, \bar{x}_{2}^{i} r_{{ }_{q 4}}^{j}\right\}$;
- if $\ell_{q}^{j}=\bar{x}_{i}, B_{q}^{j}=\left\{x_{1}^{i} r_{q 2}^{j}, x_{2}^{i} r_{q 4}^{j}, \bar{x}_{1}^{i} s_{q 2}^{j}, \bar{x}_{2}^{i} s_{q 4}^{j}\right\}$;
- $X_{*}^{i}=\left\{x_{1}^{i} x_{2}^{i}, \bar{x}_{1}^{i} \bar{x}_{2}^{i}\right\} ;$
- $P_{*}^{j}=\left\{p_{1}^{j} p_{2}^{j}, p_{2}^{j} p_{3}^{j}, p_{3}^{j} p_{4}^{j}\right\}$;
- $Q_{q}^{j}=\left\{l_{q}^{j} t_{q}^{j}, s_{q 1}^{j} s_{q 3}^{j}, s_{q 2}^{j} s_{q 4}^{j}, r_{q 1}^{j} r_{q 3}^{j}, r_{q 2}^{j} r_{q 4}^{j}\right\}$.

We let

$$
E\left(G_{1}(X, C)\right)=\bigcup_{1 \leq i \leq n} X^{i} \cup \bigcup_{1 \leq j \leq m, q \in\{1,2,3\}}\left(L^{j} \cup T^{j} \cup P^{j} \cup A_{q}^{j} \cup S_{q}^{j} \cup R_{q}^{j} \cup B_{q}^{j}\right)
$$

and

$$
E\left(G_{2}(X, C)\right) \backslash E\left(G_{1}(X, C)\right)=\bigcup_{1 \leq i \leq n} X_{*}^{i} \cup \bigcup_{1 \leq j \leq m, q \in\{1,2,3\}}\left(P_{*}^{j} \cup Q_{q}^{j}\right)
$$

This construction is shown in Figure 1 . The edges in set $E\left(G_{1}(X, C)\right)$ correspond to the solid edges, and the edges in set $E\left(G_{2}(X, C)\right) \backslash E\left(G_{1}(X, C)\right)$ correspond to the dotted edges. A C_{4}-free sandwich graph corresponds to a selection of the dotted edges that, when added to the solid edges, makes the graph C_{4}-free.

Figure 1: Example from [3] of the constructed instance $\left(G_{1}(X, C), G_{2}(X, C)\right)$ for $X=$ $\left\{x_{1}, \ldots, x_{5}\right\}, C=\left\{c_{1}, c_{2}\right\}$ and $c_{1}=\left(x_{1} \vee x_{2} \vee \bar{x}_{3}\right), c_{2}=\left(\bar{x}_{4} \vee x_{5} \vee x_{3}\right)$. Solid edges are forced, and dotted edges are optional.

The following follows immediately from the construction.

Lemma 12. For every 3Sat instance in which each clause contains exactly three variables, the graph $G=\left(V\left(G_{1}(X, C)\right), E\left(G_{2}(X, C)\right) \backslash E\left(G_{1}(X, C)\right)\right)$ of optional edges is a forest, and each connected component consists either of an edge, a single vertex, or a three-edge path.

Theorem 13 ([3]). Let (X, C) be a 3SAT instance in which each clause contains exactly three variables. The instance $\left(G_{1}(X, C), G_{2}(X, C)\right)$ is a Yes instance for the C_{4}-free sandwich problem if and only if (X, C) is a YES instance for 3SAT.

A house can be constructed from a four-cycle by adding a new vertex adjacent to two consecutive vertices of the cycle. By adding such a new vertex to every possible C_{4} in the sandwich instance we constructed, we obtain the following result:

Theorem 14. The house-free sandwich problem is NP-complete. It is NPcomplete to decide if $\left(G_{1}, G_{2}\right)$ is a YES instance for the C_{4}-free sandwich problem or a No instance for the house-free sandwich problem.

Proof. Let (X, C) be an instance of 3 Sat in which each clause contains exactly three variables. Let $\left(G_{1}^{\prime}, G_{2}^{\prime}\right)$ arise from $\left(G_{1}(X, C), G_{2}(X, C)\right)$ by adding a new vertex of degree two for each edge $u v \in E\left(G_{1}(X, C)\right)$, which defines a new set W. The new set W contains $\left|E\left(G_{1}(X, C)\right)\right|$ vertices, each $w \in W$ is associated with an edge $e(w) \in E\left(G_{1}(X, C)\right)$, and for each $w \in W$, $e(w)=u v$, we add edges $u w$ and $w v$ to G_{1}^{\prime} and G_{2}^{\prime}. It follows that since $e(w)$ is in every sandwich graph for every $w \in W$, no $w \in W$ is in a four-cycle in any sandwich graph for $\left(G_{1}^{\prime}, G_{2}^{\prime}\right)$.

Suppose that $\left(G_{1}^{\prime}, G_{2}^{\prime}\right)$ is a YES instance for the house-free sandwich problem, and let G be a house-free sandwich graph for $\left(G_{1}^{\prime}, G_{2}^{\prime}\right)$. Suppose that $G \backslash W$ contains a four-cycle with vertex set $\{a, b, c, d\}$. By Lemma 12, it follows that one of its edges, say $a b$, is in $E\left(G_{1}(X, C)\right)$. Let $w \in W$ with $e(w)=a b$, then $\{a, b, c, d, w\}$ induces a house in G, a contradiction. It follows that $G \backslash W$ is a C_{4}-free sandwich graph for $\left(G_{1}(X, C), G_{2}(X, C)\right)$, proving that $\left(G_{1}^{\prime}, G_{2}^{\prime}\right)$ is a YES instance for the C_{4}-free sandwich problem. By Theorem 13, it follows that (X, C) is a Yes instance for 3Sat.

Conversely, suppose that (X, C) is a Yes instance for 3Sat. Then, by Theorem $\sqrt{13}$, it follows that there exists a sandwich graph G for $\left(G_{1}(X, C), G_{2}(X, C)\right)$ such that G is C_{4}-free. Let $E=E(G) \backslash E\left(G_{1}(X, C)\right)$, and let $G^{\prime}=G_{1}^{\prime} \cup E$. Suppose that G^{\prime} contains a four-cycle. Since no vertex in W is in a fourcycle as observed above, it follows that $G^{\prime} \backslash W$ contains a four-cycle. But
$G^{\prime} \backslash W=G$, a contradiction. Thus G^{\prime} is C_{4}-free, and hence house-free. This proves that $\left(G_{1}^{\prime}, G_{2}^{\prime}\right)$ is a Yes instance for the C_{4}-free and the house-free sandwich problem.

We have proved that (X, C) is a Yes instance for 3SAT if and only if $\left(G_{1}^{\prime}, G_{2}^{\prime}\right)$ is a Yes instance for the house-free sandwich problem if and only if $\left(G_{1}^{\prime}, G_{2}^{\prime}\right)$ is a Yes instance for the C_{4}-free sandwich problem. Since 3Sat is $N P$-complete, it follows that the house-free sandwich problem is $N P$ complete.

To prove the following statement, we replace the vertex set of our previous instance by a stable set N, and add two types of gadgets corresponding to forced edges and non-edges of the previous instance, respectively:

Theorem 15. The house-free partitioned probe problem is NP-complete.
Proof. In Theorem 14, we proved that the problem of deciding if $\left(G_{1}, G_{2}\right)$ is a Yes instance for the C_{4}-free sandwich problem or a No instance for the house-free sandwich problem is $N P$-complete.

Let $\left(G_{1}, G_{2}\right)$ be a sandwich instance. Let $E_{1}=E\left(G_{1}\right), E_{2}=E\left(G_{2}\right)$. We construct an instance G^{\prime}, N for the house-free partitioned probe problem as follows. We start from a stable set N which is in bijection with the vertices of G_{1}, and for every pair u, v of distinct vertices in N, we add the following:

- if $u v \in E_{1}$, we add vertices a, b, c with $N(a)=\{u, v, c\}, N(b)=\{u, v\}$ and $N(c)=\{a, u\}$;
- if $u v \notin E_{2}$, we add vertices a, b, c with $N(a)=\{u, b, c\}, N(b)=\{a, c\}$, $N(c)=\{a, b, v\}$.

Let $P=V\left(G^{\prime}\right) \backslash N$.
Suppose that $\left(G_{1}, G_{2}\right)$ is a YES instance for the C_{4}-free sandwich problem, and let H be a C_{4}-free sandwich graph for $\left(G_{1}, G_{2}\right)$. Let $H^{\prime}=G^{\prime} \cup E(H)$. Then $H^{\prime} \mid N$ is C_{4}-free. Suppose that H^{\prime} is not house-free. Then H^{\prime} contains a four-cycle using a vertex x in P. Suppose that x was added by the first bullet, for $u v \in E_{1}$, then $u v \in E\left(H^{\prime}\right)$. If $x=b$ or $x=c$, then x has exactly two neighbors, and they are adjacent; consequently x is not in a four-cycle. Therefore, $x=a$, but neither b nor c are in a four-cycle, but two neighbors of a are in a four-cycle. This is a contradiction, since a has degree three. It follows that x is not in a four-cycle, a contradiction. Thus x was added by the second bullet, and it follows that $x \neq b$, so we may assume that $x=a$.

Since b is not in a four-cycle, it follows that the four-cycle containing x also contains c, u and v. But $u v \notin E_{2}$ and so $u v \notin E\left(H^{\prime}\right)$, a contradiction. This proves that H^{\prime} is C_{4}-free, and in particular, house-free. So G^{\prime}, N is a Yes instance for the house-free partitioned probe problem.

Now suppose that G^{\prime}, N is a Yes instance for the house-free partitioned probe problem, and let H^{\prime} be a house-free (P, N)-probe graph for G^{\prime}. Let $u v \in E_{1}$, then $u v \in E\left(H^{\prime}\right)$, because otherwise u, v together with the vertices added for u, v in the first bullet induce a house in H^{\prime}. Let $u v \notin E_{2}$, then $u v \notin E\left(H^{\prime}\right)$, because otherwise u, v together with the vertices added for u, v in the second bullet induce a house in H^{\prime}. It follows that $H^{\prime} \mid N$ is a house-free sandwich graph for $\left(G_{1}, G_{2}\right)$, and so $\left(G_{1}, G_{2}\right)$ is not a No instance for the house-free sandwich problem.

Thus, we have reduced the problem from Theorem 14 to the house-free partitioned probe problem, and it follows that the house-free partitioned probe problem is $N P$-complete.

By taking complements in Theorem 15, we obtain the following.
Corollary 16. The P_{5}-free partitioned probe problem is $N P$-complete.
Our next goal is to show that the P_{6}-free sandwich problem is $N P$ complete.

Lemma 17. The 3SAT problem is NP-complete even when restricted to instances in which no negations appear in clauses of length three (but negations may occur in clauses of length two).

Proof. Let (X, C) be a 3SAT instance and suppose that there exist i, j such that \bar{x}_{i} occurs in C_{j}, where C_{j} has length three. We replace \bar{x}_{i} by a new variable y in C_{j}, and add two clauses $\left(x_{i} \vee y\right)$ and $\left(\bar{x}_{i} \vee \bar{y}\right)$. The two new clauses are satisfied if and only if $y=\bar{x}_{i}$, and so (X, C) is satisfiable if and only if the new instance is. This does not create any new clauses of length three. Thus, by adding at most $3|C|$ new variables and $6|C|$ new clauses, we can transform (X, C) into an equivalent 3 Sat instance with the required restrictions. This proves the result.

We use the following result, a tool in the proof of Theorem 13 .
Lemma $18([3])$. Let (X, C) be a 3Sat instance in which every clause contains exactly three variables. Let $\left(x_{1}, \ldots, x_{n}\right)$ be an assignment of the variables. Then the following are equivalent:

- (X, C) is satisfied by the assignment $\left(x_{1}, \ldots, x_{n}\right)$;
- there is a C_{4}-free sandwich graph G for $\left(G_{1}(X, C), G_{2}(X, C)\right)$ with $x_{1}^{i} x_{2}^{i} \in E(G)$ if and only if x_{i} is true in the assignment $\left(x_{1}, \ldots, x_{n}\right)$.

The following is a list of every possible four-cycle in a sandwich graph for $\left(G_{1}(X, C), G_{2}(X, C)\right)$:

- $p_{1}^{j} p_{2}^{j} p_{3}^{j} p_{4}^{j}, p_{q}^{j} t_{q}^{j} p_{q+1}^{j}{ }_{q}^{j}, p_{q}^{j} s_{q 1}^{j} s_{q 3}^{j} p_{q+1}^{j}, l_{q}^{j} r_{q 1}^{j} r_{q 3}^{j}{ }^{j}{ }_{q}^{j}$;
- $s_{q 1}^{j} s_{q 2}^{j} s_{q 3}^{j} s_{q 4}^{j}, r_{q 1}^{j} r_{q 2}^{j} r_{q 3}^{j} r_{q 4}^{j}, x_{1}^{i} \bar{x}_{1}^{i} x_{2}^{i} \bar{x}_{2}^{i}$;
- if x_{i} occurs in position q in $C_{j}, x_{1}^{i} s_{q 2}^{j} s_{q 4}^{j} x_{2}^{i}, \bar{x}_{1}^{i} r_{q 2}^{j} r_{{ }_{4}}^{j} \bar{x}_{2}^{i}$;
- if \bar{x}_{i} occurs in position q in $C_{j}, x_{1}^{i} r_{q 2}^{j} r_{q 4}^{j} x_{2}^{i}, \bar{x}_{1}^{i} s_{q 2}^{j} s_{q 4}^{j} \bar{x}_{2}^{i}$.

The following lemma shows how to modify our construction in order to use it to decide if a 3SAT instance (X, C) with $x_{i} \in X$ has a satisfying assignment in which x_{i} is false. We accomplish this by removing all vertices designed to represent x_{i} and its copies, and by turning every edge $p_{q}^{j} p_{q+1}^{j}$ corresponding to the literal $\ell_{q}^{j}=x_{i}$ from an optional edge into a forced edge.

Lemma 19. Let (X, C) be a 3SAT instance in which every clause contains exactly three variables, and let $x_{i} \in X$ such that every occurrence of x_{i} in C is non-negated (i. e. the literal \bar{x}_{i} does not occur). We let V_{i} denote the set of vertices that are either in X_{i} or of the form $l_{q}^{j}, t_{q}^{j}, r_{q k}^{j}$ or $s_{q k}^{j}$ for a clause $c_{j}=\left(\ell_{1}^{j} \vee \ell_{2}^{j} \vee \ell_{3}^{j}\right)$ where $k \in\{1,2,3,4\}, \ell_{q}^{j}=x_{i}$, and $j \in\{1, \ldots, m\}$. We let E_{i} denote the set of edges $p_{q}^{j} p_{q+1}^{j}$ for a clause $c_{j}=\left(\ell_{1}^{j} \vee \ell_{2}^{j} \vee \ell_{3}^{j}\right)$ with $\ell_{q}^{j}=x_{i}$ and $j \in\{1, \ldots, m\}$. We define a sandwich instance $\left(G_{1}^{i}(X, C), G_{2}^{i}(X, C)\right)$ with $V\left(G_{d}^{i}(X, C)\right)=V\left(G_{d}(X, C)\right) \backslash V_{i}$ and $G_{d}^{i}(X, C)=G_{d}(X, C) \mid V\left(G_{d}^{i}(X, C)\right) \cup$ E_{i} for $d=1,2$. Then (X, C) is satisfied by an assignment such that x_{i} is false if and only if there is a C_{4}-free sandwich graph for $\left(G_{1}^{i}(X, C), G_{2}^{i}(X, C)\right)$.

Proof. By Lemma 18, (X, C) is satisfied by an assignment such that x_{i} is false if and only if there is a C_{4}-free sandwich graph G for $\left(G_{1}(X, C), G_{2}(X, C)\right)$ with $x_{1}^{i} x_{2}^{i} \notin E(G)$. Since G is C_{4}-free, this implies that $\bar{x}_{1}^{i} \bar{x}_{2}^{i} \in E(G)$. Let $c_{j}=\left(\ell_{1}^{j} \vee \ell_{2}^{j} \vee \ell_{3}^{j}\right)$ such that $\ell_{q}^{j}=x_{i}$ for some $q \in\{1,2,3\}$ and $j \in$ $\{1, \ldots, m\}$. Then $r_{q 2}^{j} r_{q 4}^{j} \notin E(G)$, for otherwise $\left\{\bar{x}_{1}^{i}, r_{q 2}^{j}, r_{q 4}^{j}, \bar{x}_{2}^{i}\right\}$ induces a four-cycle in G. Therefore, $r_{q 1}^{j} r_{q 3}^{j} \in E(G)$, and so $l_{q}^{j} t_{q}^{j} \notin E(G)$. This implies
that $p_{q}^{j} p_{q+1}^{j} \in E(G)$. Consequently, $G \mid V\left(G_{1}^{i}(X, C)\right)$ is a C_{4}-free sandwich graph for $\left(G_{1}^{i}(X, C), G_{2}^{i}(X, C)\right)$.

For the converse direction suppose that G is a C_{4}-free sandwich graph for $\left(G_{1}^{i}(X, C), G_{2}^{i}(X, C)\right)$ and let F denote the set of edges $\bar{x}_{1}^{i} \bar{x}_{2}^{i}$ and $r_{q 1}^{j} r_{q 3}^{j}, s_{q 2}^{j} s_{q 4}^{j}$ for $j \in\{1, \ldots, m\}, q \in\{1,2,3\}$ such that $c_{j}=\left(l_{1}^{j} \vee l_{2}^{j} \vee l_{3}^{j}\right)$ such that $l_{q}^{j}=x_{i}$. Then G^{\prime} with $V\left(G^{\prime}\right)=V\left(G_{1}(X, C)\right)$ and $E\left(G^{\prime}\right)=E\left(G_{1}(X, C)\right) \cup E(G) \cup F$ is a sandwich graph for $\left(G_{1}(X, C), G_{2}(X, C)\right)$ with $x_{1}^{i} x_{2}^{i} \notin E(G)$. Moreover, G^{\prime} is C_{4}-free by construction. By Lemma 18, it follows that (X, C) has a satisfying assignment in which x_{i} is false.

We now consider the P_{6}-free sandwich problem. Our strategy is as follows. We switch to the P_{6}^{C}-free sandwich problem. Every possible P_{6}^{C} in our instance will consist of a possible four-cycle with vertex set $\{a, b, c, d\}$ in the instance $\left(G_{1}, G_{2}\right)$ as in Lemma 19, along with a vertex e adjacent to b and c, where $b c$ is a forced edge and $b-d-e-a-c$ is a P_{5}^{C}, and a vertex f adjacent to either $\{d, e, a, c\}$ or $\{b, d, e, a\}$. Note that if there are two vertices, f and f^{\prime}, such that f is adjacent to $\{d, e, a, c\}$ and f^{\prime} is adjacent to $\{b, d, e, a\}$, then there is a possible P_{6}^{C} that does not use all vertices of the four-cycle. To avoid this problem, our main goal is to identify sets E^{*}, V^{*} such that E^{*} is a set of forced edges and contains an edge of every possible four-cycle of $\left(G_{1}, G_{2}\right)$, and V^{*} is a stable set of vertices in G_{2} that contains an endpoint of every edge in E^{*}. Then we add a vertex e to every edge $b c$ in E^{*}, and add a vertex f with neighbors $\{d, e, a, c\}$ if $b \in V^{*}$, and with neighbors $\{b, d, e, a\}$ if $c \in V^{*}$.

Theorem 20. The P_{6}-free sandwich problem is $N P$-complete.
Proof. Let $\left(X^{\prime}, C^{\prime}\right)$ be a 3 Sat instance as in Lemma 17. We may assume that $\left(X^{\prime}, C^{\prime}\right)$ contains no clauses containing exactly one variable. Let (X, C) arise from $\left(X^{\prime}, C^{\prime}\right)$ by adding a new variable x_{0} to X, and by replacing every clause $c_{j}=\left(\ell_{1}^{j} \vee \ell_{2}^{j}\right)$ of length two in C^{\prime} by $\left(x_{0} \vee \ell_{1}^{j} \vee \ell_{2}^{j}\right)$ if ℓ_{1}^{j} and ℓ_{2}^{j} are either both negated or both non-negated, and by ($\ell_{1}^{j} \vee x_{0} \vee \ell_{2}^{j}$) otherwise. We remark that the order matters for the remaining of the proof (for the construction of set V^{*} below). Then (X, C) has a satisfying assignment in which x_{0} is false if and only if (X^{\prime}, C^{\prime}) has a satisfying assignment. Furthermore, every clause in C contains exactly three variables.

Let $V_{0}, E_{0},\left(G_{1}^{0}(X, C), G_{2}^{0}(X, C)\right)$ as in Lemma 19. Then $\left(G_{1}^{0}(X, C), G_{2}^{0}(X, C)\right)$ has a C_{4}-free sandwich graph if and only if (X^{\prime}, C^{\prime}) is satisfiable. Let $|C|=m$;
and for $j \in\{1, \ldots, m\}$, let $c_{j}=\left(\ell_{1}^{j} \vee \ell_{2}^{j} \vee \ell_{3}^{j}\right)$ denote the j th clause of C. We let E^{*} denote the following set of edges:

- for $x_{i} \in X^{\prime}, \bar{x}_{1}^{i} x_{1}^{i}$;
- for $x_{i} \in X^{\prime}$, and q, j such that $x_{i}=\ell_{q}^{j}, \bar{x}_{1}^{i} r_{q 2}^{j}, r_{q 1}^{j} r_{q 4}^{j}, r_{q 1}^{j} l_{q}^{j}, s_{q 4}^{j} x_{2}^{i}, s_{q 4}^{j} s_{q 1}^{j}$;
- for $x_{i} \in X^{\prime}$, and q, j such that $\bar{x}_{i}=\ell_{q}^{j}, \bar{x}_{1}^{i} s_{q 2}^{j}, s_{q 1}^{j} s_{q 4}^{j}, s_{q 1}^{j}{ }_{q}^{j}, r_{q 4}^{j} x_{2}^{i}, r_{q 4}^{j}{ }_{q 1}^{j}$;
- if x_{0} does not occur in $c_{j}, p_{1}^{j} p_{4}^{j}, p_{1}^{j} l_{1}^{j}, p_{3}^{j} l_{2}^{j}, p_{3}^{j} l_{3}^{j}, p_{1}^{j} s_{11}^{j}, p_{3}^{j} s_{31}^{j}, p_{3}^{j} s_{23}^{j}$;
- if $c_{j}=\left(x_{0} \vee x_{i} \vee x_{k}\right), p_{1}^{j} p_{4}^{j}, p_{3}^{j} l_{2}^{j}, p_{3}^{j} l_{3}^{j}, p_{3}^{j} s_{31}^{j}, p_{3}^{j} s_{23}^{j}$;
- if $c_{j}=\left(x_{0} \vee \bar{x}_{i} \vee \bar{x}_{k}\right), p_{1}^{j} p_{4}^{j}, l_{2}^{j} p_{3}^{j}, l_{3}^{j} p_{3}^{j}, l_{2}^{j} r_{21}^{j}, l_{3}^{j} r_{31}^{j}$;
- if $c_{j}=\left(x_{i} \vee x_{0} \vee \bar{x}_{k}\right), p_{1}^{j} p_{4}^{j}, p_{1}^{j} l_{1}^{j}, l_{3}^{j} p_{3}^{j}, p_{1}^{j} s_{11}^{j}, l_{3}^{j} r_{31}^{j}$; and
- if $c_{j}=\left(\bar{x}_{i} \vee x_{0} \vee x_{k}\right), p_{4}^{j} p_{1}^{j}, p_{4}^{j} l_{3}^{j}, l_{1}^{j} p_{2}^{j}, l_{1}^{j} r_{11}^{j}, p_{4}^{j} s_{33}^{j}$.

We let V^{*} denote the following set of vertices:

- for $x_{i} \in X^{\prime}, \bar{x}_{1}^{i}$;
- for $x_{i} \in X^{\prime}$, and q, j such that $x_{i}=\ell_{q}^{j}, r_{q 1}^{j}$ and $s_{q 4}^{j}$;
- for $x_{i} \in X^{\prime}$, and q, j such that $\bar{x}_{i}=\ell_{q}^{j}, s_{q 1}^{j}$ and $r_{q 4}^{j}$;
- if x_{0} does not occur in c_{j}, p_{1}^{j} and p_{3}^{j};
- if $c_{j}=\left(x_{0} \vee x_{i} \vee x_{k}\right), p_{1}^{j}$ and p_{3}^{j};
- if $c_{j}=\left(x_{0} \vee \bar{x}_{i} \vee \bar{x}_{k}\right), p_{1}^{j}, l_{2}^{j}$ and l_{3}^{j};
- if $c_{j}=\left(x_{i} \vee x_{0} \vee \bar{x}_{k}\right), l_{3}^{j}$ and p_{1}^{j}; and
- if $c_{j}=\left(\bar{x}_{i} \vee x_{0} \vee x_{k}\right), l_{1}^{j}$ and p_{4}^{j}.

By construction, E^{*} and V^{*} have the following properties:

- $E^{*} \subseteq E\left(G_{1}^{0}(X, C)\right) ;$
- for every four-cycle in a sandwich graph for $\left(G_{1}^{0}(X, C), G_{2}^{0}(X, C)\right), E^{*}$ contains an edge of the cycle;
- V^{*} is a stable set in $G_{2}^{0}(X, C)$; and
- every edge in E^{*} has an endpoint in V^{*}.

These properties are easily verified from the construction using the additional restrictions on (X, C). Let $\left(G_{1}^{\prime}, G_{2}^{\prime}\right)$ arise from $\left(G_{1}^{0}(X, C), G_{2}^{0}(X, C)\right)$ by adding a vertex $w(e)$ for every edge $e \in E^{*}$ with $N_{G_{1}^{\prime}}(w(e))=N_{G_{2}^{\prime}}(w(e))=$ $\{u, v\}$ where $e=u v$. Let $\left(G_{1}, G_{2}\right)$ arise from $\left(G_{1}^{\prime}, G_{2}^{\prime}\right)$ by adding a vertex v^{\prime} for every vertex $v \in V^{*}$ with $N_{G_{1}}\left(v^{\prime}\right)=N_{G_{2}}\left(v^{\prime}\right)=V\left(G_{1}\right) \backslash\left\{v, v^{\prime}\right\}$, i. e. the set $V^{\prime}=\left\{v^{\prime}: v \in V^{*}\right\}$ is a clique.

We claim that $\left(G_{1}, G_{2}\right)$ is a Yes instance for the P_{6}^{C}-free sandwich problem if and only if $\left(G_{1}^{0}(X, C), G_{2}^{0}(X, C)\right)$ is a Yes instance for the C_{4}-free sandwich problem (which, by Lemma 19 is true if and only if (X^{\prime}, C^{\prime}) is a Yes instance for 3SAt).

Suppose that G is a P_{6}^{C}-free sandwich graph for $\left(G_{1}, G_{2}\right)$. Let $G^{\prime}=$ $G \mid V\left(G_{1}^{0}(X, C)\right)$. Suppose that G^{\prime} contains an induced four-cycle with vertex set $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ and edge set $\left\{a_{1} a_{2}, a_{2} a_{3}, a_{3} a_{4}, a_{4} a_{1}\right\}$. Then E^{*} contains an edge of this four-cycle; without loss of generality, say $a_{1} a_{2} \in E^{*}$. This implies that one of $a_{1}, a_{2} \in V^{*}$, say $a_{1} \in V^{*}$. But then $a_{1}^{\prime}-a_{1}-a_{3}-w\left(a_{1} a_{2}\right)-a_{4}-a_{2}$ is an induced P_{6} in G^{C}, a contradiction. So G^{\prime} is a C_{4}-free sandwich graph for $\left(G_{1}^{0}(X, C), G_{2}^{0}(X, C)\right)$.

Conversely, suppose that G is a C_{4}-free sandwich graph for $\left(G_{1}^{0}(X, C), G_{2}^{0}(X, C)\right)$. Let $G^{\prime}=G_{1} \cup E(G)$. Suppose that the complement of G^{\prime} contains an induced P_{6} with vertices a_{1}, \ldots, a_{6} in this order along the path. Then $V^{\prime} \cap\left\{a_{1}, \ldots, a_{6}\right\} \subseteq\left\{a_{1}, a_{6}\right\}$, since every interior vertex has at least two nonneighbors. Suppose first that $V^{\prime} \cap\left\{a_{1}, \ldots, a_{6}\right\}=\left\{a_{1}, a_{6}\right\}$. Then $a_{2}, a_{5} \in V^{*}$, but a_{2} is adjacent to a_{5}, a contradiction, since V^{*} is a stable set. It follows that $\left|V^{\prime} \cap\left\{a_{1}, \ldots, a_{6}\right\}\right| \leq 1$, and so $G^{\prime} \backslash V^{\prime}$ contains a P_{5}^{C}, and thus an induced four-cycle. Since G is C_{4}-free, it follows that there is a vertex in $V\left(G^{\prime}\right) \backslash\left(V^{\prime} \cup V(G)\right)$ which is contained in an induced four-cycle in $G^{\prime} \backslash V^{\prime}$. Thus there exists an edge $e \in E^{*}$ such that $w(e)$ is in an induced four-cycle in G. But $w(e)$ has exactly two neighbors in $G^{\prime} \backslash V^{\prime}$, and they are adjacent in every sandwich graph $G^{\prime} \backslash V^{\prime}$ for $\left(G_{1}^{\prime}, G_{2}^{\prime}\right)$, it follows that $w(e)$ is not in an induced four-cycle in $G^{\prime} \backslash V^{\prime}$. This is a contradiction, and it follows that G^{\prime} is P_{6}^{C}-free.

This implies that the P_{6}^{C}-free sandwich problem is $N P$-complete, and by taking complements, it follows that the P_{6}-free sandwich problem is $N P$ complete.

4. From short paths to longer paths

Lemma 21. For $k \geq 5$, if the P_{k}-free sandwich is $N P$-complete, then the P_{k+2}-free sandwich problem is NP-complete.
Proof. Let $\left(G_{1}, G_{2}\right)$ be an instance of the P_{k}-free sandwich problem, and for $i \in\{1,2\}$ let G_{i}^{\prime} arise from G_{i} by adding, for each vertex v in $V\left(G_{i}\right)$, a new vertex v^{\prime} with $N\left(v^{\prime}\right)=v$.

Suppose that $\left(G_{1}, G_{2}\right)$ is a YES instance for the P_{k}-free sandwich problem. Let H be a P_{k}-free sandwich graph for $\left(G_{1}, G_{2}\right)$. Let $H^{\prime}=G_{1}^{\prime} \cup(E(H) \backslash$ $\left.E\left(G_{1}\right)\right)=G_{1}^{\prime} \cup E(H)$. Then $H^{\prime} \mid V\left(G_{1}\right)$ is P_{k}-free. Suppose that H^{\prime} is not P_{k+2}-free, and let Q be an induced path on $k+2$ vertices in H^{\prime}. Then $V\left(H^{\prime}\right) \backslash V\left(G_{1}\right)$ contains a vertex in $V(Q)$ of degree at least two. But every vertex in $V\left(H^{\prime}\right) \backslash V\left(G_{1}\right)$ has degree one in H^{\prime}, a contradiction. This proves that H^{\prime} is P_{k+2}-free, and so $\left(G_{1}^{\prime}, G_{2}^{\prime}\right)$ is a Yes instance for the P_{k+2}-free sandwich problem.

Conversely, suppose that $\left(G_{1}^{\prime}, G_{2}^{\prime}\right)$ is a YES instance for the P_{k+2}-free sandwich problem. Let H^{\prime} be a P_{k+2}-free sandwich graph for $\left(G_{1}^{\prime}, G_{2}^{\prime}\right)$. Then $H^{\prime} \mid V\left(G_{1}\right)$ is a P_{k}-free sandwich graph for $\left(G_{1}, G_{2}\right)$, because if there was a P_{k} in $H^{\prime} \mid V\left(G_{1}\right)$ with endpoints $u, v \in V\left(G_{1}\right)$, then adding u^{\prime}, v^{\prime} to this path would yield a P_{k+2} in H^{\prime}, a contradiction. So $\left(G_{1}, G_{2}\right)$ is a YeS instance for the P_{k}-free sandwich problem.
Theorem 22. For $k \geq 5$, the P_{k}-free sandwich problem, partitioned probe problem, and unpartitioned probe problem in the graph and in the complement are NP-complete.
Proof. For the sandwich problem, this follows from Corollary 16 for $k=5$, since the partitioned probe problem is a special case of the sandwich problem, and from Theorem 20 and Lemma 21. For the partitioned probe problem, this follows from Corollary 16 for $k=5$, and from Corollary 4 for $k \geq 6$, since P_{k}^{C} is 3-connected for $k \geq 6$.

Since $P_{k}, k \geq 5$, does not contain twins, the $N P$-completeness for the unpartitioned problem in the graph and in the complement follows from Theorem 5 and Corollary 6, respectively.

5. Concluding remarks

We have resolved the complexity of the sandwich problem, partitioned probe problem, unpartitioned probe problem, and unpartitioned probe problem in the complement for the property of being P_{k}-free for all $k \in \mathbb{N}$. This
is a special case of the more general question for which graphs H the abovementioned problems for the property of being H-free is $N P$-complete, and for which they can be solved in polynomial time.

We further compare the complexities of the sandwich problem, partitioned probe problem, unpartitioned probe problem, and unpartitioned probe problem in the complement, and establish a new sufficient condition for the hardness of the partitioned probe problem to imply that the other problems are also hard.

Acknowledgments

We are thankful to Maria Chudnovsky for many helpful discussions. We thank the anonymous referees for several remarks which helped improve the presentation of this paper. The first author was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico CNPq Grant 303622/2011-3.
[1] Chandler, David B., Maw-Shang Chang, Ton Kloks, Jiping Liu, and Sheng-Lung Peng. Recognition of probe cographs and partitioned probe distance hereditary graphs. In International Conference on Algorithmic Applications in Management, pp. 267-278. Springer Berlin Heidelberg, 2006.
[2] Couto, Fernanda, Luerbio Faria, Sylvain Gravier, and Sulamita Klein. On the forbidden induced subgraph probe and sandwich problems. Discrete Applied Mathematics 234, (2018): 56-66.
[3] Dantas, Simone, Celina M. H. de Figueiredo, Murilo V. G. da Silva, and Rafael B. Teixeira. On the forbidden induced subgraph sandwich problem. Discrete Applied Mathematics 159, no. 16 (2011): 1717-1725.
[4] Golumbic, Martin Charles, and Ron Shamir. Complexity and algorithms for reasoning about time: A graph-theoretic approach. Journal of the ACM (JACM) 40.5 (1993): 1108-1133.
[5] Golumbic, Martin Charles, Haim Kaplan, and Ron Shamir. Graph sandwich problems. Journal of Algorithms 19, no. 3 (1995): 449-473.
[6] McMorris, Fred R., Chi Wang, and Peisen Zhang. On probe interval graphs. Discrete Applied Mathematics 88, no. 1 (1998): 315-324.
[7] Zhang, Peisen, Eric A. Schon, Stuart G. Fischer, Eftihia Cayanis, Janie Weiss, Susan Kistler, and Philip E. Bourne. An algorithm based on graph theory for the assembly of contigs in physical mapping of DNA. Computer applications in the biosciences: CABIOS 10, no. 3 (1994): 309317.

[^0]: ${ }^{1}$ Supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico CNPq Grant 303622/2011-3.

