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Abstract

Risk aggregation, which concerns the statistical behaviors of an aggregation position
S(X) associated with a random vector X = (X1, . . . , Xn), is an important research topic
in risk management, economics, and statistics. The distribution of S(X) is determined by
both the marginal behaviors and the joint dependence structure of X. In general, it is
challenging to obtain an accurate estimation of the dependence structure of X compared
with the estimation of the marginal distributions. Given the marginal distributions of X,
this thesis focuses on studying the aggregation position S(X) with different dependence
assumptions in different contexts. We will assume that X has a specific dependence struc-
ture (e.g., independence), or its dependence structure is (partially) unknown. In particular,
for the case that the dependence structure is (partially) unknown, we are interested in the
worst-case and the best-case scenarios of S(X).

In Chapter 2, we show the surprising inequality that the weighted average of iid ultra
heavy-tailed Pareto losses (with infinite mean) is larger than a standalone loss in the sense
of first-order stochastic dominance. This result is further generalized to allow for random
total number and weights of Pareto losses and for the losses to be triggered by catastrophic
events. We discuss several important implications of these results via an equilibrium anal-
ysis of a risk exchange market. First, diversification of ultra heavy-tailed Pareto losses
leads to increases in portfolio risk, and thus diversification penalty exists. Second, agents
with ultra heavy-tailed Pareto losses will not share risks in a market equilibrium. Third,
transferring losses from agents bearing Pareto losses to external parties without any losses
may arrive at an equilibrium which benefits every party involved.

In Chapter 3, we focus on aggregation sets, which represent model uncertainty due
to unknown dependence structure of random vectors. We investigate ordering relations
between two aggregation sets for which the sets of marginals are related by two simple
operations: distribution mixtures and quantile mixtures. Intuitively, these operations “ho-
mogenize” marginal distributions by making them similar. As a general conclusion from
our results, more “homogeneous” marginals lead to a larger aggregation set, and thus
more severe model uncertainty, although the situation for quantile mixtures is much more
complicated than that for distribution mixtures. We proceed to study inequalities on the
worst-case values of risk measures in risk aggregation, which represent conservative calcula-
tion of regulatory capital. Among other results, we obtain an order relation on VaR under
quantile mixture for marginal distributions with monotone densities. Numerical results are
presented to visualize the theoretical results. Finally, we provide applications on portfolio
diversification under dependence uncertainty and merging p-values in multiple hypothesis
testing, and discuss the connection of our results to joint mixability.
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In Chapter 4, we study the aggregation of two risks when the marginal distributions
are known and the dependence structure is unknown, with the additional constraint that
one risk is smaller than or equal to the other. Risk aggregation problems with the order
constraint are closely related to the recently introduced notion of the directional lower (DL)
coupling. The largest aggregate risk in concave order (thus, the smallest aggregate risk
in convex order) is attained by the DL coupling. These results are further generalized to
calculate the best-case and worst-case values of tail risk measures. In particular, we obtain
analytical formulas for bounds on Value-at-Risk. Our numerical results suggest that the
new bounds on risk measures with the extra order constraint can greatly improve those
with full dependence uncertainty.

In Chapter 5, we study various methods for combining p-values from multiple hypothesis
testing into one p-value, under different dependence assumptions of p-values. We say that
a combining method is valid for arbitrary dependence if it does not require any assumption
on the dependence structure of the p-values, whereas it is valid for some dependence if it
requires some specific, perhaps realistic, but unjustifiable, dependence structures. The
trade-off between the validity and efficiency of these methods is studied by analyzing
the choices of critical values under different dependence assumptions. We introduce the
notions of independence-comonotonicity balance (IC-balance) and the price for validity. In
particular, IC-balanced methods always produce an identical critical value for independent
and perfectly positively dependent p-values, a specific type of insensitivity to a family of
dependence assumptions. We show that among two very general classes of merging methods
commonly used in practice, the Cauchy combination method and the Simes method are
the only IC-balanced ones. Simulation studies and a real-data analysis are conducted to
analyze the size and power of various combining methods in the presence of weak and
strong dependence.
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Chapter 1

Introduction

1.1 Risk aggregation and risk measures

In quantitative risk management, risk aggregation refers to the statistical behaviors of
an aggregation position S(X) associated with a risk vector X = (X1, . . . , Xn) where the
random variables X1, . . . , Xn represent individual losses in a fixed period of time. We will
mainly focus on the aggregation position S(X) = X1 + · · · + Xn, which is most relevant
in quantitative risk management as it can be simply interpreted as the portfolio loss of a
financial institution. In this section, we introduce several important topics regarding the
aggregation position S(X) not only in the context of quantitative risk management, but
also in economics and statistics.

Measuring the risk of a financial portfolio is crucial in both banking and insurance
sectors, and it is typically done by calculating the value of a risk measure. A risk measure,
which maps a loss random variable to a real number, represents the conservative calculation
of regulatory capital requirement for financial institutions (see McNeil et al. (2015) and
Föllmer and Schied (2016)). Fix an atomless probability space (Ω,A,P), let X be the set
of random variables, and let M be the set of distributions. In this thesis, law-invariant
risk measures are mappings from X to R, and we also treat them as mappings from M
to R. We abuse the notation for convenience in the introduction. Two important risk
measures in banking and insurance regulatory frameworks are Value-at-Risk (VaR) and
Expected Shortfall (ES). For F ∈M and p ∈ (0, 1), VaR and ES are defined as

VaRp(F ) = inf{x ∈ R : F (x) > p} and ESp(F ) =
1

1− p

∫ 1

p

VaRu(F )du.

1



To calculate a risk measure on the aggregation position S(X), we need to know its
distribution, which by Sklar’s theorem (see, e.g., Rüschendorf (2013)) is determined by the
marginal distributions and the dependence structure (i.e., copula1) of X; we refer to Nelsen
(2006) for an introduction to copulas. Many researchers have studied the distribution of
S(X) with complete information of the marginal distributions and dependence structure
of X. Commonly used classes of marginal distributions for financial losses can be found
in, e.g., Klugman et al. (2012) and McNeil et al. (2015). Individual risk models in the
actuarial literature assume that risks are independent; see Klugman et al. (2012). Other
important classes of dependence structures in risk management include copulas derived
from elliptical distributions and Archimedean copulas; see McNeil et al. (2015). Arguably,
the estimations of univariate distributions are accurate compared to those of dependence
structure of risks. In this thesis, we always assume that the marginal distributions of X are
known and study the aggregation position S(X) with different assumptions of dependence
structures.

Given the marginal distributions and dependence structure of X = (X1, . . . , Xn), one
crucial question in risk management is whether a risk measure ρ has the property that

ρ(X1 + · · ·+Xn) 6 ρ(X1) + · · ·+ ρ(Xn).

Such a property is referred to as subadditivity, one of the four axioms of a coherent risk
measure (Artzner et al. (1999)). Subadditivity means that diversification of risks leads to
a smaller risk assessment than the sum of risk assessments of individual risks, thus diver-
sification benefit ; see McNeil et al. (2015) for discussions on implications of subadditivity.
As for the two regulatory risk measures, ES is subadditive as it is a coherent risk measure,
whereas VaR is not subadditive in general. For instance, Ibragimov (2009) showed that
VaRp, p ∈ (0.5, 1), is non-subadditive for independent risks which follow a convolution of
symmetric α-stable distributions with tail index α 6 1 (i.e., infinite first moment); see
Ibragimov et al. (2009) and Ibragimov et al. (2011) for discussions on diversification of
heavy-tailed distributions. In Chapter 2, we discuss the diversification effects of indepen-
dent Pareto risks without finite mean which can be used to model catastrophic losses,
operational losses, and large insurance losses. Several implications of these results in a risk
exchange market are presented through an equilibrium model.

In some circumstances, it is very challenging to capture the dependence structure of
risks due to limited choices of multivariate models and their statistical inference issues. The
failure to capture the dependence structure may lead to a significantly different calculation
of risk measures and thus unsound risk management strategies. For instance, using the

1Copulas are joint distributions of standard uniform random variables.
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Gaussian copula to describe the dependence structure of risks may underestimate the
probability of joint large losses as Gaussian copula is asymptotically independent in the
tails (e.g., McNeil et al. (2015)). In cases where the dependence structure of risks cannot be
estimated accurately, we assume that the dependence structure is (partially) unknown, and
the unknown dependence structure is referred to as dependence uncertainty ; see Bernard
et al. (2014), Embrechts et al. (2015) and the references therein.

Under the term robust risk aggregation, one studies the aggregation position S(X) with
known marginal distributions of X and dependence uncertainty. Let F = (F1, . . . , Fn),
where F1, . . . , Fn are the marginal distributions of X. We define the aggregation set
(Bernard et al. (2014)) with full dependence uncertainty (i.e., no dependence information
is available) as

Dn(F) = {Distribution of X1 + · · ·+Xn : Xi ∼ Fi, i = 1, . . . , n}. (1.1)

The aggregation set Dn(F) fully describes the model uncertainty of X1 + · · · + Xn due
to the unknown dependence structure of X. However, it is extremely difficult to give an
analytical characterization of Dn(F). The only available analytical results of Dn(F) are
given by Mao et al. (2019) for standard uniform distributions. In Chapter 3, we study
the inclusion relations of two aggregation sets whose marginal distributions are related by
some simple operations.

Over the aggregation set (1.1), one practically revelant question is what are the largest
and the smallest values of a risk measure. For a risk measure ρ, the worst-case value of ρ
is defined as

ρ(F) = sup {ρ(F ) : F ∈ Dn(F)} ,
and the best-case value of ρ is defined as

ρ(F) = inf {ρ(F ) : F ∈ Dn(F)} .

We refer to McNeil et al. (2015) for general discussions on the bounds of risk measures.
The difference between the worst-case and the best-case values of a risk measure is called
Dependence Uncertainty spread which is used to measure the model uncertainty of a port-
folio; see Embrechts et al. (2015). From the perspective of risk management, the worst-case
value of a risk measure is particularly important, as it ensures a sufficient capital require-
ment for financial institutions. Moreover, the techniques used to find the upper bounds
of commonly used risk measures can also be used to find their lower bounds. Therefore,
we will mainly focus on the worst-case value of a risk measure in this thesis. For the
two important regulatory risk measures, VaR and ES, an explicit result is available for
the worst-case value of ES as it is a coherent risk measure (Artzner et al. (1999)) and
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additive for comonotonic risks (Dhaene et al. (2006)), whereas an analytic formula for the
worst-case value of VaR is not available for general marginal distributions.

We summarize below some results for calculating or approximating the worst-case value
of VaR defined as

VaRp(F) = sup {VaRp(X1 + · · ·+Xn) : Xi ∼ Fi, i = 1, . . . , n} . (1.2)

Early results for (1.2) date back to Makarov (1981) and Rüschendorf (1982), who solved
the problem explicitly for the case that n = 2. For homogeneous marginal distributions
with monotone densities, analytic formulas were obtained by Wang et al. (2013) and Puc-
cetti and Rüschendorf (2013). For heterogeneous marginal distributions with monotone
densities, Jakobsons et al. (2016) provided a solution to (1.2) by solving a group of func-
tional equations. More recently, Blanchet et al. (2020) established a new analytic formula
which covers its previous results to (1.2). Another direction is to apply ES bounds to
approximate (1.2) for large n by using the asymptotic equivalence between VaR and ES in
Embrechts et al. (2015). The Rearrangement Algorithm (RA) is available in Puccetti and
Rüschendorf (2012) and Embrechts et al. (2013) for numerical calculation. In Chapter 3,
we compare the worst-case values of a risk measure over two related aggregation sets by
using the inclusion relations of the two aggregation sets and some other techniques. Thus
upper bounds for (1.2) can be provided.

Although the worst-case value of a risk measure based on the sole knowledge of marginal
distributions ensures sufficient capital requirements for financial institutions, it can be too
large to be practically useful. Many efforts have been made to improve the worst-case value
of a risk measure by incorporating partial dependence information or adding additional
constraints into the problem. For instance, a variance constraint is imposed at the portfolio
level by Bernard et al. (2017). A lower bound is placed on the corresponding copula of risks
by Puccetti et al. (2016). Puccetti et al. (2017) used independence assumptions among
groups of risks and left the dependence structure within each group unknown. Bernard
et al. (2017b) considered a partially specified factor model with dependence uncertainty.
In Chapter 4, we study the aggregation of two risks with known marginal distributions,
unknown dependence structure, and an order constraint that one risk is less than the other
almost surely.

The techniques developed in robust risk aggregation are applicable not only in risk
management and finance but also in other research areas such as multiple hypothesis
testing. One of the main goals in multiple hypothesis testing is to merge multiple p-
values into a test statistic and give the corresponding critical value. The critical values
can be derived with or without a specific dependence assumption on the p-values. Those
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methods, which are valid for arbitrary dependence structures of p-values, are referred to
as VAD (valid for arbitrary dependence structures) methods. Recently, Vovk and Wang
(2020) applied the existing results for (1.2) to develop the VAD averaging methods. On the
other hand, methods that are valid for some specific dependence assumption of p-values
are referred to as VSD (valid for some specific dependence structures) methods. Some
dependence assumptions imposed by VSD methods include independence (e.g., Tippett
(1931), Pearson (1933), Fisher (1948), and Simes (1986)) and Gaussian copula (e.g., Liu
and Xie (2020)). In Chapter 5, the trade-off on validity and efficieny of hypothesis testing
between using VAD and VSD methods is discussed.

1.2 Contributions of the thesis

This thesis focuses on developing techniques in risk aggregation and applying these
techniques to solve different problems in risk management, economics, and statistics. In
the following, we briefly describe the contributions of each chapter.

In Chapter 2, we study the diversification effects of independent Pareto risks, which
frequently appear in modeling catastrophic risks, operational risks, and wealth allocations;
see Embrechts et al. (1999), McNeil et al. (2015), and Taleb (2020). For two random
variables X and Y , we say X is smaller than Y in first-order stochastic dominance, if
P(X 6 x) > P(Y 6 x) for all x ∈ R. We show that the weighted average of iid ultra
heavy-tailed Pareto losses (i.e., the losses have infinite mean) is larger than a standalone
ultra heavy-tailed Pareto loss in the sense of first-order stochastic dominance; see Ibragimov
(2009) for a relevant result for iid risks which are convolutions of symmetric stable random
variables without finite mean. Our result is further generalized to allow for random total
number and weights of Pareto losses and for the losses to be triggered by catastrophic
events. Special cases of our results are studied in Example 7 of Embrechts et al. (2002)
and Embrechts and Puccetti (2010, Figure 5.2).

A direct interpretation of these results is that diversification of ultra heavy-tailed Pareto
losses leads to more severe portfolio risk, and thus diversification penalty. We discuss sev-
eral implications of these results on risk sharing via an equilibrium model. First, agents
with ultra heavy-tailed Pareto losses will not share risks in a market equilibrium. Second,
transferring losses from agents bearing ultra heavy-tailed Pareto losses to external parties
without any losses may arrive at an equilibrium which benefits every party involved. More-
over, we show that if the Pareto losses have finite mean, agents with initial Pareto losses
may still prefer diversifying risks. Hence, whether Pareto losses have finite mean plays an
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important role in the effects of diversification; see Ibragimov et al. (2009) for discussions
on the diversifications of Pareto losses in a different model.

Chapter 3 first studies the inclusion relationship between two aggregation sets Dn(F)
and Dn(G), where G is a tuple of distributions obtained by F through operations of
distribution mixture or quantile mixture. Intuitively, those operations “homogenize” the
distribution tuple F. The general message is that the more “homogeneous” the distribu-
tion tuple is, the larger its aggregation set is. In particular, Dn(F) ⊂ Dn(G) if G is a
distribution mixture of F. The set inclusion relationship for quantile mixture does not
hold in general but is established for uniform marginal distributions.

A practical relevance of the set inclusions is to compare the worst-case values of risk
measures of F and G, as Dn(F) ⊂ Dn(G) implies ρ(F) 6 ρ(G) for any risk measure ρ.
Among other inequalities we obtain for the worst-case values of risk measures, we show
that quantile mixture provides an upper bound for (1.2) if the marginal distributions of
F have monotone densities. More specific inequalities are derived for the interesting case
that all marginal distributions are Pareto distributions without finite mean. Applications
of our results to portfolio diversification and multiple hypothesis testing are discussed. In
particular, if VaR is used as the risk measure, diversification under dependence uncertainty
may lead to more severe losses.

Chapter 4 studies the aggregation of two risks when the marginal distributions are
known, and the dependence structure is unknown. In addition, we impose an order con-
straint that one risk is smaller than or equal to the other almost surely. Risk aggregation
problems with the order constraint are closely related to the recently introduced notion of
the directional lower (DL) coupling; see Arnold et al. (2020) and Nutz and Wang (2021).
In particular, the largest aggregation position of two ordered risks in concave order2 (thus,
the smallest aggregate risk in convex order) is attained by the DL coupling.

Many commonly used risk measures are consistent with concave (convex) order; see
Mao and Wang (2020) for characterizations of risk measures consistent with convex order.
Thus, the DL coupling gives the worst-case (best-case) values of those risk measures.
These results are further generalized to calculate the best-case and worst-case values of tail
risk measures (Liu and Wang (2021)), which are not necessarily consistent with concave
or convex order. The class of tail risk measures, whose values are solely determined by
the tail behavior of the aggregation position, includes VaR, ES, and Range Value-at-Risk
(RVaR) (Cont et al. (2010)) as special cases. In particular, we obtain analytical formulas
for bounds on VaR, which can also be used to derive the bounds of default probabilities of

2A random variable X is said to be smaller than a random variable Y in concave order if E[u(X)] 6
E[u(Y )] for all concave functions u : R→ R provided that the expectations exist.
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the aggregation position. Our numerical results show that the new bounds on risk measures
with the extra order constraint can greatly improve those solely based on the knowledge
of marginal distributions.

In Chapter 5, we apply the techniques for solving (1.2) in robust risk aggregation to
study VAD methods of merging p-values, and analyse the trade-off between validity and
efficiency for VAD and VSD methods of several test statistics. One key issue of the VSD
methods is that it is very difficult to verify the dependence assumptions as only one set
of p-values is usually available in practice. If the dependence structure is not correctly
specified, VSD methods may not have the correct size. As a comparison, VAD methods
can always control the size below the significance level under any dependence structure of
p-values, but they may yield less power than the corresponding VSD methods. Therefore,
there is always a trade-off between using VAD and VSD methods.

We introduce the notions of independence-comonotonicity balance (IC-balance) and
the price for validity. In particular, IC-balanced methods always produce an identical
critical value for independent and perfectly positively dependent p-values, thus showing
insensitivity to dependence assumptions. We show that, among two very general classes
of merging methods, the Cauchy combination (Liu and Xie (2020)) and the Simes method
(Simes (1986)) are the only IC-balanced ones. The harmonic averaging (Wilson (2019)) and
Cauchy combination methods are asymptotically equivalent in several senses. The price for
validity is used to measure the loss of efficiency of the hypothesis test when the dependence
assumption is changed from some specific dependence structure to arbitrary dependence
structures. The prices for validity of the Simes, the Cauchy combination, and the harmonic
averaging methods increase at moderate rates as the number of p-values increases. These
theoretical results explain the wide applications of these methods in different statistical
procedures.

Chapter 6 concludes the thesis and discusses possible future research problems and
topics. The proofs of some theoretical results and technical discussions are put in the
appendix of each chapter.

To keep each chapter’s content self-contained, important concepts such as risk measures,
VaR, and ES will be reintroduced in each chapter, with slightly different conventions. In
particular, risk measures are mappings from X to R in Chapter 2, and they are mappings
from M to R in Chapters 3 and 4. Our choice of convention is for the convenience of
presentation.
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Chapter 2

An unexpected stochastic dominance:
Pareto distributions, catastrophes,
and risk exchange

2.1 Introduction

Pareto distributions are arguably the most important class of heavy-tailed loss distribu-
tions, due to their connection to regularly varying tails, extreme value theory, and power
laws in economics and social networks; see, e.g., Embrechts et al. (1997), de Haan and
Ferreira (2006) and Gabaix (2009). In quantitative risk management, Pareto distributions
are frequently used to model losses from catastrophes such as earthquakes, hurricanes, and
wildfires; see, e.g., Embrechts et al. (1999). They are also widely used in economics for
wealth distributions (e.g., Taleb (2020)) and modeling the tails of financial asset losses and
operational risks (e.g., McNeil et al. (2015)). Andriani and McKelvey (2007) contains over
80 references to diverse fields of applications. By the Pickands-Balkema-de Haan Theorem
(Pickands (1975) and Balkema and de Haan (1974)), generalized Pareto distributions are
the only possible non-degenerate limiting distributions of the residual life time of random
variables exceeding a high level.

Stochastic dominance relations are an important tool in economic decision theory which
allow for the analysis of risk preferences for a group of decision makers (Hadar and Russell
(1969)). The strongest form of commonly used stochastic dominance relations is first-order
stochastic dominance. For two random variables X and Y representing random losses,
we say X is smaller than Y in first-order stochastic dominance, denoted by X 6st Y , if
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P(X 6 x) > P(Y 6 x) for all x ∈ R. Write X 'st Y if X and Y have the same distribution.
The relation X 6st Y means that all decision makers with an increasing1 utility function
will prefer the loss X to the loss Y ; see Hadar and Russell (1971).

For iid random variables X1, . . . , Xn following a Pareto distribution with infinite mean
and weights θ1, . . . , θn > 0 with

∑n
i=1 θi = 1, our main finding in Theorem 2.1 is the

stochastic dominance relation

X1 6st θ1X1 + · · ·+ θnXn, (2.1)

and the inequality (2.1) is strict in a natural sense. As far as we are aware, the inequality
(2.1) is not known in the literature, even in the case that θ1, . . . , θn are equal (i.e., they are
1/n). It is somewhat surprising that, for infinite mean losses, the inequality (2.1) holds for
the strongest form of risk comparison: for every monotone decision maker (with precise
definition in Section 2.4), a diversified portfolio of such iid Pareto losses is less preferred
to a non-diversified one.

To appreciate the remarkable nature of (2.1), we first remark that for any identically
distributed random variables X1, . . . , Xn with finite mean, regardless of their distribution
or dependence structure, for θ1, . . . , θn > 0 with

∑n
i=1 θn = 1, (2.1) can only hold if X1 =

· · · = Xn (almost surely), in which case we have the trivial equality X1 = θ1X1+· · ·+θnXn;
see Proposition 2.1. Therefore, the assumption of infinite mean is very important for (2.1)
to hold.

Observations similar to (2.1), although with less generality, are made in the literature
in different forms. Samuelson (1967) mentioned that having an infinite mean in portfolio
diversification may lead to a worse distribution; see also p. 271 in Fama and Miller (1972)
and Malinvaud (1972). The inequality (2.1) for n = 2 and the Pareto tail parameter
α = 1/2 (see Section 2.2 for the parametrization) has an explicit formula in Example
7 of Embrechts et al. (2002). A numerical example for n = 3 and α = 1 is provided
by Embrechts and Puccetti (2010, Figure 5.2). A relevant result of Ibragimov (2009) is
that for iid random variables Z1, . . . , Zn which follow a convolution of symmetric stable
distributions without finite mean, P(θ1Z1 + · · ·+ θnZn 6 x) 6 P(Z1 6 x) for x > 0 but not
for x < 0 (and hence first-order stochastic dominance does not hold2). The symmetry of
distributions is essential for this inequality, and Z1, . . . , Zn can take negative values, unlike
Pareto losses, which are positive, skewed and more suitable for the modeling of extreme
losses.

1In this chapter, all terms like “increasing” and “decreasing” are in the non-strict sense.
2This relation is closer to second-order stochastic dominance; see Ibragimov and Walden (2007).
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In the realm of banking and insurance, Pareto distributions with infinite mean occur
as a possible mathematical model after careful statistical analysis in several contexts. For
instance, catastrophic losses, operational losses, large insurance losses, and financial returns
from technological innovations, are often modelled by Pareto distributions without finite
mean; Section 2.1.1 below collects some examples and related literature.

In risk management, the inequality (2.1) yields superadditivity of the regulatory risk
measure Value-at-Risk (VaR) in banking and insurance sectors; that is, the weighted aver-
age of Pareto losses without finite mean gives a larger VaR than that given by an individual
Pareto loss. Different from the literature on VaR superadditivity for regularly varying dis-
tributions (e.g., Embrechts et al. (2009) and McNeil et al. (2015)), the superadditivity of
VaR implied by (2.1) holds for all probability levels, and this not just in some asymptotic
sense.

We obtain several generalizations of the inequality (2.1) for other models in Sections 2.2
and 2.3. In particular, Proposition 2.3 in Section 2.2 deals with losses that are Pareto only
in the tail region, and Theorem 2.2 in Section 2.3 addresses losses triggered by catastrophic
events, a setting where ultra heavy-tailed Pareto losses (hence infinite mean) are relevant.

We discuss in Section 2.4 the implications of (2.1) and related inequalities on the risk
management decision of a single agent. It follows from (2.1) that the action of diversification
increases the risk of ultra heavy-tailed Pareto losses uniformly for all risk preferences, such
as VaR, expected utilities, and distortion risk measures, as long as the risk preferences are
monotone and well defined. The increase of the portfolio risk is strict, and it provides an
important implication in decision making: For an agent who faces iid Pareto losses without
finite mean and aims to minimize their risk by choosing a position across these losses, the
optimal decision is to take only one of the Pareto losses (i.e., no diversification).

We proceed to study equilibria of a risk exchange market for Pareto losses under a few
different settings in Section 2.5. As individual agents do not benefit from diversification
in a risk exchange market where iid Pareto losses without finite mean are present, we may
expect that agents will not share their losses with each other. Indeed, if each agent in
the market is associated with an initial position in one of these Pareto losses, the agents
will merely exchange the entire loss positions instead of risk sharing in an equilibrium
model (Theorem 2.3 (i)). The situation becomes quite different if the agents with initial
losses are allowed to transfer their losses to external parties. If the external agents have a
stronger risk tolerance, then it is possible that both the internal and external agents can
benefit by transferring losses from the internal to the external agents (Theorem 2.4 (ii)). In
Proposition 2.7, we show that agents prefer to share Pareto losses with finite mean among
themselves; this is in sharp contrast to the case of Pareto losses without finite mean. The
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above results are consistent with the observations made in Ibragimov et al. (2011) based
on a different model.

In Section 2.6, numerical and real data examples are presented to illustrate the presence
of ultra heavy tails in two real datasets, over which the phenomenon of the inequality
(2.1) can be empirically observed, and to study the diversification effects of ultra heavy-
tailed Pareto losses with different tail indices. Section 2.7 concludes the chapter. Some
background on risk measures is put in Appendix 2.8.1, and proofs of all technical results
are put in Appendix 2.8.2.

We fix some notations. Throughout, random variables are defined on an atomless
probability space (Ω,F ,P). Denote by N the set of all positive integers and R+ the set of
non-negative real numbers. For n ∈ N, let [n] = {1, . . . , n}. Denote by ∆n the standard
simplex, that is, ∆n = {(θ1, . . . , θn) ∈ [0, 1]n :

∑n
i=1 θi = 1}. For x, y ∈ R, write x ∧ y =

min{x, y}, x ∨ y = max{x, y}, and x+ = max{x, 0}. Recall that X 'st Y means equality
in distribution. We always assume n > 2.

2.1.1 Infinite-mean Pareto models

The key assumption of this chapter is that Pareto losses have infinite mean, hence are so-
called ultra heavy-tailed. Whereas statistical models with some divergent higher moments
are ubiquitous throughout the risk management literature, the infinite mean case needs
more specific motivation. For power-tail data, a standard approach for the estimation of the
underlying tail parameters is the Peaks Over Threshold (POT) methodology from Extreme
Value Theory (EVT); see Embrechts et al. (1997). As we will discuss in Proposition 2.3
and Section 2.6.2, our results apply to the case of the generalized Pareto distribution which
is the basic model for the POT set-up. Below we discuss some examples from the literature
leading to ultra heavy-tailed Pareto models; extra data examples are provided in Section
2.6.2.3

In the parameterization used in Section 2.2, a tail parameter α 6 1 corresponds to an
infinite-mean Pareto model. Ibragimov et al. (2009) used standard seismic theory to show
that the tail indices α of earthquake losses lie in the range [0.6, 1.5]. Estimated by Rizzo
(2009), the tail indices α for some wind catastrophic losses are around 0.7. Hofert and
Wüthrich (2012) showed that the tail indices α of losses caused by nuclear power accidents
are around [0.6, 0.7]; similar observations can be found in Sornette et al. (2013). Based on

3These examples show that, at least, we cannot exclude the possibility that infinite-mean models fit
these datasets better than finite-mean models.
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data collected by the Basel Committee on Banking Supervision, Moscadelli (2004) reported
the tail indices α of (over 40000) operational losses in 8 different business lines to lie in
the range [0.7, 1.2], with 6 out of the 8 tail indices being less than 1, with 2 out of these
6 significantly less than 1 at a 95% confidence level. For a detailed discussion on the risk
management consequences in this case, see Nešlehová et al. (2006). Losses from cyber
risks have tail indices α ∈ [0.6, 0.7]; see Eling and Wirfs (2019), Eling and Schnell (2020)
and the references therein. In a standard Swiss Solvency Test document (FINMA (2021,
p. 110)), most major damage insurance losses are modelled by a Pareto distribution with
default parameter α in the range [1, 2], with α = 1 attained by some aircraft insurance.
As discussed by Beirlant et al. (1999), some fire losses collected by the reinsurance broker
AON Re Belgium have tail indices α around 1. Biffis and Chavez (2014) showed that a
number of large commercial property losses collected from two Lloyd’s syndicates have tail
indices α considerably less than 1. Silverberg and Verspagen (2007) concluded that the tail
indices α are less than 1 for financial returns from some technological innovations. Besides
large financial losses and returns, numbers of deaths in major earthquakes and pandemics
modelled by Pareto distributions also have infinite mean; see Clark (2013) and Cirillo and
Taleb (2020). Heavy-tailed to ultra heavy-tailed models also occur in the realm of climate
change and environmental economics. Weitzman (2009)’s Dismal Theorem discusses the
break-down of standard economic thinking like cost-benefit analysis in this context. This
led to an interesting discussion with William Nordhaus, a recipient of the 2018 Nobel
Memorial Prize in Economic Sciences; see Nordhaus (2009).

The above references exemplify the occurrence of infinite mean models. Our perspec-
tive on these examples and discussions is that if these models are the result of some careful
statistical analyses, then the practicing modeler has to take a step back and carefully
reconsider the risk management consequences. Of course, in practice there are several
methods available to avoid such ultra heavy-tailed models, like cutting off the loss distri-
bution model at some specific level, or tapering (concatinating a light-tailed distribution
far in the tail of the loss distribution). Our experience shows that in examples like those
referred to above, such corrections often come at the cost of a great variability depending
on the methodology used. It is in this context that our results add to the existing literature
and modeling practice in cases where power-tail data play an important role.
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2.2 Diversification of Pareto losses without finite mean

A common parameterization of Pareto distributions is given by, for θ, α > 0,

Pα,θ(x) = 1−
(
θ

x

)α
, x > θ.

Note that if X ∼ Pα,1, then θX ∼ Pα,θ, and thus θ is a scale parameter. For X ∼ Pα,1, we
write X ∼ Pareto(α). Moreover, the mean of Pareto(α) is infinite if and only if the tail
parameter α ∈ (0, 1]. We say that the Pareto(α) distribution is ultra heavy-tailed if α 6 1,
and it is moderately heavy-tailed if α > 1.

Theorem 2.1. Let X,X1, . . . , Xn be iid Pareto(α) random variables, α ∈ (0, 1]. For
(θ1, . . . , θn) ∈ ∆n, we have

X 6st

n∑
i=1

θiXi. (2.2)

Moreover, for t > 1, P (
∑n

i=1 θiXi > t) > P (X > t) if θi > 0 for at least two i ∈ [n].

Remark 2.1 (Generalized Pareto distributions). The inequality (2.2) can be stated equiva-
lently for other parameterizations of Pareto distributions without finite mean. For instance,
it is often useful to consider generalized Pareto distributions, which provide an approxima-
tion for the excess losses beyond some high threshold. The generalized Pareto distribution
for ξ > 0 is parametrized by

Gξ,β(x) = 1−
(

1 + ξ
x

β

)−1/ξ

, x > 0, (2.3)

where ξ > 0 (ξ = 0 corresponds to an exponential distribution) and β > 0; see Embrechts
et al. (1997). If ξ > 1, then Gξ,β does not have finite mean. For ξ > 0, a generalized
Pareto distribution in (2.3) can be converted to P1/ξ,1 through a location-scale transform.
Therefore, (2.2) implies that for ξ > 1, (β1, . . . , βn) ∈ (0,∞)n and independent random
variables Yi ∼ Gξ,βi , i ∈ [n], we have Y 6st

∑n
i=1 Yi, where Y ∼ Gξ,β with β =

∑n
i=1 βi.

We will say that a diversification penalty exists if (2.2) holds, which is naturally inter-
preted as that having exposures in multiple iid ultra heavy-tailed Pareto losses is worse
than having just one Pareto loss of the same total exposure. This observation will be
generalized to a few other models later.

To better understand the result in Theorem 2.1, we stress that (2.2) cannot be expected
if X1, . . . , Xn have finite mean, regardless of their dependence structure, as summarized in
the following proposition.
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Proposition 2.1. For θ1, . . . , θn > 0 with
∑n

i=1 θn = 1 and identically distributed random
variables X,X1, . . . , Xn with finite mean and any dependence structure, (2.2) holds if and
only if X1 = · · · = Xn almost surely.

Proposition 2.1 implies, in particular, that (2.2) never holds for iid non-degenerate
random variablesX,X1, . . . , Xn with finite mean. As such, it seems that Theorem 2.1 yields
a clear and elegant methodological distinction between the two modeling environments.
Even if X,X1, . . . , Xn have an infinite mean, we are not aware of any other distributions
in the literature for which (2.2) holds other than the ones in this chapter, all built on the
basis of Theorem 2.1.

Remark 2.2. The inequality (2.2) also holds for some correlated ultra heavy-tailed Pareto
risks. First, the inequality (2.2) simply holds for perfectly positively dependent ultra heavy-
tailed Pareto risks (i.e., X1 = · · · = Xn almost surely). Therefore, (2.2) remains true if the
dependence structure (i.e., copula) of risks X1, . . . , Xn is a mixture of independence and
perfectly positive dependence; see Nelsen (2006) for an introduction to copulas. Besides
this specific type of positive dependence structure, the inequality (2.2) may also hold for
other dependence structures, but a rigorous analysis is beyond the scope of this chapter.

Remark 2.3. An ultra heavy-tailed Pareto sum is a random variable
∑

j∈N λjYj where
Yj ∼ Pareto(αj), j ∈ N, are independent, αj ∈ (0, 1], λj ∈ R+, and

∑
j∈N λj < ∞.

The inequality (2.2) in Theorem 2.1 holds also for iid ultra heavy-tailed Pareto sums
X,X1, . . . , Xn, and this can be shown by applying Theorem 2.1 to iid copies of each Yj.

For an equally weighted pool of k iid Pareto losses, it is interesting to see whether
enlarging k increases the risk in first-order stochastic dominance, i.e., for iid Pareto(α)
random variables X1, . . . , X`, α ∈ (0, 1], whether it holds that

1

k

k∑
i=1

Xi 6st
1

`

∑̀
i=1

Xi for k, ` ∈ N and k 6 `. (2.4)

The case of k = 1 in (2.4) corresponds to (2.2) with equal weights θ1, . . . , θn. The inequality
(2.4) means that the more we diversify ultra heavy-tailed Pareto losses, the higher the
penalty. In the next result, we show this inequality for the case that ` is a multiple of k.

Proposition 2.2. For m,n ∈ N, let X1, . . . , Xmn be iid Pareto(α) random variables,
α ∈ (0, 1]. We have

1

m

m∑
i=1

Xi 6st
1

mn

mn∑
i=1

Xi.
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Based on our numerical results in Section 2.6.1, we conjecture that the inequality (2.4)
is true also for the general case that ` is not a multiple of k.

Tail Pareto distributions

As reflected by the Pickands-Balkema-de Haan Theorem (see Theorem 3.4.13 (b) in
Embrechts et al. (1997)), many losses have a power-like tail, but their distributions may
not be power-like over the full support. Therefore, it is practically useful to assume that a
random loss has a Pareto distribution only in the tail region; see the examples in Section
2.1.1. For α > 0, we say that Y has a Pareto(α) distribution beyond x > 1 if P(Y >
t) = t−α for t > x. Our next result suggests that, under an extra condition, stochastic
dominance also holds in the tail region for such distributions.

Proposition 2.3. Let Y, Y1, . . . , Yn be iid random variables distributed as Pareto(α) beyond
x > 1 and α ∈ (0, 1]. Assume that Y >st X ∼ Pareto(α). For (θ1, . . . , θn) ∈ ∆n and t > x,
we have P (

∑n
i=1 θiYi > t) > P (Y > t), and the inequality is strict if t > 1 and θi > 0 for

at least two i ∈ [n].

In Proposition 2.3, the assumption Y >st X ∼ Pareto(α), that is, P(Y > t) 6 t−α

for t ∈ [1, x], is not dispensable. Here we cannot allow the distribution of Y on [1, x]
to be arbitrary; the entire distribution is relevant in order to establish the inequality
P (
∑n

i=1 θiYi > t) > P (Y > t), even for t in the tail region.

Let X,X1, . . . , Xn be iid Pareto(α) random variables with α ∈ (0, 1]. As a particular
application of Proposition 2.3, it holds that, for any m > 1,

X ∨m 6st

n∑
i=1

θi(Xi ∨m). (2.5)

This inequality follows by noting that X ∨ m has a Pareto distribution beyond m and
applying Proposition 2.3 to t > m. A location shift of (2.5) also gives

(X −m)+ 6st

n∑
i=1

θi(Xi −m)+. (2.6)

For (2.5) and (2.6) to hold, it suffices to assume that X1, . . . , Xn are Pareto(α) beyond m,
as their distribution on (−∞,m] does not matter.
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A classic model in insurance

Theorem 2.1 can be easily generalized to include random weights and a random number
of risks, which are for instance common in modeling portfolios of insurance losses; see
Klugman et al. (2012). Let N be a counting random variable (i.e., it takes values in
{0, 1, 2, . . . }), and Wi and Xi be positive random variables for i ∈ N. We consider an
insurance portfolio where each policy incurs a loss WiXi if there is a claim, and N is the
total number of claims in a given period of time. If W1 = W2 = · · · = 1 and X1, X2, . . .
are iid, then this model recovers the classic collective risk model. The total loss of a
portfolio of insurance policies is given by

∑N
i=1WiXi, and its average loss across claims is

(
∑N

i=1WiXi)/(
∑N

i=1Wi) where both terms are 0 if N = 0.

Proposition 2.4. Let X,X1, X2, . . . be iid Pareto(α) random variables, α ∈ (0, 1], W1,W2, . . .
be positive random variables, and N be a counting random variable, such that X, {Xi}i∈N,
{Wi}i∈N, and N are independent. We have

X1{N>1} 6st

∑N
i=1 WiXi∑N
i=1 Wi

and
N∑
i=1

WiX 6st

N∑
i=1

WiXi. (2.7)

If P(N > 2) 6= 0, then for t > 1, P(
∑N

i=1WiXi/
∑N

i=1 Wi 6 t) < P(X1{N>1} 6 t).

IfW1 = W2 = · · · = 1 as in the classic collective risk model, then, under the assumptions
of Proposition 2.4, we have

X11{N>1} 6st
1

N

N∑
i=1

Xi and NX1 6st

N∑
i=1

Xi.

To interpret the above inequalities, the average of a randomly counted sequence of iid
Pareto(α) losses is stochastically larger than one member of the sequence if α 6 1. There-
fore, building an insurance portfolio for iid ultra heavy-tailed Pareto claims does not reduce
the total risk on average. In this setting, it is less risky to insure one large policy than to
insure many independent policies of the same type of ultra heavy-tailed Pareto loss and
thus the basic principle of insurance does not apply to ultra heavy-tailed Pareto losses.

2.3 A model for catastrophic losses

Catastrophic losses are large losses that usually occur with very small probabilities. It
is practical to model an individual catastrophic loss as X1A, where A is the triggering event
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of the loss such that X1A is Pareto distributed conditional on A (hence, we can assume that
X is Pareto distributed and independent of A). Let A1, . . . , An be the triggering events
of independent Pareto losses X1, . . . , Xn ∼ Pareto(α), α ∈ (0, 1], such that A1, . . . , An
are independent of the loss portfolio (X1, . . . , Xn). Let (θ1, . . . , θn) ∈ Rn

+ be the exposure
vector. The total loss can then be written as θ1X11A1 + · · ·+ θnXn1An . If A1 = · · · = An,
meaning that X1, . . . , Xn represent different losses caused by the same catastrophic event,
then, by Theorem 2.1, for λ =

∑n
i=1 θi > 0,

X11A1 6st
1

λ

n∑
i=1

θiXi1Ai . (2.8)

Hence, diversification of losses from the same catastrophe increases the portfolio risk, and
thus there is a diversification penalty. It remains to investigate whether a diversification
penalty exists in this model (i.e., (2.8) holds) if A1, . . . , An are different, meaning that
X1, . . . , Xn may represent losses caused by different catastrophic events. Diversification
has two competing effects on the loss portfolio: It increases the frequency of having losses
and decreases the sizes of the individual losses.

To illustrate the above trade-off, we first look at the diversification of two ultra heavy-
tailed Pareto losses. Let X1, X2 be iid Pareto(α) random variables, α ∈ (0, 1], and A1, A2

be any events independent of (X1, X2). For simplicity, we assume that (θ1, θ2) = (1/2, 1/2),
and P(A1) = P(A2). We have

1

2
X11A1 +

1

2
X21A2 =

1

2
(X1 +X2)1A1∩A2 +

1

2
X11A1∩Ac2 +

1

2
X21Ac1∩A2

'st
1

2
(X1 +X2)1A1∩A2 +

1

2
X11(A1∩Ac2)∪(Ac1∩A2)

>st X11A1∩A2 +
1

2
X11(A1∩Ac2)∪(Ac1∩A2),

where the second-last equality holds as A1 ∩ Ac2 and Ac1 ∩ A2 are mutually exclusive and
X1 'st X2, and the last inequality uses 1

2
(X1 + X2)1A1∩A2 >st X11A1∩A2 which follows by

combining Theorem 2.1 and Theorem 1.A.14 of Shaked and Shanthikumar (2007). Write

X11A1 = X11A1∩A2 +X11A1∩Ac2 .

Therefore, whether (2.8) holds in this setting boils down to whether

X11A1∩Ac2 6st
1

2
X11(A1∩Ac2)∪(Ac1∩A2) (2.9)

17



holds. As P(A1) = P(A2), P((A1∩Ac2)∪(Ac1∩A2)) = 2P(A1∩Ac2). We write p = P(A1∩Ac2).
We can directly compute, for t > 0,

P(X11A1∩Ac2 > t) = p(t−α ∧ 1) and P
(

1

2
X11(A1∩Ac2)∪(Ac1∩A2) > t

)
= (2p)((2t)−α ∧ 1).

Since 2((2t)−α ∧ 1) = 21−α(t−α ∧ 2α) > (t−α ∧ 1), we obtain (2.9). Hence, diversification
of two ultra heavy-tailed Pareto losses increases the portfolio risk if the two losses are
triggered with the same probability. Theorem 2.2 provides a general result for diversifying
any number of ultra heavy-tailed Pareto losses triggered with (possibly) different proba-
bilities. To establish Theorem 2.2, we need the following lemma, which itself has a nice
interpretation.

Lemma 2.1. Let X ∼ Pareto(α), α ∈ (0, 1], and B1, . . . , Bn be mutually exclusive events
independent of X. For (c1, . . . , cn) ∈ [0, 1]n, we have

X1A 6st

n∑
i=1

ciX1Bi ,

where A is an event independent of X satisfying P(A) =
∑n

i=1 ciP(Bi).

Lemma 2.1 implies X1A 6st cX1B, where P(A) = cP(B) and c ∈ (0, 1]. This implies
that if we decrease the size of an ultra heavy-tailed Pareto loss (i.e., multiply X by c) and
increase the probability of having the loss (i.e., divide P(A) by c), the loss becomes larger
in first-order stochastic dominance. In general, the stochastic dominance cannot hold if
X is a moderately heavy-tailed Pareto loss (i.e., X has a finite mean). For a moderately
heavy-tailed Pareto loss X, E[cX1B] = E[X1A]. If, in addition, X1A 6st cX1B holds,
then one has X1A 'st cX1B (Theorem 1.A.8 of Shaked and Shanthikumar (2007)), which
does not hold unless c = 1. The above observation of ultra heavy-tailed Pareto losses
consequently leads to Theorem 2.2.

Theorem 2.2. Let X1, . . . , Xn be iid Pareto(α) random variables, α ∈ (0, 1], and A1, . . . , An
be any events independent of (X1, ..., Xn). For (θ1, . . . , θn) ∈ Rn

+, we have

λX1A 6st

n∑
i=1

θiXi1Ai , (2.10)

where λ >
∑n

i=1 θi, X ∼ Pareto(α), and A is independent of X satisfying λP(A) =∑n
i=1 θiP(Ai).
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Remark 2.4. By setting P(A1) = · · · = P(An) = 1, (θ1, . . . , θn) ∈ ∆n and λ = 1, Theorem
2.2 recovers the inequality (2.2) in Theorem 2.1. Moreover, a strict inequality

P

(
n∑
i=1

θiXi1Ai > t

)
> P (λX1A > t) (2.11)

similar to Theorem 2.1 can be expected. A sufficient condition can be obtained using the
strict inequality in Theorem 2.1: If there exists S ⊆ [n] with at least two elements such
that θi > 0 for i ∈ S and P(BS) > 0 where BS =

(⋂
i∈S Ai

)
∩
(⋂

i∈Sc A
c
i

)
, then (2.11) holds

for t >
∑

i∈S θi.

We discuss a special case of Theorem 2.2, which has practical relevance in risk sharing.
Let P(A1) = · · · = P(An), X = X1, A = A1, and (θ1, . . . , θn) ∈ ∆n. The inequality (2.10)
can be rewritten as

X11A1 6st

n∑
i=1

θiXi1Ai . (2.12)

The left-hand side of (2.12) can be regarded as the loss of an agent who keeps their own
risk, and the right-hand side of (2.12) is the loss of an agent who shares risks with other
agents. By pooling among ultra heavy-tailed Pareto losses, triggered by (possibly) different
catastrophes, agents expect to suffer less loss when their own catastrophic loss occurs.
However, every agent in the pool will have a higher frequency of bearing losses. Theorem
2.2 shows that the combined effects of diversification of ultra heavy-tailed Pareto losses
lead to a higher probability of default at any capital reserve level, i.e., P(

∑n
i=1 θiXi1Ai >

t) > P(X11A1 > t) for all t > 0.

2.4 Risk management decisions of a single agent

As hinted by (2.12) in Section 2.3, in a model of catastrophic losses (X1, . . . , Xn) and
triggering events (A1, . . . , An), an agent who can choose between keeping their own risk or
sharing risk with other agents has no incentive to enter the risk sharing pool, because it
will increase their total risk. In this section, we make this observation rigorous by formally
considering risk preference models.

Some further notation will be useful. Let X be the set of all random variables, and let
L1 ⊆ X be the set of random variables with finite mean. For X ∈ X , denote by FX the
distribution function. Denote by F−1

X the (left) quantile function of X, that is,

F−1
X (p) = inf{t ∈ R : FX(t) > p}, p ∈ (0, 1].
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For vectors x = (x1, . . . , xn) ∈ Rn and y = (y1, . . . , yn) ∈ Rn, their dot product is x · y =∑n
i=1 xiyi and we denote by ‖x‖ =

∑n
i=1 |xi|.

Measuring the risk of a financial portfolio is a crucial task in both the banking and
insurance sectors, and it is typically done by calculating the value of a risk measure which
maps the portfolio loss to a real number. A risk measure is a functional ρ : Xρ → R :=
[−∞,∞], where the domain Xρ ⊆ X is a set of random variables representing financial
losses. We will assume that an agent uses a risk measure ρ for their preference, in the sense
that the agent prefers a smaller value of ρ. Our notion of a risk measure is quite broad,
and it includes not only risk measures in the sense of Artzner et al. (1999) and Föllmer
and Schied (2016) but also decision models such as the expected utility by flipping the
sign. However, we need to be clear that most classic expected utility models or convex risk
measures (see Appendix 2.8.1) in the literature are not suitable for our setting, because
the ultra heavy-tailed Pareto losses do not have a finite mean, and most expected utility
functions and convex risk measures will take infinite values when evaluating these losses.
Nevertheless, we will soon see that there are still many useful examples of risk measures
conforming with our setting.

To interpret our main results, we only need minimal assumptions of monotonicity on
ρ, in the following two forms.

(a) Weak monotonicity: ρ(X) 6 ρ(Y ) for X, Y ∈ Xρ if X 6st Y .

(b) Mild monotonicity: ρ is weakly monotone and ρ(X) < ρ(Y ) if F−1
X < F−1

Y on (0, 1).

Each of weak and mild monotonicity implies that ρ(X) = ρ(Y ) holds forX 'st Y . Com-
mon examples of preference models are all mildly monotone; we highlight some examples.
First, for an increasing utility function u, the expected utility agent can be represented by
a risk measure Ev, namely

Ev(X) = E[v(X)], X ∈ XEv := {Y ∈ X : E[|v(Y )|] <∞},

where v(x) = −u(−x) is also increasing. It is clear that Ev is mildly monotone if v or u is
strictly increasing. The next examples are the two widely used regulatory risk measures in
insurance and finance, Value-at-Risk (VaR) and Expected Shortfall (ES). For X ∈ X and
p ∈ (0, 1), VaR is defined as

VaRp(X) = F−1
X (p) = inf{t ∈ R : FX(t) > p}, (2.13)

and ES is defined as

ESp(X) =
1

1− p

∫ 1

p

VaRu(X)du.
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For X /∈ L1, such as the ultra heavy-tailed Pareto losses, ESp(X) can be ∞, whereas
VaRp(X) is always finite. VaR is mildly monotone on X , whereas ES is mildly monotone
only on L1.

In Theorems 2.1 and 2.2, we have established a diversification penalty for two models,
which we will denote by Y = (Y1, . . . , Yn). In both models A and B below, letX,X1, . . . , Xn

be iid Pareto(α) random variables, α ∈ (0, 1], and (θ1, . . . , θn) ∈ ∆n.

A. Yi = Xi, i ∈ [n] and Y = X.

B. Yi = Xi1Ai , i ∈ [n] and Y = X1A, where A1, . . . , An are any events independent of
(X1, ..., Xn), and A is independent of X and satisfies P(A) =

∑n
i=1 θiP(Ai).

From now on, we will assume that Xρ contains the random variables in models A and B
(this puts some restrictions on v for Ev since E[X] = ∞). The following result on the
diversification penalty of ultra heavy-tailed Pareto losses for a monotone agent follows
directly from Theorems 2.1 and 2.2.

Proposition 2.5. For (θ1, . . . , θn) ∈ ∆n and a weakly monotone risk measure ρ : Xρ → R,
for both models A and B, we have

ρ

(
n∑
i=1

θiYi

)
> ρ(Y ). (2.14)

The inequality in (2.14) is strict for model A if ρ is mildly monotone and θi > 0 for at
least two i ∈ [n].

We distinguish strict and non-strict inequalities in (2.14) because a strict inequality has
stronger implications on the optimal decision of an agent. As an important consequence
of Proposition 2.5, for p ∈ (0, 1) and (θ1, . . . , θn) ∈ ∆n, in models A and B,

VaRp

(
n∑
i=1

θiYi

)
> VaRp(Y ), (2.15)

and if θi > 0 for at least two i ∈ [n], then, in model A,

VaRp

(
n∑
i=1

θiYi

)
>

n∑
i=1

θiVaRp(Yi). (2.16)

The inequality (2.16) and its non-strict version will be referred to as diversification penalty
for VaRp.
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Remark 2.5. Diversification penalty for VaRp also holds for other models that we consider.
For instance, by Proposition 2.3, if Y, Y1, . . . , Yn are iid Pareto(α) beyond x > 1 and
Y >st X ∼ Pareto(α), then inequalities (2.15) and (2.16) hold for p > 1− x−α.

From now on, we will focus on model A as it allows us to have a simple interpretation
of the diversification penalty as in (2.16). Since all commonly used preference models are
mildly monotone, Proposition 2.5 suggests that diversification of ultra heavy-tailed Pareto
losses is detrimental for the agent.

Proposition 2.5 implies the following optimal decision for an agent in a market where
several iid ultra heavy-tailed Pareto losses are present. Suppose that the agent needs to
decide on a position w ∈ Rn

+ across these losses to minimize the total risk. The agent faces
a total loss w ·Y − g(‖w‖) where the function g represents a compensation that depends
on w through ‖w‖, and Y is as in model A or B. The agent’s optimization problem then
becomes

to minimize ρ (w ·Y − g(‖w‖)) subject to w ∈ Rn
+ and ‖w‖ = w with given w > 0,

(2.17)
or

to minimize ρ (w ·Y − g(‖w‖)) subject to w ∈ Rn
+. (2.18)

For i ∈ [n], let ei,n be the ith column vector of the n×n identity matrix, and Ew = {wei,n :
i ∈ [n]} for w > 0, which represents the positions of only taking one loss with exposure w.

Proposition 2.6. Let ρ : Xρ → R be weakly monotone and g : R→ R.

(i) For model A, if ρ is mildly monotone, then the set of minimizers of (2.17) is Ew,
and that of of (2.18) is contained in

⋃
w∈R+

Ew.

(ii) For models A and B, if (2.17) has an optimizer, then it has an optimizer in Ew; if
(2.18) has an optimizer, then it has an optimizer in

⋃
w∈R+

Ew.

Remarkably, there are almost no restrictions on ρ and g in Proposition 2.6 other than
monotonicity of ρ, and hence this result can be applied to many economic decision models.

Remark 2.6. Since ESp is ∞ for the losses in models A and B, Proposition 2.6 applied
to ES gives the trivial statement that every position has infinite risk. The main context of
application for Proposition 2.6 should be risk measures which are finite for losses in models
A and B, such as VaR, Ev with some sublinear v, and Range Value-at-Risk (RVaR); see
Appendix 2.8.1 for the definition of RVaR.
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A model of excess-of-loss reinsurance coverage

Next, we assume the agent is an insurance company. In practice, insurers seek rein-
surance coverage to transfer their losses. One of the most popular catastrophe reinsurance
coverages is the excess-of-loss coverage; see OECD (2018). Therefore, it is interesting
to consider heavy-tailed losses bounded at some thresholds. Catastrophe excess-of-loss
coverage can be provided on per-loss or aggregate basis. We will see that the result in
Proposition 2.5 holds if the excess-of-loss coverage is provided on either per-loss basis with
high thresholds or aggregate basis.

We first discuss the case that the excess-of-loss coverage is provided on a per-loss basis,
where non-diversification traps may exist for insurers; see Ibragimov et al. (2009). For
X1, . . . , Xn ∼ Pareto(α), α ∈ (0, 1], take Yi = Xi ∧ ci, where ci > 1 is the threshold,
i = 1, . . . , n. Note that each Yi is bounded. Since Yi has a finite mean, we cannot expect
(2.15) or (2.16) to hold for all p ∈ (0, 1). Nevertheless, we will see below that for a given p
and large c1, . . . , cn, (2.16) holds, and thus there exists a diversification penalty for VaRp.

For p ∈ (0, 1) and (θ1, . . . , θn) ∈ ∆n, take ci > VaRp(
∑n

i=1 θiXi)/θi for i ∈ [n]. Given
that Xi > ci for i ∈ [n], the distribution of Xi does not contribute to the calculation
of VaRp(

∑n
i=1 θiXi), and we have VaRp(

∑n
i=1 θiYi) = VaRp(

∑n
i=1 θiXi). Therefore, (2.16)

holds for this choice of p and (c1, . . . , cn). Hence, a diversification penalty for VaRp exists
for a fixed p if the thresholds c1, . . . , cn are high enough.

If the excess-of-loss coverage is provided on an aggregate basis, then stochastic domi-
nance holds as X1∧c 6st (

∑n
i=1 θiXi)∧c where c > 1 is the threshold; indeed the inequality

is preserved under a monotone transform. Hence, for any weakly monotone risk measure
ρ : X → R, we have ρ(X1 ∧ c) 6 ρ((

∑n
i=1 θiXi) ∧ c), and a diversification penalty exists

for ρ. Unlike the situation of model A in Proposition 2.5, strict inequality may not hold
for ρ = VaRp because X1 ∧ c and (

∑n
i=1 θiXi) ∧ c have the same p-quantile c for large p.

Nevertheless, for the expected utility preference Ev, we have

E[v(X1 ∧ c)] < E[v((θ1X1 + · · ·+ θnXn) ∧ c)],

for c > 1 and v strictly increasing on [1, c]. This is because Ev is strictly monotone in the
sense that for X 6st Y taking values in [1, c] and X 6'st Y , we have Ev(X) < Ev(Y ).

Remark 2.7. If the minimum in the above discussion is replaced by a maximum, then
stochastic dominance holds, as discussed in (2.5) and (2.6).
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2.5 Equilibrium analysis in a risk exchange economy

2.5.1 The Pareto risk sharing market model

Suppose that there are n > 2 agents in a risk exchange market. Let X = (X1, . . . , Xn),
where X1, . . . , Xn are iid Pareto(α) random variables with α > 0. The ith agent faces a
loss aiXi, where ai > 0 is the initial exposure. In other words, the initial exposure vector
of agent i is ai = aiei,n, and the corresponding loss can be written as ai ·X = aiXi.

In a risk exchange market, each agent decides whether and how to share the losses with
the other agents. For i ∈ [n], let pi > 0 be the premium (or compensation) for one unit of
loss Xi; that is, if an agent takes b > 0 units of loss Xi, it receives the premium bpi, which
is linear in b. Denote by p = (p1, . . . , pn) ∈ Rn

+ the (endogenously generated) premium
vector. Let wi ∈ Rn

+ be the exposure vector of the ith agent from X after risk sharing.
Then the loss of agent i ∈ [n] after risk sharing is

Li(w
i,p) = wi ·X− (wi − ai) · p.

For each i ∈ [n], assume that agent i is equipped with a risk measure ρi : X → R,
where X contains the convex cone generated by {X} ∪ Rn. Moreover, there is a cost
associated with taking a total risk position ‖wi‖ different from the initial total exposure
‖ai‖. The cost is modelled by ci(‖wi‖ − ‖ai‖), where ci is a non-negative convex function
satisfying ci(0) = 0. Some examples of ci are ci(x) = 0 (no cost), ci(x) = λi|x| (linear
cost), ci(x) = λix

2 (quadratic cost), and ci(x) = λix+ (cost only for excess risk taking),
where λi > 0. We denote by c′i−(x) and c′i+(x) the left and right derivatives of ci at x ∈ R,
respectively.

The above setting is called a Pareto risk sharing market. In this risk sharing market,
the goal of each agent is to choose an exposure vector so that their own risk is minimized,
i.e., minimizing ρi(Li(w

i,p))+ci(‖wi‖−‖ai‖) over wi ∈ Rn
+, i ∈ [n]. An equilibrium of the

market is a tuple (p∗,w1∗, . . . ,wn∗) ∈ (Rn
+)n+1 if the following two conditions are satisfied.

(a) Individual optimality:

wi∗ ∈ arg min
wi∈Rn+

{
ρi
(
Li(w

i,p∗)
)

+ ci(‖wi‖ − ‖ai‖)
}
, for each i ∈ [n]. (2.19)

(b) Market clearance:
n∑
i=1

wi∗ =
n∑
i=1

ai. (2.20)

24



In this case, the vector p∗ is an equilibrium price, and (w1∗, . . . ,wn∗) is an equilibrium
allocation.

Some of our results rely on a popular class of risk measures, many of which can be
applied to ultra heavy-tailed Pareto losses. A distortion risk measure is defined as ρ :
Xρ → R, via

ρ(Y ) =

∫ 0

−∞
(h(P(Y > x))− 1)dx+

∫ ∞
0

h(P(Y > x))dx, (2.21)

where h : [0, 1] → [0, 1], called the distortion function, is a nondecreasing function with
h(0) = 0 and h(1) = 1. The distortion risk measure ρ, up to sign change, coincides with
the dual utility of Yaari (1987) in decision theory. As a class of risk measures, it includes
VaR, ES, and RVaR (see Appendix 2.8.1) as special cases, and almost all distortion risk
measures are mildly monotone (see Proposition 2.8). We assume that Xρ contains the
convex cone generated by {X} ∪ Rn; this always holds in case ρ is VaR or RVaR, and it
holds for ρ being ES if α > 1.

2.5.2 No risk exchange for ultra heavy-tailed Pareto losses

As anticipated from Proposition 2.6, each agent’s optimal strategy is not to share with
the other agents if their risk measure is mildly monotone and the Pareto losses are ultra
heavy-tailed. This observation is made rigorous in the following result, where we obtain
a necessary condition for all possible equilibria in the market, as well as two different
conditions in the case of distortion risk measures. As before, let X be a generic Pareto(α)
random variable.

Theorem 2.3. In a Pareto risk sharing market, suppose that α ∈ (0, 1], and ρ1, . . . , ρn are
mildly monotone.

(i) All equilibria (p∗,w1∗, . . . ,wn∗) (if they exist) satisfy p∗ = (p, . . . , p) for some p ∈ R+

and (w1∗, . . . ,wn∗) is an n-permutation of (a1, . . . , an).

(ii) Suppose that ρ1, . . . , ρn are distortion risk measures on X . If p satisfies

c′i+(0) > p− ρi(X) > c′i−(0) for i ∈ [n], (2.22)

then the tuple ((p, . . . , p), a1, . . . , an) is an equilibrium.
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(iii) Suppose that ρ1, . . . , ρn are distortion risk measures on X . If (p, . . . , p) is an equilib-
rium price, then

max
j∈[n]

c′i+(aj − ai) > p− ρi(X) > min
j∈[n]

c′i−(aj − ai) for i ∈ [n]. (2.23)

Theorem 2.3 (i) states that, even if there is some risk exchange in an equilibrium, the
agents merely exchange positions entirely instead of sharing a pool. This observation is
consistent with Theorem 2.1, which says that diversification among multiple ultra heavy-
tailed Pareto losses increases risk in a uniform sense. As there is no diversification in the
optimal allocation for each agent, taking any of these iid losses is equivalent for the agent,
and the equilibrium price should be identical across losses. Part (ii) suggests that if ci
has a kink at 0, i.e., c′i(0+) > 0 > c′i(0−), then p can be an equilibrium price if it is very
close to ρi(X) in the sense of (2.22). Conversely, in part (iii), if p is an equilibrium price,
then it needs to be close to ρi(X) for i ∈ [n] in the sense of (2.23). This observation
is quite intuitive because by (i), the agents will not share losses but rather keep one of
them in an equilibrium. If the price of taking one unit of the loss is too far away from an
agent’s assessment of the loss, it may have an incentive to move away, and the equilibrium
is broken.

As a general message, the equilibrium price p should be very close to the individual risk
assessments, and hence the risk sharing mechanism does not benefit the agents. Indeed,
in (ii), the equilibrium allocation is equal to the original exposure, and there is no welfare
gain. We will see later in Section 2.5.3 that in the presence of an external market, the
picture is drastically different: the agents will benefit from transferring some losses to an
external market.

In general, (2.22) and (2.23) are not equivalent, but in the two cases below, they are.

(a) a1 = · · · = an;

(b) c1 = · · · = cn = 0.

In either case, both (2.22) and (2.23) are a necessary and sufficient condition for (p, . . . , p)
to be an equilibrium price. Hence, the tuple (p∗,w1∗, . . . ,wn∗) is an equilibrium if and
only if (2.22) holds and (w1∗, . . . ,wn∗) is an n-permutation of (a1, . . . , an), which can be
checked by Theorem 2.3 (i). In case (a), p cannot be too far away from ρi(X) for each
i ∈ [n]. In case (b), p = ρ1(X) = · · · = ρn(X), and an equilibrium can only be achieved
when all agents agree on the risk of one unit of the loss and use this assessment for pricing.
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Although the agents will not benefit from sharing ultra heavy-tailed Pareto losses, the
situation becomes different if these Pareto losses are moderately heavy-tailed, which will
be discussed in Section 2.5.4.

Example 2.1 (Equilibrium for VaR agents with no costs). Suppose that ci = 0 for i ∈ [n].
Let ρi = VaRq, q ∈ (0, 1), i ∈ [n]. The tuple (p∗,w1∗, . . . ,wn∗) is an equilibrium where
p∗ = ((1− q)−1/α, . . . , (1− q)−1/α), and (w1∗, . . . ,wn∗) is an n-permutation of (a1, . . . , an).
For i ∈ [n], ρi (Li(w

i∗,p∗)) = VaRq(aiX) = ai(1− q)−1/α.

Remark 2.8. We offer a few further technical remarks on Theorem 2.3.

1. Theorem 2.3 (ii) and (iii) remain valid for all mildly monotone, translation invariant,
and positively homogeneous risk measures (see Appendix 2.8.1 for properties of risk
measures).

2. If the range of wi = (wi1, . . . , w
i
n) in (2.19) is constrained to 0 6 wij 6 aj for j ∈ [n],

then ((p, . . . , p), a1, . . . , an) in Theorem 2.3 (ii) is still an equilibrium under the con-
dition (2.22). However, the characterization statement in (i) is no longer guaranteed,
which can be seen from the proof of Theorem 2.3 in Appendix 2.8.2. As a result, (iii)
cannot be obtained either.

3. The Pareto risk sharing market is closely related to model A in Section 2.4. Since
model B has similar properties to model A in Proposition 2.6, we can check that the
equilibrium in Theorem 2.3 (ii) still holds if we replace model A by model B, where the
triggering events have the same probability of occurrence (i.e., P(A1) = · · · = P(An)).
However, we cannot guarantee that all equilibria for model B have the form in (i)
since holding one of the ultra heavy-tailed Pareto risks may not be the only optimal
strategy for agents in model B; see Proposition 2.6.

2.5.3 A market with external risk transfer

In the setting of Section 2.5.2, we have considered a risk exchange within the group
of n agents, each of which has an initial loss. Next, we consider an extended market
with external agents to which risk can be transferred with compensation from the internal
agents.

As we have seen from Theorem 2.3, agents cannot reduce their risks by sharing ultra
heavy-tailed losses within the group. As such, they may seek to transfer their risks to other
parties external to the group. In this context, the internal agents are risk bearers, and the
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external agents are institutional investors without initial position of ultra heavy-tailed
Pareto losses.

Consider a Pareto risk sharing market with n internal agents and m > 1 external agents
equipped with the same risk measure ρE : X → R. Let uj ∈ Rn

+ be the exposure vector of
the jth external agent after sharing the risks of the internal agents, j ∈ [m]. For the jth
external agent, the loss for taking position uj is

LE(uj,p) = uj ·X− uj · p,

where p = (p1, . . . , pn) is the premium vector. Like the internal agents, the goal of the
external agents is to minimize their risk plus cost. That is, for j ∈ [m], external agent j
minimizes ρE (LE(uj,p)) + cE(‖uj‖), where cE is a non-negative cost function satisfying
cE(0) = 0.

For tractability, we will also make some simplifying assumptions on the internal agents.
We assume that the internal agents have the same risk measure ρI and the same cost
function cI . Assume that cI and cE are strictly convex and continuously differentiable
except at 0, and ρI and ρE are mildly monotone distortion risk measures defined on X .
In addition, all internal agents have the same amount a > 0 of initial loss exposures, i.e.,
a = a1 = · · · = an. Finally, we consider the situation where the number of external agents
is larger than the number of internal agents by assuming that m = kn, where k is a positive
integer, possibly large.

An equilibrium of this market is a tuple (p∗,w1∗, . . . ,wn∗,u1∗, . . . ,um∗) ∈ (Rn
+)n+m+1

if the following two conditions are satisfied.

(a) Individual optimality:

wi∗ ∈ arg min
wi∈Rn+

{
ρI
(
Li(w

i,p∗)
)

+ cI(‖wi‖ − ‖ai‖)
}
, for each i ∈ [n]; (2.24)

uj∗ ∈ arg min
uj∈Rn+

{
ρE
(
LE(uj,p∗)

)
+ cE(‖uj‖)

}
, for each j ∈ [m]. (2.25)

(b) Market clearance:
n∑
i=1

wi∗ +
m∑
j=1

uj∗ =
n∑
i=1

ai. (2.26)

The vector p∗ is an equilibrium price, and (w1∗, . . . ,wn∗) and (u1∗, . . . ,um∗) are equilib-
rium allocations for the internal and external agents, respectively. Before identifying the
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equilibria in this market, we first make some simple observations. Let

LE(b) = c′E(b) + ρE(X) and LI(b) = c′I(b) + ρI(X), b ∈ R.

We will write L−I (0) = c′I−(0) + ρI(X) and L+
I (0) = c′I+(0) + ρI(X) to emphasize that the

left and right derivative of cI may not coincide at 0; this is particularly relevant in Theorem
2.3 (ii). On the other hand, LE(0) only has one relevant version since the allowed position is
non-negative. Note that both LE and LI are continuous except at 0 and strictly increasing.

If an external agent takes only one source of loss (intuitively optimal from Proposition
2.6) among X1, . . . , Xn (we use the generic variable X for this loss), then LE(b) is the
marginal cost of further increasing their position at bX. As a compensation, this agent
will also receive p. Therefore, the external agent has incentives to participate in the risk
sharing market if p > LE(0). If p 6 LE(0), due to the strict convexity of cE, this agent
will not take any risks. On the other hand, if p > L−I (0), which means that it is expensive
to transfer the loss externally, then the internal agent has no incentive to transfer. For a
small risk exchange to benefit both parties, we need LE(0) < p < L−I (0). This implies, in
particular,

ρE(X) 6 LE(0) < p < L−I (0) 6 ρI(X),

which means that the risk is more acceptable to the external agents than to the internal
agents, and the price is somewhere between the two risk assessments. The above intuition
is helpful to understand the conditions in the following theorem.

Theorem 2.4. In the Pareto risk sharing market of n internal and m = kn external
agents, suppose that α ∈ (0, 1]. Let E = (p,w1∗, . . . ,wn∗,u1∗, . . . ,um∗).

(i) If LE(a/k) < LI(−a), then there is no equilibrium.

(ii) Suppose that LE(a/k) > LI(−a) and LE(0) < L−I (0). Let u∗ be the unique solution
to

LE(u) = LI(−ku), u ∈ (0, a/k]. (2.27)

The tuple E is an equilibrium if and only if p = (p, . . . , p), p = LE(u∗),

(u1∗, . . . ,um∗) = u∗(ek1,n, . . . , ekm,n),

and
(w1∗, . . . ,wn∗) = (a− ku∗)(e`1,n, . . . , e`n,n),

29



where k1, . . . , km ∈ [n] and `1, . . . , `n ∈ [n] such that

u∗
m∑
j=1

1{kj=s} + (a− ku∗)
n∑
i=1

1{`i=s} = a for each s ∈ [n].

Moreover, if u∗ < a/(2k), then the tuple E is an equilibrium if and only if p =
(p, . . . , p), p = LE(u∗), (u1∗, . . . ,um∗) is a permutation of u∗(ed1/ke,n, . . . , edm/ke,n),
and (w1∗, . . . ,wn∗) is a permutation of (a− ku∗)(e1,n, . . . , en,n).

(iii) Suppose that LE(0) > L−I (0). The tuple E is an equilibrium if and only if p =
(p, . . . , p), p ∈ [L−I (0), LE(0)∧L+

I (0)], (u1∗, . . . ,um∗) = (0, . . . , 0), and (w1∗, . . . ,wn∗)
is a permutation of a(e1,n, . . . , en,n).

To interpret Theorem 2.4 (i), note that LE(a/k) < LI(−a) implies LE(u) < LI(w − a)
for all u ∈ [0, a/k] and w ∈ [0, a]. It means that if the price of transferring a unit of risk
is in [LE(a/k), LI(−a)], the optimal position for each internal agent will be 0, and the
external agents will have the incentives to increase their exposures from 0 to more than
a/k. In this case, the individual optimality conditions (2.24) and (2.25) and the clearance
condition (2.26) cannot be satisfied at the same time. Therefore, there is no equilibrium.

Compared with Theorem 2.3, where no benefits exist from risk sharing among the
internal agents, Theorem 2.4 (ii) implies that in the presence of external agents, every
party in the market may get better from risk sharing. More specifically, if LE(0) < L−I (0),
(i.e., the marginal cost of increasing an external agent’s position from 0 is smaller than
the marginal benefit of decreasing an internal agent’s position from a), there exists an
equilibrium price p ∈ [LE(0), L−I (0)] such that both internal and external agents in the
market can improve their objectives. The condition LE(0) < L−I (0) is crucial to such a
win-win situation, as a price less than L−I (0) will motivate the internal agents to transfer
risk, and a price greater than LE(0) will motivate the external agents to receive risks. As
shown by Theorem 2.4 (iii), if LE(0) > L−I (0), there are no incentives for the internal and
external agents to participate in the risk sharing market, and their positions remain the
same. Moreover, if u∗ < a/2k, i.e, the optimal position of each external agent is very small
compared with the total position of each loss in the market, the loss Xi for each i ∈ [n], has
to be shared by one internal agent and k external agents in order to achieve an equilibrium.

We make further observations on Theorem 2.4 (ii). From (2.27), it is straightforward
to see that if k gets larger (more external agents are in the market), the equilibrium price
p gets smaller. Intuitively, as more external agents are willing to take risks, they have
to make some compromise on the received compensation to get the amount of risks they
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want. The lower price further motivates the internal agents to transfer more risks to the
external agents. Indeed, by (2.27), ku∗ gets larger as k increases. On the other hand, u∗

gets smaller as k increases. In the equilibrium model, each external agent will take less risk
if more external agents are in the market. These observations can be seen more clearly in
the example below.

Example 2.2 (Quadratic cost). Suppose that the conditions in Theorem 2.4 (ii) are sat-
isfied (this implies ρE(X) < ρI(X) in particular), cI(x) = λIx

2, and cE(x) = λEx
2, x ∈ R,

where λI , λE > 0. We can compute the equilibrium price

p =
kλI

kλI + λE
ρE(X) +

λE
kλI + λE

ρI(X).

Therefore, the equilibrium price is a weighted average of ρE(X) and ρI(X), where the
weights depend on k, λI , and λE. We also have the equlibrium allocations u∗ = (u, . . . , u)
and w∗ = (w, . . . , w) where

u =
ρI(X)− ρE(X)

2(kλI + λE)
and w =

k(ρE(X)− ρI(X))

2(kλI + λE)
+ a.

It is clear that p moves in the opposite direction of k. Moreover, if more external agents
are in the market, each external agent will take fewer losses, while each internal agent will
transfer more losses to the external agents. If λI increases, the internal agents will be less
motivated to transfer their losses. To compensate for the increased penalty, the price paid
by the internal agents will decrease so that they are still willing to share risks to some
extent. The interpretation is similar if λE changes. Although the increase of different
penalties (λE or λI) have different impacts on the price, the increase of either λE or λI
leads to less incentives for the internal and external agents to participate in the risk sharing
market.

2.5.4 Risk exchange for moderately heavy-tailed Pareto losses

In contrast to the settings in Sections 2.5.2 and 2.5.3, we consider moderately heavy-
tailed Pareto losses below. The following proposition shows that agents prefer to share
moderately heavy-tailed Pareto losses among themselves if they are equipped with ES.

Proposition 2.7. In the Pareto risk sharing market, suppose that α ∈ (1,∞), and ρ1 =
· · · = ρn = ESq for some q ∈ (0, 1). Let

wi∗ =
ai∑n
j=1 aj

n∑
j=1

aj for i ∈ [n] and p∗ = (E [X1|A] , . . . ,E [Xn|A]) ,

31



where A = {
∑n

i=1 aiXi > VaRq (
∑n

i=1 aiXi)}. Then the tuple (p∗,w1∗, . . . ,wn∗) is an
equilibrium.

A sharp contrast is visible between the equilibrium in Theorem 2.3 and that in Propo-
sition 2.7. For α ∈ (0, 1], the equilibrium price is the same across individual losses, and
agents do not share losses at all. For α ∈ (1,∞) and ES agents, each individual loss has a
different equilibrium price, and agents share all losses proportionally.

We choose the risk measure ES here because it leads to an explicit expression of the
equilibrium. Although ES is not finite for ultra heavy-tailed Pareto losses (thus, it does
not fit Theorem 2.3), it can be approximated arbitrarily closely by RVaR (e.g., Embrechts
et al. (2018)) which fits the condition of Theorem 2.3. By this approximation, we expect
a similar situation if ES in Proposition 2.7 is replaced by RVaR, although we do not have
an explicit result.

Remark 2.9. Proposition 2.7, in the case of Pareto(α), α > 1, works for all convex risk
measures (see Appendix 2.8.1). The intuition is that the value of convex risk measures can
be reduced by diversification, i.e., ρ(λX + (1− λ)Y ) 6 λρ(X) + (1− λ)ρ(Y ) where ρ is a
convex risk measure, X and Y are two random variables with finite mean, and λ ∈ (0, 1).
Convex risk measures are not suitable for the case of ultra heavy-tailed Pareto risks as
they will always be infinite for risks without finite mean (see e.g., Filipović and Svindland
(2012)).

2.6 Numerical examples

2.6.1 Diversification effects as n increases

For α ∈ (0, 1], p ∈ (0, 1), and iid Pareto(α) random variables X1, . . . , Xn, we compute
VaRp(

∑n
i=1 Xi/n) for n = 2, . . . , 6. From Figure 2.1, we observe that VaRp(

∑n
i=1 Xi/n)

increases as n increases. The difference between the curves for different n becomes more
pronounced as α becomes smaller, i.e., the tail of the Pareto losses becomes heavier. From
these numerical results, we may expect that

1

k

k∑
i=1

Xi 6st
1

`

∑̀
i=1

Xi,

where k, ` ∈ N and k 6 `. We were only able to show the case where ` is a multiple of k
in Proposition 2.2.

32



0.90 0.91 0.92 0.93 0.94 0.95 0.96

0
1

0
0

0
0
0

0
2

0
0

0
0
0

0
3

0
0
0

0
0
0

α = 0.25

p

V
a

R
p

0.90 0.91 0.92 0.93 0.94 0.95 0.96

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0

0

α = 0.5

p
V

a
R

p

0.90 0.91 0.92 0.93 0.94 0.95 0.96

3
0

4
0

5
0

6
0

7
0

8
0

9
0

α = 0.75

p

V
a

R
p

n = 2 n = 3 n = 4 n = 5 n = 6

Figure 2.1: VaRp((X1 + · · ·+Xn)/n) for n = 2, . . . , 6 and p ∈ (0.9, 0.96).

2.6.2 Examples of ultra heavy-tailed Pareto losses

In addition to the many examples mentioned in Section 2.1.1, we provide two further
data examples: a first one on marine losses, and a second one on suppression costs of
wildfires. Using EVT, we will show that both examples exhibit infinite mean behavior. The
marine losses dataset, from the insurance data repository CASdatasets4, was originally
collected by a French private insurer and comprises 1,274 marine losses (paid) between
January 2003 and June 2006. The wildfire dataset5 contains 10,915 suppression costs in
Alberta, Canada from 1983 to 1995. For the purpose of this section, we only provide the
Hill estimates of these two datasets, although a more detailed EVT analysis is available (see
McNeil et al. (2015)). The Hill estimates of the tail indices α are presented in Figure 2.2,
where the black curves represent the point estimates and the red curves represent the 95%
confidence intervals with varying thresholds; see McNeil et al. (2015) for more details on
the Hill estimator. As suggested by McNeil et al. (2015), one may roughly chose a threshold
around the top 5% order statistics of the data. Following this suggestion, the tail indices α
for the marine losses and wildfire suppression costs are estimated as 0.916 and 0.847 with
95% confidence intervals being (0.674, 1.158) and (0.776, 0.918), respectively; thus, these
losses/costs have infinite mean if they follow Pareto distributions in their tails regions.

The observations in Figure 2.2 suggest that the two loss datasets may have similar
tail parameters. As discussed in Remark 2.1, Theorem 2.1 can be applied to generalized
Pareto distributions. If two loss random variables X1 and X2 are independent and follow
generalized Pareto distributions with the same tail parameter α = 1/ξ < 1 (see (2.3)),

4Available at http://cas.uqam.ca/.
5Available at https://wildfire.alberta.ca/.
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Figure 2.2: Hill plots for the marine losses and wildfire suppression costs: For each risk,
the Hill estimates are plotted as black curve with the 95% confidence intervals being red
curves.

then, for all p ∈ (0, 1),

VaRp(X1 +X2) > VaRp(X1) + VaRp(X2). (2.28)

Even if X1 and X2 are not Pareto distributed, as long as their tails are Pareto, (2.28) may
hold for p relatively large, as suggested by Proposition 2.3 and Remark 2.5.

We will verify (2.28) on our datasets to show how the implication of our main results
holds for real data. Since the marine losses data were scaled to mask the actual losses,
we renormalize it by multiplying the data by 500 to make it roughly on the same scale as
that of the wildfire suppression costs;6 this normalization does not matter for (2.28) and

is made only for better visualization. Let F̂1 be the empirical distribution of the marine
losses (renormalized) and F̂2 be the empirical distribution of the wildfire suppression costs.

Take independent random variables Ŷ1 ∼ F̂1 and Ŷ2 ∼ F̂2. Let F̂1 ⊕ F̂2 be the distribution

6The average marine losses (renormalized) and the average wildfire suppression costs are 12400 and
12899.
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with quantile function p 7→ VaRp(Ŷ1) + VaRp(Ŷ2), i.e., the comonotonic sum, and F̂1 ∗ F̂2

be the distribution of Ŷ1 + Ŷ2, i.e., the independent sum.

The differences between the distributions F̂1 ⊕ F̂2 and F̂1 ∗ F̂2 can be seen in Figure
2.3a. We observe that F̂1 ∗ F̂2 is less than F̂1 ⊕ F̂2 over a wide range of loss values. In
particular, the relation holds for all losses less than 267,659.5 (marked by the vertical line
in Figure 2.3a). Equivalently, we can see from Figure 2.3b that

VaRp(Ŷ1 + Ŷ2) > VaRp(Ŷ1) + VaRp(Ŷ2) (2.29)

holds unless p is greater than 0.9847 (marked by the vertical line in Figure 2.3b). Recall

that F̂1 ∗ F̂2 6 F̂1⊕ F̂2 is equivalent to (2.29) holding for all p ∈ (0, 1). Since the quantiles
are directly computed from data, thus from distributions with bounded supports, for p
close enough to 1 it must hold that VaRp(Ŷ1 + Ŷ2) 6 VaRp(Ŷ1) + VaRp(Ŷ2); see the similar
observation made in Proposition 2.1. Nevertheless, we observe (2.29) for most values of
p ∈ (0, 1). Note that the observation of (2.29) is entirely empirical and it does not use the
fitted models.

Let F1 and F2 be the true distributions (unknown) of the marine losses (renormalized)
and wildfire suppression costs, respectively. We are interested in whether the first-order
stochastic dominance relation F1 ∗ F2 6 F1 ⊕ F2 holds. Since we do not have access to
the true distributions, we generate two independent random samples of size 104 (roughly
equal to the sum of the sizes of the datasets, thus with a similar magnitude of randomness)

from the distributions F̂1⊕ F̂2 and F̂1 ∗ F̂2. We treat these samples as independent random
samples from F1 ⊕ F2 and F1 ∗ F2 and test the hypothesis using Proposition 1 of Barrett
and Donald (2003). The p-value of the test is greater than 0.5 and we are not able to reject
the hypothesis F1 ∗ F2 6 F1 ⊕ F2.

2.6.3 Aggregation of Pareto risks with different parameters

As mentioned above, for independent losses Y1, . . . , Yn following generalized Pareto
distributions with the same tail parameter α = 1/ξ < 1, it holds that

n∑
i=1

VaRp(Yi) 6 VaRp

(
n∑
i=1

Yi

)
, usually with strict inequality. (2.30)

Inspired by the results in Section 2.6.2, we are interested in whether (2.30) holds for
losses following generalized Pareto distributions with different parameters. To make a first
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Figure 2.3: Plots for F̂1 ⊕ F̂2 − F̂1 ∗ F̂2 and sample quantiles

attempt on this problem, we look at the 6 operational losses of different business lines with
infinite mean in Table 5 of Moscadelli (2004), where the operational losses are assumed
to follow generalized Pareto distributions. Denote by Y1, . . . , Y6 the operational losses
corresponding to these 6 generalized Pareto distributions. The estimated parameters in
Moscadelli (2004) for these losses are presented in Table 2.1; they all have infinite mean.

i 1 2 3 4 5 6
ξi 1.19 1.17 1.01 1.39 1.23 1.22
βi 774 254 233 412 107 243

Table 2.1: The estimated parameters ξi and βi, i ∈ [6].

For the purpose of this numerical example, we assume that Y1, . . . , Y6 are independent
and plot

∑6
i=1 VaRp(Yi) and VaRp(

∑6
i=1 Yi) for p ∈ (0.95, 0.99) in Figure 2.4. We can see

that VaRp(
∑6

i=1 Yi) is larger than
∑6

i=1 VaRp(Yi), and the gap between the two values gets
larger as the level p approaches 1. This observation further suggests that, even if the ultra
heavy-tailed Pareto losses have different tail parameters, a diversification penalty may still
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exist. We conjecture that this is true for any generalized Pareto losses Y1, . . . , Yn with
shape parameters ξ1, . . . , ξn ∈ [1,∞), although we do not have a proof. Similarly, we may
expect that

∑n
i=1 θiVaRp(Xi) 6 VaRp(

∑n
i=1 θiXi) holds for any Pareto losses X1, . . . , Xn

with tail parameters α1, . . . , αn ∈ (0, 1],
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Figure 2.4: Curves of VaRp(
∑n

i=1 Yi) and
∑n

i=1 VaRp(Yi) for n = 6 generalized Pareto
losses with parameters in Table 2.1 and p ∈ (0.95, 0.99).

From a risk management point of view, the message from Sections 2.6.2 and 2.6.3 is
clear. If a careful statistical analysis leads to statistical models in the realm of infinite
means, then the risk manager at the helm should take a step back and question to what
extent classical diversification arguments can be applied. Though we mathematically an-
alyzed the case of equal parameters, we conjecture that these results hold more widely in
the heterogeneous case. As a consequence, it is advised to hold on to only one such ultra-
heavy tailed risk. Of course, the discussion concerning the practical relevance of infinite
mean models remains. When such underlying models are methodologically possible, then
one should think carefully about the applicability of standard risk management arguments;
this brings us back to Weitzman’s Dismal Theorem as discussed towards the end of Section
2.1. From a methodological point of view, we expect that the results from Sections 2.4 and
2.5 carry over to the above heterogeneous setting.

37



2.7 Concluding remarks

We establish in Theorem 2.1 the inequality that the diversification of iid Pareto losses
without finite mean is greater than an individual Pareto loss in the sense of first-order
stochastic dominance, which is a very strong dominance relation. The result of stochastic
dominance is further generalized to three cases: (i) the losses are Pareto in the tail region
(Proposition 2.3); (ii) the number and weights of Pareto losses are random (Proposition
2.4); (iii) the Pareto losses are triggered by catastrophic events (Theorem 2.2). These
results provide an important implication in risk management, i.e., the diversification of
Pareto losses without finite mean may increase the risk assessment of a portfolio (Propo-
sition 2.6).

The equilibrium of a risk exchange model is analyzed in Theorem 2.3, where agents can
take extra Pareto losses with compensations. In particular, if every agent is associated with
an initial position of a Pareto loss without finite mean, the agents can merely exchange
their entire position with each other. On the other hand, if some external agents are not
associated with any initial losses, it is possible that all agents can reduce their risks by
transferring the losses from the agents with initial losses to those without initial losses
(Theorem 2.4).

2.8 Appendix

2.8.1 Background on risk measures

We collect some common terminology a new result on risk measures. We first present
commonly used properties of a risk measure ρ : Xρ → R.

(c) Translation invariance: ρ(X + c) = ρ(X) + c for c ∈ R.

(d) Positive homogeneity: ρ(aX) = aρ(X) for a > 0.

(e) Convexity: ρ(λX + (1− λ)Y ) 6 λρ(X) + (1− λ)ρ(Y ) for X, Y ∈ Xρ and λ ∈ [0, 1].

A risk measure that satisfies (a) weak monotonicity, (c) translation invariance, and (e)
convexity is a convex risk measure (Föllmer and Schied, 2002). It is well-known that ES is
a convex risk measure. The convexity property means that diversification will not increase
the risk of the loss portfolio, i.e., the risk of λX + (1− λ)Y is less than or equal to that of
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the weighted average of individual losses. However, the canonical space for law-invariant
convex risk measures is L1 (see Filipović and Svindland (2012)) and hence convex risk
measures are not useful for losses without finite mean.

For losses without finite mean, such as ultra heavy-tailed Pareto losses, it is natural to
consider VaR or Range Value-at-Risk (RVaR), which includes VaR as a limiting case. For
X ∈ X and 0 6 p < q < 1, the RVaR is defined as

RVaRp,q(X) =
1

q − p

∫ q

p

VaRu(X)du.

For p ∈ (0, 1), limq↓p+ RVaRp,q(X) = VaRp(X). The class of RVaR is proposed by Cont
et al. (2010) as robust risk measures; see Embrechts et al. (2018) for its properties and risk
sharing results. VaR, ES and RVaR, as well as essential infimum (ess-inf) and essential
supremum (ess-sup), belong to distortion risk measures in (2.21). For X ∈ X , ess-inf and
ess-sup are defined as

ess-inf(X) = sup{x : FX(x) = 0} and ess-sup(X) = inf{x : FX(x) = 1}.

The distortion functions of ess-inf and ess-sup are given as h(t) = 1{t=1} and h(t) =
1{0<t61}, t ∈ [0, 1], respectively; see Table 1 of Wang et al. (2020). Distortion risk measures
satisfy (a), (c) and (d). Almost all the useful distortion risk measures are mildly monotone,
as shown by the following proposition.

Proposition 2.8. Any distortion risk measure is mildly monotone unless it is a mixture
of ess-sup and ess-inf.

Proof. Let ρh be a distortion risk measure with distortion function h. Suppose that ρh is
not mildly monotone. There exist X, Y ∈ X satisfying F−1

X (p) < F−1
Y (p) for all p ∈ (0, 1)

and ρ(X) = ρ(Y ). Suppose that there exist b ∈ (0, 1) such that h(1 − a) < h(1 − b)
for all a > b. For x ∈ (F−1

X (b), F−1
Y (b)), we have FX(x) > b > FY (x); see e.g., Lemma

1 of Guan et al. (2022). Hence, we have h(1 − FX(x)) 6 h(1 − b) < h(1 − FY (x)) for
x ∈ (F−1

X (b), F−1
Y (b)). Since h(1 − FX(x)) − h(1 − FY (x)) 6 0 for all x ∈ R, by (2.21) we

get

ρ(X)− ρ(Y ) =

∫ ∞
−∞

(h(1− FX(x))− h(1− FY (x))) dx < 0.

This conflicts ρ(X) = ρ(Y ). Hence, there is no b ∈ (0, 1) such that h(1− a) < h(1− b) for
all a > b. Using a similar argument with the left quantiles replaced by right quantiles, we
conclude that there is no b ∈ (0, 1) such that h(1− a) > h(1− b) for all a < b. Therefore,
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for every b ∈ (0, 1), there exists an open interval Ib such that b ∈ Ib and h is a constant
on Ib. For any ε > 0, the interval [ε, 1 − ε] is compact. There exists a finite collection
{Ib : b ∈ B} which covers [ε, 1 − ε]. Since the open intervals in {Ib : b ∈ B} overlap,
we know that h is a constant on [ε, 1 − ε]. Sending ε ↓ 0 yields that h takes a constant
value on (0, 1), denoted by λ ∈ [0, 1]. Together with h(0) = 0 and h(1) = 1, we get
that h(t) = λ1{0<t61} + (1 − λ)1{t=1} for t ∈ [0, 1], which is the distortion function of
ρh = λess-inf + (1− λ)ess-sup.

As a consequence, for any set X containing a random variable unbounded from above
and one unbounded from below, such as the Lq-space for q ∈ [0,∞), a real-valued distortion
risk measure on X is mildly monotone.

2.8.2 Proofs of all theorems, propositions, and lemmas of Chap-
ter 2

Proof of Theorem 2.1. For (u1, . . . , un) ∈ (0, 1)n and θ = (θ1, . . . , θn) ∈ ∆n, define the

generalized weighted average Mr,θ(u1, . . . , un) = (θ1u
r
1 + · · ·+ θnu

r
n)

1
r , where r ∈ R. Note

that (2.2) can be equivalently written as

Mr,θ(U1, . . . , Un) 6st U, (2.31)

where U,U1, . . . , Un are iid uniform random variables on (0, 1), and r = −1/α ∈ (∞,−1].
It is well known that Mr,θ 6Ms,θ for r 6 s; see Theorem 16 of Hardy et al. (1934). Hence,
Mr,θ(U1, . . . , Un) 6 M−1,θ(U1, . . . , Un) for all r 6 −1. Therefore, for (2.31) to hold for all
r 6 −1, it suffices to show that M−1,θ(U1, . . . , Un) 6st U .

If some of θ1, . . . , θn are 0, we can reduce the dimension of the problem. Hence, we
will assume mini∈[n] θi > 0 in the proof below. There is nothing to show if only one θi > 0
which reduces to dimension 1.

We first show the case of n = 2. For a fixed p ∈ (0, 1) and θ = (θ1, θ2) ∈ ∆2 where
min{θ1, θ2} > 0, let δ = θ2/(p

−1 − 1 + θ2). For (u1, u2) ∈ (0, 1)2, if u2 6 δ, then

θ1u
−1
1 + θ2u

−1
2 > θ1 + θ2δ

−1 = 1− θ2 + p−1 − 1 + θ2 = p−1.

Hence, M−1,θ(u1, u2) 6 p if u2 6 δ. Then, for iid uniform random variables U1 and U2 on
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(0, 1), we have

P (M−1,θ(U1, U2) 6 p) = P
(
θ1U

−1
1 + θ2U

−1
2 > p−1

)
= P(U2 6 δ) + P

(
θ1U

−1
1 > p−1 − θ2U

−1
2 , U2 > δ

)
> P(U2 6 δ) + P

(
θ1U

−1
1 > p−1 − θ2, U2 > δ

)
= δ + θ1(1− δ)(p−1 − θ2)−1

> δ + θ1(1− δ)p
= θ1p+ pδ(p−1 − 1 + θ2) = p.

Hence, we have shown the case when n = 2. Next, let n > 2, and θ = (θ1, . . . , θn+1) ∈
∆n+1 where mini∈[n+1] θi > 0. Let U,U1, . . . , Un+1 be iid uniform random variables on
(0, 1). Assume that U−1 6st θ1/(

∑n
i=1 θi)U

−1
1 + · · · + θn/(

∑n
i=1 θi)U

−1
n . As first-order

stochastic dominance is closed under convolutions (e.g., Theorem 1.A.3 (a) of Shaked and
Shanthikumar (2007)), we have

θ1U
−1
1 + · · ·+ θn+1U

−1
n+1 >st

(
n∑
i=1

θi

)
U−1 + θn+1U

−1
n+1 >st U

−1,

Thus, M−1,θ(U1, . . . , Un+1) 6st U . Moreover, for p ∈ (0, 1),

P (M−1,θ(U1, . . . , Un+1) 6 p) = P
(
θ1U

−1
1 + · · ·+ θn+1U

−1
n+1 > p−1

)
> P

((
n∑
i=1

θi

)
U−1 + θn+1U

−1
n+1 > p−1

)
> p.

By induction, we have the desired result.

Proof of Proposition 2.2. Let Yj = (
∑jn

i=n(j−1)+1Xi)/n, j = 1, . . . ,m. By Theorem 2.1,

X ′j 6st Yj for j = 1, . . . ,m, where X ′1, . . . , X
′
m ∼ Pareto(α) are independent. Note that

Y1, . . . , Ym are also independent. As first-order stochastic dominance is closed under con-
volutions (e.g., Theorem 1.A.3 (a) of Shaked and Shanthikumar (2007)), we obtain

X1 + · · ·+Xm 'st X
′
1 + · · ·+X ′m 6st Y1 + · · ·+ Ym =

X1 + · · ·+Xmn

n
.

Dividing both sides by m yields the desired inequality.
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Proof of Proposition 2.4. By Theorem 2.1 and the law of total expectation, it is easy to
verify that, for n = 2, 3, . . . , P(

∑n
i=1WiXi/

∑n
i=1Wi 6 t) < P(X 6 t), t > 1 . As N is

independent of {WiXi}i∈N, for t > 1,

P

(∑N
i=1 WiXi∑N
i=1Wi

6 t

)
= P(N = 0) +

∞∑
n=1

P
(∑n

i=1WiXi∑n
i=1 Wi

6 t

)
P(N = n)

6 P(N = 0) + P(N > 1)

(
1− 1

tα

)
= P

(
X1{N>1} 6 t

)
.

It is obvious that the inequality is strict if P(N > 2) 6= 0. To show the second inequality
in (2.7), note that for each realization of N = n and (W1, . . . ,WN) = (w1, . . . , wn) ∈ Rn,∑n

i=1wiX 6st

∑n
i=1wiXi holds by Theorem 2.1. Hence, the second inequality in (2.7)

holds.

Proof of Lemma 2.1. The result is clearly true if c1 = · · · = cn = 0. If any components
of (c1, . . . , cn) are zero, the problem simply reduces its dimension. Hence, we assume that
(c1, . . . , cn) ∈ (0, 1]n for the rest of the proof. For t > 1 > maxi∈[n] ci,

P

(
n∑
i=1

ciX1Bi 6 t

)
=

n∑
i=1

(
1− cαi

tα

)
P(Bi) + P

⋂
i∈[n]

Bc
i

 .

Since B1, . . . , Bn are mutually exclusive,
∑n

i=1 P(Bi) = P
(⋃

i∈[n] Bi

)
= 1− P

(⋂
i∈[n] B

c
i

)
.

Moreover, as ci ∈ (0, 1] and α ∈ (0, 1], cαi > ci for i ∈ [n]. Therefore,

P

(
n∑
i=1

ciX1Bi 6 t

)
= 1−

n∑
i=1

cαi
tα
P(Bi) 6 1− 1

tα

n∑
i=1

ciP(Bi) = 1− 1

tα
P(A) = P(X1A 6 t).

For t ∈ [0, 1), P (
∑n

i=1 ciX1Bi 6 t) 6 P (
∑n

i=1 ciX1Bi 6 1) 6 1 − P(A) = P(X1A 6 t).
This yields the desired result.

Proof of Theorem 2.2. For S ⊆ [n], let BS =
(⋂

i∈S Ai
)
∩
(⋂

i∈Sc A
c
i

)
. For (θ1, . . . , θn) ∈ Rn

+,
we write

n∑
i=1

θiXi1Ai =
∑
S⊆[n]

1BS

∑
i∈S

θiXi.

By Theorem 2.1,
∑

i∈S θiXi >st

∑
i∈S θiX for any S ⊆ [n]. As A1, . . . , An are independent

of (X1, ..., Xn), by Theorem 1.A.14 of Shaked and Shanthikumar (2007),
∑

i∈S θiXi1BS >st
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∑
i∈S θiX1BS for any S ⊆ [n]. Since BS and BR are mutually exclusive for any distinct

S,R ⊆ [n], we have

n∑
i=1

θiXi1Ai =
∑
S⊆[n]

1BS

∑
i∈S

θiXi >st

∑
S⊆[n]

∑
i∈S

θiX1BS .

Note that ∑
S⊆[n]

P(BS)
∑
i∈S

θi =
n∑
j=1

θj
∑

S⊆[n],j∈S

P(BS) =
n∑
j=1

θiP(Aj) = λP(A).

As
∑

i∈S θi/λ ∈ [0, 1] for any S ⊆ [n], by Lemma 2.1,
∑

S⊆[n](
∑

i∈S θi/λ)X1BS >st X1A.

Hence,
∑n

i=1 θiXi1Ai >st λX1A.

Proof of Proposition 2.6. The proof of (i) follows directly from Theorem 2.1. (ii) follows
from Theorem 2.2 by noting that there exists j ∈ [n] such that P(Aj) 6 P(A), and hence,

wXj1Aj 6st wX1A 6st

n∑
i=1

wiXi1Ai ,

where X and A are in (2.10) with λ = w and (θ1, . . . , θn) = (w1, . . . , wn).

Proof of Theorem 2.3. (i) Suppose that (p∗,wi∗, . . . ,wn∗) forms an equilibrium. We let
p = maxj∈[n]{pj} and S = arg maxj∈[n]{pj}. For the ith agent, by writing w = ‖wi‖,
using Theorem 2.1 and the fact that ρi is mildly monotone, we have for any wi ∈
[0, 1]n,

ρi(Li(w
i,p∗)) = ρi(w

i · (X− p∗) + ai · p∗)
> ρi(w

i ·X− wp+ ai · p∗) > ρi(wX1 − wp+ ai · p∗)

and the last inequality is strict if wi contains at least two non-zero components by the
last statement of Theorem 2.1. Moreover, c(‖wi‖ − ‖ai‖) = c(w − ‖ai‖). Therefore,
we know that the optimizer wi∗ = (wi∗1 , . . . , w

i∗
n ) to (2.19) has at most one non-zero

component wi∗j , and j ∈ S. Hence, wi∗k = 0 if k ∈ [n] \ S and this holds for each
i ∈ [n]. Using

∑n
i=1 wi∗ =

∑n
i=1 ai which have all positive components, we know

that S = [n], which further implies that p∗ = (p, . . . , p) for p ∈ R+. Next, as each
wi∗ has only one positive component, (wi∗, . . . ,wn∗) has to be an n-permutation of
(a1, . . . , an) to satisfy the clearance condition (2.20).
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(ii) The clearance condition (2.20) is clearly satisfied. Note that distortion risk measures
are translation invariant and positive homogeneous (see Section 2.8.1 for properties
of risk measures). Using these two properties and Proposition 2.6, for i ∈ [n],

min
wi∈Rn+

{
ρi
(
Li(w

i,p∗)
)

+ ci(‖wi‖ − ‖ai‖)
}

= min
wi∈Rn+

{
ρi
(
wi ·X− (wi − ai) · p∗

)
+ ci(‖wi‖ − ‖ai‖)

}
= min
‖wi‖∈R+

{
(ρi
(
‖wi‖X

)
− (‖wi‖ − ai)p) + ci(‖wi‖ − ‖ai‖)

}
= min

w∈R+

{w(ρi(X)− p) + aip+ ci(w − ai)} . (2.32)

Note that w 7→ w(ρi(X) − p) + ci(w − ai) is convex and with condition (2.22), its
minimum is attained at w = ai. Therefore, wi∗ = ai∗ is an optimizer to (2.19), which
shows the desired statement of equilibrium.

(iii) By (i), (w1∗, . . . ,wn∗) is an n-permutation of (a1, . . . , an). It means that for any
i ∈ [n], there exists j ∈ [n] such that aj is the minimizer of (2.32). As ci is convex,
we have

c′i+(aj − ai) > p− ρi(X) > c′i−(aj − ai), for each i ∈ [n].

Hence, we obtain (2.23).

Proof of Theorem 2.4. As in Section 2.5.2, an optimal position for either the internal or the
external agents is to concentrate on one of the losses Xi, i ∈ [n]. By the same arguments as
in Theorem 2.3 (i), the equilibrium price, if it exists, must be of the form p = (p, . . . , p). For
such a given p, using the assumption that ρE and ρI are mildly monotone and Proposition
2.6, we can rewrite the optimization problems in (2.24) and (2.25) as

min
uj∈Rn+

{
ρE
(
LE(uj,p)

)
+ cE(‖uj‖)

}
= min

u∈R+

{u (ρE (X)− p) + cE(u)} , (2.33)

and

min
wi∈Rn+

{
ρI
(
Li(w

i,p)
)

+ cI(‖wi‖ − ‖ai‖)
}

= min
w∈R+

{w(ρI (X)− p) + ap+ cI(w − a)} ,

(2.34)

for j ∈ [m] and i ∈ [n]. Note that the derivative of the function inside the minimum of the
right-hand side of (2.33) with respect to u is LE(u) − p, and similarly, LI(w − a) − p is
the derivative of the function inside the minimum of the right-hand side of (2.34). Using
strict convexity of cE and cI , we get the following facts.
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1. The optimizer u to (2.33) has two cases:

(a) If LE(0) > p, then u = 0.

(b) If LE(0) < p, then u > 0 and LE(u) = p.

2. The optimizer w to (2.34) has four cases:

(a) If L+
I (0) < p, then w > a. This is not possible in an equilibrium.

(b) If L+
I (0) > p > L−I (0), then w = a.

(c) If L−I (0) > p > LI(−a), then 0 < w < a and LI(w − a) = p.

(d) If LI(−a) > p, then w = 0.

From the above analysis, we see that the optimal positions for each different external
agent are either all 0 or all positive, and they are identical due to the strict monotonicity
of LE. We can say the same for the internal agents. Suppose that there is an equilibrium.
Let u be the external agents’ common exposure, and w be the internal agent’s exposure.
By the clearance condition (2.26) we have w+ ku = a. If 0 < ku < a, then from (1.b) and
(2.c) above, we have LE(u) = LI(−ku). Below we show the three statements.

(i) If LE(a/k) < LI(−a), then by strict monotonicity of LE and LI , there is no u ∈
(0, a/k] such that LE(u) = LI(−ku). Since u cannot be larger than a/k, if an
equilibrium exists, then u = 0; but in this case, by (1.a) and (2.b), we have LE(0) >
p > LI−(0), which conflicts LE(a/k) < LI(−a). Hence, there is no equilibrium.

(ii) In this case, there exists a unique u∗ ∈ (0, a/k] such that LE(u∗) = LI(−ku∗).
It follows that u = u∗ optimizes (2.33) and w = a − ku∗ optimizes (2.34). It is
straightforward to verify that E is an equilibrium, and thus the “if” statement holds.
To show the “only if” statement, it suffices to notice that LE(u) = LI(−ku) = p
has to hold, where p is an equilibrium price and u is the optimizer to (2.33), and
such u and p are unique. Next, we show the “only if” statement for u∗ < a/2k. As
the optimal position for each external agent is a − ku∗ > a/2, if more than two of
the internal agents take the same loss, then the clearance condition (2.26) is broken.
Hence, the internal agents have to take different losses. Moreover, as the optimal
position for the internal agents are the same, the loss Xi for each i ∈ [n], must be
shared by one internal and k external agents. The equilibrium is preserved under the
permutation of allocations. Thus, we have the “only if ” statement for u∗ < a/2k.
The “if” statement is obvious.
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(iii) The “if” statement can be verified directly using Theorem 2.3 (ii). Next, we show
the “only if” statement. By (2.a), it is clear that the equilibrium price p satisfies
p 6 L+

I (0). If p < L−I (0), by (1.a), (2.c), and (2.d), the clearance condition (2.26)
cannot be satisfied. Thus, p > L−I (0). By a similar argument, we have p 6 LE(0).
Hence, we get p ∈ [L−I (0), LE(0) ∧ L+

I (0)]. From (1.a) and (2.b), we have u = 0 and
w = a and thus the desired result.

Proof of Proposition 2.7. The clearance condition (2.20) is clearly satisfied. As ES is trans-
lation invariant, it suffices to show that wi∗ minimizes ESq(w

i ·X−wi ·p∗)+ci(‖wi‖−‖ai‖)
for i ∈ [n]. Write r : w 7→ ESq (w ·X) for w = (w1, . . . , wn) ∈ [0, 1]n. By Corollary 4.2 of
Tasche (2000),

∂r

∂wi
(w) = E [Xi|Aw] , i ∈ [n],

where Aw = {
∑n

i=1wiXi > VaRq (
∑n

i=1 wiXi)}. Moreover, using convexity of r, we have
(see McNeil et al. (2015, p. 321))

r (w)−w · p∗ >
n∑
i=1

wi
∂r

∂wi
(a1, . . . , an)−w · p∗ = 0.

By Euler’s rule (see McNeil et al. (2015, (8.61))), the equality holds if w = λ(a1, . . . , an) for
any λ > 0 . By taking λ = ai/

∑n
j=1 aj, we get ‖w‖ = ai = ‖ai‖, and hence ci(‖w‖−‖ai‖)

is minimized by w = λ(a1, . . . , an). Therefore, wi∗ is an optimizer for each i ∈ [n].
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Chapter 3

Ordering and Inequalities for
Mixtures on Risk Aggregation

3.1 Introduction

Robust risk aggregation has been studied extensively with applications in banking and
insurance. A typical problem in this area is to compute the worst-case values of some risk
measures for an aggregate loss with unknown dependence structure. Two popular regula-
tory risk measures used in industry are Value-at-Risk (VaR) and the Expected Shortfall
(ES); see McNeil et al. (2015) and the references therein. The worst-case value of ES in risk
aggregation is explicit since ES is a coherent risk measure (Artzner et al. (1999)), whereas
the worst-case value of VaR in risk aggregation generally does not admit analytical formu-
las, which is a known challenging problem (see e.g., Embrechts et al. (2013, 2015)). See
Cai et al. (2018) on robust risk aggregation for general risk measures, and Eckstein et al.
(2020) on computation of robust risk aggregation using neural networks.

The above robust risk aggregation problem involves taking the supremum of a risk
measure over an aggregation set. Fix an atomless probability space (Ω,F ,P) and letM be
the set of cdfs1 on R. For F ∈M, X ∼ F means that the cdf of a random variable X is F .
Moreover, letM1 denote the set of cdfs on R with finite mean. For F = (F1, . . . , Fn) ∈Mn,
the aggregation set (Bernard et al. (2014)) is defined as

Dn(F) = {cdf of X1 + · · ·+Xn : Xi ∼ Fi, i = 1, . . . , n}. (3.1)

1In this chapter, we treat probability measures on B(R) and cdfs on R as equivalent objects.
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The obvious interpretation is that Dn(F) fully describes model uncertainty associated
with known marginal distributions F1, . . . , Fn but unknown dependence structure. The
separate modeling of marginals and dependence is a standard practice in quantitative risk
modeling, often involving copula techniques; see e.g., McNeil et al. (2015). An analytical
characterization of Dn(F) for a given F is very difficult and challenging. The only available
analytical results are in Mao et al. (2019) for standard uniform marginals.

The main objective of this chapter is to compare model uncertainty of risk aggregation
for F,G ∈ Mn which represent two possible models of marginals. The strongest form of
comparison is set inclusion between two aggregation sets Dn(F) and Dn(G). It turns out
that such a strong relation may be achievable if F,G ∈ Mn are related by the simple
operations of distribution mixtures and quantile mixtures. Distribution mixture produces
a tuple whose components are convex combinations of the given distributions and quantile
mixture yields a tuple whose components are given by convex combinations of the given
quantiles. Both types of operations are common in statistics and risk management, as they
correspond to simple operations on the parameters in statistical models or on portfolio
construction; see Section 3.7 for an example. Moreover, if G is obtained from F via a
distribution or quantile mixture, then the mean (assumed to be finite) of any element of
Dn(G) is the same as that of any element of Dn(F), making the comparison fair. To
the best of our knowledge, this chapter is the first systematic study on the order relation
between Dn(F) and Dn(G) for different F and G, thus comparing model uncertainty at
the level of all possible distributions.

In some cases, a strong comparison via set inclusion is not possible, but we can compare
values of a chosen risk measure. For a law-invariant risk measure2 ρ :M→ R, we denote
by ρ(F) the worst-case value of ρ in risk aggregation for F ∈Mn, that is,

ρ(F) = sup{ρ(F ) : F ∈ Dn(F)}.

We shall compare ρ(F) with ρ(G), thus the worst-case values of a risk measure under model
uncertainty, which usually represent conservative calculation of regulatory risk capital (e.g.,
Embrechts et al. (2013)). Certainly, Dn(F) ⊂ Dn(G) implies ρ(F) 6 ρ(G) for all risk
measures ρ, implying that the first comparison is stronger than the second one.3

Our study brings insights to two relevant problems in risk management. First, suppose
that F and G are two possible statistical models for the marginal distributions in a risk ag-

2We conveniently treat law-invariant risk measures as mappings on M, although it is conventional to
treat them as mappings on a space of random variables. The two settings are equivalent for law-invariant
risk measures.

3In this chapter, the set inclusion “⊂” is non-strict; the strict set inclusion is “(”. Similarly, the terms
“increasing” and “decreasing” are in the non-strict sense.
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gregation setting. Our results allow for a comparison of model uncertainty associated with
the two models, regardless of the choice of risk measures. Although a completely unknown
dependence structure is sometimes unrealistic, it is commonly agreed that the dependence
structure in a risk model is difficult to accurately specify (e.g., Embrechts et al. (2013)
and Bernard et al. (2017)). Hence, a comparison of the magnitude of model uncertainty
is an important practical issue. On the other hand, the general conclusions remain valid
even if the marginal distributions are not completely specific (see the discussion in Section
3.9 on the presence of marginal uncertainty), and thus the assumption of known marginal
distributions in our study is not harmful.

Second, our results provide an analytical way to establish inequalities on the worst-case
risk measures in the form ρ(F) 6 ρ(G). Sometimes the worst-case risk measure is difficult
to calculate for F, but it may be easier to calculate for G. For instance, formulas on
worst-case VaR are available for some homogeneous marginal distributions in Wang et al.
(2013) and Puccetti and Rüschendorf (2013), but explicit results on heterogeneous marginal
distributions are limited (see Blanchet et al. (2020) for a recent treatment). Therefore, we
can use the analytical formula ρ(G), if available, as an upper bound on ρ(F), and this
leads to interesting applications in other fields; see Section 3.7 for applications on portfolio
diversification and multiple hypothesis testing and Section 3.8 for a connection to joint
mixability.

Our theoretical contributions are briefly summarized below. In Sections 3.2 and 3.3,
we analyze general relations on distribution and quantile mixtures. The general message
of our results is that the more “homogeneous” the distribution tuple is, the larger its
corresponding aggregation set Dn is. In particular, the set inclusion is established for any
tuples connected by distribution mixtures in Theorem 3.1; that is, Dn(F) ⊂ Dn(G) if G is
a distribution mixture of F. The problem for quantile mixtures is much more challenging.
The set inclusion is established for uniform marginals in Proposition 3.2. For other families
of distributions, such a general relationship does not hold, as discussed with some examples.

In Section 3.4, we obtain inequalities between the worst-case values of some risk mea-
sure ρ in risk aggregation with marginals related by distribution or quantile mixtures.
Although quantile mixtures do not satisfy the relationship Dn(F) ⊂ Dn(G) in general, we
can prove an order property between ρ(G) and ρ(F) for commonly used risk measures.
Most remarkably, in Theorem 3.3, we show that under a monotone density assumption,
VaR satisfies this order property for a quantile mixture. Section 3.5 is dedicated to the
most interesting special case of Pareto risk aggregation, with a special focus on the case of
infinite mean.

Numerical results are presented in Section 3.6 to illustrate the obtained results. In
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Section 3.7, we provide two applications: portfolio diversification under dependence un-
certainty and merging p-values in multiple hypothesis testing. Some further technical
discussions on distribution and quantile mixtures are put in Section 3.8. Section 3.9 con-
cludes the chapter by presenting several open mathematical challenges related to quantile
mixtures. Some proofs and further properties of Pareto risk aggregation are put in Section
3.10.

3.2 Distribution mixtures

In this section we put our focus on one of the two operations: distribution mixture.
The main objective is to establish some ordering relationships on the set Dn(F) and Dn(G)
where G is a distribution mixture of F. For greater generality, we investigate a more general
f -aggregation set Df (F), where f : Rn → R is a measurable and symmetric function.4

Similarly to (3.1), for F = (F1, . . . , Fn) ∈Mn, the f -aggregation set is defined as

Df (F) = {cdf of f (X1, . . . , Xn) : Xi ∼ Fi, i = 1, . . . , n}.

It is clear that Dn, defined in (3.1), becomes a specific case of Df if f is a sum function
(f(x1, . . . , xn) =

∑n
j=1 xj). We first present some properties of the f -aggregation set.

Lemma 3.1. For an n-symmetric function f : Rn → R, F,G ∈ Mn, λ ∈ [0, 1] and an
n-permutation π, the following hold.

(i) Df (F) = Df (π(F)).

(ii) λDf (F) + (1− λ)Df (G) ⊂ Df (λF + (1− λ)G). In particular,

(a) λDf (F) + (1− λ)Df (F) = Df (F).

(b) Df (F) ∩ Df (G) ⊂ Df (λF + (1− λ)G).

Proof. (i) holds because of the symmetry of f . To prove (ii), for any H ∈ λDf (F) + (1−
λ)Df (G), there exist X1 ∼ F1, . . . , Xn ∼ Fn, Y1 ∼ G1, . . . , Yn ∼ Gn and an event A ∈ F
independent of X1, . . . , Xn, Y1, . . . , Yn such that P(A) = λ and

(f(X1, . . . , Xn)1A + f(Y1, . . . , Yn)1Ac) ∼ H.

4A function f is symmetric if f(x) = f(π(x)) for any x ∈ Rn and n-permutation π.
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We notice that

f(X1, . . . , Xn)1A + f(Y1, . . . , Yn)1Ac = f (X11A + Y11Ac , . . . , Xn1A + Yn1Ac) ,

and (Xi1A + Yi1Ac) ∼ λFi + (1− λ)Gi for any i = 1, . . . , n. Thus we have H ∈ Df (λF +
(1− λ)G). This completes the proof of (ii).

We briefly fix some notation and convention. Let ∆n be the standard simplex given
by ∆n = {(λ1, . . . , λn) ∈ [0, 1]n :

∑n
i=1 λi = 1}. Recall that a doubly stochastic matrix

is a square matrix of nonnegative real numbers, each of whose rows and columns sums to
1 (i.e. each row or column is in ∆n). Denote by Qn the set of n × n doubly stochastic
matrices. All vectors should be treated as column vectors. For λ = (λ1, . . . , λn) ∈ ∆n

and F = (F1, . . . , Fn) ∈ Mn, their dot product is λ · F =
∑n

i=1 λiFi ∈ M. For a matrix
Λ = (λ1, . . . ,λn)> ∈ Qn and F ∈Mn, their product is ΛF = (λ1 · F, . . . ,λn · F) ∈Mn.

The vector ΛF is a distribution mixture of F, and we will call it the Λ-mixture of F to
emphasize the reliance on Λ. Indeed, ΛF can be seen as a vector of weighted averages of F.
In particular, by choosing Λ = ( 1

n
)n×n (here (x)n×n means an n× n matrix with identical

number x ∈ R), we get the vector (F, . . . , F ) where F is the average of components of
F. Note that if F ∈ Mn

1 , then the mean of any element of Dn(F) is the same as that of
Dn(ΛF).

The first result below suggests that the set of aggregation for a tuple of distributions
is smaller than that for the weighted averages. The proof is elementary, but the result
allows us to observe the important phenomenon that more homogeneous marginals lead to
a larger aggregation set.

Theorem 3.1. For an n-symmetric function f : Rn → R, F ∈Mn and Λ ∈ Qn, Df (F) ⊂
Df (ΛF). In particular, Dn(F) ⊂ Dn(ΛF).

Proof. Let Π1, . . . ,Πn! be all different n-permutation matrices, i.e. ΠkF is a permutation of
F. By Birkhoff’s Theorem (Theorem 2.A.2 of Marshall et al. (2011)), the set Qn of doubly
stochastic matrices is the convex hull of permutation matrices, that is, for any Λ ∈ Qn,
there exists (λ1, . . . , λn!) ∈ ∆n!, such that

Λ =
n!∑
k=1

λkΠk.
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Note that Df (F) = Df (ΠkF) for k = 1, . . . , n! by Lemma 3.1(i). Further, by Lemma
3.1(ii-b), we have,

Df (F) =
n!⋂
k=1

Df (ΠkF) ⊂ Df

(
n!∑
k=1

λkΠk(F)

)
= Df (ΛF).

This completes the theorem.

As the sum aggregation is the most common in financial applications, we will mainly
discuss Dn instead of Df in the following context, while keeping in mind that most results
on Dn can be extended naturally to Df .

Corollary 3.1. For F = (F1, . . . , Fn) ∈ Mn and Λ ∈ Qn, Dn(ΛF) ⊂ Dn(F, . . . , F ) where
F = 1

n

∑n
i=1 Fi.

By taking Λ as the identity in Corollary 3.1, we obtain the set inclusion Dn(F) ⊂
Dn(F, . . . , F ), which was given in Theorem 3.5 of Bernard et al. (2014) to find the bounds
on VaR for heterogeneous marginal distributions.

The doubly stochastic matrices are closely related to majorization order. For λ,γ ∈ Rn,
we say that λ dominates γ in majorization order, denoted by γ ≺ λ, if

∑n
i=1 φ(γi) 6∑n

i=1 φ(λi) for all continuous convex functions φ. There are several equivalent conditions
for this order; see Section 1.A.3 of Marshall et al. (2011). One equivalent condition that is
relevant to Theorem 3.1 is that γ ≺ λ if and only if there exists Λ ∈ Qn such that γ = Λλ.
We can similarly define majorization order between F,G ∈ Mn, denoted by G ≺ F, if
G = ΛF for some Λ ∈ Qn. Then, we have the following corollary.

Corollary 3.2. For F,G ∈Mn, if G ≺ F, then Dn(F) ⊂ Dn(G).

Example 3.1 (Bernoulli distributions). We apply Theorem 3.1 to Bernoulli distributions.
Let Bp be a Bernoulli cdf with (mean) parameter p ∈ [0, 1]. Note that a mixture of Bernoulli
distributions is still Bernoulli, and more precisely, for p = (p1, . . . , pn) ∈ [0, 1]n and q =
(q1, . . . , qn) = Λp, we have Λ(Bp1 , . . . , Bpn) = (Bq1 , . . . , Bqn). Therefore, by Theorem 3.1,
for any p,q ∈ [0, 1]n with q ≺ p, we haveDn(Bp1 , . . . , Bpn) ⊂ Dn(Bq1 , . . . , Bqn). This result
will be used later to discuss joint mixability (see Section 3.8) of Bernoulli distributions.
For instance, we can set p = (0.2, 0.8),

Λ =

(
1
4

3
4

3
4

1
4

)
, and q =

(
1
4

3
4

3
4

1
4

)
(0.2, 0.8) = (0.65, 0.35).

Note that Λ(B0.2, B0.8) = (B0.65, B0.35). Hence Dn(B0.2, B0.8) ⊂ Dn(B0.65, B0.35).
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Next, we discuss how Λ-mixtures affect the lower sets with respect to convex order.
A distribution F ∈ M1 is called smaller than a distribution G ∈ M1 in convex order,
denoted by F ≺cx G, if∫

φ dF 6
∫
φ dG for all convex φ : R→ R, (3.2)

provided that both integrals exist (finite or infinite); see Müller and Stoyan (2002) and
Shaked and Shanthikumar (2007) for an overview on convex order and the related notion
of second-order stochastic dominance. For a given distribution F ∈ M1, denote by C(F )
the set of all distributions in M1 dominated by F in convex order, that is,

C(F ) = {G ∈M1 : G ≺cx F}.

For any distributions F and G, we denote by F ⊕G the distribution with quantile function
F−1 +G−1.5 Moreover, define

C(F1, . . . , Fn) = C(F1 ⊕ · · · ⊕ Fn).

The following lemmas give a simple link between the sets Dn and C; see e.g., Lemma 1 of
Mao et al. (2019).

Lemma 3.2. For F ∈Mn
1 , Dn(F) ⊂ C(F).

Similarly to the set Dn(F) in Theorem 3.1, C(F) also satisfies an order with respect to
Λ-mixture.

Theorem 3.2. For F ∈Mn
1 and Λ ∈ Qn, we have C(F) ⊂ C(ΛF).

Proof. Note that F1 ⊕ · · · ⊕ Fn ∈ Dn(F) since F1 ⊕ · · · ⊕ Fn corresponds to the sum of
comonotonic random variables with respective distributions F1, . . . , Fn. Using Theorem 3.1
and Lemma 3.2, we have Dn(F) ⊂ Dn(ΛF) ⊂ C(ΛF). This implies F1⊕ · · · ⊕Fn ∈ C(ΛF).
By definition, C(F) ⊂ C(ΛF).

5In other words, F ⊕ G is the distribution of the sum of two comonotonic random variables with
respective distributions F and G. Two random variables X and Y are said to be comonotonic, if there
exists a random variable U and two increasing functions f, g such that X = f(U) and Y = g(U) almost
surely. Such U can be chosen as a standard uniform random variable (U ∼ U[0, 1]), and f and g can be
chosen as the inverse distribution functions of X and Y , respectively.
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3.3 Quantile mixtures

In Section 3.2, we have seen a set inclusion between Dn(F) and Dn(G) where G is a
distribution mixture of F. The general message from Theorem 3.1 is that distribution mix-
tures enlarge the aggregation sets. As distribution mixture corresponds to the arithmetic
average of distribution functions, it would then be of interest to see whether a “harmonic
average” of F1, . . . , Fn would give similar properties. By saying “harmonic average” of
F1, . . . , Fn, we mean the distribution F with F−1 = 1

n

∑n
i=1 F

−1
i , i.e., the average of quan-

tiles. We shall call this type of average as quantile mixture.

In many statistical applications, marginal distributions of a multi-dimensional object
are modelled in the same location-scale family (such as Gaussian, elliptical, or uniform
family). The quantile mixture of such distributions is still in the same family, whereas the
distribution mixture is typically no longer in the family. Moreover, a quantile mixture also
corresponds to the combination of comonotonic random variables (such as combining an
asset price with a call option on it), and hence finds its natural position in finance. As
such, it is rather important and practical to consider quantile mixtures.

Remark 3.1. The two types of mixtures are both basic operations on distributions and
often lead to qualitatively very different mathematical results. As a famous example in
decision theory, the axiom of linearity on distribution mixtures leads to the classic von
Neumann-Morgenstern expected utility theory, whereas the axiom of linearity on quantile
mixtures leads to the dual utility theory of Yaari (1987).

For a matrix Λ of non-negative elements (not necessarily in Qn) and F ∈ Mn, let
Λ ⊗ F be a vector of distributions G such that componentwise, G−1 is equal to ΛF−1. If
Λ ∈ Qn, we call G = Λ⊗F the Λ-quantile mixture of F. If F ∈Mn

1 , then the mean of any
element of Dn(F) is the same as that of Dn(Λ ⊗ F), similarly to the case of distribution
mixture. This suggests that one may compare Dn(F) with Dn(Λ ⊗ F), just like what we
did in Section 3.2 for distribution mixture.

The first natural candidates for us to look at are Dn(F1, . . . , Fn) and Dn(F, . . . , F )
where F−1 = 1

n

∑n
i=1 F

−1
i , thus the quantile version of Corollary 3.1. Unfortunately, the

sets Dn(F1, . . . , Fn) and Dn(F, . . . , F ) are not necessarily comparable, as seen from the
following example.

Example 3.2. Take F1 as a binary uniform distribution (with probability 1/2 at each
point) on {0, 1} and F2 as a binary uniform distribution on {0, 3}. Clearly, F is a binary
uniform distribution on {0, 2}. D2(F1, F2) contains distributions supported on {0, 1, 3, 4}
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and D2(F, F ) contains distributions supported on {0, 2, 4}. Therefore, these two sets do
not have a relation of set inclusion.

On the other hand, as a trivial example, if F2, . . . , Fn are point masses (without loss of
generality, we assume that they are point masses at 0), then F satisfies F−1 = F−1

1 /n. In
this case, Dn(F1, . . . , Fn) = {F1} ⊂ Dn(F, . . . , F ) holds trivially. Therefore, we can expect
that the inclusion Dn(F1, . . . , Fn) ⊂ Dn(F, . . . , F ) may hold under some special settings.

Below, we note that both Dn(F) and Dn(Λ⊗ F) have the same convex-order maximal
element. This is in sharp contrast to the case of mixtures in Theorem 3.2. Proposition 3.1
can be verified directly by definition.

Proposition 3.1. For F ∈Mn
1 and Λ ∈ Qn, we have C(F) = C(Λ⊗ F).

As we see from Example 3.2, Dn(F) and Dn(Λ ⊗ F) are not necessarily comparable.
In Mao et al. (2019), a non-trivial result is established for the aggregation of standard
uniform distributions, which leads to an interesting observation along this direction.

Proposition 3.2. Suppose that F1, . . . , Fn are uniform distributions, n > 3, and Λ =
( 1
n
)n×n. Then Dn(F) ⊂ Dn(Λ⊗ F).

Proof. Note that the components of Λ⊗F are uniform distributions with equal length. By
Theorem 5 of Mao et al. (2019), we have Dn(Λ⊗ F) = Cn(Λ⊗ F). Using Proposition 3.1,
we have Cn(F) = Cn(Λ⊗F). Lemma 3.2 further yields Dn(F) ⊂ Cn(F). Putting the above
results together, we obtain Dn(F) ⊂ Dn(Λ⊗ F).

It is unclear whether Dn(F) ⊂ Dn(Λ ⊗ F) under some other conditions, similarly to
Proposition 3.2. Note that the set inclusion Dn(F) ⊂ Dn(Λ⊗ F) would help us to obtain
semi-explicit formulas for bounds on risk measures (such as VaR), since by choosing Λ =
( 1
n
)n×n, the marginal distributions of Λ⊗F are the same, and formulas for VaR bounds in

e.g., Wang et al. (2013) and Bernard et al. (2014) are applicable; see Section 3.4.

There are several sharp contrasts regarding distribution and quantile mixtures. In
addition to the contrast on order relations that we see from Theorem 3.1 and Example
3.2, the two notions also treat location shifts on the marginal distributions very differently.
This point will be explained in Section 3.8.1.

55



3.4 Bounds on the worst-case values of risk measures

This section is dedicated to exploring the inequalities between the worst-cases value of
risk measures in risk aggregation with different marginal distribution tuples. Our main
results in Sections 3.2 and 3.3 will help to find the inequalities in Proposition 3.5.

3.4.1 Risk measures

We pay a particular attention to the popular regulatory risk measure VaR, which is a
quantile functional. For F ∈M, for p ∈ (0, 1), define the risk measure VaRp :M→ R as

VaRp(F ) = F−1(p) = inf{x ∈ R : F (x) > p}.
Another popular regulatory risk measure is ESp :M1 → R for p ∈ (0, 1), given by

ESp(F ) =
1

1− p

∫ 1

p

F−1(u)du.

Given marginals F, the worst-case value of VaR in risk aggregation with unknown depen-
dence structure is then defined as

VaRp(F) = sup{VaRp(G) : G ∈ Dn(F)}.

In other words, VaRp(F) is the largest value of VaRp of the aggregate risk X1+· · ·+Xn over
all possible dependence structures among Xi ∼ Fi, i = 1, . . . , n. Similarly, the worst-case
value of ES in risk aggregation is defined as ESp(F) = sup{ESp(G) : G ∈ Dn(F)}.

The worst-case value of ES in risk aggregation is easy to calculate since ES is consistent
with convex order. On the other hand, worst-case value of VaR in risk aggregation gener-
ally does not admit any analytical formula, which is a challenging problem; results under
some specific cases are given in Wang et al. (2013), Puccetti and Rüschendorf (2013) and
Bernard et al. (2014). To obtain approximations for VaRp(F), one may use the asymptotic
equivalence between VaR and ES in Embrechts et al. (2015) and then directly apply ES
bounds, or use a numerical algorithm such as the rearrangement algorithm of Puccetti and
Rüschendorf (2012) and Embrechts et al. (2013).

We will discuss a general relationship on risk measures for different aggregation sets.
A risk measure is a functional ρ :Mρ → R, where Mρ ⊂M is the set of distributions of
some financial losses. For instance, if ρ is the mean, then Mρ is naturally chosen as the
set of distributions with finite mean. We denote by ρ(F) the worst-case value of ρ in risk
aggregation for F ∈Mn, that is, assuming Dn(F) ⊂Mρ,

ρ(F) = sup{ρ(G) : G ∈ Dn(F)}.
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3.4.2 Inequalities implied by stochastic dominance

Quite obviously, one can compare the worst-case values of some risk measures for two
tuples of distributions satisfying some stochastic dominance, which we briefly discuss here.

A distribution F ∈ M is smaller than a distribution G in stochastic order (also first-
order stochastic dominance), denoted by F ≺st G, if F > G. For F,G ∈Mn, we say that
F is smaller than G in stochastic order, denoted by F ≺st G, if Fi ≺st Gi, i = 1, . . . , n.
Analogously, for F,G ∈Mn

1 , we say that F is smaller than G in convex order, denoted by
F ≺cx G, if Fi ≺cx Gi, i = 1, . . . , n.

We define two relevant common properties of risk measures. A risk measure ρ is mono-
tone if ρ(F ) 6 ρ(G) whenever F ≺st G; it is consistent with convex order if ρ(F ) 6 ρ(G)
whenever F ≺cx G. Almost all risk measures used in practice are monotone; ES is con-
sistent with convex order whereas VaR is not. Monetary risk measures (see Föllmer and
Schied (2016)) that are consistent with convex order are characterized by Mao and Wang
(2020) and they admit an ES-based representation. In particular, all lower semi-continuous
convex risk measures, including ES and expectiles (e.g., Ziegel (2016) and Delbaen et al.
(2016)), are consistent with convex order; we refer to Föllmer and Schied (2016) for an
overview on risk measures.

Now we state in Proposition 3.3 that one can compare the worst-case values of some
risk measures for F and G if F is smaller than G in stochastic order or convex order.

Proposition 3.3. Let ρ be a risk measure and F,G ∈Mn with Dn(F),Dn(G) ⊂Mρ.

(i) If ρ is monotone and F ≺st G, then ρ(F) 6 ρ(G).

(ii) If ρ is consistent with convex order and F ≺cx G with F,G ∈Mn
1 , then ρ(F) 6 ρ(G).

Proof. (i) is straightforward to verify. We next focus on (ii). Since F1 ⊕ · · · ⊕ Fn is the
largest distribution in Dn(F) with respect to convex order and ρ is consistent with convex
order, we have ρ(F) = ρ(F1 ⊕ · · · ⊕ Fn). Similarly, ρ(G) = ρ(G1 ⊕ · · · ⊕ Gn). Note that
F ≺cx G means Fi ≺cx Gi, i = 1, . . . , n. For all p ∈ (0, 1), using comonotonic-additivity of
ESp, we have

ESp(F1 ⊕ · · · ⊕ Fn) =
n∑
i=1

ESp(Fi) 6
n∑
i=1

ESp(Gi) = ESp(G1 ⊕ · · · ⊕Gn),

which gives F1 ⊕ · · · ⊕ Fn ≺cx G1 ⊕ · · · ⊕ Gn (see e.g., Theorem 3.A.5 of Shaked and
Shanthikumar (2007)).
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In the following result, we will show that the distribution tuples and their Λ-mixture
or Λ-quantile mixture typically do not satisfy stochastic order or convex order, unless the
mixture operation is essentially identical (ΛF = F or Λ⊗F = F). The proof of Proposition
3.4 is put in Section 3.10.

Proposition 3.4. Suppose Λ ∈ Qn. The statements within each of (i)-(iv) are equivalent.

(i) For F ∈Mn, (a) ΛF ≺st F; (b) F ≺st ΛF; (c) ΛF = F.

(ii) For F ∈Mn, (a) Λ⊗ F ≺st F; (b) F ≺st Λ⊗ F; (c) Λ⊗ F = F.

(iii) For F ∈Mn
1 , (a) Λ⊗ F ≺cx F; (b) F ≺cx Λ⊗ F; (c) Λ⊗ F = F.

(iv) For F ∈Mn
1 , (a) ΛF ≺cx F; (b) ΛF = F.

An implication of Proposition 3.4 is that the result on stochastic order in Proposition
3.3 cannot be applied to compare the worst-case values of risk measures for F and ΛF or
F and Λ ⊗ F. Nevertheless, this comparison can be conducted by applying our findings
in Sections 3.2 and 3.3 and some other techniques. This will be the task in the next
subsection.

3.4.3 Inequalities generated by distribution/quantile mixtures

In the following, we will obtain inequalities between the worst-case values of risk mea-
sures for F and ΛF or F and Λ⊗F. First, we apply Theorem 3.1 and Proposition 3.1 and
immediately obtain the following result.

Proposition 3.5. Let ρ be a risk measure and Λ ∈ Qn.

(i) For F ∈Mn with Dn(F) ⊂Mρ and Dn(ΛF) ⊂Mρ, we have ρ(F) 6 ρ(ΛF);

(ii) For F ∈Mn
1 with Dn(F) ⊂Mρ and Dn(Λ⊗F) ⊂Mρ, if ρ is consistent with convex

order, then ρ(F) = ρ(Λ⊗ F) = ρ(F1 ⊕ · · · ⊕ Fn).

Note that in Proposition 3.5, the inequality for distribution mixture is valid for all
risk measures whereas the equality for quantile mixture is constrained to risk measures
consistent with convex order. As ESp is a special case of risk measures consistent with
convex order, we immediately get ESp(F) 6 ESp(ΛF) and ESp(F) = ESp(Λ ⊗ F). Since
VaR is not consistent with convex order, (ii) of Proposition 3.5 cannot be applied to VaR.
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Nevertheless, using a recent result on VaR in Blanchet et al. (2020), we obtain an inequality
between VaR for some special marginals and VaR of their corresponding quantile mixture.
Denote by MD (respectively, MI) the set of distributions with decreasing (respectively,
increasing) densities on their support. Moreover, let Mn

D = (MD)n and Mn
I = (MI)

n.

Theorem 3.3. For p ∈ (0, 1), Λ ∈ Qn, and F ∈Mn
D ∪Mn

I , we have

VaRp(F) 6 VaRp(Λ⊗ F).

Proof. We start with some preliminaries. Define the upper VaR at level p for a cdf F as

VaR∗p(F ) = inf{x ∈ R : F (x) > p}, p ∈ (0, 1).

The worst-case value of the upper VaR in risk aggregation is VaR
∗
p(F) = sup{VaR∗p(G) :

G ∈ Dn(F)}. For F ∈Mn
D ∪Mn

I and p ∈ (0, 1), Lemma 4.5 of Bernard et al. (2014) gives

VaR
∗
p(F) = VaRp(F).

Using Lemma 3.3 in Section 3.10.1 (paraphrased from Theorem 2 of Blanchet et al. (2020)),
we have

VaRp(F) = inf
β∈Bn

n∑
i=1

1

(1− p)(1− β)

∫ 1−(1−p)βi

p+(1−p)(β−βi)
VaRu(Fi)du, (3.3)

where β = (β1, . . . , βn), β =
∑n

i=1 βi and Bn = {β ∈ [0, 1)n : β < 1}. Note that

Λ⊗ F ∈Mn
D ∪Mn

I if F ∈Mn
D ∪Mn

I .

Consequently, for p ∈ (0, 1),

VaRp(Λ⊗ F) = inf
β∈Bn

n∑
i=1

1

(1− p)(1− β)

∫ 1−(1−p)βi

p+(1−p)(β−βi)

(
n∑
j=1

Λi,jVaRu(Fj)

)
du

= inf
β∈Bn

n∑
i=1

n∑
j=1

Λi,jMi,j(β),

where the function M : Bn → Rn×n, mapping an n-dimensional vector to an n× n matrix,
is given by

Mi,j(β) =
1

(1− p)(1− β)

∫ 1−(1−p)βi

p+(1−p)(β−βi)
VaRu(Fj)du, i, j = 1, . . . , n.
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We can rewrite (3.3) as

VaRp(F) = inf
β∈Bn

n∑
i=1

Mi,i(β).

Let Π1, . . . ,Πn! be all different n-permutation matrices, i.e., Πkβ is a permutation of β for
each k. By Birkhoff’s Theorem (Theorem 2.A.2 of Marshall et al. (2011)), for Λ ∈ Qn, there
exists (λ1, . . . , λn!) ∈ ∆n! such that Λ =

∑n!
k=1 λkΠk. Hence, by writing Πkβ = (βk1 , . . . , β

k
n)

for each k, we have

n∑
i=1

n∑
j=1

Λi,jMi,j(β) =
1

(1− p)(1− β)

n∑
i=1

∫ 1−(1−p)βi

p+(1−p)(β−βi)

(
n∑
j=1

Λi,jVaRu(Fj)

)
du

=
1

(1− p)(1− β)

n∑
i=1

n!∑
k=1

λk

∫ 1−(1−p)βki

p+(1−p)(β−βki )

VaRu(Fi)du

=
n!∑
k=1

λk

n∑
i=1

1

(1− p)(1− β)

∫ 1−(1−p)βki

p+(1−p)(β−βki )

VaRu(Fi)du

=
n!∑
k=1

λk

n∑
i=1

Mi,i(Πkβ).

Using the above facts, we finally obtain

VaRp(F) = inf
β∈Bn

n∑
i=1

Mi,i(β) =
n!∑
k=1

λk inf
β∈Bn

n∑
i=1

Mi,i(Πkβ)

6 inf
β∈Bn

n!∑
k=1

λk

n∑
i=1

Mi,i(Πkβ) = inf
β∈Bn

n∑
i=1

n∑
j=1

Λi,jMi,j(β)

= VaRp(Λ⊗ F).

This completes the proof of the theorem.

The restriction of marginals to distributions with monotone densities in Theorem 3.3
is because of applying Lemma 3.3. This assumption is common in the literature of VaR
bounds (e.g., Wang et al. (2013)). We may expect Theorem 3.3 to hold for more general
classes of F; this is supported by the numerical results in Figure 3.4. Moreover, for Λ ∈ Qn
and and F ∈Mn

D∪Mn
I , we may expect ρ(F) 6 ρ(Λ⊗F) for other risk measures ρ than VaR

(Theorem 3.3) and those consistent with convex order (Proposition 3.5). Unfortunately,
we are unable to prove the above statements in general. Some related open questions are
listed in Section 3.9.
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Remark 3.2. The condition F ∈ Mn
D ∪Mn

I in Theorem 3.3 can be relaxed to that the
p-tail distributions of F1, . . . , Fn are all in MD or all in MI .

6 This should be clear since
only the p-tail distributions are involved in the proof of Theorem 3.3. This condition often
holds if p is close to 1, and it allows for Theorem 3.3 to be applied to many common
distributions in risk management.

Next, we study location-scale distribution families. Let Tx(F ) be a shift of F ∈ M
by adding a constant x ∈ R to its location, that is, Tx(F ) is the distribution of X + x
for X ∼ F . For x = (x1, . . . , xn) ∈ Rn and F = (F1, . . . , Fn) ∈ Mn, we use the notation
Tx(F) = (Tx1(F1), . . . , Txn(Fn)). Moreover, for λ > 0, we denote by F λ the distribution of
λX for X ∼ F and write Fλ = (F λ1 , . . . , F λn).

Corollary 3.3. For p ∈ (0, 1), F ∈ MD ∪MI , λ,γ ∈ Rn
+, and x,y ∈ Rn, if γ ≺ λ and∑n

i=1 xi 6
∑n

i=1 yi, then

VaRp(Tx(Fλ)) 6 VaRp(Ty(Fγ)). (3.4)

Proof. By Section 1.A.3 of Marshall et al. (2011), γ ≺ λ if and only if there exists Λ ∈ Qn
such that γ = Λλ. This implies Fγ = Λ⊗Fλ. By Theorem 3.3, it follows that VaRp(F

λ) 6
VaRp(F

γ). Moreover, observe that

VaRp(Tx(Fλ)) = VaRp(F
λ) +

n∑
i=1

xi and VaRp(Ty(Fγ)) = VaRp(F
γ) +

n∑
i=1

yi.

By the fact that
∑n

i=1 xi 6
∑n

i=1 yi, we prove (3.4).

3.5 Bounds on risk measures for Pareto risk aggrega-

tion

In this section we study the worst-case risk measure for a portfolio of Pareto risks, and
the risk measure is not necessarily consistent with convex order. Throughout this section,
we assume that ρ is a monotone risk measure, such as VaR.

One particular situation of interest for risk aggregation with non-convex risk measures
is when the risks in the portfolio do not have a finite mean. Note that for a portfolio

6The p-tail distribution of F is the distribution of F−1(U) where U is uniform on [p, 1]; see e.g.,
Rockafellar and Uryasev (2002).
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without finite mean, any non-constant risk measure that is consistent with convex order
(including convex risk measures) will have an infinite value. Therefore, one has to use a
non-convex risk measure such as VaR to assess risks in this situation.

Arguably, the most important class of heavy-tailed risk distributions is the class of
Pareto distributions due to their regularly varying tails and their prominent appearance
in extreme value theory; see e.g., Embrechts et al. (1997). A common parameterization of
Pareto distributions is given by, for θ, α > 0,

Pα,θ(x) = 1−
(
θ

x

)α
, x > θ.

Note that if X ∼ Pα,1, then θX ∼ Pα,θ, and thus θ is a scale parameter. Moreover, the
mean of Pα,θ is infinite if and only if α ∈ (0, 1]. Limited by the current techniques, we
confine ourselves to portfolios of risks with a fixed α and possibly different θ.

For α > 0 and θ = (θ1, . . . , θn) ∈ (0,∞)n, let Pα,θ = (Pα,θ1 , . . . , Pα,θn). We are
interested in the worst-case value ρ(Pα,θ). We first note some simple properties of the
above quantity, which are straightforward to check (a simple proof is put in the Section
3.10).

Proposition 3.6. Let ρ be a monotone risk measure on M. For α > 0 and θ ∈ (0,∞)n,

(i) Λ⊗Pα,θ = Pα,Λθ for all Λ ∈ (0,∞)n×n;

(ii) ρ(Pα,θ) is decreasing in α;

(iii) ρ(Pα,θ) is increasing in each component of θ.

The next result contains an ordering relationship on the aggregation of Pareto risks.
In particular, we show that for α ∈ (0, 1], which means the mean of the distribution is
infinite, the quantile mixture leads to an even larger worst-case value of risk aggregation
than the distribution mixture (this statement is generally not true for α > 1; see the figures
in Section 3.6). This result is not implied by any comparisons obtained in the previous
sections, and it seems to be rather specialized for Pareto distributions, as seen from the
proof. It is unclear at the moment whether the result can be generalized to other types of
distributions without a finite mean.

Theorem 3.4. Let ρ be a monotone risk measure onM. For α ∈ (0, 1], θ = (θ1, . . . , θn) ∈
(0,∞)n, and Λ ∈ Qn, we have ρ(Pα,θ) 6 ρ(ΛPα,θ) 6 ρ(Pα,Λθ).
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Proof. The first inequality follows directly from Theorem 3.1. Next we focus on the second
inequality. Recall that Λ = (λ1, . . . ,λn)> ∈ Qn and let λj = (λj,1, . . . , λj,n) for j =
1, . . . , n. For any fixed j ∈ {1, . . . , n}, denote the cdf of (ΛPα,θ)j by Fj, then

Fj(x) =
n∑
i=1

λj,i

(
1−

(
θi
x

)α)
+

, x ∈ R.

For some fixed x > 0 and α ∈ (0, 1], define g(t) := 1 − (t/x)α , t > 0. Note that g is a
convex function on [0,∞). Hence

Fj(x) >
n∑
i=1

λj,i

(
1−

(
θi
x

)α)
> 1−

(∑n
i=1 λj,iθi
x

)α
.

This implies
Fj(x) > Gj(x), x > 0,

where Gj = (Pα,Λθ)j. As Fj 6st Gj for j = 1, . . . , n and ρ is monotone, by Proposition
3.3(i), we have the second inequality.

Next, we combine the results of Theorems 3.3-3.4 and Propositions 3.5-3.6 with a special
focus on VaRp, p ∈ (0, 1). The proof is straightforward and omitted.

Proposition 3.7. For p ∈ (0, 1), θ = (θ1, . . . , θn) ∈ (0,∞)n, and Λ ∈ Qn,

(i) If α ∈ (0,∞), VaRp(Pα,θ) 6 VaRp(ΛPα,θ);

(ii) If α ∈ (0,∞), VaRp(Pα,θ) 6 VaRp(Pα,Λθ);

(iii) If α ∈ (0, 1], VaRp(Pα,θ) 6 VaRp(ΛPα,θ) 6 VaRp(Pα,Λθ).

Proposition 3.7 is useful for the application in Section 3.7.2 on multiple hypothesis
testing, where P r follows a Pareto distribution for a p-value P and r < 0. Some further
properties of VaRp(Pα,θ) are put in the Section 3.10.3.

3.6 Numerical illustration

Define a 3× 3 doubly stochastic matrix by

Λ = 0.8× I3 + 0.2×
(

1

3

)
3×3

, (3.5)
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where I3 is the 3 × 3 identity matrix. In this section, we consider a sequence of dou-
bly stochastic matrices {Λk}k∈N to numerically illustrate the ordering relationships and
inequalities obtained throughout this chapter. Note that Λk is more “homogeneous” as
k grows larger, and Λk → (1

3
)3×3 as k → ∞. The general messages obtained from the

numerical examples are listed as follows.

1. For general marginals, the value of VaR becomes larger after making a distribution
mixture (Proposition 3.5(i)); this is shown in all figures.

2. For marginals with monotone densities, with a quantile mixture, the value of VaR
becomes larger (Theorem 3.3); see Figures 3.1-3.3. Numerical examples in Figure 3.4
indicate that Theorem 3.3 may also hold for marginals with non-monotone densities.
Nevertheless, the order does not hold for arbitrary marginals. A counterexample,
involving discrete marginals, is provided in Figure 3.5.

3. For Pareto distributions with infinite mean, the value of VaR of the quantile mixture
is larger than that of the distribution mixture (Proposition 3.7(iii)); see Figure 3.1(b).
This relationship does not hold for Pareto distributions with finite mean; see Figure
3.1(a).

3.6.1 Illustration of theoretical results

In this subsection, we discuss marginals with monotone densities (F ∈Mn
D ∪Mn

I ). We
have Λk ⊗ F,ΛkF ∈ Mn

D ∪Mn
I . According to Lemma 3.3 in Section 3.10.1, we obtain a

formula (Equation (3.3)) for F, Λk⊗F and ΛkF and numerically compute the exact values
for VaR.

In Figure 3.1, we consider Pareto distributions with finite mean (α = 3) and infinite
mean (α = 1/3), respectively. The ordering relationships in Proposition 3.7(i)-(ii) for
Pareto distributions with the same α are visualized as the curves in Figure 3.1 are all
increasing in k. In Figure 3.1(b), it turns out that for the case with infinite mean the
quantile mixture gives larger value of VaR than that given by the distribution mixture.
This coincides with the conclusion in Proposition 3.7(iii). Interestingly, we observe from
Figure 3.1(a) that the value of VaR given by distribution mixture is larger than the one
with quantile mixture, which is contrary to the case with infinite mean (Figure 3.1(b)). It
is an open question whether this conclusion is true for general doubly stochastic matrices
Λ and all α > 1.
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Figure 3.1: Quantile mixture: VaRp(Λ
k ⊗ Pα,θ) = VaRp(Pα,Λkθ); Distribution mixture:

VaRp(Λ
kPα,θ). Setting: p = 0.95; θ = (1, 2, 3), Xi ∼ Pareto(α, θi), i = 1, 2, 3; Λ is defined

by (3.5); k = 0, 1, . . . , 10.

We next focus on Pareto distributions with different α in Figure 3.2. First observe that
the curves of quantile mixture and distribution mixture in Figure 3.2 are both increasing
in k, which is consistent with Theorem 3.3 and Proposition 3.5(i). Comparing the two
curves, it is shown that value for the distribution mixture in this case is smaller than the
one for quantile mixture.

Heterogeneous distribution families with decreasing densities are considered in Figure
3.3. As we can see, the curves are both increasing in Figure 3.3, which coincides with the
statements in Theorem 3.3 and Proposition 3.5(i). We can also observe that the value for
distribution mixture is smaller than the corresponding one for quantile mixture in Figure
3.3, which is the same as it has been shown in Figure 3.2.

3.6.2 Conjectures for general distributions

Explicit expressions for VaRp(F) are unavailable for general marginal distributions.
Fortunately, we can approximate the value of VaRp(F) using the rearrangement algorithm
(RA) of Embrechts et al. (2013) and get an upper bound on VaRp(F) using (3.12) in
Lemma 3.3.
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Figure 3.2: Quantile mixture: VaRp(Λ
k ⊗ F); Distribution mixture: VaRp(Λ

kF). Setting:
p = 0.95; α = (1/3, 4, 5), θ = (1, 2, 3), Xi ∼ Pareto(αi, θi), i = 1, 2, 3; Λ is defined by (3.5);
k = 0, 1, 2, 4, 6, 8, 10. The right panel zooms in on the range of the distribution mixture.
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Figure 3.3: Quantile mixture: VaRp(Λ
k ⊗ F); Distribution mixture: VaRp(Λ

kF). Setting:
p = 0.95; X1 ∼ Pareto(1/3, 1), X2 ∼ Γ(1, 2), X3 ∼ Weibull(1, 1/2); Λ is defined by (3.5);
k = 0, 1, 2, 4, 6, 8, 10. The right panel zooms in on the range of the distribution mixture.
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Figure 3.4: Quantile mixture: VaRp(Λ
k ⊗ F); Distribution mixture: VaRp(Λ

kF). Setting:
p = 0.95; X1 ∼ Γ(5, 1), X2 ∼ Weibull(1, 5), left panel: X3 ∼ Pareto(3, 1), right panel:
X3 ∼ LogNormal(0, 1); Λ is defined by (3.5); k = 0, 1, 2, 4, 6, 8, 10.

For distributions with non-monotone densities including Gamma and Weibull, the
curves of both distribution and quantile mixtures in Figure 3.4 are increasing in k. The
result on distribution mixture is consistent with Proposition 3.5(i), and the result on quan-
tile mixture seems to suggest that the conclusion in Theorem 3.3 may be valid for more
general distributions with non-monotone densities. This conjectured extension of Theorem
3.3 would hold if (3.3) holds for more general distributions, which is a difficult question.

The above observation is no longer true for discrete distributions. We observe in Figure
3.5 that the curve of the quantile mixture is not increasing at some points (in this example,
we have chosen a small p = 0.01 for illustration). This shows that the claim in Theorem
3.3 cannot be extended to arbitrary, in particular discrete, distributions.

3.7 Applications

3.7.1 Portfolio diversification with dependence uncertainty

We discuss applications of our results to portfolio diversification in the presence of
dependence uncertainty. In this section, we treat risk measures as functionals on the space
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Figure 3.5: Quantile mixture: VaRp(Λ
k ⊗ F); Distribution mixture: VaRp(Λ

kF). Setting:
p = 0.01; X1 ∼ Binomial(10, 0.1), X2 ∼ Γ(5, 1), X3 ∼Weibull(1, 5); Λ is defined by (3.5);
k = 0, 1, 2, 4, 6, 8, 10.

of random variables, that is, for a random variable X and a risk measure ρ, we write
ρ(X) = ρ(F ) if X ∼ F .

For tractability, we consider a simple setting where the vector of losses (X1, . . . , Xn)
has identical marginal distributions F . A classic portfolio selection problem is to choose a
portfolio position λ = (λ1, . . . , λn) ∈ ∆n to minimize

Rρ(λ) := ρ

(
n∑
i=1

λiXi

)
. (3.6)

Alternatively, one may consider an objective which involves both risk and return, such as
maximizing the quantity E[−

∑n
i=1 λiXi] − αρ(

∑n
i=1 λiXi) for some α > 0 (e.g., α may

arise as a Lagrangian multiplier); in our setting, this problem is equivalent to (3.6) since
E[
∑n

i=1 λiXi] is constant over λ ∈ ∆n. Intuitively, for two portfolio positions λ and γ, we
can say that γ is more diversified than λ if γ ≺ λ, since in this case γ can be obtained
from averaging components of λ, i.e., γ = Λλ for some Λ ∈ Qn (see Section 3.2). Due to
diversification effect, one may expect, under the assumption that the marginal distributions
of (X1, . . . , Xn) are identical,

Rρ(γ) 6 Rρ(λ) if γ is more diversified than λ. (3.7)

Note that ( 1
n
, . . . , 1

n
) ≺ λ ≺ (1, 0, . . . , 0) for any portfolio position λ, meaning that the
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most diversified portfolio is the equally weighted one, and the least diversified portfolio is
concentrating on a single source of risk.

To compute the value of Rρ(λ) in (3.6) requires a full specification of the joint distribu-
tion of (X1, . . . , Xn). In the presence of dependence uncertainty, we may take a worst-case
approach by minimizing

Rρ(λ) := sup

{
ρ

(
n∑
i=1

λiYi

)
: Y1, . . . , Yn ∼ F

}
. (3.8)

Under the setting of optimizing (3.8), our intuition is that diversification should not yield
any benefit, since the portfolio may not have any diversification effect due to unknown
dependence; see Wang and Zitikis (2021) for discussions on the absence of diversification
effect within the Fundamental Review of the Trading Book from the Basel Committee on
Banking Supervision (BCBS (2019)). Hence, one may expect, as the marginal distributions
are identical, that

Rρ(γ) = Rρ(λ) even if γ is more diversified than λ (in fact, for all γ and λ). (3.9)

A similar observation is made in Proposition 1 of Pflug and Pohl (2018), which says that for
a subadditive, comonotonic-additive and positively homogeneous risk measure, diversifica-
tion under dependence uncertainty does not decrease the aggregate risk. These assumptions
on the risk measure are not necessary for our result below.

The next proposition, based on Theorem 3.3 and Proposition 3.5, shows that, under
some extra conditions, the two intuitive equations (3.7) and (3.9) hold for risk measures
consistent with convex order. For VaR, one arrives at a statement in the reverse direction:
the more diversified portfolio has a larger risk under dependence uncertainty.

Proposition 3.8. Suppose that γ ≺ λ, (X1, . . . , Xn) has identical marginal distributions
F with finite mean, and ρ is a risk measure.

(i) If ρ is consistent with convex order and (X1, . . . , Xn) is exchangeable,7 then Rρ(γ) 6
Rρ(λ).

(ii) If ρ is consistent with convex order, then Rρ(γ) = Rρ(λ).

(iii) If ρ = VaRp for some p ∈ (0, 1) and F ∈MD ∪MI , then Rρ(γ) > Rρ(λ).

7A random vector X is exchangeable if X is identically distributed as π(X) for any permutation π.
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Moreover, in (i) and (iii), the inequalities are generally not equalities.

Proof. Write γ = (γ1, . . . , γn) and λ = (λ1, . . . , λn). Take X ∼ F , and let F and G be
the tuples of marginal distributions of (γ1X, . . . , γnX) and (λ1X, . . . , λnX), respectively.
Using γ ≺ λ, there exists Λ ∈ Qn such that F = Λ ⊗ G. Since X1, . . . , Xn ∼ F , F
and G are also tuples of marginal distributions of (γ1X1, . . . , γnXn) and (λ1X1, . . . , λnXn),
respectively. Hence, we have

Rρ(γ) = ρ(F) = ρ(Λ⊗G) and Rρ(λ) = ρ(G). (3.10)

(i) As γ ≺ λ and (X1, . . . , Xn) is exchangeable, by Theorem 3.A.35 of Shaked and
Shanthikumar (2007), we have

∑n
i=1 γiXi ≺cx

∑n
i=1 λiXi. Hence, Rρ(γ) 6 Rρ(λ).

The inequality is strict when, for instance, ρ = ES0.5, X1, . . . , Xn are iid normal,
γ = ( 1

n
, . . . , 1

n
), and λ = (1, 0, . . . , 0).

(ii) This follows directly from Proposition 3.5(ii) and (3.10).

(iii) The inequality Rρ(γ) > Rρ(λ) follows directly from Theorem 3.3 and (3.10). The
inequality is strict in, for instance, the situation of Figure 3.1(a), where F is a Pareto
distribution with α = 3.

We make a few observations from Proposition 3.8. For identical marginal distributions
in MD or MI , under dependence uncertainty, VaR yields a bigger risk if the portfolio is
more diversified. This may be seen as another disadvantage of VaR, which is well known
to be problematic regarding diversification. In contrast, any risk measure consistent with
convex order, such as ES, would simply ignore diversification effect in this setting (where
diversification benefit is unjustifiable). Moreover, without dependence uncertainty, for
an exchangeable vector of losses, a risk measure consistent with convex order rewards
diversification, and there is no such general relationship for VaR. For the inequality in
Proposition 3.8 (iii), it suffices to require the p-tail distribution of F to be in MD ∪MI ;
see Remark 3.2.

3.7.2 Merging p-values in hypothesis testing

In this subsection, we apply our results to p-merging methods following the setup of
Vovk and Wang (2020). A random variable P is a p-variable if P(P 6 ε) 6 ε for all
ε ∈ (0, 1), and its realization is called a p-value. In multiple hypothesis testing, one
natural problem is to merge individual p-values into one p-value. More specifically, with n
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p-variables P1, . . . , Pn, one needs to choose an increasing Borel function F : [0, 1]n → [0,∞)
as a merging function such that F (P1, . . . , Pn) is a p-variable. F is a precise merging
function if for each ε ∈ (0, 1), P(F (P1, . . . , Pn) 6 ε) = ε for some p-variables P1, . . . , Pn.

As explained in Vovk and Wang (2020), an advantage of using averaging methods to
combine p-values, compared to classic methods on order statistics, is that we can introduce
weights to p-values in an intuitive way. Without imposing any dependence assumption on
the individual p-variables, an averaging method uses, for r ∈ [−∞,∞] (r ∈ {−∞, 0,∞}
are interpreted as limits),

F : [0, 1]n → [0,∞), (p1, . . . , pn) 7→ ar,w(w1p
r
1 + · · ·+ wnp

r
n)

1
r ,

as the merging function, where ar,w is a constant multiplier and w = (w1, . . . , wn) ∈ ∆n.
The constant ar,w is chosen so that F is a precise merging function, thus the most powerful
choice of the constant multiplier. Let U be the set of uniform random variables distributed
on [0,1]. Lemma 1 in Vovk and Wang (2020) gives

ar,w =


− sup {q0(−

∑n
i=1wiP

r
i ) | P1, . . . , Pn ∈ U}−1/r

, r > 0;

exp (sup{q0(
∑n

i=1wi log(1/Pi)) | P1, . . . , Pn ∈ U}) , r = 0;

sup {q0 (
∑n

i=1wiP
r
i ) | P1, . . . , Pn ∈ U}−1/r

, r < 0,

where q0 : X 7→ inf{x ∈ R : P(X 6 x) > 0} is the essential infimum. Clearly, ar,w involves
calculating VaRp(F) for Pareto, exponential or Beta distributions, and letting p ↓ 0.

Denote ar,w by ar,n where w = (1/n, . . . , 1/n). Analytical results for ar,n has been
well studied in Vovk and Wang (2020) whereas results for ar,w are limited since there
are no analytical formulas of VaRp(F) in general for heterogeneous marginal distributions.
Although the rearrangement algorithm of Puccetti and Rüschendorf (2012) and Embrechts
et al. (2013) can be used to calculate ar,w numerically, the calculation burden becomes
quite heavy in high-dimensional situation, which is unfortunately very common in multiple
hypothesis testing. It turns out that our Theorem 3.3 is helpful to provide a convenient
upper bound on ar,w.

Proposition 3.9. For r ∈ R, we have ar,w 6 ar,n.

Proof. Note that for r < 0, P r
i , i = 1, . . . , n, has a decreasing density, and (1/n, . . . , 1/n) ≺

(w1, . . . , wn) in majorization order. By letting p ↓ 0 in Proposition 3.7, we have

sup

{
q0

(
n∑
i=1

wiP
r
i

)
| P1, . . . , Pn ∈ U

}
6 sup

{
q0

(
n∑
i=1

1

n
P r
i

)
| P1, . . . , Pn ∈ U

}
.
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Therefore ar,w 6 ar,n for r < 0. If r > 0, the argument can be proved similarly using
Corollary 3.3.

The interpretation of Proposition 3.9 is that, when using a weighted p-merging method,
one can safely rely on the same coefficient obtained from a symmetric p-merging method.
This is particularly convenient when validity of the test is more important than the quality
of an approximation; see Vovk and Wang (2020) for more discussions on such applications.

3.8 Some further technical discussions

3.8.1 Location shifts for distribution and quantile mixtures

In this section we discuss the difference between distribution and quantile mixtures
when location shifts are applied. Let Vx = {(x1, . . . , xn) ∈ Rn : x1 + · · · + xn = x} for
x ∈ R. For F ∈Mn and x ∈ Vx, we have the invariance relation

Dn(Tx(F)) = Tx(Dn(F)). (3.11)

The aggregation set of quantile mixture is invariant under location shifts of the marginal
distributions, in sharp contrast to the case of distribution mixture. For F ∈ Mn and
x ∈ Vx, it holds that for Λ ∈ Qn,

Dn(Λ⊗Tx(F)) = Tx (Dn(Λ⊗ F)) .

That means, Dn(Λ ⊗ Tx(F)) is the same for all x ∈ Vx. However, this does not hold for
the distribution mixture, that is, generally, Dn(ΛTx(F)) is not the same for x ∈ Vx, and

Dn(ΛTx(F)) 6= Tx (Dn(ΛF)) .

In particular, for x 6= 0 and F1 6= F2,

D2

(
1

2
(Tx(F1) + F2),

1

2
(Tx(F1) + F2)

)
6= D2

(
1

2
(F1 + Tx(F2)),

1

2
(F1 + Tx(F2)))

)
.

The above example shows that distribution mixture and quantile mixtures treat location
shifts differently.

Inspired by the above observation, we slightly generalize Theorem 3.1 by including
location shifts. For F ∈Mn, we define the set An(F) of averaging and location shifts of F
as

An(F) = {ΛTx(F) : Λ ∈ Qn, x ∈ Rn, x1 + · · ·+ xn = 0},
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and denote by An(F) the closure of the convex hull of An(F) with respect to weak conver-
gence. It is straightforward to check

An(Ty(F)) = Ty

(
An(F)

)
, y = (y, . . . , y) ∈ Rn.

Proposition 3.10. For F ∈Mn and G ∈ An(F), we have Dn(F) ⊂ Dn(G).

Proof. First, by Theorem 3.1 and (3.11), Dn(F) ⊂ Dn(G) for each G ∈ An(F). Denote
by cx(An(F)) the convex hull of An(F). By Lemma 3.1(ii-b), for each G ∈ cx(An(F)), we
have Dn(F) ⊂ Dn(G). Take G ∈ An(F), and write it as the limit of {Gk}∞k=1 ⊂ cx(An(F)).
It follows that for any F ∈ Dn(F), F is also in Dn(Gk). This implies F is also in Dn(G)
by the compactness property in Theorem 2.1(vii-b) of Bernard et al. (2014).

3.8.2 Connection to joint mixability

Joint mixability (Wang et al. (2013) and Wang and Wang (2016)) is a central concept
in the study of risk aggregation with dependence uncertainty, and analytical results are
quite limited. In this section, we study the implication of our results on conditions for
joint mixability. We denote by δx the point mass at x ∈ R.

Definition 3.1 (Joint mixability). An n-tuple of distributions F ∈Mn is jointly mixable
(JM) if Dn(F) contains a point mass distribution δx, where x ∈ R is called a center of F.

Example 3.1 implies a conclusion on the joint mixability of Bernoulli distributions.

Proposition 3.11. For p1, . . . , pn ∈ [0, 1], (Bp1 , . . . , Bpn) is jointly mixable if and only if∑n
i=1 pi is an integer.

Proof. The “only-if” part is trivial since the sum of Bernoulli random variables takes value
in integers. To show the “if” part, let k =

∑n
i=1 pi and 1k ∈ {0, 1}n be a vector whose first

k entries are 1 and the remaining entries are 0. It is clear that p ≺ 1k (see Section 1.A.3
of Marshall et al. (2011)). Hence, from Example 3.1,

{δk} = Dn(B1, . . . , B1︸ ︷︷ ︸
k

, B0, . . . , B0︸ ︷︷ ︸
n−k

) ⊂ Dn(Bp1 , . . . , Bpn).

Therefore (Bp1 , . . . , Bpn) is jointly mixable.
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The setAn(F) can also be used to obtain joint mixability of some tuples of distributions.
In particular, we shall see in the following proposition that An(δ0, . . . , δ0) is the set of all
jointly mixable tuples with center 0.

Proposition 3.12. For G ∈Mn, the following statements are equivalent.

(i) G is jointly mixable.

(ii) G ∈ An(δc, . . . , δc) for some c ∈ R.

(iii) G ∈ An(F) for some F ∈Mn which is jointly mixable.

Proof. (ii)⇒(iii) is trivial. (iii)⇒(i): Suppose that G ∈ An(F) and F is jointly mixable
with center x ∈ R. By Proposition 3.10, we have {δx} ⊂ Dn(F) ⊂ Dn(G). This shows G is
jointly mixable. Next, we show (i)⇒(ii). Suppose that G is jointly mixable, and without
loss of generality we can assume it has center 0. By definition, there exists a random vector
X = (X1, . . . , Xn) such that Xi ∼ Gi and X1 + · · ·+Xn = 0. Denote by H the distribution
measure of X. For A ∈ B(R) and i = 1, 2, . . . , n,

Gi(A) = P(Xi ∈ A) =

∫
Rn

P(Xi ∈ A|X = y)H(dy) =

∫
Rn
δyi(A)H(dy),

and as a consequence,

G(A) = (G1(A), . . . , Gn(A)) =

∫
Rn

(δy1(A), . . . , δyn(A))H(dy).

Noting that H is supported in V0 = {(y1, . . . , yn) ∈ Rn : y1 + · · ·+ yn = 0}, we have

G(A) =

∫
V0

(δy1(A), . . . , δyn(A))H(dy) =

∫
V0

Ty(δ0(A), . . . , δ0(A))H(dy).

Hence, we conclude that G ∈ An(δ0, . . . , δ0).

The set An(δc, . . . , δc) is quite rich and cannot be analytically characterized. The simple
example of uniform distributions might be helpful to understand Proposition 3.12. Suppose
that Fi = U[0, ai], ai > 0, i = 1, . . . , n, and

∑n
i=1 ai > 2

∨n
i=1 ai. By Theorem 3.1 of Wang

and Wang (2016), we know that F is jointly mixable. Then, Proposition 3.12 implies that
every tuple in the set An(F) is jointly mixable.

It remains an open question whether it is possible to characterize the set An(F) for
uniform random variables. This would lead to many classes of jointly mixable distributions
including those with monotone densities and symmetric densities; see Wang and Wang
(2016).
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3.9 Concluding remarks

Chapter 3 studies the ordering relationship for aggregation sets where the marginal
distributions for different sets are connected by either a distribution mixture or a quantile
mixture. For general marginal distributions, the aggregation set becomes larger after
making a distribution mixture on the marginal risks, whereas the aggregation sets are not
necessarily comparable in general by a quantile mixture on the marginal risks. Nevertheless,
we obtain several useful results especially on the comparison of VaR aggregation, which
has applications in and outside financial risk management.

Although the marginal distributions are assumed known in our main setting, this as-
sumption is not essential for the interpretation of our results in practical situations. In
case both marginal uncertainty and dependence uncertainty are present, our results can
be directly applied to obtain ordering relationships, as we explain below. Suppose that
Λ ∈ Qn and F ⊂Mn is a set of possible marginal models, representing uncertainty on the
marginal distributions. In this case, the set of all possible distributions of aggregate risk is⋃

F∈F Dn(F), and the worst-case value of a risk measure ρ is sup{ρ(G) : G ∈ Dn(F), F ∈
F} = supF∈F ρ(F). Using Theorem 3.1, Proposition 3.5 and Theorem 3.3, we have⋃

F∈F

Dn(F) ⊂
⋃
F∈F

Dn(ΛF), sup
F∈F

ρ(F) 6 sup
F∈F

ρ(ΛF),

and, if F ⊂Mn
D ∪Mn

I ,

sup
F∈F

VaRp(F) 6 sup
F∈F

VaRp(Λ⊗ F).

Thus, our results on set inclusion and risk measure inequalities remain valid in the presence
of marginal uncertainty.

3.10 Appendix

3.10.1 A lemma used in the proof of Theorem 3.3

The following lemma is rephrased from Theorem 2 of Blanchet et al. (2020).

Lemma 3.3. For p ∈ (0, 1) and any F = (F1, . . . , Fn) ∈Mn,

VaR
∗
p(F) 6 inf

β∈Bn

n∑
i=1

1

(1− p)(1− β)

∫ 1−(1−p)βi

p+(1−p)(β−βi)
VaRu(Fi)du, (3.12)
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where β = (β1, . . . , βn), β =
∑n

i=1 βi and Bn = {β ∈ [0, 1)n : β < 1}, and the above
inequality is an equality if F ∈Mn

D ∪Mn
I .

3.10.2 Proofs of two propositions

Proof of Proposition 3.4. We first focus on (i). We will show (a)⇔ (c). (c)⇒ (a) is trivial
by the definition of stochastic order. For (a) ⇒ (c), note that ΛF ≺st F with Λ = (Λij)
implies

n∑
j=1

ΛijFj(x) > Fi(x), x ∈ R, i = 1, . . . , n. (3.13)

Adding all the inequalities in (3.13) yields

n∑
i=1

n∑
j=1

ΛijFj(x) >
n∑
i=1

Fi(x), x ∈ R.

Due to the fact that Λ is a doubly stochastic matrix, we have

n∑
i=1

n∑
j=1

ΛijFj(x) =
n∑
i=1

Fi(x), x ∈ R.

Hence all the inequalities in (3.13) are essentially equalities. This proves (c). We can
analogously show that (b)⇔ (c). This establishes the claims in (i). We will omit the proof
of (ii) since it is similar to the proof of (i).

We next focus on (iii). Trivially, (c) ⇒ (a) and (c) ⇒ (b). Next, we will only show (a) ⇒
(c) since (b) ⇒ (c) is similar. Denote by G = (G1, . . . , Gn) = Λ⊗ F. Hence

G−1
i =

n∑
j=1

ΛijF
−1
j .

By definition, Λ ⊗ F ≺cx F implies Gi ≺cx Fi, i = 1, . . . , n. It is well known (see e.g.,
Theorem 3.A.5 of Shaked and Shanthikumar (2007)) that for any two distributions F and
G in M1,

F ≺cx G ⇔ ESp(F ) 6 ESp(G) for all p ∈ (0, 1). (3.14)
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Moreover, by the comonotonic-additivity of ESp, we have

ESp(Gi) =
n∑
j=1

ΛijESp(Fj), i = 1, . . . , n.

Consequently,

ESp(Gi) =
n∑
j=1

ΛijESp(Fj) 6 ESp(Fi), p ∈ (0, 1), i = 1, . . . , n. (3.15)

Noting that Λ is a doubly stochastic matrix, similarly as in the proof of (i), adding all the
inequalities in (3.15) leads to

n∑
i=1

ESp(Gi) =
n∑
i=1

n∑
j=1

ΛijESp(Fj) =
n∑
i=1

ESp(Fi), p ∈ (0, 1).

This implies that the inequalities in (3.15) are equalities, which means that Λ⊗F = F by
(3.14). We complete the proof of (iii).

Finally, we consider (iv). (b)⇒ (a) is trivial. We will show (a)⇒ (b). By (3.14), ΛF ≺cx F
is equivalent to

ESp(Fi) > ESp

(
n∑
j=1

ΛijFj

)
, i = 1, . . . , n. (3.16)

Moreover, by the concavity of ESp on mixtures (e.g., Theorem 3 of Wang et al. (2020)),
we have

ESp

(
n∑
j=1

ΛijFj

)
>

n∑
j=1

ΛijESp(Fj).

Therefore, we have

ESp(Fi) > ESp

(
n∑
j=1

ΛijFj

)
>

n∑
j=1

ΛijESp(Fj), i = 1, . . . , n. (3.17)

Adding the inequalities in (3.17) with noting that Λ is a doubly stochastic matrix yields

n∑
i=1

ESp(Fi) >
n∑
i=1

ESp

(
n∑
j=1

ΛijFj

)
>

n∑
i=1

n∑
j=1

ΛijESp(Fj) =
n∑
i=1

ESp(Fi).
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Hence

n∑
i=1

ESp(Fi) =
n∑
i=1

ESp

(
n∑
j=1

ΛijFj

)
,

which implies that inequalities in (3.16) are all equalities. We establish the claim by
(3.14).

Proof of Proposition 3.6. (i) Note that (Pα,θ)
−1 = θ(Pα,1)−1 for θ, α > 0. Hence we

prove (i) by showing that

(Λ⊗Pα,θ)−1 = Λ(Pα,θ)−1 = P−1
α,Λθ.

(ii) Let U be the set of uniform random variables on [0, 1]. By monotonicity of ρ, we
have, for 0 < α1 < α2,

ρ(Pα1,θ) = sup
{
ρ
(
θ1U

−1/α1

1 + · · ·+ θnU
−1/α1
n

)
| U1, . . . , Un ∈ U

}
> sup

{
ρ
(
θ1U

−1/α2

1 + · · ·+ θnU
−1/α2
n

)
| U1, . . . , Un ∈ U

}
= ρ(Pα2,θ).

This implies that ρ(Pα,θ) is decreasing in α.

(iii) By monotonicity of ρ, we can establish the claim of (iii) similarly as the proof of
(ii).

3.10.3 Some further properties of the VaRp for Pareto risks

Properties of ρ(Pα,θ) in Proposition 3.6 can be strengthened for ρ = VaRp.

Proposition 3.13. For p ∈ (0, 1), α > 0 and θ ∈ (0,∞)n,

(i) VaRp(Pα,θ) is increasing and continuous in p;

(ii) VaRp(Pα,θ) is decreasing and continuous in α;

(iii) VaRp(Pα,θ) is increasing and continuous in each component of θ;

(iv) VaRp(Pα,θ) is homogeneous in θ, that is, for λ > 0,

VaRp(Pα,λθ) = λVaRp(Pα,θ);
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(v) If α > 1, then

1 · θ
(1− p)1/α

6 VaRp(Pα,θ) 6
α

α− 1
× 1 · θ

(1− p)1/α
. (3.18)

Proof. (i) As the quantile of Pareto distribution is continuous, by Lemma 4.4 and 4.5 of
Bernard et al. (2014), VaRp(Pα,θ) is continuous in p on (0, 1).

(ii) Let U be the set of uniform random variables distributed on (0, 1). We note that

VaRp(Pα,θ) = sup
{

VaRp

(
θ1U

−1/α
1 + · · ·+ θnU

−1/α
n

)
: U1, . . . , Un ∈ U

}
=

n∑
i=1

θi sup {VaR1−p (Mα,θ(U1, . . . , Un)) : U1, . . . , Un ∈ U}−
1
α ,

where Mα,θ(u1, . . . , un) =
(
θ1u
−1/α
1 + · · ·+ θnu

−1/α
n

)−α
/ (
∑n

i=1 θi)
−α

, ui ∈ (0, 1) for

i = 1, . . . , n. Let θ = min(θ/ (
∑n

i=1 θi)). With the classic averaging inequalities, for
0 < α1 < α2, Mα1,θ 6 Mα2,θ (Hardy et al. (1934), Theorem 16) and θα1Mα1,θ >
θα2Mα2,θ (Hardy et al. (1934), Theorem 23). We note that 0 < Mα,θ < 1 and these
two inequalities are directly translated to

VaRp(Pα2,θ)α2/α1 6 VaRp(Pα1,θ) 6 θ1−α2/α1VaRp(Pα2,θ)α2/α1 .

By letting α1 ↑ α2 and α2 ↓ α1, we get the continuity of VaRp(Pα,θ) in α > 0.

(iii) Without loss of generality, we assume θ1 = (θ1, . . . , θn) and θ2 = (λθ1, . . . , θn), λ > 0.
The monotonicity relative to θ follows directly from Proposition 3.6. Using the ho-
mogeneity of VaRp(Pα,θ), which is proved in (iv), and the monotonicity with respect
to θ if 0 < λ < 1,

λVaRp(Pα,θ1) 6 VaRp(Pα,θ2) 6 VaRp(Pα,θ1),

otherwise

VaRp(Pα,θ1) 6 VaRp(Pα,θ2) 6 λVaRp(Pα,θ1).

By letting λ ↑ 1 and λ ↓ 1, we get the desired result.
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(iv) For λ > 0,

VaRp(Pα,λθ) = sup{VaRp(G) : G ∈ Dn(Pα,λθ)}

= sup
{

VaRp

(
G
( ·
λ

))
: G ∈ Dn(Pα,θ)

}
= λ sup{VaRp(G) : G ∈ Dn(Pα,θ)} = λVaRp(Pα,θ).

(v) For α > 1, we haev

VaRp(Pα,θ) 6 ESp(Pα,θ) =
n∑
i=1

ESp(Pα,θi) = α

n∑
i=1

θi/
(
(α− 1)(1− p)1/α

)
,

and VaRp(Pα,θ) >
∑n

i=1 VaRp(Pα,θi) =
∑n

i=1 θi/(1− p)1/α.
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Chapter 4

Risk Aggregation under Dependence
Uncertainty and an Order Constraint

4.1 Introduction

Quantifying the risk of a portfolio has gained much interest in the literature of finance
and actuarial science. To accurately estimate the risk level, the joint distribution of the
risks needs to be specified. However, it is challenging to estimate or test the dependence
structure of a portfolio. Given known marginal distributions but unspecified dependence
structure of risks, one of the most relevant problems is to find the worst-case (the largest
possible) and the best-case (the smallest possible) values of a risk measure over all the
possible dependence structures; see Embrechts and Puccetti (2006), Bernard et al. (2014)
and Embrechts et al. (2013, 2015) for general discussions.

While bounds for risk measures calculated based on the sole knowledge of marginal
distributions are generally wide, many attempts have been made to narrow them by in-
corporating partial dependence information into the problem. For instance, a variance
constraint is imposed at the portfolio level by Bernard et al. (2017). A lower bound is
placed on the corresponding copula of risks by Puccetti et al. (2016). Puccetti et al. (2017)
assumed that certain groups of risks are independent while the dependence structure is
unknown within each group. Bernard et al. (2017b) considered a partially specified factor
model with dependence uncertainty.

In the literature of isotonic regression, order constraint on the expectations of target
variables has been widely used in many practical applications; see Section 1 of Henzi
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et al. (2021) for an overview. For two random variables ξ1 and ξ2, an isotonic regression
problem has the constraint E[ξ1] 6 E[ξ2]. In many situations, while the risks ξ1 and ξ2

can be affected by a common shock Z (e.g., market risk, pandemic, natural disaster),
one can impose a stricter but natural assumption, that is, E[ξ1|Z] 6 E[ξ2|Z]. In this
chapter, we study the aggregation S = X + Y given known marginal distributions with
the order constraint X 6 Y , which might arise from, for instance, the above setting where
X = E[ξ1|Z] and Y = E[ξ2|Z]. In practice, insurance companies can divide the loss of a
portfolio into different categories according to the riskiness of the contract, and the order
constraint naturally holds in situations where one risk triggers another. For instance,
when floods occur, the higher floors of apartments/houses will suffer losses only if there is
a huge damage in lower floors. As another example, some cost categories for an insurance
company, such as rehabilitation costs, can only occur as a consequence of some severe
disease.

Before imposing the order constraint, one should verify that one of the two distributions
is stochastically smaller than the other. For real data, this relation can be tested via, e.g.,
the methods of Barrett and Donald (2003). Statistical inference for distributions ordered
stochastically can be carried out through the isotonic distributional regression of Henzi
et al. (2021).

Fix an atomless probability space (Ω,A,P) and let M be the set of cdfs on R. For
F,G ∈M such that F is stochastically smaller than G, define the set

Fo2 (F,G) = {(X, Y ) : X ∼ F, Y ∼ G, X 6 Y }.

Here and throughout, the inequality X 6 Y is understood in the almost sure sense. For a
risk measure ρ, we are interested in the worst-case and best-case values of ρ over the set
Fo2 (F,G) denoted by

ρ(Fo2 (F,G)) := sup{ρ(X + Y ) : (X, Y ) ∈ Fo2 (F,G)}, (4.1)

and
ρ(Fo2 (F,G)) := inf{ρ(X + Y ) : (X, Y ) ∈ Fo2 (F,G)}.

We mainly deal with the case where ρ is a tail risk measure introduced in Liu and Wang
(2021). The class of tail risk measures includes some of the most prevalent risk measures
such as Value-at-Risk (VaR), Expected Shortfall (ES), and Range Value-at-Risk (RVaR).
Generally speaking, the value of a tail risk measure is determined by the risk’s upper tail
behavior. A key feature for a tail risk measure ρ is that there exists another risk measure
ρ∗, called the generator, such that ρ(X) = ρ∗(X∗) where the random variable X∗ follows
the upper tail distribution of the random variable X.
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In an unconstrained problem (i.e., only the marginal distributions of the two risks
are known), for a tail risk measure ρ such that ρ∗ is consistent with concave order, the
worst-case value of ρ is attained by letting the upper tail risks be countermonotonic (i.e.,
the lower Fréchet-Hoeffding bound). In particular, if ρ is VaR, early results date back
to Makarov (1981) and Rüschendorf (1982). Aggregation of more than two risks is much
more challenging; see Wang et al. (2013), Puccetti and Rüschendorf (2013), Jakobsons
et al. (2016) and Blanchet et al. (2020) for some analytical results. The Rearrangement
Algorithm (RA) is developed by Puccetti and Rüschendorf (2012) and Embrechts et al.
(2013) for numerical computation.

The problem with the order constraint is more sophisticated. Recently, Arnold et al.
(2020) obtained the pointwise lower bound DF,G

∗ on joint distribution of (X, Y ) in Fo2 (F,G).
In mass transportation theory, Nutz and Wang (2021) proposed the directional optimal
transport between two random variables, and the corresponding joint distribution is also
DF,G
∗ . The transport is called directional because of the constraint Y > X; that is, X

can only be transported upwards to Y . Since DF,G
∗ is the smallest distribution function

among all joint distributions of (X, Y ) ∈ Fo2 (F,G), we will call the distribution DF,G
∗ the

directional lower (DL) coupling, and (X∗, Y ∗) ∼ DF,G
∗ is said to be DL-coupled. From

the minimality of DF,G
∗ and results on concordance order of Müller and Scarsini (2000),

X∗ + Y ∗ is the largest in concave order among X + Y where (X, Y ) ∈ Fo2 (F,G).

In general, we are interested in risk measures such as VaR and RVaR, which are not
monotone in concave or convex order. Therefore, the DL coupling does not give the
maximum or minimum values of these risk measures, and considerable new techniques need
to be developed to find bounds on these risk measures. Although VaR is not monotone
in convex or concave order, its generator, the essential infimum, is monotone in concave
order. As the main contribution of the chapter (Theorem 4.3), we show that for a tail
risk measure ρ with a generator ρ∗ that is monotone in concave order (such as VaR and
RVaR), the solution to the constrained problem (4.1) can be obtained by using the upper
tail distributions of risks. Moreover, the worst-case value of ρ with the order constraint is
attained by letting the two upper tail risks be DL-coupled. The above assertions on tail
risk measures are based on a novel technical result of monotone embedding (Theorem 4.2).

Despite its natural form, the order constraint in this chapter can be quite strong and
may not be easy to verify in some applications. Moreover, significant reduction of uncer-
tainty bounds occurs when the two risks have comparable sizes, making the order constraint
harder to justify; see Section 4.6. As such, our contributions should be seen as mainly the-
oretical, and they will serve as fundamental tools for applications emerging in the future.

The rest of the chapter is organized as follows. In Section 4.2, we give a brief review on
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comonotonicity, countermonotonicity, and the DL coupling. In Section 4.3, we study the
worst-case dependence structures of risk aggregation with the order constraint in concave
order. In Section 4.4, the notion of strong stochastic order is introduced. With this
notion, we obtain several useful theoretical results. The main technical contributions are
contained in Section 4.5, where we obtain worst-case and best-case values of tail risk
measures with the order constraint. Analytical results for VaR and probability bounds are
obtained. In Section 4.6, numerical studies are conducted to illustrate the impact of the
order constraint on the bounds of risk measures. Some concluding remarks and an open
question are discussed in Section 4.7.

We conclude this section by providing additional notations and terminologies that will
be used throughout this chapter. A cdf F is said to be smaller than a cdf G in stochastic
order if F > G, denoted by F 6st G. Throughout, whenever Fo2 (F,G) appears, F and
G are two distributions satisfying F 6st G. A cdf F (or a random variable X ∼ F )
is said to be smaller than a cdf G (or a random variable Y ∼ G) in concave order if
E[u(X)] 6 E[u(Y )] for all concave functions u : R → R provided that the expectations
exist, and we denote this by X 6cv Y or F 6cv G. Further, F is smaller than G in
convex order if G 6cv F , and this is denoted by F 6cx G. The order X 6cx Y for two
random variables X and Y is defined similarly. For more properties of these stochastic
orders, we refer to Shaked and Shanthikumar (2007). A law-invariant risk measure ρ is
a mapping from M to R. In addition, we write ρ(X) = ρ(F ) for a random variable X
with distribution F ; thus, ρ can also be interpreted as a mapping from the set of random
variables to R. An empty set is denoted by ∅. By convention, inf ∅ =∞ and sup ∅ = −∞.

4.2 The directional lower coupling

In this section, we collect some basic results on comonotonicity, countermonotonicity,
and the DL coupling, which will be useful for our chapter.

A random vector (X, Y ) is said to be comonotonic if there exists a random variable U
and two increasing functions f and g such that X = f(U) and Y = g(U) almost surely.
A random vector (X, Y ) is countermonotonic if (X,−Y ) is comonotonic. We refer to
Dhaene et al. (2002, 2006) for a review on comonotonicity and Puccetti and Wang (2015)
for negative dependence concepts including countermonotonicity.

Let the random vectors (Xct, Y ct), (X, Y ) and (Xc, Y c) be such that they have the same
marginal distributions, (Xct, Y ct) is countermonotonic, and (Xc, Y c) is comonotonic. It is
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well known that

Xc + Y c 6cv X + Y 6cv X
ct + Y ct; (4.2)

see e.g., Rüschendorf (2013, Corollary 3.28).1 For F,G ∈M, let Xc, Xct ∼ F and Y c, Y ct ∼
G. Note that if F 6st G, then Xc 6 Y c, which can be easily checked by choosing U as a
uniform random variable over (0, 1), and choosing f and g as left quantiles of F and G,
respectively. Hence, Fo2 (F,G) contains comonotonic random vectors. However, (Xct, Y ct)
may violate the order constraint unless the essential supremum of F is less than or equal
to the essential infimum of G. Therefore, (Xct, Y ct) may not be in Fo2 (F,G).

To find an alternative for countermonotonicity in Fo2 (F,G), we need to introduce the
DL coupling, whose distribution function is obtained by Arnold et al. (2020). Below,
we explain the DL coupling in the context of mass transport following Nutz and Wang
(2021), which is motivated by treatment effect analysis and causal inference (e.g., Manski
(1997)). A directional coupling of F and G is the joint distribution of a random vector in
Fo2 (F,G) and the DL coupling is the special case of a direction coupling which corresponds
to the directional optimal transport of Nutz and Wang (2021). Let X ∼ F and Y ∼ G.
Denote by µF and µG the Borel probability measures generated by F and G, respectively.
The directional optimal transport from X to Y can be constructed by considering the
common part and the singular parts of µF and µG separately. We first assume that F
and G are continuous distributions. The common part µF ∧ µG is defined as the maximal
measure θ such that θ 6 µF and θ 6 µG. The singular parts of µF and µG are defined
as µ′F = µF − µF ∧ µG and µ′G = µG − µF ∧ µG. The shaded areas of density plots in
Figure 4.1 illustrate the idea of the common and singular parts for two Pareto distributions
F (x) = 1− 1/x for x > 1, and G(y) = 1− 2/y for y > 2.

The directional optimal transport between µF and µG can be described in two pieces.
First, the common part of µF and µG couples identically to each other. The transport from
the singular part of µF to the singular part of µG, denoted by T F,G, is defined as

T F,G(x) = inf {z > x : F (z)−G(z) < F (x)−G(x)} .

Corollary 2.4 of Nutz and Wang (2021) gives the following representation of the DL coupling

1We choose to work mainly with concave order instead of convex order because a major target of this
chapter is to study VaR bounds, and the generator of VaR is increasing in concave-order; see Sections 4.4
and 4.5. Nevertheless, since 6cv is the same as >cx, all statements on concave order in this chapter can
be equivalently stated using convex order. Convex order is common in the literature of risk management,
e.g., Denuit et al. (2005).
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Figure 4.1: Common and singular parts of µF and µG
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DF,G
∗ , the joint distribution of (X, Y ) obtained above,

DF,G
∗ (x, y) =

{
G(y) if y 6 x,

F (x)− inf
z∈[x,y]

{F (z)−G(z)} if y > x, (4.3)

which is also the bivariate distribution function in Theorem 6 of Arnold et al. (2020). For
a random vector (X, Y ) ∼ DF,G

∗ , we say that (X, Y ) is DL-coupled. Since DL coupling
couples the common part of distributions to itself via the identity, it is a maximal cou-
pling which maximizes P(X = Y ) given the marginal distributions of X and Y ; see e.g.,
Thorisson (2000, p. 104-112). DL coupling differs from countermonotonicity in general,
and they coincide if the essential supremum of F is less than or equal to the essential
infimum of G. In this special case, all couplings between F and G are directional. In
Figure 4.2, the support of the copula representing the DL coupling is plotted for three
pairs of Pareto distributions. Since F and G are identical in Figure 4.2a, the DL coupling
is equivalent to comonotonicity. The DL coupling in Figure 4.2b is a simple combination
of comonotonicity and countermonotonicity on the common part and singular parts of µF
and µG, respectively. The DL coupling in Figure 4.2c is more similar to countermonotonic-
ity. We warn the reader that, in general, the DL coupling can be much more complicated
than these simple cases for other choices of marginal distributions. Nutz and Wang (2021)
showed that the DL coupling is the combination of one comonotonic coupling and count-
ably many countermonotonic couplings, but these countermonotonic couplings may not be
between conditional distributions on intervals like in these examples; see Proposition 2.6
and Example 6.3 of Nutz and Wang (2021).

One can also construct DL coupling for non-continuous distributions F and G satisfying

86



Figure 4.2: Support of the copula of (U1, U2) = (F (X), G(Y )) where (X, Y ) ∼ DF,G
∗
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F 6st G. The idea is first to convert the distributions F and G to continuous distributions
Fc and Gc by a monotone transformation. Thereafter, construct DL coupling DFc,Gc

∗ and
reverse the transformation back to non-continuous case; see Section 5.4 of Nutz and Wang
(2021) for more details. As an important fact, DL-coupled (X, Y ) always exists if F 6st G,
and it has the distribution function (4.3).

Note that DL coupling may render the transport from X to Y randomized. That is,
a realization of G may have two pre-images through directional optimal transport. In
the language of mass transport theory, the directional optimal transport is Kantorovich-
type but not necessarily Monge-type. We use the following example to illustrate how DL
coupling introduces such randomness and affects the aggregation of risks.

Example 4.1 (Pareto risks: DL coupling). Suppose that two risks follow Pareto distribu-
tions F (x) = 1− 1/x for x > 1, and G(y) = 1− 2/y for y > 2. Since F 6st G, we can take
(X, Y ) ∼ DF,G

∗ . The directional optimal transport between the singular parts of µF and
µG is

T F,G(x) = inf

{
z > x :

1

z
< 1− 1

x

}
=

x

x− 1
, x ∈ (1, 2].

If x = 1, T F,G(x) = inf ∅ = ∞. The directional optimal transport between the common
part of µF and µG is the identical transport. Thus, for a real number y > 2, its pre-image is
either y through the identical transport or y/(y−1) through T F,G. Let c∗ = (c−

√
c2 − 4c)/2
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for c ∈ [4,∞]. By Corollary 2.9 of Nutz and Wang (2021), we have

P(X + Y 6 c) = (µF ∧ µG)
([
−∞, c

2

])
+ µ′F ([c∗, 2])

=
(
F
( c

2

)
− F (2)

)
+ (F (2)− F (c∗))

=
c+
√
c2 − 4c− 4

2c
.

This example will be continued in Examples 4.2, 4.5 and 4.6. In particular, if the order
constraint is imposed, the DL coupling leads to the largest essential infimum of X + Y ,
but it does not lead to the largest or the smallest probability P(X + Y 6 t) in general.

4.3 Optimality of the directional lower coupling

In this section, we study the optimal dependence structures of (X, Y ) ∈ Fo2 (F,G) in the
sense of concave order, or equivalently, convex order. As we have seen in (4.2), comono-
tonicity of (X, Y ) yields the smallest X+Y in concave order among all possible dependence
structures with given marginal distributions, and hence it also yields the smallest concave
order of X + Y for (X, Y ) ∈ Fo2 (F,G). On the other hand, a simple result from Nutz
and Wang (2021) shows that the DL coupling of (X, Y ) yields the largest concave order of
X + Y over Fo2 (F,G). The concave ordering bounds are very useful for the calculation of
bounds on risk measures.

Lemma 4.1. For (X, Y ), (Xc, Y c), (X ′, Y ′) ∈ Fo2 (F,G) such that (Xc, Y c) is comonotonic
and (X ′, Y ′) is DL-coupled, we have

Xc + Y c 6cv X + Y 6cv X
′ + Y ′.

Proof. The first inequality can be found in, e.g., Theorem 3.5 of Rüschendorf (2013). For
the second inequality, by Theorem 2.2 (i) of Nutz and Wang (2021), (X ′, Y ′) is the smallest
element of Fo2 (F,G) in concordance order. Equivalently, (X ′, Y ′) is the smallest element
of Fo2 (F,G) in supermodular order (e.g., Theorem 2.5 of Müller and Scarsini (2000)). It is
well known that the function (x, y) 7→ −u(x+y) on R2 for any concave function u : R→ R
is supermodular. Hence E[u(X+Y )] 6 E[u(X ′+Y ′)], and therefore X+Y 6cv X

′+Y ′.

Next, we use the above concave ordering bounds to obtain bounds on risk measures.
We refer to Föllmer and Schied (2016) for an overview on risk measures. For a risk measure
ρ :M→ R, we define three commonly used properties:
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(i) A risk measure ρ is monotone if ρ(F ) 6 ρ(G) whenever F 6st G;

(ii) A risk measure ρ is 6cv-consistent if ρ(F ) 6 ρ(G) whenever F 6cv G;

(iii) A risk measure ρ is 6cx-consistent if ρ(F ) 6 ρ(G) whenever F 6cx G.

Many popular risk measures are monotone, such as Value-at-Risk (VaR), Expected
Shortfall (ES), and Range-VaR (RVaR). For F ∈ M and q ∈ (0, 1], the left VaR denoted
by VaRL

q :M→ R is given by

VaRL
q (F ) = F−1(q) = inf{t ∈ R : F (t) > q}.

For p ∈ [0, 1), the right VaR denoted by VaRR
p :M→ R is given by

VaRR
p (F ) = F−1(p+) = inf{t ∈ R : F (t) > p}.

For p = 0 and q = 1, VaRR
0 (F ) and VaRL

1 (F ) correspond to the essential infimum and
essential supremum of F which are also denoted by ess-inf(F ) = F−1(0) and ess-sup(F ) =
F−1(1), respectively. For F ∈M, ESp :M→ R for p ∈ (0, 1) is defined as

ESp(F ) =
1

1− p

∫ 1

p

VaRR
u (F )du,

and RVaRp,q :M→ R for 0 6 p < q < 1 is defined as

RVaRp,q(F ) =
1

q − p

∫ q

p

VaRR
u (F )du.

The class of RVaR is proposed by Cont et al. (2010) as robust risk measures; see Embrechts
et al. (2018) for its properties.

For p ∈ (0, 1), VaRL
p and VaRR

p are neither 6cx-consistent nor 6cv-consistent. On the
other hand, ESp and VaRL

1 are 6cx-consistent, and RVaR0,q and VaRR
0 are 6cv-consistent.

Monetary risk measures (see Föllmer and Schied (2016)) that are 6cx-consistent are char-
acterized by Mao and Wang (2020) and they admit an ES-based representation. Us-
ing Lemma 4.1, we immediately obtain the following bounds of 6cv-consistent and 6cx-
consistent risk measures. Recall that the worst-case and best-case risk measures are defined
as, respectively,

ρ(Fo2 (F,G)) = sup{ρ(X + Y ) : (X, Y ) ∈ Fo2 (F,G)},

and
ρ(Fo2 (F,G)) = inf{ρ(X + Y ) : (X, Y ) ∈ Fo2 (F,G)}.
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Corollary 4.1. Suppose that (X, Y ), (Xc, Y c), (X ′, Y ′) ∈ Fo2 (F,G) such that (Xc, Y c) is
comonotonic and (X ′, Y ′) is DL-coupled. If ρ is 6cv-consistent, then

ρ(Fo2 (F,G)) = ρ(Xc + Y c) 6 ρ(X + Y ) 6 ρ(X ′ + Y ′) = ρ(Fo2 (F,G)).

If ρ is 6cx-consistent, then

ρ(Fo2 (F,G)) = ρ(X ′ + Y ′) 6 ρ(X + Y ) 6 ρ(Xc + Y c) = ρ(Fo2 (F,G)).

As seen from Corollary 4.1, for a 6cx-consistent risk measure, such as a law-invariant
convex or coherent risk measure, the extra order constraint does not improve the worst-case
risk value obtained under comonotonicity, as in the case without the order constraint.

Since essential infimum and essential supremum are 6cv-consistent and 6cx-consistent
respectively, with Corollary 4.1, we give analytical results on the worst-case value of essen-
tial infimum and the best-case value of essential supremum in the following theorem. This
result will be used to derive the worst-case and best-case values of VaR in Section 4.5.

Theorem 4.1. For continuous distributions F , G and (X, Y ) ∼ DF,G
∗ , we have

ess-inf(Fo2 (F,G)) = ess-inf(X + Y ) = min

{
inf

x∈[F−1(0),G−1(0)]

{
T F,G(x) + x

}
, 2G−1(0)

}
,

(4.4)
and

ess-sup(Fo2 (F,G)) = ess-sup(X + Y ) = max

{
sup

x∈[F−1(1),G−1(1)]

{
T̂ F,G(x) + x

}
, 2F−1(1)

}
,

(4.5)
where T̂ F,G(x) = sup{t 6 x : F (t)−G(t) < F (x)−G(x)}.

Proof. We first prove the statement (4.4) on the worst-case value of the essential infimum.
Combining Corollary 4.1 and the fact that essential infimum is 6cv-consistent, we have the
first equality in (4.4). To prove the second equality in (4.4), for (X, Y ) ∼ DF,G

∗ , let

t∗ := sup
{
t ∈ R : for all (x, y) ∈ R2 such that t = x+ y and D(x, y) = 0

}
,

where D = DF,G
∗ . It is straightforward to see from the definition that t∗ = ess-inf(X + Y ).

Therefore, we have

F−1(0) +G−1(0) 6 ess-inf(X + Y ) 6 2G−1(0). (4.6)

If F−1(0) = G−1(0), then clearly ess-inf(X + Y ) = 2G−1(0). For the rest of the proof, we
assume F−1(0) < G−1(0).
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(i) If x 6 F−1(0) or y 6 G−1(0), D(x, y) = 0.

(ii) If x > G−1(0) and y > G−1(0), it is easy to check D(x, y) > 0.

(iii) If F−1(0) < x 6 G−1(0) < y, we have

D(x, y) = max

{
− inf

z∈[G−1(0),y]
{F (z)−G(z)− F (x)}, 0

}
.

By definition of T F,G, if F−1(0) < x 6 G−1(0) < y 6 T F,G(x), D(x, y) = 0. On the
other hand, if F−1(0) < x 6 G−1(0) 6 T F,G(x) < y, D(x, y) > 0.

As a result, D(x, y) = 0 if and only if one of the following holds: x 6 F−1(0), y 6 G−1(0)
or F−1(0) < x 6 G−1(0) < y 6 T F,G(x). Let

s := min

{
inf

x∈[F−1(0),G−1(0)]

{
T F,G(x) + x

}
, 2G−1(0)

}
.

We will show t∗ = s. For x, y ∈ R, suppose that x + y = s. If F−1(0) < x 6 G−1(0), we
have y 6 T F,G(x). If x > G−1(0), we have y < G−1(0). That is, for any x, y ∈ R such that
x + y = s, D(x, y) = 0. Thus we have t∗ > s. For any g, h ∈ R, suppose that g + h = t∗.
Then for any ε > 0, we have D(g, h− ε) = 0. Therefore, if F−1(0) < g 6 G−1(0), we have
h 6 T F,G(g) + ε. By letting ε goes to 0, we have t∗ = g + h 6 T F,G(g) + g for any g in
(F−1(0), G−1(0)]. As T (F−1(0)) = ∞, we have t∗ 6 infx∈[F−1(0),G−1(0)]

{
T F,G(x) + x

}
. By

(4.6), t∗ 6 2G−1(0). Thus we have t∗ 6 s, and the statement (4.4) on the worst-case value
of the essential infimum holds.

Next, we show the statement (4.5) on the best-case value of the essential supremum. Let
F̂ (t) := 1− F (−t), Ĝ(t) := 1−G(−t) for t ∈ R and T̂ F,G(x) = sup{t 6 x : F (t)−G(t) <
F (x) − G(x)} for x ∈ R. F̂ and Ĝ are the distributions of −X and −Y . Then we have

−T Ĝ,F̂ (x) = T̂ F,G(−x) for x ∈ R. Note that

ess-sup(Fo2 (F,G)) = − sup{ess-inf(−X − Y ) : (−Y,−X) ∈ Fo2 (Ĝ, F̂ )}.

Applying (4.4), we get the desired equality.

Remark 4.1. In the unconstrained case, the worst-case value of the essential infimum and
the best-case value of the essential supremum are attained by countermonotonicity, i.e.,

sup{ess-inf(X + Y ) : X ∼ F, Y ∼ G} = inf
x∈[0,1]

{
F−1(x) +G−1(1− x)

}
,

inf{ess-sup(X + Y ) : X ∼ F, Y ∼ G} = sup
x∈[0,1]

{
F−1(x) +G−1(1− x)

}
.

Generally, these bounds are different from the bounds in Theorem 4.1.
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Example 4.2 (Pareto risks: Essential infimum). In Example 4.1, we derive the cdf of
X + Y for (X, Y ) ∼ DF,G

∗ where F and G are two Pareto distributions. We have

P(X + Y 6 c) =
c+
√
c2 − 4c− 4

2c
, c ∈ [4,∞).

By Corollary 4.1, ess-inf(Fo2 (F,G)) = ess-inf(X + Y ) = 4. Alternatively, we can use the
analytical result of Theorem 4.1. As T F,G(x) = x/(x−1) for x ∈ (1, 2] and T F,G(1) =∞, we
have infx∈[1,2]

{
T F,G(x) + x

}
= 4. Thus, we have ess-inf(Fo2 (F,G)) = min {4, 4} = 4. The

unconstrained upper bound for ess-inf is 3 + 2
√

2 which is larger than ess-inf(Fo2 (F,G)).
Both the constrained and unconstrained lower bounds of ess-inf are attained when (X, Y )
are comonotonic and we have ess-inf(Fo2 (F,G)) = 3.

4.4 Strong stochastic order and monotone embedding

In this section, we introduce the notion of strong stochastic order, and obtain several
theoretical properties. The new notion is crucial for the main results of this chapter in
Section 4.5.

For F , G ∈M, we say F is smaller than G in strong stochastic order if G(y)−G(x) >
F (y) − F (x) for all y > x > G−1(0), denoted by F 6ss G. Equivalently, the function
x 7→ G(x) − F (x) is decreasing for x > G−1(0). Note that the order 6ss is stronger than
6st, and hence the name. Intuitively, G has more probability in any interval (x, y] than F
if x > G−1(0). If F and G have densities g and f with respect to a dominating measure,
then F 6ss G if and only if g(x) > f(x) for x > G−1(0). As far as we know, this notion
of stochastic order is new to the literature. We first provide some simple properties of the
order 6ss.

Proposition 4.1. The strong stochastic order satisfies the following properties:

(i) If F 6ss G then F 6st G;

(ii) Assuming F−1(0) = G−1(0), F 6ss G if and only if F = G;

(iii) If G−1(0) = −∞, then F 6ss G means F = G;

(iv) The relation 6ss is a partial order.

92



Proof. (i) By letting y → ∞, we have 1 − G(x) > 1 − F (x) for all x > G−1(0). Hence,
G(x) 6 F (x) for all x > G−1(0). Moreover, G(x) = 0 for x < G−1(0). Hence,
G(x) 6 F (x) for all x ∈ R, which gives F 6st G.

(ii) The “⇐” direction is obvious. For the “⇒” direction, by letting x = F−1(0) =
G−1(0), we have F (x) − G(x) = 0. Thus, for all y > x = F−1(0) = G−1(0), F (y) 6
G(y), which means G 6st F . Together with F 6st G from (i), we have F = G.

(iii) By (i), we have F−1(0) 6 G−1(0) = −∞. Thus, F−1(0) = G−1(0) = −∞. Hence,
F = G by (ii).

(iv) Reflexivity is obvious and antisymmetry is implied by (i). Suppose that F 6ss G
and G 6ss H. By (i), G 6st H and max{G−1(0), H−1(0)} = H−1(0). We have
H(y) − H(x) > F (y) − F (x) for all y > x > max{G−1(0), H−1(0)} = H−1(0).
Transitivity of the order 6ss is proved.

Next, we discuss the problem of monotone embedding, which is an important issue
in the analysis of risk aggregation for tail risk measures in Section 4.5. The problem is
formulated as follows. Suppose that F 6st F

′ 6st G and (X, Y ) ∈ Fo2 (F,G), and the
question is whether there exists X ′ ∼ F ′ such that X 6 X ′ 6 Y holds (in the almost sure
sense). The existence of such X ′ is crucial to prove that we can use tail distribution to
obtain bounds on tail risk measures (see Theorem 4.3 below). Unfortunately, in general,
such X ′ does not necessarily exist, even if we restrict to DL-coupled (X, Y ).

Example 4.3. Let G be the Bernoulli(1/2) distribution. Take Y ∼ G, let X = −Y ,
and F be the distribution of X. Clearly, (X, Y ) is countermonotonic, and hence (X, Y )
is DL-coupled. Take another random variable X ′ ∼ F ′ = U[−1, 1]. It is easy to see that
F 6st F

′ 6st G. Since P(X = Y ) = 1/2 but P(X ′ = Y ) = 0, we know that X 6 X ′ 6 Y
cannot hold for any X ′ ∼ F ′.

The next theorem is the most important technical result which allows us to study the DL
coupling using the strong stochastic order. The result says that, although F 6st F

′ 6st G
is not sufficient for the existence of X ′ in Example 4.3, assuming the stronger relation
F 6ss F

′ would suffice.

Theorem 4.2 (Monotone embedding). Suppose that F 6ss F
′ 6st G, and (X, Y ) ∼ DF,G

∗ .
Then there exists X ′ ∼ F ′ such that X 6 X ′ 6 Y almost surely and (X ′, Y ) is DL-coupled.

Proof. We first consider continuous distributions F, F ′ and G. Without loss of generality,
we assume µF and µG are not mutually singular. As (X, Y ) ∼ DF,G

∗ , the common part
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µF ∧ µG of µF and µG are identically coupled. The singular part of µF is transported to
the singular part of µG through T F,G. Let P be a joint distribution on R3 with marginals
P ◦ X−1 = µF , P ◦ (X ′)−1 = µF ′ and P ◦ Y −1 = µG such that (X, Y ) ∼ DF,G

∗ . We will
construct P such that (X ′, Y ) is DL-coupled and X 6 X ′ 6 Y almost surely.

(i) Let θ = µF ∧ µG and θ′ = µF ′ ∧ µG. As F 6ss F
′, µF (a, b] 6 µF ′(a, b] for all

b > a > (F ′)−1(0). Thus the common part of µF ′ and µG covers the common part
of µF and µG, i.e., θ ∧ θ′ = θ. Therefore, we can always construct P such that the
measure θ of µF , µF ′ and µG identically couples with each other. By further letting
P couple the measure θ′− θ of µF ′ and µG identically, the common part θ′ of µF ′ and
µG identically couples.

(ii) Next we focus on the directional optimal transports on the singular parts of distri-
butions, i.e., T F,G and T F

′,G. Let P transport the singular part of µF ′ to the singular
part of µG through T F

′,G. Take x, x′ and y satisfying y = T F,G(x) = T F
′,G(x′). Note

that we will not consider the sets of x and x′ such that x = y or x′ = y as we are
studying the singular parts of distributions. Thus we have x < y and x′ < y. A key
property of T F,G is that F (z)−G(z) = F

(
T F,G(z)

)
−G

(
T F,G(z)

)
holds for all z ∈ R;

see Lemma 5.2 of Nutz and Wang (2021). With this property and F 6ss F
′, we have

F ′(x)−G(x) = F ′(x)− F (x) + F (x)−G(x)

6 F ′(y)− F (y) + F (y)−G(y) = F ′(x′)−G(x′).

Assume that x′ < x. If F ′(x) − G(x) < F ′(x′) − G(x′), as x′ < x < y = T F
′,G(x′),

by definition of T F
′,G, we have x = y as a contradiction to x < y. If F ′(x)−G(x) =

F ′(x′) − G(x′), as x′ < x < y = T F
′,G(x′), x is neither a point of strict increase

nor a point of strict decrease of F ′ − G in the sense of Nutz and Wang (2021). By
Proposition 5.1 of Nutz and Wang (2021), the set of points which are neither of strict
increase nor of strict decrease is a null set.

By (i) and (ii), we construct P such that (X ′, Y ) ∼ DF ′,G
∗ and X 6 X ′ 6 Y almost

surely. Note that (X, Y ) ∼ DF,G
∗ and (X ′, Y ) ∼ DF ′,G

∗ do not necessarily imply X 6 X ′ 6
Y almost surely due to the randomness of DL coupling which is illustrated by Example
4.1. Therefore, the construction of P in (i) is necessary. Next, we proceed to complete the
proof for non-continuous distributions F, F ′, and G. As the construction in (i) can also
be applied to the common part of non-continuous distributions, we focus on the singular
parts of distributions and assume that µF ∧ µG = 0 and µF ′ ∧ µG = 0. Let

j(x) = x+
∑
y6x

∣∣H(y)−H(y−) + (F (y)− F (y−))1{y<(F ′)−1(0)}
∣∣ , x ∈ R,
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where H = F ′−G. The function j is the summation of an identity function, the jumps of H
and the jumps of F (x) for x < (F ′)−1(0). Denote by j−1 : j(R)→ R the right-continuous
inverse function of j. Let

Jx = [j(x−), j(x)]

be the interval representing the jump of j at x. If there is no jump at x, Jx is a singleton.
Next we convert the measure µF ′ to an auxiliary measure µF ′c with continuous cdf F ′c.
We set F ′c(z) = F ′(j−1(z)) for z ∈ j(R). On the complement of j(R), F ′c is defined by
linearly interpolating from its values on j(R). In other words, if µF ′ has a jump at x,
µF ′c is uniformly distributed on the interval Jx with probability µF ′c(Jx) = µF ′({x}). The
auxiliary measures µFc and µGc with cdfs Fc and Gc can be constructed similarly from µF
and µG. The transformation implies that Gc is also continuous and F ′c 6st Gc. Note that
as F 6ss F

′, for x > (F ′)−1(0), we have

F (x)− F (x−) 6 F ′(x)− F ′(x−).

The above inequality implies that for any x > (F ′)−1(0), whenever F (x) has a jump, F ′(x)
must have one. Therefore, the transformation from µF to µFc reduces all the atoms of µF
and Fc is continuous. Moreover, as F 6ss F

′, the transformation ensures that Fc 6ss F
′
c.

Consequently, the orders on F , F ′ and G are preserved after the transformation and we
have Fc 6ss F

′
c 6st Gc.

Apply the result for continuous distributions on Fc, F
′
c and Gc and convert the trans-

formation back to non-continuous distributions. As all transformations are monotone (see
Theorem 5.5 of Nutz and Wang (2021)), the order X 6 X ′ 6 Y still holds almost surely
for non-continuous distributions F , F ′ and G.

In what follows, for any set A ∈ A with positive probability, let HX|A be the conditional
distribution of X given A. Moreover, F [p,1] is the upper p-tail distribution of F , namely

F [p,1](x) =
(F (x)− p)+

1− p
, x ∈ R,

and F [0,p] is the lower p-tail distribution of F , namely

F [0,p](x) =
F (x) ∧ p

p
, x ∈ R.

In other words, F [p,1] is the distribution of F−1(U) where U ∼ U[p, 1], and F [0,p] is the
distribution of F−1(U) where U ∼ U[0, p]. The next proposition shows that the largest
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conditional distribution HX|A for A ∈ A with probability 1− p in strong stochastic order
is the upper p-tail distribution F [p,1] where X ∼ F . The event A such that HX|A = F [p,1] is
called a p-tail event in Wang and Zitikis (2021), which will be formally defined in Section
4.5.

Proposition 4.2. For p ∈ (0, 1), any set A ∈ A of probability 1−p and X ∼ F , HX|A 6ss

F [p,1].

Proof. For any interval [x, y] with x >
(
F [p,1]

)−1
(0), we have

F [p,1](y)− F [p,1](x) =
(F (y)− p)+ − (F (x)− p)+

1− p
=
F (y)− F (x)

1− p
,

and

HX|A(y)−HX|A(x) = P(x < X 6 y | A) =
P({x < X 6 y} ∩ A)

1− p
6
F (y)− F (x)

1− p
.

Hence, we have HX|A 6ss F
[p,1].

Combining Theorem 4.2 and Proposition 4.2, we immediately arrive at the following
corollary. This corollary will be used to establish the main result on the worst-case value
of tail risk measures with the order constraint in Section 4.5.

Corollary 4.2. Let A ∈ A with probability 1 − p and p ∈ (0, 1). Suppose that F 6st G,

X ∼ F and (XA, Y ) ∼ D
HX|A,G

[p,1]

∗ . Then there exists X ′ ∼ F [p,1] such that XA 6 X ′ 6 Y
almost surely and (X ′, Y ) is DL-coupled.

Proof. Note that F [p,1] 6st G
[p,1] follows from F 6st G, and HX|A 6ss F

[p,1] follows from
Proposition 4.2. Applying Theorem 4.2 with the condition HX|A 6ss F

[p,1] 6st G
[p,1] gives

the desired result.

4.5 Risk measure and probability bounds

4.5.1 Bounds on tail risk measures

Evaluating the “tail risk ”, or the behavior of a risk beyond a high level, has become
crucial in the regulatory frameworks for banking and insurance. To better understand the
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tail risk, Liu and Wang (2021) provided an axiomatic framework of risk measures which
can quantify the tail risk. Those risk measures are referred to as tail risk measures. This
section is dedicated to studying the worst-case value of tail risk measures with the order
constraint.

For p ∈ (0, 1), a risk measure ρ is a p-tail risk measure if ρ(F ) = ρ(G) for all F,G ∈M
such that F [p,1] = G[p,1]. In other words, the value of a p-tail risk measure of random
variable X is determined by its distribution beyond F−1(p). The class of tail risk measures
includes the most important regulatory risk measures VaR and ES, and those popular in
the literature, such as RVaR and Gini Shortfall (Furman et al. (2017)).

For a p-tail risk measure ρ, there always exists another risk measure ρ∗, called the gen-
erator, such that ρ(F ) = ρ∗

(
F [p,1]

)
where F ∈M and F [p,1] is the upper p-tail distribution

of F . We call (ρ, ρ∗) a p-tail pair of risk measures. The class of 6cv-consistent generators
ρ∗ includes, for instance,

(i) ρ∗ = ess-inf, corresponding to ρ = VaRR
p ;

(ii) ρ∗ = E, corresponding to ρ = ESp;

(iii) ρ∗ : X 7→ −ESt(−X), corresponding ρ = RVaRp,q, where t = (1 − q)/(1 − p) (see
Example 5 of Liu and Wang (2021)).

Introduced by Wang and Zitikis (2021), a p-tail event of a random variable X is an
event A ∈ A with P(A) = 1− p ∈ (0, 1) such that X(ω) > X(ω′) holds for all ω ∈ A and
ω′ ∈ Ac. It is easy to check that, for X ∼ F , the upper p-tail distribution of F is the same
as the conditional distribution of X on the p-tail event A, i.e., F [p,1] = HX|A. Therefore,
we can write the p-tail risk measure ρ(X) = ρ∗(XA) where XA ∼ HX|A and A is a p-tail
event of X. Similarly, for risk aggregation S = X+Y , we can write the p-tail risk measure
ρ(S) = ρ∗(XB + YB) where XB ∼ HX|B, YB ∼ HY |B and B is a p-tail event of S, but not
necessarily a p-tail event of either X or Y .

To investigate the worst-case value of tail risk measures, we use the notion of p-
concentration, characterized by Wang and Zitikis (2021). A random vector (X, Y ) is
p-concentrated if X and Y share a common p-tail event of probability 1−p. Intuitively, for
p close to 1, p-concentrated risks will cause simultaneous large losses if the corresponding
p-tail event happens.

There is an important connection between p-concentration and the worst-case risk ag-
gregation of a p-tail risk measure. In the unconstrained setting (i.e., without the order
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constraint), if ρ is a monotone p-tail risk measure, the worst-case value of ρ can be at-
tained by p-concentrated risks (Theorem 3 of Liu and Wang (2021)). Earlier results of
this type for VaR are Theorem 4.6 of Bernard et al. (2014) and Theorem 4 of Bernard et
al. (2017). Therefore, in the unconstrained setting, it suffices to look at the tail risk of
each marginal distribution when we calculate the worst-case value of ρ. Moreover, if the
generator ρ∗ of ρ is 6cv-consistent, by (4.2), the worst-case value of ρ is attained when the
upper tail risks are countermonotonic.

The following theorem studies the worst-case value of tail risk measures with the order
constraint. We show that, if (ρ, ρ∗) is a monotone p-tail pair of risk measures and ρ∗ is
6cv-consistent, the worst-case value of ρ with the order constraint can also be attained by
p-concentrated risks, and it is attained when the upper tail risks are DL-coupled. This
result can be seen as parallel to Liu and Wang (2021, Theorem 3), which does not have
the order constraint. However, the proof is quite different, and the strong stochastic order
in Section 4.4 through Corollary 4.2 is crucial for this result.

Theorem 4.3. Suppose that F 6st G, p ∈ (0, 1), (ρ, ρ∗) is a p-tail pair of risk measure,
and ρ∗ is monotone and 6cv-consistent. We have

ρ(Fo2 (F,G)) = ρ∗
(
Fo2
(
F [p,1], G[p,1]

))
= ρ∗(X + Y ), (4.7)

where (X, Y ) ∼ DF [p,1],G[p,1]

∗ .

Proof. First, for any X ∼ F [p,1] and Y ∼ G[p,1], we can always construct Z ∼ F and W ∼ G
such that conditional on a p-tail event of Z +W , Z +W has the same law as X +Y . This
structure can be obtained by using a copula satisfying p-concentration. Hence, we have
the “>” direction of the following equality

ρ(Fo2 (F,G)) = ρ∗(Fo2 (F [p,1], G[p,1])). (4.8)

Below, we will show the “6” direction of (4.8). We break the proof into several steps.

1. For any X ∼ F and Y ∼ G such that X 6 Y almost surely, let A be a p-tail event
of X + Y in the sense of Wang and Zitikis (2021). Hence, ρ(X + Y ) = ρ∗(XA + YA)
for some XA ∼ HX|A and YA ∼ HY |A. Note that here we only need to specify the
distribution of (XA, YA), which is the conditional distribution of (X, Y ) on A.

2. By Propositions 4.1 and 4.2, we have HY |A 6st G
[p,1]. Take Y ′ ∼ G[p,1] satisfying

Y ′ > YA. The existence of Y ′ is guaranteed by, e.g., Theorem 1.A.1 of Shaked and
Shanthikumar (2007). By monotonicity of ρ∗, we have ρ∗(XA + YA) 6 ρ∗(XA + Y ′).
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3. Take X̃A ∼ HX|A and Ỹ ∼ G[p,1] such that (X̃A, Ỹ ) is DL-coupled. By 6cv-

consistency of ρ∗ and Lemma 4.1, we have ρ∗(XA + Y ′) 6 ρ∗(X̃A + Ỹ ).

4. Using Corollary 4.2, there exists X̃ ∼ F [p,1] such that X̃A 6 X̃ 6 Ỹ almost surely.
By monotonicity of ρ∗, we have ρ∗(X̃A + Ỹ ) 6 ρ∗(X̃ + Ỹ ).

We established the chain of inequalities

ρ(X + Y ) = ρ∗(XA + YA) 6 ρ∗(XA + Y ′) 6 ρ∗(X̃A + Ỹ ) 6 ρ∗(X̃ + Ỹ ).

where X̃ ∼ F [p,1] and Ỹ ∼ G[p,1]. Therefore, we obtained the “6” direction of the equality
in (4.8). The last equality in (4.7) is directly obtained from Lemma 4.1.

Remark 4.2. For F , G ∈M, we look at cases where ρ is one of VaRR, ES and RVaR.

(i) For p ∈ (0, 1), we have VaR
R

p (Fo2 (F,G)) = ess-inf(X+Y ) where (X, Y ) ∼ DF [p,1],G[p,1]

∗ .

(ii) For p ∈ (0, 1), we have ESp(Fo2 (F,G)) = E
[
F [p,1]

]
+ E

[
G[p,1]

]
= ESp(F ) + ESp(G),

which can also be obtained from comonotonic-additivity and subadditivity of ES.
Hence the order constraint does not improve the worst-case value of ES. Indeed, the
worst-case value of ES in unconstrained case is attained if and only if the two risks
are p-concentrated (Theorem 5 of Wang and Zitikis (2021)).

(iii) For 0 6 p < q < 1, we have RVaRp,q(Fo2 (F,G)) = −ESt(−X − Y ), where (X, Y ) ∼
DF [p,1],G[p,1]

∗ and t = (1− q)/(1− p).

Similarly, we can derive the best-case value of risk measures. For instance,

RVaRp,q(Fo2 (F,G)) = −RVaR1−q,1−p(Fo2 (Ĝ, F̂ ))) = ESp/q(X + Y ),

where Ĝ and F̂ are the distributions of−Y and−X, respectively, and (X, Y ) ∼ DF [0,q],G[0,q]

∗ .
In Section 4.5.2, we derive analytical results for the best-case and worst-case values of VaR.

In the following example, we calculate the worst-case value of RVaR for two uniformly
distributed risks.

Example 4.4. For fixed p ∈ (0, 1) and distributions F,G such that F 6st G, suppose that
the upper p-tail distributions are two uniform distributions F [p,1](x) = x for x ∈ [0, 1] and
G[p,1](y) = y/b for y ∈ [0, b]. It is easy to check that F [p,1] 6st G

[p,1] if and only if b > 1.
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We assume that 1 < b < 2. Let (X, Y ) ∼ DF [p,1],G[p,1]

∗ . The directional optimal transport
between singular parts of F [p,1] and G[p,1] is

T F
[p,1],G[p,1]

(x) = inf
{
z > x : 1− z

b
< x− x

b

}
= b− (b− 1)x, x ∈ [0, 1].

Then for c ∈ [0, b) we have P(X + Y 6 c) = (µF [p,1] ∧ µG[p,1]) ([∞, c/2]) = c/2b. For
c ∈ [b, 2],

P(X + Y 6 c) = (µF [p,1] ∧ µG[p,1])([∞, c/2]) + µ′F [p,1]([0, (c− b)/(2− b)]) =
c

2(2− b)
− b− 1

2− b
.

Therefore, VaRR
α (X + Y ) = 2bα for α ∈ (0, 1/2] and VaRR

α (X + Y ) = (4 − 2b)α + 2b − 2
for α ∈ [1/2, 1]. By Theroem 4.3, we derive the worst-case value of RVaR

RVaRp,q(Fo2 (F,G)) =

{
ba, q ∈

(
p, 1+p

2

]
;

b
4a
− 1

4a
(2a− 1)(2ba− 3b− 4a+ 2), q ∈

(
1+p

2
, 1
)
,

where a = 1− (1− q)/(1− p).

4.5.2 VaR bounds

The popular risk measure VaR is the most important example of a non-convex risk
measure, and it is neither 6cx- nor 6cv-consistent. In this section, we derive analytical
solutions for VaR bounds with the order constraint if marginal distributions are continu-
ous. For non-continuous marginal distributions, an algorithm is available in Section 4.6 to
approximate the bounds.

Proposition 4.3. For continuous distributions F and G such that F 6st G and p ∈ (0, 1),
we have

VaR
R

p (Fo2 (F,G)) = min

{
inf

x∈[F−1(p+),G−1(p+)]

{
T F

[p,1],G[p,1]

(x) + x
}
, 2G−1(p+)

}
,

and

VaRL
p (Fo2 (F,G)) = max

{
sup

x∈[F−1(p),G−1(p)]

{
T̂ F

[0,p],G[0,p]

(x) + x
}
, 2F−1(p)

}
,

where T̂ F
[0,p],G[0,p]

(x) = sup
{
t 6 x : F [0,p](t)−G[0,p](t) < F [0,p](x)−G[0,p](x)

}
.
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Proof. For p ∈ (0, 1), as
(
VaRR

p , ess-inf
)

is a p-tail pair of risk measures and ess-inf is
6cv-consistent, by Theorem 4.3,

VaR
R

p (Fo2 (F,G)) = ess-inf(Fo2 (F [p,1], G[p,1])) = ess-inf(X + Y ),

where (X, Y ) ∼ DF [p,1],G[p,1]

∗ . By Theorem 4.1, we obtain the first result. For the second
result, let X ′ ∼ F and Y ′ ∼ G. Denote by F̂ and Ĝ the distributions of −X ′ and −Y ′.
We have

VaRL
p (Fo2 (F,G)) = −VaR

R

1−p(Fo2 (Ĝ, F̂ )) = ess-sup
(
Fo2
(
F [0,p], G[0,p]

))
.

Applying Theorem 4.1, we get the desired result.

Remark 4.3. For F,G ∈ M and p ∈ (0, 1), the worst-case value of VaRR
p and the best-

case value of VaRL
p without the order constraint are attained by letting the upper tail risks

and lower tail risks be countermonotonic, respectively, i.e.,

sup
{

VaRR
p (X + Y ) : X ∼ F, Y ∼ G

}
= inf

x∈[0,1−p]

{
F−1(p+ x) +G−1(1− x)

}
,

inf
{

VaRL
p (X + Y ) : X ∼ F, Y ∼ G

}
= sup

x∈[0,p]

{
F−1(x) +G−1(p− x)

}
.

See Makarov (1981) and Rüschendorf (1982).

Example 4.5 (Pareto risks: VaR bounds). Following the marginal assumptions on F and

G in Example 4.1, we derive VaR
R

p (Fo2 (F,G)) and VaRL
p (Fo2 (F,G)) by Proposition 4.3. For

p ∈ (0, 1), we have

F [p,1](x) =

(
1− 1

x(1− p)

)
1{x>1/(1−p)} and G[p,1](x) =

(
1− 2

x(1− p)

)
1{x>2/(1−p)}.

Thus,

T F
[p,1],G[p,1]

(x) =
x

x(1− p)− 1
, x ∈

(
1

1− p
,

2

1− p

]
.

And T F
[p,1],G[p,1]

(1/(1− p)) = inf{∅} =∞. Therefore,

VaR
R

p (Fo2 (F,G)) = min

{
inf

x∈[1/(1−p),2/(1−p)]

{
x

x(1− p)− 1
+ x

}
,

4

(1− p)

}
=

4

1− p
.

Similarily, we have VaRL
p (Fo2 (F,G)) = 1 + 2/(1 − p). Those bounds on VaR will be used

to calculate probability bounds of X + Y in Example 4.6, where X ∼ F and Y ∼ G.
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In the unconstrained problem, Bernard et al. (2014) showed that the worst-case value
of VaRR

p is a continuous function of p ∈ (0, 1) if the marginal distributions are strictly
increasing. This continuity result is used to confirm that there is no need to distinguish
between VaRR and VaRL when we calculate their worst-case values (best-case values). We
will see later that the above statement is still true if the order constraint is further imposed.
The continuity of the worst-case value of VaRR with the order constraint is established in
Lemma 4.2. The proof of Lemma 4.2 is surprisingly complicated, very different from the
case treated by Bernard et al. (2014), and it is put in Section 4.8.

Lemma 4.2. For strictly increasing continuous distribution functions F and G such that

F 6st G, the function p 7→ VaR
R

p (Fo2 (F,G)) is continuous on (0, 1).

Using Lemma 4.2, we obtain that the worst-case values (best-case values) of VaRR and
VaRL with the order constraint are equivalent for strictly increasing continuous distribu-
tions.

Proposition 4.4. Suppose that F and G are strictly increasing continuous distribution
functions such that F 6st G. For p ∈ (0, 1), we have

VaR
L

p (Fo2 (F,G)) = VaR
R

p (Fo2 (F,G)) and VaRL
p (Fo2 (F,G)) = VaRR

p (Fo2 (F,G)).

Proof. For ε > 0, we have VaR
R

p−ε(Fo2 (F,G)) 6 VaR
L

p (Fo2 (F,G)) 6 VaR
R

p (Fo2 (F,G)). By

Lemma 4.2, VaR
R

p (Fo2 (F,G)) is a continuous function of p ∈ (0, 1). Letting ε ↓ 0, we get
the desired result for worst-case value of VaRL and VaRR. The proof for the best-case
value of VaRL and VaRR is similar and thus omitted.

By Proposition 4.4, in practical situations of risk management, there is no need to
distinguish between VaRL

p and VaRR
p when we calculate their bounds with the order con-

straint; this observation will be useful in the numerical studies in Section 4.6.

4.5.3 Probability bounds

In risk management and quantitative finance, probability bounds of the aggregate po-
sition are also of great interest. In the unconstrained problem (i.e., only marginal distri-
butions are known), the probability bounds on the aggregation of two risks are given by
Rüschendorf (1982).
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For F,G ∈ M such that F 6st G and t ∈ R, we are interested in the upper and lower
bounds of probability with the order constraint, defined as

M o(t) := sup {P(X + Y 6 t) : (X, Y ) ∈ Fo2 (F,G)}

and
mo(t) := inf {P(X + Y < t) : (X, Y ) ∈ Fo2 (F,G)} .

The above upper and lower bounds of probability can be obtained by inverting the lower
and upper bounds of VaR, respectively. In particular, for p ∈ (0, 1), we have

VaR
R

p (Fo2 (F,G)) = (mo)−1(p) and VaRL
p (Fo2 (F,G)) = (M o)−1(p).

For continuous marginal distributions, we can invert the analytical solutions in Proposition
4.3 to obtain the probability bounds with the order constraint. While the analytical solu-
tions to VaR bounds does not necessarily lead to an explicit results for probability bounds,
a numerical algorithm in Section 4.6 can be used to approximate probability bounds. The
following example compares probabilities bounds with and without order constraint for
Pareto marginal distributions.

Example 4.6 (Pareto: Probability bounds). Following the assumptions in Examples 4.1
and 4.5, we convert the VaR bounds in Example 4.5 to obtain probability bounds with the
order constraint:

M o(t) = 1− 4

t
, t > 4, and mo(t) = 1− 2

t− 1
, t > 3.

The probability bounds with and without order constraint are plotted in Figure 4.3. The
bounds without the order constraint are denoted by M and m. The figure shows that the
order constraint improves the lower probability bound a lot while there is no improvement
for the upper bound (the difference between M o and M is invisible). When two risks are
countermonotonic or DL-coupled, the corresponding probability (denoted by ProbCT and
ProbDL, respectively) lies between the constrained bounds for t > 8.

4.6 Numerical results and a real-data application

In this section, we use numerical examples and a case study to illustrate the impact
of the order constraint on VaR bounds (the worst-case and best-case values of VaRR and
VaRL), and RVaR bounds. For convenience, we do not distinguish between VaRL and VaRR

when we calculate their bounds (Proposition 4.4). Both VaRL and VaRR are referred to as
VaR in numerical results. We only illustrate the numerical calculations for VaR bounds.
RVaR bounds can be calculated in a similar manner.
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Figure 4.3: Probability bounds in Example 4.6
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4.6.1 General methodology

Let F,G ∈M be continuous distributions such that F 6st G. As suggested by Theorem
4.3, the best-case and worst-case values of VaR are determined by the lower tail and upper

tail distributions of F and G, respectively. To approximately calculate VaR
R

p for p ∈ (0, 1),

we first discretize the upper p-tail distributions F [p,1] and G[p,1]. Fix an integer n and let

xi = F−1

(
p+

(1− p)(n− i)
n

)
and yi = G−1

(
p+

(1− p)(n− i)
n

)
,

for i = 1, . . . , n. Define S
[p,1]
X = {x1, . . . , xn} and S

[p,1]
Y = {y1, . . . , yn}. If S

[p,1]
X and S

[p,1]
Y

have no identical locations, we use the following algorithm introduced in Nutz and Wang
(2021) to approximate the DL coupling between F [p,1] and G[p,1]. Let S1 = S

[p,1]
Y , we iterate

for k = 1, . . . , n

(i) T (xk) := min {y ∈ Sk : y > xk},

(ii) Sk+1 = Sk\ {T (xk)}.

Let sk = xk + T (xk), k = 1, . . . , n. We use min{sk : k = 1, . . . , n} as the approximation

for VaR
R

p . The best-case value of VaRL can be obtained in a similar manner. The uncon-
strained bounds of VaR, attained by conditional countermonotonicity, can be numerically
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computed by the Rearrangement Algorithm (RA) in Puccetti and Rüschendorf (2012) and
Embrechts et al. (2013). Similar procedures can be constructed for discrete distributions.

The difference between the worst-case and best-case values of a risk measure is called
the Dependence Uncertainty spread (DU-spread) for the risk measure, which is used as a
measure of dependence uncertainty (see Embrechts et al. (2015)). We use the DU-spread
reduction defined in Puccetti et al. (2017) to measure the improvement on unconstrained
VaR bounds due to the order constraint. Denote by L and U the unconstrained best-case
and worst-case values of a risk measure ρ. Similarly, denote by Lo and U o the bounds with
the order constraint. The lower and upper reductions of DU-spread are defined as

RL =
Lo − L
U − L

and RU =
U − U o

U − L
. (4.9)

The DU-spread reduction is defined as the sum of lower and upper DU-spread reductions,
which is R = RL +RU ∈ [0, 1].

4.6.2 Numerical examples

Consider distributions F and Gi such that their means are 50 and 50+10i and F 6st Gi,
i = 1, 2, 3. The distributions are specified in uniform and Pareto cases as below.

Table 4.1: Distributions for numerical examples

Uniform F (x) = x/100 G1(x) = x/120 G2(x) = x/140 G3(x) = x/160
Pareto F (x) = 1− (25/x)2 G1(x) = 1− (30/x)2 G2(x) = 1− (35/x)2 G3(x) = 1− (40/x)2

For both F and Gi, i = 1, 2, 3, being uniform or Pareto distributions, we calculate the
improvement (i.e., reduction of DU-spread) on VaR bounds and RVaR bounds. We also
present the results of VaRp(X + Y ) if X ∼ F and Y ∼ Gi are independent, comonotonic,
DL-coupled and countermonotonic, i = 1, 2, 3. The results of VaR bounds for uniform and
Pareto cases can be found in Figures 4.4 and 4.5, respectively. The results of RVaR bounds
can be found in Tables 4.2 and 4.3. We make the following observations.

(i) The DU-spread reductions in all tables and figures show that the improvement due
to the order constraint is significant for both VaR and RVaR. The improvement for
VaR becomes larger as p increases from 0.9 to 1.
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(ii) For all uniform and Pareto cases, as the mean of Gi becomes larger, the improvement
becomes smaller. In other words, the more “similar” the distributions F and Gi are,
the more improvement is gained from imposing the order constraint.

(iii) The order constraint has an overall larger improvement on the bounds for uniform
distributions than those for Pareto distributions. Nevertheless, the improvement
on the worst-case value is insignificant for uniform distributions. This is because
ess-infG

[p,1]
i > ess-supF [p,1] for p ∈ (0.9, 1), and the DL coupling of the upper p-tail

distributions is the same as countermonotonicity. While for Pareto distributions, the
improvement on the worst-case value is even larger than that on the best-case value.

(iv) For the uniform cases, if the risks are countermonotonic, both VaR and RVaR are
close to the unconstrained lower bound. If the risks are DL-coupled, both VaR and
RVaR are close to the constrained lower bound for the uniform cases while they lie
between the constrained bounds for the Pareto cases. If the risks are comonotonic,
both VaR and RVaR lie between the constrained bounds for all cases.

As the observations on VaR and RVaR are similar, we will focus on studying VaR for
the rest of the chapter. In previous examples for Pareto distributions, the tail parameter2

of distributions F and G are fixed (see Table 4.1). Next, we study the improvement of
VaR bounds as the tail parameter of the distribution G varies. Let F (x) = 1 − (25/x)2

and G(x) = 1 − (25/x)α, α 6 2. VaR bounds are calculated as α increases from 1.3
to 2. Results can be found in Figure 4.6. We observe that the larger α is, the greater
the improvement is gained from the order constraint. However, the improvement on the
unconstrained lower bound is neligible for small α. As in previous examples for Pareto
distributions, comonotonicity and DL coupling produce very close VaR values.

4.6.3 Case study: Health insurance policies

In this case study, we calculate the bounds of VaR with and without order constraint
for a health insurance portfolio. Insurance policies can be classified according to certain
characteristics of policyholders. For illustration purposes, we use gender to make classifi-
cations on health insurance policies (this may not be allowed in certain countries). The
aggregate loss of the portfolio can be expressed as S = X + Y where X ∼ F and Y ∼ G
represent the losses caused by females and males, respectively, from a portfolio of 50 males

2We use the Pareto(θ, α) distribution parametrized by F (x) = 1− (θ/x)
α

for x > θ, where θ ∈ R is the
location parameter and α > 0 is the tail parameter.
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Figure 4.4: Uniform cases: VaRp bounds, DU reduction and VaRp of the aggregate risk
with different dependence structures are contained in this figure. VaR values with inde-
pendence, comonotonicity, countermonotonicity and DL coupling are denoted by VaRInd,
VaRC, VaRCo and VaRDL, respectively.
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Figure 4.5: Pareto cases: VaRp bounds, DU reduction and VaRp of the aggregate risk
with different dependence structures are contained in this figure. VaR values with inde-
pendence, comonotonicity, countermonotonicity and DL coupling are denoted by VaRInd,
VaRC, VaRCo and VaRDL, respectively.
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Table 4.2: Uniform cases: RVaRp,q bounds, DU reduction and RVaRp,q of the aggregate risk
with different dependence structures are contained in this table. Marginal distributions in
Case i are uniform distributions F and Gi given in Table 4.1.

p 75% 90% 95% 99.5%
q 90% 95% 99.5% 99.9%

Case 1

Constrained bounds (165, 182) (185, 200) (195, 205) (200, 209)
Unconstrained bounds (100, 185) (105, 200) (110, 205) (110, 209)

(RL, RU , R) (0.77, 0.04, 0.81) (0.84, 0, 0.84) (0.89, 0, 0.89) (0.9, 0, 0.9)

Independence 151 171 187 203
Comonotonicity 175 195 204 209

Countermonotonicity 110 110 110 110
DL coupling 165 185 194 199

Case 2

Constrained bounds (165, 195) (185, 210) (195, 215) (200, 219)
Unconstrained bounds (110, 195) (115, 210) (120, 215) (120, 219)

(RL, RU , R) (0.65, 0, 0.65) (0.74, 0, 0.74) (0.79, 0, 0.79) (0.8, 0, 0.8)

Independence 161 181 197 212
Comonotonicity 185 205 214 219

Countermonotonicity 120 120 120 120
DL coupling 165 185 195 199

Case 3

Constrained bounds (165, 205) (185, 220) (195, 225) (200, 229)
Unconstrained bounds (120, 205) (125, 220) (130, 225) (130, 229)

(RL, RU , R) (0.53, 0, 0.53) (0.63, 0, 0.63) (0.68, 0, 0.68) (0.7, 0, 0.7)

Independence 171 192 207 222
Comonotonicity 195 215 224 229

Countermonotonicity 130 130 130 130
DL coupling 165 185 195 199
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Table 4.3: Pareto cases: RVaRp,q bounds, DU reduction and RVaRp,q of the aggregate risk
with different dependence structures are contained in this table. Marginal distributions in
Case i are Pareto distributions F and Gi given in Table 4.1.

p 75% 90% 95% 99.5%
q 90% 95% 99.5% 99.9%

Case 1

Constrained bounds (125, 140) (185, 213) (354, 379) (1012, 1085)
Unconstrained bounds (103, 164) (140, 254) (262, 409) (679, 1209)

(RL, RU , R) (0.35, 0.39, 0.75) (0.4, 0.36, 0.76) (0.63, 0.21, 0.83) (0.63, 0.23, 0.86)

Independence 136 191 316 800
Comonotonicity 135 204 373 1063

Countermonotonicity 124 172 292 774
DL coupling 132 198 360 1017

Case 2

Constrained bounds (129, 157) (188, 240) (371, 418) (1042, 1204)
Unconstrained bounds (114, 178) (156, 276) (289, 446) (755, 1316)

(RL, RU , R) (0.24, 0.33, 0.57) (0.27, 0.3, 0.57) (0.53, 0.18, 0.7) (0.51, 0.2, 0.71)

Independence 148 208 345 885
Comonotonicity 147 222 407 1160

Countermonotonicity 135 188 320 851
DL coupling 143 212 383 1075

Case 3

Constrained bounds (135, 173) (194, 265) (391, 456) (1083, 1321)
Unconstrained bounds (125, 192) (174, 298) (317, 482) (838, 1421)

(RL, RU , R) (0.15, 0.29, 0.44) (0.17, 0.27, 0.43) (0.45, 0.16, 0.6) (0.42, 0.17, 0.59)

Independence 161 225 375 972
Comonotonicity 159 241 441 1256

Countermonotonicity 147 205 349 932
DL coupling 153 226 407 1144
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Figure 4.6: This figure contains VaRp bounds, DU reduction and VaRp of the aggregated
Pareto risks with different dependence structures as α changes, where F = Pareto(25, 2)
and G = Pareto(25, α). VaR values with independence, comonotonicity, countermono-
tonicity and DL coupling are denoted by VaRInd, VaRC, VaRCo and VaRDL, respectively.
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and 50 females. It is sensible to guess that F 6st G, due to the morbidity differences
between males and females; this will be confirmed by our dataset. Moreover, since the
losses by males and females are affected by many common factors, the assumption that
X 6 Y seems also reasonable.

We use the Hospital Costs data of Frees (2009) which were originally from the Na-
tionwide Inpatient Sample of the Healthcare Cost and Utilization Project (NIS-HCUP),
to represent the individual losses of the health insurance policies. The data contains 500
observations with 244 males and 256 females. We generate 1000 bootstrapping samples of
the total losses caused by 50 males and 50 females, respectively.
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Figure 4.7: Empirical and estimated distributions of X and Y . Top panels: entire region;
bottom panels: tail region
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The empirical distributions F̂ and Ĝ from the 1000 bootstrapping samples are plotted
in the top-left panel of Figure 4.7. Although F̂ and Ĝ do not satisfy F̂ 6st Ĝ, such a
violation is almost invisible (see the bottom-left panel of Figure 4.7) and possibly caused
by sampling randomness. Indeed, using the Kolmogorov-Smirnov-type test of Barrett and
Donald (2003), we cannot reject the hypothesis F 6st G for the bootstrap data. Hence,
F 6st G is a sensible assumption. The isotonic distributional regression (IDR), introduced
by Henzi et al. (2021), is a nonparametric technique to estimate distributions with order
restrictions (e.g., stochastic order and hazard rate order). We use IDR to estimate F
and G such that the stochastic order holds for the estimated distributions. The estimated
distributions are plotted in the top-right panel of Figure 4.7, and they are used to calculate
the VaR bounds. However, if F̂ 6st Ĝ holds already, IDR is not necessary, and we can
directly use the empirical distributions.
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Using the IDR estimated distributions F and G, VaR bounds and the improvements on
the DU-spread in (4.9) are presented in Figure 4.8. VaR values are also presented if risks are
independent, comonotonic, DL-coupled and countermonotonic. The extra order constraint
greatly improves the unconstrained bounds of VaR, as shown by a DU-spread reduction
of more than 69%. In particular, the improvement on the best-case value is greater than
that on the worst-case value. The reduction is almost 100% when p is close to 1; that is
because the two distributions F [p,1] and G[p,1] are almost identical for such p, making the
set Fo2 (F [p,1], G[p,1]) very small (see Figure 4.7, bottom panels). Moreover, we observe that
if the two risks X and Y are countermonotonic, VaR is close to the unconstrained lower
bound. If the two risks are DL-coupled or comonotonic, VaR is close to the constrained
lower bound.

Figure 4.8: Case study: VaRp bounds, DU reduction and VaRp of the aggregate risk
with different dependence structures are contained in this figure. VaR values with inde-
pendence, comonotonicity, countermonotonicity and DL coupling are denoted by VaRInd,
VaRC, VaRCo and VaRDL, respectively.
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4.7 Concluding remarks

Risk aggregation of two ordered risks in the presence of unknown dependence structure
is studied in this chapter. The optimal dependence structures of the aggregate position
are discussed in the sense of concave order, which can also be equivalently described via
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convex order. The largest (resp. smallest) aggregate position in concave order is attained
when the risks are DL-coupled (resp. comonotonic). The concave ordering bounds can
be immediately applied to derive the bounds of 6cv-consistent and 6cx-consistent risk
measures.

To analyze bounds on tail risk measures such as VaR, we introduce the notion of strong
stochastic order and develop several theoretical properties. In particular, if the generator
of the tail risk measure is 6cv-consistent, the worst-case value of the tail risk measure with
the order constraint can be attained by p-concentrated risks, and it is attained when the
upper-tail risks are DL-coupled. With a specific focus on VaR, analytical solutions are
derived. Numerical studies show that the extra order constraint on top of the marginal
distributions can significantly improve the bounds of risk measures which are solely based
on marginal distributions.

There are some limitations of the current setup considered in this chapter. First, the
assumption X 6 Y for two risks X and Y is arguably quite strong. As we have seen
from the numerical results, significant improvement of the constrained bounds over the
unconstrained ones requires that the risks are of similar size, which however renders the
ordering assumption difficult to satisfy.

4.8 Appendix: Proof of Lemma 4.2

Proof of Lemma 4.2. By Proposition 1 of Embrechts and Hofert (2013), as F and G are
strictly increasing and continuous, F−1 and G−1 are also strictly increasing and continuous.
We first show

lim
ε↓0

VaR
R

p+ε(Fo2 (F,G)) = VaR
R

p (Fo2 (F,G)). (4.10)

By Theorem 4.3, for ε > [0, 1− p),

VaR
R

p+ε(Fo2 (F,G)) = ess-inf(Xε + Yε)

where (Xε, Yε) ∼ DF [p+ε,1],G[p+ε,1]

∗ . Since X0 and Y0 have continuous distributions, using
Corollary 2.5 of Nutz and Wang (2021), we have (Xε, Yε)→ (X0, Y0) in distribution. Since
ess-inf is upper semicontinuous with respect to convergence in distribution, we have

VaR
R

p (Fo2 (F,G)) = ess-inf(X0 + Y0) > lim
ε↓0

ess-inf(Xε + Yε) = lim
ε↓0

VaR
R

p+ε(Fo2 (F,G)),
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which implies (4.10). In what follows, we will show

lim
ε↓0

VaR
R

p−ε(Fo2 (F,G)) = VaR
R

p (Fo2 (F,G)). (4.11)

Fix p ∈ (0, 1). If F−1(p) = G−1(p), by Proposition 4.3, VaR
R

p (Fo2 (F,G)) = F−1(p) +
G−1(p). For ε > 0, by Theorem 4.3 and Corollary 4.1,

VaR
R

p−ε(Fo2 (F,G)) = ess-inf
(
Fo2 (F [p−ε,1], G[p−ε,1])

)
> F−1(p− ε) +G−1(p− ε).

Thus we have

F−1(p− ε) +G−1(p− ε) 6 VaR
R

p−ε(Fo2 (F,G)) 6 VaR
R

p (Fo2 (F,G)) = F−1(p) +G−1(p).

As F−1 and G−1 are continuous, let ε go to 0, we get the desired result.

For the rest of the proof, we assume F−1(p) < G−1(p). We first deal with the case
where F−1(1) <∞ and G−1(1) <∞. For ε > 0, let

δ(ε) = sup
p6t61

{[
F−1(t)− F−1(t− ε)

]
∨
[
G−1(t)−G−1(t− ε)

]}
.

As F−1, G−1 are continuous and F−1(1) < ∞ and G−1(1) < ∞, we have 0 < δ(ε) < ∞
and δ(ε) ↓ 0 as ε ↓ 0. Furthermore, let

h(ε) = sup
{

(F (G−1(p))− p)− (F (z)−G(z)) : z ∈ [G−1(p− ε), G−1(p)]
}
.

Because F − G is continuous, we have 0 6 h(ε) < ∞ and h(ε) ↓ 0 as ε ↓ 0. As F−1(p) <
G−1(p), we can take ε small enough such that F (G−1(p))−p > h(ε) and G−1(p)−F−1(p) >
δ(ε). By the definition of δ(ε), we also have

F−1(p− ε) < F−1(p) < G−1(p)− δ(ε) 6 G−1(p− ε) < G−1(p).

Define
xε = inf

{
x : F (x)− (p− ε) > F (G−1(p))− p− h(ε)

}
.

As F is strictly increasing and continuous, we have F−1(p−ε) < xε < G−1(p). Furthermore,
xε ↑ G−1(p) as ε ↓ 0. Let d(ε) = G−1(p)− xε. Thus, 0 < d(ε) < G−1(p)− F−1(p− ε) and
d(ε) ↓ 0 as ε ↓ 0. Furthermore, for any x < xε, we have F (x)−(p−ε) < F (G−1(p))−p−h(ε).

From Proposition 4.3, we have

VaR
R

p−ε(Fo2 (F,G)) = min

{
inf

x∈[F−1(p−ε),G−1(p−ε)]

{
T F

[p−ε,1],G[p−ε,1]
(x) + x

}
, 2G−1(p− ε)

}
.
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(i) For any x ∈ [G−1(p)− δ(ε) ∨ d(ε), G−1(p− ε)], we have

T F
[p−ε,1],G[p−ε,1]

(x) + x > 2x > 2G−1(p)− 2δ(ε) ∨ d(ε)

> VaR
R

p (Fo2 (F,G))− 2δ(ε) ∨ d(ε). (4.12)

(ii) For any x ∈ [F−1(p− ε), G−1(p)− δ(ε) ∨ d(ε)), let y = F−1(F (x)+ε). As F (x)+ε >
p, we have

y − x = F−1(F (x) + ε)− F−1(F (x)) 6 δ(ε), (4.13)

and y 6 x + δ(ε) 6 G−1(p). Moreover, we have y > F−1(p). Therefore, y ∈
[F−1(p), G−1(p)]. By the definition of h(ε) and x < xε, we have for all z ∈ [G−1(p−
ε), G−1(p)],

F (z)−G(z) > F (G−1(p))− p− h(ε) > F (x)− (p− ε).

Thus,

T F
[p−ε,1],G[p−ε,1]

(x) = inf{z > G−1(p− ε) : F (z)−G(z) < F (x)− (p− ε)}
= inf{z > G−1(p) : F (z)−G(z) < F (y)− p}

= T F
[p,1],G[p,1]

(y).

By (4.13), we have

T F
[p−ε,1],G[p−ε,1]

(x)+x = T F
[p,1],G[p,1]

(y)+y+(x−y) > T F
[p,1],G[p,1]

(y)+y−δ(ε). (4.14)

Combining (4.12), (4.14) and the fact that G−1(p− ε) > G−1(p)− δ(ε)∨ d(ε), we conclude
that, for p ∈ (0, 1),

VaR
R

p (Fo2 (F,G))− 2δ(ε) ∨ d(ε) 6 VaR
R

p−ε(Fo2 (F,G)) 6 VaR
R

p (Fo2 (F,G)).

Letting ε ↓ 0, we get (4.11) for the case F−1(1) <∞ and G−1 <∞.

If F−1(1) = ∞ or G−1(1) = ∞, following the proof of Proposition 4 in Blanchet

et al. (2020), we have VaR
R

p (Fo2 (F,G)) = VaR
R

p

(
Fo2
(
F [0,m], G[0,m]

))
for p ∈ [0, 2m − 1)

and 1/2 < m < 1. Intuitively, extremely large values of risks do not contribute to the

calculation of the worst-case value of VaRR. As
(
F [0,m]

)−1
(1) <∞ and

(
G[0,m]

)−1
(1) <∞,

VaR
R

p (Fo2 (F,G)) is continuous of p ∈ (0, 2m− 1). Letting m→ 1, we get (4.11).
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Chapter 5

Trade-off between Validity and
Efficiency of Merging p-values under
Arbitrary Dependence

5.1 Introduction

In many areas of statistical applications where multiple hypothesis testing is involved,
the task of merging several p-values into one naturally arises. Depending on the specific
application, these p-values may be from a single hypothesis or multiple hypotheses, in small
or large numbers, independent or correlated, and with sparse or dense signals, leading to
different considerations when choosing merging procedures.

Let K be a positive integer, and F : [0, 1]K → [0,∞) be an increasing Borel function
used to combine K p-values, which we shall refer to as a combining function. Generally, the
combined value may not be a valid p-value itself, and a critical point needs to be specified.
Different dependence assumptions on the p-values lead to significantly different critical
points, and thus different statistical decisions. The problem of merging p-values has a long
history, and early results can be found in Tippett (1931), Pearson (1933) and Fisher (1948)
where p-values are assumed to be independent. Based on an idea of Tukey, Donoho and Jin
(2004) developed the higher criticism statistics to detect weak and sparse signals effectively
using independent p-values. Certainly, these methods do not always produce a valid p-
value if the assumption of independence is violated. On the other hand, the independence
assumption is often very difficult or impossible to verify in many applications where only
one set of p-values is available.
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There are, however, some methods that produce valid p-values without any dependence
assumption. A classic one is the Bonferroni method by taking the minimum of the p-values
times K (we allow combined p-values to be greater than 1 and they can be treated as 1)
or equivalently, dividing the critical value by K. Other methods that are valid without
assumptions include the ones based on order statistics by Rüger (1978) and Hommel (1983),
and the ones based on averaging by Vovk and Wang (2020); details of these merging
methods are presented in Section 5.3.

Some other methods work under weak or moderate dependence assumptions, such as
the method of Simes (1986), which uses the minimum of Kp(i)/i over i = 1, . . . , K, where
p(i) is the i-th smallest order statistic of p1, . . . , pK . The validity of the Simes method is
shown under a large class of dependence structures (e.g., Sarkar (1998, 2008); Benjamini
and Yekutieli (2001) and Rødland (2006)), although even such dependence assumptions
are unlikely to hold in practice (see e.g., Efron (2010, p.51)). Two more recent methods
include the Cauchy combination test proposed by Liu and Xie (2020) using the weighted
average of Cauchy transformed p-values, and the harmonic mean p-value of Wilson (2019)
using the harmonic mean of p-values. Under mild dependence assumptions, these two
methods are asymptotically valid as the significance level goes to 0 (see Theorem 5.2).

This chapter is dedicated to a comprehensive and unifying treatment of p-value merg-
ing methods under various dependence assumptions. Some methods are valid without any
assumption on the interdependence of p-values, and they will be referred to as VAD meth-
ods. On the other hand, methods that are valid for some specific but realistic dependence
assumption (e.g., independence, positive dependence, or joint normality dependence) will
be referred to as VSD methods. Our main goal is to understand the difference and the
trade-off between these methods.

For a fixed combining function F , using a VAD method means choosing a smaller
critical value (threshold) for making rejections compared to a VSD method. Thus, the
gain of validity comes at the price of a loss of detection power. As it is often difficult
to make valid statistical inference on the dependence structure of p-values, our analysis
also helps to understand the relative performance of VSD combining methods under the
presence of model misspecification. As a byproduct, we obtain several new theoretical
results on the popular Simes, harmonic, and Cauchy merging methods.

In the next section, we collect some basic definitions of VAD and VSD merging methods
and their corresponding threshold functions. We focus on symmetric merging functions for
the tractability in their comparison. In Section 5.3, we introduce two general classes of
combining functions, which include all methods mentioned above. Formulas for their VAD
and VSD threshold functions are derived, some based on results from robust risk aggrega-
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tion, e.g., Wang et al. (2013). In Section 5.4, we introduce independence-comonotonicity
balanced (IC-balanced) combining functions, which are indifferent between the two de-
pendence assumptions. We show that the Cauchy combination method and the Simes
method are the only IC-balanced ones among two general classes of combining methods,
thus highlighting their unique roles. In Section 5.5, we establish strong similarity between
the Cauchy combination and the harmonic averaging methods, and obtain an algebraic
relationship between the harmonic averaging and the Simes functions. In Section 5.6, the
price for validity is introduced to assess the loss of power of VAD methods compared to
their VSD versions. Simulation studies and a real data analysis are conducted to analyze
the relative performance of these methods. Simulation studies and a real data analysis are
presented in Section 5.7 to analyze the relative performance of these methods. Proofs of
all technical results are put in Section 5.9.1.

We conclude the section by providing additional notation and terminology that will
be adopted in this chapter. All random variables are defined on an atomless probability
space (Ω,F ,P). Random variables X1, . . . , Xn are comonotonic if there exist increasing
functions f1, . . . , fn and a random variable Z such that Xi = fi(Z) for each i = 1, . . . , n.
For α ∈ (0, 1], qα(X) is the left α-quantile of a random variable X, defined as

qα(X) = inf{x ∈ R | P(X 6 x) > α}.

We also use F−1(α) for qα(X) if X follows the distribution F . The set U is the set of
all standard uniform random variables defined on (Ω,F ,P) (i.e., the set of all measurable
functions on (Ω,F) whose distribution under P is uniform on [0, 1]) and 1 is the indicator

function. The equality
d
= represents equality in distribution. For given p1, . . . , pK , the

order statistics p(1), . . . , p(K) are ordered from the smallest to the largest. The equivalence
Ax ∼ Bx as x → x0 means that Ax/Bx → 1 as x → x0. All terms of “increasing” and
“decreasing” are in the non-strict sense.

5.2 Merging methods and thresholds

Following the terminology of Vovk and Wang (2020), a p-variable is a random variable
P such that P(P 6 ε) 6 ε, for all ε ∈ (0, 1) (such random variables are called superuniform
by Ramdas et al. (2019)). Values realized by p-variables are p-values. In the Introduction,
p-values are used loosely for p-variables, which should be clear from the context.

Let P1, . . . , PK be K p-variables for testing a common hypothesis. A combining func-
tion is an increasing Borel measurable function F : [0, 1]K → [0,∞) which transforms
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P1, . . . , PK into a single random variable F (P1, . . . , PK). The choice of combining function
depends on how one integrates information, and some common options are mentioned in
the Introduction. Generally, F (P1, . . . , PK) may not be a valid p-variable. For different
choices of F and assumptions on P1, . . . , PK , one needs to assign a critical value g(ε) so that
the hypothesis can be rejected with significance level ε ∈ (0, 1) if F (P1, . . . , PK) < g(ε).
We call g a threshold (function) for F and P1, . . . , PK . Clearly, g(ε) is increasing in ε. In
case g is strictly increasing, which is the most common situation, the above specification of
g is equivalent to requiring g−1 ◦F (P1, . . . , PK) to be a p-variable. To objectively compare
various combining methods, one should compare the corresponding values of the function
g−1 ◦ F .

In some situations, it might be convenient and practical to assume additional infor-
mation on dependence structure of p-variables, e.g., independence, comonotonicity (i.e.,
perfectly positive dependence), and specific copulas. The choice of the threshold g cer-
tainly depends on such assumptions. If no assumption is made on the interdependence of
the p-variables, the corresponding threshold function is called a VAD threshold, otherwise
it is a VSD threshold. A testing procedure based on a VAD threshold always produces a
size less than or equal to the significance level regardless of the dependence structure of
the p-variables.

We denote the VAD threshold of a combining function F by aF . If a merging method is
valid for independent (resp. comonotonic) dependence of p-variables, we use bF (resp. cF )
to denote the corresponding valid threshold function, and we call it the VI (resp. VC )
threshold. More precisely, for the equation

P(F (P1, . . . , PK) < g(ε)) 6 ε, ε ∈ (0, 1), (5.1)

a VAD threshold g = aF satisfies (5.1) for all p-variables P1, . . . , PK ; a VI threshold g = bF
satisfies (5.1) for all independent p-variables P1, . . . , PK , and a VC threshold g = cF satisfies
(5.1) for all comonotonic p-variables P1, . . . , PK .

The comonotonicity assumption on the p-variables to combine (actually they are iden-
tical if they are uniform on [0, 1]) is not interesting by itself for statistical practice. Never-
theless, comonotonicity is a benchmark for (extreme) positive dependence, and we analyze
cF for the purpose of comparison; it helps us to understand how valid thresholds for dif-
ferent methods vary as the dependence assumption gradually shifts from independence to
extreme positive dependence. This point will be made more clear in Sections 5.4-5.6.

An immediate observation is that the p-variables can be equivalently replaced by uni-
form random variables on [0, 1] as for each p-variable P , we can find U ∈ U with U 6 P ; see
e.g., Vovk and Wang (2020). Therefore, it suffices to consider p-variables in U . Moreover,
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if g satisfies (5.1), then any function that is smaller than g is also valid. Hence, for the
sake of power, it is natural to use the largest functions that satisfy (5.1). Putting these
considerations together, we formally define the thresholds of interest as follows.

Definition 5.1. The thresholds aF , bF and cF of a combining function F are given by, for
ε ∈ (0, 1),

aF (ε) = inf{qε(F (U1, . . . , UK)) | U1, . . . , UK ∈ U}, (5.2)

bF (ε) = qε(F (V1, . . . , VK)), (5.3)

cF (ε) = qε(F (U, . . . , U)), (5.4)

where U, V1, . . . , VK are independent standard uniform random variables.

In what follows, we focus on the thresholds in Definition 5.1. It is clear that g = aF ,
bF or cF in Definition 5.1 satisfies (5.1) under the respective dependence assumptions.

Remark 5.1. While the objects bF and cF in (5.3)-(5.4) can often be explicitly calculated,
the object aF in (5.2) is generally difficult to calculate for a chosen function F due to the
infimum taken over all possible dependence structures. Techniques in the field of robust
risk aggregation, in particular, results in Wang et al. (2013), Embrechts et al. (2013, 2015)
and Wang and Wang (2016), are designed for such calculation, as illustrated by Vovk and
Wang (2020). By definition, for any threshold g(ε) > aF (ε), there exists some dependence
structure of (P1, . . . , PK) such that validity is lost, i.e., (5.1) is violated. Moreover, if the
combining function F is continuous, the infimum in (5.2) is attainable; the proof of this
statement is similar to that of Lemma 4.2 of Bernard et al. (2014).

5.3 Combining functions

5.3.1 Two general classes of combining functions

We first introduce two general classes of combining functions, the generalized mean
class and the order statistics class. Let p1, . . . , pK ∈ [0, 1] be the K realized p-values. The
first class of combining functions is the generalized mean, that is,

Mφ,K(p1, . . . , pK) = φ−1

(
1

K

K∑
i=1

φ(pi)

)
,
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where φ : [0, 1] → [−∞,∞] is a continuous and strictly monotone function and φ−1 is its
inverse on the domain φ([0, 1]). Many combining functions used in the statistical literature
are included in this class. For example, the Fisher method (Fisher (1948)) corresponds to
the geometric mean with φ(p) = log(p); the averaging methods of Vovk and Wang (2020)
and Wilson (2019) correspond to the functions φ(p) = pr, and r ∈ [−∞,∞] (including
limit cases), and the Cauchy combination method of Liu and Xie (2020) corresponds to
φ(p) = tan

(
π
(
p− 1

2

))
.

The second class of combining functions is built on order statistics. Let

α = (α1, . . . , αK) ∈ RK
+ ,

where R+ = [0,∞). We define the combining function

Sα,K(p1, . . . , pK) = min
i∈{1,...,K}

p(i)

αi
,

where the convention is p(i)/α =∞ if α = 0. If α1 = 1/K and all the other components of
α are 0, then using Sα,K yields the Bonferroni method based on the minimum of p-values.
The VAD method via order statistics of Rüger (1978) uses Sα,K by setting αi = i/K for
a fixed i ∈ {1, . . . , K} and all the other components of α to be 0. On the other hand, if
αi = i/K for each i = 1, . . . , K, then we arrive at the method of Simes (1986); in this case,
we will simply denote Sα,K by SK , namely,

SK(p1, . . . , pK) := min
i∈{1,...,K}

Kp(i)

i
,

and SK will be called the Simes function. The method of Hommel (1983) uses `KSK , which
is SK adjusted via the VAD threshold, where

`K =
K∑
k=1

1

k
. (5.5)

If αi+1 6 αi, then the term p(i+1)/αi+1 does not contribute to the calculation of the term
Sα,K(p1, . . . , pK). Hence, we can safely replace αi+1 by αi without changing the function
Sα,K . Thus, we shall assume, without loss of generality, that α1 6 . . . 6 αK . Admissibility
of VAD merging methods in the above two classes are studied by Vovk et al. (2021).

Recall that a function F : RK
+ → R is homogeneous if F (λx) = λF (x) for all λ > 0

and x ∈ RK
+ . It is clear that the function Sα,K is homogeneous, and so are the averaging

methods of Vovk and Wang (2020). In such cases, we can show that the VAD threshold
aF is a linear function.
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Proposition 5.1. If the combination function F is homogeneous, then the VAD threshold
aF (x) is a constant times x on (0, 1).

In the subsections below we will discuss several special cases of the above two classes
of combining functions, and analyze their corresponding threshold functions. As the first
example, we note that the functions aF , bF and cF for the Bonferroni method can be easily
verified.

Proposition 5.2. Let F (p1, . . . , pK) = min{p1, . . . , pK} for p1, . . . , pK ∈ [0, 1]. Then
aF (ε) = ε/K, bF (ε) = 1− (1− ε)1/K and cF (ε) = ε for ε ∈ (0, 1).

5.3.2 The averaging methods

The aforementioned averaging methods of Vovk and Wang (2020) use the combining
functions given by

Mr,K(p1, . . . , pK) =

(
pr1 + · · ·+ prK

K

) 1
r

,

for r ∈ R \ {0}, together with its limit cases

M−∞,K(p1, . . . , pK) = min{p1, . . . , pK};

M0,K(p1, . . . , pK) =

(
K∏
i=1

pi

) 1
K

;

M∞,K(p1, . . . , pK) = max{p1, . . . , pK}.

Some special cases of the combining functions above are r = −∞ (minimum), r = −1
(harmonic mean), r = 0 (geometric mean), r = 1 (arithmetic mean) and r = ∞ (maxi-
mum); the cases r ∈ {−1, 0, 1} are known as Platonic means. Note that M−∞,K gives rise
to the Bonferroni method, and the geometric mean yields Fisher’s method (Fisher (1948))
under the independence assumption. The harmonic mean p-value of Wilson (2019) is a
VSD method using the harmonic mean.

Since the mean function Mr,K is homogeneous, by Proposition 5.1, the VAD threshold
is a linear function aF (x) = arx, x ∈ (0, 1) for some ar > 0. The multipliers ar have been
well studied in Vovk and Wang (2020), and here we mainly focus on the cases of Platonic
means and the Bonferroni method. It is known that a−∞ = 1/K and a1 = 1/2. For r = 0
or r = −1, the values of ar and their asymptotic formulas are calculated by Propositions
4 and 6 of Vovk and Wang (2020), summarized below for K > 3.
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(i) For F = M0,K ,

aF (x) = a0x = cK exp

(
K − 1

1−KcK

)
× x, x ∈ (0, 1), (5.6)

where cK is the unique solution to the equation: log(1/c − (K − 1)) = K −K2c for
c ∈ (0, 1/K). Moreover, a0 > 1/e, and a0 → 1/e as K →∞.

(ii) For F = M−1,K ,

aF (x) = a−1x =
(yK + 1)K

(yK +K)2
× x, x ∈ (0, 1), (5.7)

where yK is the unique solution to the equation: y2 = K((y + 1) log(y + 1) − y) for
y ∈ (0,∞). Moreover, a−1 > (e logK)−1, and a−1 logK → 1 as K →∞.

To determine the VC threshold, it is easy to check that cMr,K
(x) = x, x ∈ (0, 1) for

all r ∈ [−∞,∞], because the generalized mean of identical objects is equal to themselves;
this obviously holds for all functions in the family of Mφ,K .

Next, we study br := bMr,K
or its approximate form. For this, we will use stable

distributions (e.g., Uchaikin and Zolotarev (2011) and Samorodnitsky (2017)) below. Let
Fα be the stable distribution with stability parameter α ∈ (0, 2), skewness parameter
β = 1, scale parameter σ = 1 and shift parameter µ = 0. The characteristic function of
Fα is given by, for θ ∈ R,∫

exp(iθx)dFα(x) =

{
exp

(
−|θ|α(1− i sgn(θ) tan πα

2
)
)

if α 6= 1,

exp
(
−|θ|(1 + i 2

π
sgn(θ) log |θ|)

)
if α = 1,

where sgn(·) is the sign function. For α > 2, let Fα stand for the standard normal distri-
bution.

Proposition 5.3. Let br be the VI threshold of Mr,K, r ∈ R.

(i) If r < 0, then for K ∈ N+

br(ε) ∼ K−1−1/rε, as ε ↓ 0, (5.8)

and for ε ∈ (0, 1),

br(ε) ∼
((
CαF

−1
α (1− ε) + bK

)
/K
) 1
r , as K →∞,

where α = −1/r > 0 and the constants Cα and bK are given in Table 5.1.
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(ii) If r = 0, then

br(ε) = exp

(
− 1

2K
q1−ε

(
χ2

2K

))
. (5.9)

(iii) If r > 0, then for K ∈ N+,

br(ε) =
(Γ(1 +K/p))1/Kε1/K

K1/rΓ(1 + 1/p)
, if ε 6 (Γ(1+1/p))K

Γ(1+K/p)
,

where Γ is the Gamma function. For ε ∈ (0, 1),

br(ε) ∼
(

σ√
K

Φ−1(ε) + µ

) 1
r

, as K →∞,

where µ = (r + 1)−1 and σ2 = r2(1 + 2r)−1(1 + r)−2.

Table 5.1: Coefficients Cα and bK for r = −1/α < 0.

r = −1/α Cα bK

− 1
2 < r < 0

(
K

(
α
α−2 −

(
α
α−1

)2))1/2

Kα/(α− 1)

r = − 1
2

√
K logK Kα/(α− 1)

−1 < r < − 1
2 K1/α (Γ(1− α) cos(πα/2))

1/α
Kα/(α− 1)

r = −1 Kπ/2
πK2

2

∫ ∞
1

sin

(
2x

Kπ

)
αx−α−1dx

r < −1 K1/α (Γ(1− α) cos(πα/2))
1/α

0

5.3.3 The Cauchy combination method

The Cauchy combination method is recently proposed by Liu and Xie (2020) which
relies on a special case of the generalized mean via φ = C−1, where C is the standard
Cauchy cdf, that is,

C(x) =
1

π
arctan(x) +

1

2
, x ∈ R; C−1(p) = tan

(
π

(
p− 1

2

))
, p ∈ (0, 1).

We denote this combining function by MC,K (instead of MC−1,K for simplicity), namely,

MC,K(p1, . . . , pK) := C

(
1

K

K∑
i=1

C−1 (pi)

)
.
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It is well known that the arithmetic average of either independent or comonotonic standard
Cauchy random variables follows again the standard Cauchy distribution. This feature al-
lows the use of such a combination method to combine p-values under uncertain dependence
assumptions. In addition, Liu and Xie (2020) showed that under a bivariate normality as-
sumption of the individual test statistics (i.e., a normal copula), the combined p-value
has the same asymptotic behaviour as the one under the assumption of independence (see
Theorem 5.2 (ii) below).

Since 1
K

∑K
i=1 C−1(Ui) follows a standard Cauchy distribution if U1, . . . , UK ∈ U are

either independent or comonotonic, we have bF (x) = cF (x) = x for all x ∈ (0, 1). This
convenient feature will be studied in more details in Section 5.4.

By Definition 5.1, we get, for F = MC,K ,

aF (ε) = C

(
inf

{
qε

(
1

K

K∑
i=1

C−1(Ui)

)
| U1, . . . , UK ∈ U

})
. (5.10)

The function aF does not admit an explicit formula, but it can be calculated via results
from robust risk aggregation (Corollary 3.7 in Wang et al. (2013)) as in the following
proposition.

Proposition 5.4. For ε ∈ (0, 1/2), we have

aF (ε) = C (−Hε(xK)/K) , (5.11)

where Hε(x) = (K − 1)C−1(1 − ε + (K − 1)x) + C−1(1 − x), x ∈ (0, ε/K), and xK is the
unique solution x ∈ (0, ε/K) to the equation

K

∫ ε/K

x

Hε(t)dt = (ε−Kx)H(x).

5.3.4 The Simes method

The method of Simes (1986) uses the Simes function SK in the order statistics family,
given by SK(p1, . . . , pK) = mini∈{1,...,K}

K
i
p(i). For F = SK , the results in Hommel (1983)

together with Proposition 5.1 suggest that aF (x) = x/`K for x ∈ (0, 1). For independent
p-variables P1, . . . , PK ∈ U , Simes (1986) obtained

P
(

min
i∈{1,...,K}

K

i
P(i) > ε

)
= 1− ε, ε ∈ (0, 1),
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which gives bF (x) = x for x ∈ (0, 1). For comonotonic p-variables P1, . . . , PK ∈ U , it
is clear that SK(P1, . . . , PK) = P(K), which follows a standard uniform distribution, and
hence we again have cF (x) = x for x ∈ (0, 1). The validity of the Simes function using
the VI (VC) threshold (called the Simes inequality) holds under many positive dependence
structures; see e.g., Sarkar (1998, 2008).

In the context of testing multiple hypotheses, if p-variables for several hypotheses are
independent, the Benjamini-Hochberg procedure for controlling the false discovery rate
(FDR) (Benjamini and Hochberg (1995)) also relies on the Simes function (in case all hy-
potheses are null). Although the Benjamini-Hochberg procedure is valid for many practical
models, to control the FDR under arbitrary dependence structure of p-variables, one needs
to multiply the p-values by `K , resulting in the Benjamini-Yekutieli procedure (Benjamini
and Yekutieli (2001)). This constant is exactly x/aF (x), and the function aF is called a
reshaping function by Ramdas et al. (2019) in the FDR context.

5.4 Independence-comonotonicity balance

As we have seen above, the Cauchy function and the Simes function both satisfy bF =
cF , and hence the corresponding merging methods are invariant under independence or
comonotonicity assumption, an arguably convenient feature. Inspired by this observation,
we introduce the property of independence-comonotonicity balance for combining functions
in this section. This property distinguishes the Cauchy combination method and the Simes
method from their corresponding classes Mφ,K and Sα,K , respectively.

A combining function is said to be balanced between two different dependence structures
of p-variables if the combined random variable under the two dependence assumptions co-
incide in distribution. Recall that U, V1, . . . , VK are independent standard uniform random
variables.

Definition 5.2. A combining function F : [0, 1]K → [0,∞) is independence-comonotonicity

balanced (IC-balanced) if F (V1, . . . , VK)
d
= F (U, . . . , U).

As the VI and VC thresholds are the corresponding quantile functions of F (P1, . . . , PK),
we immediately conclude that a combining function F : [0, 1]K → [0,∞) is IC-balanced if
and only if bF = cF on (0, 1]; recall that cF is the identity for all functions in Section 5.3.

IC-balanced methods have the same threshold bF = cF if the dependence structure of

127



p-variables is a mixture of independence and comonotonicity, i.e., with the copula

λ
n∏
i=1

xi + (1− λ) min
i=1,...,n

xi, (x1, . . . , xn) ∈ [0, 1]n, (5.12)

where λ ∈ [0, 1]. This is because P(F (U1, . . . , UK) 6 bF (ε)) is linear in the distribution of
(U1, . . . , UK).

For any combining function F , VI and VC thresholds generally yield more power to
the test compared with the corresponding VAD threshold, but the gain of power may
come with the invalidity due to model misspecification. If a combining function F is IC-
balanced, the validity is preserved under independence, comonotonicity and their mixtures,
and we may expect (without mathematical justification) that, to some extent, the size of
the test can be controlled properly even if mild model misspecification exists. Therefore,
the notion of IC-balance can be interpreted as insensitivity to some specific type of model
misspecification (e.g., dependence structure given in (5.12)) for VSD merging methods.

We have already seen in Section 5.3 that the Cauchy combination method and the
Simes method are IC-balanced. Below we show that they are the only IC-balanced meth-
ods among the two classes of combining functions based on generalized mean and order
statistics.

Theorem 5.1. For a generalized mean function Mφ,K and an order statistics function
Sα,K,

(i) Mφ,K is IC-balanced for all K ∈ N if and only if it is the Cauchy combining function,
i.e., φ(p) is a linear transform of tan

(
π
(
p− 1

2

))
, p ∈ (0, 1);

(ii) Sα,K is IC-balanced if and only if it is a positive constant times the Simes function.

The IC-balance of Mφ,K for some fixed K (instead of all K ∈ N) does not imply that φ
is the quantile function of a Cauchy distribution; see the counter-example (Example 5.1)
in Section 5.9.1. As a direct consequence of Theorem 5.1, if Sα,K is IC-balanced, then Sα,k
for k = 2, . . . , K − 1, are also IC-balanced (here we use the first k components of α); a
similar statement does not hold in general for the generalized mean functions, also shown
by Example 5.1.

Remark 5.2. The property of IC-balance should be seen as a necessary but not sufficient
condition for a merging method to be insensitive to dependence between independence
and comonotonicity. As shown by Sarkar (1998), the Simes method is valid for positive
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regression dependence, which is a large spectrum of dependence structures connecting
independence and comonotonicity (larger than (5.12)); on the other hand, the Cauchy
combination method using VI threshold is valid under a bivariate Gaussian assumption
asymptotically but not precisely (Liu and Xie (2020)); see Theorem 5.2 below and the
simulation studies in Section 5.7. Instead of arguing for the practical usefulness of IC-
balance, we emphasize it as a necessary condition for insensitivity to dependence. The
main aim of Theorem 5.1 is, via this necessary condition, to pin down the unique role of
the Simes and the Cauchy combination methods among their respective generalized classes,
thus justifying their advantages with respect to dependence.

5.5 Connecting the Simes, the harmonic averaging

and the Cauchy combination methods

As we have seen from Theorem 5.1, the Cauchy and Simes combining functions are
the only IC-balanced ones among the two classes considered in Section 5.3. Although
the harmonic combining function does not satisfy bF = cF , we observe empirically that
the harmonic averaging method and the Cauchy combination method report very similar
results in all simulations; see Section 5.7.

In this section, we explore the relationship among the three methods based on SK ,
M−1,K and MC,K . We first show that the harmonic averaging method is equivalent to
the Cauchy combination method asymptotically in a few senses. Second, we show the
Simes function SK and the harmonic averaging function M−1,K are closely connected via
M−1,K 6 SK 6 `KM−1,K , where `K is given in (5.5). Throughout this section, for fixed
K ∈ N, we write aC = aMC,K , aS = aSK , aH = aM−1,K

and similarly for bC, bS and bH.

We will use the following assumption on the p-variables U1, . . . , UK ∈ U .

(G) For each 1 6 i < j 6 K, (Ui, Uj) follows a bivariate Gaussian copula (which can be
different for each pair).

The assumption (G) is mild and is imposed by Liu and Xie (2020, Condition C.1). Note that
condition (G) includes independence and comonotonicity as special cases. The following
theorem confirms the close relationship between the harmonic averaging method and the
Cauchy combination method. Recall that the VC thresholds for both methods are the
identity function, and thus it suffices to look at VAD and VI thresholds.
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Theorem 5.2. For fixed K ∈ N, the harmonic averaging and the Cauchy combination
methods are asymptotically equivalent in the following senses:

(i) If mini∈{1,...,K} pi ↓ 0 and maxi∈{1,...,K} pi 6 c for some fixed c ∈ (0, 1), then

MC,K(p1, . . . , pK)

M−1,K(p1, . . . , pK)
→ 1.

(ii) For K standard uniform random variables U1, . . . , UK satisfying condition (G),

P (MC,K(U1, . . . , UK) < ε) ∼ P (M−1,K(U1, . . . , UK) < ε) ∼ ε, as ε ↓ 0. (5.13)

In particular, bC(ε) ∼ bH(ε) as ε ↓ 0.

(iii) aC(ε) ∼ aH(ε) as ε ↓ 0.

(iv) For r 6= −1,
MC,K(p1, . . . , pK)

Mr,K(p1, . . . , pK)
6→ 1, as max

i∈{1,...,K}
pi ↓ 0.

Remark 5.3. The statement P (MC,K(U1, . . . , UK) < ε) ∼ ε in Theorem 5.2 (ii) is im-
plied by Theorem 1 of Liu and Xie (2020), which gives the same convergence rate for the
weighted Cauchy combination method. For the weighted harmonic averaging method, we
have a similar result (see (5.26) in Section 5.9.1): For standard uniform random variables
U1, . . . , UK satisfying condition (G) and any (w1, . . . , wK) ∈ [0, 1]K with

∑K
i=1wi = 1, we

have

P

(
K∑
i=1

wiU
−1
i > 1/ε

)
∼ ε, as ε ↓ 0.

We omit a discussion on weighted merging methods as the focus of this chapter is comparing
symmetric combination functions.

The first statement of Theorem 5.2 means that, if at least one of realized p-values
are close to 0, the harmonic averaging and the Cauchy combining functions will produce
very close numerical results. This case is likely to happen in high-dimensional situations
where the number of p-variables is very large. As the condition (G) for (ii) in Theorem
5.2 is arguably mild, the thresholds of the two methods are similar for a small significance
level under a wide range of dependence structures of p-variables (including independence
and comonotonicity). Therefore, if the significance level is small, one likely arrives at
the same statistical conclusions on the hypothesis testing by using either method. The
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third result in Theorem 5.2 illustrates the equivalence between the VAD thresholds of
the harmonic averaging and the Cauchy combination methods as the significance level
goes to 0. The final result in Theorem 5.2 shows that among all averaging methods, the
harmonic averaging method is the only one that is asymptotically equivalent to the Cauchy
combination method.

Remark 5.4. We note that the equivalence

P (MC,K(U1, . . . , UK) < ε) ∼ P (M−1,K(U1, . . . , UK) < ε)

in (5.13) does not always hold under arbitrary dependence structures. Since the Cauchy
distribution is symmetric, it is possible that P(C−1(U1) + · · · + C−1(UK) = 0) = 1 for
some U1, . . . , UK ∈ U , implying P(MC,K(U1, . . . , UK) < 1/2) = 0. Indeed, Theorem 4.2
of Puccetti et al. (2019) implies that there exist K standard Cauchy random variables
whose sum is a constant c, for each c ∈ [−K log(K − 1)/π,K log(K − 1)/π]. On the
other hand, P(M−1,K(U1, . . . , UK) < ε) > 0 for all ε > 0 and all U1, . . . , UK ∈ U . Thus,
P (MC,K(U1, . . . , UK) < ε) ∼ P (M−1,K(U1, . . . , UK) < ε) does not hold.

Remark 5.5. The equivalence in Theorem 5.2 (ii) relies on the p-variables being uniform
on [0, 1]. For p-variables that are stochastically larger than uniform, the behaviour of the
Cauchy combination method and that of the harmonic averaging method may diverge;
nevertheless, by Theorem 5.2 (i), for a realized vector of p-values with at least one very
small component, the two methods would produce similar values.

The next result reveals an intimate relationship between the Simes and the harmonic
averaging methods.

Theorem 5.3. For p1, . . . , pK ∈ [0, 1],

M−1,K(p1, . . . , pK) 6 SK(p1, . . . , pK) 6 `KM−1,K(p1, . . . , pK).

The first inequality holds as an equality if p1 = · · · = pK. The second inequality holds
as an equality if p1 = pk/k for k = 2, . . . , K. As a consequence, aS/aH ∈ [1, `K ] and
bS/bH ∈ [1, `K ].

By Proposition 5.3 (i), the VI threshold of the harmonic averaging method satisfies
bH(ε) ∼ ε = bS as ε ↓ 0. Using Theorem 5.3, we further know that bH(ε) < ε (the inequality
is strict since M−1,K < SK has probability 1 for independent p-variables). Therefore, we
cannot directly use the asymptotic VI threshold ε of the harmonic averaging method, which
needs to be corrected; see Wilson (2019).
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To summarize the results in this section, the Cauchy combining function and the har-
monic averaging function are very similar in several senses, and the Simes function is more
conservative than the harmonic averaging function. Empirically, we see that the Simes
function is only slightly more conservative; see Section 5.7.

5.6 Prices for validity

For a given set of realized p-values, the decision to the hypothesis testing for some
specific combining function will be determined by the corresponding threshold. The VAD
method can always control the size below the significance level; VSD methods may not
have the correct size, but they yield more power than the VAD method. Therefore, there
is always a trade-off between validity and efficiency, thus a price for validity.

For a combining function F and K standard uniform random variables U1, . . . , UK
with some specific dependence assumption (e.g., independence, comonotonicity, or condi-
tion (G)), let gF be the VSD threshold, i.e., gF (ε) = qε(F (U1, . . . , UK)). Let aF be defined
as in (5.2). For some fixed ε ∈ (0, 1), the ratio gF (ε)/aF (ε) is called the price for va-
lidity under the corresponding dependence assumption of the p-variables. For instance,
bF (ε)/aF (ε) is the price paid for validity under independence assumption and cF (ε)/aF (ε)
is the corresponding price under the comonotonicity assumption. For a specific applica-
tion, one may consider the price for validity under other dependence assumptions. The
calculation of the price for validity serves for two purposes:

i (Power gain/loss): On the one hand, if additional information on the dependence
structure of the p-values is available, the price for validity can be used as a measure
for the gain of power from the dependence information. On the other hand, if the
dependence information is not available or credible, the price can be used to measure
the power loss by switching to the VAD threshold.

ii (Sensitivity to model misspecification): If the dependence structure is ambiguous, VAD
thresholds should be used. A small price for validity indicates that a relatively small
change of threshold due to the model ambiguity. Hence, the price for validity can be
used as a tool to assess the sensitivity of VSD methods to model misspecification.

Remark 5.6. Instead of using the price for validity, a more direct way to assess the trade-
off between using VSD and VAD methods is comparing the sizes, i.e., P(F (P1, . . . , PK) <
gF (ε))/P(F (P1, . . . , PK) < aF (ε)), where the dependence of p-variables P1, . . . , PK corre-
sponds to the VSD method. More precisely, for a fixed ε ∈ (0, 1), the ratio of sizes is
ε/g−1

F (aF (ε)), where g−1
F is the (generalized) inverse of gF . The connection between the

price for validity and the ratio of sizes is explained below.
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(i) For the Simes and the Cauchy combination methods, the ratios of sizes under in-
dependence and comonotonicity are identical to the corresponding price for validity
since bF and cF are identity functions.

(ii) For the averaging methods, the ratios of sizes under comonotonicity are identical to
the price for validity since cF is identity. The ratios of sizes under independence may
be different from bF (ε)/aF (ε); however, by letting δ = aF (ε), we have (aF is strictly
increasing in all cases we consider)

ε

b−1
F (aF (ε))

=
a−1
F (δ)

b−1
F (δ)

.

This is very similar to bF (ε)/aF (ε); it is a matter of looking at the ratio of threshold
functions or that of their inverses. In fact, if r < 0, by Proposition 5.3, we have,

ε

b−1
F (aF (ε))

∼ bF (ε)

aF (ε)
, ε ↓ 0,

which suggests that the ratio of sizes is almost the same as the price for validity under
independence for small significance levels.

We use the Bonferroni method based on the combining function F = M−∞,K as an
example to illustrate the above idea. Using Proposition 5.2 and noting that K(1 − (1 −
ε)1/K) ∼ ε as ε ↓ 0, we obtain that the prices for validity of the Bonferroni method satisfy
cF (ε)/aF (ε) = K for ε ∈ (0, 1) and bF (ε)/aF (ε) → 1 as ε ↓ 0. Therefore, for a small ε
close to 0, the price for validity under the independence assumption is close to 1 while the
price for validity under the comotonicity assumption increases linearly as the number of
p-variables increases. This means a model misspecification of independence is not affecting
the Bonferroni method much, whereas a model misspecification of comonotonicity greatly
affects the statistical conclusion of the Bonferroni method.

Next we numerically calculate the prices for validity under independence and comono-
tonicity assumptions for various merging methods using results in Section 5.3. We consider
the Bonferroni, the harmonic averaging, the geometric averaging, the Cauchy combination,
the Simes, and the negative-quartic (using M−4,K , a compromise between Bonferroni and
harmonic averaging) methods. The (asymptotic) VAD and VI thresholds of these meth-
ods are summarized in Table 5.2. The VC threshold is identity for all these methods.
The VAD threshold of the negative-quartic method is given by Proposition 5 of Vovk and
Wang (2021). Numerical results on the prices for validity are reported in Table 5.3 for
ε = 0.01. Although some of the VAD thresholds in Table 5.2 do not have explicit forms,
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Table 5.2: Thresholds for K p-variables at significance level ε ∈ (0, 1).

Bonferroni Negative-quartic Simes Cauchy Harmonic Geometric

aF (ε) ε/K 3
4K
− 3

4 ε ε/`K (5.11) (5.7) (5.6)

bF (ε) 1− (1− ε)1/K (5.8) ε ε (5.8) (5.9)

Table 5.3: bF (ε)/aF (ε) and cF (ε)/aF (ε) for ε = 0.01 and K ∈ {50, 100, 200, 400}

K = 50 K = 100 K = 200 K = 400

bF /aF cF /aF bF /aF cF /aF bF /aF cF /aF bF /aF cF /aF
Bonferroni 1.005 50.000 1.005 100.000 1.005 200.000 1.005 400.000
Negative-quartic 1.340 25.071 1.340 42.164 1.340 70.911 1.340 119.257
Simes 4.499 4.499 5.187 5.187 5.878 5.878 6.570 6.570
Cauchy 6.625 6.625 7.465 7.465 8.277 8.277 9.058 9.058
Harmonic 6.658 6.625 7.496 7.459 8.314 8.273 9.117 9.072
Geometric 69.903 2.718 78.096 2.718 84.214 2.718 88.694 2.718

the numerical computation is very fast. The results for ε = 0.05 and ε = 0.0001 are similar
and reported in Tables 5.5 and 5.6 in Section 5.9.2.

The Bonferroni and the negative-quartic methods pay much lower price under the in-
dependence assumption than the comonotonicity assumption, and the geometric averaging
method is the absolute opposite. On the other hand, the harmonic averaging, the Simes
and the Cauchy combination methods have relatively small prices under both independence
and comonotonicity assumptions and their prices increase at moderate rates as K increases,
compared to other methods. In particular, the harmonic averaging and the Cauchy com-
bination methods have very similar performance (cf. Theorem 5.2) and their prices are
slightly larger than that of the Simes method. If mild model misspecification exists, it may
be safer to choose one of the harmonic averaging, the Simes and the Cauchy combination
methods and use the corresponding VAD threshold without losing much power. The prices
for validity in Table 5.3 can also be interpreted as inflations of sizes by using VSD threshold
against VAD threshold except the geometric averaging method (see Remark 5.6).

Next, we show that the prices for validity of the harmonic averaging, the Cauchy
combination and the Simes methods behave like logK for K large enough and ε small
enough.

Proposition 5.5. For ε ∈ (0, 1), the prices for validity satisfy:
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(i) For the harmonic averaging method, F = M−1,K,

lim
δ↓0

bF (δ)

aF (δ)
=
cF (ε)

aF (ε)
∼ logK, as K →∞.

(ii) For the Cauchy combination method, F = MC,K,

lim
δ↓0

bF (δ)

aF (δ)
= lim

δ↓0

cF (δ)

aF (δ)
∼ logK, as K →∞.

(iii) For the Simes method, F = SK,

bF (ε)

aF (ε)
=
cF (ε)

aF (ε)
∼ logK, as K →∞.

Numerical values of the ratios between the price for validity under independence as-
sumption and logK are reported in Table 5.4; the results for the corresponding ratios
under comonotonicity assumption are similar for these methods. The Simes method has
the fastest convergence rate among the three methods. The ratios for the harmonic aver-
aging and the Cauchy combination methods converge quite slowly and have similar rates.
This fact can also be explained by Theorem 5.3, where we see that the Simes function is
generally larger than the harmonic averaging function.

Based on Proposition 5.5, one may be tempted to use bF/ logK as the corrected critical
value under model misspecification; however, for the harmonic averaging and the Cauchy
combination methods, the asymptotic rate of logK can only be expected for very large K
(instead, 1.7 logK works for K > 100).

Table 5.4: Numerical values of 1
log(K)

bF (ε)
aF (ε)

for the Simes, the Cauchy combination and the
harmonic averaging methods.

ε K = 10 20 50 100 200 500

Simes
0.05 1.272035 1.200955 1.150097 1.126425 1.109415 1.093041
0.01 1.272035 1.200955 1.150097 1.126425 1.109415 1.093041

Cauchy
0.05 1.979572 1.82826 1.693025 1.620527 1.561670 1.511264
0.01 1.980144 1.828822 1.693562 1.621011 1.562121 1.504288

Harmonic
0.05 2.026308 1.873762 1.73641 1.661098 1.601539 1.539448
0.01 1.989255 1.837605 1.701851 1.627702 1.569179 1.508248
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5.7 Simulations and a real data example

5.7.1 Simulation studies

We conduct K one-sided z-tests of the null hypothesis: µi = 0 against the alternative
hypothesis µi > 0, i = 1, . . . , K, using the test statistic Xi and the p-value pi from the ith
test, i = 1, . . . , K. The tests are formulated as the following:

pi = Φ(Xi), Xi = ρZ +
√

1− ρ2Zi − µi, i = 1, . . . , K.

where Φ is the standard normal distribution function, Z,Z1, . . . , ZK are iid standard normal
random variables, µi > 0, i = 1, . . . , K, and ρ is a parameter in [0, 1]. Note that for ρ = 0,
the p-variables are independent, and ρ = 1 corresponds to the case where p-variables are
comonotonic.

Let K ∈ {50, 200} and set the significance level ε = 0.01. To see how different depen-
dence structures and signals affect the size and the power for various methods using both
VAD and VSD thresholds, the rejection probabilities (RPs) are computed over ρ ∈ [0, 1]
under the following four cases:

(i) (no signal) 100% of µi’s are 0;

(ii) (needle in a haystack) 98% of µi’s are 0 and 2% of µi’s are 4;

(iii) (sparse signal) 90% of µi’s are 0 and 10% of µi’s are 3;

(iv) (dense signal) 100% of µi’s are 2.

The RP corresponds to the size under case (i), and it corresponds to the power under
(ii), (iii) and (iv). The RP is computed as the ratio between the number of the combined
values which are less than the critical threshold and the number of simulations for some
ρ ∈ [0, 1], that is,

RP =

∑N
i=1 1{Fi<g(ε)}

N
,

where N is the number of simulations and is equal to 15000 in our study, Fi is the realized
value of the combining function for the i-th simulation, i = 1, . . . , N , and g(ε) is the
corresponding critical value. For ρ ∈ [0, 1], graphs of RPs for different combining methods
are drawn using VAD thresholds and VSD thresholds. Some observations from Figures
5.1-5.4 are made below, and those on the averaging methods using Mr,K are consistent
with the observations in Vovk and Wang (2020).
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1. All VAD methods give sizes less than ε = 0.01 as expected. Using VAD thresholds,
the Bonferroni, the harmonic averaging, the Cauchy combination and the Simes
methods have good powers.

2. The Simes method using thresholds bF or cF reports the right size for all values of
ρ. Sarkar (1998) showed the validity of the Simes method in the so-called MTP2

class including multivariate normal distributions with nonnegative correlations (the
setting of our simulation).

3. Using thresholds bF or cF , the harmonic averaging and Cauchy combination methods
perform similarly with sizes possibly larger than 0.01 (see Theorems 5.2 and 5.3).

4. The geometric averaging method using bF and the Bonferroni and negative-quartic
methods using cF do not yield correct sizes under model misspecification, and the
sizes increase rapidly as the misspecification gets bigger.

5. Using bF or cF , the harmonic averaging, the Cauchy combination and the Simes
methods have good performances on capturing the signals.
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Figure 5.1: Case (i): size (top: K = 50, bottom: K = 200)
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Figure 5.2: Case (ii): needle in a haystack (top: K = 50, bottom: K = 200)
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Figure 5.3: Case (iii): sparse signal (top: K = 50, bottom: K = 200)
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Figure 5.4: Case (iv): dense signal (top: K = 50, bottom: K = 200)

5.7.2 Real data analysis

We apply several merging methods to a genomewide study to compare their perfor-
mances. We use the dataset of p-values of Storey and Tibshirani (2003) which contains
3170 p-values computed based on the data from Hedenfalk et al. (2001) for testing whether
genes are differentially expressed between BRCA1- and BRCA2-mutation-positive tumors.
As mentioned in Section 5.2, g−1◦F (P1, . . . , PK) is a p-variable if the threshold g is strictly
increasing, and it is the quantity we choose to compare combined p-values for different
methods.

For each method, we calculate the combined p-value, and remove the smallest p-value
from the dataset. Repeat this procedure until the resulting combined p-value loses signifi-
cance. Using the Bonferroni combining function, this leads to the Bonferroni-Holm (BH)
procedure (Holm (1979)); thus we mimic the BH procedure for other methods in a naive
manner. The rough interpretation is to report the number of significant discoveries (this
procedure generally does not control the family-wise error rate (FWER); to control FWER
one needs to use a generalized BH procedure as in Vovk and Wang (2020) or Goeman et al.
(2019). This procedure can be seen as a lower confidence bound from a closed testing per-
spective). For a visual comparison of detection power, the combined p-values against the
numbers of removed p-values are plotted in Figure 5.5, where we use both the VAD and the
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VI thresholds (comonotonicity is obviously unrealistic here). In the third panel of Figure
5, we present the number of omitted p-values in log-scale for better visualization.
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Figure 5.5: Combined p-value after removing n smallest p-values

All VAD methods lose significance at ε = 0.05 after omitting the first or the second
smallest p-value (the smallest p-value is 0 and the second smallest is 1.26 × 10−5). Using
thresholds bF for independence, the Bonferroni and the negative quartic methods behave
similarly to their VAD versions (as their price for validity is close to 1). In contrast, the
Simes, the Cauchy combination and the harmonic averaging methods lose significance at
ε = 0.05 after removing around 20, 70 and 110 p-values respectively. The geometric aver-
aging method (Fisher’s) exceeds 0.05 only after removing around 400 p-values. However,
this method relies heavily on the independence assumption, which is impossible to verify
from just one set of p-values.

5.8 Concluding remarks

We discussed two aspects of merging p-values: the impact of the dependence structure
on the critical thresholds and the trade-off between validity and efficiency. The Cauchy
combination method and the Simes method are shown to be the only IC-balanced members
among the generalized mean class and the order statistics class of combining functions. The
harmonic averaging and the Cauchy combination methods are asymptotically equivalent,
and the Simes and the harmonic averaging methods have simple algebraic relationship.
For the above three methods, the prices for validity under independence (comonotonicity)
assumption all behaves like logK for large K. Moreover, these methods lose moderate
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amount of power if VAD thresholds are used, and their performance against model mis-
specification is better than other methods. This explains the wide applications of these
methods in different statistical procedures.

Merging p-values is not only useful for testing a single hypothesis, but also important
in testing multiple hypotheses, controlling false discovery rate (Benjamini and Hochberg
(1995), Benjamini and Yekutieli (2001)), and exploratory research (Goeman and Solari
(2011), Goeman et al. (2019)). In many situations especially involving a large number
of hypotheses and tests, dependence information is hardly available. The results in our
chapter offer some insights, especially in terms of gain/loss of validity and power, on how
the absence of such information influences different statistical procedures of merging p-
values.

In many practical applications, p-values arrive sequentially in time, and the existence
of the n-th p-variable may depend on previously observed p-values (only promising exper-
iments may be continued); thus the number of experiments to combine is a stopping time.
Unfortunately, the current merging method of p-values discussed in this chapter cannot
be used to sequentially update p-values with arbitrary stopping rule. To deal with such
a situation, one has to rely on anytime-valid methods, typically through the use of a test
supermartingale (see Howard et al. (2021) and Ramdas et al. (2020)) or through e-values
(see Shafer (2021) and Vovk and Wang (2021)). Moreover, e-values are nicer to combine
(e.g., using average and product as in Vovk and Wang (2021)) especially under arbitrary
dependence, in contrast to the complicated methods of merging p-values.

R code

An R package pmerge for various merging methods in this chapter is available at https:
//github.com/YuyuChen-UW/pmerge.

5.9 Appendix

5.9.1 Proofs of theorems and propositions in Chapter 5

Proof of Proposition 5.1. By definition, we have

aF (ε) = inf{qε(F (U1, . . . , UK)) | U1, . . . , UK ∈ U}, ε ∈ (0, 1).
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We shall show

aF (ε) = inf{q1(F (V1, . . . , VK)) | V1, . . . , VK ∈ Uε}, ε ∈ (0, 1), (5.14)

where Uε denotes the collection of all uniform random variables distributed on [0, ε]. De-
note by S = F (U1, . . . , UK) and G−1

S (t) = qt(S), t ∈ (0, 1]. We can find US ∈ U
such that G−1

S (US) = S a.s. (e.g., Lemma A.32 of Föllmer and Schied (2016)). Let
fi(t) = P (Ui 6 t|US < ε) , t ∈ [0, 1]. Then fi(Ui) conditionally on US < ε is a uniform
random variable on [0, 1] and V ε

i := εfi(Ui) conditionally on US < ε is a uniform random
variable on [0, ε]. We construct the following two random variables:

S1 = S1{US<ε} + d1{US>ε}, S2 = F (V ε
1 , . . . , V

ε
n )1{US<ε} + d1{US>ε}, (5.15)

where d > F (ε, . . . , ε). Noting the fact that εfi(t) = P(Ui 6 t, US < ε) 6 t, t ∈ [0, 1] and F
is increasing, we have S1 > S2. Hence qε(S1) > qε(S2). Moreover, direct calculation shows
qε(S) = qε(S1). Thus qε(S) > qε(S2). Let V̂1, . . . , V̂n be uniform random variables on [0, ε]
such that (V̂1, . . . , V̂n) has the joint distribution identical to the conditional distribution of
(V ε

1 , . . . , V
ε
n ) on US < ε. Hence, for x < d,

P(S2 6 x) = P(F (V ε
1 , . . . , V

ε
n ) 6 x, US < ε)

= εP(F (V ε
1 , . . . , V

ε
n ) 6 x|US < ε)

= εP(F (V̂1, . . . , V̂n) 6 x).

This implies qε(S2) = q1(F (V̂1, . . . , V̂n)). Thus we have

aF (ε) > inf{q1(F (V1, . . . , VK)) | V1, . . . , VK ∈ Uε}.

We next show “6” in (5.14). Take V1, . . . , Vn ∈ Uε and U ∈ U such that U is independent
of V1, . . . , Vn. Let Ûi = Vi1{U<ε} + U1{U>ε}, i = 1, 2, . . . , n. It is clear that Ûi ∈ U , i =

1, 2, . . . , n and F (Û1, . . . , Ûn) = F (V1, . . . , Vn)1{U<ε} + F (U, . . . , U)1{U>ε}. Noting that F

is increasing, we have q1(F (V1, . . . , Vn)) = qε(F (Û1, . . . , Ûn)). This implies

aF (ε) 6 inf{q1(F (V1, . . . , VK)) | V1, . . . , VK ∈ Uε}.

Therefore, (5.14) holds. By (5.14) and the homogeneity of F we have that for ε ∈ (0, 1),

aF (ε) = inf{q1(F (V1, . . . , VK)) | V1, . . . , VK ∈ Uε}
= inf{q1(F (εU1, . . . , εUK)) | U1, . . . , UK ∈ U}
= ε inf{q1(F (U1, . . . , UK)) | U1, . . . , UK ∈ U}.

This completes the proof.
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Proof of Proposition 5.2. It is well known that the Bonferroni correction yields aF (ε) =
ε/K. Also, since the average of identical objects is itself, cF (ε) = ε for any averaging
method, including the Bonferroni method. For iid standard uniform random variables
V1, . . . , VK , we have P(min{V1, . . . , VK} 6 x) = 1− (1− x)K . Therefore, bF (ε) = 1− (1−
ε)1/K for ε ∈ (0, 1).

Proof of Proposition 5.3. (a) Suppose r < 0. We first fix K and find the asymptotic of br
as ε ↓ 0 satisfying

P

(
K∑
i=1

P r
i > K (br(ε))

r

)
= ε.

Observe that the random variables P r
i , i = 1, . . . , K, follow a common Pareto distri-

bution with cdf P(P r
i 6 x) = 1 − x1/r, x ∈ (1,∞), i = 1, . . . , K. Note that the tail

probability of the sum of iid Pareto random variables is asymptotically the same as
that of the maximum of the iid Pareto random variables (e.g., Embrechts et al. (1997),
Corollary 1.3.2). Hence

lim
ε↓0

P
(∑K

i=1 P
r
i > K (br(ε))

r
)

P (max{P r
1 , . . . , P

r
K} > K (br(ε))

r)
= lim

ε↓0

ε

1−
(

1−K 1
r br(ε)

)K = 1.

This implies

br(ε) ∼
1− (1− ε) 1

K

K
1
r

∼ K−1−1/rε, as ε ↓ 0.

The case K → ∞ follows directly from the generalized central limit theorem (e.g.,
Theorem 1.8.1 of Samorodnitsky (2017)).

(b) If r = 0, in a similar way, we first have,

P

(
2

K∑
i=1

log
1

Pi
> 2K log

1

br(ε)

)
= ε.

The random variable log 1
Pi

, i = 1, . . . , K, follows exponential distribution with param-

eter 1. Thus 2
∑K

i=1 log 1
Pi

follows a chi-square distribution with parameter 2K. We

denote qα(χ2
ν) the α-quantile of the chi-square distribution with ν degrees of freedom.

Hence

br(ε) = exp

(
− 1

2K
q1−ε

(
χ2

2K

))
.
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(c) If r > 0, using the result of Wang (2005), we have for 0 6 x 6 K−r,

P (Mr,K(U1, . . . , UK) 6 x) = P

(
K∑
i=1

U r
i 6 Kxr

)

= λ

{
(x1, . . . , xK) :

K∑
i=1

xri 6 Kxr, x1, . . . , xK > 0

}

=
(Γ(1 + 1/p))K

Γ(1 +K/p)
KK/rxK ,

where λ is the Lebesgue measure. This implies that if ε 6 (Γ(1+1/p))K

Γ(1+K/p)
,

br(ε) =
(Γ(1 +K/p))1/Kε1/K

K1/rΓ(1 + 1/p)
. (5.16)

The asymptotic behaviour of br(ε) for fixed ε ∈ (0, 1) as K → ∞ can be obtained by
the Central Limit Theorem. Note that the random variables P r

i , i = 1, . . . , K, follow
a common Beta distribution with mean and variance given by, respectively,

µ = (r + 1)−1, and σ2 = r2(1 + 2r)−1(1 + r)−2.

The Central Limit Theorem gives (
∑K

i=1 P
r
i −Kµ)/

√
Kσ

d→ N(0, 1). Hence

br(ε) ∼
(

σ√
K

Φ−1(ε) + µ

) 1
r

, as K →∞,

where Φ−1 is the inverse of the standard normal distribution function.

Proof of Proposition 5.4. By symmetry of the standard Cauchy distribution,

aF (ε) = C

(
inf

{
qε

(
1

K

K∑
i=1

C−1(Ui)

)
| U1, . . . , UK ∈ U

})

= C

(
−1

K
sup

{
q1−ε

(
K∑
i=1

C−1(Ui)

)
| U1, . . . , UK ∈ U

})
.

Moreover, C−1(Ui), i = 1, . . . , K, follow the standard Cauchy distribution with decreasing
density on [C−1(1− ε),∞] for ε ∈ (0, 1/2). The proposition follows directly from applying
Corollary 3.7 of Wang et al. (2013).
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Proof of Theorem 5.1. (i) IC-balance of Mφ,K for all K ∈ {2, 3, . . . } is equivalent to
1
K

∑K
i=1 φ(Vi)

d
= φ(U) for all K ∈ {2, 3, . . . }, which is further equivalent to the fact

that φ(U) follows a strictly 1-stable distribution. We know that strictly 1-stable
distributions are Cauchy distributions (see, e.g., Theorem 14.15 of Sato (1999)). This
proves the statement of part (i).

(ii) For the Simes function Sα,K = SK , αi = i for i ∈ {1, . . . , K} and bF (x) = cF (x) = x
for x ∈ [0, 1]. Therefore, Sα,K is IC-balanced.

Below we show the opposite direction of the statement. For n ∈ {2, . . . , K}, let
V(1), . . . , V(n) be the order statistics for n independent standard uniform random vari-
ables V1, . . . , Vn. Let (X1, . . . , Xn−1) = (V(1)/V(n), . . . , V(n−1)/V(n)) which is identically
distributed as the order statistics for n − 1 independent standard uniform random
variables, independent of V(n). Hence, for x ∈ (0, 1/αn),

P (Sα,n(V1, . . . , Vn) > x)

= P
(
V(1) > xα1, . . . , V(n−1) > xαn−1, V(n) > xαn

)
= P

(
X1 > xα1/V(n), . . . , Xn−1 > xαn−1/V(n), V(n) > xα1

)
=

∫ 1

xαn

P (X1 > xα1/p, . . . , Xn−1 > xαn−1/p)np
n−1dp

=

∫ 1

xαn

P (Sα,n−1(V1, . . . , Vn−1) > x/p)npn−1dp, (5.17)

where for simplicity we use Sα,n−1 for S(α1,...,αn−1),n−1. Note that

P (Sα,1(V1) > x) = 1− α1x, x ∈ (0, 1/α1). (5.18)

Plugging (5.18) in (5.17), we obtain that P (Sα,2(V1, V2) > x) is a polynomial function
of x of degree less than or equal to 2. Recursively, using (5.17) we are able to show
that the function P (Sα,n(V1, . . . , Vn) > x) for x ∈ (0, 1/αn) is a polynomial of x of
degree less than or equal to n for n = 2, . . . , K. Hence, there exist K constants
β0, . . . , βK−1 such that

P (Sα,K−1(V1, . . . , VK−1) > x) =
K−1∑
i=0

βix
i, x ∈ (0, 1/αK−1).

Moreover, noting that Sα,K is IC-balanced, we have∫ 1

xαK

P (Sα,K−1(V1, . . . , VK−1) > x/p)KpK−1dp = P (Sα,K(U, . . . , U) > x) = 1− xαK ,
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for x ∈ (0, 1/αK). Therefore, we have∫ 1

xαK

(
K−1∑
i=0

βix
ip−i

)
KpK−1dp = 1− xαK ,

which implies that for x ∈ (0, 1/αK),

K−1∑
i=0

Kβi
K − i

xi −

(
K−1∑
i=0

Kβi
K − i

αK−iK

)
xK = 1− xαK .

Solving the above equation, we get β0 = 1, β1 = −K−1
K
αK and β2 = · · · = βK−1 = 0.

Consequently,

P (Sα,K−1(V1, . . . , VK−1) > x) = 1− K − 1

K
αKx, x ∈ (0, 1/αK−1).

Recursively, using (5.17) we have

P (Sα,n(V1, . . . , Vn) > x) = 1− n

K
αKx, x ∈ (0, 1/αn) (5.19)

for n = 1, . . . , K, which gives, using (5.18),

αK = Kα1. (5.20)

Inserting (5.19) into (5.17), we obtain, for x ∈ (0, 1/αn) and n = 2, . . . , K,

1− n

K
αKx =

∫ 1

xαn

(
1− n− 1

K
αKxp

−1

)
npn−1dp

= 1− n

K
αKx+

( n
K
αKα

n−1
n − αnn

)
xn.

Consequently,

αn =
n

K
αK , n = 2, . . . , K,

which together with (5.20) implies αn = nα1, k = 1, . . . , K. This gives the desired
statement.
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In the following example, we shall employ several theorems from Sato (1999). To make
this chapter more self-contained, we display the useful part of these theorems as below.

Theorem 8.1 in Sato (1999): µ is an infinitely divisible distribution in R if and only if
there exist d > 0, γ ∈ R and a measure ν on R satisfying ν({0}) = 0 and

∫
R(|x|2∧1)ν(dx) <

∞, such that the characteristic function of µ is

µ̂(z) = exp

(
−1

2
dz2 + iγz +

∫
R
(eizx − 1− izx1[−1,1](x))ν(dx)

)
, z ∈ R, (5.21)

where 1[−1,1](·) is the indicator function and i2 = −1.

Theorem 27.16 in Sato (1999): Suppose µ satisfies (5.21). If d = 0 and ν is discrete
with total measure infinite, then µ is a continuous distribution.

Example 5.1 (IC-balanced generalized mean for a finite K). We show that IC-balance of
Mφ,K for a finite K does not imply Mφ,K that φ is the Cauchy quantile function (up to an
affine transform). For this purpose, we construct a continuous distribution µ such that

1

K

K∑
i=1

Xi
d
= X, (5.22)

where X and Xi, i = 1, . . . , K are iid random variables with distribution µ, but µ is not a
Cauchy distribution. Define

µ̂(z) = exp

(∫
R

(
eizx − 1− 1[−1,1](x)

)
ν(dx)

)
, z ∈ R,

where ν is a symmetric measure on R \ {0} satisfying

ν({Kn}) = ν({−Kn}) = K−n, n ∈ Z, and ν

(
R \

(
{0} ∪

⋃
n∈Z

{Kn,−Kn}

))
= 0.

It follows from Theorem 8.1 of Sato (1999) that µ̂ is the characterization function of some
infinitely divisible distribution µ. Also noting that ν(R \ {0}) =∞, by Theorem 27.16 of
Sato (1999) we know that µ is a continuous distribution. By Theorem 14.7 of Sato (1999),
(µ̂(z))b = µ̂(bz), z ∈ R, b > 0 holds if and only if

Tbν(B) = bν(B), and

∫
1<|x|6b

xν(dx) = 0,
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where Tbν(B) = ν(b−1B) for all Borel sets B ⊂ R. By symmetry of ν,
∫

1<|x|6b xν(dx) =

0 holds for any b > 0. However, Tbν(B) = bν(B) holds only for b ∈ {Kn, n ∈ Z}.
Consequently, (µ̂(z))b = µ̂(bz), z ∈ R if and only if b ∈ {Kn, n ∈ Z}. This implies that µ
is not a Cauchy distribution (strictly 1-stable distribution) but (5.22) holds.

Proof of Theorem 5.2. (i) Recall that

C−1(x) = tan
(
−π

2
+ πx

)
, x ∈ (0, 1);

C(y) =
1

π
arctan(y) +

1

2
, y ∈ R.

Note that C−1(x) ∼ −1/(πx) as x ↓ 0 and C(y) ∼ −1/(πy) as y → −∞. For any
δ1, δ2 ∈ (0, 1/K), there exists 0 < ε < 1 and m < 0 such that for all x ∈ (0, ε) and
y ∈ (−∞,m),

−(1 + δ1)

πx
6 C−1(x) 6 −(1− δ1)

πx
; (5.23)

−(1− δ2)

πy
6 C(y) 6 −(1 + δ2)

πy
. (5.24)

For 0 < c < 1, there exists 0 < ε′ < ε such that

sup
x∈[ε,c]

∣∣∣∣tan
(
−π

2
+ πx

)
+

1

πx

∣∣∣∣ 6 δ1

πε′
. (5.25)

Take (p1, . . . , pK) such that p(1) < ε′ and p(K) 6 c < 1. Let l = max{i = 1, . . . , K :
p(i) < ε}. As a consequence of (5.23), we have

−
l∑

i=1

(1 + δ1)

πp(i)

6
l∑

i=1

tan
(
−π

2
+ πp(i)

)
6 −

l∑
i=1

(1− δ1)

πp(i)

.

For j > l, (5.25) implies∣∣∣∣tan
(
−π

2
+ πp(j)

)
+

1

πp(j)

∣∣∣∣ 6 δ1

πε′
6

δ1

πp(1)

.
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Therefore,

K∑
i=1

tan
(
−π

2
+ πpi

)
6 −

l∑
i=1

(1− δ1)

πp(i)

−
K∑

i=l+1

1

πp(i)

+
(K − l)δ1

πp(1)

6 −
K∑
i=1

(1−Kδ1)

πp(i)

= −
K∑
i=1

(1−Kδ1)

πpi
.

Similarly, we can show

K∑
i=1

tan
(
−π

2
+ πpi

)
>

K∑
i=1

−(1 +Kδ1)

πpi
.

Using (5.24), for any (p1, . . . , pK) satisfying p(1) < min(ε′, Kδ1−1
Kπm

) and p(K) 6 c < 1,

1− δ2

1 +Kδ1

M−1,K(p1, . . . , pK) 6MC,K(p1, . . . , pK) 6
1 + δ2

1−Kδ1

M−1,K(p1, . . . , pK).

We establish the claim by letting δ1, δ2 ↓ 0, and the above inequalities hold as long
as p(1) is sufficiently small.

(ii) The statement

P (MC,K(U1, . . . , UK) < ε) ∼ ε as ε ↓ 0

follows directly from Theorem 1 of Liu and Xie (2020) by noting that standard Cauchy
distribution is symmetric at 0. Below we show P (M−1,K(U1, . . . , UK) < ε) ∼ ε as
ε ↓ 0, based on similar techniques as in Theorem 1 of Liu and Xie (2020). Observe
that

P (M−1,K(U1, . . . , UK) < ε) = P

(
1

K

K∑
i=1

U−1
i > 1/ε

)
.

Condition (G) means that for any 1 6 i < j 6 K, (Φ−1(Ui),Φ
−1(Uj)) is a bivariate

normal random variable with cov(Φ−1(Ui),Φ
−1(Uj)) = σij, where Φ is the standard

normal distribution function and Φ−1 is its inverse. Clearly, σij = 1 implies that

149



Ui = Uj a.s. In this case we can combine them in one and the corresponding coefficient
becomes 2/K. Thus, it suffices to prove the stronger statement

P

(
K∑
i=1

wiU
−1
i > 1/ε

)
∼ ε, as ε ↓ 0, (5.26)

where wi > 0, i = 1, . . . , K,
∑K

i=1wi = 1 and σij < 1, i, j = 1, . . . , K. We choose
some positive constant δε depending on ε, such that δε → 0 and δε/ε→∞ as ε ↓ 0.
Denote by S =

∑K
i=1 wiU

−1
i , and define the following events: for i ∈ {1, . . . , K},

Ai,ε =

{
U−1
i >

1 + δε
wiε

}
, Bi,ε =

{
U−1
i 6

1 + δε
wiε

, S > 1/ε

}
.

Let Aε =
⋃K
i=1 Ai,ε and Bε =

⋂K
i=1Bi,ε and thus we have

P (S > 1/ε) = P(Aε) + P(Bε).

First we show P(Bε) = o(ε). Note that S > 1/ε implies that there exists i ∈
{1, . . . , K} such that U−1

i > 1
wiKε

. Hence,

P (Bε) 6
K∑
i=1

P
(

1

wiKε
< U−1

i 6
1 + δε
wiε

, S > 1/ε

)

6
K∑
i=1

P
(

1

wiKε
< U−1

i 6
1− δε
wiε

, S > 1/ε

)
+

K∑
i=1

P
(

1− δε
wiε

< U−1
i 6

1 + δε
wiε

)

6
K∑
i=1

P
(

1

wiKε
< U−1

i 6
1− δε
wiε

, S > 1/ε

)
+

K∑
i=1

wiε

(
1

1− δε
− 1

1 + δε

)
=: I1 + I2.

Noting that δε ↓ 0 as ε ↓ 0, we have I2 = o(ε). We next focus on I1. Observe

I1 6
K∑
i=1

P

(
1

wiKε
< U−1

i 6
1− δε
wiε

,

K∑
j 6=i

wjU
−1
j > δε/ε

)

6
K∑
i=1

K∑
j 6=i

P
(

1

wiKε
< U−1

i 6
1− δε
wiε

, U−1
j >

δε
wjKε

)
.
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It remains to show for 1 6 i 6= j 6 K,

Ii,j := P
(

1

wiKε
< U−1

i 6
1− δε
wiε

, U−1
j >

δε
wjKε

)
= o(ε).

Condition (G) implies that there exist Zi,j and δi,j such that

Φ−1(Uj) = σijΦ
−1(Ui) + δijZij, (5.27)

where Zij is a standard normal random variable that is independent of Ui and σ2
ij +

δ2
ij = 1. If σij = −1, we have Ui = 1 − Uj. This implies that Ii,j = 0 for ε > 0

sufficiently small. Next, assume |σij| < 1, and write γij = Φ−1 (wiKε) if −1 < σij 6 0

and γij = Φ−1
(
wiε

1−δε

)
if 0 < σij < 1. We have

Ii,j = P
(

1

wiKε
< U−1

i 6
1− δε
wiε

, σijΦ
−1(Ui) + δijZij < Φ−1

(
wjKε

δε

))
6 P

(
1

wiKε
< U−1

i 6
1− δε
wiε

, δijZij < Φ−1

(
wjKε

δε

)
− σijγij

)
= P

(
1

wiKε
< U−1

i 6
1− δε
wiε

)
P
(
δijZij < Φ−1

(
wjKε

δε

)
− σijγij

)
.

Note that Φ−1(ε) ∼ −
√
−2 ln ε, as ε ↓ 0, which is a slowly varying function. Taking

δε = −1/ log ε, we have

Φ−1

(
wiε

1− δε

)
∼ Φ−1 (wiKε) ∼ Φ−1

(
wjKε

δε

)
as ε ↓ 0.

This implies

Φ−1

(
wjKε

δε

)
− σijγij → −∞, as ε ↓ 0.

Hence Ii,j = o(ε). Consequently, I1 = o(ε) and further P(Bε) = o(ε). Next, we show
P(Aε) ∼ ε. By the Bonferroni inequality, we have,

K∑
i=1

P(Ai,ε)−
∑

16i<j6K

P(Ai,ε ∩ Aj,ε) 6 P(Aε) 6
K∑
i=1

P(Ai,ε).

Direct calculation gives

K∑
i=1

P(Ai,ε) =
K∑
k=1

wiε

1 + δε
∼ ε.
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For any 1 6 i < j 6 K, since the Gaussian copula is tail independent (e.g., Example
7.38 of McNeil et al. (2015)), we have, writing w = max{wi, wj},

P(Ai,ε ∩ Aj,ε) = P
(
U−1
i >

1 + δε
wiε

, U−1
j >

1 + δε
wjε

)
6 P

(
Ui <

wε

1 + δε
, Uj <

wε

1 + δε

)
= o(1)P

(
U1 <

wε

1 + δε

)
= o(1)ε.

Hence P(Ai,ε ∩ Aj,ε) = o(ε). This implies P(Aε) ∼ ε, and we establish (5.26).

(iii) By Lemma A.1 of Vovk and Wang (2020), we have

aH(ε) = ε

(
sup

{
q+

0

(
1

K

K∑
i=1

P−1
i

)
| P1, . . . , PK ∈ U

})−1

, ε ∈ (0, 1),

where q+
0 (X) = sup{x ∈ R | P(X 6 x) = 0}. Note that for any δ > 0, there exists

0 < εδ < 1 such that for all x ∈ (0, εδ)

−(1 + δ)

x
< tan

(
−π

2
+ x
)
< −(1− δ)

x
.

For δ > 0, letting 0 < ε < εδ/π and using Theorem 4.6 in Bernard et al. (2014), we
have

inf

{
qε

(
1

K

K∑
i=1

C−1(Pi)

)
| P1, . . . , PK ∈ U

}

= inf

{
qε

(
1

K

K∑
i=1

tan

(
π

(
Pi −

1

2

)))
| P1, . . . , PK ∈ U

}

= inf

{
q1

(
1

K

K∑
i=1

tan

(
π

(
εPi −

1

2

)))
| P1, . . . , PK ∈ U

}

6 inf

{
q1

(
1

K

K∑
i=1

−1− δ
επPi

)
| P1, . . . , PK ∈ U

}

= −1− δ
επ

sup

{
q+

0

(
1

K

K∑
i=1

P−1
i

)
| P1, . . . , PK ∈ U

}
= − 1− δ

aH(ε)π
.

152



Similarly, we obtain, for 0 < ε < εδ/π,

inf

{
qε

(
1

K

K∑
i=1

C−1(Pi)

)}
> − 1 + δ

aH(ε)π
.

Consequently,

inf

{
qε

(
1

K

K∑
i=1

C−1(Pi)

)}
∼ − 1

aH(ε)π
as ε ↓ 0.

Plugging the above result in the formula for aC in (5.10), and using C(y) ∼ −1/(πy)
as y → −∞, we have, as ε ↓ 0,

aC(ε) = C

(
inf

{
qε

(
1

K

K∑
i=1

C−1(Pi)

)})

∼ − 1

π

(
inf

{
qε

(
1

K

K∑
i=1

C−1(Pi)

)})−1

∼ aH(ε).

This completes the proof.

(iv) By (i), it suffices to show that for r 6= −1

M−1,K(p1, . . . , pK)

Mr,K(p1, . . . , pK)
9 1, as max

i∈{1,...,K}
pi ↓ 0.

Take p1 = p2 and pi = xip with xi > 0 and p > 0 for i = 2, . . . , K. By homogeneity
of Mr, for r 6 −1,

M−1,K(p1, . . . , pK)

Mr,K(p1, . . . , pK)
=
M−1,K(p, x2, . . . , xK)

Mr,K(p, x2, . . . , xK)
.

Hence

lim
p↓0

M−1,K(p1, . . . , pK)

Mr,K(p1, . . . , pK)
= K1/r+1 6= 1, r < −1.

This proves the claim of (iv) for r < −1. The case for r > −1 can be argued similarly.
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Proof of Theorem 5.3. Take arbitrary p1, . . . , pK ∈ (0, 1], and let j ∈ {1, . . . , K} be such
that mink∈{1,...,K} p(k)/k = p(j)/j. Noting that

K∑
i=1

1

pi
=

K∑
i=1

1

p(i)

, and
p(j)

j
6
p(i)

i
, i = 1, . . . , K,

we have

SK(p1, . . . , pK)

M−1,K(p1, . . . , pK)
=

1

j
p(j)

(
K∑
i=1

1

pi

)
=

K∑
i=1

1

j
p(j)

1

p(i)

6
K∑
i=1

1

i
p(i)

1

p(i)

=
K∑
i=1

1

i
= `K .

Moreover,

SK(p1, . . . , pK)

M−1,K(p1, . . . , pK)
=

1

j
p(j)

(
K∑
i=1

1

p(i)

)
>

1

j
p(j)

(
j∑
i=1

1

p(j)

+
K∑

i=j+1

1

p(i)

)
> 1.

Therefore, M−1,K 6 SK 6 `KM−1,K . The two special cases of equalities are straightforward
to check.

Proof of Proposition 5.5. (i) Recall that aF (x) = aFx for x ∈ (0, 1). By (i) of Proposi-
tion 5.3, we have bF (δ) ∼ δ as δ ↓ 0. Hence limδ↓0 bF (δ)/aF (δ) = 1/aF . By Proposition
6 of Vovk and Wang (2020), we have aF ∼ 1/logK, as K →∞. Consequently,

lim
δ↓0

bF (δ)

aF (δ)
∼ logK, as K →∞.

Moreover, for the harmonic averaging method, cF (ε) = ε. This implies cF (ε)/aF (ε) =
1/aF . We establish the claim by the fact aF ∼ 1/ logK, as K →∞.

(ii) By Theorem 5.2, we have aC(δ) ∼ aH(δ) and bC(δ) ∼ bH(δ) as δ ↓ 0, which together
with (i) leads to

lim
δ↓0

bC(δ)

aC(δ)
∼ logK, as K →∞.

The rest of the statement follows by noting that cC(δ) = bC(δ).

(iii) For the Simes method, recall that aF (x) = x/`K and bF (x) = cF (x) = x. The claim
follows directly from the fact that `K =

∑K
k=1

1
k
∼ logK, as K →∞.

5.9.2 Additional tables

In Tables 5.5 and 5.6 we report numerical results of prices for validity for ε = 0.05 and
0.0001, respectively.

154



Table 5.5: bF (ε)/aF (ε) and cF (ε)/aF (ε) for ε = 0.05 and K ∈ {50, 100, 200, 400}

K = 50 K = 100 K = 200 K = 400

bF /aF cF /aF bF /aF cF /aF bF /aF cF /aF bF /aF cF /aF
Bonferroni 1.025 50.000 1.026 100.000 1.026 200.000 1.026 400.000
Negative-quartic 1.367 25.071 1.367 42.164 1.368 70.911 1.368 119.257
Simes 4.499 4.499 5.187 5.187 5.878 5.878 6.570 6.570
Cauchy 6.623 6.623 7.463 7.463 8.274 8.274 9.055 9.055
Harmonic 6.793 6.625 7.650 7.459 8.485 8.273 9.306 9.072
Geometric 15.679 2.718 16.874 2.718 17.755 2.718 18.395 2.718

Table 5.6: bF (ε)/aF (ε) and cF (ε)/aF (ε) for ε = 0.0001 and K ∈ {50, 100, 200, 400}

K = 50 K = 100 K = 200 K = 400
bF /aF cF /aF bF /aF cF /aF bF /aF cF /aF bF /aF cF /aF

Bonferroni 1.000 50.000 1.000 100.000 1.000 200.000 1.000 400.000
Negative-quartic 1.333 25.071 1.333 42.164 1.333 70.911 1.333 119.257
Simes 4.499 4.499 5.187 5.187 5.878 5.878 6.570 6.570
Cauchy 6.625 6.625 7.465 7.465 8.274 8.274 9.055 9.055
Harmonic 6.625 6.625 7.459 7.459 8.272 8.272 9.071 9.071
Geometric 5416.222 2.718 6601.414 2.718 7523.231 2.718 8214.151 2.718
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Chapter 6

Conclusions and Future works

6.1 Concluding remarks

This thesis studies several problems in risk aggregation under different dependence
assumptions. In Chapter 2, we show that the diversification of iid Pareto losses without
finite mean is greater than an individual Pareto loss in the sense of first-order stochastic
dominance under three different model setups. Several important implications are provided
by these results. First, diversification of Pareto losses without finite mean may increase
the risk assessment of a portfolio. Second, risk bearers will not share Pareto losses without
finite mean in an equilibrium model. Third, transferring Pareto losses without finite mean
from risk bearers to external parties may benefit everyone involved in the process.

Chapter 3 studies the ordering relationship for aggregation sets where the marginal
distributions are connected by either a distribution mixture or a quantile mixture. We also
investigate the ordering relationship for the worst-case value of risk measures on aggregation
sets and their mixtures. The general conclusion is that, more “homogeneous” marginal
distributions give more severe model uncertainty, thus more dangerous risk aggregation.
Applications of our results are discussed in the contexts of portfolio diversification and
merging p-values.

In Chapter 4, we study risk aggregation of two ordered risks in the presence of unknown
dependence structure. The bounds of 6cv-consistent and 6cx-consistent risk measures
are attained by either the DL coupling or comonotonicity. By introducing the notion of
strong stochastic order, we analyzed bounds on tail risk measures such as VaR and RVaR,
which are neither 6cv-consistent nor 6cx-consistent. In particular, if the generator of the
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tail risk measure is 6cv-consistent, the worst-case value of the tail risk measure with the
order constraint can be attained by letting the upper-tail risks be DL-coupled. Moreover,
analytical formulas for bounds on Value-at-Risk are obtained.

In Chapter 5, we discuss two aspects of merging p-values: the impact of the dependence
structure on the critical thresholds and the trade-off between validity and efficiency. Two
general classes of merging methods, the generalized mean class and the order statistics
class, are studied. We introduce the notion of IC-balance, which serves as a nice property
for a merging method to be insensitive to dependence between independence and comono-
tonicity. Among the two general classes of merging methods, our results show that the
Cauchy combination, the Simes, and the harmonic averaging methods keep a good bal-
ance on the trade-off between validity and efficiency, and their performances against model
misspecification is better than many other commonly used methods.

6.2 Future work and open questions

6.2.1 Diversification effects of Pareto risks

The diversification effects of Pareto risks are investigated in Chapter 2 by numerical
studies where two open technical questions arise. The first question is that it is unknown
whether

1

k

k∑
i=1

Xi 6st
1

`

∑̀
i=1

Xi, (6.1)

holds for k, ` ∈ N such that k 6 `, where X1, . . . , Xl are iid Pareto losses without finite
mean. The statement is true if ` is a multiple of k, as shown in Proposition 2.2. The
second question is whether we have

VaRp

(
n∑
i=1

θiXi

)
>

n∑
i=1

θiVaRp(Xi). (6.2)

for (θ1, . . . , θn) ∈ ∆n and independent Pareto losses X1, . . . , Xn with possibly different
tail parameters no larger than 1. Both (6.1) and (6.2) are anticipated to hold from the
numerical results in Chapter 2, although a proof seems to be beyond the current techniques.

157



6.2.2 Open questions related to mixtures of risk aggregation

Many questions on quantile mixtures are still open, and we list four of them below.
The first question concerns whether Dn(F) ⊂ Dn(Λ ⊗ F) holds for cases other than the
uniform distributions in Proposition 3.2. As we have seen from Example 3.2, for F ∈ Mn

and Λ ∈ Qn, Dn(F) and Dn(Λ⊗F) are generally not comparable. It remains open whether
Dn(F) ⊂ Dn(Λ ⊗ F) under some conditions. For instance, Proposition 3.2 requires n > 3
and Λ being a constant times the identity, to use the characterization of Dn(F) from Mao
et al. (2019). It remains unclear whether the same conclusion holds for n = 2 or other
choices of Λ.

The second question concerns decreasing densities (or increasing densities). A con-
crete conjecture is presented below, which is inspired by Theorem 3.3. It is unclear how
to formulate natural classes of distributions other than MD (or MI) such that similar
statements can be expected.

Conjecture 6.1. For Λ ∈ Qn and F ∈Mn
D, we have Dn(F) ⊂ Dn(Λ⊗F). Weaker versions

of this conjecture are:

(i) For F ∈MD, and λ,γ ∈ Rn
+, if γ ≺ λ, then Dn(F λ1 , . . . , F λn) ⊂ Dn(F γ1 , . . . , F γn).

(ii) For F1, . . . , Fn ∈MD, Dn(F1, . . . , Fn) ⊂ Dn(F, . . . , F ) where F−1 = 1
n

∑n
i=1 F

−1
i .

(iii) For F ∈MD and (λ1, . . . , λn) ∈ ∆n, Dn(F nλ1 , . . . , F nλn) ⊂ Dn(F, . . . , F ).

It is obvious that the main statement in Conjecture 6.1 implies (i) by noting that one
can choose Λ such that γ = Λλ and it implies (ii) by choosing Λ = ( 1

n
)n×n. Both (i) and

(ii) imply (iii). An example is provided below to illustrate the connection of Conjecture
6.1 to joint mixability.

Example 6.1. We make a connection of Conjecture 6.1 to Theorem 3.2 of Wang and
Wang (2016), which says that for Fi ∈ MD with essential support [0, bi], i = 1, . . . , n,
Dn(F1, . . . , Fn) contains a point mass if and only if the mean-length condition holds, that
is,

n∑
i=1

µi > max
i=1,...,n

bi

where µi is the mean of Fi, i = 1, . . . , n. For Λ ∈ Qn and F ∈Mn
D, let (µ̂1, . . . , µ̂n) be the

mean vector of Λ⊗ F. Note that
n∑
i=1

µ̂i = 1>nΛµ = 1>nµ =
n∑
i=1

µi,
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where 1n = (1, . . . , 1) ∈ Rn. On the other hand, each component of Λ ⊗ F has a shorter
or equal length of support than the maximum length of F. As a consequence, if the mean-
length condition holds for F, then it also holds for Λ⊗ F. Therefore, if Dn(F) contains a
point mass, then so does Dn(Λ⊗F); on the contrary, if Dn(Λ⊗F) contains a point mass,
Dn(F) does not necessarily contains a point mass, since it may have a longer length of the
maximum support. This, at least intuitively, suggests that Dn(F) ( Dn(Λ⊗F) may hold,
as in Conjecture 6.1.

The third question is about the order of VaR for quantile mixture. Our numerical
results in Figure 3.4 suggest that the VaR relation

VaRp(F) 6 VaRp(Λ⊗ F)

holds for more general choices of F than the ones in Theorem 3.3. We are not sure what
general conditions on F will guarantee this relation to hold.

The last question concerns a cross comparison of distribution and quantile mixtures.
As we see from Proposition 3.7,

VaRp(ΛF) 6 VaRp(Λ⊗ F)

holds for F being a vector of Pareto distributions with the same shape parameter and
infinite mean. We wonder whether the same relationship holds for other distributions
without a finite mean. Note that for the case of finite mean, the relationship may be
reversed, as illustrated in Figure 3.1; however we do not have a proof for the reverse
inequality (assuming finite mean) either. Generally, it is unclear to us whether and in
which situation Dn(ΛF) and Dn(Λ⊗ F) are comparable.

6.2.3 Risk aggregation of more than two ordered risks

We have focused on the problem of two ordered random variables in Chapter 4, while
a more general problem considering the order constraint among several risks in a large
portfolio would also be interesting. Such a constraint is motivated by monotone treatment
effect analysis in causal inference (see Manski (1997)). The statistical inference of stochas-
tically ordered distributions can be handled via IDR of Henzi et al. (2021). Let G1, . . . , Gn

be n distributions satisfying G1 6st . . . 6st Gn. Denote by

Ro
n = {Y1 + · · ·+ Yn : Yi ∼ Gi, i = 1, . . . , n, Y1 6 . . . 6 Yn}.
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We are interested in finding the worst-case value of a risk measure ρ over the set Ro
n. If

ρ is 6cx-consistent, then the worst-case value is attained by comonotonicity. For ρ that
is not 6cx-consistent, such as the interesting case of VaR, the problem is challenging and
cannot be solved by the current techniques. Even without the order constraint, only limited
analytical results are available for n > 3; see Wang et al. (2013) and Blanchet et al. (2020).
We leave the theoretical analysis of this question, as well as the corresponding algorithms,
for future work.
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Bernard, C., Rüschendorf, L. and Vanduffel, S. (2017). Value-at-Risk bounds with variance
constraints. Journal of Risk and Insurance, 84(3), 923–959.
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Puccetti, G., Rüschendorf, L., Small, D. and Vanduffel, S. (2017). Reduction of Value-
at-Risk bounds via independence and variance information. Scandinavian Actuarial
Journal, 2017(3), 245–266.

167



Puccetti, G. and Wang R. (2015). Extremal dependence concepts. Statistical Science, 30(4),
485–517.

Ramdas, A. K., Barber, R. F., Wainwright, M. J. and Jordan, M. I. (2019). A unified
treatment of multiple testing with prior knowledge using the p-filter. Annals of Statistics,
47(5), 2790–2821.

Ramdas, A., Ruf, J., Larsson, M. and Koolen, W. (2020). Admissible anytime-valid se-
quential inference must rely on nonnegative martingales. arXiv:2009.03167.

Rizzo, M. L. (2009). New goodness-of-fit tests for Pareto distributions. ASTIN Bulletin,
39(2), 691–715.

Rødland, E. A. (2006). Simes’ procedure is ‘valid on average’. Biometrika, 93(3), 742–746.

Rockafellar, R. T. and Uryasev, S. (2002). Conditional Value-at-Risk for general loss dis-
tributions. Journal of Banking and Finance, 26(7), 1443–1471.
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