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Abstract

A mixed pixel in remotely sensed images measures the reflectance and emission from
multiple target types (e.g., tree, grass and building) from a certain area. Mixed pixels exist
commonly in spaceborne hyper-/multi-spectral images due to sensor limitations, causing
the signature ambiguity problem and impeding high-resolution remote sensing mapping.
Disentangling mixed pixels into the underlying constituent components is a challenging
ill-posed inverse problem, which requires efficient modeling of spatial prior information
and other application-dependent prior knowledge concerning the mixed pixel generation
process.

The recent deep image prior (DIP) approach and other application-dependent prior
information are integrated into a Bayesian framework in the research, which allows com-
prehensive usage of different prior knowledge. The research improves mixed pixel disentan-
gling using the Bayesian DIP in three key applications: spectral unmixing (SU), subpixel
mapping (SPM) and soil moisture product downscaling (SMD). The main contributions
are summarized as follows.

First, to improve the decomposition of mixed pixels into pure material spectra (i.e.,
endmembers) and their constituting fractions (i.e., abundances) in SU, a designed deep
fully convolutional neural network (DCNN) and a new spectral mixture model (SMM) with
heterogeneous noise are integrated into a Bayesian framework that is efficiently solved by
a new iterative optimization algorithm.

Second, to improve the decomposition of mixed pixels into class labels of subpixels in
SPM, a dedicated DCNN architecture and a new discrete SMM are integrated into the
Bayesian framework to allow the use of both spatial prior and the forward model.

Third, to improve the decomposition of mixed pixels into soil moisture concentrations of
subpixels in SMD, a new DIP architecture and a forward degradation model are integrated
into the Bayesian framework that is solved by the stochastic gradient descent approach.

These new Bayesian approaches improve the state-of-the-art in their respective ap-
plications (i.e., SU, SPM and SMD), which can be potentially utilized for solving other
ill-posed inverse problems where simultaneously modeling of the spatial prior and other
prior knowledge is needed.
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Chapter 1

Introduction

1.1 Background

1.1.1 Mixed pixels in remote sensing images

A mixed pixel in remotely sensed images measures the reflectance and emission from mul-
tiple target types (e.g., tree, grass and building) from a certain area, which is illustrated
in Figure 1.1. Mixed pixels exist commonly in spaceborne hyper-/multi-spectral images
due to the limitation of the hardware, e.g., the limitation in storage (i.e., the data volume
collected by the sensor) and bandwidth transmission (i.e., the incoming radiation Ene to
the sensor), as well as the trade-off effect between spatial resolution and spectral resolu-
tion [1, 2]. To achieve high spectral resolution with many spectral channels, the spatial
resolution usually has to be compromised, leading to a large instantaneous field-of-view
(IFOV) of remotely sensed images. Moreover, high spectral resolution also tends to re-
duce the signal-to-noise ratio (SNR), because the signal magnitude is reduced due to very
narrow bandwidth in high spectral resolution images. Because of these sensor limitations,
spaceborne hyperspectral images (HSIs) and multispectral images (MSIs) tend to have low
spatial resolution with many mixed pixels. For example, Moderate Resolution Imaging
Spectrometer (MODIS) has the band-dependent resolution ranging from 250m to 1km,
and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) hyperspectral imagery
has resolution of 20m with a high flight height. The existence of mixed pixels in HSIs
and MSIs causes the signature ambiguity problem, and impedes high-resolution (HR) RS
mapping.

1.1.2 Mixed pixel disentangling problem

Remote sensing (RS) images provide essential information for a wide range of Earth sys-
tem applications [3, 4, 5, 6]. However, the signature ambiguity issue caused by mixed
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Figure 1.1: Illustration of a mixed pixel. A mixed pixel in remotely sensed images measures the reflectance and emission
from multiple target types than just one type. Mixed pixels exist commonly in spaceborne hyper-/multi-spectral images
due to the limitation of hardware and bandwidth transmission, as well as the trade-off effect between spatial resolution and
spectral resolution. To achieve high spectral resolution with many spectral channels, the spatial resolution usually has to be
compromised, leading to remotely sensed images that has large IFOV.
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pixels makes it difficult to obtain precise information for RS applications [7, 8, 9]. There-
fore, disentangling mixed pixels, i.e., separating the underlying constituent components
within mixed pixels is critical for RS image processing to support key RS applications. In
this thesis, three different mixed pixel disentangling tasks are performed, namely spectral
unmixing (SU), subpixel mapping (SPM) and soil moisture product downscaling (SMD).
These three tasks are illustrated in Figure 1.2.

Figure 1.2: Illustration of SU, SPM and SMD. SU decomposes a mixed pixel in HSIs into pure material spectra (i.e., end-
members) and their constituent fractions (i.e., abundances). The abundance values indicate the fractions of each endmember.
SPM decomposes a mixed pixel into subpixels and estimates class labels of these subpixels. SMD decomposes a mixed pixel
from a soil moisture map into soil moisture content of subpixels whichs show detailed soil moisture variation patterns. Dif-
ferent colors of subpixels represent different soil moisture content.

SU aims to decompose a mixed pixel in HSIs or MSIs into pure material spectra (i.e.,
endmembers) and their constituent fractions (i.e., abundances). SPM aims to decompose
a mixed pixel into class labels of subpixels. SMD aims to decompose a mixed pixel in a

3



soil moisture map into soil moisture content of subpixels that show detailed soil moisture
variation patterns.

The generation process of the observed images with mixed pixels from the underlying
quantities can be expressed as

X = Φ(Y ) +N , (1.1)

where Φ(·) is the forward function,X is the observed matrix representing the low-resolution
(LR) RS image with mixed pixels, Y is HR underlying quantities, N is the noise matrix.
Different applications have different underlying quantities Y .

• For SU, Y is endmembers and abundances.

• For SPM, Y is class labels of subpixels in the image.

• For SMD, Y is soil moisture content of subpixels in the image.

Disentangling mixed pixels X into Y is essentially an ill-posed inverse problem, and
the prior knowledge regarding the data generation process is required to constrain the
estimation. The most important prior knowledge for restoring the underlying HR quantities
in mixed pixels is the spatial prior among pixels in the image Y . Other priors include the
forward model Φ(·), noise N distribution, other priors of the underlying quantities Y . It is
challenging to design tailored approaches for different priors, and to simultaneously model
all these priors in a coherent way for enhanced applications.

1.2 Motivation and related works

1.2.1 Motivation

Based on Eq. 1.1, this thesis aims to explore advanced machine learning (ML) approaches
that can simultaneously address different priors in the forward model and achieve efficient
mixed pixel disentangling in several key applications, i.e., SU, SPM and SMD. This research
is motivated by the following challenges.

1. Achieving an accurate and efficient spatial prior for Y is difficult. Methods
for modelling the spatial correlation in image processing mainly include graphical models
(e.g., Markov random field (MRF) [10] and conditional random field (CRF) [11]) and
non-local approaches (e.g., non-local means [12] and non-local network [13]). However,
an MRF-based prior can only model the local spatial correlation and tend to smooth
high-frequency spatial features. CRF-based or non-local methods are computationally
intensive by calculating the similarity matrix [14]. The recently proposed deep image prior
(DIP) captures the image spatial correlation by encoding hierarchical self-similarities [15]
with the structure of a deep convolutional image generator network. Unlike traditional
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approaches, DIP is achieved more flexibly and efficiently by training a fully convolutional
neural network (FCNN) leveraging graphics processing units (GPUs). DIP is demonstrated
to be able to restore high-quality images from low-quality images without requiring a
large training dataset [16, 17]. Recent publications show the success of DIP on image
restoration [18, 19, 20], e.g., super-resolution [21], image inpainting [17] and denoising
[22, 23]. Although DIP shows potential for modelling the spatial correlation of regular RGB
images, it has not been systematically explored in a Bayesian framework for disentangling
mixed pixels in RS images.

2. Efficiently integrating a forward model Φ(·) with deep learning (DL) net-
works is essential but difficult. In traditional image restoration approaches, the forward
model is built into error functions to regulate the model optimization process, e.g., sparse
coding [24], image decomposition [25], low-rank approximation [26] and Gaussian mixture
model [27]. Although DL approaches can efficiently learn features for complex RS image
processing tasks, most DL-based methods are heavily data-driven and neglect the guidance
of the knowledge and priors in physical forward models. Although the Bayesian framework
offers a coherent way for integrating priors and knowledge, integrating forward models with
DL models into a Bayesian framework has not been sufficiently studied in the context of
disentangling mixed pixels for RS image inversion.

3. Noise N modeling is important but usually tends to be ignored or downweighted.
For example, the noise level of HSIs varies dramatically over bands due to different spec-
tral absorption properties of different spectral channels and the commonly existence of
corrupted noisy bands (“junk bands”). However, most of SU methods ignore the noise
heterogeneity effect, leading to undesirable preservation of noise in some bands and eras-
ing of signal in some other bands. Inaccurate noise characterization reduces the estimation
accuracy of underlying components Y . Although accurate noise modelling is essential,
there has not been sufficient research on integrating accurate noise model with Bayesian
DIP approaches for enhanced disentangling mixed pixels.

4. Model optimization is important but difficult. The Bayesian method is used
widely to solve inverse problems by addressing a maximum a posterior (MAP) prob-
lem using iterative optimization approaches, e.g., expectation-maximization algorithm
[28, 29, 30]. Traditionally, due to various explicit prior distributions in the Bayesian model,
the resulting posterior distribution has a complex form and is very difficult to be solved
efficiently. The rapidly developing DL technique provides new approaches for addressing
priors in inverse problems e.g., DIP [16]. Although the integration of DIP with forward
models into a Bayesian framework might lead to more efficient MAP optimizations, it has
not been sufficiently researched for mixed pixel disentangling in key RS applications.

5. Task-specific algorithms are essential for supporting key RS applications. SU,
SPM and SMD are three important RS applications that all rely heavily on disentangling
mixed pixels. Despite their similarities, SU, SPM and SMD have different data, forward
models and underlying quantities, and thereby it is required to develop task-specific algo-
rithms by adapting the general Bayesian DIP approach to different task characteristics.
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1.2.2 Related works

Deep image prior (DIP)

The structure of the DCNN is capable to capture image statistical information and to
impose an effective prior to restore high-quality images from low-quality images without
requiring a large training dataset, and this prior is call the DIP [17]. Recent publications
show the effectiveness of DIP for image restoration [18, 19, 20], e.g., hyperspectral image
unmixing [31], super-resolution [21], image inpainting [17] and denoising [22, 23].

Traditionally, these problems can be generally expressed as an energy equation [16],

Y = min
Y

Ene (Y ;X) +R(Y ) (1.2)

where Ene (Y ;X) is the task-dependant term, which will be discussed for different ap-
plications in Chapter 2, 3 and 4. R(Y ) is the regularizer. DIP, instead of modelling the
regularizer R(Y ) with an explicit form, models R(Y ) implicitly with the DCNN architec-
ture by seeking the solution in the network parameter domain, as follows,

β = argmin
θ

Ene (fβ(Z);X) , Y = fβ(Z) (1.3)

where f is the forward propagation of the DCNN. Z is the input random noise and β is
the set of model parameters. The energy function is reformulated into MAP problems in
a Bayesian DIP framework in Chapter 2, 3 and 4.

DCNNs with forward models for inverse problems

The strategy of combining a DCNN with a forward model to solve an inverse problem has
been explored since 2018 for image restoration and 3D reconstruction [16, 32, 33]. However,
the related studies are very few, especially in the context of RS image inversion. Pure data-
driven DL approaches suffer from requiring large training dataset, large amount of network
parameters and training time [34]. On the contrary, the integration of the DCNN with
forward models makes the network lighter [34] and learn from both low-quality data (e.g.,
low-resolution images) and the forward model in an unsupervised way.

Compared with the traditional patch-based convolutional neural network (CNN), the
FCNN can better capture the large-scale spatial correlation effect from images [35]. In
this thesis, the U-Net architecture [36] with skip connections [37] is adopted for three
applications given that the classic network succeeded in numerous image processing tasks
[38, 39]. The importance of architecture design will be demonstrated in Chapter 4. The
investigation of more architectures for future work will be discussed in Chapter 5.
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1.3 Objectives

Based on the above challenges, the research aims to achieve the following three key objec-
tives.

1. To improve the decomposition of mixed pixels into pure material spectra (i.e., end-
members) and their constituting fractions (i.e., abundances) in SU, the research aims
to design an efficiently-optimized Bayesian framework that incorporates a deep fully
convolutional neural network (DCNN) and a spectral mixture model (SMM) with
heterogeneous noise (see Chapter 2).

2. To improve the decomposition of mixed pixels into class labels of subpixels in SPM,
the research aims to design a Bayesian framework that integrates a DCNN and a
dedicated forward model to allow the use of both spatial prior and physical knowledge
(see Chapter 3).

3. To improve the decomposition of mixed pixels into soil moisture values of subpixels in
SMD, the research aims to design a new DIP architecture and a forward degradation
model to be integrated into the Bayesian framework (see Chapter 4).

The Bayesian approaches proposed by this thesis not only improve the state-of-the-arts
in their respective applications (i.e., SU, SPM and SMD), but also provide new solutions
to other ill-posed inverse problems where simultaneous modelling of the spatial prior and
other prior knowledge is needed.

1.4 Thesis structure

Three key chapters represent the developments of SU (Chapter 2), SPM (Chapter 3), and
SMD (Chapter 4). These developments share a similar auto-encoder framework that incor-
porates different designed forward models with DCNN on different datasets. A flowchart
in Figure 1.3 shows how they are implemented in the Bayesian DIP framework. Chapter 2
proposes BCUN, a Bayesian fully convolutional neural network for hyperspectral SU. This
research involves imposing constraints on endmembers, abundances and noise to regulate
SU for HSIs. BCUN combines an FCNN and linear spectral mixture model in a Bayesian
framework and optimizes the MAP problem with a designed EM iterative method. Chap-
ter 3 proposes an SPM method which combines an FCNN and a discrete spectral mixture
model to generate a finer-resolution classification map for HSIs. The resulting MAP prob-
lem is solved with an EM algorithm. Chapter 4 proposes an SMD method by integrating
an FCNN with the forward model in a coherent manner for combining different sources
of information, i.e., the knowledge in the forward model, the spatial correlation prior in
FCNN architecture, and the RS data and products. Chapter 5 summarizes the thesis and
discusses future work.
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Figure 1.3: Flowchart of SU, SPM and SMD implemented in a Bayesian DIP framework.

The SU and SPM methods in Chapter 2 and 3 are tested mainly on HSIs. The SMD
method in Chapter 4 is concluded on RS imagery-derived products. The validation methods
for these three research are different. In SU, endmembers and abundances estimation
accuracies are evaluated separately with true endmembers and abundances. The label
map obtained by the SPM is evaluated compared with a true label map. The downscaled
soil moisture is evaluated with both in-situ soil moisture measurements and soil moisture
products.
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Chapter 2

BCUN: Bayesian Fully Convolutional
Neural Network for Hyperspectral
Spectral Unmixing

Spectral unmixing (SU) plays a fundamental role in hyperspectral image (HSI) processing.
Effective SU relies on the accurate and efficient characterization of the noise effect, the
endmembers, and the spatial correlation effect in abundances, as well as efficient optimiza-
tion techniques to estimate these effects. To address these issues, this chapter presents
a Bayesian fully convolutional hyperspectral unmixing network (BCUN), with the follow-
ing key characteristics. First, a fully convolutional neural network (FCNN) based deep
image prior is designed for enhanced characterization and estimation of the spatial con-
text information in abundance maps, leading to more efficient and accurate abundance
modelling than the traditional non-negative least squares approaches. Second, a multivari-
ate Gaussian distribution with anisotropic covariance matrix is designed to characterize
the conditional distribution of the spectral observations, leading to a novel Mahalanobis
distance-based loss for FCNN training that is better capable of addressing the noise het-
erogeneous effect in HSI than the Euclidean distance based mean squared error loss in
traditional deep neural networks. Third, the designed conditional distribution of spectral
observations also enables the incorporation of the spectral mixture model into the FCNN
training process for effectively leveraging the knowledge in the forward spectral model.
Fourth, the endmembers are modelled and estimated by a “purified means” approach that
is capable of better characterizing endmembers. Last, the above key components are co-
herently integrated into a Bayesian framework, and the resulting maximum a posteriori
problem is solved by a designed expectation-maximization algorithm. Experimental results
on both simulated and real HSIs demonstrate that the proposed BCUN approach outper-
forms the other classical and state-of-the-art methods on both endmember estimation and
abundance estimation.
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2.1 Introduction

Hyperspectral imaging is a rapidly growing remote sensing technique which records the
electromagnetic radiation from the earth surface via hundreds of narrow and contiguous
spectral bands [40]. With rich spectral information, hyperspectral images (HSI) are critical
to a wide variety of applications including ground target classification [41, 42, 29], sub-pixel
mapping [43], agricultural management [3] and environmental monitoring [44, 4]. However,
due to the limitation in the spatial resolution of HSI and the complexity of ground targets,
spectral pixels in HSI usually contain the spectral contribution of multiple pure materials,
leading to mixed pixels in HSI. Spectral unmixing (SU) aims to decompose the mixed
pixels to derive both the spectral signatures of constituent components (i.e. endmembers)
and their corresponding fractional proportions (i.e., abundances) from the mixed pixel in
HSI [45].

SU is a challenging ill-posed inverse problem [45]. An effective SU approach relies on
accurately modelling of the noise effect, the endmembers, the spatial correlation effect
of abundance, as well as an effective optimization approach for estimating these effects.
However, most existing SU methods ignore or fail to fully explore these key factors.

First, HSI contains not only rich spectral information but also abundant spatial infor-
mation. The spatial context information in HSI is crucial for regulating and estimating
endmembers and abundances in HSIs [46]. Nevertheless, most existing SU methods ignore
this spatial correlation effect by treating the abundance of each pixel as independently
distributed variables using nonnegative least squares (NNLS) [47], sparse unmixing by
variable splitting and augmented lagrangian (Sunsal) [48] or fully connected layers [49, 50]
for abundance estimation. There is still a lack of advanced modelling and estimation ap-
proaches for addressing large-scale spatial correlation effects that commonly exist in HSI.
Compared with the traditional patch-based convolutional neural network (CNN), the fully
convolutional neural network (FCNN) can better capture the large-scale spatial correlation
effect in HSI [35]. FCNN approaches have been widely used in many tasks, e.g., semantic
segmentation [51, 52], super-resolution [53] and image denoising [54]. However, they are
rarely adapted to HSI for SU. Although FCNN was used to efficiently map random noise
to abundances in a supervised manner [55], it was less efficient in leveraging the forward
spectral mixture model for efficiently estimating both abundance and endmembers in an
integrated manner. Therefore, how to integrate FCNN into SU for better modelling and
estimation of spatial information in HSI is an important research issue.

Second, HSI is contaminated by noise in the data acquisition process. Due to different
spectral absorption properties of different spectral channels and the commonly existence of
“junk bands”, the noise level of different HSI channels tend to vary dramatically, causing
different noise variance in different HSI channels [56]. Since SU is very sensitive to noise,
the success of SU algorithms depends on their effectiveness in accurately accounting for and
resisting the noise effect [45]. However, most of the existing methods assume that different
bands in HSI contain the same degree of noise by using the mean squared error (MSE) as
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the reconstruction loss, leading to the undesirable preservation of noise in some bands but
erasing of signal in some other bands. Consequently, the design of the model which is able
to accommodate the noise variance heterogeneous effect in HSI is an important issue for
SU.

Third, meaningful SU relies on effective constraints imposed on endmembers. However,
existing endmember extraction methods either rely on the minimum volume simplex con-
straint (e.g., VCA [57] and PPI [58]) that cannot deal with highly-mixed pixels, or on prior
distribution constraints in the Bayesian framework that are computationally intractable
[45]. “Purified means” approach [59, 46, 60] provides simple and effective constraints for
deriving endmembers that are achieved by treating the endmember as the mean vector of
the “purified” pixels. Adopting this efficient constraint on endmembers boosts the accuracy
and effectiveness of the estimation of endmembers and abundances.

Fourth, given the above mentioned three key factors for SU, it is critical to design a co-
herent framework with effective modelling capacity and an efficient optimization approach,
which is capable of capturing the large-scale spatial correlation effect in abundances, the
variance heterogeneity effect of noise and the proper constraint on endmembers. To solve
ill-posed problems where endmembers and abundances are unknown underlying quantities,
the SU process can be generalized as a maximum a posteriori (MAP) problem in a Bayesian
framework and be optimized by expectation–maximization (EM) algorithm. The iterative
method allows the estimated abundances and endmembers to be updated in an adaptive
manner.

Therefore, in this chapter, following the linear spectral mixture model (LSMM) that
is commonly used to describe the HSI generation process [61], we propose a Bayesian
fully convolutional hyperspectral unmixing network (BCUN) which integrates FCNN and
LSMM in a Bayesian framework for HSI unmixing.

In the proposed approach, the data likelihood is designed based on the LSMM, the
conditional probability of the endmembers is derived from the “purified means” approach
[59, 46, 60], and the prior of abundance is implemented by the deep image prior (DIP) [16].
The key contributions of this chapter are summarized as follows:

1. A skip-connection FCNN is designed for abundance estimation, where DIP is used
to model the spatial correlation of the abundance field. Compared to NNLS or
fully connected network, the FCNN is able to efficiently and accurately estimate
abundances by leveraging GPUs and the large-scale spatial correlation of HSI.

2. The noise is modelled as a multivariate Gaussian distribution to account for the
noise variance heterogeneity in HSI. As a result, the loss function of BCUN is designed
based on the M-distance rather than MSE loss. The designed conditional distribution
of spectral observations also enables the incorporation of the spectral mixture model
(SMM) into the FCNN training process for effectively leveraging the knowledge in
the forward spectral model.
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3. The endmember is modelled and estimated by a “purified means” approach which
can be seamlessly integrated into the Bayesian framework by a designed conditional
distribution of the endmembers given the abundance.

4. The above key components are coherently integrated into a Bayesian framework, and
the resulting maximum an MAP is solved by a designed EM algorithm.

Experiments on both simulated and real HSI demonstrate that comparing with tradi-
tional and state-of-the-art approaches, the proposed BCUN can extract endmembers and
map abundances more accurately by exploring spatial correlation effect and noise hetero-
geneity effect in HSI. The remainder of the chapter is organized as follows. Section 2.2
formulates the unmixing problem in a Bayesian framework. The design of the network and
its rationale are detailed in Section 2.3. Section 2.4 introduces the optimization scheme of
BCUN. Section 2.5 conducts experiments on both simulated and real HSI.

2.2 Problem formulation

Assuming that there are P spectral bands and N pixels in a HSI, we denote the observed
reflectance of the pixel at site i by xi, which is P × 1 vector. Then the HSI can be
expressed as X = {xi|i = 1, 2, ..., N}. The HSI is assumed to contain K endmembers.
According to the LSMM, the observed HSI X ∈ RP×N is represented by the product of the
endmember matrix A ∈ RP×K and the abundance matrix S ∈ RK×N , plus some Gaussian
noise N ∈ RP×N , as follows:

X = AS +N , (2.1)

where S = {si|i = 1, ..., N} and A = {ak|k = 1, ..., K}. si is a K-dimensional vector and
ak is a P -dimenstional vector. Then the pixel xi can be formulated as a linear combination
of the endmembers A weighted by their associated abundances si plus noise ni:

xi =
K∑
k=1

aks
k
i + ni,

∑
k

ski = 1,∀ski > 0. (2.2)

Considering that current imaging systems are designed based on the assumption of additive
Gaussian noise [62], and the Gaussian noise assumption simplifies the computation and
the noise variance estimation [63], we assume that the noise distribution satisfy a Gaussian
model as follows:

p(ni) =
1√

(2π)P |Λ|
exp(−1

2
ni

TΛ−1ni) (2.3)
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where Λ is commonly expressed by the most existing methods as a diagonal matrix

Λ =


σ2

σ2

. . .

σ2


in which σ2 is the noise variance of the each band.

The spectral unmixing of HSI aims to infer the endmembers A and the abundance S
based on the spectrum observation X, which in a Bayesian framework can be achieved by
maximizing the posterior distribution p(θ|X), i.e.,

p(θ|X) ∝ p(X|θ)p(θ) (2.4)

where

θ = {A,S} (2.5)

According to the Bayes’ theorem, the posterior distribution can be rewritten as:

p(A,S|X) ∝ p(X|A,S)p(A|S)p(S) (2.6)

Given the LSMM describing the generative model of HSI in Eq. 2.1 and the posterior
distribution in Eq. 2.6, several key factors for effective SU are identified as follows:

1. The accurate modelling of the abundance prior p(S) is critical for regulating and
estimating the abundance S.

2. Properly characterizing the noise N in HSI facilitates the accurate estimation of A
and S.

3. Meaningful constraints on endmembers A that guide and regulate the endmember
estimation process.

4. An efficient optimization scheme for solving the Bayesian inverse problem is critical.

In this chapter, p(S) is achieved by Gaussian distribution where the spatial correlation
effect in S is modeled by the deep image prior of FCNN, as detailed in Section 2.3.1. Under
the assumption that noise ni has heterogeneous band-dependent noise variance, the data
likelihood p(X|A,S) is modeled by the anisotropic multivariate Gaussian distribution, as
detailed in Section 2.3.2. p(A|S) is achieved by Gaussian distribution where the expecta-
tion of A is derived by the purified-means, as detailed in Section 2.3.3. And an efficient
EM algorithm based optimization scheme is designed and implemented in Section 2.4 for
solving the new Bayesian inverse problem.
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2.3 BCUN: Bayesian fully convolutional hyperspec-

tral unmixing network

2.3.1 Prior of abundances

There are three key requirements on the abundance S when designing the abundance prior
p(S).

1. The large-scale spatial correlation effect in abundance should be fully exploited.

2. Abundances should be subject to the non-negative and sum-to-one constraints, i.e.,∑
k s

k
i = 1 and ∀ski > 0

3. Abundances prior should allow efficient optimization.

Here, the prior of S is expressed as a Gaussian distribution because (i) it is a common
form of abundace distribution [64, 65, 66], and (ii) it is simple to be incorporated and
solved in the final objective function.

p(S) =
1

z
exp(−||S − E(S)||2) (2.7)

where E(S) is the expectation of S, which is implemented as an FCNN. Comparing with
the patch-based CNN, FCNN has a wide field of view of the input image and enables better
modelling of the spatial correlation effect in HSI.

The prior spatial information of abundances S can be captured by an FCNN structure
[16] which has a wide field of view of the input image and can be optimized efficiently on
GPUs. Using f(·) to represent the FCNN forward propagation, the expected S is written
as:

E(S) = f(Z,β). (2.8)

where Z is the input random noise and β is the set of model parameters including all
convolution kernels and biases. The non-negative and the sum-to-one constraint can be
achieved using “softmax” activation approach which is expressed as:

Softmax(I) =
eIi∑K
j eIj

(2.9)

In this work, we use a U-Net type “hourglass” architecture with skip-connection [16] to
model a mapping f(·) from the input variable Z to abundance maps S.

As shown in Figure 2.1, the FCNN network is an “hourglass” architecture with encoder
and decoder parts, as well as the skip connection. The constitutional unit of the encoder
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Figure 2.1: FCNN structure in BCUN framework

part involves mainly two convolution operations (the yellow and blue blocks in Figure 2.1)
which can be formulated as:

En(I) = LR(BN(W 2
e ⊛ (LR(BN(W 1

e ⊛ I +B1
e ))) +B2

e )) (2.10)

where I represents the input data, LR represents the “leaky ReLU” activation function,
and BN denotes the batch normalization. ⊛ is the 2D convolution operation. W and B
are convolution kernel and the bias separately.

The skip connection operation mainly contains a convolution operation where the kernel
size is illustrated in Figure 2.1. The entire operation of skip connection is as follows:

Skip(I) = LR(BN(Ws ⊛ I +Bs)) (2.11)

The unit operation of decoder (the red and purple blocks in Figure 2.1) is expressed as:

De(I) = LR(BN(W 2
d ⊛ (LR(BN(W 1

d ⊛BN(I) +B1
d))) +B2

d)) (2.12)

The encoder part of FCNN decreases the size of the input via convolutions and the decoder
part recovers the image size by the decoder unit expressed in Eq. 2.12 and the up-sampling
operation. By connecting the corresponding parts which have the same scale of encoder
and decoder, the spatial information in a certain scale is able to be well preserved. So, the
resulting layer in a certain scale can be obtained by

Scale(I) = De(up(En(I))⊕ skip(I)) (2.13)
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where ⊕ is the matrix concatenation operation. To preserve and utilize the spatial infor-
mation of different image scale, the number of scale L is usually set as a number more than
1. Then the main part of the FCNN is expressed as

SCALEL(I) = ScaleL...(Scale2(Scale1(I))) (2.14)

In Figure 2.1, L = 3, the last layer is a convolution layer with the kernel size of 1× 1 (the
orange block in Figure 2.1). The entire operation of the output layer is as follows:

Out(I) = BN(W o ⊛ I +Bo) (2.15)

By applying the “softmax” activation to the output layer, the whole FCNN is formulated
by

f(I) = Softmax(Out(SCALEL(I))). (2.16)

2.3.2 Data likelihood

The formulation of data likelihood p(X|A,S) relies on the probabilistic distribution of
noiseN . The noise distribution is assumed to satisfy a Gaussian model as Eq. 2.3. in which
Λ is the covariance matrix of noise. Traditionally, most methods assume hogmogeneous
noise variance across different HSI bands, and treat Λ as an isotropic diagonal matrix
with the same diagonal elements, leading to Euclidean distance based loss. Instead, in this
chapter, considering the variance heterogeneity of noise, Λ is expressed as follows,

Λ =


σ2
1

σ2
2

. . .

σ2
P


in which σ2

p is the noise variance of the pth band. This matrix allows different channels to
have different noise variance, and thereby it can better accommodate the noise variance
heterogeneity issue for enhanced noise characterization and spectral unmixing.

According to the LSMM in Eq. 2.2, the data likelihood is expressed as

p(X|A,S)

=
1√

(2π)P |Λ|
exp(−1

2
(X −AS)TΛ−1(X −AS))

(2.17)

where (X −AS)TΛ−1(X−AS) is the reconstruction error which is essentially the square
of M-distance DistM(X, ÂŜ) between the original HSI X and the reconstructed HSI ÂŜ.
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2.3.3 Conditional distribution of endmembers given abundance

We choose a conditional prior distribution for the endmembers with the form of a Gaussian
distribution [67] encourages the small distance between the estimated endmember and its
expectation,

p(ak|S, aj ̸=k) =
1

z
exp(−||ak − E(ak|S, aj ̸=k)||2) (2.18)

Then, the joint density p(A|S) is as follows:

p(A|S) =
K∏
j=1

p(ak|S, aj ̸=k)

=
K∏
j=1

1

z
exp(−||ak − E(ak|S, aj ̸=k)||2)

(2.19)

The above implementation is based on a conditional independence assumption of endmem-
ber ak given the rest of the endmembers aj ̸=k.

2.4 Model Optimization

2.4.1 MAP estimation

The unmixing problem in Eq. 2.4 can be solved by the MAP approach, where the end-
members A and the abundance S are estimated by maximizing the posterior distribution
of {A,S} given the observed HSI X, i.e.,

{Â, Ŝ} = argmax
A,S
{p(A,S|X)} (2.20)

Maximizing p(A,S|X) is equivalent to minimizing its negative logarithm likelihood, i.e.,

{Â, Ŝ} = argmin
A,S
{−logp(A,S|X)} (2.21)

Then, the objective function can be written as

JA,S = argmin
A,S
{−logp(A,S|X)}

∝ argmin
A,S
{−logp(X|A,S)− logp(S)− logp(A|S)}

(2.22)
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Considering Eq. 2.7, 2.17 and 2.19, the objective function in Eq. 2.22 can be reformu-
lated as

JA,S =argmin
A,S
{((X −AS))TΛ−1(X −AS))

+ ||S − E(S)||2 + α
K∑
k=1

||ak − E(ak|S, aj ̸=k)||
2}

(2.23)

In E-step of EM algorithm, S is estimated by E(S). So, we replace S with E(S) to
simplify the objective function. As a result, the objective function can be reformulated as
[16]

JA,S =argmin
A,S
{((X −AE(S))TΛ−1(X −AE(S)))

+ α
K∑
k=1

||ak − E(ak|S, aj ̸=k)||
2}

(2.24)

where α is a weighting parameter. This objective function has following characteristics:

1. The EM algorithm is used to estimate all parameters by treating S as missing ob-
servations and A as model parameters, and iteratively update the estimation of S
and A, as illustrated in Section 2.4.2.

2. Because Λ is anisotropic, the resulting distance is Mahalanobis distance that can
account for the noise heterogeneous effect, rather than the Euclidean distance that
ignores band-dependent noise characteristics.

3. S is unknown and treated as missing observations in the EM algorithm framework.
We use E(S) as the estimation of S. To estimate parameters in E(S),s we use X as
the input to FCNN and optimize FCNN parameters. Given the estimated parameters
in FCNN, we achieve Ŝ = E(S), as illustrated in Section 2.4.3.

4. When estimating parameters in FCNN for obtaining E(S), we use a reconstruction
loss based on (X − AE(S))TΛ−1(X − AE(S)), which incorporates the SMM to
ensure meaningful S estimation, as illustrated in Section 2.4.3.

5. The second term in the objective function Eq. 2.24 is used to regulate the endmem-
bers, and α defines the relative importance of this regulation. The purified means
approach is adopted to estimate A, as illustrated in Section 2.4.4.

The proposed BCUN framework is illustrated as Figure 2.2.
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Figure 2.2: BCUN framework.The inverse unmixing model is implemented by FCNN, where DIP p(S) is used to model the
spatial correlation of the abundance field. The LSMM works as the forward model to reconstruct the HSI using the estimated
A and S. The data likelihood p(A|S) designed based on it is integrated into the Bayesian framework. The endmember A
is modelled and estimated by a ”purified means” approach which can be seamlessly integrated into the Bayesian framework
by a designed conditional distribution of the endmembers given the abundance p(A|S).

2.4.2 EM iteration

The EM algorithm is an iterative approach which is widely used to optimize the incom-
plete data problem by iterating between the estimation of model parameters given missing
observations and the estimation of missing observations given the model parameters[68].
In this chapter, we treat the abundances S = {si|i = 1, 2, ..., N} as missing observations
and treat endmembers A as model parameters to iteratively estimate both A and S. The
E-step is the computation of the expectation over the entire range of possible values of S,
i.e. E(S), and the M-step updates A by minimizing Eq. 2.26 given E(S). The main steps
in EM algorithm to estimate S and A are summarized as follows.

• Initialization: Set the initial value for A. The vertex component analysis (VCA)
algorithm [57], a fast and popular unsupervised endmember extraction approach, is
used to estimate the initial value of A.

• E-step: Given endmembers A and the noise variance Λ, estimate abundances S by
optimizing a FCNN, as introduced in Section 2.4.3.

• M-step: Given S , estimate endmembers A and the noise variance Λ. Endmembers
A are estimated using purified means approach [59], which is discussed in Section
2.4.4. The noise variance Λ is estimated by the reconstructed residual, which is
introduced in Section 2.4.5.

2.4.3 FCNN training

The objective of E-step of the EM algorithm introduced in Section 2.4.2 is to obtain the
estimated abundance Ŝ which is achieved by a FCNN model in Eq. 2.8.
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To estimate E(S), we first need to estimate the parameters in FCNN, i.e., β. Here, we
construct the following objective function to estimate β:

β̂ = argmin
β
{((X −Af(X,β))TΛ−1(X −Af(X,β))) (2.25)

where (X −Af(X,β))TΛ−1(X −Af(X,β)) is the Mahalanobis distance to account for
the noise heterogeneous effect. Adam stochastic optimizer [69] is adopted in this work to
estimate β.

2.4.4 Purified means

For the M-step of the iterative EM algorithm introduced in Section 3.4.2, the update of
endmember A is achieved by minimizing the following objective function, which is the
second term in Eq. 2.24 constrained by the first term in Eq. 2.24.

JA = argmin
ak

K∑
j=1

||(ak − E(ak|S, aj ̸=k))||2,

s. t.xi −
K∑
j=1

ajs
j
i = 0

(2.26)

where E(ak|S, aj ̸=k) is the conditional expectation of the kth endmember given S and
all the other endmembers. Here, E(ak|S, aj ̸=k) is estimated as the mean value of all
purified pixels of the kth endmember yk

i , i.e., the pixels that are purified by removing the
contribution of all the endmembers other than the kth endmember.

E(ak|S, aj ̸=k) =
1

N

N∑
i

yk
i . (2.27)

where N is the total number of pixels in the image. The constraint in Eq. 2.26 is imple-
mented in the process of obtaining the purified pixel yk

i , which is formulated as follows
[59],

yk
i = (xk

i −
K∑
j ̸=k

sjiaj)/s
k
i , ski > 0. (2.28)

2.4.5 Noise variance Λ update

Inspired by related researches [46], the noise variance Λ is estimated by calculating the
variance of the reconstructed residual, which is formulated as follows.

ri = xi −Asi for i = 1, 2, . . . , N (2.29)
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Λ = VAR ({ri}) (2.30)

where VAR(t) is the function of calculating the variance of t.

2.4.6 Summary of Complete Algorithm

Based on the EM steps described in Section 2.4.2, the complete algorithm used for solving
BCUN can be achieved which is summarized in Algorithm 1.

Algorithm 1 BCUN

Input: HSI X, numbers of endmembers K, and iteration numbers τ
Output: endmember matrix Â, abundance matrix Ŝ
Initialization: t := 1, A(0) = VCA(X), Λ(0) = VAR(X)

While t ⩽ τ do
E-step:

estimate β, given {X,A,Λ} according to Eq. 2.25.
estimate S by f(X,β) in Eq. 2.8

M-step:
for k=1,2,...,K
estimate {yk

i } according to Eq. 2.28
estimate ak using {yk

i } according to Eq. 2.27
end for
update Λ according to Eq. 2.29 and 2.30

end while

Note: A = {ak|k = 1 : K} and S = {si|i = 1 : N}

2.5 Experiments

2.5.1 Datasets

Simulated HSI

In this experiment, we simulate a 104 × 104 sized HSI with four endmembers with 200
bands. Each pixel in the simulated HSI is a mixture of the four endmembers. Mixed
pixels are created using the four endmembers multiplied by four abundance maps following
LSMM. Abundance maps are generated by first being divided into 8×8 sized homogeneous
blocks of one of the four endmembers, then degrading the blocks by applying a spatial low-
pass filter of 9 × 9. The resulting HSI is further degraded by zero-mean Gaussian noise
with different noise variances in different bands. The band-dependent SNR values used
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for simulation are estimated from the benchmark Indian Pines image. Suppose that the
estimated SNR vector q has been centralized and normalized, the simulated SNR vector
r can be obtained following the rule of r = ρq + c [46], where ρ is the amplitude that
determines the magnitude of fluctuation of band-dependent SNR values, and c is the center
value that defines the overall SNR of all bands. Three HSIs with different noise levels (SNR
= 10, 20, 30dB) are simulated by fixing γ = 5 and varying c.

Jasper Ridge HSI dataset

Jasper Ridge is a popular HSI with 512×614 pixels. Each pixel is recorded at 224 channels
ranging from 0.38 µm to 2.5 µm. Due to the difficulties of ground truth (GT) acquisition,
a subimage with 100 × 100 was selected and its true endmember and abundance were
collected. After removing the channels 1-3, 108-112, 154-166 and 220-224 (due to dense
water vapor and atmospheric effects), 198 channels remained. There are four endmembers
in this data, i.e., “road”, “soil”, “water” and “tree”. The GT for the dataset is generated
by Zhu (2014) [70], which has been widely used [71, 72, 73]. The RGB color composition
of the HSI is shown in Figure 2.3 (a).

Saint Andre HSI dataset

Saint Andre HSI dataset is used in a unmixing paper [74] and published on the website
https://zenodo.org/record/2142185#.YWbDyC0RoUt. The HSI contains 50 × 50 pixels,
composed of 415 spectral bands ranging from 0.40 to 2.40 µm. The spectral bands with
strong noise in the spectral ranges 1.34–1.55 and 1.80–1.98 µm have been removed. The
RGB color composition of the HSI is shown in Figure 2.3 (b). Endmember spectra of six
distinct materials (i.e., “tree”, “grass”, “soil”, “road”, “building 1”, and “building 2”) have
been manually extracted based on prior knowledge of the scene. This HSI dataset has only
true endmembers without true abundances. Methods are evaluated mainly based on their
performances on the endmember extraction. Abundances are also evaluated visually by
comparing with the RGB image.

2.5.2 Experimental Setup

Methods Compared

The proposed method BCUN is compared with several traditional endmember extraction
method including N-FINDR [75], PPI [58], VCA [57], K-P-Means [59] and several state-
of-the-art methods including the spatial group sparsity regularized nonnegative matrix
factorization (SGSNMF) approach [76], uDAs [49, 77] and a typical linear plug-and-play
priors framework, PnP [78, 79, 80], which are proposed recently. PnP and uDAs are
deep learning-based methods. It should be noted that K-P-Means and uDAs provide
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(a) Jasper (b) Saint

Figure 2.3: RGB images of real HSIs.

estimations of endmembers and abundances, simultaneously, while for N-FINDR, PPI and
VCA, only endmembers are estimated and the abundances are obtained in a post-processing
stage by using the Sunsal method. PnP is an abundance mapping method which require
knowing true endmembers. We used VCA-estimated endmembers as the input of PnP.
K-P-Means is also solved by the EM algorithm where the E-step estimates abundances
using Sunsal and M-step achieves endmembers update via purified means. Therefore, by
comparing the performances between K-P-Means, the advantage of proposed method in
terms of further improvement over K-P-Means can be demonstrated. Moreover, since both
uDAs, PnP and the proposed method are deep neural network-based approaches but with
vastly different implementations, the comparison between the two can justify the proposed
BCUN approach and other contributions in the context of the proposed Bayesian MAP
optimization framework. To demonstrate the advantage of addressing the heterogeneous
noise effect, we design the BCUN0 method by replacing the Mahalanobis-distance loss in
BCUN with Euclidean-distance loss, and compare it with BCUN.

Numerical Measures

The spectral angle distance (SAD) defined as SAD = cos−1
((
aT â

)
/(∥â∥∥a∥)

)
and the

spectral information divergence (SID) defined as SID = D(a/â) + D(â/a) are used to
measure the precision of the endmember extraction, where D(x/y) measures the relative
entropy between x and y. The accuracy of abundance estimation is measured using the
abundance angle distance (AAD) and the abundance information divergence (AID) by
replacing a with s in the above SAD and SID equations, as well as the mean squared error
(MSE).
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Implement settings

For the test on the simulated HSI, the learning rate of BCUN is empirically set as 0.00025.
The number of EM iteration is 50. For each EM iteration, we use 20 epochs to train the
neural network. We adopt three skip-connections in the FCNN as shown in Figure 2.1.
For the test on the real Jasper HSI, the learning rate of BCUN is set as 0.03. The number
of EM iteration is 60. For each EM iteration, the network is trained 200 times. We adopt
one skip-connection in the FCNN for Jasper HSI dataset. For the test on the real Saint
HSI, the learning rate of BCUN is set as 0.001. The number of EM iteration is 10. For
each EM iteration, the network is trained 150 times. We adopt two skip-connections in
the FCNN for Saint HSI dataset.

Model parameters including the number of layers, the learning rate and iteration times
are determined empirically. Hyperparameters are required to be adjust for different HSIs
since HSIs vary in the sensor, data size and complexity. The real HSIs contain fewer mixed
pixels and spatial texture features, which can be unmixed with a simpler network. So, we
reduce the layers of the network to accelerate the model training. The learning rate needs
to be adjusted to suit the network architecture. All data processing is conducted using the
Python language under the Pytorch framework.

The benchmark PnP, uDAs and SGSNMF methods were implemented in the MATLAB
2018 under an Intel Xeon Silver 4110 CPU @2.10GHz. The VCA, PPI, N-FINDR, K-P-
means and proposed BCUN methods were implemented in the Pytorch toolbox with an
NVIDIA GeForce RTX 2080 Ti GPU.

2.5.3 Simulated Study

To compare the performances between traditional MSE loss that is built upon the Euclidean
distance in BCUN0 and the proposed Mahalanobis distance loss in BCUN, we first apply
BCUN and BCUN0 on the three simulated HSIs with SNR = 10, 20, 30 dB. Figure 2.4
shows the endmember (the first row) and abundance maps of one endmember achieved
by BCUN and BCUN0 (the second and the third row separately) with different SNR
values, i.e., 10, 20, 30 dB. On all endmember figures (in the first row), the endmember
extracted by BCUN (red lines) is closer to the true endmember (black lines) than the
endmember estimated by BCUN0 (blue lines). In addition, endmembers achieved by BCUN
are smoother than those obtained by BCUN0, which is specifically obvious when the noise
level is high (e.g., on Figure 2.4 (left) where SNR = 10dB). This demonstrates that the
proposed M-distance loss in FCNN can better deal with the heterogeneous noise than the
traditional MSE loss for enhanced endmember and abundance estimation, especially when
the noise level of HSI is high. Figure 2.4 shows negative values in endmembers at SNR=10
because BCUN0 does not consider the noise heterogeneous effect and leads to large bias
in endmember estimation at some spectral bands. The endmembers estimated by BCUN
are all positive at any noise level. It also shows the importance of addressing the noise
heterogeneity, especially when SNR values are low.
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(a) AAD=0.5678 (b) AAD=0.1732 (c) AAD=0.1636

(d) AAD=0.4573 (e) AAD=0.1023 (f) AAD=0.0735

Figure 2.4: The endmember (the first row) and abundance maps of one endmember achieved by of BCUN0 and BCUN (the
second and the third row separately) with different SNR values, i.e., 10, 20, 30dB respectively from left column to right
column.
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To evaluate the performance of the proposed BCUN, we compare it with the other
methods introduced in Section 2.5.2 by testing all methods with 10 independent runs
on three simulated HSIs with different SNR levels. The mean values and the standard
deviation (std) values of SAD, AAD, SID, AID, and MSE are summarized in Table. 2.1.
The running time of different SU methods are summarized in Table 2.2. The methods
comparison in terms of SAD and AAD are also illustrated in Figure 2.5. Given that the
smallest SAD and AAD mean values were all achieved by BCUN, BCUN outperformed all
the other methods on endmember extraction and abundance estimation at all noise levels,
indicating that the proposed BCUN is able to more accurately model the abundance and
endmember information in mixed pixels by accounting for the heterogeneous noise and the
spatial correlation effect in a Bayesian fully convolutional neural network framework. In
particular, the observation that the mean AAD values achieved by BCUN are smaller than
those achieved by other values clearly reflects advantages of the designed BCUN approach
over the traditional Sunsal approach for abundance mapping. Some abrupt changes and
spatial detail information was well delineated by BCUN, which justified the use of DIP
to capture the nonstationary spatial correlation information in HSI. Convolutional layers
tend to smooth features, but the FCNN structure is able to capture the spatial textural
information which is DIP. The methods comparison in terms of SAD and AAD is also
illustrated in Figure 2.5.

(a) SAD (b) AAD

Figure 2.5: AAD, AAD bar graphs achieved by different methods with different SNR values, i.e., 10, 20, 30dB.

Figure 2.6 shows the four endmembers estimated by different SU methods as well
as the true endmember (the red line) at the noise level of SNR=30dB. The proposed
method BCUN appears to achieve the closest endmember spectrum (dark blue lines) to
the true endmember (red lines) for all the 4 endmembers. Endmembers estimated by deep
learning-based uDAs and PnP algorithms (purple and dark green lines) are closer to the
true endmembers than the other traditional methods but also introduces an obvious bias
away from the true endmember 1. Endmembers achieved by K-P-Means (light blue lines)
are smooth and very close to the true endmember 1 and 4, but have a larger bias away
from true endmember 2 and 3. VCA (pink lines) generates endmembers relatively smooth
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Table 2.1: Average SAD, AAD, SID, AID and MSE of abundances, obtained from 10
independent runs by different methods using the simulated data over SNR from 10 to
30dB. The best results are in bold.

SNR=10, 4 endmembers, 10816 pixels

Method SAD AAD SID AID MSE
NFINDR 0.3704±3.09% 0.7009±2.38% 0.1537±0.0308% 6.0106±0.3139% 0.0469

PPI 0.3271±5.56% 0.7284±1.47% 0.1791±0.0071% 6.3262±0.1043% 0.0559
SGSNMF 0.2360±7.51% 0.5704±2.37% 0.3374±0.0869% 4.6836±0.2111% 0.0351
KPmeans 0.2162±4.93% 0.7208±4.50% 0.0268±0.0183% 6.5955±0.6952% 0.0475
uDAs 0.1736±2.67% 0.7043±6.17% 0.0185±0.0111% 6.3495±1.2081% 0.0432
PnP 0.1766±1.98% 0.7422±7.66% 0.0201±0.0063% 7.8469±2.1994% 0.0580
VCA 0.1659±3.37% 0.7745±7.55% 0.0156±0.0098% 8.9710±2.1885% 0.0560
BCUN 0.1449±9.28% 0.4573±12.68% 0.0394±0.0545% 3.7158±0.8387% 0.0161

SNR=20, 4 endmembers, 10816 pixels

Method SAD AAD SID AID MSE
N-FINDR 0.1184±0.21% 0.4280±1.03% 0.0168±0.0011% 3.4733±0.1174% 0.0217

PPI 0.1330±1.97% 0.6112±7.20% 0.0210±0.0037% 5.1706±0.3289% 0.0354
SGSNMF 0.1950±13.55% 0.4832±17.36% 0.1609±0.1651% 4.0203±2.0509% 0.0154
KPmeans 0.0308±0.90% 0.2979±4.92% 0.0012±0.0008% 1.9187±0.5029% 0.0100
uDAs 0.0294±1.51% 0.2451±4.07% 0.0014±0.0014% 1.4097±0.4577% 0.0060
PnP 0.0364±0.96% 0.2788±6.98% 0.0020±0.0008% 1.6709±1.0786% 0.0064
VCA 0.0362±1.21% 0.3055±6.18% 0.0020±0.0012% 1.8566±0.7442% 0.0081
BCUN 0.0145±0.59% 0.1023±1.70% 0.0004±0.0002% 0.5288±0.1152% 0.0012

SNR=30, 4 endmembers, 10816 pixels

Method SAD AAD SID AID MSE
N-FINDR 0.0537±0.75% 0.2215±5.88% 0.0038±0.0009% 1.3271±0.5318% 0.0039

PPI 0.0752±1.35% 0.5262±2.98% 0.0235±0.0000% 32.1737±0.0006% 0.0334
SGSNMF 0.1359±13.19% 0.3427±9.88% 0.1660±0.3383% 2.2419±0.9875% 0.0201
KPmeans 0.0195±0.48% 0.1126±2.68% 0.0010±0.0003% 0.4808±0.2388% 0.0014
uDAs 0.0195±1.10% 0.1377±4.95% 0.0007±0.0010% 0.6136±0.3938% 0.0034
PnP 0.0383±0.81% 0.2657±5.12% 0.0025±0.0007% 1.4322±0.5323% 0.0060
VCA 0.0396±1.03% 0.2321±7.14% 0.0026±0.0009% 1.0945±0.6274% 0.0041
BCUN 0.0105±0.56% 0.0735±1.14% 0.0002±0.0002% 0.2965±0.1047% 0.0010

Table 2.2: The running times of different methods on the simulated data with SNR=30dB.

Methods VCA PPI BCUN N-FINDR KPmeans PnP uDAs SGSNMF
Time(s) 0.07 0.16 18.61 0.35 43.76 12.18 24.51 91.01
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(a) Endmember 1 (b) Endmember 2

(c) Endmember 3 (d) Endmember 4

Figure 2.6: The endmembers achieved by different methods when SNR equals 30dB.

by with a very large bias from the true endmembers. Endmembers obtained by PPI and
N-FINDR (orange and green dotted lines) are very noisy indicating that these two methods
are sensitive to resist noise. These visual interpretations align with the quantitative results
in Table 2.1.

Figure 2.7 displays the abundance maps of one endmember generated by PPI, N-
FINDER, VCA, K-P-Means, uDAs, PnP and the proposed BCUN. As we can see, BCUN
achieved abundance maps that are very close to the GT maps. K-P-Means tends to pre-
serve some noise due to the failure to account for the spatial correlation effect in HSI, which
is especially true when the noise level is high (i.e. SNR = 10, 20dB) where the abundance
maps of these traditional methods are very noisy. The state-of-the-art methods uDAs and
PnP achieve smoother and clearer abundance maps than other methods but are still noisy
than BCUN at all noise levels.
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(a) N-FINDR (b) PPI (c) SGSNMF (d) KPmeans (e) uDAs (f) PnP (g) VCA (h) BCUN (i) GT

Figure 2.7: The abundance maps achieved by different methods on one endmember with different SNR values, i.e., 10, 20,
30dB from the top row to bottom row. Brighter pixels indicate high abundance while darker pixels indicate low abundance.

2.5.4 Test on real HSIs

Jasper Ridge Scene

All methods are conducted on the Jasper Ridge HSI. The estimated endmembers and
abundances are compared in Figure 2.8 and Figure 2.9 separately. Numerical measurements
achieved by all methods are summarised in Table 2.3. Table 2.3 indicates that BCUN
achieves the lowest mean values of SAD, SID, AAD and AID among all methods tested,
indicating that BCUN extracts endmembers and abundances more accurately than other
methods.

Figure 2.9 shows that overall BCUN is more capable of generating abundance maps
that are close to the GT maps in terms of both the intense brightness and the structural
characteristics. For example, the bright water area in the second row of Figure 2.9 gener-
ated by BCUN is closer to the intensity brightness of the GT, and also BCUN generates
the highlighted red box area in Figure 2.9 that is closest to the GT, whereas the red box
areas of the other methods wrongly highlight the road as water in the water abundance
maps.

Figure 2.8 shows the four endmembers achieved by different methods as well as the
true endmembers (red line). On average, endmembers obtained by the proposed BCUN
method are the closest to the true endmembers among all methods, which is consistent
with the SAD statistics in Table 2.3.

Saint Andre Scene

Table 2.4 demonstrates that the proposed BCUN achieves the best endmember estimation
performance with the lowest SAD and SID values, compared with other methods. Figure
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(a) Tree (b) Water

(c) Soil (d) Road

Figure 2.8: The estimated endmembers achieved by different methods for Jasper Ridge HSI data, along with the true
endmember.

Table 2.3: Average SAD, SID, AAD, AID and MSE of abundances, obtained by different
methods for Jasper Ridge HSI data. The best results are in bold.

Jasper Ridge HSI, 4 endmembers, 10000 pixels

Methods SAD SID AAD AID MSE
PPI 0.3085 0.3710 0.6809 8.5008 0.0898
VCA 0.2537 0.1589 0.4288 4.1735 0.0530

KPmeans 0.1680 0.1190 0.3938 4.1484 0.0555
PnP 0.1622 0.1322 0.3116 2.6532 0.0202

N-FINDR 0.1604 0.0565 0.3537 3.0730 0.0278
SGSNMF 0.1392 0.1571 0.2897 2.8536 0.0201
uDAs 0.1181 0.0624 0.3044 2.8851 0.0242
BCUN 0.1065 0.0383 0.2892 2.4576 0.0207
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(a) PPI (b) VCA (c) KPmeans (d) PnP (e) N-FINDR (f) SGSNMF (g) uDAs (h) BCUN (i) GT

Figure 2.9: The abundance maps achieved by different methods on four endmembers (tree, water, soil, road) respectively
from the top row to bottom row for Jasper Ridge HSI data.
Brighter pixels indicate high abundance while darker pixels indicate low abundance. It shows that overall BCUN is more
capable of generating abundance maps that are close to the GT maps in terms of both the intense brightness and the
structural characteristics. For example, the bright water area in the second row generated by BCUN is closer to the intensity
brightness of the GT, and also BCUN generates the highlighted red box area that is closest to the GT, whereas the red box
areas of the other methods wrongly highlight the road as water in the water abundance maps.

Table 2.4: Average SAD and SID obtained by different methods for Saint HSI data. The
best results are in bold. This HSI provide only true endmembers manually extracted based
on prior knowledge of the scene without true abundances.

Saint HSI, 6 endmembers, 2500 pixels

Methods SAD SID
SGSNMF 0.4462 2.8081

PPI 0.2327 0.1614
KPmeans 0.1992 0.2286

PnP 0.1930 0.1872
VCA 0.1813 0.1732

N-FINDR 0.1343 0.0503
uDAs 0.1292 0.4733
BCUN 0.1137 0.0408
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(a) Road (b) Tree

(c) Grass (d) Soil

(e) Building1 (f) Building2

Figure 2.10: The estimated endmembers achieved by different methods for Saint HSI data, along with the true endmember.
Endmembers extracted by BCUN method (blue line) are the closest to the true endmembers (red line) over six categories.
Although some methods perform very well on specific endmembers (e.g., uDAs on soil, and N-FINDR on building 2), they
generate big bias on some other endmembers (e.g., uDAs on road, and N-FINDR on building 1). BCUN is demonstrated to
be able to distinguish and extract different endmembers well.
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(a) PPI (b) PnP (c) N-FINDR

(d) uDAs (e) SGSNMF (f) VCA

(g) KPmeans (h) BCUN (i) RGB image

Figure 2.11: The abundance maps of tree achieved by different methods on Saint HSI data.
Brighter pixels indicate high abundance while darker pixels indicate low abundance. BCUN extracts the tree endmember very
well (see Figure 2.10 (b)). Correspondingly, the tree abundance map generated by BCUN (h) shows very clear tree positions
and edges, which is highly consistent with the RGB image. PPI, N-FINDR and uDAs cannot distinguish tree and grass very
well. PnP, uDAs and VCA tend to preserve more noise than BCUN. K-P-means shows less spatial texture information than
BCUN.
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(a) PPI (b) PnP (c) N-FINDR

(d) uDAs (e) SGSNMF (f) VCA

(g) KPmeans (h) BCUN (i) RGB image

Figure 2.12: The abundance maps of road achieved by different methods on Saint HSI data.
Brighter pixels indicate high abundance while darker pixels indicate low abundance. BCUN outperforms other methods in
spatial information preservation by delineating the road outline clearly and smoothly.
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2.10 displays six endmembers extracted by different methods. Endmembers extracted
by BCUN method (blue line) are the closet to the true endmembers (red line) over six
categories. Although some methods perform very well on specific endmembers (e.g., uDAs
on soil, and N-FINDR on building 2), they generate big bias on some other endmembers
(e.g., uDAs on road, and N-FINDR on building 1). BCUN is demonstrated to be able to
distinguish and extract different endmembers well.

Since the true abundances were not provided in the HSI dataset, we visually evaluate
abundances by comparing abundance maps with the RGB image. Abundances of road
and tree are presented in Figure 2.12 and Figure 2.11 separately. BCUN extracts the
tree endmember very well by achieving the endmember spectra (blue line) very close to
the true endmember (red line) (see Figure 2.10 (b)). Correspondingly, the tree abundance
map generated by BCUN (Figure 2.11 (h)) shows very clear tree positions and edges, which
is highly consistent with the RGB image. Some of other methods (e.g. PPI, N-FINDR and
uDAs) cannot distinguish tree and grass very well. PnP, uDAs and VCA tend to preserve
more noise than BCUN. KPmeans shows less spatial texture information than BCUN.

BCUN outperforms other methods in spatial information preservation by delineating
the road outline clearly and smoothly. Although the road abundance achieved by BCUN
(Figure 2.12 (g)) preserves some other objects in the background, the road object is still
the brightest area which is easily distinguished from other objects. It is reasonable that
the abundance of buildings is not zero on the road abundance map because building and
road may contain similar physical materials.

2.6 Conclusion

In this chapter, we presented a Bayesian framework for hyperspectral unmixing in which
the EM algorithm was applied to solve the MAP problem. Unlike the most deep learning-
based SU techniques, BCUN adopted FCNN rather than fully connected layers or Sunsal
to better exploit the spatial correlation effect in HSI for enhanced abundance modelling
and estimation. In addition, the noise heterogeneity effect in HSI was addressed by the
M-distance loss. A conditional distribution of the endmember is designed, leading to an
efficient purified means approach for endmember estimation. The above key components
are seamlessly integrated into a Bayesian MAP framework, which is solved by the pro-
posed EM approach. Therefore, the proposed BCUN approach constitutes a complete
Bayesian approach with advanced modelling and optimization approaches for enhanced
spectral unmixing. The proposed approach was tested on both real and simulated HSIs,
in comparison with several other popular SU methods, and results demonstrated that the
proposed BCUN method was more capable of accurately and efficiently estimating both
the endmember and abundance in HSIs.
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Chapter 3

Bayesian Subpixel Mapping
Autoencoder Network for
Hyperspectral Images

Although subpixel mapping (SPM) methods for hyperspectral images (HSIs) via deep
learning technologies have the advantage of learning the complex non-linear relationship
between HSIs and subpixel labels, it is challenging to integrate the fully convolutional
neural network (FCNN) and forward models in a coherent framework. This chapter pro-
poses an unsupervised Bayesian subpixel mapping network for HSIs with the following
characteristics. First, the deep image prior achieved by an FCNN is used to efficiently
and adaptively model the spatial correlation in the subpixel label domain. Second, a
discrete spectral mixture model is integrated with the FCNN, and as such the forward
model information is leveraged to enhance SPM. Third, the combination of FCNN and
forward models in an auto-encoder architecture allows the model learn from both data
and knowledge without requiring the groundtruth data. Fourth, a designed expectation-
maximization approach is applied to solve the resulting maximum a posteriori problem,
where a purified means approach extracts endmembers and the FCNN estimates subpixel
labels iteratively. Comparative experiments on both real and simulated HSIs demonstrate
that the proposed method outperforms other methods from the perspectives of numerical
accuracies and visual subpixel mapping results.

3.1 Introduction

Hyperspectral imaging is a rapidly growing remote sensing technique and has been used
widely used for applications, such as ground target classification [41, 42, 29], agricultural
management [3] and environmental monitoring [44, 4]. However, due to the trade-off
between the spectral resolution and spatial resolution in HSIs, pixels in hyperspectral
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images (HSIs) usually contain spectral contributions from multiple materials. Subpixel
mapping (SPM) aims to generate a label map with a finer spatial resolution by dividing
the original mixed pixel into several subpixels [81]. SPM relies on the spatial dependence
assumption between and within pixels to improve the spatial resolution of a HSI label map
[81, 82]. However, most SPM methods suffer from insufficient spatial correlation modelling
or heavily relying on training samples. Therefore, it is valuable to develop an efficient
unsupervised SPM algorithm with the prior information that can adaptively characterize
the global heterogeneity spatial correlation in real HSIs in a unified framework. To achieve
this, three key issues are identified to be addressed.

First, although the use of deep learning (DL)-based prior is essential for accurate SPM,
it is not sufficiently researched. Spatial dependence assumption (SDA)-based methods
assume that close pixels have higher correlation than distant ones [83], such as the spatial
attraction SPM (SASM) [84, 85, 86], pixel swapping algorithm (PSSM) [87] and genetic
algorithm SPM [88, 89]. However, SDA prior is limited by the sampling scale on HSI pixels
[90], and near pixels are not always more correlated than distant ones. Although Markov
random field (MRF) prior is more precise than SDA priors, [91, 43], the fixed priors cannot
sufficiently characterize a HSI with the geographically realistic distribution [92]. DL-based
methods make the use of neural networks to achieve a learnable prior from training samples.
Both fully-connected networks [93, 94] and convolutional neural networks (CNNs) [95] have
been adopted to solve the SPM problem. Compared with traditional patch-based CNN,
the fully CNN (FCNN) can better capture the spatial correlation effect in HSIs [35, 16].
The structure of FCNN is capable of capturing statistical image information and imposing
an effective DIP to restore high-quality images from low-quality images without seeing a
large training dataset [17]. Recent publications show the effectiveness of DIP for image
restoration [18, 19, 20], e.g., HSI unmixing [31], super-resolution [21], image inpainting [16]
and denoising [22, 23]. However, FCNN-based approaches leveraging the DIP have not
been adapted to HSI for enhanced SPM. Therefore, how to integrate the DIP into SPM
for better modelling the spatial correlation in HSIs is an important research issue.

Second, although the use of the prior knowledge is essential for enhanced SPM, most
DL-based SPM methods heavily rely on the groundtruth data and ignore the prior knowl-
edge. For example, He et al.’s method [83] creates a network for SPM that requires training
sample pairs. However, the groundtruth is barely available for HSI datasets. To overcome
the training data limitation, the knowledge information (e.g., a forward model mapping
the finer label map to a HSI) and the observed HSI need to be effectively leveraged. The
encoder-decoder architecture has the potential to address this issue. It takes a learnable
inverse model (i.e., a deep neural network) as the encoder and a fixed forward model as the
decoder, which is trained with a data reconstruction loss without requiring any groundtruth
data. Although the strategy succeeds in several image restoration tasks [16], as well as in
the HSI unmixing [31], it has been rarely adopted to SPM. Therefore, it is critical to build
a coherent auto-encoder that integrates a designed forward model for unsupervised SPM.

Third, it is critical to design an optimization framework to estimate the underlying
subpixel labels in a coherent way for enhanced SPM, which is capable of capturing spa-
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tial correlation effect in the subpixel label field and incorporating the forward generation
model. The Bayesian method is used widely to solve the image inverse problem by inte-
grating prior knowledge of the desired variable with the posterior distributions given the
image observation [28, 30]. For example, the MRF has been incorporated as the prior for
HSIs in the Bayesian framework [29]. The DL technique solves inverse problems in many
applications from the new perspective by various network architectures [96]. However,
studies using DL for SPM in a Bayesian framework are few. The SPM problem can be
derived as a maximum a posteriori (MAP) problem in a Bayesian framework and solved
with the expectation-maximization (EM) approach. Therefore, it is important to design
an EM algorithm tailored for the SPM problem in the Bayesian framework.

In this chapter, a Bayesian SPM autoencoder network (BSMAN) for HSI which inte-
grates the forward model with an FCNN in a Bayesian framework is designed and im-
plemented. The BSMAN with an encoder-decoder architecture has the following three
characteristics.

1. A skip-connection FCNN works as the encoder to generate subpixel labels, where the
deep image prior (DIP) is used to model the spatial correlation in the subpixel label
field.

2. A dedicated discrete linear spectral mixture model (DSMM) is integrated with the
FCNN. This forward model maps subpixel labels to the discrete abundance of original
coarse pixel, and then reconstructs the HSI with the discrete abundance and extracted
endmembers.

3. An SPM autoencoder network is designed in a Bayesian framework without requiring
label samples for training. The resulting MAP problem is solved by a designed EM
algorithm. The latent variable (i.e., subpixel labels) and the model parameters (i.e.,
endmembers) are updated iteratively.

Comparative experiments on both simulated and real HSI demonstrate that the pro-
posed approach can generate subpixel labels with higher accuracy than other traditional
and state-of-the-art approaches by exploring the spatial correlation effect in the HSI. The
remainder of the paper is organized as follows. Section 3.2 formulates the SPM problem in
a Bayesian framework. The design of the network and its rationale are detailed in Section
3.3. Section 3.4 introduces the optimization scheme of the proposed BSMAN. Section 3.5
conducts experiments on both simulated and real HSIs.

3.2 Problem formulation

Following the notation in Chapter 2, we assume that an observed HSI data cube X has P
spectral bands, N pixels containing m rows and n columns, and the term I represents the
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set of coarse pixel sites in HSI, we denote the observed reflectance of the pixel at site i by xi,
which is a P×1 vector. Then the HSI can be expressed asX = {xi|i = 1, 2, ...,m×n}. The
term J represents the set of subpixel positions within each coarse pixel, which contains
a total of c2 positions. For example, when c = 2, a coarse pixel is divided into 2 × 2
subpixels, and the coarse HSI containing m× n pixels corresponds to a fine HSI with the
size of 2m× 2n subpixels.

Assuming that the HSI covers K classes, the SPM aims to infer subpixel labels L =
{li,j|i ∈ I, j ∈ J} in the HSI, where li,j is a one-hot K × 1 vector where the non-zero
element defines the class of the subpixel. The discrete abundance si of a coarse pixel is
determined by the proportions of subpixels labels, which is expressed as follows,

si =

∑c2

j=1 γ (max(li,j), k)

c2
(3.1)

where max(li,j) returns the index of the non-zero element (i.e., the hard class label), and
γ(u, v) is the Kronecker delta function where γ(u, v) = 1 for u = v and γ(u, v) = 0 other-
wise. For example, as illustrated in Figure 3.1, when c = 2, there is one ”tree” subpixel
and three ”flower” subpixels. Then the discrete abundance si corresponding to the coarse
pixel is a 2× 1 vector written as [1/4; 3/4].subpixel

1 0
00

0 1
11

1/4

3/4

Subpixels Subpixel labels
!$

Discrete abundance
of coarse pixel

"$

Figure 3.1: Illustration of the relationship between the subpixel labels and discrete abundances coarse pixel.

Then, a coarse pixel xi can be formulated as a linear combination of K endmembers
A = {ak|k = 1, 2, ..., K} weighted by discrete abundances plus noise ni, which is a DSMM:

xi =
K∑
k=1

ak

∑c2

j=1 γ (max(li,j), k)

c2
+ ni, (3.2)

The noise distribution is assumed to satisfy a Gaussian model [62] as follows:

p(ni) =
1√
(2π)P

exp(−1

2
ni

Tni) (3.3)
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SPM in a Bayesian framework can be achieved by maximizing the posterior distribution
of {li,j} given {xi}, i.e.,

p({li,j}|{xi}) ∝ p({xi}|{li,j})p({li,j}) (3.4)

Based on the above formulation, main characteristics of proposed method are summarized
below.

1. Instead of using traditional methods using MRFs or conditional random fields, DIP
is adopted to exploit the spatial correlation in the subpixel label field and to model
the p({li,j}), as detailed in Section 3.3.1.

2. Discrete abundances {si} are obtained from subpixel labels {li,j} and used to recon-
struct the coarse pixels {xi}.

3. Accurately modeling endmembers is important since the error in endmembers esti-
mation would propagate to the subpixel mapping results. Endmembers {ak} in this
chapter are modelled by a purified means approach, as detailed in Section 3.4.4.

4. Characterizing the noise is critical for the modelling of the data likelihood p({xi}|{li,j}),
which is modeled by a Gaussian distribution, as detailed in Section 3.3.2.

5. An efficient EM algorithm based optimization scheme is designed and implemented
in Section 3.4 for solving the new Bayesian inverse problem.

3.3 Bayesian Subpixel Mapping Autoencoder Network

The proposed BSMAN has an encoder-decoder structure. The encoder is a skip-connection
FCNN designed for the estimation of subpixel labels {li,j} , where DIP is used to model
the spatial correlation of the label field. The encoder maps the input (i.e, coarse HSI {xi})
to the subpixel labels {li,j}. The decoder has two parts. One part is the forward model
which maps the subpixel labels {li,j} to the discrete abundances. The other part of the
encoder reconstructs the HSI with class proportions and endmembers extracted from the
coarse HSI.

3.3.1 Prior of subpixel labels

Following the formulation in Chapter 2, the prior of {li,j} is expressed as,

p (li,j) =
1

w
exp

(
−∥li,j − E (li,j)∥2

)
(3.5)

where E(li,j) is the expectation of li,j. The prior encourages pixels that are spatially
correlated belonging to the same class. By implementing E(li,j) with an FCNN, the DIP
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in the HSI can be exploited [16]. Comparing with the patch-based CNN, FCNN has a wider
field of view of the input image and enables better modeling of the spatial correlation effect
in HSI. Using f(·) to represent the FCNN forward propagation, the expected li,j is written
as:

E(li,j) = f(zi,β). (3.6)

where zi is the input random noise and β is the set of model parameters including all
convolution kernels and biases. The non-negative and the sum-to-one constraint can be
achieved using “softmax” activation approach. In Eq. 3.5, li,j, as the output of the last
softmax layer, refers to the soft labels of subpixels instead of the hard labels.

3.3.2 Data likelihood

Based on Eq. 3.2 and Eq. 3.3, the data likelihood is formulated as

p (xi | li,j)

=
1

z
exp

−1

2

∥∥∥∥∥xi −

(
K∑
k=1

ak

∑c2

t=1 γ (max(li,t), k)

c2

)∥∥∥∥∥
2
 (3.7)

where the exponential part is the reconstruction error between the original HSI pixel xi

and the reconstructed one.

3.4 Model Optimization

3.4.1 MAP estimation

The SPM problem in Eq. 3.4 can be solved by the MAP approach by maximizing the
posterior distribution of L given the observed HSI X and the model parameters (i.e.,
endmembers) A as follows,

L̂ = argmax
L
{p(L |X,A)} (3.8)

Maximizing p(L | X,A) is equivalent to minimizing its negative logarithm likelihood.
Then, the objective function can be written as

J = argmin
L

N∑
i=1

c2∑
j=1

{
∥li,j − E (li,j)∥2

}
+

α

N∑
i=1


∥∥∥∥∥xi −

(
K∑
k=1

ak

∑c2

j=1 γ (max(li,j), k)

c2

)∥∥∥∥∥
2


(3.9)
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where α is a weighting parameter. Both endmembers {ak} and subpixel labels {li,j}
are unknown variables, making the SPM problem ill-posed. In the EM algorithm, li,j is
estimated by E(li,j). Replacing li,j with E(li,j), the objective function can be reformulated
as follows [16],

J = argmin
L

N∑
i=1


∥∥∥∥∥xi −

(
K∑
k=1

ak

∑c2

j=1 γ (max(E(li,j)), k)

c2

)∥∥∥∥∥
2
 (3.10)

This objective function has following characteristics:

• The EM algorithm estimates parameters by treating {li,j} as missing observations
and {ak} as model parameters, and iteratively updates the estimation of {li,j} and
{ak}, as illustrated in Section 3.4.2.

• We use E(li,j) as the estimation of li,j, where E(li,j) is modelled by an FCNN. {xi}
is used as the input to the FCNN. Once the FCNN is trained, we obtain l̂i,j = f(li,j),
as illustrated in Section 3.4.3.

• When estimating parameters in the FCNN for obtaining E(li,j), we use a recon-
struction loss based on ||xi − x̂i||2, which incorporates a forward model to constrain
meaningful li,j estimation, as illustrated in Section 3.4.3.

3.4.2 EM Iteration

The EM algorithm optimizes the incomplete data problem by iterating between E-step (i.e.,
estimation of model parameters given missing observations) and M-step (i.e., estimation of
missing observations given the model parameters) [68]. The main steps in EM algorithm
to estimate {li,j} and {ak} are summarized as follows.

• Initialization: Set the initial value for {ak}. The endmember of each class is manually
selected from the coarse HSI.

• E-step: Given endmembers {ak}, estimate subpixel labels {li,j} by optimizing an
FCNN, as introduced in Section 3.4.3.

• M-step: Given {li,j}, estimate endmembers {ak}. Endmembers {ak} are estimated
with the purified means approach [59], which is presented in Section 3.4.4.
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3.4.3 Subpixel labels estimation by FCNN training

The objective of E-step of the EM algorithm introduced in Section 3.4.2 is to obtain the
estimated subpixel labels {l̂i,j} which is achieved by an FCNN model in Eq. 3.6.

To estimate E(li,j), we first need to estimate the parameters in FCNN, i.e., β. Here,
we construct the following objective function to estimate β:

argmin
β

N∑
i=1


∥∥∥∥∥xi −

(
K∑
k=1

ak

∑c2

j=1 γ (max(f(xi,β)), k)

c2

)∥∥∥∥∥
2
 (3.11)

Adam stochastic optimizer [69] is adopted to estimate β.

3.4.4 Endmembers update by purified means

The endmember update in the M-step of the iterative EM algorithm introduced in Section
3.4.2 is achieved by the purified means approach, where the purified pixel yk

i is represented
as [59]:

yk
i = xk

i −
K∑
q ̸=k

∑c2

j=1 γ (max(li,j), q)

c2
aq (3.12)

The endmember matrix {âk} can be iteratively updated using their conditional expecta-
tion, which was introduced in Chapter 2, Eq. 2.27

3.4.5 Summary of Complete Algorithm

Based on the EM steps described in Section 3.4.2, the complete algorithm used for solving
BSMAN can be achieved, which is summarized in Algorithm 1.

3.5 Experiments

3.5.1 BSMAN implementation

We use the coarse HSI as the input of the FCNN, and the output is the soft subpixel labels.
The forward model is implemented with the average pooling to map soft subpixel labels
to discrete abundance of coarse pixels, and a linear combination to reconstruct the HSI
using discrete abundances and endmembers. The implementation of BSMAN is illustrated
in Figure 3.2. The FCNN is implemented with a U-Net type “hourglass” architecture with
skip-connection [16] to model a mapping from the input to soft labels of subpixels.
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Algorithm 2 BSMAN

Input: HSI X, numbers of classes K, and iteration numbers τ
Output: Class labels of subpixels {li,j}
Initialization: t := 1, {a(0)

k }

While t ⩽ τ do
E-step:

estimate β in FCNN,
estimate {li,j} ← fcnn({xi}, {ak}) in Eq. 3.6

M-step:
for k=1,2,...,K
estimate {yk

i } according to Eq. 3.12
estimate ak using {yk

i }
end for

end while

Figure 3.2: Subpixel mapping framework. The encoder is a skip-connection FCNN designed for the estimation of soft labels
of subpixels {li,j}, where DIP is used to model the spatial correlation of the label field. The decoder is the forward DSMM
model which contains two parts. One part is the forward downsampling which maps soft labels of subpixels to the class
proportions S. The other part reconstructs the HSI X̂ with si and endmembers A extracted from the HSI X.
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3.5.2 Datasets and pre-processing

Six images are used to evaluated the proposed BSMAN, including three simulated HSIs,
two real HSIs and one time-series multispectral images.

Simulated HSIs

In this experiment, a 78× 78 sized fine-resolution HSI is simulated with four endmembers
with 200 spectral bands. Each pixel in the simulated HSI is a mixture of four endmembers
shown in Figure 3.4. Pixels are created using the four endmembers multiplied by four
abundance maps following a linear spectral mixture model. Abundance maps are generated
by first being divided into 8× 8 sized homogeneous blocks of one of the four endmembers,
then degrading the blocks by applying a spatial low-pass filter with the size of of 9 × 9
pixels. The resulting HSI is further degraded by zero-mean Gaussian noise (SNR = 40dB).
The label of each pixel is determined by the dominant endmember in the coarse pixel.
The coarse HSIs at three degradation scales (i.e., 2, 3 and 4) are obtained by applying
mean spatial filters with the kernal sizes of 2×2, 3×3 and 4×4 pixels separately to down-
sample the fine HSI. As a result, three HSIs with the sizes of 39×39, 26×26, and 19×19
are simulated.

Jasper Ridge HSI dataset

Jasper Ridge is a HSI dataset with 100×100 pixels, recorded at 198 channels ranging from
0.38 µm to 2.5 µm as introduced in Chapter 2. There are four endmembers in this data,
i.e., “road”, “soil”, “water” and “tree”. The label of each subpixel is determined by its
dominant endmember. The RGB color composition of the HSI has been shown in Chapter
2, Figure 2.3 (a). The input coarse HSI with the size of 50×50 is obtained by applying a
2×2 mean filter to the original HSI.

Saint Andre HSI dataset

The Saint Andre HSI contains 50 × 50 pixels, composed of 415 spectral bands ranging from
0.40 to 2.40 µm as introduced in Chapter 2. Endmember spectra of six distinct materials
(i.e., “tree”, “grass”, “soil”, “road”, “building 1”, and “building 2”) have been manually
extracted based on prior knowledge of the scene [74, 31]. The label of each subpixel is
determined by its dominant endmember. The RGB color composition of the HSI has been
shown in Chapter 2, Figure 2.3 (b). The input coarse HSI with the size of 25×25 is obtained
by applying a 2×2 mean filter to the original HSI.
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Time-series Landsat imagery

A HSI-like image was obtained by combining 11 time-series Landsat-8 images over Gulin
City, Sichuan, China from 2013 to 2017 with cloud cover lower than 10%. From the image,
we identify a subarea, where the land cover types stayed constant during the time series. By
removing the panchromatic bands and two damaged bands, the size of the subarea dataset
is 40 × 40 × 108. The dataset was used in a previous study on the HSIs classification
[29]. The input coarse image with the size of 20×20×108 is obtained by applying a 2×2
mean filter to the original one. There are five land covers types in this area, i.e., road,
residential area, forestland, terrace, and farmland. The groundtruth label map is obtained
by reference the high-resolution UAV image shown in Figure 3.5 (b).

3.5.3 Experimental Setup

Methods Compared

The proposed method is compared with several traditional subpixel mapping methods
including GAAI[89], SPM LM[97], SASM[84], PPSM[98], RBF[86] and SPMSS[99].

Numerical Measures

Three kinds of accuracy indices are used to evaluate the quantitative performance of SPM
algorithms on real HSIs: the accuracy of each class, the overall accuracy (OA), and the
Kappa coefficient (Kappa). Only the last two indices (i.e., OA and Kappa) are used in the
simulated study.

Parameter settings

Hyperparameters including the learning rate, iteration times and the number of skip con-
nection layers are determined empirically, which are recorded in Table 3.1. Hyperparam-
eters are required to be adjust for different HSIs since HSIs vary in the sensor, data size
and complexity. All data processing is conducted using the Python language under the
Pytorch framework.

3.5.4 Simulated Study

Figure 3.6, Figure 3.7 and Figure 3.8 show visual comparison between the proposed method
with other methods as three downsampling-scale factors. The proposed BSMAN method
always generate subpixel label maps with the richest spatial texture details and the least
noise. Besides, BSMAN, GAAI and SPM LM perform better than the rest methods (i.e.,
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Figure 3.3: FCNN structure in BSMAN framework. C represents the number of convolution channels.

Table 3.1: Hyperparameters Setting.

HSI HSI Size Scale LR Epochs EM Skips
Simu 1 39× 39× 200 2 0.0001 20 70 4
Simu 2 26× 26× 200 3 0.0001 20 100 4
Simu 3 19× 19× 200 4 0.0001 10 100 4
Jasper 50× 50× 224 2 0.0002 200 50 4
Saint 25× 25× 415 2 0.001 300 20 3

Landsat 20× 20× 108 2 0.0001 100 10 3

Simu 1, 2 and 3 refer to simulated HSIs by degrading the original HSI with c = 2, 3, 4.
The fourth column is the learning rate for FCNN training in E-step.
The fifth column is the number of epochs for FCNN training in E-step.
The sixth column is the number of EM iteration.
The seventh column is the number of the skip-connections in the FCNN, determined by the network
depth.
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(a) Endmember (b) label

(c) Simu, fine (d) Simu1, c=2 (e) Simu2, c=3 (f) Simu3, c=4

Figure 3.4: False color images of simulated HSIs.

SASM, PSSM, RBF and SPMSS) by delineating the class boundary more accurately and
with less noisy. SASM, PPSM, RBF are based on the concept of spatial dependence, as-
suming that pixels spatially adjacent are more likely to be in the same class, leading to
the blocking effect in the label maps. GAAI shows less blocking effect because it corrects
the potential errors in the estimated abundance maps and achieved a global optimization.
SPM LM minimizes an objective function using the spectral term to regulate the spatial
term by combining a linear unmixing model and a maximum spatial dependence model.
Although SPMSS considers both spatial and spectral correlation, it highly relies on the
bilinear and bicubic interpolation results, leading to the blocking effect as well. The numer-
ical indices summarized in Table 3.2 show consistent results with the visual demonstration.
The OA and Kappa of the classification results obtained by the proposed BSMAN are the
highest among all tested methods at scale factors are two and three. When c = 4, although
BSMAN gives the richest spatial detail information in Figure 3.8 (b), the performance of
BSMAN in terms of OA and Kappa rank the second after SPM LM due to inaccurate
label prediction near the edge of the scene. This is caused by the convolution operations
on small-size images.
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(a) True color Landsat-8
image

(b) The UAV image

Figure 3.5: True color images of the time-series Landsat scene. (a) Low-resolution (30m) true color Landsat-8 imagery; (b)
the high resolution (0.2m) UAV imagery that helps the acquisition of the groundtruth map.

(a) Label (b) BSMAN (c) GAAI (d) SPM LM

(e) SASM (f) PSSM (g) RBF (h) SPSMM

Figure 3.6: Subpixel mapping results (subpixel label maps and their OA) of different methods on the simulate dataset with
c = 2. (a) Label. (b) BSMAN. (c)GAAI. (d) SPM LM. (e) SASM. (f) PSSM. (g) RBF. (h) SPSMM.
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(a) Label (b) BSMAN (c) GAAI (d) SPM LM

(e) SASM (f) PSSM (g) RBF (h) SPSMM

Figure 3.7: Subpixel mapping results (subpixel label maps and their OA) of different methods on the simulate dataset with
c = 3. (a) Label. (b) BSMAN. (c)GAAI. (d) SPM LM. (e) SASM. (f) PSSM. (g) RBF. (h) SPSMM.

(a) Label (b) BSMAN (c) GAAI (d) SPM LM

(e) SASM (f) PSSM (g) RBF (h) SPSMM

Figure 3.8: Subpixel mapping results (subpixel label maps and their OA) of different methods on the simulate dataset with
c = 4. (a) Label. (b) BSMAN. (c)GAAI. (d) SPM LM. (e) SASM. (f) PSSM. (g) RBF. (h) SPSMM.
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Table 3.2: Simulated HSI data: Kappa Coefficient and Overall Accuracy.

Methods
c = 2 c = 3 c = 4

Kappa OA(%) Kappa OA(%) Kappa OA(%)

SPMSS 0.529 64.7 0.586 69.0 0.628 72.2
RBF 0.552 66.5 0.586 69.0 0.650 73.8
PSSM 0.477 60.9 0.505 62.9 0.419 56.2
SASM 0.552 66.5 0.592 69.4 0.493 61.7

SPM LM 0.811 85.9 0.798 84.9 0.782 83.8
GAAI 0.856 89.2 0.750 81.3 0.445 58.1
DIP 0.870 90.2 0.868 90.1 0.707 77.9

3.5.5 Test on real HSIs

Test on Jasper Ridge HSI

Figure 3.9 shows the SPM results for the Jasper HSI scene obtained by different SPM
methods. The subpixel label map obtained by the BSMAN methods shows the most
detailed spatial textural information and achieves the highest numerical accuracy shown
in Table 3.3. Table 3.4 shows the individual classification accuracy achieved by different
methods on the HSI. The proposed BSMAN performs the best on the class “water”, “tree”,
and “soil”. Although the “road” class accuracy is relatively low, the outline of the road
is still clearly visible in Figure 3.9. We attribute the false negative pixels for road class to
the smoothness property of convolutions.

Table 3.3: Jasper Ridge HSI data: Kappa Coefficient and Overall Accuracy.

Methods Kappa OA(%)

SPMSS 0.315 50.2
RBF 0.547 66.2
PSSM 0.550 67.9
SASM 0.581 70.2

SPM LM 0.794 85.5
GAAI 0.796 85.8

BSMAN 0.808 86.8
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Table 3.4: Jasper Ridge HSI data: Individual class accuracies (%).

Methods Water Road Tree Soil

SPMSS 64.9 41.4 45.7 39.13
RBF 88.4 71.7 55.6 48.7
PSSM 91.2 53.2 58.6 54.0
SASM 92.0 59.3 60.3 57.8

SPM LM 99.9 65.7 84.8 73.1
GAAI 99.9 64.2 87.1 71.2

BSMAN 100.0 23.2 90.5 83.0
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(a) Input coarse image (b) Label (c) BSMAN 86.81%

(d) GAAI 85.81% (e) SPM LM 85.59% (f) SASM 70.24%

(g) PSSM 67.99% (h) RBF 66.22% (i) SPMSS 50.21%

Figure 3.9: Subpixel mapping results (subpixel label maps and their OAs) of different methods on Japser dataset.

Test on Saint Andre HSI

Figure 3.10 shows the SPM results for the Saint HSI scene obtained by different SPM
methods. The subpixel label map obtained by the BSMAN methods preserve the richest
the spatial textural information and achieved the highest OA and Kappa shown in Table
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3.5. The Saint scene turns out to be more challenging than the Jasper scene given the all
methods on this scene obtains relatively lower SPM accuracy and more noisy label maps.
We attribute it to the similar land cover types and higher mixed pixels in the HSI. The class
of soil, grass and tree are commonly mixed in real scenarios, especially for soil and grass at
the bottom of this HSI scene. BSMAN successfully identified the dominant class in the HSI
and restored the label map illustrated in Figure 3.10 (b), indicating that BSMAN is more
capable to deal with highly-mixed HSI pixels. For individual classes, BSMAN achieves the
highest individual class accuracies on classes of soil, road and building2 displayed in Table.
3.6. However, the accuracy for tree is relatively low because BSMAN treats the shadow
part of trees as building1 (see Figure 3.10 (b)).

Table 3.5: Saint HSI data: Kappa Coefficient and Overall Accuracy.

Methods Kappa OA(%)

SPMSS 0.195 36.0
RBF 0.207 40.1
PSSM 0.191 36.6
SASM 0.204 37.5

SPM LM 0.381 59.6
GAAI 0.407 59.2

BSMAN 0.623 72.4

Table 3.6: Saint HSI data: Individual class accuracies (%) (the highest accuracy in each
row is in bold format.

Methods Tree Soil Road Grass Building1 Building2

SPMSS 41.0 45.7 48.4 27.6 40.2 11.1
RBF 64.9 59.4 27.3 25.4 0.0 55.5
PSSM 58.4 35.4 27.9 28.1 27.0 44.4
SASM 59.7 36.0 34.1 27.9 24.3 63.8

SPM LM 61.3 1.0 54.6 85.0 51.3 75.0
GAAI 96.3 0.4 54.0 66.7 43.0 94.4

BSMAN 53.5 84.8 84.4 74.7 75.0 77.7
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(a) Input coarse image (b) Label (c) BSMAN 72.44%

(d) GAAI 59.24% (e) SPM LM 59.60% (f) SASM 37.56%

(g) PSSM 36.68% (h) RBF 40.12% (i) SPMSS 36.00%

Figure 3.10: Subpixel mapping results (subpixel label maps and their OAs) of different methods on Saint dataset.
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(a) Input coarse image (b) Label (c) BSMAN 59.25%

(d) GAAI 57.00% (e) SPM LM 48.56% (f) SASM 45.19%

(g) PSSM 44.38% (h) RBF 38.89% (i) SPMSS 44.06%

Figure 3.11: Subpixel mapping results (subpixel label maps and their OAs) of different methods on Landsat Time Series
dataset.

Test on Time-series Landsat imagery

Figure 3.11 shows the SPM results for Landsat dataset obtained by different SPM methods.
The subpixel label map obtained by the BSMAN methods preserve the richest the spatial
textural information and achieved the highest OA and Kappa coefficient. The Landsat
dataset is more challenging to do SPM than the two HSIs because of its lower spatial
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resolution, more mixed pixels, fewer spectral bands and coarser spectral resolution. As
a result, the OA accuarcies are much lower than the other two datasets. However, the
proposed BSMAN still shows big potential on mapping multispectral satellite imagery by
achieving the highest SPM accuracies (see Table 3.7) than all other methods. BSMAN
achieved the highest accuracy for the individual classes of farmland and terrace. Although
the accuracy for class road of BSMAN is not the highest, its advantage of recognizing linear
objects from low resolution images (see Figure 3.11(d)). Although SPMSS also identifies
the road very well, it gives fragmentary classification generally on all classes. Unlike GAAI
and SPM LM under-segmenting classes or SASM, PSSM and SPSMM over-segmenting
classes, BSMAN strikes a better balance between clustering large land regions smoothly
and preserving the boundary features.

Table 3.7: Landsat Time Series data: Kappa Coefficient and Overall Accuracy.

Methods Kappa OA (%)

SPMSS 0.285 44.0
RBF 0.237 38.8
PSSM 0.263 44.3
SASM 0.275 45.1

SPM LM 0.343 48.5
GAAI 0.404 57.0
BSMN 0.466 59.2

Table 3.8: Landsat Time Series data: Individual class accuracies (%) (the highest accuracy
in each row is in bold format).

Methods Residential area Forestland Farmland Terrace Road

SPMSS 36.3 41.3 65.7 38.2 54.8
RBF 32.3 48.2 43.0 45.8 31.5
PSSM 43.8 24.1 58.6 40.1 43.6
SASM 44.4 25.0 59.3 38.8 50.3

SPM LM 38.9 95.6 58.9 60.5 9.7
GAAI 52.7 47.4 73.2 72.6 16.5

BSMAN 40.5 61.2 96.2 72.6 48.1

3.6 Conclusion

In this chapter, we presented a Bayesian subpixel mapping autoencoder network for HSIs.
An encoder-decoder architecture was designed to incorporate the FCNN with DIP prior
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and the forward models to effectively estimate the subpixel labels by learning from both
data and prior knowledge. BSMAN adopted an FCNN to exploit the spatial correlation
effect in the subpixel label field. An efficient purified means approach was adopted to the
SPM framework for the endmember estimation. The resulting Bayesian MAP framework is
solved by the proposed EM approach. The proposed approach was tested on both real and
simulated HSIs, in comparison with several other SPM methods. The proposed BSMAN
method was demonstrated effective for SPM with more accurate SPM results than other
methods.
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Chapter 4

Unsupervised Bayesian Deep Image
Prior Downscaling for
High-resolution Soil Moisture
Estimation

Soil moisture (SM) estimation is a critical part of environmental and agricultural monitor-
ing, with satellite-based microwave remote sensing being the main SM source. However,
the limited spatial resolution of most current remote sensing SM products reduces their
utility for many applications such as evapotranspiration modeling and agriculture manage-
ment. To address this issue, we propose a Bayesian deep image prior (BDIP) downscaling
approach to estimate the high-resolution SM from satellite products. More specifically, the
high-resolution soil moisture estimation problem is formulated as a maximum a posteriori
(MAP) problem, and solved via a neural network comprising of a deep fully convolutional
neural network (FCNN) for modeling the prior spatial correlation distribution of the un-
derlying high-resolution SM variables, and a forward model characterizing the SM map de-
generation process for modeling the data likelihood. As such, the proposed BDIP approach
provides a statistical framework that integrates deep learning with forward modelling in a
coherent manner for combining different sources of information, i.e., the knowledge in the
forward model, the spatial correlation prior in FCNN architecture, and the remote sensing
data and products. Experiments on the downscaling of Soil Moisture Active Passive SM
products using the Moderate Resolution Imaging Spectroradiometer products show that
SM maps estimated using the proposed method provide greater spatial detail information
than other downscaling methods, with the SM estimates very close to in-situ measurements.
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Figure 4.1: Bayesian deep image prior model for SM downscaling. The encoder is implemented as a FCNN accounting for
the spatial correlation prior of the high-resolution SM, and the decoder part works as the forward model.

4.1 Introduction

Soil moisture (SM) highly influences hydrologic and atmospheric processes for environmen-
tal and agricultural monitoring. Microwave remote sensing (RS), with the high sensitivity
to the SM variation and robustness to atmosphere conditions, is the most commonly used
approach to monitor SM [100, 101, 102]. The Soil Moisture Active/Passive (SMAP) mis-
sion has been providing soil moisture at two spatial resolutions of 36 and 9km since April
2015 [103]. However, these two spatial resolutions do not meet the requirements for ap-
plication to evapotranspiration modeling and agriculture management [7, 103]. Therefore,
improving the spatial resolution of the SMAP SM product to 1km spatial resolution is
essential. Downscaling is an inverse problem that reconstructs images at higher resolution
from coarse observations. Since SM has high variation over spatial scales smaller than the
SMAP resolutions, spatial heterogeneity must be properly addressed when downscaling
[102].

The SM downscaling can be achieved by different strategies, e.g., data fusion or assimi-
lation [104, 105, 106, 107], geostatistical [102, 108], traditional regression [109] and machine
learning (ML) [110]. Data fusion and assimilation for the downscaling is achieved by comb-
ing multi-sources data and extracting more accurate spatial SM information. Geostatistical
methods interpolate the SM product with geographical models based on the certain spatial
assumption, e.g., the geographically weighted regression [102]. The traditional regression
method uses a simple regression model, e.g., a linear regression model, to analysis the cor-
relation between the SM and other RS products [109], which could not sufficiently explore
the complex relationship between them. ML methods (e.g., the decision tree regression
[100]) show stronger potential in SM downscaling by building the nonlinear relationships
between the SM and other indices. Recently, deep learning using multi-layer perceptron
(MLP) has been adopted to SM downscaling due to its capability in learning complex
relationships between inputs (i.e., the coarse-resolution SM and fine-resolution ancillary
products) and the target data (i.e., the fine-resolution SM), and its short inference time
after training [103]. This downscaling model is trained using SM products with different
resolutions, and then can be used for improving the spatial resolution of SM products by
the same scale as training. However, the scale of SM products to reduce is limited by
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the scale difference between the two SM products used for training. In addition, MLP
cannot effectively model the spatial correlation of the SM. A convolutional neural net-
work (CNN)-based downscaling method [111] is proposed recentlywhich can better exploit
the spatial information within adjacent pixels. However, most of the ML-, MLP- and
CNN-based methods are supervised, requiring the groundtruth data which could be in-situ
measurements or the high-resolution SM products, and as such the performance is greatly
dependent on the training dataset. [112].

Fully CNNs (FCNNs) have been widely used in various tasks including semantic seg-
mentation [51, 52], super-resolution [113] and image denoising [54], as examples. Unlike
the classic CNN, the FCNN contains no fully-connected layers and it can take input of
arbitrary size. Ulyanov et al. [16] demonstrate that the structure of a FCNN is sufficient
to capture low-level image statistics [16], which is called ”deep image prior (DIP)” . The
FCNN can capture appropriate global spatial features [35] with a wide image field-of-view
compared to a CNN layer [17]. Also, compared to traditional methods [114, 102, 109],
FCNN is much more computationally efficient by leveraging GPUs. In addition, many
of downscaling methods assume a linear scaling relationship between optical-derived input
variables and SM, which is not always satisfied [115]. Accounting for nonlinearities between
SM and the input variables, FCNN, as an empirical method, has more potential compared
to traditional models [115].

We integrate the DIP captured by FCNN into a Bayesian framework to address the SM
downscaling inverse problem. Then the resulting downscaling model becomes a Bayesian
deep image prior (BDIP) downscaling network, where the inverse model is implemented by
a FCNN accounting for DIP, the forward model is modelled by a downsampler describing
the relationship between low- to high-resolution SM map.

Contributions of this chapter are summarized as follows:

1. We adopt a BDIP scheme to SM downscaling to account for the spatial heterogeneity
in higher resolution SM maps.

2. The forward model describing the spatial resolution decreasing process from high- to
low-resolution SM map is integrated into the Bayesian framework to solve the inverse
problem.

3. The resulting maximum a priori (MAP) problem is solved by the back-propagation
instead of using the typical expectation-maximization iterative method, which makes
the model optimization simple and effective.

4. The proposed method reconstructs the SM in high spatial resolution only by extract-
ing information from high-resolution RS products and the low-resolution SM using
DIP, without requiring any ground-truth data for model training.

The proposed method is designed to effectively downscale SMAP SM products at 9km
spatial resolution to 1km resolution, which can facilitate the generation of 1km SM maps
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using coarse SM product and some ancillary data, and thereby can enhance the hydrological
monitoring in the study area by offering more spatially-detailed hydrological information
of the study area. The method is evaluated qualitatively and quantitatively, and results
demonstrate that the proposed approach achieves new state-of-the-art results compared to
other unsupervised methods.

4.2 Problem formulation

We assume that the RS product with low spatial resolution is X = {xi|i = 1, 2, ...,m×n},
and the RS product with high spatial resolution is Y = {yi|i = 1, 2, ..., α2×m×n}, where
α is the ratio between the low- and high-spatial resolutions. Given the forward mapping
Φ(·) from Y to X, the low resolution image X can be represented as follows,

X = Φ(Y ) +N (4.1)

where N ∈ Rm×n is the noise matrix.

The RS product downscaling aims to infer the high-resolution image Y based on the
observed low-resolution image X, which in a Bayesian framework can be achieved by
maximizing the posterior distribution p(Y |X), i.e.,

p(Y |X) ∝ p(X|Y )p(Y ) (4.2)

Given the generative model g(·) of X in Eq. 4.1 and the posterior distribution in Eq.
4.2, several key factors for effective downscaling are identified as follows:

1) The effective modelling of the high-resolution image prior p(Y ) is critical for regu-
lating and estimating the high-resolution image Y .

2) Meaningful modelling the data likelihood p(X|Y ) is essential for guiding and regu-
lating the downscaling process.

3) An efficient optimization scheme for solving the Bayesian inverse problem is necessary.

In this chapter, p(Y ) is achieved by the DIP approach using FCNN, as detailed in
Section 4.2.1. The data likelihood p(X|Y ) is modelled by a distribution incorporating
the forward model, as detailed in Section 4.2.2. An efficient optimization scheme is de-
signed and implemented in Section 4.3. The designed Bayesian DIP downscaling model is
illustrated in Figure 4.1.

62



4.2.1 Prior of the high-resolution SM map

There are three key requirements on the high-resolution SM Y when designing the prior
p(Y ).

1) The large-scale heterogeneous spatial correlation effect in SM map should be fully
exploited.

2) SM should be in the meaningful value range of [0, 1]

3) High-resolution SM prior should allow efficient optimization.

Here, we represent the prior over the high-resolution SM Y by a distribution expressed
as,

p(Y ) =
1

z
exp(−δ(Y , E(Y ))) (4.3)

where E(Y ) is the expectation of Y , which is implemented as a FCNN, and δ(u,v) is the
distance function measuring the distance between vectors u and v.

The prior spatial information of Y can be captured by an FCNN structure [16] which
has a wide field of view of the input image compared to patch-based CNN and can be
optimized efficiently on GPUs. Using f(·) to represent the FCNN forward propagation,
the expected Y is written as:

E(Y ) = f(Z,β). (4.4)

where Z is the input random noise and β is the set of model parameters including all
weights of convolution kernels and biases. We use a “hourglass” architecture with the
skip-connection [16] to model a mapping f(·) from the input variable Z to high-resolution
SM map Y due to its excellent feature extraction and noise-resistant capability.

We change the “ReLU” activation function in the original U-Net architecture to the
“sigmoid” activation because the value of SM is in the range from 0 to 1. In addition, the
1x1 convolution final layer for segmentation is changed to map the extracted feature to the
SM output with one layer. The output layer is activated by “sigmoid” which normalizes
the value of the input into [0, 1]. We reduced the feature number for each layer from [64,
128, 256, 512] to [2,4,8,16]. The “hourglass” architecture used is shown in Figure 4.2.

4.2.2 Data likelihood

The data likelihood is expressed as

p(X|Y ) =
1

Z
exp(−δ(X,Φ(Y )) (4.5)
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Figure 4.2: “Hourglass” architecture with skip-connections of the FCNN part in Figure 4.1 accounting for DIP.
Blocks in the figure represent for operations rather than features. The U-Net type “hourglass” architecture [36] encodes an
input image to a feature tensor with a smaller size and more channels at the bottleneck, and decodes the feature tensor to the
output image of the same size as the input image. The downsampling reduces the feature size which is essentially achieved
by the max-pooling operation (green blocks). The up-sampling recovers the feature size step-by-step by bilinear upsampling
operations (red blocks). Double regular convolution operations (yellow blocks) are conducted after each max-pooling or
TransConv operation, which does not change the feature size but increases or decreases the channel number (i.e., C) of
features. The skip connection is implemented by copying and concatenating features.

where δ(X,Φ(Y )) is the distance between the low-resolution SM map X and the recon-
structed low-resolution SM map Φ(Y ). The distance function could be implemented with
different specific functions based on the real data characteristic. For example, it can be im-
plemented as a L2-norm function when the image noise satisfies the Gaussian distribution,
or as a L1-norm for Laplace distribution.

4.3 BDIP model optimization

The downscaling problem in Eq. 4.2 can be solved by the MAP approach, where the high-
resolution SM map Y is estimated by maximizing the posterior distribution of Y given
the observed low-resolution SM map X, i.e.,

Ŷ = argmax
Y
{p(Y |X)} (4.6)

Maximizing p(Y |X) is equivalent to minimizing its negative logarithm likelihood, i.e.,

Ŷ = argmin
Y
{−logp(Y |X)} (4.7)
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Then, the objective function can be written as

JY = argmin
Y
{−logp(Y |X)}

∝ argmin
Y
{−logp(X|Y )− logp(Y )}

(4.8)

Considering Eq. 4.3, 4.5, the objective function can be reformulated as

JY =argmin
Y
{δ(X,Φ(E(Y |M)))} (4.9)

where E(Y |M ) is the posterior expectation of Y if given ancillary RS data with the high
spatial resolution M . We use E(Y |M) as the expectation of Y . To estimate parameters
in E(Y |M), we use M as input to FCNN and optimize FCNN parameters. Given the
estimated parameters in FCNN, we achieve Ŷ = E(Y |M), as illustrated in Section 4.2.1.
When estimating parameters in FCNN for obtaining E(Y |M ), we use a reconstruction
distance based on δ(X,Φ(E(Y |M ))), which incorporates the forward model to constrain
the meaningful Y estimation, as illustrated in Section 4.4.2.

To estimate E(Y |M ), we first need to estimate the model parameters in FCNN, i.e.,
β. Here, we construct the following objective function to estimate β:

β̂ = argmin
β
{δ(X,Φ(f(M,β)))} (4.10)

Backpropagation with the Adam stochastic optimizer [69] is adopted in this work to esti-
mate β.

4.4 Method

4.4.1 Study area and datasets

We select a rectangular study area (i.e., the area inside the green box shown in Figure 4.3)
where both SMAP SM products and the Moderate Resolution Imaging Spectroradiometer
(MODIS) products cover the area on all eight dates in 2020. The area is across United
States and Mexico ranging from 27°N to 33°N and 100°W to 108°W. The distribution of
stations and the land cover map are illustrated in Figure 4.4. The distribution of stations
and the land cover map are illustrated in Fig.4. The study area is mainly covered by
different vegetation species including the shrublands, savannas, cropland, and the sparsely
vegetated region. The open shrublands (in the middle in Figure 4.4) are normally drier
than the grassland (on the right in Figure 4.4) and the woody savannas (on the bottom-left
in Figure 4.4). Therefore, the SM value is lower in the middle part of the study area than
side parts. So, the soil moisture can be largely spatially variated and suitable for the soil
moisture study.
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Figure 4.3: Location of the study area.

USCRN
SCAN

Network

Figure 4.4: Distribution of the stations providing in situ SM measurements and Land cover map of the study area.
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All data used in this chapter, including SMAP SM products at 9km spatial resolution,
the MODIS products and the in-situ data, are collected on eight dates in 2020. The eight
dates are January 25, Feburary 25, March 13, April 14, May 16, September 5, October 7
and December 26. The objective is to downscale SMAP SM maps to the 1km-resolution
SM map. The MODIS products is utilized to provide more spatial texture information.
The downscaling performance is evaluated by the in-situ SM data.

SMAP data

The SMAP mission is an L-band satellite incorporating both a radiometer and a radar
dedicated to global SM measurements [100]. The daily SMAP level-3 SM passive product
at 9km (L3 SM P E) resolution acquired from NSIDC (National Snow and Ice Data Center)
is downscaled to a 1km SM map. Only the descending data acquired at 6:00 am is used.

MODIS products

NDVI and LST are physically related to SM [116] and commonly used for SM downscaling
[100, 111, 112]. High-resolution auxiliary information, i.e., M in Eq. 4.9 , MODIS products
(MYD13A2 and MYD11A2) collected from the Land Processes Distributed Active Archive
Center (LPDAAC), are utilized to downscale the SMAP SM products at 9km resolution up
to 1km resolution. The MYD13A2 Version 6 product provides the normalized difference
vegetation index (NDVI) and the enhanced vegetation index with a 1km resolution. Only
the NDVI layer from MYD13A2 is used in this study. The MYD11A2 Version 6 product
provides an average 8-day per-pixel land surface temperature (LST) and emissivity with a
1km spatial resolution. Only the first layer “LST Day 1km” from MYD11A2 is used.

In-situ measurement

The international soil moisture network (ISMN) hosts in-situ SM measurements collected
starting 1952 to present from a total of 35 international SM networks. SM data from two
networks (i.e., USCRN and SCAN) are used to evaluate the downscaling quality because
the stations in these two networks are distributed more densely in the study area. There
are four stations in the study area. The in-situ SM observation measures the small point
scale SM values and cannot be used directly in large-scale soil moisture application, the
shortcoming of which can be improved by remote sensing-based SM mapping approaches.
Considering that in-situ SM measures are more accurate than remote sensing SM products,
here, we use these measures as ground truth to validate our downscaling results.

Data pre-processing

For each time point, the MODIS NDVI and LST products, SMAP SM products, as well as
the in-situ measurements are prepared. The MODIS MYD13A2 and MYD11A2 products at
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1km resolution are downloaded and stitched together to achieve the global coverage for the
further processing. The NDVI layer from MYD13A2, the LST layer from MYD11A2, and
the SM layer from SMAP products layers are georeferenced and cropped by the longitude
and latitude of the region of interest boundary. The image size of SMAP 9km SM, NDVI
and LST, covering the study area are 74×86, 666×774 and 666×774, separately. The three-
channel input of the network contains the 1km NDVI, 1km LST and the 1km interpolated
SM, which is obtained from SM at 9km using a bilinear interpolation. Considering the fact
that SMAP soil moisture range between 0 and 1, we address the negative-valued outliers
as positive values using a neighborhood refilling method, in which to remove the outliers
in SMAP SM products, we refill the pixels using median values of their 3x3 neighboring
pixels.

4.4.2 Model implementation

A BDIP downscaling model is illustrated in Figure 4.5, where the FCNN f(·) performs the
inverse model, and the downsampler D(·) acts as the forward model. The inverse model
will be trained while the forward model is known and fixed. In this manner, the FCNN
can achieve the downscaling purpose by learning from the forward model and inverting
the downsampling operation. Then, the relationship between SM maps at 1km (Y ), 9km
(X9) can be expressed as follows,

X9 = D9(Y ), (4.11)

where D9(·) is implemented using the “Lanczos” filtering with the downsampling factor 9.

The inputM contains three layers, i.e., the NDVI fromMYD13A2, LST fromMYD11A2,
and the interpolated 1km SM map. Then the final output of the network, which is the
estimated 9km SM can be formulated as:

X̂9 = (D9(f(M ,β)) (4.12)

We minimize the loss function as follows to train the FCNN,

L = δ(X9, X̂9) (4.13)

Unknown parameters β are network parameters of the FCNN, including weights and bias.
Once the model is trained, the intermediate output Y can be obtained as the downscaled
SM.

Forward model selection

The downsampler works as the forward model mapping the LR SM to the HR SM. To find
an appropriate forward model with the best capability of preserving the spatial information

68



NDVI

LST

Interpolated SMAP

Input 𝑴

FCNN
𝒇(#)

1km SM

Output 𝒀

Down-sampler
D(#)

9km SM

SMAP 9km SM

Loss

Distance loss 𝑳

Figure 4.5: Overall model architecture for SMAP SM downscaling. The network input M includes MODIS products NDVI,
LST, and the interpolated 1km SM from 9km SMAP SM. The output of the downscaling model is the downscaled SM Y .
Unknown parameters β are network parameters of the FCNN, including weights and bias.

and the highest downscaling accuracy, we try the average pooling, max-pooling and the
downsampling with Lanczos kernel. Although it is claimed that no consistent differences
are found among these downsampling methods for RGB images super-resolution [16], it is
critical to find out their performance of downscaling on the RS imagery products.

Loss function design

The reconstruction loss is initialized as a L2 loss, which is commonly used in image re-
construction tasks [16]. However, given its performance of blurring some detailed spatial
information, L1 loss, L1 loss combined SSIM loss [117], as well as the combination of L1
loss, SSIM loss and perceptual loss [118] are tested to better reconstruct the structural
spatial texture in HR SM maps.

Skip connections

Skip connections in FCNNs solves the degradation problem and ensures the feature reusabil-
ity by copying and concatenating features from shallower layers to deeper layers. To better
preserve the spatial feature in the input data, besides the skip-connections existing in a
classic U-Net architecture, we add a skip connection (indicated by the purple line in Figure
4.2) by concatenating the output feature of the input layer to the output feature of the last
second layer (i.e, the last 3 × 3 convolution layer indicated by the yellow block in Figure
4.2.)

Parameters configuration

The learning rate and training epochs for different models are summarized in Table. 4.1.
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Table 4.1: Parameters configuration for different models

Downsampler Loss
Learning
rate

Epoch

Average L2 0.003 3000
Max L2 0.003 3000
Lanczos L2 0.003 3000
Lanczos L1 0.003 3000
Lanczos 0.1×L1+1×SSIM 0.001 3000
Lanczos 0.1×L1+1×SSIM+0.5×perceptual 0.001 3000

4.4.3 Methods comparison

The compared methods includes Bicubic, GFPCA [119], PCA [120] and CNMF [121].
Bicubic is a standard interpolation approach based on the cubic interpolation. GFPCA is
designed for fusion of hyperspectral and RGB image based on PCA [119]. PCA, as a stan-
dard data transformation method, has been used for remote sensing data pansharpening
[120, 122]. CNMF is developed based on nonnegative matrix factorization unmixing and
applied to hyperspectral and multispectral data fusion and downscaling [121, 123, 124].

Compared methods are conducted using the downscaling toolbox from Github. The
source code is available at https://github.com/codegaj/py_pansharpening. These
methods all require two sets of inputs which are the high-resolution channels and the low-
resolution channels. The summation of the NDVI and LST is used for the high-resolution
input. The low-resolution channel is the 9km SMAP SM.

4.4.4 Evaluation strategy

Following the commonly used evaluation scheme for downscaling algorithms, the down-
scaled SM map is evaluated from three aspects, i.e.,

a) the consistency of the spatial variation pattern with the SMAP SM maps [112, 100],

b) the numerical accuracy of the SM values to in-situ SM measurements [112, 111, 100],

c) the amount of the spatial textural information compared to the SMAP SM map
[111, 100].

Downscaling results are evaluated in both visual and numerical ways. For the visual
evaluation, the downscaled SMmaps will be presented together with the SMAP SMmaps at
9km spatial resolution, as well as the estimation by the other four downscaling methods.
For the numerical evaluation, the in-situ groundtruth measurements on eight dates are
used as the reference. The classical statistical metrics are calculated to represent the error
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scores, including correlation coefficient (R), mean square error (MSE), the difference of the
mean values (BIAS), root mean square error (RMSE), normalized root mean square error
(nrRMSE), unbiased root mean square error (ubRMSE).

4.5 Result and discussion

Forward model selection

Figure 4.6 shows the downscaling results obtained by different downsampler. Using the
downsampler with Lanczos kernel gives the sharpest SM map with the most spatial texture
preserved. R value over the time series corresponding to Lanczos is also the highest. The
average pooling smooths some linear spatial features and the max pooling brings fake
spatial features. The results indicate that using different downsamplers significantly affects
the downscaling performance.

(a) Average pooling (b) Max pooling (c) Lanczos

(d) Average pooling (e) Max pooling (f) Lanczos (g) SMAP 9km

Figure 4.6: Scatters of downscaled 1km SM against in-situ SM measurements over eight dates and the downscaled 1km SM
maps on Jan 25th by models with different downsamplers.
Using the downsampler with Lanczos kernel gives the sharpest SM map with the most spatial texture preserved.Average
pooling smooths linear spatial feature and max pooling introduce fake spatial features.

Performance of loss functions

Once the downsampler with Lancnos kernel is selected, we fix the downsampler and change
the loss function. The 1km downscaled SM map obtained with L2 loss is blurred, especially
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on the right side of the image Figure 4.7(a), although the R value is high. Given that L2
loss is sensitive to high-frequency signals and tends to smooth the image, we tried L1 loss
instead, which can better accommodate high-frequency information. As a result, Figure
4.7(f) is sharper than Figure 4.7(e) and shows more spatial texture, with R value increasing.
Then, the SSIM loss using for preserving image structural feature and the perceptual
loss using for extracting spatial information from feature domains are added one-by-one.
As a result, Figure 4.7(h) shows the richest spatial information and its corresponding R
value achieved 0.88. The results indicate the importance of designing loss functions for
downscaling visual performance. Although the R value does not highly increased, the
spatial information shown in the downscaled SM map gets sharper and richer.

(a) L2 (b) L1 (c) L1+SSIM (d) L1+SSIM+perceptual

(e) L2 (f) L1 (g) L1+SSIM (h)
L1+SSIM+perceptual

Figure 4.7: Downscaled 1km SM maps by networks with different loss implementations. L2 loss tends to smooth the
image. L1 loss can better accommodate high-frequency information. Although (f) is sharper than (e), the R value does not
increase. Then the SSIM loss using for preserving image structural feature and the perceptual loss using for extracting spatial
information from the feature domains are added one-by-one. As a result, (h) shows the richest spatial information and its
corresponding R value achieved 0.88.

Performance of skip connection

Downscaling performances are compared between the U-Net with and without the addi-
tional skip connection. The result is shown in Figure 4.8. The downscaling result with
the skip connection (Figure 4.8(b)) shows much richer spatial information than that with-
out the skip connection (Figure 4.8(a)). So, the skip connection in the U-Net can better
preserve the low-level feature in NDVI and LST.
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(a) without skip (b) with skip

(c) NDVI (d) LST

Figure 4.8: Downscaled 1km SM maps (unit: cm3/cm3) by networks (a) with and (b) without the additional skip-connection
(indicated by the purple line in Figure 4.2). (b) fuses spatial information from the (c) NDVI and (d) LST better than (a).

Spatial detail restoration

To check the downscaling effectiveness of the proposed method, the downscaled 1km SM
maps and the 9km SMAP SM maps are zoomed in different scales, shown in Figure 4.9.
The downscaled SM map shows not only the consistent variation pattern with the 9km
SMAP SM, but also much more spatial detail information which is consistent with satellite
RGB images. For example, the green linear region in Figure 4.9(e) is the cropland with
higher water content which is indicated by the blue linear feature in Figure 4.9(d).

Methods comparison

Table 4.3 summaries R values, BIAS and RMSE values between the 1km downscaled SM
map and the in-situ groundtruth over eight dates. 32 points (i.e., 4 stations × 8 days) in
total are used to calculate metrics.
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Figure 4.9: Comparison between the 9km SMAP SM maps and downscaled 1km SM maps (unit: cm3/cm3) on Dec 26th.
Figures in the 1st line are separately the 9km SMAP (left) and the 1km downscaled SM (right). Figures in the 2nd line are
separately the zoomed region on 9km SMAP and 1km SM indicated with the green box in the 1st line. Figure on the right is
the corresponding area clipped from the google earth. Figures in 3rd and 4th lines are separately correspond to the blue box
and red box in the 1st line. The downscaled SM map shows not only the consistent variation pattern with the 9km SMAP
SM, but also much more spatial detail information. For example, the green linear region in the rgb image in the 2nd line is
the cropland with higher water content which is indicated by the blue linear feature in the zoomed 1km SM.
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Table 4.2: Methods assessment.

Method MODIS used?
Performance

Variation
consistent?

Spatial texture
increased?

SM value
range
correct?

BDIP Yes Yes Yes Yes
Bicubic No Yes Yes No
GFPCA[119] Yes Yes No No
PCA[120] Yes No Yes No
CNMF[121] Yes No Yes No

The validation scatterplots over eight dates shown in Figure 4.10 show consistent cor-
relation degrees with Table 4.3. Scatters of the proposed BDIP method show a obvious
linear relationship between the downscaled SM and groundtruth data.

By observing the scatters, we found that the measurements within the USCRN network
are generally smaller than the SCAN network because the USCRN stations distributed in
the shrublands, and the SCAN station is in the grassland, where the soil normally contains
more water. It is found that the score of SCAN network is generally better than USCRN
network. The possible reasons are listed as follows. (i) The better statistical score could
be caused by fewer station points. (ii)The soil moisture is overall higher at SCAN station
than that at USCRN stations. (iii)Sensors of these two networks could be different.

Figure 4.11 displays the downscaled SM maps by different methods on two dates. SM
maps generated by the Bicubic and GFPCA share consistent variation patterns with SMAP
SM maps, but with large bias. GFPCA SM maps get more blurred than 9km SMAP SM.
The proposed method, on the contrary, estimates the high-resolution SM map with sharp
and clear boundaries. SM maps achieved by PCA and CNMF preserve much information
in the NDVI and LST than the SMAP SM map, which is the fake SM texture. They fail
to properly extract and balance the spatial feature information from the SMAP SM and
MODIS products. The above results description is summarized in Table 4.2.

The PCA and CNMF methods were designed for multispectral, hyperspectral images
pansharpening, where the HR images and the LR images share the similar spatial texture.
PCA and CNMF are also used to enhance the contrast of the original image. However, for
the SM downscaling guided by NDVI and LST, the HR NDVI, LST and the LR SMAP
SM have different spatial texture. So, simply extracting the spatial textural information
from all bands leads to the failure of data fusion. GFPCA performs better than PCA and
CNMF because a transformation from NDVI and LST to the SMAP SM was conducted
instead of extracting information from all of MODIS and SMAP products. However, the
downscaled SM still gets blurred, which could be caused by the transformation or up-
sampling procedure. Bicubic interpolates the SMAP SM directly without using MODIS
products, leading to insufficient spatial details.
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(a) BDIP (b) Bicubic (c) PCA (d) GFPCA (e) CNMF

Figure 4.10: Scatters of the 1km SM estimated by the different method and the in-situ groundtruth over eight dates with R
values. Two networks are separately calculated. The first row is USCRN network and the second row is the SCAN network.
The last row is the result obtained by all stations from two networks.

To sum up, the downscaled 1km SM by our proposed method not only has the consistent
variation pattern with the SMAP maps, but also restores more spatial details than other
methods with higher accuracy.

4.6 Conclusion

We proposed a Bayesian DIP downscaling model for SMAP SM products by integrating
the FCNN into a Bayesian framework. MODIS products was used as the model input to
guide the downscaling procedure. An hourglass FCNN was adopted to map the nonlinear
relationship between MODIS products and high-resolution SM map and to better construct
the spatial heterogeneous information in SM map. The MAP inverse problem was solved
by back propagation instead of EM iterations, which makes the model optimization simpler
and faster. Experiments on the time series data showed that SM maps estimated by the
proposed method provided more spatial texture details than other existing unsupervised
downscaling methods, and the estimated SM was very close to in-situ measurements with
a high overall R value 0.88. The proposed Bayesian downscaling model are very effective
for SMAP SM downscaling.

Despite of the successful of the BDIP downscaling approach based on the in situ and
visual validation, the chapter has shortcoming of insufficient result analysis from the ge-
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(a) SMAP (b) BDIP (c) Bicubic (d) GFPCA (e) PCA (f) CNMF

Figure 4.11: SMAP SM map at 9km resolution in column (a), the downscaled 1km SM maps by the different methods from
column (b) to (f), and the input NDVI map in column (g) at April 14 (first row) and Sep 5 (second row). The proposed
method estimates the high-resolution SM map with sharp and clear boundaries. SM maps generated by the Bicubic and
GFPCA share consistent variation patterns with SMAP SM maps, but with large bias. GFPCA SM maps get more blurred
than 9km SMAP SM. SM maps achieved by PCA and CNMF preserve much information in the NDVI and LST than the
SMAP SM map, which is fake SM texture. They are not able to properly extract and balance the spatial feature information
from the SMAP SM and MODIS products.

ographical perspective, such as how the downscaled SM map correlates in fine-scale with
the land cover types, precipitation and the elevation. Another shortcoming of the chapter
is the insufficient comparison with more advanced downscaling methods considering that
the unsupervised downscaling approach is limited. However, this unsupervised approach
has larger potential than supervised ones to be widely used without high-resolution maps
required. Moreover, since the proposed model is flexible to fuses multi-source remote sens-
ing products and its downsampler part can be adjust according to the resolution of existing
SM products, it has the big potential to be applied to more SM products with different
spatial resolutions and to fuse more remote sensing products, such as precipitation and
terrain products.
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Table 4.3: R, MSE(cm6/cm6), BIAS(cm3/cm3), RMSE(cm3/cm3), nrRMSE(cm3/cm3) and ubRMSE(cm3/cm3) of the
validation for the 1km downscaled SM with the measurement of in-situ stations from two networks.

R MSE BIAS RMSE nrRMSE ubRMSE
PCA All(4 stats) 0.475 0.054 -0.198 0.232 0.334 0.121

SCAN (1 stat) 0.165 0.065 -0.183 0.256 0.460 0.179
USCRN (3 stats) -0.315 0.050 -0.203 0.224 0.363 0.526

GFPCA All 0.871 0.090 -0.252 0.301 0.330 0.163
SCAN 0.668 0.224 -0.447 0.473 0.611 0.156
USCRN 0.475 0.046 -0.188 0.215 0.431 0.104

CNMF All 0.765 0.076 -0.205 0.276 0.322 0.185
SCAN 0.623 0.180 -0.414 0.424 0.590 0.094
USCRN -0.018 0.041 -0.135 0.204 0.381 0.153

Bicubic All 0.842 0.092 -0.256 0.304 0.340 0.164
SCAN 0.631 0.218 -0.438 0.467 0.617 0.160
USCRN 0.387 0.051 -0.195 0.226 0.434 0.113

Ours All 0.882 0.002 0.003 0.053 0.155 0.053
SCAN 0.891 0.007 0.076 0.085 0.346 0.038
USCRN 0.568 0.001 -0.020 0.037 0.202 0.031
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Chapter 5

Conclusion

In summary, this thesis proposed three task-specific methods based on a Bayesian DIP
framework, which disentangle mixed pixels into application-dependent components for RS
images inversion. The proposed SU method (in Chapter 2) incorporates a linear mixture
forward model, the DIP accounting for the abundance spatial correlation, the noise hetero-
geneity of HSIs and a purified-means endmember constraint to the Bayesian framework.
A designed EM algorithm solves the resulting maximum a posteriori problem to achieve
accurate SU results. The SPM approach (in Chapter 3) adopts a discrete spectral mix-
ture model as the forward equation to model the subpixel labels. The SMD research (in
Chapter 4) fuses higher-resolution RS products to improve the spatial resolution of the
current SM product. It is a successful generalization of the Bayesian DIP framework to
applications of RS data fusion and environmental monitoring. All these above proposed
methods are unsupervised, i.e., not requiring high-resolution ground truth, by making use
of the forward models to reconstruct the observed low-resolution data. They outperform
other unsupervised state-of-arts methods on the tested datasets.

5.1 Summary of contributions

This thesis improved mixed pixel disentangling in three key applications, i.e., SU, SPM
and SMD by integrating the DIP approach and other prior information into a Bayesian
framework to allow comprehensive usage of different prior knowledge for enhanced data
inversion. This thesis has the following main contributions.

1. To improve the decomposition of mixed pixels into endmembers and abun-
dances in SU, a designed DCNN and a new spectral mixture model with heteroge-
neous noise are integrated into a Bayesian framework that is efficiently solved by a
new iterative optimization algorithm.
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2. To improve the decomposition of mixed pixels into class labels of subpixels
in SPM, a dedicated DCNN architecture and a new discrete spectral mixture model
are integrated into the Bayesian framework to allow the use of both spatial prior and
the forward model.

3. To improve the decomposition of mixed pixels into soil moisture concentra-
tions of subpixels in SMD, a new DIP architecture and a forward degradation
model are integrated into the Bayesian framework that is solved by the stochastic
gradient descent approach.

Some specific contributions in this thesis include:

1. A skip-connection FCNN is designed for the estimation of underlying quantities,
where DIP is used to model the spatial correlation of the abundance field, subpixel
label field, and HR SM field. Compared to NNLS or fully connected network, the
FCNN is able to efficiently and accurately estimate the desired quantities by lever-
aging GPUs and the large-scale spatial correlation in RS images.

2. The noise is modelled as a multivariate Gaussian distribution to account for the
noise variance heterogeneity in HSI for SU. As a result, the loss function of BCUN is
designed based on the M-distance rather than MSE loss. The designed conditional
distribution of spectral observations also enables the incorporation of the SMM into
the FCNN training process for effectively leveraging the knowledge in the forward
spectral model.

3. The endmember is modelled and estimated by a “purified means” approach which
can be seamlessly integrated into the Bayesian framework by a designed conditional
distribution of the endmembers given the abundance.

4. Different forward models describing the mixed pixels generation process in RS images
are integrated into the Bayesian framework to solve the different inverse problems.

5. The key components are coherently integrated into a Bayesian framework, and the
resulting MAP problem is solved by a designed EM algorithm for SU and SPM.

6. The proposed framework is trained by reconstructing HSIs or the LR soil moisture
without requiring any ground-truth data for model training.

5.2 Future work directions

1. More complex physical forward models can be integrated to the framework. For
example, most SU studies assume the linear SMM as the generative model of mixed
pixels while non-linear models should be considered to better explain the generation
process.
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2. Endmembers are modelled by a purified-means approach and estimated in the M-step
in an EM approach. How to estimate endmembers by treating endmembers as nodes
of a network is a promising study direction.

3. The hourglass UNet architecture is adopted as the inverse model in the current
methods. More network architectures can be studied and compared, such as ResNet
and the recently proposed transformers. Although the DIP is efficient to capture
the spatial correlation in RS images, the convolutions tend to smooth the spatial
edge features. Therefore, state-of-arts methods that can better model the non-local
spatial correlation should be studied.

4. The proposed framework is currently applied to the single-image processing. It is
of great significance to train the model with RS image datasets and apply the pre-
trained model to more test images.

5. When the forward model is not fully known or it contains unknown parameters, how
to utilize the known information of the forward model and estimate the unknown
parameters are of interest.
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[48] José M Bioucas-Dias and Mário AT Figueiredo. Alternating direction algorithms
for constrained sparse regression: Application to hyperspectral unmixing. In 2010
2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote
Sensing, pages 1–4. IEEE, 2010.

[49] Ying Qu and Hairong Qi. Udas: An untied denoising autoencoder with sparsity
for spectral unmixing. IEEE Transactions on Geoscience and Remote Sensing,
57(3):1698–1712, 2018.

[50] Yuanchao Su, Jun Li, Antonio Plaza, Andrea Marinoni, Paolo Gamba, and Somdatta
Chakravortty. Daen: Deep autoencoder networks for hyperspectral unmixing. IEEE
Transactions on Geoscience and Remote Sensing, 2019.

[51] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks
for semantic segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 3431–3440, 2015.

[52] Xiaomei Zhao, Yihong Wu, Guidong Song, Zhenye Li, Yazhuo Zhang, and Yong Fan.
A deep learning model integrating FCNNs and CRFs for brain tumor segmentation.
Medical Image Analysis, 43:98 – 111, 2018.

[53] Yunsong Li, Jing Hu, Xi Zhao, Weiying Xie, and JiaoJiao Li. Hyperspectral image
super-resolution using deep convolutional neural network. Neurocomputing, 266:29–
41, 2017.

[54] Jiawei Zhang, Jinshan Pan, Wei-Sheng Lai, Rynson WH Lau, and Ming-Hsuan Yang.
Learning fully convolutional networks for iterative non-blind deconvolution. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
3817–3825, 2017.

86



[55] Behnood Rasti, Bikram Koirala, Paul Scheunders, and Pedram Ghamisi. Undip:
Hyperspectral unmixing using deep image prior. IEEE Transactions on Geoscience
and Remote Sensing, 2021.

[56] Dong Xu, Lei Sun, and Jianshu Luo. Noise estimation of hyperspectral remote
sensing image based on multiple linear regression and wavelet transform. Boletim de
Ciências Geodésicas, 19(4):639–652, 2013.
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