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Abstract

The Cluster-in-molecule approach (CiM) is one of the most popular methods in elec-
tronic structure calculations for medium to large molecules and systems. The Nooijen
group is currently developing a new CiM approach using the range-separated coulomb po-
tential developed by M. Lecours, however the progress does not reach our expectations
as we encountered performance bottlenecks from the two-electron three-index integrals.
To deal with this problem, we have implemented two block-sparse data structures named
the Tile and the Tile Master to provide sparse matrix storage formats and efficient ma-
trix multiplication algorithms benefiting from the high sparsity of the data. The Tile
structure focuses on the efficiency of Sparse-matrix dense-matrix multiplication (SpMM),
while the Tile Master emphasizes solving the three-index integral problem using the block-
sparse structure and compressed three-dimensional array format. Both the Tile structure
and the Tile Master are made highly efficient and able to achieve multi-threading under
high parallel structures, including the new Intel KNL structure Xeon processors and any
Graphic processing unit (GPU) using the Nvidia Compute unified device architecture cores
(CUDA) structures. The benchmarking result indicates that the Tile structure is averag-
ing around 2 to 5 times faster than the NumPy dot algorithm, and up to 30 times faster
than our previous Compressed sparse row format (CSR) multiplication routine. The Tile
Master on the other hand can compress three-index quantities down almost 95% in storage
space using the block-sparse structure, and could handle the calculations efficiently using
different dense and sparse calculation routines determined by the Atomic orbital (AO)
geometries. To sum up, the Tile structure and the Tile Master will provide useful tools
to solve the complex three-index integral problem in our CiM approach, as well as other
scientific calculation problems with sparse matrices involved.

Keywords : cluster-in-molecule approach, range-separated coulomb potential, sparse-
matrix dense-matrix multiplication, block-sparse structure, multi-threading programming,
object-oriented programming
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Chapter 1

Introduction

The ability to perform accurate and efficient electronic structure calculations in large
molecules and systems has been the ultimate goal of computational chemistry. For the past
decades, the Density functional theory (DFT) has been considered the prevalent method
with lower computational cost than traditional methods. However, there are challenges for
the DFT to calculate the correlation energy for strongly correlated systems, excited states,
or the inclusion of van der Waals interactions. [2] To further improve the calculation accu-
racy, many wave function-based approaches are developed for better calculation schemes
in electronic exchange and correlation energy.

Two of the significant routines are the MP2 [20] and the CC [1]. The MP2 can be used
to approximate the correlation energy for molecules, but the performance can be erratic
under transition structures [21]. On the other hand, the CC rapidly converges towards
the Full configuration interaction (CI), producing very accurate results within reasonable
computational costs [6].

The MP2 and the CC theory are both considered accurate and efficient when the system
size is small to medium, where most of the molecular orbitals are delocalized. However,
when a larger molecule is given to the calculation, the delocalized orbitals are likely to
cause errors and reduce efficiency due to their high computational scaling concerning the
system size [3, 9]. A general solution to the problem is to localize the occupied orbitals,
which could reduce the number of orbitals needed during the calculation. Two approaches
have been developed based on the idea; one is called the PNO, while the other is called
the CiM [14, 16]. These two methods are often put together for comparison, and CiM is
usually regarded as a better approach. To further explain the advantage of CiM, a review
will be given according to their history, unique properties, and future potentials.
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1.1 The cluster-in-molecule approach

The CiM approach was first introduced by the Li group in 2002 and is well known for its
ability to achieve linearly scaling when the system size gets bigger [11]. It also emphasizes
the importance of dividing a large molecular into many small subsets containing limited oc-
cupied and unoccupied localized molecule orbitals [13, 14]. This is considered a significant
improvement compared to some of the conventional electron correlation methods (Figure
1.1). For example, the MP2 is widely considered as the cheapest correlation method, while
it still scales exponentially as O(N5) [8].

Figure 1.1: CPU times for MP2 calculations compared to the CiM approach.
During the calculation, chain-like molecules like alkanes, CnH2n+2 (n = 16,24,32,40), and
water clusters, (H2O)n (n = 16,32,40,48), are calculated under the same basis set 6-31+G**
using the same system [12].

However, each subset of localized orbitals inside the CiM approach requires a separate
MP2 calculation for the subset, which will require an extra cost in integral transformations
and orbital selections. Therefore, the conventional method could yield faster results than
the CiM approach at the beginning (Figure 1.1). According to their research, two approxi-
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mations are used to reduce the amplitude of the calculation for the CCD resulting in better
computing efficiency. The first approximation is by restricting excitations of some closely
ranged Occupied orthogonal localized molecular orbitals (LMOs) into especially associ-
ated virtual LMOs. As a result, the calculation effort for large molecular can be reduced
significantly and scales only linearly with molecular size (Figure 1.2). [11] The second
approximation is the dividing of the system. The equation set is divided into various sub-
systems when solving the amplitude equations. Each subsystem is made up of an orbital
cluster and the local environmental domain of the cluster. With these two improvements,
this calculation still can recover more than 98.5% correlation energy compared to former
methods [11].

Figure 1.2: Comparison between the full CCD correlation calculation and the
CiM approach. The percentage under the local column displays the relative size of
amplitudes during the CiM calculation compared to the full CCD calculation. The size of
amplitudes is proportional to the computational efforts, which indicates that the CiM has
much better efficiency. All calculations have an accuracy greater than 98.5% [11].

Another very good example on the CiM approach is from the Kallay group. They have
been developing a general-order local CC method based on the CiM approach under the
inspiration of the work of Li [11, 22]. They also evaluated the runtime scaling for commonly
used algorithms like the conventional CC calculations versus the local CC in their CiM
approach, which could provide more solid support for the excellent performance of the CiM
approach and show the linear scaling ability. (Figure 1.3)
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Figure 1.3: Runtime scaling for each step of the conventional CC calculations
versus the local CC in their CiM approach. Here, L represents the system size and
nb,no are the number of basis sets and the number of occupied orbitals. The advantages of
the CiM approach can be easily observed as the linear scaling property holds for the most
expensive CC steps [22].

1.2 The pair natural orbitals method

The PNO method was developed based on two popular theories in the 1970s and 1980s.
The first one is called the Coupled-electron pair approximations (CEPAs), while the sec-
ond is the Coupled-pair functionals (CPFs). According to Neese et al. [16], both methods
have better accuracy than the MP2 and other popular density functional theory-based
approaches. These methods were precursors of CC, and today the PNO method is used
mainly in conjunction with the coupled-cluster (CC). In addition, the PNO method makes
extensive use of the resolution of the identity technique to speed up the integral transfor-
mation, creating a closed shell CEPAs and CPFs algorithm [16]. They can approximate
the external space by compressing the orbitals and minimizing the size of their localized
internal orbitals. Eventually, the number of correlating orbitals that are needed for the
calculations will be exceptionally smaller than the canonical expansion like MP2 (Figure
1.4) [16].
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Figure 1.4: The average number of correlating orbitals produced by the PNO
method compared to Canonical expansions. All calculations were done using the
(gly)3 molecule. Three thresholds are used by the calculation to control the size of the
internal orbitals; they are TCutPNO = 10−6; TCutPairs = 0Eh and TCutMKN = 10−3.
[16].

In their latest findings, they combine the Coupled-cluster single-double and perturba-
tive triple method (CCSD(T)) with the pair natural orbitals (PNO) methods. The use
of PNO helps to reduce the size of the unoccupied space and generate more compact
amplitudes, which the explicitly correlated Coupled-cluster single-double method (CCSD)
further uses [18]. This method is called the Domain-based local pair natural orbital for-
mulation (DLPNO), and the performance can be found in Figure 1.5.

1.3 Unique properties

The critical difference between the CiM approach and the PNO method is the way they
reduce their correlating orbitals. In the case of the PNO method, the Neese group de-
fines a set of specific virtual orbitals to correlate each pair of localized molecular orbitals
(LMOs). The size of the virtual orbitals can be relatively small; however, it might lead

5



Figure 1.5: Comparison between the canonical RI-CCSD(T)-F12 and the PNO
version of the local DLPNO-CCSD(T)-F12. The near linear scaling property can be
observed from the PNO method [18].

to complex equations due to the different orbitals for each pair. In other words, PNO can
solve equations for the complete molecular system and truncate their contributions simul-
taneously. Instead of solving the entire calculation, the Li group adapts the coupled-cluster
single-double and perturbative triple (CCSD(T)) method to solve a large number of small
calculations that each has a subset of its orbitals (Figure 1.6) [13, 14, 16, 17].

This quickly becomes another advantage of the CiM approach because each small calcu-
lations are parallel and can be beneficial when implemented to multi-core processors, where
calculation can be run in parallelization well. Despite having similar accuracy, the PNO
approach has to keep track of the set of orthonormal orbitals that will be used throughout
the calculations. More problems arise as the system size increases, such as memory and
storage space limitations. The CiM approach can further reduce the amount of space taken
during each batch of the calculation, which grants the ability for smaller machines to run
larger calculations. Therefore, compared to using certain thresholds to control the number
of virtual orbitals during the PNO approach, the CiM approach projects a much better
way of controlling the size of a system during the calculation [13, 16, 22].
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Figure 1.6: The ‘divide and conquer’ illustration from the CiM approach. Only
a few localized molecular orbitals are selected to form a calculation subset within many
molecule orbitals. Red represents the orbital center; blue represents the localized orbitals
that are needed for the calculation; Grey represents the ignored orbitals [15].

1.4 Future potentials

When comparing different methods in theoretical chemistry, taking the potential for fu-
ture developments into account is usually very important. As the processing power and
the computational capability proliferate every day, it is crucial to plan ahead and adapt
to the new tools. To maintain the linear scaling time complexity for the CiM approach,
a highly efficient integral transformation and orbital selection scheme could play crucial
roles in the future development of the CiM method. Using the unique property of the
pivoted Cholesky decomposition algorithm, the program can quickly screen out the occu-
pied orbitals. In the Nooijen group the orbital localization and orbital selection schemes
in (future) CiM implementations use a pivoted Cholesky approach. Work is in progress to
make this approach efficient for block sparse matrices. This Block sparse aspect is also a
crucial ingredient for further efficicencies and will be discussed in detail in the thesis.

Currently CiM is used exclusively for ground state calculations. A major attraction
of CiM is that one can use conventional programs to run the subsystem calculations.
The goal is to extend the CiM approach to calculations for excited states and multirefer-
ence situations. In the Nooijen group efficient Transform and Diagonalize methodologies
are developed that in the final step require a highly compact diagonalization of a trans-
formed effective hamiltonian. Using CiM ideas the effective Hamiltonian can be constructed
piecemeal using subsystem calculations, and the final diagonalization is not a bottleneck.
Another exciting direction of research based on the inherent parallelization of the CiM
approach is implementing the theory with massively paralleled computing devices like a
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graphic processing unit (Graphic processing unit (GPU)) [19]. Using the python package
‘TensorFlow’, they are able to implement a set of molecule orbitals coefficients on their cen-
tral processing unit (CPU) and distribute the computation assignments to many CUDA,
thus speeding up the process. The CiM approach has a much higher potential than any
other method by increasing the processing power and keeping the algorithm highly efficient.

In summary the broad goal of the research is both to make ground state calculations
easier and more efficient, to provide interfaces with various packages like ACESii, Python
module for quantum chemistry platform (PySCF) and ORCA, and to extend the CiM ideas
to excited states.

To sum up, the cluster-in-molecular (CiM) approach is one the most popular method
used in electronic structure calculations for its efficiency and accuracy. Compared to the
pair natural orbitals (PNO) method, the CiM approach uses the idea of divide-and-conquer
to partition an extensive system. It keeps the calculation running smaller and parallel
[13, 16]. Unlike the PNO method finding individual virtual orbitals for each pair of LMOs,
the CiM approach will reduce its computation cost by determining its localized subset of
orbitals in each parallel subroutine. Moreover, the CiM approach will have more potential
in future research for its inherent parallelization ability as the processing power of today
continues to proliferate.

In the next Chapter, we will start by explaining the CiM approach from the Nooijen
group to give a broad overview. Then, some essential knowledge and existing methods and
techniques required for further research will be given. At the end of Chapter 2, the idea of
a new datatype will be proposed with the expected features. In Chapter 3, we will present
the new Tile structure from the designing mindset to the covering of the important features.
At the end of Chapter 3, we will present the benchmarking result and the performance
evaluation for the Tile structure. In Chapter 4, we will explain the Tile Master structure
and our solution to the two-electron three-index integral problems or any general tensor
multiplication problems. At the end of Chapter 4, the benchmarking result for the Tile
Master will be presented, and a final discussion will be made over the capabilities and the
potential of these new data structures.
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Chapter 2

The CiM approach

Building an accurate and efficient cluster-in-molecular (CiM) algorithm can have many
challenges. Among them all, the most significant challenge is choosing a reasonable bal-
ance point between accuracy and speed. Therefore, the ultimate goal is to use as many
approximations as possible while maintaining a reasonable accuracy like error < 10−7.
However, using many approximations complicates the routine of calculation, which fur-
ther increases the difficulty in code implementations. As the code gets complicated, many
other problems can arise as the number of subroutines and data size are significant. For
example, the density matrix of a water molecule in cc − pV TZ has a size of 58 by 58. It
takes a few seconds to generate the density matrix for water, whereas it takes almost 3
hours to generate a density matrix for the Buckminsterfullerene, or C60 under the same
basis set cc− pV TZ. Also, the density matrix for C60 has a size of 2,668 by 2,668, which
is considerably enormous to handle during the calculation routine [23, 24, 25]. The size
of the DRAM in a computer is limited, and it is vital to manage the storage space wisely
during the calculation.

Another major challenge when designing a CiM algorithm is handling the three-index
integrals. It is one of the most common calculation subroutines that is being used iteratively
throughout the whole process. For example, the following three equations (Figure 2.1) are
retrieved from a CiM procedure being developed by the Nooijen’s group [10].

Due to the unique ‘divide and conquer’ property of the CiM approach, the subset for
each subroutine needs to be determined separately [13, 14]. To determine the orbitals, a
transformation of integrals from atomic orbitals to projected orthonormal orbital space of
interest has to be accomplished first. The three-index integrals are required during this
process, which means it will run iteratively throughout the CiM approach until every subset
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Figure 2.1: Common three-index integrals. In the first equation, a and b are general
molecular orbitals (MO), while i and j are occupied MOs. x,y are indices representing
an auxilliary basis set which are used in density fitting approximations to two-electron
integrals. The first equation is part of the orbitals selection scheme, which helps the
CiM approach divide the orbital spaces. The second and third equations construct the
exchange matrix K, where µ is localized occupied MOs and β, γ are atomic orbitals (AO).
The exchange matrix is later used as an input for the CiM approach [10].

of the subroutine is determined. Therefore, the three-index integrals’ efficiency contributes
a significant portion to the overall efficiency.

Sometimes, different implementations of the same algorithm can result in different
efficiencies and accuracies. Therefore, it is critical to find the best way to run a calculation
and reduce the runtime as much as possible. In most cases, the algorithm needs to be
explicitly developed in a ground-up fashion. Inside the electronic structure calculations,
the matrix multiplications are used extensively since most variables are matrices. However,
a large population of the matrices are made of ‘sparse matrices’, in which few of its elements
are non-zero [7]. Therefore, the matrix multiplication algorithm inside the CiM approach
could be redesigned and optimized to handle multiplications between different types of
matrices. By doing so, the CiM approach can reduce the required DRAM space and the
total runtime.

2.1 The CiM approach by the Nooijen group

The cluster-in-molecular (CiM) approach has been proven to be one of the most accu-
rate and efficient post-Hartree-Fock methods. Inspired by the work of Kallay and Li, the
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Nooijen group is currently developing a general method that could be viewed as a CiM
approach. The method starts with a Hartree-Fock calculation to obtain a set of localized
orbitals, where later they are separated into multiple domains in a ‘divide and conquer’
fashion. To be more specific, each domain contains a subset of occupied and virtual orbitals
derived from the central set of orbitals, and they are optimized to perform conventional
calculation routines efficiently. The size of the subset during the calculation can be deter-
mined within the program and self-adjusted using a new developing data structure called
‘the Tile structure’, which is capable of highly parallel calculations. At the end of the
method, the quantities of interests within each subset can be easily assembled.

Our developing method has many innovations compared to other present available
CiM approaches. One of the most distinctive features is that the Coulomb interactions
and the AO electron repulsion integrals are partitioned based on their range [10]. This
method is called the range-separated coulomb potential, and it is developed by the Ph.D.
student Michael James Lecours. The implementation of this method has displayed near-
linear scaling efficiency for solving integrals for two-electron Coulomb interaction [10].
Unfortunately, the method is relatively slow at this moment due to the use of entirely
sparse matrix multiplication throughout. A primary goal is to improve this by using a
combination of sparse and dense matrix multiplication to improve efficiency. Implementing
the block-sparse matrix multiply is a primary goal of this research project and will be
discussed further below. Further details will be explained in the subsection below. Another
innovative feature is the use of the Laplace MP2 method based on the range-separated
Coulomb potential. The Laplace MP2 energy is later used as the reference energy for the
entire system and can be used to calculate the long-range energies [4]. The subsection
below will give a review of the unique Laplace MP2 algorithm.

The third distinctive feature is the developing orbital selection scheme. The orbital
selection plays a crucial role in connecting the Laplace MP2 with the CC equations, con-
structing the small localized orbital domains based on the exchange matrix retrieved from
the Hartree-Fock code. See the subsection below for more information.

The fourth innovative feature is the emphasis of this paper, which is the new Hartree-
Fock exchange algorithm explicitly developed for our CiM approach. It is developed based
on a new primary data type named ‘the Tile structure’, which will be used throughout
the approach to optimize the performance of the three-index integrals. The exchange algo-
rithm is also capable of handling the special sparse-to-sparse and sparse-to-dense matrices
multiplication, replacing the existing sparse matrices multiplication algorithm. The code
development will strictly follow the objective-orientated programming structure, expecting
to provide a helpful library to assist any further implementation.
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There are still many other innovative features in our CiM approach, however, the space
is limited and only the essence will be covered in this paper.

2.2 The range-separated Coulomb potential

There are many ways to represent the orbital labels in the CiM approach. In Figure 2.2,
a list of notations has been given to ensure consistency throughout the paper.

Figure 2.2: The notation of labels in the CiM approach.

The range-separated Coulomb potential makes the calculation of the two-electron in-
tegrals efficient from small to large molecules. This is done by separating the correlation
interaction into short-range and long-range (Figure 2.3) allows the algorithm to use differ-
ent methods and approximations for the fastest calculation time.

The complete representation of the Coulomb potential energy is presented in Figure
2.4.

Figure 2.4: The range-separated Coulomb potential.[10]
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Figure 2.3: The Coulomb potential partitioned into short- and long-range po-
tentials.[10]

In the short-range potential, conventional density fitting methods are used due to the
limited computational cost. On the long-range side, two methods are used to optimize
the accuracy. The Fourier transformation can handle the medium-range to long-range
potentials, whereas the Cartesian multipole expansion is used when two electrons far apart.
A threshold is implemented in the method to switch between the Fourier transformation
and the multipole expansion, which can further improve the accuracy.

The short-range potential is worth mentioning since it is the major contributor to
the exchange contribution, and it handles the most extensive calculation throughout the
method due to the close distance between two electrons.

A shortened version of the algorithm for the short-range potential has been given in
Figure 2.5. From running the cProfile tool, it has been shown that the most time-consuming
step in this calculation of the two-electron three-index integral, which occurs multiple times
when batching through the local orbitals µ. In the previously running version of the code,
the atomic orbitals A are manually partitioned and batched using imperative programming
commands. In addition, evidence shows that the performance can be erratic if the system
size keeps increasing, therefore prohibiting the expected linear scaling timing. This problem
motivates the desire to create a new data type capable of handling the three-index integral.
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Figure 2.5: Shortened algorithm for the short-range Density Fitting Fock con-
tribution.[10]

2.3 The Laplace MP2 method

A new Laplace MP2 method based on the range-separated Coulomb potential is imple-
mented by Dr. Ondrej Demel [4], providing a more accurate and efficient version of the
general second-order Møller-Plesset perturbation (MP2) method in the first place. It is
also expected to be used in our CiM approach to generate low-level correlation energies for
the entire system. The long-range correlation energy is adequately described by MP2 and
the short-range contributions will be treated by CCSD(T) CiM calculations. The method
begins by using the localized molecular orbitals (LMOs) obtained from the exchange ma-
trice in the range-separated Coulomb potential. Later, the Laplace transformation was
applied to remove the complicated denominator in the closed-shell restricted MP2 energy
equation. The derivation can be tedious, but the results are awarding. The final MP2
energy can be written as Figure 2.6.

Figure 2.6: The final representation of the MP2 energy. This equation is obtained
undergoing a Laplace transformation and then the use of the resolution of identity [4].

The Laplace MP2 has an excellent performance in long-range calculations, especially
calculating the Van der Waals forces for long-range. However, inside the calculation, the
algorithm can run into the same problem of the range-separated potential since they both
contain extensive three-index integrals. Here in Figure 2.7, we extract a piece of the three-
index integral that comes from the final representation of the MP2 energy equation.
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Figure 2.7: A piece of the three-index integral inside the calculation of the MP2
energy. The label q represents the auxiliary basis x retrieved from the density fitting. It
could also be replaced with the label g if this is a Fourier transformation term depending
on the AO labels [4].

A closer look at the problem indicates the trouble comes inside the current routine of
the three-center integral, whereas the tensor entity is too large to store in the DRAM and
has to be stored on disk. Furthermore, the other intermediate quantities are calculated
using a particular sparse matrix format, which slows down the overall efficiency. This
problem again motivates the need for a new data type that can handle the three-index
integral.

2.4 The orbital selection scheme in the CiM approach

The orbital selection scheme is the essence of the cluster-in-molecule (CiM) approach,
which uses the ‘divide and conquer’ method. This method will select localized orbitals
for large molecules in batches to create input for the final coupled cluster steps, and this
could be completed in a parallel manner. During the CiM calculation, the orbital selection
method will be called iteratively, therefore making the method efficient is crucial to keep
the linear scaling performance.

Inside the proposed orbital selection scheme algorithm, there are two most common
subroutines. The first is the pivoted Cholesky procedure, while the second is the Lowdin
orthonormalization. The algorithm begins with constructing the exchange matrix K re-
trieved from the range-separated potential method. Then the pivoted Cholesky can be
used to screen out the necessary localized molecules. (Figure 2.8) In the first step, the con-
struction of the exchange matrix appears in a very familiar, three-index integral fashion.
During this step, a large number of matrix multiplications would occur, and many of the
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Figure 2.8: The proposed orbital selection scheme algorithm. Provided by the
Nooijen group.

intermediate quantities are sparse matrices. Moreover, these sparse matrices tend to have
a partially dense form (Figure 2.10). Designing efficient multiplication strategies for such
operations with iterative nature is crucial, as it can contribute significantly to the overall
CiM performance.

Besides the three-index integrals, a special sparse matrix multiplication algorithm can
be helpful when running the pivoted Cholesky decomposition. This will help determine
new features in the proposed new data type, which will be used among the CiM routine.

2.5 The new data type with the Hartree-Fock ex-

change algorithm

As mentioned in the above sections, it is crucial to find a solution to the problems preventing
the current CiM approach from achieving linear scaling. The research process starts from
analyzing the code structure, using profiling tools like cProfile. The result in Figure 2.9 is
retrieved from running the range-separated potential method, where the number of function
calls and their cumulative time could indicate which step is most time-consuming.
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Figure 2.9: The cProfile result from running the straight-chain alkane C20H42

using the range-separated potential method. Except for the first few lines of the
matrix multiplication method, the function called ‘getints2c’ at line 44 takes up exponen-
tially more time than other methods. The ‘getints2c’ is a function that calculates the
two-electron integrals using the LibCint library, from which the majority of the computa-
tional cost is from the three-index integrals. [10, 23].

As mentioned above in the range-separated potential section, the LibCint library is not
designed and optimized for handling large matrix multiplication. Therefore, the atomic
orbitals have been manually partitioned into many sub-matrices named ‘tiles’ using an
imperative programming fashion to prevent the calculation from running out of memory
space. This is a typical linear algebra technique when handling large matrix multiplications.
However, the size of the matrix used in the calculation is highly dependent on the system
size. Furthermore, due to the nature of the imperative programming, the thresholds and
other parameters can not be adjusted during the calculation, which causes the overall
erratic performance and inconsistent timings.

Aside from the range-separated potential method, the same problem occurs in the

17



Laplace MP2 development and the orbital selection scheme. They can be using different
quantities during the calculation, for example, the localized molecular orbitals (LMOs)
and the atomic orbitals (AOs) for the potential calculations; the auxiliary basis used by
the Laplace MP2 calculation, or the Cholesky index obtained during the orbital selection.
Therefore, it is necessary to create a new data type designed and optimized for explicitly
handling the Hartree-Fock exchange algorithm to aid the three-index integral performance.

2.6 The sparse-to-sparse and sparse-to-dense matri-

ces multiplication

Before the broad overview of the Hartree-Fock exchange algorithm is given, we would
like to provide another handy tool that could further increase the efficiency of the overall
CiM approach. The sparse matrix multiplication has been a long-existing problem in
Computer Science, and there are many available open-source libraries capable of handling
sparse matrix multiplication. However, these libraries are mostly not adequate to fulfill the
requirement of running multiplication in the fastest way. The reason behind this is largely
related to the unique structure, which we called the ‘partially dense matrix’, that applies to
most density matrices and AO integrals in quantum chemistry. Along with developing the
range-separated potential code, we discovered that inside a sparse matrix, there might be
a small block of submatrix that is relatively dense compared to the rest of the submatrices.
For example, Figure 2.10 is a partially dense matrix with a dense block forming a ‘tile
center’. In regular calculation routine, this matrix is considered as a sparse matrix and
the sparse matrix multiplication algorithm has been applied throughout the calculation.
However, this is considered inefficient since the sparse part will not contribute much to the
calculation and can be ignored.

In the previous code, both sparse and dense matrices were considered sparse matrices
and sparse matrix multiplication algorithms are used throughout the method. During
this process, the conversions between dense matrices and sparse matrices take up a lot of
processing power. Here, we propose a special sparse-to-sparse and sparse-to-dense matrices
multiplication algorithm capable of handling the multiplication between these two different
types of matrices and embedded in our ‘tile’ structure in the three-index integral algorithms.
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Figure 2.10: A partially dense matrix representation. The ‘s’ represents a sparse
submatrix, while the ‘D’ represents a dense submatrix.

2.7 The efficient three-index integral implementation

An efficient three-index integral implementation starts with the functional programming
design. The goal of the implementation is to create a compact data class that can be used
to replace every three-index integral subroutine in the CiM approach. Based on the ’divide
and conquer’ idea, we will use linear algebra and a customized sparse matrix multiplication
algorithm to partition three-index integral or intermediate as well as many blocked-sparse
matrices, which are being calculated in the general two-electron three-index integral fash-
ion. There will be other works in transitioning the remaining imperative programming to
functional programming, which could help achieve the linear scaling performance for the
overall approach.

Since the space is limited, we propose the expecting features from the new data structure
to have these features:

1. Able to control the tile size and batching properties in different routines to prevent
data over-size from happening.

2. Combined with the customized sparse matrix multiplication algorithm, the algorithm
is capable of doing self-screening, self datatype conversion with controllable thresholds

3. Able to control the size of the batch depending on the type of the calculation (two
index matrices or 3-index tensors)
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4. The algorithm should try to eliminate global thresholds and parameters as much as
possible, determine necessary numbers in the local scopes as much as possible to accelerate
the calculation further

5. Able to remove near-zero matrix elements using controllable thresholds

Implementing the three-index integral algorithm requires a detailed step-by-step plan,
including multiple stages of testing, before it is finally implemented into the final CiM ap-
proach. The final work is expected to optimize the overall efficiency achieving the ultimate
goal, running CiM in linear scaling performance with respect to the system size.
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Chapter 3

The Tile structure

Tile, is a noun used to describe the most fundamental building unit for any enormous con-
structions. Given the same name, the Tile structure and the associated datatype library
have a similar purpose, which is becoming the basic building block inside any complicated
and extensive electronic structure calculations. When developing the CiM approach, we
realized that the existing computational chemistry packages are neither adequate in func-
tionality, nor satisfactory in the performance of the data handling. This chapter will begin
by explaining the call in need of the new datatype, then followed by the designing mind-
set and a useful superstructure embedded in the Tile structure library named the ’Tile
Master.’ As complicated as the datatype goes, selected key features, such as the auto-
mated data type conversion, the fast heuristic matrix screening method and the efficient
self-pruning method, will be covered. The Tile structure has been implemented into the
PySCF program to further demonstrate the advantages of the sparse-dense matrix multi-
plication algorithm and also provide benchmarking results validates the efficiency of the
bottom-up built data structure.

The Tile structure is a highly independent data structure that could be used by the
Tile Master, which is our answer to the problem of manipulations involving the massive
and time-consuming three-center integral. The Tile Master is able to partition large tensor
or matrix objects that are impossible to fit in the DRAM, and feed the segmentations once
at a time for the Tile structure to run the actual calculations. Hence, the Tile structure
has to prove its capability to handle any matrix-matrix multiplication in the most efficient
way.
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3.1 Background information

To begin with, we need to define the problem. When running the previous Range sepa-
rated Columb potential algorithms, we noticed that the timings from running the same
calculation routines under the same environment are inconsistent. On the other hand, the
performance of the algorithm is expected to be better than conventional routines, and the
algorithm is expected to achieve linear scaling for large systems [10]. However, the results
are not promising during our testing phase. A detailed investigation needs to be conducted
to discover problems that cause the program to slow down.

The ‘cProfile’, is one of the profiling tools from the Python library. The profile tool,
is often used to retrieve information and statistics inside a function call, which includes
how often a subroutine has been called and how long does a subroutine take to complete
[26]. To be specific, in figure 3.1, an example of the profile will contain number of calls
ncalls, total run time tottime, run time per call percall, accumulate time cumtime, and
accumulate time per call percall.

Figure 3.1: An example of the profile tool provided by the Python library. [10, 23]
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After running the profiling tool under different scenario settings, an entry caught our
attention. The ‘prescreen.py’ takes up a majority portion of the runtime. Inside this
python script, we discovered that this subroutine is directly linked to a few functions
that run heavy matrix multiplication operations and matrix tensor multiplications from
the two-electron integrals. Moreover, another noticeable entry is the calculation of the
exchange matrix J and K. The process also involves handling the full density matrix and
the three-index tensor.

3.1.1 How two-electron integrals become a problem

If we take a step away from the statistic of the profiling, and take a point of view from
the mathematical aspect, it’s not hard to discover why the program struggles to run the
four center integrals. Two types of integrals are commonly used inside the Hartree-fock
calculation routine, they are one-eletron integrals and two-electron integrals. Start from
the one-electron integrals, they are depend on the one-electron operator Ô1, and could be
used in the calculation of the kinetic energy T̂e and the potential energy ˆVNe. Similarly,
the two-eletron integrals are depend on the two-eletron operator Ô2 and could be used in
the calculation of the electron repulsion energy. Instead of doing the whole derivative, here
we will give the final representation of the integrals to make things easier for analysis.∫
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Equation 3.1 shows the one-electron integrals, they are considered to be cheap since
their time efficiency is O(n2), where n is the number of the electrons. However, things will
get complicated when we are taking two-electrons into our consideration.
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Equation 3.2 shows the two-electron integrals, they can also be written in a more simple
term shown in the equation 3.3. As the number of variables increases, the effort to calculate
the integral will get expotentially bigger. The time complexity on a two-eletron integral
will be O(n4), where n = N4

AO.
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In general quantum chemistry approaches, a conversion will take place to the four-
center integrals into three-center integrals before the calculation. However, it will still be
quite troublesome to handle the two-electron integrals as another problem quickly arises.
As the system gets bigger, the number of electrons will get larger as well. The overall size
of the two-electron integrals quickly exceed the size of a reasonable amount of DRAM in
the system.

In order to solve this problem, there are two options to choose from at this point. The
conventional methods will find a place to store the pre-calculated two-electrons integrals,
which is the Hard disk drive (HDD). This can result in slow writing and reading speed
due to the physical limitation of the HDD compared to the DRAM. An HDD can have a
sequential read and write speed of 100 Mb/s, while the DRAM can have a sequential read
and write speed of 10 Gb/s, which is almost 100 times faster than the HDD in every aspect
like random throughput, latency and so on. However, the integral can only be calculated
once and there are many data compression options available, only at a huge cost of time
running the calculations. Unfortunately, as the size of the two eletron integrals grows
exponentially, the HDD will eventually run out of space and the problem still exists.

Another approach is called the ‘integral direct method’, the most significant difference
compared to the conventional method is that the two-electron integrals are only calculated
if needed. This will result in the integral being calculated multiple times than it needs to
be, but there will be no limitation on the system size since the size of the batch portion
for the two-electron integrals can be adjusted accordingly to the size of the DRAM. This
will benefit the overall performance since everything is stored in the DRAM instead of the
HDD. However, it will require more routines on the calculation and a more careful design
as well.

3.1.2 How common is the two-electron integrals problem

Since the problem has been defined, we can simplify the question by creating a notation
for the two-electron three-center integral in equation 3.4.

(αβ|χ) (3.4)

The handling and the processing of the three-center integral is one of the most crucial
steps over multiple procedures inside our CiM approach. Unfortunately, the tensor object
is too large to fit in the DRAM, and it would be very challenging to complete a multipli-
cation with any matrix. The problem was first found by investigating the Compact sparse
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Coulomb integrals project from Mike Lecours [10], causing the program to slow down.
Later, we discovered similar problems in the Laplace MP2 using Range separated coulomb
potential project from Ondrej Demel [4]. In the final representation of the MP2 energy
derived from the Laplace transformation and the resolution of identity, can be simplified
into many three-center integrals terms.

Figure 3.2: The repersentation of the Laplace MP2 energy solution. The simplifi-
cation steps will transform the two-electron four-center integrals into multiple three-center
integrals for faster calculation time. Where q could be the auxiliary basis x retrieved from
the density fitting, or g from the Fourier transform depending on the AO labels [4].

(µβ|y) +=
∑
αA

(αAβ|y)LαAµ (3.5)

If we compared the last step from figure 3.2, where the three-center integral is (βα|q),
to part of the exchange algorithm from the Compact sparse Coulomb integrals shown in
equation 3.5, we could immediately notice that the first two terms are the same and only
the third term is different.

However, the problem continues to exist in other part of our CiM approach. In the later
development of our CiM approach, during the orbital selection procedure, the algorithm
constructs the exchange matrix Kαβ = (αβ|i) as its first step. Where i could be the
auxiliary basis or the Cholesky index retrieved from the pivoted Cholesky algorithm from
the orbital selection procedure. The same first two terms are found inside the three-center
integral from constructing the exchange matrix.

From table 3.1, we summarized all possible inputs for a two-electron three-center in-
tegral. At this moment, we realized that there are many projects and programs that are
currently suffering from the inefficient integral algorithm. Solving the problem becomes
the number one goal in this project.
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Input source Notation
Localized molecular orbitials(LMOs) µ

Atomic orbitals(AO) α, β
Auxiliary basis(aux) x, y

Cholesky Index / Meteric inputs(m) z

Table 3.1: Possible inputs for the two-electron three-center integrals.

3.2 Designing mindset

After understanding the problem, the investigation begins by analyzing the current running
algorithms. In our CiM approach, all projects are written in Python with the extensive
use of the PySCF package. The PySCF, also known as the Python-based Simulations
of Chemistry Framework, provides many useful tools and libraries that are being used
inside the CiM approach. Among many libraries, one particular library named ’Libcint’
is in charge of solving the two-electron integrals. In the previous section, two functions
named ’int2e3c’ and ’int2e4c’ have been found to be the most time-consuming step in the
calculation. They are provided from the ’Libcint’ library in Python [24, 23].

The ’Libcint’ library, written in C++, is capable of handling the calculation of most
Gaussian integrals in the conventional way. This means that as the system increase, the
calculation may exceed the DRAM limitation and cause the problem. From the Compact
sparse Coulomb integrals project, an algorithm in figure 3.3 is made to divide the AO basis
into small batches and calculate the two-electron integral on the go to achieve the ’integral
direct’ method [10].

However, the current algorithm can only batch through one of the items in the three-
center integrals. What’s more, the number of batches is given manually before the calcula-
tion starts, which requires further inputs from the user to find a proper value to optimize
the algorithm.

3.2.1 The sparse matrix and the matrix multiplication algorithm

The most encountered data type during the electron structure calculation is the matrix.
Usually, a matrix is a two-dimensional array filled with numbers. In Quantum Chemistry,
one of the most common usages of the matrices is the density matrix, which is a positive
semi-definite Hermitian matrix, that is used regularly to represent quantum states and
store information. A matrix can undergo many different arithmetic operations with other
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Figure 3.3: The algorithm for the short range density fit calculation. From line
4 and 5, the algorithm divides the α into batches of A and calculate the corresponding
two-eletron integral on the go [10].

matrices, such as addition and subtraction from two matrices with the same shape. Mul-
tiplications and divisions will also work on matrices that are applicable under the rules
of linear algebra. The divisions between matrices are always converted to multiplying the
inversion of the matrices; therefore, we will be only considering the multiplication. Com-
pared to the multiplications and divisions, additions and subtractions take much less effort
to compute, and they are not usually the problem.

For two matrices A and B that have a size of n∗n, the time complexity for addition, as
shown in equation 3.6, is O(n2). On the other hand, the time complexity for multiplication,
as shown in equation 3.7, is O(n3).
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(A+B)ij = Aij +Bij (3.6)

(AB)ij =
n∑

k=1

AikBkj (3.7)

Another significant property observed from the data used inside the electron structure
calculation is that the numbers inside the matrices are very small and close to zero. There
are also many zeros inside the matrix; to be specific, the number of zeros exceeds the
number of non-zero elements. A matrix with most of its elements zero has the name of
’sparse matrix’. During the electron structure calculation, the presence of the sparse matrix
is ubiquitous. It is also prevalent in many other scientific computing problems like Finite
element problems (FEP).∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0.1 0.05 0 0 0 0 0
0.05 0.1 0.05 0 0 0 0
0 0.05 0.1 0.05 0 0 0
0 0 0.05 0.1 0.05 0 0
0 0 0 0.05 0.1 0.05 0
0 0 0 0 0.05 0.1 0.05
0 0 0 0 0 0.05 0.1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.8)

A sample sparse matrix is given in figure 3.8, there are 19 non-zero elements and 30
zero elements. Given by definition, the sparsity of a sparse matrix can be determined by
equation 3.9.

Sparsity =
Number of zero elements

Total number of matrix elements
(3.9)

Another significant value to describe a sparse matrix is the density of the matrix, and
it is very similar to the sparsity.

Density =
Number of non-zero elements

Total number of matrix elements
= 1− Sparsity (3.10)

Therefore, we could determine the sparsity and the density of the sample sparse matrix
as shown in figure 3.8 are 61.2% and 38.8%. As sparsity increases, more zeros are stored
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inside the matrix and there are fewer elements that are non-zero. On the contrary, matrices
that have most of the elements non-zero are named dense matrices. Usually, the matrix
multiplication algorithms are designed for dense matrices rather than sparse matrices.
Based on the fact that most elements inside sparse matrices are zero, specialized algorithms
can be designed to improve the efficiency of sparse matrix multiplication and can be used
to save more space in the memory.

3.2.2 Storing the sparse matrix

It is essential to store as few zeros as possible to save space during the computation. Many
different formats have been developed to store sparse matrices, however the performance of
accessing and modifying the elements are quite different for each different storing format.
In this project, we will focus on three crucial sparse matrix formats that are intensively
used in the project, they are the Coordinate list format (COO), the CSR and the BSR.

The most straightforward format to store a matrix in sparse format is to use the Co-
ordinate list format (COO) format. The COO will store each non-zero element into three
different pieces of information: the row index, the column index and the data itself. Here
in figure 3.4, an example of storing a sparse matrix in COO format is given. Using this
format, a full matrix can be represented with three arrays of numbers. For example, the
non-zero element located in (1, 1) is 2, therefore its row and column indices are recorded
in the corresponding position in the row array and the column array.

Figure 3.4: The Coordinate list format (COO) for storing sparse matrices.
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However, there are advantages and disadvantages to use the COO format. Starting
with the advantages, all the zero elements are discarded and no space is wasted during
the storage. It would also be more space-efficient when the sparsity is high. Another
characteristic of the COO format is that there is no order in storing elements. This could
be a double-edged sword since the operation to create a new sparse matrix or add elements
will cost little time in O(1). At the same time, it would not be efficient when doing a
reading or searching operation. Because there is no order in storing the elements, it would
require a complete search inside the three arrays to look up one single element. This will
lead to a considerable disadvantage when the program is trying to read a specific column
or row of data.

Another downside of using the COO format is that in order to store one single element
from the matrix, two other indices have to be created and stored as well. There is a
problem that too many duplicated indices have been stored in the row and column array,
and it could be solved by introducing another sparse matrix format called the Compressed
sparse row format (CSR) format.

The CSR format uses three arrays to store information; they are the index pointers,
the indices and the data itself. The index pointers record the row information using the
number of non-zero elements. The position inside the index pointers represents the row
number in the full matrix, and its value represents the total number of non-zero elements
starting from the beginning to this current row.

Figure 3.5: The Compressed sparse row format (CSR) for storing sparse matri-
ces.
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In order to retrieve the number of non-zero elements, the adjacent position inside the
index pointers has to be accessed. For example, if the program wants to know how many
elements are recorded in the first row, the program will access positions 0 and 1 of the
index pointers. Then, the value of position 1 subtracted by the value of position 0 indicates
the total number of non-zero elements in the first row, which is 2. By looking at the value
in position 0, the program can know where to access the other two arrays to retrieve the
column information and the data. The indices array and the data array have the same
length, and a single non-zero element is stored in the same corresponding position among
them. For example, using the value in position 0 from the index pointers, the program can
locate the first element in the first row by accessing the “0” position in the indices array
and the data array, which is an 8 in position (0, 0) in the full matrix.

In this way, all the non-zero elements inside the full matrix are stored from left to right
and top to bottom, which will provide huge benefits in data access. Instead of searching for
the corresponding index from the COO format, the CSR can quickly locate the row index
and work on a local search within a relatively small range using the number of non-zero
elements. However, inserting an element into the CSR format can be really difficult and
inefficient. There will be massive operations to update the index pointer array, and it is
usually not encouraged to do so.

Figure 3.6: The Block compressed sparse row format (BSR) for storing sparse
matrices.

The Block compressed sparse row format (BSR) is another sparse matrix format that

31



is very similar to the CSR format, the BSR store block matrices instead of individual
elements like the CSR. One of the constraints for the BSR is that the dimensions of the
block matrices have to be the same, and they must evenly divide the overall dimension of
the full matrix. For example, in figure 3.6, the block size is (2, 2), and the overall dimension
of the full matrix is (6, 6). The BSR will require an additional parameter to store the block
size, and it can not be modified.

3.3 The Tile structure

The Tile structure, or the ”Tile”, is a fundamental datatype developed to provide au-
tomated data type conversion and efficient sparse matrix multiplication aiming to solve
the three-index integral problem. The Tile structure, developed using the Object-oriented
programming (OOP), also provides a new heuristic matrix screening function that is made
available to external uses outside the library, which is one of the most critical fundamental
subroutines in the later Tile Master structure. Additionally, the Tile structure has effi-
cient self-pruning methods inside the data structure, which could remove matrix elements
smaller than a given threshold in the most efficient way.

Currently, most of our CiM routine is developed based on the PySCF package. The
PySCF provides many useful functions like setting up the geometries and the mean-field
function; however, it will store every intermediate quantity using the NumPy ndarray from
the NumPy library. This means that every quantity is stored in a dense matrix format, and
there is no sparse matrix multiplication algorithm implemented. The advantages of using
the sparse matrix data type has been discussed in the previous chapter 3.2.1, which could
save more space in memory and reduce the total number of arithmetic operations in the
calculation, thus resulting in a faster calculation. Previous attempts have been made to
use the sparse matrix data type from the SciPy Sparse library; however, the improvements
are quite limited due to the limited implementations in an imperative fashion and the
incorrect multiplication algorithm used between dense and sparse entities.

Here, quantitative comparisons will be given to provide essential proof of concept and
reveal the true potential of using sparse matrix multiplication algorithms. The standard
testing procedures and the benchmark environment will also be introduced in the following
section.
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3.3.1 Proof of concept

In conventional calculation routines, few or no measurements are implemented to choose
the most efficient data type for intermediate steps. This problem is caused by knowing
insufficient data information in the calculation. To retrieve more detailed information
like the sparsity and blocked structure, one will need to put tremendous effort into an
imperative implementation. In our earlier implementation of the CiM approach, the COO
and the CSR matrix format has been used to replace the full density matrix for a faster
calculation. However, the drawback of this technique is evident, that the efficiency is
highly dependent on the sparsity of the density matrix. As different basis sets are applied,
the sparsity of the density matrix (and other intermedia matrices) can vary vastly. This
will introduce inconsistency to the performance as it requires extra effort to convert dense
matrices into sparse matrices and apply sparse matrix multiplication algorithms to them.

Matrix
size

Sparsity Dense time Sparse
time

Conversion
time

Sparse
total

Sparse
efficiency

100 0.95 0.0065 0.00012 0.00043 0.00055 1193%
200 0.95 0.0070 0.00012 0.00026 0.00076 929%
300 0.95 0.0068 0.00070 0.0016 0.0023 292%
500 0.95 0.0081 0.0028 0.0038 0.0066 123%
1000 0.95 0.017 0.015 0.015 0.031 56%
5000 0.95 0.65 0.82 0.39 1.21 54%
10000 0.95 4.2961 6.1193 1.5764 7.6957 56%

Table 3.2: Performance comparsion between the dense matrix multiplication
and the sparse matrix multiplication algorithms. Part 1. The dense algorithm
is the dot operation from the NumPy library. The sparse algorithm is the CSR matrix
multiplication algorithm from the SciPy Sparse library.

How much faster is the sparse matrix multiplication than the dense matrix multi-
plication? To start with, we will generate some random sparse matrices with specified
sparsities in different sizes. Then, the performance of different multiplication algorithms
will be compared by recording their runtime under the same environment. In Table 3.2,
sparse matrices that have a sparsity of 95% in various sizes have been tested for sparse
efficiency from a specified CSR sparse matrix multiplication algorithm. For matrices that
have sizes under 300 by 300, the CSR sparse multiplication algorithms are very efficient.
However, when the matrix size increases, the conversion time starts to slow down the total
runtime of the sparse multiplication algorithm. When the matrix size exceeds 1000 by
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1000, the sparse efficiency stables around 50% even under the same sparsity. The reason
behind this could be complicated, as the calculation may soon run out of space using the
memory. Many other studies focused on solving large-scale sparse matrix multiplication
algorithms, called the Sparse general matrix-matrix multiplication (spGEMM) problems.
However, in our CiM approach, we will keep the matrix size well under 500 since we want
to keep the tensor calculation solely inside the DRAM.

However, the proof of concept does not end here. Many researchers believe that replac-
ing the dense matrix with the CSR or COO sparse matrix format and using the NumPy
dot operation on them would provide some efficiency. They believe that without knowing
any information from the matrix, converting the matrices that they ’believe’ to be sparse
into sparse matrices is a good idea. This soon turns out to be the other way around as
our testing continues. In table 3.3, the sparse efficiency drops below 100% quickly as the
sparsity for each matrix is lowered to 50%. Matrices with sizes greater than 300 will suffer
huge efficiency loss using the CSR matrix multiplication algorithm. If the sparsity keeps
increasing, the turning point of the 100% will also get smaller. To sum up, the CSR sparse
matrix multiplication works well on matrices with high sparsity. The exact value will be
determined later in the chapter.

Matrix
size

Sparsity Dense time Sparse
time

Conversion
time

Sparse
total

Sparse
efficiency

100 0.50 0.0097 0.00046 0.00050 0.00096 1011%
200 0.50 0.0092 0.0027 0.0015 0.0042 222%
300 0.50 0.010 0.0085 0.0029 0.011 90%
500 0.50 0.0088 0.038 0.0078 0.045 19%
1000 0.50 0.013 0.30 0.029 0.33 4%
200 0.15 0.0027 0.0068 0.0015 0.0084 32%
200 0.30 0.0019 0.0048 0.0015 0.0063 30%

Table 3.3: Performance comparsion between the dense matrix multiplication
and the sparse matrix multiplication algorithms. Part 2. The dense algorithm
is the dot operation from the NumPy library. The sparse algorithm is the CSR matrix
multiplication algorithm from the SciPy Sparse library.

In order to have a more comprehensive and quantitative comparison, we will use two
random matrices with controlled sparsity ranging between 0 to 1. Also, we will record the
time that it takes to convert the dense matrices into sparse matrices, the time for using
the sparse matrix multiplication algorithm, and the time for converting the result back
to the dense format. On the other hand, the time that it takes to run a basic NumPy
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dot product with two dense matrices will be recorded and used as a reference. Finally,
the relative efficiency shown in the graph is derived using the total time of the NumPy
dot routine divided by the total time of the CSR sparse multiplication algorithm. If the
relative efficiency is greater than 1, then it means that converting these two dense matrices
into CSR format is faster than calculating them directly using the dense format. On the
contrary, if the relative efficiency falls below 1, the efforts to convert dense matrices into
sparse matrices are not worthwhile.

Figure 3.7: The Relative Efficiency of the CSR routine compared to the NumPy
dot routine in size of 500 by 500 matrices. The higher the peak, the more efficient
the algorithm routine is. The matrix density is the opposite of the matrix sparsity. The
average performance of the CSR algorithm is measured at 12.3%.

In figure 3.7, two randomly generated matrices in size of 500 by 500 are used to illustrate
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the CSR routine. Four hundred different cases are collected and coloured in the figure to
represent a generalized scenario. However, only a few cases exceed the 100% efficiency
and most of the cases are below even 50% efficiency. To evaluate the overall effectiveness
of the CSR sparse multiplication algorithm, we can calculate the average based on all
the testing cases since they are uniformly distributed. The average performance of the
CSR algorithm is measured at 12.3%. Another noticeable detail is that the surface is not
smooth, indicating that the CSR algorithm contains some inconsistency in the timing. This
could be due to the memory allocating during the calculation, which is a hardware-related
problem that is difficult to deal with.

In our previous CiM program, the use of the sparse matrix multiplication algorithm is
limited to only the CSR routine. Inside the previous code, many proceduces convert an
intermediate matrix into the COO or the CSR sparse format, and use the CSR routine to
calculate the results. Later, the results are converted into dense format matrices again for
further calculations. It is unsurprising to see such a bad performance in the outcome when
replacing dense matrices directly with sparse matrices. Also, the inconsistency from the
CSR routine also answers the inconsistent timing issue from the previous CiM approach.

3.3.2 A closer look at the data

In order to design and optimize a sparse matrix multiplication algorithm for electronic
structure calculations, we need to take a closer look at the intermediate data first. During
the calculation of the CiM approach, the matrices we collected do not always have a sparsity
randomly distributed between 0 and 1. For example, the density matrix of a C4H6 carbon
chain in 3-21g has a sparsity of 37.8%. On the other hand, the overlap matrix of the same
C4H6 carbon chain in the same basis set has a sparsity of 43.4%. From Table 3.4 and Table
3.5, we are able to notice that as the molecule gets bigger or the basis size increases, the
sparsity of the density matrix and the overlap matrix will get higher.

C4H6 C8H10 C12H14 C16H18 C20H22

3-21g 0.38 0.29 0.31 0.35 0.40
ccpv-dz 0.47 0.42 0.44 0.48 0.52
ccpv-tz 0.55 0.56 0.61 0.66 0.69

Table 3.4: Sparsity of the density matrix of selected conjugated alkene chains in
different basis sets. Values inside the matrix below 10−5 are pruned.

In practice, retrieving the actual intermediate matrices from the calculation turns out
to be inefficient and time-consuming. To develop and optimize the Tile structure, we
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C4H6 C8H10 C12H14 C16H18 C20H22

3-21g 0.43 0.60 0.70 0.76 0.80
ccpv-dz 0.53 0.65 0.73 0.78 0.82
ccpv-tz 0.60 0.72 0.79 0.83 0.86

Table 3.5: Sparsity of the overlap matrix of selected conjugated alkene chains in
different basis sets. Values inside the matrix below 10−5 are pruned.

need to be able to simulate the intermediate matrices that could represent a wide range of
molecules. Certain properties differ the density matrix from a randomly generated matrix;
for example, the diagonal elements of a density matrix are always dense. Furthermore,
since the density matrices are Hermitian, their eigenvalues should be real and they will
also be non-negative. Another example of intermediate matrices is that they are usually
partially dense and have a blocked sparse structure due to the atoms’ unique geometry.
For two atoms that are further apart, their two-electron integrals are going to be more
sparse.

Matrix size From 100 to 1000
Matrix sparsity From 0 to 1

NumPy.random generator mode default rng
Target matrix data type numpy.ndarray

Matrix element absolute value upper limit 1 to 10
Is matrix Hermitian? Yes or No
Is matrix symmetric? Yes or No

Does matrix contain negetive values? Yes or No
Does matrix contain large diagonals? Yes or No

Is matrix blocked sparse? Yes or No

Table 3.6: Rules for simulating the actual intermediate matrices from the cal-
culation.

To create a testing matrix, it has to follow the set of rules listed in Table 3.6 to ensure
it is similar to the actual matrix retrieved from the calculation. Also, it has to have some
randomness to ensure the testing cases are adequate for evaluations. After the testing
matrix is generated, the test suite needs to ensure it is the same matrix that undergoes
different matrix multiplication algorithms. Otherwise, the relative efficiency would become
nonsense.
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3.3.3 The automated data type conversion

In conventional imperative programming methods, the data type conversion can only hap-
pen if only there is specific instruction made to follow. As mentioned above, this will require
a tremendous amount of work to implement. However, this problem could be dealt with
using the OOP method. Since the most common data type used inside most calculations
is the numpy.ndarray, it would be better to create a new data type that can automatically
convert the data type to take advantage of the sparse matrix format only when needed.
The benefits of using the sparse matrix format have been discussed in chapter 3.2: saving
space in the DRAM and speeding up the calculation. However, this would bring up another
question: Which sparse matrix format to use? Also, when to convert the dense matrix into
the sparse matrix?

Throughout our testing phase, the data matrix tends to have a sparsity greater than
30% but lower than 80%. The sparsity can get larger as the system size increases, but
we keep a relatively medium to small size system during development and benchmarking.
This is due to the final application of the Tile structure will be inside the CiM approach,
where we use divide-and-conquer to make sure everything fits inside the DRAM. In the
early chapter, we discovered that only using the CSR multiplication algorithm would have
a bad performance for anything above 30% density. It is crucial to turn to the other sparse
matrix formats for a more efficient multiplication algorithm.

In the meantime, developers from Nvidia also discovered a similar finding: sparse lin-
ear algebra would not provide adequate performance to speed up calculation when the
sparsity is below 95%. They concluded that algorithms are inefficient due to the ’irregular
computation and scattered memory’ in their article [28]. This again matches our finding
in section 3.3.1, where we discovered that the timing inconsistency might come from the
memory allocation. In the later part of the Nvidia article, they introduced a new method
to overcome the limitations, which they named ’cuSPARSE Block-SpMM’ [28].

The blocked sparse structure

To further understand the ’cuSPARSE Block-SpMM’, we will have to introduce the blocked
sparse structure first. The blocked sparse structure, is developed initially to solve the
SpMM problem. In early testing of the CSR routine, we noticed that if one of the multi-
plying matrices is dense and the other is sparse, there will be a considerable performance
penalty. This can be verified in figure 3.7, where the peaks are distributed around the
line where two matrices’ density equals. Many studies have been done to solve the SpMM
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problem, as it is applicable not only in scientific computing but also in many other fields
like deep learning, neural network and visual analytics.

Figure 3.8: The Sparse-matrix dense-matrix multiplication (SpMM) and the
Sparse-matrix vector multiplication (SpMV) problem visualized. [28]

Figure 3.9: One solution to the SpMM problem using their Blocked-ELL struc-
ture provided by the Nvidia. By converting the sparse matrix into block-wise dense
matrix will provide efficient matrix multiplication performance. [28]

The currently best solution to the SpMM problem is to convert the sparse matrix into
a block-wise dense matrix structure, like the Block compressed sparse row format (BSR)
or the Blocked-ELL shown in Figure 3.9. Once the block-wise dense matrix is obtained,
the algorithm can proceed to perform dense matrix multiplication between the targeted
blocks. In other words, using the blocked structure will divide the sparse matrix into many
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blocks, and only the dense one will be calculated using the dense matrix multiplication
algorithm.

In one attempted implementation from Eberhardt, they experimented with many dif-
ferent implementations on different system architectures like the CPU and GPU. In their
case, the storing sparse matrix format is the BSR. They provided some inspirational meth-
ods which could process the BSR with the order of row-per-thread, which could speed up
the calculation up to 4 times compared to the Nvidia cuSPARSE (2016) and up to 147
times faster than the Intel MKL library (2016) [5]. Their work might no longer be practical
to us as the Nvidia and the Intel MKL library have been constantly updated throughout
the past six years, but their experiments are still significant to our research by pointing
out that the Block compressed sparse row format (BSR) is the way to go to deal with the
SpMM problem.

The BSR algorithm and available external libraries

To see how effective the BSR sparse format is, we need to conduct the same testing proce-
dure as the CSR to give a fair comparison. Here in figure 3.10, the BSR sparse algorithm
has been compared to the NumPy dot algorithm using the same 500 by 500 size. At first
glance, the highest peak from using BSR algorithm is over 500% efficient, whereas the
highest peak from using the CSR routine is around 110%. The turning point for the BSR
to fall behind 100% efficiency is around 70% sparsity, whereas the CSR has a very fast
descending turning point around 95% sparsity. The average overall efficiency for the BSR
routine is 14%, which is slightly higher than the 12.3% from the CSR.

Why does the BSR reaches a higher efficiency than the CSR when both matrices are very
sparse? Theoretically, the CSR should require fewer steps to complete the multiplication
since the CSR contains fewer number of zeros compared to the BSR format. However,
this is related to the time complexity and the space complexity. An algorithm which
requires fewer arithmetic operations might spend longer time allocating memories and
moving data around, compared to an algorithm that could allocate memories very quickly
with more arithmetic operations. However, in order to allocate memories quickly, the
algorithm usually requires a lot of space. In our case, the BSR stores more zeros than
the CSR and outperforms the CSR by using more space in the DRAM. Inside the Tile
structure, both time complexity and the space complexity for each algorithm have to be
taken into account since the calculation is tight on available DRAM space.
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Figure 3.10: The Relative Efficiency of the BSR routine compared to the NumPy
dot routine in size of 500 by 500 matrices. The average performance of the BSR
algorithm is measured at 14.0%, higher than the 12.3% from the CSR routine. Also, the
BSR routine outperforms the CSR in sparsity regions above 70%.

Thus far, the CSR and the BSR algorithms are provided from the SciPy.sparse library
and they are implemented in single-thread only. This means that even their algorithms
might not be much distinct from other SpMM approaches, but there is a massive difference
in the output performance. To be clear, the performance is highly dependent on the
computing capabilities as most of the recent spGEMM libraries emphasize the use of the
multi-threading on multicore architectures, which could be either CPU or GPU.

One of the available external SpMM libraries is the Intel Math Kernel Library, also
known as the Intel MKL. It has been one of the most popular kernel libraries and is
often used as a standard reference for performance. Necessary implementations have been
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done to enable the direct function calls from Python to the MKL library solely using
cytpes and another python package named sparse-dot-mkl. At the time of writing, the
tile data structure handles the sparse-sparse matrix multiplication and the sparse-dense
matrix multiplication entirely on the Intel MKL library and takes full advantage of the
multi-threading technique.

To further demonstrate the power of the multi-threading technique, we have run the
testing procedures for the 500 by 500 matrices again using the same computing system
with the Intel MKL library. From figure 3.11, an impressive 952% improvement in overall
average efficiency and up to 2011% improvement in some instances from the CSR routine.
At the same time, there is a 771% improvement on the BSR routine, with up to 1998%
improvement in some instances.

Figure 3.11: The Relative Efficiency of the Intel MKL SpMM performance com-
pared to the SciPy CSR and BSR routine in size of 500 by 500 matrices. Under
the same computing system, the Intel MKL provides a nearly 10 times efficient over the
CSR routine and 8 times efficient over the BSR routine in the SciPy.sparse library.

Another implementation attempt is based on the GPU using the CUDA structure with
the CuPy package. However, this GPU orientated implementation requires two extra steps
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compared to any CPU orientated routine. In computing systems, the GPU can not read
or write directly from the DRAM. One would have to imperatively copy the matrices into
the GPU memory and collect the results from the GPU memory to the DRAM to able
other access from the CPU. Since GPU is a highly parallelized structure, it is very optimal
to divide the SpMM problem into many column-wise or row-wise subroutines, which could
benefit the runtime in exponential orders and overcome the loss of the data transfer time.
However, this implementation is not easily applicable inside the Tile structure as the data
type is OOP.

The CuPy package is a wrapper program to the Nvidia CUDA library, where it provides
accelerated tensor calculations from the cuTensor library and accelerated SpMM solvers
from the cuSPARSELt library. However, the sparse matrix multiplication from the cuS-
PARSELt library does not currently support the calculations with the BSR matrix format.
What’s more, the performance of the CUDA calculation is highly dependent on the GPU
devices which can not be compared to the results generated by the CPU. Hence, there will
be no visualization of the performance improvement from the GPU SpMM libraries.

Auto-determination of the BSR block size from SciPy.sparse

When using the BSR data format, it is crucial to determine a proper block size to reach
the maximum possible efficiency in both storage and multiplication. The most efficient
block size is highly dependent on the data itself, and there is no general answer for every
BSR matrix. Inside the SciPy library, a function named estimate blocksize is created to
determine the most efficient block size for a BSR matrix [27]. Every BSR will go through
this function when it is being created to determine its proper block size.

We have no contribution to this function, but it is worth mentioning since it is crucial
to the overall efficiency of the Tile structure. In short, the algorithm will eventually return
a set of block size (r, c), where the number of non-zero elements of the BSR matrix is
the smallest among a selection of available block sizes [27]. The detailed algorithm has
been quoted in Appendix A.5, and the estimation method uses the trial and error method.
Currently, the algorithm is only able to test and return a block size of (1, 1), (2, 2), (3, 3),
(4, 4) or (6, 6). The actual determination criteria is the fraction value shown in equation
3.11, and the default efficiency is 0.7.

Number of non-zero elements for the matrix in a block size of (1, 1)

Number of non-zero elements for the matrix in a block size of (r, c)
> efficiency (3.11)
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Inside the Tile structure, we wish to keep the block size relatively small and the calcula-
tion as efficient as possible. All the BSR matrices are using this auto-determination method
to retrieve their best block size for storage and calculation. However, we soon encountered
new problems with BSR multiplications between two BSR matrices with different block
sizes. Inside the SciPy.sparse library, it is possible to multiply two BSR matrices with
different block sizes, and the result BSR will keep the smaller block size between the two
[27]. However, when using the external Intel MKL library, the operation quickly becomes
illegal and the block size has to be manually adjusted before the BSR matrices are sent to
the library.

Determination of the conversion thresholds

Figure 3.12: Illustrations on the threshold determination from the automated
data type conversion. The red curve represents the efficiency of the CSR routine versus
the increasing matrix density, while the blue represents the BSR routine and the green
represents the dense matrix routine. The Tile structure will automatically switch between
different matrix data types for the best calculation efficiency.

In the previous sections, we have discussed a few different sparse matrix storing formats
and evaluated their performance and efficiency with different matrix densities. In figure
3.12, an illustration can be drawn to demonstrate the automated data type conversion
scheme from the three available calculation routines. There are many contributing factors
to the multiplication efficiency, and the values tend to change as the matrix size changes.
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Hence, this illustration will be inexact and is qualitative only to aid in finding the two
conversion thresholds.

We will separate the full range of matrix density into three regions for further discussions
on the details. The first region starts from the zero density and ends where the matrix
density is below the first conversion threshold, which represents the very sparse matrices.
In this case, the dense of the dense routine would be inefficient, and lots of the memory
space would be wasted by storing too many zeros. From our early observations, the time
complexity of the BSR routine should be better than the CSR routine. However, when
the matrix is very sparse, it usually worth the trade-off to sacrifice some time complexity
to save more space during the calculation, as the space complexity of the CSR is much
better than the BSR routine. Therefore, the CSR routine has the highest multiplication
efficiency within the region, and the Tile structure will automatically convert any matrix
that has a density below this first conversion threshold.

The second region lies between the first conversion threshold and the second conversion
threshold. The efficiency of the CSR routine fades away quickly as the matrix density
increases, and the efficiency of the dense matrix multiplication is not yet adequate to
overtake the plate from the CSR routine without a significant performance penalty. Here,
the Tile structure will rely on the blocked sparse structure using the latest SpMM solutions.
The Block compressed sparse row format (BSR) can compress the sparse entries as blocks
and perform a dense-like multiplication, giving a much higher performance over the CSR
and the dense routine.

The third region is where the matrix density is above the second conversion threshold.
Here the Tile structure will determine that it is inefficient to convert the dense format into
any other sparse matrix format and will stick to the dense matrix multiplication algorithms.

Finding the first and the second conversion threshold can be done in a few tries using
our testing environment. A recommended method is to start from the back, searching
for the second conversion threshold for BSR first with the CSR routine switched off. In
table 3.7, we can observe that the second conversion thresholds are around the when using
different external libraries. The second conversion threshold can be determined as 0.7,
meaning that any matrix with a sparsity greater than 70% will be converted to the BSR
format and undergoes SpMM routines.
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Using Intel MKL library Using Spicy.sparse library
ThresholdBSR = 0.5 180.13 % 123.68 %
ThresholdBSR = 0.6 202.38 % 159.40 %
ThresholdBSR = 0.7 238.54 % 194.50 %
ThresholdBSR = 0.8 187.47 % 175.14 %
ThresholdBSR = 0.9 215.10 % 181.87 %
BSR switched off,

dense only
127.07% 127.59 %

Table 3.7: Finding the second conversion threshold using the testing environ-
ment size of 500 by 500. The conversion threshold is determined using the overall
average efficiency of the Tile structure for better optimization with other available func-
tions. The CSR conversion has been switched off.

Using Intel MKL library Using Spicy.sparse library
ThresholdCSR = 0.8 186.37 % 145.13 %
ThresholdCSR = 0.9 193.63 % 160.35 %
ThresholdCSR = 0.95 211.94 % 170.72 %
CSR switched off,

BSR and dense only
238.54% 194.50 %

Table 3.8: Finding the first conversion threshold after acquiring the
ThresholdBSR = 0.7 using the testing environment size of 500 by 500. The conver-
sion threshold is determined using the overall average efficiency of the Tile structure for
better optimization with other available functions.

After acquiring the first conversion threshold, the second conversion threshold for the
CSR routine can also be determined using similar methods. In table 3.8, the optimal
threshold for the CSR routine is determined as 0.95. This result validates the research
from the Nvidia group as they found that most CSR routines work for matrix sparsity
above 95% [28].

To sum up, the automated data type conversion contributes a majority of the gained
efficiency of the Tile structure. With the aid of the blocked sparse structure and much help
from current spGEMM, SpMM and Sparse-matrix vector multiplication (SpMV) research,
we are able to provide a significant improvement using the Tile structure. In order to
achieve better efficiency, much work has been done in the background to ensure the data
type conversion is thread-safe and capable of running in a multi-threading fashion. Also,
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using OOP enables the user to change the targeted math library to suit different calculation
environments and adapt to future external library updates.

3.3.4 The fast heuristic matrix screening method

The screening method is one of the most critical features that differ the Tile structure
from any other data type implementation. In order to calculate the sparsity, the number
of non-zeros is always needed. The only way to get the answer from NumPy is to use the
count nonzero function, and from SciPy is to use the nnz (number of non-zeros) attributes.
Both methods will provide an exact answer to the user since the functions are set to go
over every single entry, which could impact the performance significantly as the size of
matrices or tensors gets very high.

The Tile structure will need to retrieve the sparsity from the data to perform the
automated data type conversion and benefit from the SpMM. Retrieving the sparsity from
the sparse matrix formats is straightforward and efficient since there are not a lot of stored
zeros, and it will take O(1) for access in the CSR. On the other hand, the screening will
become a problem for the dense matrix. Unless there is any external sparsity array input
scheme from the Tile Master structure, the Tile structure will perform its screening method
for the data input. However, the sparsity answer does not need to be exact, as accessing
the entire dense array can be very costly. Currently, six sparsity estimation methods are
available from the Tile structure shown in table 3.9 to help reduce the screening efforts.

sparsityEstimationMethod Sparisity estimation method
1 Diagonal elements only
2 Column elements only
3 Row elements only
4 X style elements only
5 + style elements only
6 The fast heuristic matrix screening method

Table 3.9: Available sparsity estimation methods from the Tile structure.

Method 1 to 5 are some commonly used matrix screening methods in linear algebra.
However, even though the cost is cheap, none of the methods could yield an acceptable
estimation compared to method 6. The fast heuristic matrix screening method, is developed
to deal with the heterogeneous distributed data array coming from the CiM approach or any
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other scientific computing program. A flowchart is provided in figure 3.13 to demonstrate
the random sampling procedures inside the fast heuristic matrix screening method. The
source code is also made available in appendix A.1 for a better understanding.

Figure 3.13: The flowchart of the fast heuristic matrix screening method inside
the Tile structure. The random sampling method will ensure the screening algorithm
obtains an accurate estimation even with heterogeneous distributed data arrays.

Inside the fast heuristic matrix screening method, a threshold is used to end the re-
cursive random sampling. We are also able to further optimize the algorithm behaviour
by adjusting the threshold to find a balance between the accuracy and the performance.
Table 3.10 displays the average estimation error retrieved under different heuristic screen-
ing thresholds. However, a more accurate estimation can’t be justified to be efficient only
when not evaluating the overall tile structure efficiency. An inaccurate estimation will shift
the first and second conversion threshold between different data types, and the final per-
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formance could be influenced. Therefore, it is more appropriate to determine the heuristic
screening threshold using the overall efficiency.

heuristicEstimateThreshold Average estimation
error

Overall efficiency of the
Tile structure

0.1 ±0.00962 3.279364962
0.05 ±0.00928 3.202434383
0.01 ±0.008866667 3.095969525
0.005 ±0.00822419 3.348356564
0.001 ±0.00511225 3.610377249
0.0005 ±0.005525857 3.436049345
0.0001 ±0.003336978 3.367356811

Table 3.10: Determine the heuristic estimate threshold using the average esti-
mation error and the overall efficiency of the Tile structure. The Tile structure
has the highest overall efficiency of 361% when the thresholdscreening = 0.001, which means
any estimation converging under 0.1% will end the heuristic process with an error rate of
sparsity in ±0.51125%.

3.3.5 The efficient self-pruning method

During the CiM electronic structure calculation, it is vital to manage the use of the DRAM
wisely. Using the sparse matrix format to free up the storage space from storing zeros is one
attempt to reduce memory usage, avoiding the use of the HDD. Besides using the sparse
matrix, another feasible and commonly used technique is to improve the overall efficiency
and reduce the calculation size by removing the insignificant small matrix entries. This is
called the matrix pruning method.

In our CiM approach, we have already determined a threshold to remove insignificant
matrix entries below 10−5. However, it is often considered a complicated task to complete
since the insignificant entries would appear after each arithmetic operation. Moreover, it is
nearly impossible to remember pruning after each command in the imperative coding style.
We will once again benefit from our new data type, the Tile structure, by implementing
the pruning operation along with the arithmetic operation. When using the Tile structure,
the self-pruning procedure is operated whenever the Tile class constructor is called. There
are several different scenarios for a Tile class constructor to be called; for example, when
initializing a new Tile structure using any of the NumPy.ndarray, the python array or
copying directly from another Tile structure. An attribute named cutOffStatus inside
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the Tile will keep track of the pruning operation, which can avoid executing duplicated
self-pruning operations.

To be specific, the self-pruning operation is embedded inside the overloaded Tile class
arithmetic operators, which accept any of the Tile structure, the NumPy.ndarray, the
python array, or any sparse matrix format from the SciPy.sparse library. In addition,
the Tile class arithmetic operators will also override all the NumPy arithmetic operators
using an array priority rank of 15. The source code of the Tile class constructor and
the overloader arithmetic operators can be found in appendix A.3 and A.4 for a better
understanding.

While implementing the self-pruning method, we noticed that there is no available
function that could complete the task efficiently from the SciPy.sparse library and the
NumPy library. In our previous CiM procedures, sparse matrices have been converted to
dense matrices before the pruning operation, and the pruned matrices are converted back
to sparse matrix format to save some space. In the early sections, we already acknowledged
that the conversion time between the dense and sparse matrix format is terrible when the
matrix sparsity is low. Hence, the best way to carry out a prune operation is by pruning
the sparse matrix format directly.

Algorithm 1 The efficient self-pruning method for the SciPy CSR format.

for indexPointPositions in all available index pointer positions do
currentNNZ ← number of non-zeros from current index pointer position
nextNNZ ← number of non-zeros from the next adjacent index pointer position
NNZThisRow ← nextNNZ − currentNNZ
for dataThisRow in NNZThisRow do

if absolute of the CSR data [dataPositions+ dataThisRow] > threshold then
newData← newData + CSR data [dataPositions+ dataThisRow]
newIndices← newIndices + CSR indices [dataPositions+ dataThisRow]
newNextNNZ ← newNextNNZ + 1

end if
end for
dataPositions← dataPositions+NNZThisRow
newIndexPointers← newIndexPointers+ newNNZ

end for
newIndexPointers← newIndexPointers+ newNNZ
CSR data ← newData ▷ Update the previous CSR
CSR indices ← newIndices
CSR IndexPointers ← newIndexPointers
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In algorithm 1 and in appendix A.2, we presented an efficient self-pruning algorithm
by only accessing the CSR entries once. The time complexity of this algorithm is O(n),
where n is the total number of non-zeros elements. Compared to the previous attempt by
converting back to the dense matrix, the time complexity is O(N2), where N is the matrix
size and n≪ N in most cases.

Algorithm 2 The efficient self-pruning method for the SciPy BSR format.

for indexPointPositions in all available index pointer positions do
currentNNZ ← number of non-zeros from current index pointer position
nextNNZ ← number of non-zeros from the next adjacent index pointer position
NNZThisRow ← nextNNZ − currentNNZ
for dataThisRow in NNZThisRow do

for each BSR data entry in the block do
if absolute of the BSR data entry [dataPositions+dataThisRow] > threshold

then
newData← newData + BSR data [dataPositions+ dataThisRow]
newIndices← newIndices+ BSR indices [dataPositions+dataThisRow]
newNextNNZ ← newNextNNZ + 1

end if
end for

end for
dataPositions← dataPositions+NNZThisRow
newIndexPointers← newIndexPointers+ newNNZ

end for
newIndexPointers← newIndexPointers+ newNNZ
BSR data ← newData ▷ Update the previous BSR
BSR indices ← newIndices
BSR IndexPointers ← newIndexPointers

The efficient self-pruning method for the BSR is shown in algorithm 2 as well. Since the
BSR and the CSR share a very similar data structure, the procedures are almost identical,
except the data block from the BSR has to be examined one entry at a time. Being able
to perform the pruning operation efficiently is critical to the overall efficiency of the Tile
structure due to the fact that it is being frequently called.
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3.4 Performance and potentials

The Tile structure, is designed to replace the NumPy.ndarray class with better performance
on matrix multiplication and more functionalities like automated data type conversion and
self-pruning. With the aid of many external libraries, the Tile structure is able to solve
the SpMM problem efficiently using either CPU or GPU architecture with the ability of
multi-threading. Furthermore, a specially designed heuristic matrix screening algorithm
helps the Tile structure accurately estimate the sparsity from large matrices at a minimal
computational cost. Implemented using the OOP method, the Tile structure can be used
to speed up any matrix multiplication application with little implementation effort.

To evaluate the performance of the Tile structure in solving two-electron three index
integral problems, we will run through simulated chemistry matrices made for our testing
and project the final average efficiency along with the highest performance boost. The
performance might differ under different computing environments, and the hardware con-
figuration used for the benchmarking has been provided in table 3.11.

CPU AMD Ryzen 9 5950x 16-Core Processor @ 4.50Ghz
GPU NVIDIA GeForce RTX 3090
DRAM 32.0 GB DDR4 @ 3600 MHz
SSD two PCIE 4.0 Solid State Drives in RAID 0

Table 3.11: The hardware configuration used for the benchmarking.

In table 3.12 and table 3.13, the simulated chemistry matrices ranging from 100 by
100 in size to 1000 by 1000 in size have been tested to provide a comprehensive review of
the Tile structure. Starting form the table 3.12, the Tile structure provides around four
times more efficient than the regular NumPy dot routine, while giving peak performance
boosts over 30 times faster than the NumPy dot. However, as the matrix size increases,
the efficiency of the Tile structure decays slowly to 1.9 times faster than the NumPy dot
at the maximum matrix size of 1000 by 1000. For a better comparison, figure 3.14 displays
the overall average performance of using the Tile structure compared to the NumPy dot
routine. At the same time, figure 3.7 and figure 3.10 yield only around 10% of the overall
efficiency, while the Tile structure has a 355.64% in overall efficiency. The result confirms
that the Tile structure is capable of replacing the NumPy.ndarray to speed up matrix
multiplications.

52



Input size Overall average efficiency Highest preformance boost
100 5.65 105.62
200 4.78 159.59
300 6.03 33.14
400 4.19 26.46
500 3.56 23.62
600 3.14 16.20
700 2.54 15.33
800 2.47 14.78
900 2.09 9.73
1000 1.90 8.48

Table 3.12: The overall average performance of using the Tile structure un-
der different sizes, compared to the NumPy dot routine. The thresholds are:
thresholdcsr = 0.95, thresholdbsr = 0.7, thresholdscreening = 0.001 and thresholdcutoff =
10−5.

Input size Overall average efficiency Highest preformance boost
100 3.87 27.03
200 12.29 60.53
300 15.57 93.36
400 24.63 89.63
500 24.81 87.92
600 24.39 94.31
700 26.02 113.23
800 27.76 112.58
900 29.79 112.69
1000 30.93 123.15

Table 3.13: The overall average performance of using the Tile structure under
different sizes, compared to the previous CiM routine implementation. The
thresholds are: thresholdcsr = 0.95, thresholdbsr = 0.7, thresholdscreening = 0.001 and
thresholdcutoff = 10−5.

In table 3.13, the Tile structure is used to compare against the previous implementation
on our CiM approach, which solely uses the SciPy CSR multiplication algorithm. The result
is even more persuasive as the Tile structure reaches more than 30 times faster than the
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previous attempt with the aid of external libraries. Under certain circumstances, the Tile
structure can be over 120 times more efficient in matrix multiplications.

Figure 3.14: The overall average performance of using the Tile structure in size
of 500 by 500 matrices, compared to the NumPy dot routine implementation.
The thresholds are: thresholdcsr = 0.95, thresholdbsr = 0.7, thresholdscreening = 0.001
and thresholdcutoff = 10−5. The average performance of the Tile structure is measured at
355.64%.
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Since the Tile structure is capable of multi-threading, we assume that the Tile structure
can be even more efficient on highly paralleled computing architectures. However, the time
is limited during this project, and future work is expected for the confirmation.

The true potential of the Tile structure is far from only accelerating the matrix-matrix
multiplications and saving space during the calculation. The OOP style implementation
allows the Tile structure to retrieve information from other Tiles, therefore, the calculation
between two or more Tiles can also be done in the most efficient way.

When used with the Tile Master, the Tile structure can focus on seeking the most
efficient calculation routine, while the Tile Master can redirect the tensor objects from the
two-electron three index integrals in a block-wise structure made of the Tile structures.
By retrieving the data information from the Tile structures, the Tile Master can decide on
a reasonable block size and monitor the performance throughout the calculation. We will
cover the capabilities of the Tile Master by making using the Tile structure in the next
chapter.
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Chapter 4

The Tile Master

The Tile Master, a superstructure built solely for the CiM approach, is our answer to the
problem of manipulations involving the massive and time-consuming three-center integral.
With the most powerful tool ever, the Tile structure, we are able to go autopilot on the
matrix-matrix multiplications and focus on our final destinations, solving the three-index
integral problem. The most significant difference between the Tile Master and any other
block-wise data structure is that the Tile Master can retrieve estimated sparsity information
coming from Atomic orbital (AO) calculations and geometry analysis, before the data is
even constructed.

In this chapter, we will first start with explaining what is the Tile Master and why
the Tile Master is different from the Tile structure and other conventional block-wise data
structure. Then, we can illustrate the capabilities of creating a three-dimensional ‘sparse
matrix’ using the Tile Master and the Tile structure together, which is a vital data structure
to use when handling tensors and three-index objects. Later, a specially designed dense
and sparse calculation routine for the three-index quantities will be covered to enhance
the efficiency of using the blocked sparse structure in 3-D. Finally, we will present an
example of solving the three-index integral problems using the Tile Master, followed by
more benchmarking and performance analysis for further validation.

At the very end, we will provide an overview of this project and its future potential in
helping the CiM approach and many other scientific calculations.
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4.1 Another data structure constructed using the Tile

structure

What is the Tile Master? What’s the difference between the Tile Master and the Tile
structure? Why not use one data structure instead of two data structures? Unfortunately,
there are no simple answers to these questions, and more information is needed for clarifi-
cation. Hence, we will answer the questions one at a time and give necessary background
information simultaneously.

The Tile Master, is a block-sparse data structure that is designed to solve the two-
electron three-center integral problem using the Tile structure. The Tile Master is different
from the Tile structure in its purpose and usage, but they all adopt a similar block-
sparse structure to accelerate the Sparse-matrix dense-matrix multiplication (SpMM). In
the previous chapter, we explained why using the blocked sparse structure can increase
the calculation efficiency. Also, in Chapter 3.3.3, we also discovered that there is a block
size limitation inside the SciPy library, preventing the individual block size exceeds six.
Last but not least, the SciPy.sparse library cannot run three-index array multiplication in
sparse format at the time of writing, so there is no solution using existing libraries. The
Tile Master is explicitly created to fill in the blanks of calculating three-index quantity
multiplications, and it adopts a unique block-wise structure, unlike any conventional block-
wise data structure.

A typical block-wise data structure presented by Nvidia is limited to only accept in
two-dimensional arrays or matrices [28], which prevents us from the direct use of the
three-dimensional objects. Another significant difference between any conventional block-
wise structure is the storing method and its associated multiplication algorithms. For
example, in Figure 4.1, a regular block-wise structure will only store empty entries and
dense matrices. However, the Tile Master can store the data block in a more dedicated
way by distributing the data format handling to the Tile structure. Hence, there could
be four different data formats stored in the Tile Master structure: The dense matrix, the
BSR, the CSR and the empty entry.
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Figure 4.1: The Tile Master compared to conventional block-wise structures.

What’s the difference between the Tile Master and the Tile structure? At the beginning
stage of this project, we came across the idea of building a nested Tile structure, which
allows the Tile structure to store another Tile structure as an entry inside these different
sparse formats. Instead of having an array of float numbers, the nested Tile structure
can have arrays of Tiles or numbers. However, this idea was later abandoned due to
the complexity of the tree structure, and it was inefficient in the row or column search
operations. At this point, we realized that the best solution to handle the three-index
integral problem is to separate the macro-operations and the micro-operations into two
different but connected data structures.
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Macro-operations (Tile Master) Micro-operations (Tile)
Determine an appropriate block-size

under the current system size
Block-size for BSR is self-determined
locally just for multiplication efficiency

Divide three-index quantities into
matrices and pass them to Micro

Receive the input matrices from
Macro and calculate the results

Choose dense or sparse multiplication
strategies for blocks

Choose the most efficient matrix
multiplication algorithm

Control and keep track of the
block-wise multiplication

Screening matrices for sparsity to
provide feedback for Macro

Sum up the final result Remove array elements that are below
the threshold

Table 4.1: Macro-operations versus Micro-operations in the block-sparse data
structure. Macro-operations are completed by the Tile Master, and the Tile structure
will provide Micro-operations supports to the Tile Master.

Conventional block-wise data structure usually handles both the Macro-operations and
the Micro-operations at the same time, while the Tile Master does the Macro and the Tile
structure does the Micro shown in Table 4.1. This strategy allows the low-level calculation
to be separated from the high-level data flow, which has multiple advantages over the
traditional arrangement. Firstly, avoiding getting caught between the low-level calculation
helps the beginner-level user of this data structure free of frustration. We did not discuss
this in Chapter 3, but we found in practice that the Tile structure can significantly improve
the readability of the code and make programing much easy with them.

Secondly, being able to separate different levels of calculation enable the capablity of
multi-threading and makes it suitable for any high-performance high-parallelization com-
puting structure. This includes the new Intel KNL structure Xeon processors and any
Graphic processing unit (GPU) using the Nvidia CUDA structures. Third but not least,
using two data structures instead of one helps the future developers focus on either the
Macro or the Micro side. For example, when designing a new calculation routine or trans-
lating an existing calculation, the developer only needs to modify or add one function to
the Tile Master. On the other hand, if one wants to modify the lower-level calculation rou-
tines like switching the external runtime libraries, the developer will only need to modify
the existing function in the Tile structure, and it will not interfere with the Tile Master.
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4.2 The Tile Master

With the help of the Tile structure, the Tile Master can achieve things that could never be
easily implemented before. In the following sections, selected features such as determining
the variable block size using geometry characteristics, creating the three-dimensional sparse
”matrix” and selecting between dense and sparse calculation routines using an external
sparsity array. With all these added functions, the Tile Master is finally capable of solving
the three-index integral problem and benchmark results will be given at the end of this
chapter.

4.2.1 Determining the variable block size using geometry char-
acteristics

The Tile Master can automatically determine an appropriate block size when given enough
geometry characteristics in advance. The geometry information can be the number of
atoms, the number of AO basis functions, or fitting basis functions, or some other di-
mension. This idea comes from the CiM approach and the divide-and-conquer technique.
Specifically, the necessary information for the Tile Master can be retrieved when the gauge
centers are assigned during the integral prescreening phase [10]. Assigning the gauge center
is our way of dividing the whole molecular into subsets of atoms, and during this process
the prescreening algorithm developed by Mike will determine an appropriate “grid size”,
which limits the number of AO inside the grid [10]. For convenience, we could retrieve the
number of AO for each grid and make it the corresponding block size.

Figure 4.2: Assigning AO gauges centers in the integral prescreening algorithm
developed by Mike Lecours [10]. The Tile Master will retrieve the geometry informa-
tion from this algorithm and determine the most appropriate block size.
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In figure 4.2, an example of the integral prescreening algorithm is given by Mike to
present the whole process of assigning gauge centers. In the code by M. Lecours gauge
centers were used to calculate the final assigned gauge centers to calculate the long-range
potentials, and as the centers closely follow the atoms [10]. We repurpose these gauge cen-
ters as cell centers associated with a small group of atoms, therefore the distance between
the orbital pairs α, β can be easily calculated. This piece of geometry information will be
used later to determine the external sparsity array that allows the Tile Master to handle
sparse or dense calculation routines, which will be discussed later.

Another benefit of using the geometry information from the prescreening routine is
that, after each grid has been created and subsets of AO have been determined, the CiM
can only distribute the necessary AO to each subroutine of calculations. This will minimize
the number of overlapping AO used in long-range potential calculations. Also, this will
not be possible if only the Tile structure is used, since the Tile structure can only accept
block sizes that are no more than six. In optimal cases, we will keep the number of atoms
below five and the block size around 100, which is also a optimal size to input for the Tile
structure.

4.2.2 Creating 3-D sparse arrays using the Tile Master

Another critical feature of the Tile Master is that we can create and store the vast three-
index quantity in a sparse format. Currently, there is no three-dimensional sparse matrix
support in any of the available libraries, including the NumPy and the SciPy. The only
way to deal with the three-index quantity is to store them in dense arrays and perform
dense multiplication algorithms. There are attempts to speed up the calculation process
by arranging the memories for faster accessing time, however the major limitation is still
the DRAM size. By creating a three-dimensional block-sparse structure, we could remove
most of the zero in the three-index quantity and run more calculations simultaneously.

Unlike the traditional Coordinate list format (COO) way of storing the non-zero el-
ements, the Tile Master uses a new storing format specially designed for multiplication
efficiency. Figure 4.3 illustrates the mapping relationship between the three-index integral
and the Tile Master storing format. The range of the auxiliary index is limited, and it
would be appropriate to loop through the auxiliary first. Later, we can observe the block
sparsity changes as the distance between the orbital pair α, β, and it would be best to use
the block-sparse structure calculation routine in a two-dimensional way.
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Figure 4.3: The three-dimensional sparse quantity storing format in the Tile
Master data structure. The Tile Master uses three different indices to map the three-
index integral inside each grid calculation [10].

4.2.3 Special dense and sparse calculation routines using sparsity
arrays

Compared to the multiplication between two 2D matrices, there will be one more index
for the three-index integral problem to deal with. The extra index is the auxiliary index,
and it has a relatively limited range compared to the AO indices. This means that we
could bypass the calculation when the auxiliary index gets off the threshold determined
by the prescreening method [10]. What’s more, we also know that if the α, β orbital pairs
are separate and very far apart, their contribution to the overall matrix can be ignored.
Therefore, we can further reduce the calculation effort using this approximation.

The approximation process is done by associating with the assignment of the gauge
center inside the prescreening routine, and the Tile Master can retrieve necessary informa-
tion from the prescreening routine using an external sparsity array. The external sparsity
array contains an estimation of the sparsity in the current block position. For example,
if the α and the β are very far apart and their distance beyond the threshold, the spar-
sity estimation for this block should be 1, which is completely empty. In this case, the
Tile Master will not create any Tile in this location, and the calculation will bypass any
associating operation referring to this location. On the other hand, if the orbital pair
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distance is close enough to generate block-sparse matrices, the sparsity can be estimated,
and the Tile Master can execute the sparse matrix multiplication routine based on the
estimated sparsity without further screening. For the dense calculation routine, it will
happen when the external sparsity array indicates the orbital pair is close to each other,
and dense matrices will be produced. Therefore, the Tile Master can switch between the
dense and the sparse calculation routine using the geometry and the grid information from
the prescreening procedure. This could further increase the efficiency of the three-index
integral multiplication since the self-screening procedure can be bypassed inside the Tile
structure.

Dense calculation routine (stored in
dense, use dense matrix dot product)

When auxiliary index is in range, and
α, β are close

Sparse calculation routine (stored in
block-sparse, use Tile SpMM support)

When auxiliary index in range, and
α, β are not far

Skip calculation routine (does not
store data, bypass any reference)

When auxiliary index not in range, or
α, β are very far

Table 4.2: The dense and sparse calculation strategy developed in the Tile Mas-
ter using an external sparsity array. The determination of the range and the threshold
is inside the integral prescreening algorithm [10], which will not be covered in this project.

However, there are difficulties in designing a perfect sparsity array estimation algorithm
as the sparsity of the data is highly dependent on many parameters, like the size of the
basis set and the size of the grid. Future works are required to collect more three-index
quantities from the actual calculation and establish the relationship between the geometry
factors and the resulted sparsity behaviour. The time is limited in this project, and we only
implemented the receiving functions inside the Tile Master. When an external sparsity
array is given, the Tile Master will turn off the self-screening method inside the Tile
structure and take over the control of the SpMM.

4.2.4 Solving three-index integral problem

Thus far, we have implemented two unique data structures, the Tile structure and the
Tile Master, that are capable of handling both macro-operations and micro-operations
for block-sparse data handling. We have created a new three-dimensional sparse array
format and designed dense and sparse calculation routines using the sparsity arrays as the
geometry information input from the integral prescreening algorithm. Now, it is time to
see how we can deal with the significant and complex three-index integral problem.
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Figure 4.4: The flowchart of solving one of the three-index integral problems
(calculation of the exchange matrices) using the Tile Master and the Tile struc-
ture. To prevent the data from exceeding the DRAM limitation, every three-dimensional
quantity is stored in compressed sparse array format. During the multiplication routine,
the self-screening feature inside the Tile structure has been turned off, and the sparsity
information will be coming from the provided external sparsity array.

In figure 4.4, a flowchart illustrates our solution to one of the common three-index
integral problems, which is the calculation of the exchange matrix. The calculation starts
with the density matrix stored in the Tile structure, and the three-index quantity is stored
in Tile Master format. The first step is to collect geometry information from the integral
prescreening function, where the Tile Master can use them to determine the appropriate
block size. After the block size is determined, we will convert the density matrix into a
two-dimensional Tile Master with the same block size. The three-index quantity will also
obtain a 3D external sparsity array from the prescreening as well. On the other hand, the
2D object will have to use the self-screening feature inside the Tile structure to build its
own internal sparsity array.

Once both sparsity arrays are obtained, the multiplication process will begin starting
by looping from the auxiliary index. Three different calculation strategies will handle
the high-level multiplication using the sparsity arrays, while the low-level multiplication
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between 2D matrices is still completed by the Tile structure. In the meantime, the Tile
structure will no longer be doing a self-screening procedure, and all the necessary sparsity
information is provided by the Tile Master. After the multiplication, the self-pruning
procedure is executed before the sum happens for the final result. The final multiplication
result is stored in the compressed three-dimensional array format as well.

4.3 Performance and potentials

The Tile Master can handle the three-index integral problem very efficiently using the
block-sparse structure and the geometry information coming from the integral prescreen
algorithm. Benefiting from the high data sparsity, the new compressed three-dimensional
array format can keep the memory usage exponentially smaller than running in dense
format. However, the integral prescreening algorithm is still in the development phase, and
there will be much work to fully implement the Tile structure and the Tile Master into
our CiM approach. To provide some benchmarking results and validate the functionality
of the Tile Master, we simulated the potential external sparsity array and geometry array
for conjugated alkene chains.

Three-index quantity overall size From 1000 to 10000
Three-index quantity total number of

elements
From 109 to 1012

Block size From 100 to 500
Tile Master 2D grid size From 10 by 10 to 20 by 20

Overall sparsity Above 70%
The accepted auxiliary index range below 15%
Estimated dense calculation routine

percentage
42%

Estimated block-sparse calculation routine
percentage

18%

Estimated skip calculation routine
percentage

40%

Maximum DRAM size 32Gb

Table 4.3: Rules for simulating the actual three-index quantity for the calcula-
tion.

During our testing, we pushed our Tile Master and Tile structure to the absolute limit.
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In Table 4.4, a simple comparison of the memory usage between the NumPy dense array
and the Tile Master validates the superior off using the compressed three-dimensional array.
This format will reduce around 95% of the storage space from a three-index quantity, which
will significantly increase the computing capacity of the system.

Quantity type Memory taken
using NumPy
dense (Mb)

Memory taken
using Tile and
Tile Master

(Mb)

Space
efficiency

Two-dimentional matrix 3.8 3.4 1.12
Three-dimensional array 7629 477 15.99

Table 4.4: Space efficiency when using the Tile and Tile Master. For three-index
quantities, a 1000 by 1000 by 1000 array would take up to 8Gb of memory and while the
Tile Master can keep the three-index sparse compressed to 0.47Gb.

Followed by Table 4.5, the Tile structure and the Tile Master are able to complete
calculations that are impossible for the NumPy dense routine. As the data size increases,
the Tile Master can still handle the massive data using its block-sparse data structure. On
the other hand, we stopped testing the NumPy as it would only present error messages
like “Unable to allocate 59.6 GiB for an array with shape (2000, 2000, 2000) and data type
float64”.
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Input size NumPy dense
dot calculation

time (s)

Tile Master
calculation time

(s)

CSR sparse
multiplication
routine with

compressions (s)
1000 by 1000 times
1000 by 1000 by 150

89.3 0.77 4.68

1000 by 1000 times
1000 by 1000 by 1000

Memory
overflowed,

DNF

5.62 30.95

1500 by 1500 times
1500 by 1500 by 1500

Memory
overflowed,

DNF

23.99 130.09

2000 by 2000 times
2000 by 2000 by 2000

Memory
overflowed,

DNF

86.89 Memory
overflowed,

DNF

Table 4.5: Time efficiency when using the Tile and Tile Master. For three-index
quantities, the maximum overall size for numpy is 1000 and the memory overflow happened
at the maximum overall size. To illustrate the benefit from using the special dense and
sparse calculation routines, a CSR calculation routine has been implemented using the
compression method. The CSR represents the previous implementation attempt.
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Chapter 5

Summary

To sum up, the Tile Master can handle the complex three-index integral problems with
the help of the Tile structure and the external sparsity array. We started our comparison
with the NumPy and SciPy libraries, however eventually, the Tile structure and the Tile
Master surpassed them both in memory arrangement and calculation efficiency.

In this project, we tried to combine two completely different subjects together, the
Sparse-matrix dense-matrix multiplication (SpMM) problem from computer science and
the electron structure calculation from chemistry. Despite the differences, there are many
similar problems like dealing with the sparsity during the matrix multiplication, finding an
efficient sparse matrix compression format and utilizing the sparse matrix multiplication
algorithm. During the project, we tested many models and solutions from other publica-
tions. However, many of them did not meet our expectations and therefore did not appear
in this project.

We hope that the Tile structure and the Tile Master can be viewed as useful tools inside
any scientific calculations. Not only can they solve the complex two-electron three-index
integral problems, but also the sparse-block structure can be beneficial to any large sparse
matrix multiplication applications like artificial intelligence or image processing.

As the computing power grows rapidly, there are new products coming out every day,
changing the way of scientific computing step by step. We found huge potential in solving
the matrix-matrix multiplication using the GPU, and this could become a reality for com-
putational chemistry in the near future. The bottleneck that stops the implementation of
the GPU is the memory transfer speed between the memory and the GPU memory. The
anticipation is that this problem could be easily dealt with using newer hardware.
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There is much work that still needs to be done to finish our Cluster-in-molecule approach
(CiM). In the meantime, the Tile structure and the Tile Master will become powerful tools
during future development. It will take some time to develop and upgrade the previous
code in our CiM program since the program is complicated and massive. However, this
will provide much more opportunity for future developers and make it easier to maintain
in the long run.
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laplace mp2 method using range separated coulomb potential and orbital selective
virtuals. The Journal of Chemical Physics, 155(15):154104, 2021.

[5] Ryan Eberhardt and Mark Hoemmen. Optimization of block sparse matrix-vector
multiplication on shared-memory parallel architectures. pages 663–672, 2016.

[6] RC Fortenberry and TD Crawford. Annual reports in computational chemistry, 2011.

[7] Krassimir Georgiev and Zahari Zlatev. Implementation of sparse matrix algorithms
in an advection–diffusion–chemistry module. Journal of computational and applied
mathematics, 236(3):342–353, 2011.

[8] Yang Guo, Ute Becker, and Frank Neese. Comparison and combination of “direct”
and fragment based local correlation methods: Cluster in molecules and domain based
local pair natural orbital perturbation and coupled cluster theories. The Journal of
Chemical Physics, 148(12):124117, 2018.

70



[9] Kasper Kristensen, Ida-Marie Høyvik, Branislav Jansik, Poul Jørgensen, Thomas
Kjærgaard, Simen Reine, and Jacek Jakowski. Mp2 energy and density for large molec-
ular systems with internal error control using the divide-expand-consolidate scheme.
Physical Chemistry Chemical Physics, 14(45):15706–15714, 2012.

[10] Michael Lecours. Compact sparse coulomb integrals using a range-separated potential.
2021.

[11] Shuhua Li, Jing Ma, and Yuansheng Jiang. Linear scaling local correlation approach
for solving the coupled cluster equations of large systems. Journal of computational
chemistry, 23(2):237–244, 2002.

[12] Shuhua Li, Jun Shen, Wei Li, and Yuansheng Jiang. An efficient implementation
of the “cluster-in-molecule” approach for local electron correlation calculations. The
Journal of chemical physics, 125(7):074109, 2006.

[13] Wei Li, Zhigang Ni, and Shuhua Li. Cluster-in-molecule local correlation method for
post-hartree–fock calculations of large systems. Molecular Physics, 114(9):1447–1460,
2016.

[14] Wei Li, Piotr Piecuch, Jeffrey R Gour, and Shuhua Li. Local correlation calculations
using standard and renormalized coupled-cluster approaches. The Journal of chemical
physics, 131(11):114109, 2009.
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Appendix A

Selected source code from the Tile
structure

A.1 The fast heuristic matrix screening method

1 elif self.sparsityEstimationMethod == 6:

2 # heuristic estimate method

3 # it will randomly select row or column and add it into its

dataset , until it thinks its good enough for an estimation

4 # part of the heuristic algorithm

5 # you can define the threshold to converge

6

7 heuristicDataSet = []

8 heuristicEstimationValue = 0

9 heuristicEstimationLastValue = 0

10 heuristicEstimationDif = 0

11 availableColumnIndex = [* range(self.dataArray.shape [1])] #

argument -unpacking operator *

12 availableRowIndex = [*range(self.dataArray.shape [0])] #argument

-unpacking operator *

13

14 # first attempt

15 if random.randint(0, 1) == 0:

16 # pick a row

17 rowIndex = random.choice(availableRowIndex)

18 heuristicDataSet = np.append(heuristicDataSet , self.dataArray

[rowIndex , :])

19 availableRowIndex.remove(rowIndex)
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20 else:

21 # pick a column

22 columnIndex = random.choice(availableColumnIndex)

23 heuristicDataSet = np.append(heuristicDataSet , self.dataArray

[:, columnIndex ])

24 availableColumnIndex.remove(columnIndex)

25 heuristicEstimationLastValue = 1 - (count_nonzero(

heuristicDataSet) / len(heuristicDataSet))

26

27 # second attempt

28 if random.randint(0, 1) == 0:

29 # pick a row

30 rowIndex = random.choice(availableRowIndex)

31 heuristicDataSet = np.append(heuristicDataSet , self.dataArray

[rowIndex , :])

32 availableRowIndex.remove(rowIndex)

33 else:

34 # pick a column

35 columnIndex = random.choice(availableColumnIndex)

36 heuristicDataSet = np.append(heuristicDataSet , self.dataArray

[:, columnIndex ])

37 availableColumnIndex.remove(columnIndex)

38 heuristicEstimationValue = 1 - (count_nonzero(heuristicDataSet)

/ len(heuristicDataSet))

39 heuristicEstimationDif = abs(heuristicEstimationLastValue -

heuristicEstimationValue)

40

41 if heuristicEstimationDif <= self.heuristicEstimateThreshold:

42 self.sparsity = heuristicEstimationValue

43 self.sparsityEstimation = True

44 return self.sparsity

45 else:

46 while(not self.sparsityEstimation):

47 if len(availableRowIndex) > 0 and len(availableColumnIndex)

> 0:

48 # both row and column are availble

49 if random.randint(0, 1) == 0:

50 # pick a row

51 rowIndex = random.choice(availableRowIndex)

52 heuristicDataSet = np.append(heuristicDataSet , self.

dataArray[rowIndex , :])

53 availableRowIndex.remove(rowIndex)

54 else:

55 # pick a column

56 columnIndex = random.choice(availableColumnIndex)
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57 heuristicDataSet = np.append(heuristicDataSet , self.

dataArray[:, columnIndex ])

58 availableColumnIndex.remove(columnIndex)

59

60 elif len(availableRowIndex) == 0 and len(

availableColumnIndex) > 0:

61 # no row index available

62 rowIndex = random.choice(availableRowIndex)

63 heuristicDataSet = np.append(heuristicDataSet , self.

dataArray[rowIndex , :])

64 availableRowIndex.remove(rowIndex)

65

66 elif len(availableRowIndex) > 0 and len(

availableColumnIndex) == 0:

67 # no column index available

68 columnIndex = random.choice(availableColumnIndex)

69 heuristicDataSet = np.append(heuristicDataSet , self.

dataArray[:, columnIndex ])

70 availableColumnIndex.remove(columnIndex)

71

72 elif len(availableRowIndex) == 0 and len(

availableColumnIndex) == 0:

73 # wait , you just scaned all the elements? you think the

heuristic algorithm is a joke to me?

74 self.sparsity = heuristicEstimationValue

75 self.sparsityEstimation = True

76 return self.sparsity

77

78 heuristicEstimationLastValue = heuristicEstimationValue

79 heuristicEstimationValue = 1 - (count_nonzero(

heuristicDataSet) / len(heuristicDataSet))

80 heuristicEstimationDif = abs(heuristicEstimationLastValue -

heuristicEstimationValue)

81 if heuristicEstimationDif <= self.

heuristicEstimateThreshold:

82 self.sparsity = heuristicEstimationValue

83 self.sparsityEstimation = True

84 return self.sparsity

Listing A.1: Python example for the fast heuristic matrix screening method
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A.2 The efficient self-pruning method

1 def cutOffElements(self , threshold = globalSparseThreshold):

2 # cutOffElements will remove the values that are smaller than the

global sparse threshold

3 # will be used before the conversion and after the multiplications

4 # this will work with the dense matrix and the csr matrix

5 # for csr matrix , it will delete the zeros at the end

6 # this does delete the elements in the data array but will not update

the memory taken due to the running time

7 # bug fixed: now the cut off will keep negetive numbers

8 if self.pruneSwitch:

9 # this will bypass the prune behavior

10 if (self.storeMethod in (None , ’dense’)) and not self.cutOffStatus:

11 self.dataArray = np.where(abs(self.dataArray) < threshold , 0,

self.dataArray)

12 self.cutOffStatus = True

13 elif self.storeMethod == ’scipy_csr ’ and not self.cutOffStatus:

14

15

16 # csr prune algorithm (no such thing in numpy , scipy and Intel

MKL)

17 # this will be the most efficient pruning algorithm

18 # build new csr array , only scan once

19 dataPositions = 0

20 newData = []

21 newIndices = []

22 newIndexPointers = []

23 newNextNNZ = 0

24 newNNZ = 0

25 # loop from index pointers

26 for indexPointPositions in range(len(self.dataArray.indptr) - 1):

27 currentNNZ = self.dataArray.indptr[indexPointPositions]

28 nextNNZ = self.dataArray.indptr[indexPointPositions + 1]

29 # calculate how many non -zero elements are here

30 NNZThisRow = nextNNZ - currentNNZ

31 for dataThisRow in range(NNZThisRow):

32 # if this item is above threshold

33 if abs(self.dataArray.data[dataPositions + dataThisRow ]) >

threshold:

34 # add this data to the new csr

35 newData += [self.dataArray.data[dataPositions + dataThisRow

]]

36 newIndices += [self.dataArray.indices[dataPositions +

dataThisRow ]]

78



37 newNextNNZ += 1

38 # record the non -zero element positions

39 dataPositions += NNZThisRow

40 # record the index pointers

41 newIndexPointers += [newNNZ]

42 newNNZ = newNextNNZ

43 # for the last index pointers

44 newIndexPointers += [newNNZ]

45 # update the csr - error the scipy will not recognize this csr

anymore.

46 # self.dataArray.data = newData

47 # self.dataArray.indices = newIndices

48 # self.dataArray.indptr = newIndexPointers

49

50 # making up a new csr and replace it will have huge performance

penalty - this is only working way from scipy.

51 # sadly we would abandon python one day

52 makeupCSR = sparse.csr_matrix ((newData , newIndices ,

newIndexPointers), shape=self.dataArray.shape)

53 self.dataArray = makeupCSR

54

55 # they dont want me to update the nnz

56 # self.dataArray.nnz = newNNZ

57 # self.dataArray.data = np.where(abs(self.dataArray.data) <

threshold , 0, self.dataArray.data)

58 # self.dataArray.eliminate_zeros ()

59 # self.cutOffStatus = True

60 elif self.storeMethod == ’scipy_bsr ’ and not self.cutOffStatus:

61 self.dataArray.data = np.where(abs(self.dataArray.data) <

threshold , 0, self.dataArray.data)

62 self.dataArray.eliminate_zeros ()

63 self.cutOffStatus = True

Listing A.2: Python example for the efficient self-pruning method

79



A.3 The initiative method inside the Tile strcture

1 def initiative(self , givenArray):

2 # initiative method design specifically for the __init__ method

3 # propose: 1. complete an array search , identify the array

properties

4 # change log: add memory calculation by-pass

5

6 if type(givenArray) is np.ndarray:

7 # check if the array is in numpy array format , if not , convert the

array into an numpy array object

8 # in this case , it is an np.ndarray

9 self.dataArray = givenArray

10 if not self.memoryByPass:

11 self.memoryTaken = self.dataArray.nbytes / pow (1024, 2)

12 self.storeMethod = ’dense’

13

14 elif isinstance(givenArray , sparse.csr_matrix):

15 # check if the array is in scipy csr format

16 self.dataArray = givenArray

17 if not self.memoryByPass:

18 self.memoryTaken = getsizeof(self.dataArray) / pow (1024, 2)

19 self.storeMethod = ’scipy_csr ’

20

21 elif isinstance(givenArray , sparse.bsr_matrix):

22 # check if the array is in scipy bsr format

23 self.dataArray = givenArray

24 if not self.memoryByPass:

25 self.memoryTaken = getsizeof(self.dataArray) / pow (1024, 2)

26 self.storeMethod = ’scipy_bsr ’

27

28 else:

29 try:

30 self.dataArray = np.array(givenArray)

31 if not self.memoryByPass:

32 self.memoryTaken = self.dataArray.nbytes / pow (1024, 2)

33 self.storeMethod = ’dense’

34 except:

35 exit("Error 01 - The input object is not an numpy array and can

not be converted to one.")

36

37

38 if isinstance(givenArray , sparse.csr_matrix):

39 self.originalSize = self.dataArray.shape

40 self.totalElements = self.originalSize [0] * self.originalSize [1]
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41 self.dimensions = self.dataArray.ndim

42 self.nonzeroElements = self.dataArray.nnz

43

44 elif isinstance(givenArray , sparse.bsr_matrix):

45 self.originalSize = self.dataArray.shape

46 self.totalElements = self.originalSize [0] * self.originalSize [1]

47 self.dimensions = self.dataArray.ndim

48 self.nonzeroElements = self.dataArray.nnz

49

50 else:

51 # retrieve some attributes from the numpy ndarray

52 self.originalSize = self.dataArray.shape

53 self.totalElements = self.dataArray.size

54 self.dimensions = self.dataArray.ndim

55

56 # get sparsity for further analysis

57 self.getSparsity ()

58

59 # if the sparsity is high , auto convert the data type to csr

60 # since the bsr is better when handling sparse matrices with dense

sub matrices , we will use bsr for lower sparsity is presentated

61 if self.storeMethod == ’dense’ and self.sparsity >=

CSRconversionThrehold:

62 self.convertDenseToCSR ()

63 elif self.storeMethod == ’dense’ and self.sparsity >=

BSRconversionThrehold:

64 self.convertDenseToBSR ()

Listing A.3: Python example for the initiative method inside the Tile strcture
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A.4 Overloaded arithmetic operators inside the Tile

strcture

1 # the addition operator overloading (used for tile master strucutre and

anything else)

2 # __add__: Tile Any -> Tile

3 # the Tile class can add other Tiles , numpy arrays , regular arrays

4 def __add__(self , other):

5 # Tile Tile addition

6 if isinstance(other , Tile):

7 if self.dimensions != other.dimensions:

8 exit("Error 04 - The two inputs are not at the same dimension.")

9 else:

10 if self.originalSize != other.originalSize:

11 exit("Error 03 - The two inputs are not at the same size.")

12 else:

13 return Tile(self.dataArray + other.dataArray)

14

15 # Tile numpy array addition

16 elif isinstance(other , np.ndarray):

17 # check if the addition is legal

18 if other.ndim > self.dimensions:

19 exit(’Error 07 - The second argument of the addition does not

have the correct dimensions.’)

20 # ignore the 3 dimensional matrix addition at this moment

21 elif self.dimensions == 2:

22 if self.originalSize [0] != other.shape [0] or self.originalSize [1]

!= other.shape [1]:

23 exit(’Error 08 - The second argument of the addition does not

have the correct size.’)

24 else:

25 return Tile(self.dataArray + other)

26

27 # Tile array addition

28 elif isinstance(other , list):

29 try:

30 givenArray = np.array(other)

31 except:

32 exit("Error 06 - The second argument of the addition can not be

converted to an numpy array.")

33

34 # continue to check if the addition is legal

35 if givenArray.ndim > self.dimensions:

36 exit(’Error 07 - The second argument of the addition does not

82



have the correct dimensions.’)

37 # ignore the 3 dimensional matrix addition at this moment

38 elif self.dimensions == 2:

39 if self.originalSize [0] != givenArray.shape [0] or self.

originalSize [1] != givenArray.shape [1]:

40 exit(’Error 08 - The second argument of the addition does not

have the correct size.’)

41 else:

42 return Tile(self.dataArray + givenArray)

43

44 # Tile number addition - will cause error

45 elif isinstance(other , numbers.Number):

46 if isinstance(other , bool):

47 exit("Error 09 - The second argument of the Tile addition can not

be booleans.")

48 else:

49 if other == 0:

50 return self

51 else:

52 exit("Error 09 - The second argument of the Tile addition can

not be a single number.")

53 else:

54 exit("Error 10 - Invalid second argument given for Tile addition.")

55

56

57 # the right handed addition operator overloading (used for tile master

strucutre and anything else)

58 # __radd__:Any Tile -> Tile

59 # the Tile class can add other Tiles , numpy arrays , regular arrays

60 def __radd__(self , other):

61 # Tile Tile addition

62 if isinstance(other , Tile):

63 if self.dimensions != other.dimensions:

64 exit("Error 04 - The two inputs are not at the same dimension.")

65 else:

66 if self.originalSize != other.originalSize:

67 exit("Error 03 - The two inputs are not at the same size.")

68 else:

69 return Tile(other.dataArray + self.dataArray)

70

71 # Tile numpy array addition

72 elif isinstance(other , np.ndarray):

73 # check if the addition is legal

74 if other.ndim > self.dimensions:

75 exit(’Error 07 - The second argument of the addition does not
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have the correct dimensions.’)

76 # ignore the 3 dimensional matrix addition at this moment

77 elif self.dimensions == 2:

78 if self.originalSize [0] != other.shape [0] or self.originalSize [1]

!= other.shape [1]:

79 exit(’Error 08 - The second argument of the addition does not

have the correct size.’)

80 else:

81 return Tile(other + self.dataArray)

82

83 # Tile array addition

84 elif isinstance(other , list):

85 try:

86 givenArray = np.array(other)

87 except:

88 exit("Error 06 - The second argument of the addition can not be

converted to an numpy array.")

89

90 # continue to check if the addition is legal

91 if givenArray.ndim > self.dimensions:

92 exit(’Error 07 - The second argument of the addition does not

have the correct dimensions.’)

93 # ignore the 3 dimensional matrix addition at this moment

94 elif self.dimensions == 2:

95 if self.originalSize [0] != givenArray.shape [0] or self.

originalSize [1] != givenArray.shape [1]:

96 exit(’Error 08 - The second argument of the addition does not

have the correct size.’)

97 else:

98 return Tile(givenArray + self.dataArray)

99

100 # Tile number addition - will cause error

101 elif isinstance(other , numbers.Number):

102 if isinstance(other , bool):

103 exit("Error 09 - The second argument of the Tile addition can not

be booleans.")

104 else:

105 if other == 0:

106 return self

107 else:

108 exit("Error 09 - The second argument of the Tile addition can

not be a single number.")

109 else:

110 exit("Error 10 - Invalid second argument given for Tile addition.")

111

84



112

113 # the subtraction operator overloading (used for tile master strucutre

and anything else)

114 # __sub__: Tile Any -> Tile

115 # the Tile class can subtract other Tiles , numpy arrays , regular arrays

116 def __sub__(self , other):

117 # Tile Tile subtraction

118 if isinstance(other , Tile):

119 if self.dimensions != other.dimensions:

120 exit("Error 04 - The two inputs are not at the same dimension.")

121 else:

122 if self.originalSize != other.originalSize:

123 exit("Error 03 - The two inputs are not at the same size.")

124 else:

125 return Tile(self.dataArray - other.dataArray)

126

127 # Tile numpy array subtraction

128 elif isinstance(other , np.ndarray):

129 # check if the subtraction is legal

130 if other.ndim > self.dimensions:

131 exit(’Error 07 - The second argument of the subtraction does not

have the correct dimensions.’)

132 # ignore the 3 dimensional matrix subtraction at this moment

133 elif self.dimensions == 2:

134 if self.originalSize [0] != other.shape [0] or self.originalSize [1]

!= other.shape [1]:

135 exit(’Error 08 - The second argument of the subtraction does

not have the correct size.’)

136 else:

137 return Tile(self.dataArray - other)

138

139 # Tile array subtraction

140 elif isinstance(other , list):

141 try:

142 givenArray = np.array(other)

143 except:

144 exit("Error 06 - The second argument of the subtraction can not

be converted to an numpy array.")

145

146 # continue to check if the subtraction is legal

147 if givenArray.ndim > self.dimensions:

148 exit(’Error 07 - The second argument of the subtraction does not

have the correct dimensions.’)

149 # ignore the 3 dimensional matrix subtraction at this moment
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150 elif self.dimensions == 2:

151 if self.originalSize [0] != givenArray.shape [0] or self.

originalSize [1] != givenArray.shape [1]:

152 exit(’Error 08 - The second argument of the subtraction does

not have the correct size.’)

153 else:

154 return Tile(self.dataArray - givenArray)

155

156 # Tile number subtraction - will cause error

157 elif isinstance(other , numbers.Number):

158 if isinstance(other , bool):

159 exit("Error 09 - The second argument of the Tile subtraction can

not be booleans.")

160 else:

161 if other == 0:

162 return self

163 else:

164 exit("Error 09 - The second argument of the Tile subtraction

can not be a single number.")

165 else:

166 exit("Error 10 - Invalid second argument given for Tile subtraction

.")

167

168

169 # the right handed subtraction operator overloading (used for tile

master strucutre and anything else)

170 # __sub__: Any Tile -> Tile

171 # the Tile class can subtract other Tiles , numpy arrays , regular arrays

172 def __rsub__(self , other):

173 # Tile Tile subtraction

174 if isinstance(other , Tile):

175 if self.dimensions != other.dimensions:

176 exit("Error 04 - The two inputs are not at the same dimension.")

177 else:

178 if self.originalSize != other.originalSize:

179 exit("Error 03 - The two inputs are not at the same size.")

180 else:

181 return Tile(other.dataArray - self.dataArray)

182

183 # Tile numpy array subtraction

184 elif isinstance(other , np.ndarray):

185 # check if the subtraction is legal

186 if other.ndim > self.dimensions:

187 exit(’Error 07 - The second argument of the subtraction does not

86



have the correct dimensions.’)

188 # ignore the 3 dimensional matrix subtraction at this moment

189 elif self.dimensions == 2:

190 if self.originalSize [0] != other.shape [0] or self.originalSize [1]

!= other.shape [1]:

191 exit(’Error 08 - The second argument of the subtraction does

not have the correct size.’)

192 else:

193 return Tile(other - self.dataArray)

194

195 # Tile array subtraction

196 elif isinstance(other , list):

197 try:

198 givenArray = np.array(other)

199 except:

200 exit("Error 06 - The second argument of the subtraction can not

be converted to an numpy array.")

201

202 # continue to check if the subtraction is legal

203 if givenArray.ndim > self.dimensions:

204 exit(’Error 07 - The second argument of the subtraction does not

have the correct dimensions.’)

205 # ignore the 3 dimensional matrix subtraction at this moment

206 elif self.dimensions == 2:

207 if self.originalSize [0] != givenArray.shape [0] or self.

originalSize [1] != givenArray.shape [1]:

208 exit(’Error 08 - The second argument of the subtraction does

not have the correct size.’)

209 else:

210 return Tile(givenArray - self.dataArray)

211

212 # Tile number subtraction - will cause error

213 elif isinstance(other , numbers.Number):

214 if isinstance(other , bool):

215 exit("Error 09 - The second argument of the Tile subtraction can

not be booleans.")

216 else:

217 if other == 0:

218 return Tile(self.dataArray * -1)

219 else:

220 exit("Error 09 - The second argument of the Tile subtraction

can not be a single number.")

221 else:

222 exit("Error 10 - Invalid second argument given for Tile subtraction

.")
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223

224

225 # the multiplication operator (example: myTile * 2)

226 # __mul__: Tile Any -> Tile or NumPy Array

227 # the Tile class can multiply other Tiles , numpy arrays , regular arrays

, and constants

228 def __mul__(self , other):

229 # Tile Tile multiplication

230 if isinstance(other , Tile):

231 if self.storeMethod == ’dense’:

232 if other.storeMethod == ’dense’:

233 return self.multiTwoDense(other)

234

235 elif other.storeMethod == ’scipy_csr ’:

236 return self.multiDenseCSR(other)

237

238 elif other.storeMethod == ’scipy_bsr ’:

239 return self.multiDenseBSR(other)

240

241 elif self.storeMethod == ’scipy_csr ’:

242 if other.storeMethod == ’dense’:

243 return self.multiCSRDense(other)

244

245 elif other.storeMethod == ’scipy_csr ’:

246 return self.multiTwoCSR(other)

247

248 elif other.storeMethod == ’scipy_bsr ’:

249 return self.multiCSRBSR(other)

250

251 elif self.storeMethod == ’scipy_bsr ’:

252 if other.storeMethod == ’dense’:

253 return self.multiBSRDense(other)

254

255 elif other.storeMethod == ’scipy_csr ’:

256 return self.multiBSRCSR(other)

257

258 elif other.storeMethod == ’scipy_bsr ’:

259 return self.multiTwoBSR(other)

260

261 else:

262 exit(’Error 05 - The second argument of the multiplication does

not have the correct store method.’)

263

264 # Tile numpy array multiplication

265 elif isinstance(other , np.ndarray):
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266 # check if the multiplication is legal

267 if other.ndim > self.dimensions:

268 exit(’Error 07 - The second argument of the multiplication does

not have the correct dimensions.’)

269 # ignore the 3 dimensional matrix multiplication at this moment

270 elif self.dimensions == 2:

271 if self.originalSize [1] != other.shape [0]:

272 exit(’Error 08 - The second argument of the multiplication does

not have the correct size.’)

273 else:

274 if self.storeMethod == ’dense’:

275 if other.ndim == 1:

276 return np.dot(self.dataArray , other)

277 elif other.ndim == 2:

278 return Tile(np.matmul(self.dataArray , other))

279 elif self.storeMethod == ’scipy_csr ’:

280 if other.ndim == 1:

281 return sparse.csr_matrix.dot(self.dataArray , other)

282 elif other.ndim == 2:

283 return Tile(sparse.csr_matrix.dot(self.dataArray , other))

284 elif self.storeMethod == ’scipy_bsr ’:

285 if other.ndim == 1:

286 return sparse.bsr_matrix.dot(self.dataArray , other)

287 elif other.ndim == 2:

288 return Tile(sparse.bsr_matrix.dot(self.dataArray , other))

289

290 # Tile array multiplication

291 elif isinstance(other , list):

292 try:

293 givenArray = np.array(other)

294 except:

295 exit("Error 06 - The second argument of the multiplication can

not be converted to an numpy array.")

296

297 # continue to check if the multiplication is legal

298 if givenArray.ndim > self.dimensions:

299 exit(’Error 07 - The second argument of the multiplication does

not have the correct dimensions.’)

300 # ignore the 3 dimensional matrix multiplication at this moment

301 elif self.dimensions == 2:

302 if self.originalSize [1] != givenArray.shape [0]:

303 exit(’Error 08 - The second argument of the multiplication does

not have the correct size.’)

304 else:

305 if self.storeMethod == ’dense’:
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306 if givenArray.ndim == 1:

307 return np.dot(self.dataArray , givenArray)

308 elif givenArray.ndim == 2:

309 return Tile(np.matmul(self.dataArray , givenArray))

310 elif self.storeMethod == ’scipy_csr ’:

311 if givenArray.ndim == 1:

312 return sparse.csr_matrix.dot(self.dataArray , givenArray)

313 elif givenArray.ndim == 2:

314 return Tile(sparse.csr_matrix.dot(self.dataArray ,

givenArray))

315 elif self.storeMethod == ’scipy_bsr ’:

316 if givenArray.ndim == 1:

317 return sparse.bsr_matrix.dot(self.dataArray , givenArray)

318 elif givenArray.ndim == 2:

319 return Tile(sparse.bsr_matrix.dot(self.dataArray ,

givenArray))

320

321 # Tile number multilication

322 elif isinstance(other , numbers.Number):

323 if isinstance(other , bool):

324 exit("Error 09 - The second argument of the multiplication can

not be booleans.")

325 else:

326 if self.storeMethod == ’dense’:

327 return Tile(np.dot(self.dataArray , other))

328 elif self.storeMethod == ’scipy_csr ’:

329 return Tile(sparse.csr_matrix.dot(self.dataArray , other))

330 elif self.storeMethod == ’scipy_bsr ’:

331 return Tile(sparse.bsr_matrix.dot(self.dataArray , other))

332

333 else:

334 exit("Error 10 - Invalid second argument given for Tile

multiplication.")

335

336

337 # the right multiplication operator (example: 2 * myTile)

338 # __mul__: Any Tile -> Tile

339 # the Tile class can multiply other Tiles , numpy arrays , regular arrays

, and constants

340 # this is designed due to the uniqueness of the linear algebra AB != BA

341 # there is no Tile Tile multiplication implemented in the right

multiplication operator

342 # When Python attempts to multiply two objects , it first tries to call

the left object ’s __mul__ () method
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343 def __rmul__(self , other):

344 #print(other)

345 # Tile numpy array multiplication

346 if isinstance(other , np.ndarray):

347 # check if the multiplication is legal

348 if other.ndim > self.dimensions:

349 exit(’Error 07 - The first argument of the right -handed

multiplication does not have the correct dimensions.’)

350 # ignore the 3 dimensional matrix multiplication at this moment

351 elif self.dimensions == 2:

352 # different here

353 if self.originalSize [0] != other.shape [1]:

354 exit(’Error 08 - The second argument of the right -handed

multiplication does not have the correct size.’)

355 else:

356 if self.storeMethod == ’dense’:

357 if other.ndim == 1:

358 return np.dot(other , self.dataArray)

359 elif other.ndim == 2:

360 return Tile(np.matmul(other , self.dataArray))

361 elif self.storeMethod == ’scipy_csr ’:

362 if other.ndim == 1:

363 return sparse.csr_matrix.dot(other , self.dataArray)

364 elif other.ndim == 2:

365 return Tile(sparse.csr_matrix.dot(other , self.dataArray))

366 elif self.storeMethod == ’scipy_bsr ’:

367 if other.ndim == 1:

368 return sparse.bsr_matrix.dot(other , self.dataArray)

369 elif other.ndim == 2:

370 return Tile(sparse.bsr_matrix.dot(other , self.dataArray))

371

372 # Tile array multiplication

373 elif isinstance(other , list):

374 try:

375 givenArray = np.array(other)

376 except:

377 exit("Error 06 - The second argument of the right -handed

multiplication can not be converted to an numpy array.")

378

379 # continue to check if the multiplication is legal

380 if givenArray.ndim > self.dimensions:

381 exit(’Error 07 - The second argument of the right -handed

multiplication does not have the correct dimensions.’)

382 # ignore the 3 dimensional matrix multiplication at this moment

383 elif self.dimensions == 2:
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384 # different here

385 if self.originalSize [0] != givenArray.shape [1]:

386 exit(’Error 08 - The second argument of the right -handed

multiplication does not have the correct size.’)

387 else:

388 if self.storeMethod == ’dense’:

389 if givenArray.ndim == 1:

390 return np.dot(givenArray , self.dataArray)

391 elif givenArray.ndim == 2:

392 return Tile(np.matmul(givenArray , self.dataArray))

393 elif self.storeMethod == ’scipy_csr ’:

394 if givenArray.ndim == 1:

395 return sparse.csr_matrix.dot(givenArray , self.dataArray)

396 elif givenArray.ndim == 2:

397 return Tile(sparse.csr_matrix.dot(givenArray , self.

dataArray))

398 elif self.storeMethod == ’scipy_bsr ’:

399 if givenArray.ndim == 1:

400 return sparse.bsr_matrix.dot(givenArray , self.dataArray)

401 elif givenArray.ndim == 2:

402 return Tile(sparse.bsr_matrix.dot(givenArray , self.

dataArray))

403

404 # Tile number multilication

405 elif isinstance(other , numbers.Number):

406 if isinstance(other , bool):

407 exit("Error 09 - The second argument of the right -handed

multiplication can not be booleans.")

408 else:

409 if self.storeMethod == ’dense’:

410 return Tile(np.dot(other , self.dataArray))

411 elif self.storeMethod == ’scipy_csr ’:

412 return Tile(sparse.csr_matrix.dot(other , self.dataArray))

413 elif self.storeMethod == ’scipy_bsr ’:

414 return Tile(sparse.bsr_matrix.dot(other , self.dataArray))

415

416 else:

417 exit("Error 10 - Invalid second argument given for right -handed

Tile multiplication.")

Listing A.4: Python example for overloaded arithmetic operators inside the Tile strcture
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A.5 Auto-determination of the BSR block size from

SciPy.sparse [27]

The following code is quoted directly from the SciPy library to illustrate the functionality
of the auto-determination of the block size. I have no contribution in these function and I
have used this library under the liberal BSD license. Citation is here: [27]

1 def estimate_blocksize(A,efficiency =0.7):

2 """ Attempt to determine the blocksize of a sparse matrix

3 Returns a blocksize =(r,c) such that

4 - A.nnz / A.tobsr( (r,c) ).nnz > efficiency

5 """

6 if not (isspmatrix_csr(A) or isspmatrix_csc(A)):

7 A = csr_matrix(A)

8

9 if A.nnz == 0:

10 return (1,1)

11

12 if not 0 < efficiency < 1.0:

13 raise ValueError(’efficiency must satisfy 0.0 < efficiency < 1.0’

)

14

15 high_efficiency = (1.0 + efficiency) / 2.0

16 nnz = float(A.nnz)

17 M,N = A.shape

18

19 if M % 2 == 0 and N % 2 == 0:

20 e22 = nnz / (4 * count_blocks(A,(2,2)))

21 else:

22 e22 = 0.0

23

24 if M % 3 == 0 and N % 3 == 0:

25 e33 = nnz / (9 * count_blocks(A,(3,3)))

26 else:

27 e33 = 0.0

28

29 if e22 > high_efficiency and e33 > high_efficiency:

30 e66 = nnz / (36 * count_blocks(A,(6,6)))

31 if e66 > efficiency:

32 return (6,6)

33 else:

34 return (3,3)

35 else:

36 if M % 4 == 0 and N % 4 == 0:
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37 e44 = nnz / (16 * count_blocks(A,(4,4)))

38 else:

39 e44 = 0.0

40

41 if e44 > efficiency:

42 return (4,4)

43 elif e33 > efficiency:

44 return (3,3)

45 elif e22 > efficiency:

46 return (2,2)

47 else:

48 return (1,1)

49

50 def count_blocks(A,blocksize):

51 """For a given blocksize =(r,c) count the number of occupied

52 blocks in a sparse matrix A

53 """

54 r,c = blocksize

55 if r < 1 or c < 1:

56 raise ValueError(’r and c must be positive ’)

57

58 if isspmatrix_csr(A):

59 M,N = A.shape

60 return csr_count_blocks(M,N,r,c,A.indptr ,A.indices)

61 elif isspmatrix_csc(A):

62 return count_blocks(A.T,(c,r))

63 else:

64 return count_blocks(csr_matrix(A),blocksize)

Listing A.5: Python example for the auto-determination of the BSR block size from
SciPy.sparse [27].
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