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Abstract

Randomized Quasi-Monte Carlo (RQMC) methods are used as an alternative to the Monte
Carlo (MC) method when performing numeric integration by replacing the random point
set of MC with a randomized low-discrepancy sequence (LDS). Although RQMC methods
have been shown to have better convergence rates than MC, especially for smooth functions,
it does not hold in general that the RQMCmethod has lower variance than the MC method.
Using the framework of negative dependence, a quasi-monotone function integrated using
an LDS with the property of negative dependence has been shown to have variance no
larger than that of the MC estimator. We show by numerical examples how to use the
framework of negative dependence to evaluate the quality of various point sets, including
Sobol’ and Faure sequences.

We show, in a similar vein, how scrambled Halton sequences also have a form of neg-
ative dependence that is desirable for the purpose of improving upon the MC method for
multivariate integration. The scrambling methods with such properties are based on either
the nested uniform permutations of Owen or the random linear scrambling of Matoušek.
The framework of negative dependence is also used to develop new criteria for assessing the
quality of generalized Halton sequences, in such a way that they can be analyzed for finite
(potentially small) point set sizes and be compared to digital net constructions. Using
this type of criteria, parameters for a new generalized Halton sequence are derived. Nu-
merical results are presented to compare different generalized Halton sequences and their
randomizations.

Applications of these point sets include mapping them onto surfaces that are not the
unit hypercube. K. Basu and A. Owen have recently developed RQMC methods on the
triangle based on the van der Corput sequence. We improve upon the poor one-dimensional
projections of this deterministic triangular van der Corput sequence. Rather than using
scrambling directly to address this issue, we show how to modify the triangular van der
Corput sequence to construct a stratified sampling scheme. More precisely, we show that
nested scrambling is a way to implement an extensible stratified estimator based on a
stochastic but balanced allocation. We also perform a numerical study to compare the
different constructions.
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Chapter 1

Introduction

In many industries and sectors, problems of interest can often be formulated as inte-
grals of high-dimensional functions. These integrals are typically solved numerically, as
an analytical solution may not exist or is too difficult to find. For example, for financial
applications, percentiles including the Value at Risk of investments need to be computed
daily by banks to manage and mitigate risk [47, Chapter 7.6]. Computer graphics also
use integration when performing the physics simulations used in path tracing and global
illumination problems to render scenes [86]. Other applications that use simulated models
in lieu of analytic formulas include those related to climate modelling [12,28,42,83], where
time series models are routinely constructed as extremely high-dimensional problems, or
biochemistry, which models chemical reactions using complex stochastic models [32].

A problem arises when integrating high-dimensional functions numerically: many al-
gorithms used to integrate low-dimensional problems do not scale well as the number of
dimensions increases. For example, the trapezoid rule is often used for one-dimensional
integration methods to estimate the area underneath a function, but the number of func-
tion evaluations increases exponentially with the number of dimensions to maintain the
same level of accuracy, rendering this method infeasible for high-dimensional settings. This
phenomenon is known as the “curse of dimensionality” [8]. Thus, Monte Carlo (MC) in-
tegration is the standard method for high-dimensional integration. Here, the function is
evaluated at n random points, and the estimate for the integral is the average of these n
function values. However, even in one dimension, the number of points needs to increase
by a factor of k2 to decrease the error by a factor of k.

(Randomized) Quasi-Monte Carlo ((R)QMC) methods, which replace the random point
set used in the MC method with a deterministic low-discrepancy sequence (LDS) that

1



more evenly covers the area to integrate, generally yield estimates with lower error using
the same number of points, as the LDS avoids gaps or clusters that occur with random
sampling. This is often used in financial applications to improve the accuracy of estimates
for calculating the Value at Risk, [41,65] as well as for pricing financial products [50]. Even
in high dimensions, (R)QMC has been shown to outperform MC, such as in [67], which
uses a 360-dimension integration problem from finance. In computer graphics, LDS has
also been used in lieu of MC for more efficient rendering and smoother images [14,15,43].

Although (R)QMCmethods have been shown to have better convergence rates than MC
[31,62], especially for smooth functions [64], it does not hold in general that the (R)QMC
method has lower variance than the MC variance. The framework of negative dependence
as introduced in [48], which is a multivariate extension of negative quadrant dependence
(NQD) [46], gives us a way to determine for what point sets and functions (R)QMC is
guaranteed to outperform MC. It has been shown that point sets that have a certain form
of multivariate negative dependence when integrating functions that are quasi-monotone
(and for 2−dimensional functions, it is sufficient for the function to be monotone in each
dimension) are guaranteed to outperform MC [48, 90]. Other works on studying quasi-
Monte Carlo point sets through the lens of negative dependence include [92], who derived
upper bounds on the discrepancy of the point sets and [91], who gave randomizations for
lattice rules that produce point sets with negative dependence. In [90], the Cb criterion
and the Cb(k, Pn) values are derived from analyzing the negative dependence properties of
point sets. These values can be used to measure the goodness of a point set: the lower
these values are, the more well-distributed the point set is. Specifically, if for a base b,
Cb is less than 1, then it is possible to construct a sampling scheme with the property of
negative dependence by scrambling in base b.

My research is on the constructions and applications of low-discrepancy point sets that
have the property of negative dependence. In this thesis, we will study constructions of
specific LDS with the property of negative dependence, how to find “good” constructions
using negative dependence as a tool, and how these constructions perform on numerical
integration problems. When comparing point sets, we expect a “good” quality point set to
be uniformly distributed on the unit cube, with few, if any, gaps or clusters, whereas “bad”
quality point sets might have clusters or gaps where areas of the unit cube do not have
any points at all. We expect a higher quality point set to perform better on numerical
integration problems, in the sense that the RQMC integration error is smaller than a
lower quality one. We specifically study the negative dependence properties of Halton
sequences, deriving theoretical results that support using a specific kind of scrambling as a
randomization, and give a “good” set of parameters for generalizing the Halton sequence.
As well, on the triangle, scrambling is used to improve the projection properties of an
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existing construction. Theoretical results as well as numerical examples are given for our
proposed constructions.

Chapter 2 introduces relevant background information that is needed for the core chap-
ters of this thesis, including information about the specific low-discrepancy sequences and
randomizations used within this thesis. The concept of negative dependence, including
defining the Cb criterion and the Cb(k, Pn) values, is also explained in this chapter. The
set of test functions used throughout this thesis is introduced in this chapter as well.

In Chapter 3, we provide an extensive numerical study to demonstrate the power of
the Cb(k, Pn) values to measure the quality of point sets, using examples on the Sobol’ [75]
and Faure [24] sequences, which are two of the most well-known and used low-discrepancy
sequences. Working with the Sobol’ sequence in Section 3.1, the Faure sequence in Section
3.2, and comparing the Sobol’ and Faure sequences with each other in Section 3.3, we
show that the Cb(k, Pn) values are more powerful in practice than the t parameter of a
(t,m, s)−net for differentiating between different point sets in terms of quality.

We also show that using the Cb criterion can help us determine how to best “repair”
point sets that may not have good distribution properties to start off with in Section 3.1.
Using two different two-dimensional projections of the Sobol’ sequence that were purposely
constructed to be of extremely poor quality, we use the Cb criterion to choose a base to
randomize the point set such that the randomized point set is of good quality and evenly
covers the unit square.

One of the limitations of the Cb value as proposed in [90] is that it requires a significant
amount of computational resources to calculate, in terms of both runtime and memory. In
Section 3.2.2 we propose an alternative criterion, also based on the Cb(k, Pn) values, that
allows us to mitigate this issue. This alternative criterion restricts the values of k such
that we only consider specific lower-dimensional projections of the point set, rather than all
possible k. Using this alternative criterion, we are able to compare the quality of point sets
in higher dimensions without any concerns about computational power. This alternative
criterion allows us to simultaneously consider all one- and two-dimensional projections of
the point set, and we use it in this way to compare different forms of scrambling on the
Faure sequence in Section 3.2.3 by looking at scramblings based on permutations originally
proposed for the van der Corput sequence. Here, we use said permutations as multiplicative
factors to generalize the Faure sequence. This work on assessing forms of scrambling on
the Faure sequence is in collaboration with Christiane Lemieux and Henri Faure and is the
topic of the working paper [20].

The experiments in this chapter not only show the power of the Cb(k, Pn) values to
compare point sets and constructions, but also allow us to explore an important question
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of whether it is better to address defects in a deterministic point set by searching for
a “good” deterministic scrambling in the sense of dependence qualities, or by applying
random scrambling. If a well-chosen deterministic scrambling is used, it can then be
randomized with a faster randomization for error estimation, whereas random scrambling
is a more resource intensive randomization. However, searching for a good deterministic
scrambling can be quite computationally demanding.

Next, in Chapter 4, we study the dependence properties of the Halton sequence. The
majority of the work in this chapter has been published in [22]. In this chapter, we have
several contributions.

Firstly, [90] proves the property of negative dependence for (t,m, s)−nets when t = 0.
We use a similar process here to prove the property of negative dependence for the Hal-
ton sequence by introducing a multi-base version of the Cb value. Based on these results,
we propose using a multi-base version of the random linear scrambling of Matoušek [52]
to randomize the Halton sequence, which has not yet been proposed as a randomization
for the Halton sequence. We not only derive theoretical results regarding this random-
ization, including a formula for the joint pdf of two distinct points randomly chosen from
the scrambled point set, but show its usefulness in practice with numerical integration
examples.

Secondly, using the same alternative criterion based on the Cb(k, Pn) values as in the
previous chapter, we search for a set of permutations to generalize the Halton sequence.
These permutations were found by minimizing the criterion value and are given in Table
A.1 in Appendix A. We compare these well-chosen permutations with other choices of
permutations such as the ones from [26] and [25] as well as the random linear scrambling
mentioned above in numerical integration problems, to again answer the question of if it
is better to address defects in a deterministic point set by using a “good” deterministic
scrambling, or by applying random scrambling.

Thirdly, Section 4.6 extends our work on assessing different forms of scrambling with a
similar setup of the experiments as the ones from Section 3.2.3. The work in this section
is not part of [22] – it is within the working paper [20], which is done in collaboration with
Christiane Lemieux and Henri Faure. Here, we assess two different sets of permutations
for the Halton sequence based on the ones introduced in [25].

Finally, in Chapter 5, we focus on the construction of low-discrepancy point sets on
two-dimensional triangles, rather than the unit hypercube. Two of the most recent ap-
proaches for constructing low-discrepancy point sets on the triangle were proposed by
Basu and Owen in [7]. They propose the triangular van der Corput sequence and the
triangular Kronecker lattice, which are both used to sample deterministic points on the
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two-dimensional triangle. We focus on their deterministic triangular van der Corput se-
quence. A limitation of this sequence is that while the points are indeed evenly spread out
on the two-dimensional triangle, the one-dimensional projections are poor, since they have
non-unique points.

This chapter has two main contributions. The first is that we improve upon the one-
dimensional projection properties of the triangular van der Corput sequence of Basu and
Owen. We do this by modifying the triangular van der Corput to map a scrambled van
der Corput sequence to the two-dimensional triangle, rather than the deterministic van der
Corput sequence.

The second is we show how to implement the scrambled van der Corput sequence using
a stratified sampling scheme, which is much less computationally intensive than applying
scrambling directly. This stratified sampling scheme has the same distribution as the nested
scrambling of the van der Corput sequence, allowing us to keep the good properties of a
scrambled estimator while being more efficient to implement. In fact, we show that the
connection between stratified sampling and nested scrambling can be used both ways – not
only to give a fast implementation of nested scrambling but also to give a way to create
an extensible stratified estimator.

The work on constructing low-discrepancy point sets on the triangle is done in collab-
oration with Erik Hintz, Christiane Lemieux, and Marius Hofert. This work has not been
published yet and is the topic of the working paper [21]. The results presented within
Chapter 5 are the work of the author of this thesis. The working paper also includes the
development of an extensible lattice construction on the triangle that coincides with the
approach of Basu and Owen, but is omitted from this thesis, as the majority of the work
on that topic was done by Erik Hintz.

Chapter 6 concludes this thesis.
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Chapter 2

Background

This chapter introduces relevant background information that is needed for the core chap-
ters of this thesis. In Section 2.1, we introduce the Monte Carlo method. In Section 2.2, we
introduce the Halton, Sobol’ and Faure sequences, which are the low-discrepancy sequences
that we work with in this thesis. Here, the concept of equidistribution is also introduced.
We then discuss some common randomization techniques used with these sequences in
practice in Section 2.3. The concept of negative dependence is introduced in Section 2.4,
including the Cb value, which is a criterion used to measure how evenly spread out the
points within a unit cube are, and can also be used to determine if a specific point set has
the property of negative dependence. Finally, in Section 2.5, we also introduce the test
functions that will be used throughout this thesis to compare estimators constructed from
the different point sets we work with.

2.1 Monte Carlo methods

The Monte Carlo (MC) method for numerical integration uses repeated random sampling
to obtain numerical results for integrals that either do not have a closed form or are
difficult to integrate theoretically. Quantities of interest in this thesis are integrals over
the s-dimensional hypercube [0, 1)s, which can be written as

µ = I(f) =

∫
[0,1)s

f(u)d(u),
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where f(u) ∈ R on [0, 1)s. The MC estimator of I(f) based on a sample size of n is

µ̂mc =
1

n

n∑
i=1

f(ui),

where {u1, . . . ,un} are independent and identically distributed (i.i.d.) samples from the
uniform distribution over [0, 1)s, and n is the number of random draws.

From the Central Limit Theorem, the integration error follows a Normal distribution
asymptotically: √

n(I(f)− µ̂mc)
D−→ N(0, σ2),

where
D−→ denotes convergence in distribution and

σ =
√

(I(f 2)− I(f)2,

which is estimated by

σ̂ =

√√√√ 1

n− 1

n∑
i=1

(f(ui)− µ̂mc)2. (2.1)

Since the error of MC integration is Op(
1√
n
), to decrease the error by a factor of k, k2 times

the number of simulations are needed. This is one of the drawbacks of the MC method
- numerous simulations are required, and thus improving the accuracy of an estimate can
be computationally expensive.

2.2 Quasi-Monte Carlo methods

A way to improve the error of the estimator of our quantity of interest is to use quasi-
Monte Carlo (QMC) methods instead of the MC method. These methods replace the
randomly sampled point set of an MC estimator with a deterministic point set that is
chosen to approximate the uniform distribution as closely as possible. Such sets are known
as low-discrepancy sequences (LDS) or low-discrepancy point sets, as the sequences cover
the area over the unit hypercube more evenly than that of a pseudo-randomly generated
sequence of Uniform[0, 1)s random variables. Using QMC methods allows the error of the
estimator to decrease at a faster rate than O( 1√

n
), which makes it superior for the purpose

of estimation [64].

This can be seen in Figure 2.1. The left plot contains 128 points in two dimensions where
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the x and y coordinates are independently generated from a pseudo-random Uniform(0, 1)
distribution, using the built-in runif() function in R [72], which uses the Mersenne Twister
generator [53]. The right plot contains 128 points generated from a quasi-random sequence,
the Sobol’ sequence [75] in two dimensions, generated using sobol() from qrng [39]. We
can see that the point set in the right plot in Figure 2.1 covers the unit square more evenly
than the one on the left. This is a desirable property of quasi-random number sequences,
and will be further touched upon in Section 2.2.2.

Figure 2.1: Uniformly generated (left) vs quasi-random (right) samples

Since these quasi-random sequences are meant to imitate a uniform distribution, ran-
dom numbers from a specific distribution cannot be generated directly. Instead, uniform
random variables must be transformed using the cumulative distribution functions into the
desired distribution, i.e., the inverse transformation method must be used. If we generate
u ∼ Uniform[0, 1) from the quasi-random sequence, the random number we need is F−1(u),
where F is the cumulative distribution function of our random variable of interest.

We now describe a few different constructions for low-discrepancy sequences. These
constructions will be used in the later chapters of this thesis.
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2.2.1 The Halton sequence

The Halton sequence [35] is one of the oldest low-discrepancy sequences. It is still popular
among practitioners because of its simple implementation [36]. It has received renewed
attention in the last 10–15 years, both from theoretical and practical perspectives [4, 13,
18, 26, 58, 63, 85, 88]. It is widely accepted that in its original form, the Halton sequence
has important defects in higher dimensions, which mainly appear as unwanted correlations
over certain two-dimensional projections, for reasons we will explain shortly. For this
reason, several proposals have been made to either randomize the Halton sequence or
to generalize it via well-chosen permutations: the above list of references contains such
proposals. Figure 2.2 shows on the left panel the two-dimensional projection of the first
100 points of the original Halton sequence over its 49th and 50th coordinates, thereby
illustrating the unwanted correlations mentioned previously. The middle panel shows how
this behaviour can be mitigated by using well-chosen deterministic permutations. However,
permutations by themselves cannot break up the linear correlations completely.

Figure 2.2: First 100 points of the two-dimensional projection over the 49th and 50th

coordinates of the Halton sequence (left), generalized Halton sequence using permutations
from [26]) (middle), and pseudo random points (right).

To define the Halton sequence, we follow the notation and framework of [26]. The
building block for the Halton sequence is the van der Corput sequence in base b, denoted
by Sb, which has its nth term (n ≥ 1) defined as

Sb(n) =
∞∑
r=0

ar(n)

br+1
, (2.2)
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where ar(n) is the r
th digit of the b-adic expansion of n− 1 =

∞∑
r=0

ar(n) b
r.

The Halton sequence is an s-dimensional sequence u1,u2, . . . in [0, 1)s defined as

un = (Sb1(n), . . . , Sbs(n)), (2.3)

where the bj’s, for j = 1, . . . , s, are pairwise coprime. That is, the jth coordinate is defined
using Sbj , the van der Corput sequence in base bj. These bj’s are typically chosen as the
first s prime numbers.

A generalized van der Corput sequence [25] is obtained by choosing a sequence Σ =
(σr)r≥0 of permutations of Zb = {0, 1, . . . , b − 1}. Then, the nth term of the sequence is
defined as

SΣ
b (n) =

∞∑
r=0

σr
(
ar(n)

)
br+1

. (2.4)

If the same permutation σ is used for all digits (i.e., if σr = σ for all r ≥ 0), then we use
the notation Sσ

b to denote SΣ
b . The van der Corput sequence in base b defined in (2.2) is

obtained by taking σr = I for all r ≥ 0, where I stands for the identity permutation over
Zb.

A generalized Halton sequence is obtained by choosing s sequences of permutations
Σj = (σj,r)r≥0, j = 1, . . . , s, and defining the nth point as

un = (SΣ1
b1
(n), . . . , SΣs

bs
(n)), n ≥ 1. (2.5)

Another way to generalize the van der Corput sequence is to apply well-chosen linear
transformations to the digits ar(n) before multiplying them by b−(r+1) in (2.2). More
precisely, let C be an∞×∞ matrix with elements in Zb, where we assume b is prime. Let
Cr,ℓ be the element on the rth row and ℓth column of C. The nth term is then defined as

SC
b (n) =

∞∑
r=0

∞∑
ℓ=0

Cr,ℓaℓ(n)b
−(r+1). (2.6)

Using different transformations Cj on a given van der Corput sequence in a fixed base b
to obtain the jth coordinate of a point in [0, 1)s breaks the clearly wrong pattern of an
s-dimensional sequence that would otherwise have all its points along the main diagonal
in [0, 1)s.

10



More generally speaking, a sequence in [0, 1)s with nth term given by

(SC1
b (n), . . . , SCs

b (n)) (2.7)

with b prime is an example of a digital sequence [55]. The Cj here are usually referred to
as generating matrices. Specific choices of generating matrices to create point sets with
good equidistribution are discussed in [19], and below, we will see examples of different
generating matrices with the Sobol’ and the Faure sequences.

More modifications that are made to the Halton sequence are explained in Chapter 4.

2.2.2 Discrepancy, equidistribution, and (t,m, s)−nets

Together, the constructions (2.5) and (2.7) cover most of the constructions used in practice
that are known to be low-discrepancy sequences, which refers to the fact that the obtained
sequences cover the unit hypercube [0, 1)s more evenly than a sequence of independent,
randomly chosen points would.

More precisely, the discrepancy of a point set Pn = {u1, . . . ,un} ⊆ [0, 1)s measures
by how much the empirical distribution induced by Pn deviates from the uniform dis-
tribution over [0, 1)s. To describe this measure, for a subinterval of [0, 1)s of the form
J =

∏s
j=1[0, zj), where 0 < zj ≤ 1, we consider the difference E(J ;n) = A(J ;n)− nV (J),

where A(J ;n) = #{i; 1 ≤ i ≤ n,ui ∈ J} is the number of points in Pn that fall in the
subinterval J , and V (J) =

∏s
j=1 zj is the volume of J . The star discrepancy D∗ of Pn is

then defined as D∗(Pn) = supJ∗|E(J∗;n)|/n. For an infinite sequence, if its first n points
satisfy D∗(Pn) = O((log n)s/n)—which is conjectured to be the best possible convergence
rate for the discrepancy—then it is considered to be of low-discrepancy. Other discrepancy
measures can be defined by either changing the sets J over which the difference E(J ;n) is
computed, or by using a norm other than the sup norm in the definition of D∗(Pn) [47, Sec.
5.6.1].

Definition 2.2.1. Pn is (k1, . . . , ks)−equidistributed in base b if for n = bm where m is a
non-negative integer and

∑s
i=1 ki ≤ m, every elementary interval of the form

s∏
l=1

[
al
bkl
,
al + 1

bkl

)
(2.8)

with 0 ≤ al < bkl has exactly bm−(k1+···+ks) points.
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We can now define the concepts of a (t,m, s)−net and a (t, s)−sequence.
Definition 2.2.2. A (t,m, s)-net [59] in base b (b prime) is a point set Pn = {U1, . . . ,Un} ⊆
[0, 1)s with n = bm that is (q1, ..., qs)-equidistributed in base b for all s-dimensional vectors
of non-negative integers (q1, ..., qs) such that q1+ ...+ qs ≤ m− t. A (t, s)-sequence in base
b is a sequence of points where every subsequence of the form ulbk , ...,u(l+1)bk−1 for integers
k ≥ t and l ≥ 0 is a (t, k, s)−net in base b.

The value t is a quality parameter: the lower t is, the more evenly spread out Pn is.
Figure 2.3 shows both a deterministic and a randomized (0, 3, 2)−net, specifically, a Faure
sequence, which are (1, 2)−,(2, 1)−,(0, 3)− and (3, 0)−equidistributed. For this point set,
t = 0 as it is (k1, k2)−equidistributed for all k1 + k2 ≤ 3.

(a) A randomized (using Owen’s scrambling) (0, 3, 2)-net in base 2

(b) A deterministic (0, 3, 2)-net in base 2

Figure 2.3: A (0, 3, 2)−net is (1, 2)−, (2, 1)−, (0, 3)− and (3, 0)−equidistrbuted

2.2.3 The Sobol’ sequence

The Sobol’ sequence, a digital sequence, is another popular low-discrepancy sequence. Using
Equation 2.6, the Sobol’ sequence is obtained by taking b = 2 and defining the Cj’s using
recurrences based on primitive polynomials over F2 [75].
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Specifically, the algorithm to generate the generating matrices Cj’s is described in
Algorithm 1.

Algorithm 1: Generating Matrices for the Sobol’ Sequence

For each coordinate j, j = 1, . . . , s:

1. Define a primitive polynomial over F2 in the form of
pj(z) = zdj + aj,1z

dj−1 + · · ·+ aj,djz
0 where dj is the degree and each aj,l ∈ F2;

2. Choose dj direction numbers of the form vj,r = mj,r/2
r, where mj,r is an odd integer

between 1 and 2r − 1 for all 1 ≤ r ≤ dj;

3. For r > dj, vj,r = aj,1vj,r−1 ⊕ · · · ⊕ aj,dj−1vj,r−dj+1 ⊕ vj,r−dj ⊕ vj,r−dj/2
dj , where ⊕ is

the binary XOR operation;

4. Write each vj,r =
∑dj

l=1 vj,r,l2
−l;

5. The rth column of Cj is formed by the base 2 expansion of vj,r, that is, the r
th

column of Cj is (vj,r,1, vj,r,2, . . . ).

The t−values were first proposed by Sobol’ to characterize his sequence. Every one-
dimensional projection of the Sobol’ sequence is a (0, 1)−sequence in base 2. However, in
s dimensions, the corresponding (t,m, s)−nets created have t = O(s log s) [75].

2.2.4 The Faure sequence

Using 2.6, the Faure sequence [24] is obtained in any prime base b ≥ s and is a popular
way to create (0, s)−sequences and (0,m, s)−nets. The generating matrices Cj here are
successive powers of the transpose of the Pascal matrices, with operations done in Fb: Cj

is the transpose of the Pascal matrix raised to the power of j − 1 for j = 1, . . . , s.

The Faure sequence can be generalized by multiplying the generating matrices (from
the left) by nonsingular lower triangular matrices. More details about generalizing the
Faure sequence is given in Section 3.2.3.

2.3 Randomized Quasi-Monte Carlo

Quasi-random point sets can be randomized in practice to be able to estimate the variance
of the Randomized Quasi-Monte Carlo (RQMC) estimator. This randomization function
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produces a new point set P̃n = {ũ1, . . . , ũn} which satisfies the following properties:

1. ũi ∼ Uniform([0, 1)s) ∀ i, and

2. The low-discrepancy of Pn is preserved after the randomization.

Something to note is that even after applying the randomization function to the quasi-
random numbers, the generated points ũi are not independent across simulations. Thus,
any parts of the Monte Carlo methodology that depends on the assumption of independence
will need to be adjusted when using the RQMC method.

The MC estimate uses the fact that {u1, . . . ,un} are i.i.d. samples to estimate the
standard error of our estimator. Since this does not hold for quasi-random numbers, when
using RQMC to estimate I(f), we cannot use (2.1) to estimate the error of our estimate.
Instead, as per [47, Chapter 6.2], we create a random sample of V quasi-random estimators,
which are each based on a randomized point set of size n. Let P̃n,l = {ũ1,l, . . . , ũn,l}, where
P̃n,1, . . . , P̃n,V are V independent copies of P̃n . Define the lth RQMC estimator as:

µ̂rqmc,l =
1

n

n∑
i=1

f(ũi,l) for l = 1, . . . ,m,

which has expectation:

E(µ̂rqmc,l) = E

(
1

n

n∑
i=1

f(ũi,l)

)

=
1

n

n∑
i=1

E(f(ũi,l))

=
1

n

n∑
i=1

∫
[0,1)s

f(ũi,l)dũi,l

= I(f), as each ũi,l ∼ Uniform([0, 1)s), from Property 1 above.

Thus, µ̂rqmc,l is an unbiased estimator of I(f).

The overall RQMC estimator of I(f), based on these V i.i.d. estimators, is:

µ̂rqmc =
1
V

∑V
l=1 µ̂rqmc,l,
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which has its variance estimated by:

σ̂2
rqmc =

1

V

(
1

V − 1

) V∑
l=1

(µ̂rqmc,l − µ̂rqmc)
2. (2.9)

The empirical variance in Equation (2.9) can then be compared with the one in Equation
(2.1), the regular MC variance estimate, with a sample size of nV .

In addition to allowing for error estimation, randomization may also improve the quality
of the point set. For example, in Chapter 3, we explore finding good randomizations for
(t,m, s)−nets that improve how evenly the points are spaced out on the unit cube, and in
Chapter 4, we explore looking for good randomizations of the Halton sequence from the
viewpoint of negative dependence.

When using RQMC methods in practice, there are many packages that can implement
various low-discrepancy sequences in different coding languages. For example, there is
the qrng [39] package in R [72], which provides implementations for the Sobol’ sequence
and Halton sequence with various forms of randomizations. In Python [84], the SciPy [87]
module has a QMC submodule that provides implementation of the Sobol’ sequence, Halton
sequence, and Latin Hypercube [54,79], as well as methods to calculate the discrepancy for
each of these sequences. In C [44] and C++ [77], the GNU Scientific Library [34] provides
an implementation for the Sobol’ sequence, Niederreiter sequence [10], Halton sequence,
and reverse Halton sequence (the Halton sequence with permutations [0, b−1, b−2, . . . , 1],
as detailed in [85]), with wrappers available for many other languages. The International
Mathematics and Statistics Library (IMSL Numerical Libraries) [57] is implemented in C,
Java [1], C#.NET [37], and Fortran [6], with a Python interface. Within the Random
Number Generation module in the stat library, there is functionality for generating points
from the Faure sequence [24]. Many other implementations of different sequences with a
variety of randomization techniques exist.

There are many randomization techniques for low-discrepancy sequences, we describe
some of them here, namely the digital shift and digital scrambling randomization tech-
niques. These are the randomizations that will be used in this thesis.

2.3.1 Digital shift

The digital shift randomization method is a commonly used randomization technique for
RQMC, inspired by the random shift method of Cranley and Patterson for lattices, which
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are another family of low-discrepancy constructions [17]. It adds a random uniform shift
using operations in Zb.

Specifically, given a point set Pn with elements ui = (ui,1, ui,2, . . . , ui,s), and a base b,
we generate a random vector g = (g1, . . . , gs) uniformly in [0, 1)s. Then, we take the base
b expansion of the g′js: gj =

∑∞
l=1 gj,lb

−l. The digitally shifted version of Pn, P̃n, then has
elements Ui = (Ui,1, . . . , Ui,s), i = 1, . . . , n. Here, Ui,j =

∑∞
l=1(ui,j,l + gj,l)b

−l. The addition
is done in Zb and the digits ui,j,l are from the base b expansion of ui,j.

The computational complexity of performing a digital shift on a point set is O(ns), as
each coordinate of each point needs to be shifted. The base b expansion does not need to
be taken to infinity, rather it only needs to be taken to a level of precision equivalent to
the precision used to store the points. Usually, we only need to take the first ⌊31 logb(2)⌋
digits of the base b expansion.

Digital shifts preserve equidistribution in base b as defined in Section 2.2.2, as applying
the digital shift just relabels the b-ary boxes.

2.3.2 Scrambling

Another form of randomization for a point set is scrambling. Here, we explain the nested
uniform scrambling method of Owen [60] and the Matoušek style random linear scrambling
[52]. Many properties are shared by nested uniform and random linear scrambling, as
explained in [52]. As shown in [90] for digital nets and in Section 4.3 for Halton sequences,
these equivalences also hold when looking at scrambling from the point of view of negative
dependence. A more general definition for a base b-digital scramble, which includes both
nested uniform scrambling and random linear scrambling, is given in Definition 2.4.4.

Nested uniform scrambling

The nested uniform scrambling method of Owen [60], sometimes referred to as Owen’s
scrambling, scrambles Pn by applying random permutations to the digits ui,j,l. Permuta-
tions π are uniformly randomly distributed over all b! permutations of [0, 1, . . . , b−1]. The
permutation of each digit depends on all the digits that came before it, and a new set of
permutations is used for each dimension. That is, the permutation used for ui,j,1 is πj,
the permutation used for ui,j,2 is πj,ui,j,1

(the permutation applied to the second digit ui,j,2
depends on the first digit ui,j,1), the permutation used for ui,j,3 is πj,ui,j,1ui,j,2

, and so on.
To permute the first k digits, there needs to be a total of bk−1 permutations.

16



Nested scrambling is very costly to implement, in both time and memory. It requires
having some sort of dictionary or other lookup data structure to have all the permutations
stored, and in addition to the O(ns) complexity to go through all the coordinates of every
point, the lookup time for each permutation needs to be considered. Our implementation of
nested scrambling is similar to Tan and Boyle [78] to be able to save on computational cost.
We apply nested scrambling to levels up to k′, and take the original digits for k ≥ k′. In all
numerical examples in this thesis, we use k′ = ⌊31 logb(2)⌋ to keep approximately 32 bits
of precision. This differs from that of Tan and Boyle in that they take πj,ui,j,1ui,j,2...ui,j,k

=
πj,ui,j,1ui,j,2...ui,j,k′

for all k ≥ k′, but we take πj,ui,j,1ui,j,2...ui,j,k
= [0, 1, 2, 3, . . . , b − 1] for all

k ≥ k′.

However, despite being costly to implement, nested scrambling is often used because
it has the potential to reduce the variance of the corresponding RQMC estimator to
O(n−3 log(n)s−1) ≈ O(n−3+ϵ) for sufficiently smooth functions [64].

Figure 2.3 illustrates a point set before and after applying Owen’s scrambling. Owen’s
nested scrambling in base b also preserves equidistribution in base b, which can be seen in
the aforementioned figure, and satisfies the requirement of being a base b−digital scramble
as defined in [90].

In Chapter 5, we provide a way to implement the nested scrambled van der Corput
sequence as stratified sampling, a much more computationally efficient implementation.

Random linear scrambling

The random linear scrambling [52] of Matoušek is another way to randomize digital nets.

The random linear scrambling of [52] for a van der Corput sequence can be explained
as a randomized version of (2.7) where the matrix Cj is replaced by C̃j = RjCj where Rj

is chosen randomly among all non-singular lower-triangular matrices with entries in Zbj ,
and then a random digital shift based on random digits gj,r, r ≥ 0, in Zbj is added. That
is, the nth term of the randomly linearly scrambled van der Corput sequence in base bj is
given by

∞∑
r=0

(
∞∑
ℓ=0

C̃r,ℓaℓ(n) + gr

)
b
−(r+1)
j . (2.10)

As is the case with nested uniform scrambling, here the transformation applied to ar(n)
as part of the randomization process depends on the previous digits a0(n), . . . , ar−1(n) via
the multiplication of the vector of digits aℓ(n) with ℓ ≥ 0 by C̃j. In fact, random linear
scrambling is a special case of nested uniform scrambling in which all the permutations
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used are linear. This form of scrambling typically results in faster implementations than
nested uniform scrambling, both in terms of time and memory requirements [40,52]. Thus,
it is a good alternative to nested uniform scrambling, since it has similar properties in
terms of variance analysis without the computational requirements [62, 90].

2.4 Negative dependence

Now that we have discussed the fundamentals of numerical integration as well as the specific
low-discrepancy sequences to be used in the later chapters of this thesis, we can discuss the
concept of point sets with negative dependence. Formally, negative dependence is defined
as follows:

Definition 2.4.1. The random variables X and Y have negative quadrant dependence
(NQD) if

P (X ≤ x, Y ≤ y) ≤ P (X ≤ x)P (Y ≤ y)

for all x, y ∈ R [48].

Definition 2.4.2. A vectorX = (X1, . . . , Xr) of random variables is negative lower orthant
dependent (NLOD) if:

P (X1 ≤ x1, . . . , Xr ≤ xr) ≤
r∏

ℓ=1

P (Xℓ ≤ xℓ),

and it is negative upper orthant dependent (NUOD) if

P (X1 > x1, . . . , Xr > xr) ≤
r∏

ℓ=1

P (Xℓ > xℓ).

for all x ∈ Rr [90].

Now consider a randomized point set P̃n = {U1, . . . ,Un}.Let

H(x,y; P̃n) :=
2

n(n− 1)

n−1∑
i=1

∑
j>i

P (Ui ≤ x,Uj ≤ y), (2.11)

where U ≤ x means Uj ≤ xj for all j = 1, . . . , s, and x,y ∈ [0, 1]s. If H(x,y; P̃n) ≤∏s
ℓ=1 xℓyℓ for all 0 ≤ xℓ, yℓ ≤ 1, ℓ = 1, . . . , s, then we say P̃n is an NLOD sampling scheme

[90].
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We can think of H(x,y; P̃n) as the joint distribution function of a pair of (distinct)
points (UI ,UJ) randomly chosen in P̃n. Thus, we can think of the NLOD property as
requiring that the probability that the Uj’s be all simultaneously small is no larger than
if the Uj’s were independent; the NUOD property similarly requires that the probability
that they be all simultaneously large is no larger than if they were independent.

Intuitively speaking, the negative dependence that holds for an NLOD sampling scheme
P̃n is desirable because it implies the points are less likely to be clustered together, as they
instead tend to repel each other, thus ensuring the sampling space is well covered by the
points in P̃n.

We can also look at how this negative dependence would affect the quality of an esti-
mator for

I(f) =

∫
[0,1)s

f(u)d(u), (2.12)

where f : [0, 1)s → R is assumed to be square-integrable.

We consider the kinds of functions that would have a lower variance when using RQMC
compared to MC. Recall that we are interested in approximations of the form

µ̂n =
1

n

n∑
i=1

f(ui) (2.13)

where Pn = {u1, . . . ,un} ⊂ [0, 1)s. For instance, one can use the first n points of the Halton
sequence to form Pn, thereby obtaining a deterministic approximation for Pn. Alternatively,
with the MC method, one takes Pn as a set of n i.i.d. points uniformly distributed over
[0, 1)s.

As discussed in [48,90], we have that

Var(µ̂n) =
σ2

n
+
n− 1

n
Cov(f(UI), f(UJ)),

where σ2 = Var(f(U)) and Cov(f(UI), f(UJ)) represents the covariance term between the
value of the integrand f at two distinct, randomly chosen points UI and UJ from P̃n. The
randomization applied to the point set leads to exchangeable U1, . . . ,Un. This covariance
term differentiates the variance of µ̂n—when P̃n is an NLOD sampling scheme—from that
of a Monte Carlo estimator with the same number of points n and captures the effect of
the randomization and how it causes the estimator µ̂n to depart from the behaviour of the
independent random points used by the MC method.

19



This covariance can be written as

σI,J := Cov(f(UI), f(UJ)) =

∫
[0,1]2s

f(x)f(y)ψ(x,y)dxdy−
∫
[0,1]2s

f(x)f(y)dxdy. (2.14)

where ψ(x,y) is the joint pdf of (UI ,UJ) evaluated at (x,y). An expression for the joint
pdf ψ(x,y) is given in [90]. Having the joint pdf means we can write H(x,y; P̃n) as an
integral:

H(x,y; P̃n) =

∫
[0,x)×[0,y)

ψ(u,v)dudv. (2.15)

Note that formally speaking, the definition of H(x,y; P̃n) given in (2.11) should lead to
a closed integration domain in (2.15). The reason why we instead integrate over a half-open
interval is because it aligns better with the properties of ψ(x,y), and is a convention we
will follow throughout this paper. It is a valid approach because the boundary has measure
0, and thus the integral is unchanged whether we use a half-open interval or a closed one.

We already saw in Section 2.3 a few different ways to randomize a point set. This
yields constructions that can be used to construct RQMC estimators, which can be used
for integration and simulation of multivariate functions.

Since the points Ui from a randomized point set used for RQMC integration are not
independent, the hope is that their dependence structure allows for an estimator with
better quality than the MC method, as it avoids the gaps and clusters that are inherent to
random sampling. When using RQMC to define µ̂n, an important feature one would like
to be able to guarantee is that the estimator will be better, in some sense, than the one
obtained using the MC method, which we denote as µ̂mc,n. By better, typically we mean
that we want the variance of µ̂n to be no larger than the variance of the MC estimator.
Since for regular MC, σI,J = 0, for the variance of the RQMC estimator to be lower, σI,J
must be negative.

Now, we introduce a family of functions where the σI,J are guaranteed to be negative
under specific sampling schemes.

Definition 2.4.3. Consider a function f : [0, 1]s → R, and an interval of the form A =
[a,b] =

∏s
j=1[aj, bj] ⊆ [0, 1]s, with 0 ≤ aj ≤ bj ≤ 1, j = 1, . . . , s. Let the dimension d of A

be defined as d =
∑s

j=1 1aj<bj . Let

∆(s)(f ;A) =
∑

I⊆{1,...,s}

(−1)|I|f(aI ;b−I),
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where f(aI ;b−I) is the function f evaluated at x with xj = aj if j ∈ I and xj = bj if j /∈ I.
If ∆(s)(f ;A) ≥ 0 for all A of dimension 1 ≤ d ≤ s, then f is said to be quasi-monotone or
completely monotone.

For two-dimensional functions, a sufficient condition to be quasi-monotone is to be
monotone in each coordinate. It is shown that point sets that have the property of negative
dependence (either NLOD or NUOD) when integrating functions that are quasi-monotone
have σI,J ≤ 0 [48,90].

Other works on studying quasi-Monte Carlo point sets through the lens of negative
dependence include [92], who derived upper bounds on the discrepancy of the point sets
and [91], who gave randomizations for lattice rules that produce point sets with negative
dependence.

The framework of negative dependence gives us a way to determine sufficient conditions
for RQMC to outperform MC. Namely, in [48] it is shown that if f is a bounded quasi-
monotone function, then an NUOD sampling scheme integrates it with variance no larger
than MC. This is in contrast with results showing that some RQMC estimators have a
variance that converges much more quickly than MC, as these results do not guarantee
RQMC will have lower variance than MC for a fixed sample size n.

In [90], it was shown that certain types of scrambling applied to (0,m, s)-nets produces
NLOD/NUOD sampling schemes. Both the nested uniform scrambling of Owen [60] and
the random linear scrambling of Matoušek [52] are examples of this type of scrambling,
which, following [90], we refer to as base b-digital scrambling. For point sets that have been
randomized using a base b−digital scramble, the NLOD and NUOD properties have been
shown to be equivalent [90, Thm. 4.14], which is why, in this thesis, the terms NLOD and
NUOD are used interchangeably.

Definition 2.4.4 (Base b-digital scramble). Let Pn = U1, . . .Un and P̃n = Ũ1, . . . Ũn be
the scrambled version of Pn, that is, P̃n = S(Pn). A randomization S is a base b-digital
scrambling if the following two properties hold: Let Ũi,ℓ =

∑∞
r=1 Ũi,ℓ,rb

−r, that is, Ũi,ℓ,r

represents the rth digit in the base b expansion of the ℓth coordinate of the ith point Ũi in
the scrambled point set P̃n. Then we must have:

1. Each Ui ∼ U([0, 1)s);

2. For two distinct points Ũi = S(Ui), Ũj = S(Uj) and for each coordinate ℓ = 1, . . . , s,
if the two deterministic points Ui,ℓ, Uj,ℓ have the same first r digits in base b and differ
on the (r + 1)th digit, then:
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(a) the scrambled points (Ũi,ℓ, Ũj,ℓ) also have the same first r digits in base b;

(b) the pair (Ũi,ℓ,r+1, Ũj,ℓ,r+1) is uniformly distributed over {(k1, k2), 0 ≤ k1 ̸= k2 <
b};

(c) the pairs (Ũi,ℓ,v, Ũj,ℓ,v) for v > r + 1 are mutually independent and uniformly
distributed over {(k1, k2), 0 ≤ k1, k2 < b}.

2.4.1 Cb values

In [90], a criterion Cb was introduced, which gives a way to determine if a point set is
NLOD/NUOD. The following definitions are required to define Cb and present Theorem
2.4.8, which gives us a way to determine if a point set is an NLOD/NUOD sampling scheme,
which turns out to be equivalent to Cb ≤ 1 for that point set.

The following quantities are essentially used to count pairs of points from a given point
set Pn that share a certain number of initial digits in their base b expansion. Geometrically
speaking, they count how many pairs of distinct points are in a given cell from a given
partition of the unit hypercube [0, 1)s.

Definition 2.4.5. For x, y ∈ [0, 1), we define γb(x, y) ≥ 0 as the exact number of initial
digits shared by x and y in their base b expansion, i.e. the smallest number i ≥ 0 such that
⌊bix⌋ = ⌊biy⌋ but ⌊bi+1x⌋ ≠ ⌊bi+1y⌋.

If x = y then we let γb(x, y) =∞.

For x,y ∈ [0, 1)s, we define γs
b(x,y) = (γb(x1, y1), . . . , γb(xs, ys)) and γb(x,y) =

∑s
j=1 γb(xj, yj).

Definition 2.4.6. Let Pn = {U1, . . . ,Un} be a point set in [0, 1)s, b ≥ 2 be an integer,
and i, k ∈ Ns, where N = {0, 1, 2, . . . }. Then,

1. Nb(i;Pn) is the number of ordered pairs of distinct points (Ul,Uj) in Pn such that
γs
b(Ul,Uj) = i, as

2. Mb(k;Pn) is the number of ordered pairs of distinct points (Ul,Uj) in Pn such that
γs
b(Ul,Uj) ≥ k componentwise.

Now, define Cb(k;Pn) =
b|k|Mb(k;Pn)

n(n−1)
, and Cb = supkCb(k;Pn). Here, |k| =

∑s
i=1 ki.

As well, we define the concept of a point set being completely quasi-equidistributed
(c.q.e.) in a base, from Definition 4.4 of [90]:
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Definition 2.4.7. Let Pn be a point set of size n in [0, 1)s and b ≥ 2 be a base. Let
k = (k1, . . . , ks) ∈ Ns. Then we say Pn is k−quasi-equidistributed in base b if Cb(k;Pn) ≤ 1.
If Cb(k;Pn) ≤ 1 for all k ∈ Ns then we say Pn is completely quasi-equidistributed (c.q.e) in
base b.

Theorem 4.16 in [90] shows the relationship between Cb(k;Pn) and negative dependence:

Theorem 2.4.8. Let Pn be a deterministic point set of size n in [0, 1)s and b ≥ 2 be an
integer. Assume Pn is such that the jth coordinate of the points are all distinct. Let bP̃n

be the sampling scheme obtained by applying a base b−digital scramble to Pn. Then bP̃n is
NLOD/NUOD if and only if Cb(k;Pn) ≤ 1 ∀ k, or equivalently, Pn is c.q.e. in base b.

The proof of this theorem makes use of the following inequality [90, Eqn. 4.1]:

H(x,y; bP̃n) =

∫
R(x,y)

ψ(u,v)dudv =
∑
k∈Ns

tkCb(k;Pn) ≤ CbVol(R(x,y)),

where R(x,y) = {(u,v) ∈ [0, 1)2s : uj < xj, vj < yj, j = 1, . . . , s} = [0,x) × [0,y) is the
rectangle formed by the origin and (x,y). The intuition behind the inequality is that the
tk values decompose the integral of the pdf by decomposing the box R(x,y) into a sum
over elementary boxes, such that

∑
k∈Ns tk = Vol(R(x,y)). The tk values can be thought

of as being weights and the Cb(k;Pn) values as the propensity for negative dependence.
For more details, see [90, Sec. 4].

The quantity Mb(k;Pn) is closely connected to the concept of equidistribution: if Pn

with n = bm is k−equidistributed, thenMb(k;Pn) = b|k|(bm−|k|(bm−|k|−1)) = bm(bm−|k|−1).
In [90] it is shown via an analysis of the Cb value that a scrambled (t,m, s)−net [60]
has the NLOD/NUOD property if and only if t = 0. When t = 0, it means we have
Mb(k;Pn) = bm(bm−|k| − 1) for all k such that |k| ≤ m, and is 0 if k > m. In other
words, in this case we can partition [0, 1)s into intervals of the form (2.8) until we have
as many “boxes” as we have points, so there will be exactly one point per box, and from
then on there are zero pairs of points in boxes of that size or smaller. This in turn implies
Cb(k;Pn) ≤ 1, which is why scrambled digital nets with t = 0 are NLOD/NUOD.

However, we also want to see what other qualities of a point set Cb(k;Pn) can capture.
As mentioned earlier, the t parameter of a (t,m, s)-net is a criterion that indicates how
well-distributed the points of a LDS are. The lower t is, the more evenly spread out the
points are. However, there are point sets with the same t parameter that perform very
differently on integration problems. It is also possible for two nets with the same value of
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t, m, and s to have different Cb(k;Pn) values. The converse of this statement is not true, as
from Proposition 4.7 of [90], t = m−max{ℓ : ℓ ≤ m ∧ ∀k ∈ Ns : |k| = ℓ⇒ Cb(k;Pn) ≤ 1},
meaning that if two point sets have the same Cb(k;Pn) values, they would also have the
same t. This means that the Cb(k;Pn) values contain more information about the point set
than the t parameter. Additionally, the t parameter is only meaningful when the point set
has n points, where n is a power of an integer base b. The quality measure Cb circumvents
these issues as it takes values over the rational numbers, whereas t only takes non-negative
integer values. Cb also works for any n, rendering it a more precise criterion and allowing
us to more easily differentiate between point sets. The usefulness of the Cb criterion will
be explored in more detail in Chapter 3 with numerical examples.

Corollary 4.14 of [90] shows that the values Cb(k;Pn) can be used to differentiate two
point sets with respect to their propensity for negative dependence. More precisely, it
shows that the Cb(k;Pn) values are able to capture the difference between the two nets in
their ability to keep the integral of the joint pdf small. The parameter t fails to capture
this difference because it aggregates too much information regarding the equidistribution
properties of Pn.

Corollary 2.4.9. Let Pn and P ′
n be deterministic point sets of size n in [0, 1)s such that

the jth coordinate of the points are all distinct, for each j = 1, . . . , s. Let bP̃n and bP̃
′
n be the

sampling schemes obtained by applying a base b−digital scramble to Pn and P ′
n, respectively.

Let ψ(u,v) and ψ′(u,v) be the joint pdf of two distinct points randomly chosen from bP̃n

and bP̃
′
n, respectively. Then the following are equivalent:

1. For all x,y ∈ [0, 1]s,∫
R(x,y)

ψ(u,v)dudv ≤
∫
R(x,y)

ψ′(u,v)dudv.

2. Cb(k;Pn) ≤ Cb(k;P
′
n) for all k ∈ Ns.

2.5 Test functions

Since a large portion of the work in this thesis involves comparing different constructions of
point sets using criteria based on the Cb(k, Pn) values, there needs to be a way to determine
if these criteria are actually a good method of deciding on if a construction is “good” or
not. One way to do this is to use a set of functions to compare performances of these
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functions on, where we assume the goal is to integrate them, i.e., compute I(f) as defined
in (2.12).

Here are the test functions that we use:

1. g(x) = Πs
j=11+ c(xj − 0.5) where c is a constant [3]. This test function has fairly low

effective dimension [3], meaning that the majority of the variance can be explained
by low dimensional projections. This function integrates to 1 over the unit cube.
We consider two combinations of s and c when working with higher-dimensional
constructions. First, we use s = 120, c = 0.1, which has an effective dimension of four
in the superposition sense with a threshold of 0.99; second, we use s = 96, c = 0.25,
which has an effective dimension of six in the superposition sense with a threshold
of 0.99. This means that for these settings, 99% of the variance can be explained
by four- and six- dimensional projections, respectively, despite the dimension of the
function being much higher. These settings for s and c are from [3] and also used in
[26]. We also use this function when comparing lower-dimensional point sets, with
the setting of c = 0.25. Since this function is monotone in each coordinate, in two
dimensions it is also quasi-monotone.

2. g1(x) = Πs
j=1

|4xj−2|+αj

1+αj
, where α is a constant [76]. This function integrates to 1 over

the unit cube, and formulas for the variance of the ANOVA components are given
in [61]. We use the following choices of α, which are the same as the choices from
[26]: 1) αj = 0.01, 2) αj = 1, 3) αj = j, 4) αj = j2. As we go from choices 1) to 4)
for the choice of αj, the effective dimension in the truncation sense for this function
decreases [26]. A function is said to have low effective dimension in the truncation
sense if it can be well approximated by a function that only depends on the first few
variables.

3. h0(x) =
∑s

j=1(e
xj − e+ 1) from [66], which integrates to 0 over the unit cube.

4. h1(x) = (
∑s

j=1 xj)
2 from [66], which integrates to s/3+s(s−1)/4 over the unit cube.

5. The Genz integrand family of functions [29]. The specific functions within this family
will be defined in Chapter 4 when they are used. Unlike the other functions above,
parameters are typically not fixed and instead chosen randomly, and the reported
error is the average error over all such randomizations.

We also consider some functions that represent real-life applications, including higher
dimension finance problems.

25



1. Stochastic activity network (SAN). This is a 13-dimensional problem described in
[47], page 99, originally from [5]; however, here we also use a 12-dimensional ver-
sion, with activity 10 removed and all other parameters the same. A probability is
estimated using naive Monte Carlo, which means the corresponding integrand is an
indicator function.

2. The European Arithmetic Asian Call option pricing. We want to estimate the value
at time 0 of an arithmetic Asian call option that can only be executed at expiry
on an underlying asset that follows a lognormal distribution. Formally, the value

of the option is C0 = E
[
max

(
0, e−rT

(
1
s

∑s
j=1 S (tj)−K

))]
, where S(tj) is the

price of the asset at time tj, T = ts is the time to expiry in years, r is the risk-
free interest rate, and σ is the volatility. The lognormal model means we can write

S(tj) = S(tj−1)e
(r−σ2/2)(tj−tj−1)+σ

√
(tj−tj−1)Z , where Z ∼ N(0, 1) is a standard Gaus-

sian random variable. For our applications, T = 1, r = 0.05, σ = 0.3 and we use an
initial stock price of S0 = 50. We use three options of K, the strike price. We use
K ∈ {45, 50, 55} to account for out-of-the-money, at-the-money, and in-the-money
options, respectively. For s, the number of dimensions or time steps, we have s = 17
for the experiments for the experiments in Chapter 3 and s ∈ {40, 70} for the exper-
iments in Chapter 4. These choices of parameters are taken from [26].

3. A mortgage-backed security problem. We estimate the value at time 0 of a mortgage-

backed security, whose value is given by E
(∑s

j=1 vjcj

)
, where vj is the discount rate

for month j and cj is the cash flow in month j. Both of these values are ran-
dom quantities that are functions of the stochastic interest rate process i0, i1, . . . , is.
Specifically, we use the interest rate model from [11], as follows:

il = K0e
ηlil−1,

where ηl ∼ N(0, 1), then

vl =
l−1∏
k=0

(1 + ik)
−1,

and
cl = crl((1− wl) + wlαl),

where:

• c: The monthly mortgage payment, here, we set it to 1.
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• wl: The fraction of remaining mortgages prepaying in month l. This is calculated
as K1 +K2 arctan(K3il +K4).

• rl: The fraction of remaining mortgages at month l, calculated as
∏l−1

k=1(1−wl).

• αl: The remaining annuity at month l divided by the monthly mortgage pay-
ment. This is calculated as

∑s−l
k=0(1 + i0)

−k.

Thus, we need to specify (i0, K0, σ
2) for the interest rate model and (K1, K2, K3, K4)

for the prepayment model. We use K0 = e−σ2/2 so that E(ik) = i0 for all k. For the
remaining parameters, We use the following three sets of parameters from [56] and
[11], also used in [26]. For each, we assume a 30-year contract, which means that
s = 360 as payments are monthly.

(a) “Linear”: (K1, K2, K3, K4, σ, I0) = (0.01,−0.005, 10, 0.5, 0.02, 0.007). From [11],
this set of parameters leads to an almost linear function in its 360 inputs
x1, . . . , xs. Over 99.9% of the variance is explained by the one-dimensional
structure, so the effective dimension is one in the superposition sense. The true
value of this expectation is 131.78706.

(b) “Nonlinear”: (K1, K2, K3, K4, σ, I0) = (0.04, 0.0222,−1500, 7, 0.02, 0.007). Also,
from [11], this has less of a linear component and only about 94% of variance is
explained by the one-dimensional structure the and the true value is 130.712365.

(c) “Tezuka”: (K1, K2, K3, K4, σ, I0) = (0.24, 0.134,−261.17, 12.72, 0.2, 0.00625). From
[56], the true value is 143.0182.

To test the performance of the different triangular constructions in Chapter 5, we
consider the following test functions over the right-angle triangle with corners at (0, 0), (0,
1), (1, 0), which we denote as △R:

1. f1(x, y) = (|x− β|+ y)d, from [69]. This function has a singularity, so we anticipate
this function to be harder to integrate than the others. This integral evaluates to

1
(d+1)(d+2)

(
(d+ 1/2)(1− β)d+2 + (β + 1)d+2/2− βd+2

)
over △R.

2. f2(x, y) = cos(2πβ + α1x + α2y), from [69]. This is a smooth oscillatory function.
This integral evaluates to 1

α2
( 1
α1−α2

(cos(2πβ + α2)− cos(2πβ + α1)) +
1
α1
(cos(2πβ +

α1)− cos(2πβ))) over △R.

3. f3(x, y) = xα3 + yα3 . Since this is the sum of univariate functions, it will help us
determine if poor one-dimensional projections affect the integration power of the
point set. This integral evaluates to 2

(α3+1)(α3+2)
over △R.
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Figure 2.4: Test functions f1 (left), f2 (middle) and f3 (right) used in the numerical study.

We use β = 0.4, d = −0.9, α1 = e3, α2 = e2, α3 = 2.5 and estimate µj =
∫
△R

fj(x) dx,
whose theoretical values are known for j = 1, 2, 3. Figure 2.4 displays fk for k = 1, 2, 3 with
these parameter settings. Although the figures show the functions over the unit square,
we integrate over the right angle triangle with corners at (0, 0), (0, 1), (1, 0).

We use these functions to numerically compare different constructions, i.e., to demon-
strate that our “good” and “bad” constructions, as determined by our selected metric, do
indeed perform well and poorly respectively on integration problems.

We compare estimators using either their mean-squared error (MSE) or variance, which
are obtained as follows: when integrating a function f , we assume that for v = 1, . . . , V ,
Pn,v = {x1,v, . . . ,xn,v} is an s-dimensional point set that has been randomized, and that
the Pn,v for v = 1, . . . , V are independent from each other (e.g., they have been randomized
using independent shifts or independent scramblings). Then we either compute

MSE =
1

V

V∑
v=1

(µ̂v − µ(f))2 ,

where µ(f) =
∫
[0,1)s

f(x)dx if the true value of the integrand is known, or

Var =
1

V − 1

V∑
v=1

(µ̂v − µ̂)2 ,

where µ̂ = 1
V

∑V
v=1 µ̂v is the sample mean over all V independent randomizations if the
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true value of the integrand is not known. In both cases,

µ̂v =
1

n

n∑
i=1

f(xi,v).

That is, µ̂v is the estimator for µ obtained from the vth randomized point set Pn,v.
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Chapter 3

Negative dependence as a tool to
measure the quality of point sets

In [90], the Cb(k;Pn) values and the Cb criterion were introduced, as well as a theoretical
framework explaining how they connect to the NLOD property for scrambled point sets.
In this chapter, we explore how we can use these Cb(k;Pn) in practice to decide how and
when to randomly scramble, and to differentiate point sets and sequences with an equal
parameter t, but a significant difference in their quality. As discussed in Section 2.4.1, the
Cb(k;Pn) values are more powerful than the t parameter in measuring the quality of point
sets: it takes rational number values, whereas t only takes integer values. As well, the
Cb(k;Pn) values do not require the number of points n to be a power of b, whereas the t is
only defined when the number of points is an integer power of the base b. The Cb(k;Pn)
values also provide more information about the point set, since multiple values of Cb can
correspond to the same t value, while the converse is not true. This leads to a more precise
criterion that can be used with a wider range of point sets.

The work in this chapter is on the theme of using the criterion Cb(k;Pn) to measure
the quality of point sets. We expect that generally, a “better” point set will lead to lower
RQMC integration errors when used on numerical problems. In this chapter, we give
numerical examples on the Sobol’ and Faure sequences, primarily using two-dimensional
projections, to illustrate the ability of the Cb(k;Pn) values to differentiate between “good”
and “bad” point sets in terms of their integration power when used as a scrambled RQMC
estimator.

We first explore the Sobol’ sequence in Section 3.1, where we show the criterion’s ability
to differentiate between point sets of different quality. We also show how to use the criterion
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to find a base for randomization, where we can “repair” a poorly constructed point set by
scrambling in a higher base than the base used in construction, and demonstrate this
with numerical integration problems. We then explore similar experiments for the Faure
sequence in Section 3.2, where we attempt to answer the question of “Is it worth trying to
find a good fixed scrambling and then simply shift for the randomization, which is cheaper
to run, or should we randomly choose a scramble?”. Section 3.2.3 contains the joint work
with Christiane Lemieux and Henri Faure that has not been published yet and is the topic
of the working paper [20]. Here, we assess different forms of scrambling on the Faure
sequence by looking at scramblings based on the ones originally proposed in [25]. These
deterministic scramblings were originally proposed as permutations for the van der Corput
sequence, but here we use these permutations as multiplicative factors and assess their
performance on the Faure sequence. Lastly, in Section 3.3, we explore examples in higher
dimensions by considering all two-dimensional projections of each point set simultaneously
when comparing the Sobol’ and the Faure sequence. We conclude our work and note
some future direction in Section 3.4, including discussing the efficiency of calculating the
Cb(k;Pn) values.

Part of the work in this chapter, particularly, the results and discussions about Figures
3.1, 3.3, 3.12 and Tables 3.1, 3.2, 3.7, 3.10 is done jointly with Jaspar Wiart and Chris-
tiane Lemieux and taken from Section 5 of [90]. From [90], my contributions include the
aforementioned results as well as implementation of programs for calculating the Cb(k;Pn)
values and for randomizing point sets via nested scrambling. The implementations for
both calculating the Cb(k;Pn) values and for nested scrambling is generalized such that it
only requires a point set Pn and an integer base b as inputs. That is, we do not need to be
working with a digital net constructed in the same base as the base used for scrambling.

3.1 Scrambling and negative dependence concepts for

point sets constructed in base 2

In this section, we work with the Sobol’ sequence, a popular digital sequence constructed
in base 2. The Sobol’ sequence is a popular low-discrepancy sequence that is often used
in practice with implementations available in many programming languages. The base 2
construction of the Sobol’ sequence allows implementations to take advantage of binary
logical operations for point sets to be created quickly, and the Sobol’ sequence has been
shown to perform well on a variety of numerical problems as long as the direction numbers
chosen are reasonable.
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Here, we use two two-dimensional projections of a “bad” Sobol’ sequence with direction
numbers all set to 1 with n = 1024 points each, as well as a two-dimensional projection
of a “good” Sobol’ sequence, based on direction numbers provided in [27] for the so-
called irreducible Sobol’- Nieddereiter sequences. With these point sets, we illustrate the
following:

1. Even if the values of the t parameter are the same, the Cb(k;Pn) values can be very
different.

2. How to find a good base to scramble in, i.e., the smallest prime b for each point set
such that Cb ≤ 1.

3. Why it is a good idea to use two different bases to measure the quality of a point set.

The second point, in particular, is of interest as it gives us a way to “repair” point sets
by scrambling them in a different base than the one it was originally constructed in. We
will see, specifically, that scrambling in a larger base has more potential to repair point
sets.

Our simulation experiments detailed in this section suggest that the Cb criterion can
be used to understand how applying nested scrambling in different bases affects different
deterministic point sets.

First, we compare the different two-dimensional projections of a Sobol’ sequence. The
two “bad” projections are of poor quality both in terms of their t parameter (for both
these projections, t = 9), and visually, as they do not cover the unit square. The one
on the top row of Figure 3.1 is obtained by taking the projection of that sequence over
coordinates (27,28) and the one on the middle row is obtained by taking the projection
over coordinates (22,23). The bottom row of this image shows the “good” Sobol’ sequence,
which has a t parameter of 0. We denote these three point sets by “Bad Sobol’ 1”, “Bad
Sobol’ 2”, and “Good Sobol’,” respectively.
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Figure 3.1: The left column shows three different (t,m, 2)−nets in base 2 with m = 10; the
middle column shows the point sets after scrambling in base 2; the right column shows the
point sets after scrambling in base 53. The separate image on the right is of 1024 points
uniformly sampled over the unit square.

For the images in the left column of Figure 3.1, Table 3.1 gives the value of βb,k =
maxk:|k|=k Cb(k;Pn) for k ≥ 1, for b = 2. It also gives the maximum value Cb = maxk≥1 βb,k,
again for b = 2.

The plots in the middle column of Figure 3.1 show the point sets after being scrambled
in base 2, using the nested uniform scrambling method of Owen [60]. Visually, we see that
scrambling does not fix the issues of the deterministic point sets on the left – for the first
two point sets, there are just as many areas without any points. This is consistent with
the fact that scrambling does not change the Cb(k;Pn) values and thus the t values, so if
they are large in a given base, scrambling in that base will not address or improve the lack
of equidistribution.

However, when measuring Cb(k;Pn) in a base other than that used to construct Pn,
if we find they are small (i.e., close to 1), it suggests that scrambling in that base could
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improve the equidistribution and “repair” the point set. To illustrate this, we performed
a base 53 scramble of the three point sets, with the resulting point sets shown on the
right column of Figure 3.1. Visually, all point sets appear much better equidistributed
after this base 53 scrambling, although the “Bad Sobol’ 2” point set still appears to be
better equidistributed than the “Bad Sobol’ 1” point set. Note that in this case there is
no parameter t that can be computed to assess the quality of 53P̃n, as n = 1024 is not a
power of b. However, there is no such restriction for the C53(k;Pn) values. Table 3.2 gives
the βb,k and Cb values for b = 53. The two point sets yield a maximum C53 of 2.9282 and
0.9498 for the two “bad” point sets, so the “Bad Sobol’ 2” scrambled point set is c.q.e. in
base 53. For the “Bad Sobol’ 1” point set, C53 is much smaller than C2 which explains
why visually, the points are more equidistributed than they are after a base 2 scramble.
This experiment shows that scrambling point sets constructed in base 2 in a larger base
can be used to fix bad projections that are not “repaired” by the base 2 scrambling.

Despite having the same t value, the “Bad Sobol’ 1” point set in Figure 3.1 visually
appears to be worse than the “Bad Sobol’ 2” point set, as there are larger regions with no
points and the points are packed into a smaller region along the diagonal. However, we can
see that the Cb(k;Pn) values are at least as large for the “Bad Sobol’ 1” point set compared
to the “Bad Sobol’ 2” point set in both base b = 2 and b = 53. Thus, the Cb(k;Pn) values
managed to differentiate the quality of the point sets when the t values could not.

k 1 2 3 4 5 6 7
Bad Sobol’ 1 0.9990 1.9980 1.9941 3.9883 3.9726 3.9413 3.8788
Bad Sobol’ 2 0.9990 1.9980 1.9941 1.9863 1.9707 1.9394 1.8768
Good Sobol’ 0.9990 0.9971 0.9932 0.9853 0.9697 0.9384 0.8759
k 8 9 10 11 12 13 Cb

Bad Sobol’ 1 3.7537 3.5034 3.0029 6.0059 4.0039 8.0078 8.0078
Bad Sobol’ 2 1.7517 3.5034 3.0029 6.0059 4.0039 8.0078 8.0078
Good Sobol’ 0.7507 0.5005 0 0 0 0 0.9990

Table 3.1: Values of βb,k and Cb for b = 2, for nets from left column of Figure 3.1.
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k 1 2 Cb

Bad Sobol’ 1 0.9498 2.9282 2.9282
Bad Sobol’ 2 0.9498 0.7562 0.9498
Good Sobol’ 0.9498 0.6221 0.9498

Table 3.2: Values of βb,k and Cb for b = 53, for nets from left column of Figure 3.1.

We now discuss how to use the Cb criterion to find good randomizations for the Sobol’
sequence. This work has not yet been submitted for publication.

To randomize (t,m, s)−nets in base b, we use a base b̃−digital scramble, which preserves
the number of shared initial digits between pairs of points when considering the base b̃
representations of the points. Note that the b̃ of the randomization can be a different base
from the one the net the constructed in. That is, we do not need b̃ = b. Since nested
scrambling [60] satisfies the properties of a digital scramble as in Definition 2.4.4, it follows
from the properties of the digital scramble that even if b̃ ̸= b, we get an unbiased estimator,
as each point is uniformly distributed. The proof for the scrambled points being uniformly
distributed given in [60] does not rely on how the original point is constructed, so the base
b in which the point set was originally constructed does not affect whether the resulting
scrambled estimator is unbiased or not.

Another way of measuring the quality of these point sets is to look for the smallest
base b̃ that gives Cb̃ ≤ 1, that is, the smallest prime b̃ that we can use to scramble in to
“repair” the point set. A “good” point set would require a small b̃ to repair, whereas a
“bad” point set would require a larger b̃. This is because the larger b̃ is in relation to n,
the fewer times we must “cut” the unit cube until there are more b̃−ary boxes than points,
and thus it is easier for Pn to obtain small Cb̃(k, Pn) values. This is yet another way the Cb̃

values can be used to assess the quality of a point set and to compare point sets. Since we
can use a different base other than the base the point set was constructed in to scramble
and calculate the Cb̃ criterion, this again leads us to the idea of using multiple bases to
evaluate the quality of a point set.

We illustrate this with the point sets in Figure 3.1. Table 3.3 shows the Cb̃ values for
prime bases b̃ for the three point sets. The “Bad Sobol’ 1” point set is visually the worst
distributed over the unit square, and the “Good Sobol’” point set is the best distributed
over the unit square, and the Cb̃ values show this as well. Firstly, the Cb̃ values for the
“Bad Sobol’ 1” point set are always the greatest, and the Cb̃ values for the “Good Sobol’”
point set are always the smallest for every value of b̃. As well, the “Bad Sobol’ 1” point
set only achieves Cb̃ ≤ 1 at b̃ = 109, while the “Bad Sobol’ 2” point set achieves this at
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b̃ = 53 and the “Good Sobol’” point set achieves this at b̃ = 2. This comparison between
the three point sets suggests that “better” point sets can be repaired by being scrambled
in a smaller base than a “worse” point set.

If Pn is such that the jth coordinate of the points are all distinct, then Cb̃ will converge
to 0, as eventually we will subdivide the unit cube such that each subdivision has at most
one point. Thus, it is always possible to find a b̃ that satisfies Cb̃ ≤ 1. We stress that we
want to scramble in the smallest base that satisfies Cb̃ ≤ 1, rather than picking any large
b̃ that satisfies Cb̃ ≤ 1.

We have now shown multiple ways to be able to tell that the two “bad” Sobol’ point sets
are not well distributed over the unit square. Now, we explore how effective the “repairs”
to these point sets are. We know that scrambling in a higher base can lead to a more
uniform coverage over the unit square, so both point sets are scrambled 100 times in bases
53 and 109 to see the distribution of the C2 values. If we scramble in base 2, the point sets
would not be “repaired”, as the C2 values would not change after a base 2 scrambling –
They would stay 8.0078 for both of these point sets.

Figure 3.2 shows the distribution of the C2 values after scrambling in different bases.
We can see that the “Bad Sobol’ 1” point set (left side) yields higher C2 higher values
than the “Bad Sobol’ 2” point set even after scrambling, which is consistent with all of
our results above that suggest that the former is “worse” than the latter. Table 3.4 has
the number of scrambles out of these 100 that have C2 < 1, and again, our results are
consistent with that the “Bad Sobol’ 1” point set produces worse point sets even after
scrambling. As well, we can see that since almost all the scrambles produced a C2 value
smaller than the original C2 value of 8.0078, this suggests that scrambling in a larger base
is very likely to improve the quality of the point set.

b̃ Bad Sobol’ 1 Bad Sobol’ 2
53 0 7
109 29 63

Table 3.4: Number of scrambles in base 53 and 109 that give C2 < 1 for the two point sets
from Figure 3.1, out of 100 scrambles.

Now, we want to test the performance of these Sobol’ point sets on test functions to
see if the criterion captures the performance of these point sets in integration problems.

We use the test function g1(x) = Πs
j=1

|4xj−2|+αj

1+αj
from Section 2.5 with V = 25 replica-

tions to estimate the RQMC error, with the following choices of α: 1) αj = 0.01, 2) αj = 1,
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b̃ Bad Sobol’ 1 Bad Sobol’ 2 Good Sobol’
2 8.00782014 8.00782014 0.99902248
3 3.19839397 2.31319877 0.99804688
5 3.20389823 1.84955019 0.99609375
7 2.96586136 2.28284228 0.99414444
11 3.08081317 1.73006972 0.99023438
13 3.17720361 1.97143435 0.98829843
17 3.2267076 2.32623106 0.98440937
19 3.26624168 2.39643855 0.98243715
23 3.21070649 1.95126924 0.97862063
29 3.17757782 1.38567441 0.97280135
31 3.33191288 1.42376894 0.97070312
37 3.08418102 1.26503696
41 3.02966153 1.23561408
43 3.0747476 1.14729388
47 2.97330347 1.04592803
53 2.92818686 0.94975333
59 2.56534473 0.94406578
61 2.48646368 0.94194465
67 2.25403035 0.93635447
71 2.24247197 0.93274797
73 2.04501352
79 1.91837923
83 2.06495334
89 1.64839359
97 1.34728395
101 1.34383591
103 1.1140163
107 1.68311072
109 0.97538452
113 0.8912264
127 0.87774163
131 0.87537421
137 0.87152523

Table 3.3: Cb̃ values for the two point sets from Figure 3.1. Bolded values are the first
Cb̃ ≤ 1 for each point set.
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(a) Bad Sobol’ 1, Scrambled in base 53 (b) Bad Sobol’ 2, Scrambled in base 53

(c) Bad Sobol’ 1, Scrambled in base 109 (d) Bad Sobol’ 2, Scrambled in base
109

Figure 3.2: Distribution of C2 values after scrambling 100 times in bases 53 and 109.
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3) αj = j, 4) αj = j2. The error of the MC estimator with V n = 25× 1024 = 25600 points
is also reported. As expected, the results in Table 3.5 show that the “Bad Sobol’ 2” point
set outperforms the “Bad Sobol’ 1” point set in terms of estimated RQMC error for all
choices of α when randomizing by scrambling in either base 53 or 109. The difference is
more prominent in base 53, which is also to be expected because both point sets are c.q.e.
in base 109 but only the “Bad Sobol’ 2” point set is c.q.e. in base 53, implying that in
base 53, the “Bad Sobol’ 2” point set is a NLOD/NUOD sampling scheme, but not “Bad
Sobol’ 1”. As well, the “Good Sobol’” point set performs the best when we randomize in
base 2, which is expected as out of the three point sets, this one was the only one that
was c.q.e. in base 2. Something that may seem unexpected is for the “Bad Sobol’ 2” point
set, the base 2 scrambling gives superior results than scrambling in base 53 or base 109,
despite the point set being c.q.e. in bases 53 and 109. This is due to the fact that the
function is symmetric, and the base 2 scrambling preserves the pattern of the point set
having all the points being in the two quadrants along the main diagonal. The results here
also illustrate the importance of choosing a good point set and randomization when using
RQMC methods – the “Bad Sobol’ 1” point set did not outperform MC when scrambled
in base 2. Thus, we also explore the performance of these point sets on another function
below.

Point Set Base of Scramble α = [0.01, 0.01] α = [1, 1] α = [1, 2] α = [1, 4]
Bad Sobol’ 1 2 3.13E-02 2.03E-03 1.04E-03 4.00E-04
Bad Sobol’ 2 2 2.32E-06 6.61E-08 5.71E-08 2.53E-08
Good Sobol’ 2 4.57E-08 8.06E-09 2.91E-09 1.07E-09
Bad Sobol’ 1 53 2.01E-04 9.69E-06 8.88E-06 2.38E-06
Bad Sobol’ 2 53 8.94E-05 5.38E-06 3.29E-06 2.28E-06
Good Sobol’ 53 8.33E-05 4.94E-06 5.14E-06 2.74E-06
Bad Sobol’ 1 109 1.13E-04 8.81E-06 7.46E-06 4.22E-06
Bad Sobol’ 2 109 9.04E-05 7.80E-06 4.45E-06 3.39E-06
Good Sobol’ 109 7.82E-05 9.45E-06 6.53E-06 5.32E-06
Monte Carlo N/A 7.33E-04 1.68E-04 1.20E-04 9.59E-05

Table 3.5: Estimated RQMC errors of test function g1(x) = Πs
j=1

|4xj−2|+αj

1+αj
for the point

sets in Figure 3.1.

We now use the test function g(x) = Πs
j=11+ c(xj−0.5) with c = 0.25 from Section 2.5

with V = 25 replications to estimate the RQMC error. This function is monotone in each
coordinate, and being a two-dimensional function, this means that it is quasi-monotone.
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Thus, the results from Section 2.4 stating that if we have a NLOD/NUOD sampling scheme,
the variance is guaranteed to be lower than Monte Carlo apply. RQMC errors are given
in Table 3.6. The error of the MC estimator with V n = 25× 1024 = 25600 points is also
reported. In base 2, the “Good Sobol’” point set performs the best, which follows from
the fact that it is the only point set that is c.q.e. in base 2. In base 53, the “Bad Sobol’ 1”
point set performs the worst, which follows from the fact that it is the only one of the three
that is not c.q.e. in base 53. In base 109, all the point sets are NLOD/NUOD sampling
schemes, and thus it makes sense that the RQMC errors are similar. In addition, if we look
at the two “bad Sobol’” point sets, scrambling in a larger base than what the point set is
constructed in results in much better errors than scrambling in base 2, which still leaves
large gaps within the unit square. In all cases, the error is lower when we use a scrambled
Sobol’ sequence than with Monte Carlo.

Point Set Base of Scramble RQMC Error
Bad Sobol’ 1 2 1.64E-05
Bad Sobol’ 2 2 1.53E-05
Good Sobol’ 2 1.62E-11
Bad Sobol’ 1 53 2.30E-07
Bad Sobol’ 2 53 8.47E-08
Good Sobol’ 53 1.51E-07
Bad Sobol’ 1 109 2.13E-07
Bad Sobol’ 2 109 2.66E-07
Good Sobol’ 109 3.27E-07
Monte Carlo N/A 9.52E-05

Table 3.6: Estimated RQMC errors of test function g(u) = (1+0.25(u1−0.5))(1+0.25(u2−
0.5)) for the point sets in Figure 3.1.

Although the point sets used in these examples are extremes in terms of quality, these
experiments on two-dimensional point sets show us that the Cb value can be used to
compare point sets as well as choose a base to use for randomization that can “repair” the
point set.
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3.2 Scrambling and negative dependence concepts for

(0, s)−sequences

We now consider some examples of using the Cb(k;Pn) values on point sets that are two-
dimensional projections of the Faure sequence.

The work in this section includes work that has not been published yet and is the topic
of the working paper [20], which is done in collaboration with Christiane Lemieux and
Henri Faure. Similar work, also from this working paper, on the Halton sequence will be
discussed in the next chapter, in Section 4.6.

The Faure sequence, along with some of its generalizations that have been proposed
over the years, [26, 80, 81] stand out among low-discrepancy sequences thanks to the fact
that it achieves perfect equidistribution. The Faure sequence is a special case of a digi-
tal (t, s)−sequence in base b, and the perfect equidistribution is captured by the quality
parameter, t, which as mentioned previously, can be shown to be 0 [24].

While the Faure sequence achieve an optimal equidistribution as described above, this
optimal behaviour can require a very large number of points before being observed, de-
pending on the bases used, which in turn depends on the dimension s of the sequence, as
the larger s is, the larger the prime bases required are. For larger bases, if we use the first
n points of the sequence and n is too small compared to the number of points where the
optimal equidistribution properties are shown to hold, the corresponding point set may not
be of very good quality, thus yielding quasi-Monte Carlo estimators that are potentially
less accurate than those obtained using the Monte Carlo method. This phenomenon can
be seen in the top-left image of Figure 3.3, where there are not enough points to fill the
unit square when the sequence is constructed in base 53.

3.2.1 Assessing the quality of point sets derived from (0, s)−sequences

In this section, we consider Faure [24] sequences, which are (t, s)-sequences in a prime base
b, and, as mentioned in Section 2.2.4, have t = 0 if b ≥ s. If we want t = 0, then in large
dimensions we must work with large bases. Hence, it is typical to use a number of points
n that is not a power of b, as in large bases the powers grows very quickly. For example,
in base 53, the first four integer powers are 53, 2809, 148877, and 7890481, which is very
restrictive for choices of n. For this reason, we want to make sure the construction used is
such that the first n points are uniformly distributed, for any value of n. As discussed in,
e.g., [47, Chapter 5.4.4], when working with the original Faure sequences, there can be some
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unwanted behaviour for smaller values of n, i.e., smaller than bd where d is the dimension of
the space (or projection) considered. It is possible to construct (0, s)-sequences with better
properties (often referred to as generalized Faure sequences see e.g., [47, Chapter 5.4.4]),
but it can be challenging to quantify what we mean by “better” since t = 0 by definition
for all these sequences, and we also know from Proposition 4.5 in [90] that their first n
points form point sets that are all c.q.e. in base b. This is where the Cb(k;Pn) values can
help. Figure 3.3 shows different point sets obtained from (0, 2)-sequences in base 53.

Figure 3.3: First 1024 points of (0, 2)-sequences taken from coordinates (49, 50) of the
following construction: original Faure sequence in base 53 (top left); generalized Faure
sequence in base 53 randomized using random linear scrambling (bottom left); the middle
and right columns shows the point sets after nested uniform scrambling in base 53 and 2,
respectively.

Since the point sets in the left column both come from the first n = 1024 points of
a (0, 2)-sequence in base 53 (as 1024 < 532), they have the same values of C53(k;Pn),
namely β53,k = 0.94975 for k = 1 and is 0 otherwise. We can interpret this as follows:
both point sets should have similarly good uniformity properties after being scrambled in
base 53, since C53 < 1 for both point sets. This is confirmed by the two figures in the
middle column being very similar, although the base 53 digital scrambling was applied to
point sets (left column) that appear very different: the top one having much less desirable
uniformity than the bottom.
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In order to detect the difference between the two point sets in the left column, we
compute the C2(k;Pn) values for both. The motivation for doing this as follows: as seen
in the right column of Figure 3.3 and the middle column of Figure 3.1, a base 2 digital
scrambling does not address issues in a badly designed point set. This means scrambling
in base 2 can only produce a uniform point set if the point set being scrambled is already
uniform with respect to that base, and not only with respect to base 53. This is precisely
what the C2(k;Pn) can detect.

Since the C2(k;Pn) values capture the dependence structure of the base 2 scrambling of
Pn and we see that the two point sets look very different from each other after scrambling
in base 2 (right column), those values should detect the difference between the point sets
on the left. In other words, since the upper right point set is not uniform even though a
base 2 scrambling has been applied, the upper left point set is not uniformly distributed
with respect to base 2. We expect this will be captured by larger C2(k;Pn) values for this
point set. Similarly, since the lower right point set looks uniform, the lower left point set
is not only uniformly distributed with respect to base 53 but also with respect to base 2.
Table 3 shows the C2(k, Pn) values of both point sets on the left. We see that the C2(k;Pn)
values do indeed detect the visual difference we see in the point sets on the left, with the
top one giving C2 = 16.8289 and the bottom one giving C2 = 1.0753.

k 1 2 3 4 5 6 7 8 9
Faure (top left) 1.0001 1.0975 1.4429 1.8507 2.0287 2.2466 2.3306 2.5191 3.8270
GFaure (bottom left) 0.9991 0.9976 0.9939 0.9887 0.9791 0.9554 0.9135 0.8436 0.7840
k 10 11 12 13 14 15 16 Cb

Faure (top left) 5.8905 7.9062 11.1830 13.2786 16.8289 15.6403 0 16.8289
GFaure (bottom left) 0.9717 1.0753 0.7820 0.4536 0.4692 0.6882 0.6256 1.0753

Table 3.7: Values of βb,k and Cb for b = 2 for point sets in left column of Figure 3.3.

This experiment suggests that for future work, the C2(k;Pn) values can be used to
define a criterion that can be used to search for good generalized Faure sequences, along
the lines of what will be done in Chapter 4 for the Halton sequence.

3.2.2 Modifications to Cb to capture only lower-dimensional pro-
jection properties

So far, we have compared different point sets using the quantity Cb(k;Pn) for different
vectors k corresponding to partitions of the unit hypercube [0, 1)s that are of particular
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interest. To decrease the runtime of calculating the Cb value as well as to only capture the
information that is of the most interest to us, we introduce a new criterion based on the
Cb(k;Pn) values where we restrict k. This allows us to make comparisons between point
sets using much less computational resources, in terms of both memory and time.

Define c(b,K;Pn) = maxk∈K Cb(k;Pn), where K ⊂ Ns. We are interested in a special
class of subsets K defined by two parameters (d, w) where 2 ≤ d ≤ s and w ≥ 1, in the
following way:

Kd,w,s = {k ∈ Ns : 2 ≤
d∑

j=1

1kj>0 ≤ d, r(k) ≤ w}

where r(k) = max{1 ≤ j ≤ s : kj > 0} −min{1 ≤ j ≤ s : kj > 0} can be thought as the
range of indices where a non-zero component of k can be found. Hence, d refers to the
largest number of non-zero components allowed for k to be included in Kd,w,s and w is in
some sense a window size, which limits the range of the indices j where a non-zero kj is
found.

For instance, if s = 4, d = 2 and w = 2, then

Kd,w,s ={(k, ℓ, 0, 0), (k, 0, ℓ, 0), (0, k, ℓ, 0), (0, k, 0, ℓ), (0, 0, k, ℓ) : k, ℓ > 1}.

That is, we have excluded all vectors k with only 1 non-zero component or with more than
2 non-zero components, and we also excluded vectors such as (1, 0, 0, 3) because its range
is 3 which is larger than the largest allowed range of w = 2.

As an alternative to the criterion c(b,K;Pn) which returns the worst (largest) Cb(k;Pn)
value, we also consider one based on the mean, defined as c̄(b,K;Pn) =

1
|K|
∑

k∈K Cb(k;Pn).

This restriction still gives us a way to compare point sets, as many high-dimensional
functions have low effective dimension. In addition, we may be most interested in breaking
up the correlation between consecutive coordinates – for example, in Chapter 4, we will
use this restricted criterion with a small window size to search for factors to generalize the
Halton sequence for this reason.

3.2.3 Assessing different forms of scrambling for the Faure se-
quence

Now that we have shown that the framework of negative dependence can be used to assess
the quality of point sets coming from the initial portion of a (0, s)−sequence, we attempt
to answer the following questions: when a deterministic (0, s)−sequence has known defects
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for small sample sizes, should we address these defects by finding a “good” deterministic
scrambling, or by applying random scrambling? On one hand, one would think that a
very well-chosen deterministic scrambling should do better than one randomly chosen, and
would have a less computationally demanding implementation since the point set could
then be used with a “cheap” randomization such as a digital shift for the purpose of error
estimation. On the other hand, finding a good deterministic scrambling that performs well
on a large variety of problems may not be possible, and from that point of view, perhaps
random scramblings are a better option, especially since the optimal equidistribution of
the Faure sequence is a sufficient and necessary condition for random scrambling to induce
a certain form of negative dependence, meaning that random scrambling can “repair” the
defects of these sequences. And if we choose to use a deterministic scrambling, how do
we choose one, and how do we assess whether it is good or not? We extend our work
to use the framework of dependence to assess the benefits of scrambling randomly versus
deterministically using well-chosen factors, for the Faure sequence.

Previously, we compared the Faure sequence with a generalized Faure sequence in base
53 obtained by randomly choosing nonsingular lower triangular matrices and multiplying
them with original Faure sequence matrices. As mentioned previously in Section 3.2, the
original Faure sequence has poor projection properties if n is not large enough.

To alleviate this problem, several authors have proposed to apply certain types of
scrambling to the Faure sequence. A few different generalizations of the original construc-
tion from [24] have been proposed, starting with [81] and then [49]. In addition, random
scramblings have been proposed for digital (t, s)-sequences [52, 60]. Both deterministic
and random scramblings are widely accepted as providing an improvement to the original
constructions, especially for small number of points in medium to large dimensions.

We also examine how the permutations from [25] can be used not only for van der Cor-
put sequences as originally intended but can also be used as factors for Faure sequences,
thereby proposing a new form of deterministic scramblings for the latter. Numerical ex-
periments comparing deterministic and random scramblings are performed on a variety of
problems to provide empirical evidence toward answering our main question.

These proposed permutations from [25] are especially useful because they can be ob-
tained via a recursive process (over the bases b) consisting of a descent method, which is
illustrated using checkerboards in Section 3.1 of [70]. As can be seen there, even bases (and
thus checkerboards with an even dimension) can be intricated together to create a larger
point set. To get a permutation for an odd base, a point needs to be inserted in the middle
of an even-sized checkerboard. The process begins with the two first points (i.e., base 2)
and grows. This construction is useful because of its simplicity and step-by-step induction.
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Algorithm 2 summarizes the steps for generating a permutation πb for any integer b (in
fact, the recursive algorithm generates all permutations πj for j ≤ b).

Algorithm 2: Algorithm to generate permutations from [25].

INPUT:b;
OUTPUT: list of permutations (π2, . . . ,πb);
j = 2;
πj = (0,1);
while j ≤ b: do

j = j + 1;
if j is even: then

πj = (2πj/2, 2πj/2 + 1);

if j is odd: then
temp = πj−1;

k = j−1
2
;

for ℓ = 1 to j − 1: do
if πj[ℓ] ≥ k: then

πj[ℓ] = πj[ℓ] + 1

for ℓ = k + 1 to j: do
πj[ℓ+ 1] = πj[ℓ]

πj[k + 1] = k;

return (π2,. . . ,πb)

Here, we propose to use these permutations to create generalized Faure sequences using
diagonal non-singular lower-triangular matrices based on a factor fj, j = 1, . . . , s, where
we assume b = s. Clearly, the factors fj should be non-zero, so we cannot simply use
fj = πb[j]. We propose two ways to address this, where here j = 1, . . . , s− 1. That is, in
both cases, we only obtain s− 1 factors, and hence can only define a (s− 1)−dimensional
sequence based on this method. Specifically, the non-singular lower-triangular matrices we
multiply the generating matrices by are of the form diag([fj]× (s− 1)).

With the first method, we simply observe that all permutations from [25] are such that
πb[0] = 0, so we simply omit the first term of the permutation. With the second method, we
add an “offset term” m = ⌊b/2⌋ (modulo b) to each term of the permutation, which based
on the algorithm used to generate πb, is such that we now have πb[m] = 0. That is, the
addition of the offset term has the effect of placing the 0 in the middle of the permutation
vector. More precisely, the two different methods for using the permutations from [25] to
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define factors for the Faure sequence are:

1. Let fj,1 = πb[j + 1] for 0 ≤ j ≤ b− 2.

2. Let fj,2 = (πb[j] +m) mod b for j = 0, . . . ,m− 1 and fj = (πb[j + 1] +m) mod b for
j = m, . . . , b− 2

3.2.4 Comparisons based on negative dependence criterion

In Tables 3.8 and 3.9, we compute the two criteria as explained in Section 3.2.2 for point sets
based on the (generalized) Faure sequence, where “Faure 1992” and “Offset” respectively
refer to the two methods for fixing the factors fj created using Algorithm 2, and “Regular”
refers to the original construction from [24]. The tables differ in the samples size n used
for the point sets. In all cases, we consider every two-dimensional projection over the
point set when computing the criteria. In the tables, b refers to the base the point set was
constructed in, and all the criteria values are computed in base 2.

Faure Type b s d n c(2,Kd,w=s,s, Pn) c̄(2,Kd,w=s,s, Pn)
Regular 5 4 2 3125 0.99968 0.99968
Faure 1992 5 4 2 3125 0.99968 0.99968
Offset 5 4 2 3125 0.99968 0.99968
Regular 13 12 2 2197 1.755691 1.422891
Faure 1992 13 12 2 2197 1.782858 1.162811
Offset 13 12 2 2197 1.782858 1.136818
Regular 53 52 2 2809 6.5223 1.584402
Faure 1992 53 52 2 2809 14.88912 2.019255
Offset 53 52 2 2809 14.88912 1.892771

Table 3.8: Values of criteria based on C2(k;Pn) for point sets obtained from (generalized)
Faure Sequences.
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Faure Type b s d n c(2,Kd,w=s,s, Pn) c̄(2,Kd,w=s,s, Pn)
Regular 5 4 2 5000 1.19561576 1.0977079
Faure 1992 5 4 2 5000 3.35611442 1.4793424
Offset 5 4 2 5000 3.35611442 1.5871413
Regular 13 12 2 5000 7.71906317 3.4452165
Faure 1992 13 12 2 5000 9.54395039 1.9958566
Offset 13 12 2 5000 7.63516031 2.1053137
Regular 53 52 2 5000 111.422999 16.197021
Faure 1992 53 52 2 5000 170.658418 4.89776
Offset 53 52 2 5000 153.710041 4.696813

Table 3.9: C2 values of point sets based on the Faure Sequence with n = 5000.

We can see that even though the maximum value taken by C2(k;Pn) for k ∈ K for
is not smaller for the two generalized Faure sequences compared to the original Faure
sequence, the average over all two-dimensional projections is smaller. This means that
after multiplying the generating matrices by the chosen factors (“Faure 1992” or “Offset”),
there are fewer “poor” two-dimensional projections, but the poorest projections are worse
than prior to applying the factors.

3.2.5 Integration problems

In this section, we numerically investigate the fundamental question of whether it is best
to randomize via random scrambling or via a well-chosen generalized construction that can
then be randomized using a simple digital shift.

We use the following test functions from Section 2.5: for h0, h1, and g we respectively
have µ(h0) = 0, µ(h1) = s/3 + s(s− 1)/4 and µ(g) = 1. We also consider experiments on
the stochastic activity network problem.

The different constructions and scramblings are compared using two approaches in this
section. First, we plot the MSE or variance as a function of n to see how quickly they
converge to 0. Then, we fix n and plot a histogram of the MSE or Variance constructed
from randomly scrambled point sets and look at where different deterministically scrambled
point sets compare with this distribution, as approximated by the histogram.
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Convergence results

In all the results of this section, the Faure sequence in constructed in base b, where b is
the smallest prime number b such that b ≥ s. Note that for this experiment, all values of
n plotted in the graph are an integer multiple of an integer power of this base b.

What is plotted on Figures 3.4 to 3.7 are the MSE for functions h0, h1, and g, and
the variance for the SAN. In all cases, the MSE or variance is estimated using V = 25
randomizations.

For the Faure sequence, we compare the following constructions:

1. Faure sequence, randomized with a digital shift (“Regular, Shifted”);

2. Generalized Faure sequence, using factors from Algorithm 2, then randomized with
a digital shift (“Faure 1992, Shifted”);

3. Generalized Faure sequence, using factors from Algorithm 2 with an offset term
added, then randomized with a digital shift (“Offset, Shifted”);

4. Faure sequence, randomized with Owen’s scrambling (“Regular, Scrambled”).

Figure 3.4: Estimated MSEs of test functions at n ∈ {3125m, 1 ≤ m ≤ 40}, using the
4-dimensional Faure Sequence constructed in base 5, using factors [3,2,1,4] (Faure 1992)
and [3,1,4,2] (Offset).
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Figure 3.5: Estimated MSEs and Variances at n ∈ {2197m, 1 ≤ m ≤ 60} of test functions
using the 12-dimensional Faure Sequence constructed in base 13, using factors [4, 9, 2, 7,
11, 6, 1, 5, 10, 3, 8, 12] (Faure 1992) and [7, 11, 3, 9, 1, 5, 8, 12, 4, 10, 2, 6] (Offset).
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Figure 3.6: Estimated MSEs of test functions at n ∈ {2809m, 1 ≤ m ≤ 45}, using the
52-dimensional Faure Sequence constructed in base 53, using factors [16, 37, 8, 29, 45, 24,
4, 20, 41, 12, 33, 49, 2, 18, 39, 10, 31, 47, 27, 6, 22, 43, 14, 35, 51, 26, 1, 17, 38, 9, 30, 46,
25, 5, 21, 42, 13, 34, 50, 3, 19, 40, 11, 32, 48, 28, 7, 23, 44, 15, 36, 52] (Faure 1992) and
[27, 43, 11, 35, 3, 19, 51, 31, 47, 15, 39, 7, 23, 29, 45, 13, 37, 5, 21, 1, 33, 49, 17, 41, 9, 25,
28, 44, 12, 36, 4, 20, 52, 32, 48, 16, 40, 8, 24, 30, 46, 14, 38, 6, 22, 2, 34, 50, 18, 42, 10, 26]
(Offset).

Figure 3.7: Estimated MSEs at n ∈ {2000m, 1 ≤ m ≤ 50}, when integrating test function
g using the Faure Sequence.

The majority of the results show that scrambling is superior to generalizing then ran-
domizing with a digital shift. For the Faure sequence, when n is an integer multiple of a
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larger power of the constructing base b, we can see an improvement in performance for the
shifted results.

The results from this numerical experiment can also be somewhat explained by the
criterion values in Tables 3.8 and 3.9. If the c values are high, that suggests a “bad” point
set that cannot be fixed via a shift, as a digital shift has little effect on the quality of a
point set. However, even a “bad” point set can be fixed with scrambling in a base b such
that Cb ≤ 1. Since the values of n in Tables 3.8 and 3.9 are much smaller than the values
of n used in the convergence plots, not all the behaviour can be explained by the criterion
values.

In Figure 3.8, we do comparisons on the 13-dimensional SAN problem, as well as 13-
dimensional versions of the test functions h0 and h1, with n ∈ {2197m, 1 ≤ m ≤ 60}. This
problem set does not use the generalized Faure sequence using factors from Algorithm 2.
Rather, it is the one of Tezuka and Tokuyama [81], where the non-singular lower-triangular
matrix used to multiply the generating matrices by are the lower-triangular powers of the
Pascal matrix: they are the the transpose of the original generating matrix given by powers
of the Pascal matrix. Again, we can see that scrambling is superior to generalizing then
randomizing with a digital shift.
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Figure 3.8: Estimated MSEs and Variances of test functions using the 13-dimensional
Faure Sequence constructed in base 13. The generalized Faure sequence here is the one of
Tezuka and Tokuyama. The c(2,Kd=2,w=13,s=13, Pn=2197) value for this sequence is 2.39 and
this value is for the projection over [1,4], and the c(2,Kd=3,w=13,s=13, Pn=2197) value for this
sequence is 27.82, and this value is for the projection over [2, 5, 10].

Comparing results using histograms

To compare the use of deterministic permutations versus scrambling, we use histograms to
compare the integration error of the functions h0 and h1 obtained using specific generalized
Faure sequences— randomized via a digital shift —with the error distribution obtained
using a base b nested scrambling. If a specific construction can easily be “beaten” by (have
a larger error than) a randomized sequence obtained through scrambling, then this would
be an argument in favour of using scrambling to improve the sequence instead of relying

53



on a specific generalized sequence construction. If a construction consistently ranks better
than most scrambled sequences, then this would be an argument to use those instead of
scrambled sequences.

We consider 3 values of s: 4, 12, and 52. For the Faure sequence, the constructing base is
the smallest prime larger or equal to s. Here, it is always taken equal to s+1. The reported
error is the Mean Squared Error (MSE), and is estimated using V = 25 replications and a
sample size of n = 10000, except in the s = 52 case where n ∈ {2809, 10000}. We chose to
visualize the n = 2809, s = 52 case as in Section 3.2.5, the scrambled Faure sequence did
not seem to outperform the generalized Faure sequence.

The experiments on the histograms can be thought of taking a “slice” of the results
from Section 3.2.5 at specific values of n. Note that the value of n = 10000 is not explicitly
used in the convergence plots.

We compare the distribution of randomly scrambled point sets (as shown by the his-
togram) with the same deterministically chosen factors as in Section 3.2.5, as well as the
Monte Carlo methods.

Some values (namely “Regular Shifted” and Monte Carlo) obtained are sometimes quite
large compared to the rest of the results. Therefore, to better visualize the results, these
large values have been excluded from the plots and their error values are reported in the
caption instead.
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(a) Faure: 9.516e-10, MC: 3.879e-06 (b) Faure: 5.144e-09, MC: 2.207e-05

Figure 3.9: Comparing Nested Scrambling of the Faure sequence with other Faure se-
quences with s = 4.

(a) Faure: 3.912e-08, MC: 1.163e-05 (b) Faure: 1.86e-06, MC: 0.000584

Figure 3.10: Comparing Nested Scrambling of the Faure sequence with other Faure se-
quences with s = 12.
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(a) Faure: 8.763e-07, MC: 5.0247e-05 (b) Faure: 0.0006621, MC: 0.04699

(c) Faure: 4.573e-08, MC: 0.0001795
(d) Faure: 4.230e-05, MC: 0.1677

Figure 3.11: Comparing nested Scrambling of the Faure sequence with other Faure se-
quences with s = 52.

The results suggest that in almost all cases, scrambling outperforms generalizing and
then randomizing with a digital shift. The exception is the case where s = 52, b = 53, n =
2809, where generalizing and then applying a shift is more accurate (i.e., in the lower
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quartile of the histogram) scrambling, but this result cannot be extrapolated into the
general case. When n is a small power of the constructing base b, the digital shift is more
likely to perform well compared to scrambling.

3.3 Comparing Sobol’ and Faure sequences

We now compare the Sobol’ sequence and the Faure sequence. The Faure sequence is
used to create (0,m, s)−nets, that is, the t parameter is guaranteed to be 0, and the
Sobol’ sequence does not have any such property. Thus, one might think that the Faure
sequence is superior to the Sobol’ sequence. However, the t parameter does not allow us
to make comparisons based on an arbitrary number of points, nor does it allow us to make
comparisons in an arbitrary base. Criteria based on the Cb(k;Pn) values allows us to do
so, and thus will give us more meaningful comparisons.

3.3.1 Two-dimensional examples

First, we consider the projection over coordinates (16,17) of the first 1024 points of the
Sobol’ and Faure sequences, the latter being constructed in base 17, and the former based
on direction numbers provided in [27] for the so-called irreducible Sobol’- Nieddereiter
sequences.

Table 3.10 shows the Cb(k, Pn) values for b equal to 2, 3, and 17.

Figure 3.12: First 1024 points of Sobol’ (left) and Faure (right) sequence over coordinates
(16,17).
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k 1 2 3 4 5 6 7 8 9
Sobol’ (b = 2) 0.9990 0.9971 0.9932 0.9853 0.9697 0.9384 0.8759 0.7507 1.5015
Faure (b = 2) 0.9990 1.0032 1.0104 1.0134 1.0133 1.3788 1.4773 2.0406 2.4261
Sobol’ (b = 3) 0.9980 0.9923 0.9768 0.9384 0.8662 0.7404 0.5553 0.1754 0.0752
Faure (b = 3) 0.9981 1.0069 1.0086 1.2735 1.9723 2.5401 3.2276 6.0628 7.3655
k 10 11 12 13 14 15 16 17 Cb

Sobol’ (b = 2) 1.0010 2.0020 0 0 0 0 0 0 2.0020
Faure (b = 2) 2.7605 3.0928 4.9267 6.5376 7.2883 3.8162 4.0039 0.7507 7.2883
Sobol’ (b = 3) 0.1127 0 0 0 0 0 0 0 0.9980
Faure (b = 3) 3.6076 7.1024 0 0 0 0 0 0 7.3655
k 1 2 3 4 C17

Sobol’ (b = 17) 0.9844 0.8436 0.0938 0.3189 0.9844
Faure (b = 17) 0.9844 0.7383 0 0 0.9844

Table 3.10: Values of βb,k and Cb for different b for point sets in Figure 3.12.

Visually, the Faure sequence looks worse than the Sobol’ sequence in Figure 3.12. The
Sobol’ point set has t = 2 and is noticeably better than the point sets from Figure 3.1.
We also see that it is c.q.e. in base 3 with C3 = 0.9980, while for the Faure sequence
C3 = 7.3655. In base 2, C2 = 2.0020 for Sobol’ and C2 = 7.2883 for Faure. In base
17, both constructions have C17 = 0.9844. In other words, the base 17 equidistribution
properties of the two point sets are both good but for base 2 or 3, the Sobol’ point set is
clearly better. One could argue that the base 2 comparison is not fair, as the Sobol’ point
set has been constructed in this base while the Faure one has been constructed in base 17,
i.e., it is expected that the Sobol’ sequence will perform well for b = 2. This is why we also
included results for C3(k;Pn), which confirm the superiority of the Sobol’ point set for this
example.

Next, we use these two-dimensional point sets to integrate the test function g with
c = 0.25 to indeed show the superiority of the Sobol’ point set. Estimated RQMC errors
using 25 independent randomizations are displayed in Table 3.11. As expected, the Sobol’
sequence outperforms the Faure sequence, and this behaviour is captured by the Cb(k;Pn)
values.
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Point Set Base of Scramble RQMC Error
Sobol’ 2 3.61E-11
Faure 2 3.35E-07
Sobol’ 3 1.39E-08
Faure 3 4.40E-07
Sobol’ 17 3.32E-08
Faure 17 1.42E-07

Table 3.11: Estimated RQMC errors of test function g(u) = (1+c(u1−0.5))(1+c(u2−0.5))
with c = 0.25 for the point sets in Figure 3.12.

The purpose of this example was to show that Cb(k;Pn) values can be used for compar-
isons for point sets constructed in different bases for an arbitrary number of points (i.e.,
n not being an integer power of b), as well as how different bases can illustrate differences
in how equidistributed the point set is. Point sets that are “better” should have smaller
Cb(k;Pn) values for multiple bases, and not just one. If we only compared these two point
sets in base 17, we would have believed that they were of equal quality, despite the Faure
sequence being worse both visually and by using Cb(k;Pn) values with other choices of b.

We now continue this line of thought and provide an example where we compare the
Sobol’ sequence with a generalized Faure sequence for various values of b and n. The
generalized Faure sequence in these experiments are constructed using the “Offset” factors,
which have been discussed in Section 3.2.3. In all cases, we consider the two-dimensional
projections over the last 2 dimensions of the Faure sequence constructed in base b′, that
is, we consider dimensions (b′ − 2, b′ − 1) for this experiment. Figures 3.13, 3.14, and 3.15
show the point sets being used. Visually, these point sets all look well distributed over the
unit square, so we cannot make a visual comparison between the point sets as we did in the
previous examples in this section. We first calculate the Cb value over this two-dimensional
projection in various bases as reported in Tables 3.12, 3.13 and 3.14. Finally, we estimate
the integration variance of g(u) = (1 + c(u1 − 0.5))(1 + c(u2 − 0.5)) with c = 0.25, with
scrambling done in the same bases, to determine if the Cb criterion can predict good bases
to scramble in, as reported in Table 3.15.

Unsurprisingly, when n is a power of the constructing base and when the scrambling
base is the same as the constructing base, the integration variance is the smallest, as seen
from the bolded values. However, in the other cases, the Cb criterion is able to differentiate
between the point sets. For example, take when the scrambling base is 13 and n = 532.
In these cases, it can be hard to intuitively determine which point set would perform the
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best, since the sample size n is not an integer power of the scrambling base. Now, we refer
to the C13 values. The Sobol’ sequence has a C13 value greater than 1, which means that
this sampling scheme does not have the property of negative dependence. Looking at the
integration variances, the Sobol’ sequence also performs the worst in this case.

Figure 3.13: First 211 = 2048 (left), 133 = 2197 (middle), and 532 = 2809 (right) points
of Faure sequence over coordinates (11,12) constructed in base 13. The multiplicative (
mod 13) factors used for the generating matrices are [7, 11, 3, 9, 1, 5, 8, 12, 4, 10, 2, 6].

Figure 3.14: First 211 = 2048 (left), 133 = 2197 (middle), and 532 = 2809 (right) points
of Faure sequence over coordinates (51,52) constructed in base 53. The multiplicative (
mod 53) factors used for the generating matrices are [27, 43, 11, 35, 3, 19, 51, 31, 47, 15,
39, 7, 23, 29, 45, 13, 37, 5, 21, 1, 33, 49, 17, 41, 9, 25, 28, 44, 12, 36, 4, 20, 52, 32, 48, 16,
40, 8, 24, 30, 46, 14, 38, 6, 22, 2, 34, 50, 18, 42, 10, 26].
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Figure 3.15: First 211 = 2048 (left), 133 = 2197 (middle), and 532 = 2809 (right) points of
Sobol’ sequence.

k 1 2 3 4 5 6
Faure (base 13), Figure 3.13 n = 211 = 2048 0.999515 0.998548 0.99663 0.992794 0.985344 0.972185
Faure (base 53), Figure 3.14 n = 211 = 2048 0.999512 0.998723 0.996775 0.993237 0.986581 0.976276
Sobol’, Figure 3.15 n = 211 = 2048 0.999511 0.998534 0.99658 0.992672 0.984856 0.969223
Faure (base 13), Figure 3.13 n = 133 = 2197 0.999545 0.998639 0.996829 0.993287 0.986316 0.973117
Faure (base 53), Figure 3.14 n = 133 = 2197 0.99955 0.998639 0.996835 0.993678 0.987072 0.97577
Sobol’, Figure 3.15 n = 133 = 2197 0.999545 0.998636 0.996816 0.993267 0.986037 0.976221
Faure (base 13), Figure 3.13 n = 532 = 2809 0.999644 0.998933 0.997538 0.995084 0.989802 0.979594
Faure (base 53), Figure 3.14 n = 532 = 2809 0.999644 0.998932 0.997508 0.99467 0.989047 0.978377
Sobol’, Figure 3.15 n = 532 = 2809 0.999644 0.998932 0.997508 0.994666 0.988982 0.985469
k 7 8 9 10 11 12
Faure (base 13), Figure 3.13 n = 211 = 2048 0.947118 0.908647 0.824133 0.705911 0.601856 0.578407
Faure (base 53), Figure 3.14 n = 211 = 2048 0.950354 1.000122 1.005618 0.846116 0.734734 0.69956
Sobol’, Figure 3.15 n = 211 = 2048 0.937958 0.875427 0.750366 1.500733 1.000489 2.000977
Faure (base 13), Figure 3.13 n = 133 = 2197 0.947197 0.901829 0.823299 0.706352 0.593437 0.577307
Faure (base 53), Figure 3.14 n = 133 = 2197 0.950752 0.962107 0.944066 0.792523 0.77427 0.743707
Sobol’, Figure 3.15 n = 133 = 2197 0.947144 0.893976 0.792099 1.55703 1.122352 1.738711
Faure (base 13), Figure 3.13 n = 532 = 2809 0.959521 0.925118 0.867996 0.775562 0.657423 0.523446
Faure (base 53), Figure 3.14 n = 532 = 2809 0.95819 0.916939 0.855662 0.733499 0.821519 0.76959
Sobol’, Figure 3.15 n = 532 = 2809 0.962734 0.917263 0.907591 1.652645 1.451419 1.322116
k 13 14 15 16 17 18 Cb

Faure (base 13), Figure 3.13 n = 211 = 2048 0.281387 0.343918 0.328285 0.093796 0 0 0.999515
Faure (base 53), Figure 3.14 n = 211 = 2048 0.652662 0.257938 0.390816 0.53151 0.375183 0.125061 1.005618
Sobol’, Figure 3.15 n = 211 = 2048 0 0 0 0 0 0 2.000977
Faure (base 13), Figure 3.13 n = 133 = 2197 0.264882 0.298841 0.285257 0.081502 0 0 0.999545
Faure (base 53), Figure 3.14 n = 133 = 2197 0.6656 0.224131 0.339592 0.461845 0.326008 0.108669 0.99955
Sobol’, Figure 3.15 n = 133 = 2197 0.505992 1.011984 2.023969 0 0 0 2.023969
Faure (base 13), Figure 3.13 n = 532 = 2809 0.54214 0.216025 0.174482 0.066469 0 0 0.999644
Faure (base 53), Figure 3.14 n = 532 = 2809 0.664693 0.166173 0.207717 0.282495 0.199408 0.066469 0.999644
Sobol’, Figure 3.15 n = 532 = 2809 1.580723 3.161446 6.322892 0 0 0 6.322892

Table 3.12: Values of βb,k and Cb for b = 2.
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k 1 2 3 4 Cb

Faure (base 13), Figure 3.13 n = 211 = 2048 0.994148 0.91864 0.994148
Faure (base 53), Figure 3.14 n = 211 = 2048 0.994346 0.969594 0.579612 0.149882 0.994346
Sobol’, Figure 3.15 n = 211 = 2048 0.994148 0.929766 0.689665 0.013626 0.994148
Faure (base 13), Figure 3.13 n = 133 = 2197 0.994536 0.923497 0.994536
Faure (base 53), Figure 3.14 n = 133 = 2197 0.994589 0.956775 0.612022 0.130237 0.994589
Sobol’, Figure 3.15 n = 133 = 2197 0.994562 0.93933 0.765938 0.485428 0.994562
Faure (base 13), Figure 3.13 n = 532 = 2809 0.995728 0.941023 0.340928 0.995728
Faure (base 53), Figure 3.14 n = 532 = 2809 0.995728 0.941966 0.63729 0.079661 0.995728
Sobol’, Figure 3.15 n = 532 = 2809 0.995738 0.957392 0.867918 1.564258 1.564258

Table 3.13: Values of βb,k and Cb for b = 13.

k 1 2 Cb

Faure (base 13), Figure 3.13 n = 211 = 2048 0.975004 0.336363 1.558525
Faure (base 53), Figure 3.14 n = 211 = 2048 0.974751 0.974751
Sobol’, Figure 3.15 n = 211 = 2048 0.974751 0.506554 0.974751
Faure (base 13), Figure 3.13 n = 133 = 2197 0.976465 0.320223 1.548713
Faure (base 53), Figure 3.14 n = 133 = 2197 0.976465 0.976465
Sobol’, Figure 3.15 n = 133 = 2197 0.976707 0.529823 0.976707
Faure (base 13), Figure 3.13 n = 532 = 2809 0.982073 0.461538 1.126068
Faure (base 53), Figure 3.14 n = 532 = 2809 0.981481 0.981481
Sobol’, Figure 3.15 n = 532 = 2809 0.981683 0.569801 0.981683

Table 3.14: Values of βb,k and Cb for b = 53.

62



n n = 211 = 2048
scrambling base 2 13 53
Faure (base 13), Figure 3.13 7.91E-10 2.88E-10 4.22E-09
Faure (base 53), Figure 3.14 4.65E-09 3.32E-09 1.43E-09
Sobol’, Figure 3.15 1.15E-13 3.23E-10 1.84E-09
Monte Carlo 2.03E-07
n n = 133 = 2197
scrambling base 2 13 53
Faure (base 13), Figure 3.13 1.53E-10 1.32E-13 2.00E-09
Faure (base 53), Figure 3.14 1.56E-09 1.76E-09 1.58E-09
Sobol’, Figure 3.15 1.35E-10 8.26E-10 2.63E-09
Monte Carlo 1.90E-07
n n = 532 = 2809
scrambling base 2 13 53
Faure (base 13), Figure 3.13 2.07E-10 7.47E-11 4.73E-09
Faure (base 53), Figure 3.14 4.69E-11 4.14E-11 3.57E-13
Sobol’, Figure 3.15 7.57E-11 4.49E-10 1.69E-09
Monte Carlo 1.48E-07

Table 3.15: Estimated variances of the integration function g(u) = (1 + c(u1 − 0.5))(1 +
c(u2 − 0.5)) with c = 0.25 with m = 25 randomizations using Owen’s nested scramble.

3.3.2 Example in higher dimensions

We now consider the first 17 dimensions of the first 1024 points of the Sobol’ and Faure
sequences, the latter being constructed in base 17, and the former based on direction
numbers provided in [27] for the so-called irreducible Sobol’- Nieddereiter sequences, that
is, the same point sets as pictured in Figures 3.1 and 3.12, but over the first 17 dimensions
rather than only over coordinates specific two-dimensional projections.

We then compare the two point sets using the test function g(x) = Πs
j=11+ c(xj − 0.5)

with c = 0.25. We also compare the two point sets using a 17-dimensional Asian Call
Option with parameters as described in Section 2.5.
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Numerical results

First, we calculate the c(b,Kd,w=s,s, Pn) and c̄(b,Kd,w=s,s, Pn) values as defined earlier in this
chapter, based on the Sobol’ and Faure sequences for b = 2, 3, 17. For all the values in Table
3.16, s = 17, d = 2, and n = 1024. For the function g, in 17 dimensions, approximately
99.89% of the variance is explained by the one- and two-dimensional projections. Thus,
these criteria, which considers only the one- and two-dimensional projections as d = 2,
should be a good indicator of how well the point sets can integrate this function.

Point Set b c(b,Kd,w=s,s, Pn) c̄(b,Kd,w=s,s, Pn)
Sobol’ 2 3.50342131 1.70292105
Faure 2 2.86021505 1.89641194
Sobol’ 3 2.27979518 1.15282475
Faure 3 3.2777275 2.28363291
Sobol’ 17 2.82336915 1.13553456
Faure 17 0.98440937 0.98440937

Table 3.16: Values of criteria based on Cb(k;Pn) for point sets obtained from the Sobol’
and Faure sequences.

Here, it is important to look at both the maximum and mean values of this criterion,
as it could be the case that the majority of the projections are well-distributed, but there
is one bad one. From these results, we can see that the Sobol’ sequence seems better
distributed than the Faure sequence. Again, one may argue that the comparisons in base
2 and base 17 are unfair, as the Sobol’ sequence is constructed in base 2 and the Faure
sequence is constructed in base 17, which is why the base 3 comparison is also included.
On average, the Sobol’ sequence has better distributed two-dimensional projections than
the Faure sequence.
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Point Set Base of Scramble RQMC Error
Sobol’ 2 3.68E-08
Faure 2 4.61E-06
Sobol’ 3 4.99E-07
Faure 3 5.72E-06
Sobol’ 17 1.50E-06
Faure 17 1.22E-06

Table 3.17: Estimated RQMC errors of test function g(u) = (1+c(u1−0.5))(1+c(u2−0.5))
with c = 0.25 and n = 1024 for the point sets in Figure 3.12.

Table 3.17 has the estimated RQMC error for integrating function g with c = 0.25. As
mentioned, almost all the variance is explained by the one- and two-dimensional projec-
tions, so the values from Table 3.16 should indicate which point set performs better. As
expected, the Sobol’ sequence outperforms the Faure sequence when scrambling in bases 2
and 3, while the performance is similar in base 17.

Point Set Base of Scramble K = 45 K = 50 K = 55
Sobol’ 2 1.38E-03 8.05E-04 3.17E-04
Faure 2 3.43E-03 2.57E-03 1.90E-03
Sobol’ 3 1.08E-03 4.86E-04 2.15E-04
Faure 3 2.23E-03 1.44E-03 1.88E-03
Sobol’ 17 7.89E-04 8.21E-04 2.35E-04
Faure 17 1.32E-03 7.73E-04 4.42E-04
Monte Carlo N/A 2.32E-03 1.57E-03 9.00E-04

Table 3.18: Estimated RQMC errors of the Asian Call Option pricing problem for the
point sets in Figure 3.12.

Table 3.18 shows the estimated RQMC variance for the Asian Call Option pricing
problem with parameters as described in Section 2.5 on page 24, for out-of-the-money, at-
the-money, and in-the-money options. Unlike the previous experiment, less of the variance
is explained by one- and two-dimensional projections. As before, in base 2 and 3, the
Sobol’ sequence outperforms the Faure sequence. In base 17, the performance is more
similar between the two sequences, but the Sobol’ sequence still slightly outperforms the
Faure sequence.
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These two experiments suggest that the values of the criteria based on C2(k;Pn) as
shown in Table 3.16 are able to predict how well the point sets are able to perform on
integration problems.

3.4 Conclusion and future work

In this chapter, working with the Sobol’ and Faure sequences, we showed that the Cb

criterion can be used as a way to measure the quality of a point set and tell us about its
performance when used as a scrambled RQMC estimator.

We also evaluated two choices for multiplicative factors used to generalize the Faure
sequence based on the ones from [25]. We evaluated their performance using a numerical
study as well as studying the Cb(k, Pn) values. While these factors can break up some poor
projection properties of these point sets, they do not generally outperform using scrambling
to randomize the point set unless n is a power of b.

Although we have shown through the examples in this chapter that the Cb criterion

has many uses, a major drawback of calculating the Cb = supkCb(k;Pn) = supk
b|k|Mb(k;Pn)

n(n−1)

values for a generic point set, is that the time and memory usage becomes extremely high
as n and s increases.

For the calculation of Mb(k;Pn), which is the number of ordered pairs (x,y) in Pn such
that γs

b(x,y) ≥ k, we need to first calculate the γs
b(x,y) values for every pair of (x,y)

in Pn, and then. It takes O(n2s) time to calculate γs
b(x,y) for every pair of (x,y) in Pn

as there are n2

2
pairs and γ has to be calculated separately for each coordinate. The time

complexity also increases as max(x,y) γ
s
b(x,y) increases because that means there are more

vectors k such that k ≤ max γ to check to find the max. For every k = |k|, the number of
possible k is

(
k+s−1

k

)
, which obviously increases with k and s. Thus, we have that the time

complexity of calculating Cb is O(n
2s+ n2s

∑max γ
k=1

(
k+s−1

k

)
).

Another issue is the potential memory requirement, especially as s increases. As the
time complexity is quite high, to decrease the runtime, counting the number of pairs (x,y)
in Pn where γs

b(x,y) ≥ k is done in parallel for all pairs and all k where |k| = k. This
means that the memory requirement is O

(
n2s
(
k+s−1

k

))
for each k. Since this increases

dramatically with s, it becomes unfeasible for point sets in many coordinates.

For specific types of low-discrepancy sequences, such as the (generalized) Halton se-
quence, as we will see in Chapter 4, we can calculate the Cb values theoretically. However,
since we are proposing to use these values in practice to measure the quality of different
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point sets, sometimes we must use calculate Cb using the point set Pn without relying on
how it was constructed.

These drawbacks regarding computational requirements are why in Section 3.2.2, we
restricted k to only consider two-dimensional projections, as even for a relatively small 17-
dimensional point set, calculating Cb(k;Pn) for unrestricted k would have been unfeasible.

To have the Cb(k;Pn) values be more usable in practice, the next step to improve this
criterion would be to find a way to simplify the calculation. This is especially important
if the Cb(k;Pn) values are used to search for good constructions of the point set, as in
Chapter 4 when we will search for Halton sequence permutations, or to search for other
good constructions, for example, direction numbers for the Sobol’ sequence. Since we
need to run the calculations many times (possibly hundreds of times) to find the best
permutation, it is crucial to reduce the time and memory requirements.
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Chapter 4

Dependence properties of scrambled
Halton sequences

The dependence framework developed in [48, 90] provides tools to study σI,J in the case
of scrambled digital nets. Here, we extend these results to scrambled Halton sequences,
at the same time introducing the idea of using the random linear scrambling of Matoušek
[52] and adapting it to a multi-base version applicable to Halton sequences. Sections 2.3.2
and 4.3 present these results. We propose to use the negative dependence framework
developed in [90] to contribute further to the improvement of Halton sequences in the
following two ways: first, we show that scrambling Halton sequences using a multi-base
version of either Owen’s nested permutations or the random linear scrambling approach of
Matoušek endows Halton sequences with the same properties as those derived in [90] for
scrambled (0,m, s)-nets. Namely, such scrambled Halton sequences have the property of
being negatively upper orthant dependent, and thus they can be shown to have a variance
no larger than the Monte Carlo method for bounded quasi-monotone functions. In two
dimensions, this advantage can be shown to hold for any function that is monotone in each
coordinate. Second, the negative dependence framework allows one to define new quality
criteria that can be described as a generalization of the quality parameter t often used to
judge the quality of digital nets. Compared to other discrepancy-based measures, these
new quality criteria have the advantage of being meaningful even for small point sets. In
addition, they can be used to assess the quality of deterministically chosen permutations
meant to improve the quality of Halton sequences, and to compare such sequences to digital
net constructions.

As mentioned before, several randomizations have been proposed for Halton sequences,
and while the idea of using Owen’s nested permutations has been mentioned by other au-
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thors (e.g., [88]), as far as we know it has not been used or studied much. Furthermore,
the idea of using the random linear scrambling of Matoušek adapted to Halton sequences
has not appeared elsewhere, to the best of our knowledge. Here we not only derive im-
portant properties for this randomization, but also demonstrate its usefulness in practice.
This is our first main contribution. Our second one is to propose a quality measure for
Halton sequences that overcomes the difficulty of having to deal with multiple bases in
their construction and that allows for direct comparison with other constructions.

Except for Section 4.6, the majority of the contents of this chapter have been published
in [22]. Results establishing the negative dependence properties of the digitally-scrambled
Halton sequence are presented in Section 4.3. Criteria that can be used to evaluate both the
quality of Halton sequences and digital net constructions and that are based on negative
dependence properties are discussed in Section 4.4. Section 4.5 includes numerical results
comparing a new generalized Halton sequence constructed to optimize a specific criterion
from the family introduced in Section 4.4 against other generalized Halton sequences and
their randomizations, including our proposal to use a multi-base random linear scrambling.
This section also includes numerical results on financial applications that were not part of
[22]. Section 4.6 extends our work on assessing different forms of scrambling and is not part
of [22]. This work in this section has not been published yet and is the topic of the working
paper [20], which is done in collaboration with Christiane Lemieux and Henri Faure. The
setup of the experiments in this section is similar to the ones from Section 3.2.3, and here
we assess permutations for the Halton sequence based on the ones introduced in [25]. A
summary of our work is given in Section 4.7.

4.1 The Halton sequence

The construction of the Halton sequence and the different randomizations and generaliza-
tions proposed to improve it were discussed in Section 2.2.1. Digital scramblings for the
Halton sequence were discussed in Section 2.3.2. We now discuss some modifications that
are specific to the Halton sequence.

4.1.1 Randomizations for the Halton sequence

In addition to the use of generalized Halton sequences as a way to improve upon the original
Halton sequence, one can also randomize it. By this we mean one can apply certain random
transformations to these sequences and this is typically done for the following two reasons:
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first, it allows for easier error estimation (by making use of the replications and the central
limit theorem, as we will see in Section 4.5) than when using purely deterministic sequences,
and second, it can improve the quality of these sequences.

Some of the randomizations that have been proposed for Halton sequences are adapta-
tions of ideas that were originally proposed for digital nets, such as the ones mentioned in
Section 2.3.

For example, a simple way to randomize a digital net is to use a digital shift, which
extends to van der Corput based sequences the random shift method of Cranley and Pat-
terson [17]. For the Halton sequence, rather than using the same base for all dimensions,
the digital shift in dimension j is done in base bj, for j = 1, . . . , s. Sequences randomized
this way are referred to as “randomly digitally shifted Halton sequences”. Due to how the
digital shift is defined, it is not sufficient, by itself, to break up the correlation between
dimensions of the Halton sequence. Thus, it is generally used as a randomization method
for generalized Halton sequences.

It is also quite natural for the Halton sequences to use randomizations based on ran-
domly chosen permutations σj,r to define the generalized Halton sequence from (2.5). As
there are different ways to select these permutations, here we use the terminology devel-
oped in [52]. Although this terminology was defined for digital nets, the use of the van der
Corput sequence as a building block both for digital nets and Halton sequences coupled
with the fact that randomizations are typically applied independently across the coordi-
nates 1 to s implies we can use this terminology to describe randomizations for the Halton
sequence as well. So we refer to the case where the permutations σj,r are chosen indepen-
dently and with replacement among all permutations of {0, 1, . . . , bj − 1} for all j, r as a
random digit-scrambling. The case where the σj,r are chosen among linear permutations
of the form σj,r(a) = hj,ra + gj,r with hj,r ∈ {1, . . . , bj − 1} and gj,r ∈ {0, . . . , bj − 1} is
referred to as a random linear digit-scrambling.

These two forms of scrambling are described in [52] as alternatives to nested uniform
scrambling [62], which cannot be described by a given choice of random permutations
in (2.5). Instead, it makes use of permutations for the digits ar(n) that depend on the
previous digits a0(n), . . . , ar−1(n), hence the “nested” term to define it.

We can now review randomizations that have been proposed for the Halton sequence.
In [63], Owen proposes to randomize the Halton sequence using random digit scrambling,
resulting in a “randomly digitally scrambled Halton sequence”. This construction is com-
pared to the randomly shifted generalized Halton sequence provided in the qrng package,
which is based on the factors from [26]. Numerical results on different test functions sug-
gest that the accuracy of integrating with Owen’s implementation is slightly better than
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the one from the qrng package. An advantage of Owen’s implementation is that it uses
the Neumann-Kakutani transformation to extend a point set to n′ > n points or s′ > s
dimensions by only computing the necessary n′ − n points or s′ − s coordinates.

Wang and Hickernell proposed the “random start Halton sequence” in [88], which ran-
domizes the starting point for each coordinate. This randomization is not computationally
more expensive than the original Halton sequence, as it takes advantage of the Neumann-
Kakutani transformation to “skip” terms. In [88], the performance of the random start
Halton sequence is compared with the randomly digitally shifted Halton sequence and the
randomly digitally scrambled Halton sequence. Their numerical results with a test func-
tion show that as either n or s increase, the estimated variance using random start was
far smaller than when using digital shift, and was similar to digital scrambling while being
much faster to generate.

This randomization can also be combined with other randomizations or modifications
to the Halton sequence. Indeed, in [58], Ökten used the random start randomization
combined with deterministic scrambling based on the permutations from [25] to obtain the
“random start scrambled Halton sequence”. Numerical results in [58] suggest the random-
start scrambled Halton sequence can improve the variance by factors of up to 7000 over
the random-start Halton sequence.

4.1.2 Deterministic improvements to the Halton sequence

Faure and Lemieux proposed deterministic permutations in [26] to generalize the Halton
sequence, which are the permutations used as a baseline comparison in Section 4.5. Their
proposed permutations are of the form σ(i) = (fji) mod bj for j = 1, . . . , s, and they
provide the factors fj for 1 ≤ j ≤ 360. The factors were found based on a search where
the L2-discrepancy was minimized over one and two-dimensional projections.

Other proposed permutations include those from Chi et al. in [13] in the form of de-
terministic linear digit scramblings selected using a criterion based on the serial test for
two-dimensional sequences.

Another set of permutations was defined in [18], which only have the restriction of
having σ(0) = 0 and were found using an evolutionary criterion to optimize discrepancy.
The ghalton package in Python provides an implementation of the generalized Halton
sequence using these permutations.

There are other deterministic modifications that can be made to the Halton sequence
that improve performance for numerical integration in high dimensions. Kocis and Whiten
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introduced the “Halton sequence leaped” in [45], which uses every lth point of the sequence
where l ∈ N is co-prime with bj for j = 1, . . . , s. This leaping strategy was also proposed
for other low-discrepancy sequences, such as the Faure [24] and Sobol’ [75] sequences, but
the results for the Halton sequence outperform those for other sequences. C. J. Price and
C. P. Price propose a way in [71] to reuse the prime bases used to construct each coordinate,
with modifications to the radix inverse function of (2.2) to ensure that elements that share
a base will not have identical values. Each base bj can be used k times if bk−1

j is not larger
than the second-largest prime used within the point set. This way, smaller bases are used
to construct the point set and the linear relationship between coordinates is improved, and
fewer points are required to get uniform coverage within the unit cube.

This review confirmed that the most common way to assess the quality of generalized or
randomized Halton sequences is via the use of different test-functions. This is largely due to
the fact that there is no natural quality measure for the Halton sequence when considering
point sets of a finite size. In Section 4.4 we propose a remedy to this shortcoming.

4.2 Digital scrambling of Halton sequences

In this section, we generalize some definitions from Chapter 3, so they can be applied to
the Halton sequence, where each coordinate is constructed in a different base bj.

For the Halton sequence, the concept of equidistribution must be adjusted to intervals
of the form

s∏
j=1

[
dj

b
kj
j

,
dj + 1

b
kj
j

)

with 0 ≤ dj < b
kj
j . The first bp11 . . . bpss points of the Halton sequence can be shown to be

k−equidistributed for any k with kj ≤ pj for j = 1, . . . , s. Here we have a similar property
as for the case t = 0 with digital nets in base b, in that when n is a product of powers of
the bases b1, . . . , bs, we can partition [0, 1)s into boxes up until we have as many boxes as
points, and from there on we will have exactly one point per box.

This gives us the intuition that the multibase version of Mb(k;Pn) and Cb(k;Pn) ad-
justed to Halton sequences will have similar properties as nets with t = 0: this is what we
set out to demonstrate in Section 4.3.

Let b = (b1, . . . , bs) and recall that, typically, bj is the j
th smallest prime number.

Definition 4.2.1. For x,y ∈ [0, 1)s, γs
b(x,y) = (γb1(x1, y1), . . . , γbs(xs, ys)).
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Next, we prove that γs
b(x,y) is invariant under the type of permutations used to define

generalized Halton sequences. As seen in Theorem 2.4.8, the Cb(k;Pn) values introduced
in [90] are crucial to determine if a point set to which a b−digital scramble is applied is
NLOD. In the next section, we prove a version of this result for Halton sequences. In order
for us to do so, we need to introduce a multi-base version of the counting numbers Nb(i;Pn)
and Mb(k;Pn), as well as the Cb(k;Pn) values, to be used with the Halton sequence.

Definition 4.2.2. Let Pn = {U1, . . . ,Un} be a point set in [0, 1)s and b, i, k ∈ Ns, with
bj ≥ 2 for all 1 ≤ j ≤ s. Then

1. Nb(i;Pn) is the number of ordered pairs of distinct points (Ul,Uj) in Pn such that
γs
b(Ul,Uj) = i,

2. Mb(k;Pn) is the number of ordered pairs of distinct points (Ul,Uj) in Pn such that
γs
b(Ul,Uj) ≥ k, and

3. Cb(k, Pn) =

(∏s
j=1 b

kj
j

)
Mb(k;Pn)

n(n−1)
.

We also need to extend our definition of base b−digital scramble to a multi-base version,
as follows:

Definition 4.2.3. A randomization S is called a base b-digital scrambling if it can be
written as S(ui) = (S1(ui,1), . . . ,Ss(ui,s)) where each Sj is a base bj-digital scrambling as
defined in Definition 2.4.4 and the Sj are independent randomizations.

Claim 1. Let Pn = {U1, . . . ,Un} be a point set in [0, 1)s, bP̃n be obtained after applying
a base b−digital scramble to Pn, and b, i, k ∈ Ns, bj ≥ 2.

Then, Nb(i;Pn) = Nb(i; bP̃n), Mb(k;Pn) =Mb(k; bP̃n), and Cb(k, Pn) = Cb(k, bP̃n).

Proof. By definition, a base b−digital scramble preserves γs
b(Ul,Uj) for all pairs of points

(Ul,Uj) in Pn. Thus, the counting numbers Nb(i;Pn) and Mb(k;Pn), which only depend
on γs

b(Ul,Uj), and thus Cb(k, Pn), do not change after Pn is scrambled.

The random linear scrambling method can be adapted to the multi-base setting of
the Halton sequence by simply juxtaposing randomly linearly scrambled van der Corput
sequences in base bj, as given in (2.10), for j = 1, . . . , s.

Claim 2. The random linear scrambling randomization of the Halton sequence is a base
b−digital scrambling.
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Proof. We need to show that the conditions in Definition 4.2.3 are satisfied. Since the
nonsingular lower triangular matrices Rj are independently generated, the randomizations
for each coordinate are independent. Now we check that, for coordinate j, the properties
in Definition 2.4.4 are satisfied. Conditions 1, 2(a), and 2(b) are satisfied as per [52] so we
only need to show condition 2(c) is satisfied for each coordinate j.

Given a point u from the Halton sequence, the randomized version U has elements
Uj = Rj(uj,0, uj,1, . . .)

T + (gj,0, gj,1, . . .)
T , where the uj,ℓ for ℓ ≥ 0 are the digits from the

base bj expansion of uj and operations are done in Zbj . If we write Uj =
∑

k≥0 Uj,kb
−k−1
j ,

then Uj,k =
∑k

l=1Rj,l,kuj,l + gj,k = xuj,k + y for each k ≥ 0, where the operations are
done modulo b, x, y ∈ Zb, and y depends on uj,l for l < k. If two points uj and vj have
r digits in common in their base b expansion, then for k > r + 1, Uj,k = x1uj,k + y1 and
Vj,k = x2vj,k + y2, where x1, x2, y1, y2 are uniformly and independently distributed over Zb,
and y1 depends on uj,l and y2 depends on vj,l for l < k. Thus, Uj,k and Vj,k are mutually
independent and uniformly distributed over {(k1, k2), 0 ≤ k1, k2 < b}.

As far as we know, random linear scrambling has not been used to randomize the Halton
sequence, and one of our contributions is a theoretical justification for this randomization
method.

4.3 Dependence properties of scrambled Halton point

sets

In what follows, we assume Pn consists of any n consecutive points from a (generalized)
Halton sequence and refer to it as a Halton point set. In addition, we refer to the set of
points bP̃n obtained after applying a base b−digital scramble to Pn as a scrambled Halton
point set.

The goal of this section is to prove that a scrambled Halton point set is an NLOD
sampling scheme. This in turn guarantees a variance reduction relative to MC when
integrating bounded quasi-monotone functions.

A key quantity to analyze whether bP̃n is an NLOD sampling scheme is the joint
pdf ψ(·, ·) of two distinct points randomly chosen from bP̃n. From [90], for a digital net
randomized with a base b-digital scramble, the corresponding joint pdf is

ψ(x,y) =

{
Nb(i;Pn)
n(n−1)

bs+|i |

(b−1)s
, if |i | <∞,

0, if |i | =∞,
(4.1)
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where i = γs
b(x,y) and |i| = γb(x,y).

As shown in the following proposition, it is fairly straightforward to derive an analog of
(4.1) for the scrambled Halton sequence, since (4.1) applies to a one-dimensional scrambled
Halton sequence.

Proposition 4.3.1. Let bP̃n be a scrambled Halton point set. Let x,y ∈ [0, 1]s and i =
γs
b(x,y). The joint pdf of two randomly chosen distinct points from bP̃n is

ψ(x,y) =


Nb(i;Pn)
n(n−1)

/
∏s

j=1
bj−1

b
1+ij
j

, if |i | <∞,

0, if |i | =∞.
(4.2)

Proof. To prove this result, we make use of the following definitions: for each k, i ∈ (N ∪
{∞})s, and bases b > 2 and b ∈ Ns, bj > 2 for all j, define:

bC
s
k = {(x,y) ∈ [0, 1)2s : k ≤ γs

b(x,y)} and bD
s
i = {(x,y) ∈ [0, 1)2s : γs

b(x,y) = i}.

When s = 1, we drop the superscript 1 and write bDi = bD
1
i . Then, Vol(bD

s
i ) =

∏s
j=1

bj−1

b
1+ij
j

since Vol(bDi) = (b− 1)/bi+1.

The notation γs
b(x,y) together with bD

s
i give us a different way of describing the

properties of a base b−digital scramble from Definition 4.2.3. Namely, for any two scram-
bled points Uj,Ul obtained from a base b−digital scrambling of Vj,Vl, it holds that
(Uj,Ul) ∼ U(bD

s
i ), where i = γs

b(Vj,Vl). This then implies the joint pdf ψ(x,y) is
constant over each bD

s
i region.

It also means the integral of ψ(x,y) over bD
s
i is equal to the probability that a randomly

chosen pair of distinct points from bP̃n lies in bD
s
i . Hence,

Nb(i; bP̃n)

n(n− 1)
=

∫
bD

s
i

ψ(x,y)dxdy = ψiVol(bD
s
i ) = ψi

s∏
j=1

bj − 1

b
1+ij
j

.

For the |i| =∞ case, our assumptions on Pn are that the one-dimensional projections have
n distinct points, so there cannot be two distinct points in bD∞, and thus the joint pdf
must be 0.

As it turns out, the quantity Nb(i;Pn) used in the definition (4.2) of the joint pdf can
be computed exactly when Pn is a Halton point set. Similarly, we can derive a formula for
Mb(k;Pn), which will be useful later on to prove our main result.
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Both formulas rely on the following lemma, which builds on the fact that the number
of shared common digits between two points of a van der Corput sequence only depends
on how many terms are in between them. That is, γb(xi, xj) = γb(xi+k, xj+k) for all k ∈ Z
and xl denotes the l

th term in the sequence.

Lemma 4.3.2. Assume Pn consists of n consecutive points from a (generalized) van der
Corput sequence SΣ

b in a prime base b. Then

γb(x, y) = logb(gcd(d, b
m)), x, y ∈ Pn, (4.3)

where m = ⌊logb(n)⌋, and d is the “distance” between x and y in the sequence: if x = SΣ
b (i)

and y = SΣ
b (j), then d = |i− j|.

Proof. Each combination of the terminal (least significant) k digits of the base b expansion
for integers repeats every bk integers. Thus, by construction of the van der Corput sequence,
each combination of k initial (most significant) digits repeats every bk terms of Pn: if b

k|d,
there are at least k common initial digits between x and y since there are at least k common
terminal digits between i and j in their base b expansions. If we want exactly k digits to
be common (and not (k + 1) digits), we would then need to exclude those d with bk+1|d.
Thus, the number of common digits between two points is the largest integer l such that
bl|d (or, equivalently, d mod bl = 0). Note that the largest power of b that could divide any
d is bm, since n < bm+1. Then, as b is prime by assumption, the only possible divisors are
integer powers of b, and gcd(d, bm) gives us exactly the largest bl that divides d. Taking
the logarithm shows the result.

Proposition 4.3.3. If Pn is a Halton point set, then

Nb(i;Pn) = 2
n−1∑
d=1

(n− d)× I((
s∑

j=1

d mod b
ij
j ) = 0)× I((

s∏
j=1

d mod b
ij+1
j ) ̸= 0), (4.4)

where I() is the indicator function.

Proof. As in the proof for Lemma 4.3.2, for each dimension j, the number of initial common
digits between two points is the largest integer l such that d mod blj = 0, where d is
the distance between the two points as defined in Lemma 4.3.2. To find a formula for
Nb(i;Pn), we need to find out how many pairs of points have ij initial digits in common,
for j = 1, . . . , s simultaneously. For each d ∈ {1, . . . , n − 1}, there are 2(n − d) pairs of
points within Pn with distance d. Then, if ij is the largest integer for each coordinate

j = 1, . . . s, such that d mod b
ij
j = 0, we count it towards Nb(i;Pn).
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In the one-dimensional case, we can simplify Nb(i;Pn) further to not need the indicator
functions.

Theorem 4.3.4. For a van der Corput sequence in base b with a base b−digital scramble,
we have

Nb(i;Pn) = bi+1(b− 1)d1 (d1 − 1) + 2d1
(
n− d1bi+1

)
(b− 1)

+ bi(sb(b− 1) + r(r + 1)) + 2
(
n− d2bi

)
(d2 mod b) and (4.5)

where d1 = ⌊(n− 1)/bi+1⌋ and d2 = ⌊(n− 1)/bi⌋.

Proof. Nb(i;Pn) can be written as Nb(i;Pn) = 2
∑n−1

d=1 N(d)(i), where N(d)(i) is the number
of k that satisfy γ(xn−d, xn−k) = i, for k < d. When considering the points that occur
after each xj in Pn, there are b − 1 points that occur every bi+1 points that satisfy this,
specifically at xj+bi , xj+2bi , . . . xj+(b−1)bi (and similarly for the next group of bi+1 points).
This means that

N(d)(i) = ⌊d/bi+1⌋(b− 1) + ⌊d mod bi+1/bi⌋,

and

Nb(i;Pn) = 2
n−1∑
d=1

⌊d/bi+1⌋(b− 1) + ⌊d mod bi+1/bi⌋. (4.6)

Now, the goal is to simplify this so that it can be computed in O(1) time.

First, note that ⌊d mod bi+1/bi⌋ = ⌊d/bi⌋ mod b.

Let

Nb(i;Pn) = 2
n−1∑
d=1

⌊d/bi+1⌋(b− 1) + ⌊d/bi⌋ mod b

= 2(N1 +N2),

where N1 =
∑n−1

d=1⌊d/bi+1⌋(b − 1) and N2 =
∑n−1

d=1⌊d/bi⌋ mod b. For k ∈ Z: if d ∈
[kbi+1, (k + 1)bi+1 − 1], then ⌊d/bi+1⌋ = k, and if d ∈ [kbi, (k + 1)bi − 1], then ⌊d/bi⌋ = k.

Let d1 = ⌊(n− 1)/bi+1⌋. Then, we can write:
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N1 =

d1−1∑
k=0

(k+1)bi+1−1∑
d=kbi+1

⌊
d

bi+1

⌋
(b− 1)

+

 n−1∑
d=d1bi+1

⌊
d

bi+1

⌋
(b− 1)


=

d1−1∑
k=0

(k+1)bi+1−1∑
d=kbi+1

k(b− 1)

+

 n−1∑
d=d1bi+1

d1(b− 1)


=

(
d1−1∑
k=0

kbi+1(b− 1)

)
+ d1

(
n− d1bi+1

)
(b− 1)

= bi+1(b− 1)

(
d1−1∑
k=0

k

)
+ d1

(
n− d1bi+1

)
(b− 1)

= bi+1(b− 1)
d1 (d1 − 1)

2
+ d1

(
n− d1bi+1

)
(b− 1).

Likewise for N2, let d2 = ⌊(n− 1)/bi⌋. Then

N2 =

d2−1∑
k=0

(k+1)bi−1∑
d=kbi

⌊
d

bi

⌋
mod b

+

 n−1∑
d=d2bi

⌊
d

bi

⌋
mod b


=

d2−1∑
k=0

(k+1)bi−1∑
d=kbi

k mod b

+

 n−1∑
d=d2bi

d2 mod b


=

(
d2−1∑
k=0

bi(k mod b)

)
+
(
n− d2bi

)
(d2 mod b) .

For the remaining sum, let d2−1 = sb+r where s = ⌊(d2 − 1) /b⌋ and r = (d2−1) mod b.
Since between k = 0 and k = sb − 1 there are s occurrences of k mod b = m, for m ∈
{0, 1, . . . , b− 1}, I can write:
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d2−1∑
k=0

bi(k mod b) = bi
sb+r∑
k=0

(k mod b)

=

(
bi

sb−1∑
k=0

(k mod b)

)
+

(
bi

sb+r∑
k=sb

(k mod b)

)

=

(
bi

b−1∑
j=0

sj

)
+

(
bi

r∑
k=0

(k mod b)

)

= sbi

(
b−1∑
j=0

j

)
+ bi

(
r∑

k=0

k

)

= sbi
b(b− 1)

2
+ bi

r(r + 1)

2

=
bi

2
(sb(b− 1) + r(r + 1)).

Putting it together,

N2 =
bi

2
(sb(b− 1) + r(r + 1)) +

(
n− d2bi

)
(d2 mod b) .

As announced earlier, we can also provide a formula for Mb(k;Pn), which will be key
to prove our main result.

Proposition 4.3.5. If Pn is a Halton point set, then

Mb(k;Pn) = max

(⌊
n− 1∏s
j=1 b

kj
j

⌋(
2n−

⌊
n− 1∏s
j=1 b

kj
j

⌋
s∏

j=1

b
kj
j −

s∏
j=1

b
kj
j

)
, 0

)
. (4.7)

Proof. Similar to Formula (4.4) for Nb(i;Pn), we can write

Mb(k;Pn) = 2
n−1∑
d=1

(n− d)× I

((
s∑

j=1

d mod b
kj
j

)
= 0

)
.
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Since the indicator function is only non-zero at every multiple of
∏s

j=1 b
kj
j (as the bases

used in the Halton sequence are all coprime with each other), Mb(k;Pn) can be simplified
as

Mb(k;Pn) = 2

 n−1∏s
j=1

b
kj
j

∑
ℓ=1

(
n− ℓ

s∏
j=1

b
kj
j

)

=

⌊
n− 1∏s
j=1 b

kj
j

⌋(
2n−

⌊
n− 1∏s
j=1 b

kj
j

⌋
s∏

j=1

b
kj
j −

s∏
j=1

b
kj
j

)
.

Our next goal is to show scrambled Halton point sets are NLOD sampling schemes.
We do so by establishing that this NLOD property holds as long as the Cb(k;Pn) values
of the corresponding deterministic point set Pn are no larger than 1 for all k ∈ Ns, a fact
we then prove. We note that Lemma 1.15 of [90] can easily be adapted to show that the
NLOD and NUOD properties are equivalent for Halton point sets randomized by a base−b
scrambling, which is why in this section we focus on the NLOD property.

To do this, we use the same method from Section 4.2 of [90], but explain it instead
along the lines of Section 3 of [51]. That is, to show the NLOD property we need to show
that

∫
R(x,y)

ψ(u,v)dudv ≤ Vol(R(x,y)) for all x,y ∈ [0, 1]s, where R(x,y) = {(u,v) ∈
[0, 1)2s : uj < xj, vj < yj, j = 1, . . . , s}. That is, R(x,y) = [0,x) × [0,y). To compute
the LHS of this inequality, we use the fact that ψ(u,v) is constant over the regions bD

s
i :

denote this common value by ψi. Hence, we can rewrite this integral as a sum of the form∑
i∈Ns ηiψi, where ηi = Vol(bD

s
i ∩R(x,y)). We then show in Lemma 4.3.7 that the vector in

ℓ1(Ns) formed by the ηi—which we refer to below as the volume vector for R(x,y)— can be
decomposed into a conic combination of volume vectors for simpler regions corresponding
to elementary intervals of the form 1k =

∏s
j=1[0, b

−kj
j ). The Cb(k;Pn) values are then

simply the normalized values of the integral of the joint pdf over the region 1k × 1k, as
shown in Lemma 4.3.8. Together, these two facts lead us to our main result. Having
explained the map to this proof, we can now proceed to define some notation, modified
from Section 4.2 of [90], to state the different intermediate results and then our main result.

Definition 4.3.6 (Volume Vector). For x,y ∈ [0, 1)s, the volume vector of the region
R(x,y) is defined as

V s(x,y) := (V s
i (x,y))i∈Ns ∈ ℓ1(Ns),
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where

V s
i (x,y) =

∫
R(x,y)

1
bD

s
i
(u,v)dudv = Vol(R(x,y)) ∩ bD

s
i ).

Observe that ∥V s(x,y)∥1 = Vol(R(x,y)).

We can now state the result proving that the volume vector of R(x,y) can be decom-
posed into a conic combination of simpler volume vectors.

Lemma 4.3.7. Let x,y ∈ [0, 1)s and for j = 1, . . . , s define

tj,0 =
bjV0(xj, yj)

bj − 1
and tj,k =

bjVk(xj, yj)− Vk−1(xj, yj)

bj − 1
for k ≥ 1.

Let tk =
∏s

j=1 tj,k, c(b, k) =
∏s

j=1 b
2kj
j , and b−k = (b−k1

1 , . . . , b−ks
s ). Then V s(x,y) =∑

k∈Ns tkξ
k, where tk ≥ 0, ξk = c(b, k)V s(b−k,b−k), and

∑
k∈Ns tk = Vol(R(x,y)).

Proof. The proof of this result follows exactly the proof of Lemma 4.11 from [90], as
using a different base for each dimension does not change the behaviour of the sums and
products used in the underlying calculations. Note that ξk is just the normalized version
of the volume vector corresponding to the region 1k × 1k, with c(b, k) the normalizing
constant.

Lemma 4.3.8. Let bP̃n be a scrambled Halton point set. If ψ(x,y) denotes the joint pdf
of two distinct points randomly chosen from bP̃n then

c(b, k)

∫
1k×1k

ψ(u,v)dudv = Cb(k;Pn).

Proof. Firstly, as mentioned above, the vector ξk ∈ ℓ1(Ns) is the normalized version of the
volume vector corresponding to the region 1k × 1k. Any point (x,y) in that region must
be such that x and y share at least k digits. Hence, ξk is non-zero only in positions of the
form k+ i, where it is given by ξki+k =

∏s
j=1

bj−1

b
1+ij
j

.

Combining this fact with the form of the joint pdf given in (4.2), for each k ∈ Ns we
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have

c(b, k)

∫
1k×1k

ψ(u,v)dudv =
∑
i∈Ns

ξki ψi =
∑
i∈Ns

ψi+k

s∏
j=1

bj − 1

b
1+ij
j

=
∑
i∈Ns

Nb(i+ k; bP̃n)

n(n− 1)

s∏
j=1

bj − 1

b
1+ij
j

s∏
j=1

b
1+ij+kj
j

bj − 1

=
∑
i∈Ns

Nb(i+ k; bP̃n)

n(n− 1)

s∏
j=1

b
kj
j =

(
s∏

j=1

b
kj
j

)
1

n(n− 1)

∑
i∈Ns

Nb(i+ k; bP̃n)

=

(
s∏

j=1

b
kj
j

)
Mb(k; bP̃n)

n(n− 1)
=

(
s∏

j=1

b
kj
j

)
Mb(k;Pn)

n(n− 1)
= Cb(k;Pn).

Now we have all the pieces to be able to show that Cb(k;Pn) ≤ 1 for all k ∈ Ns implies∫
R(x,y)

ψ(u,v)dudv ≤ Vol(R(x,y)) for all x,y ∈ [0, 1)s.

Theorem 4.3.9. Let bP̃n be a scrambled Halton point set and let ψ(u,v) be the joint pdf
of two distinct points randomly chosen from bP̃n. Let tk be the coefficient defined in Lemma
4.3.7 for a given x,y ∈ [0, 1)s. Then∫

R(x,y)

ψ(u,v)dudv =
∑
k∈Ns

tkCb(k;Pn)

and thus

∫
R(x,y)

ψ(u,v)dudv ≤ Vol(R(x,y))max
k∈Ns

Cb(k;Pn). (4.8)

Hence if Cb = maxk∈Ns Cb(k;Pn) ≤ 1, then
∫
R(x,y)

ψ(u,v)dudv ≤ Vol(R(x,y)) and bP̃n is
NLOD.
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Proof. From Lemmas 4.3.7 and 4.3.8,∫
R(x,y)

ψ(u,v)dudv =
∑
i∈Ns

ψiV
s
i (x,y)

=
∑
i∈Ns

ψi

∑
k∈Ns

tkc(b, k)V
s
i (b

−k,b−k)

=
∑
k∈Ns

tkc(b, k)

∫
1k×1k

ψ(u,v)dudv

=
∑
k∈Ns

tkCb(k;Pn).

The inequality (4.8) is obtained by using the fact that tk ≥ 0,
∑

k∈Ns tk = Vol(R(x,y)).
and also recalling that only a finite number of vectors k are such that Cb(k;Pn) > 0 by
property of the Halton sequence.

Theorem 4.3.10. Let Pn be a Halton point set. Then Cb(k, Pn) ≤ 1 for all k ∈ Ns and
thus Cb := supk∈Ns Cb(k, Pn) ≤ 1.

The proof for Theorem 4.3.10 is, unlike the previous proofs presented in this section,
specific to the Halton sequence.

Proof. If
∏s

j=1 b
kj
j ≥ n, then, Mb(k;Pn) = 0 and thus Cb(k, Pn) = 0. Thus, we only need

to consider the case where
∏s

j=1 b
kj
j ≤ n−1 which impliesMb(k;Pn) > 0. Using Definition

4.2.2 and Proposition 4.3.5, we have

Cb(k, Pn) =

∏s
j=1 b

kj
j Mb(k;Pn)

n(n− 1)

=

∏s
j=1 b

kj
j

⌊
n−1∏s
j=1 b

kj
j

⌋(
2n−

⌊
n−1∏s
j=1 b

kj
j

⌋∏s
j=1 b

kj
j −

∏s
j=1 b

kj
j

)
n(n− 1)

.
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Now, write

⌊
n−1∏s
j=1 b

kj
j

⌋
= n−1∏s

j=1 b
kj
j

− r, where 0 ≤ r < 1. Then

Cb(k, Pn) =

∏s
j=1 b

kj
j

(
n−1∏s
j=1 b

kj
j

− r
)(

2n−
(

n−1∏s
j=1 b

kj
j

− r
)∏s

j=1 b
kj
j −

∏s
j=1 b

kj
j

)
n(n− 1)

=
−r2

(∏s
j=1 b

kj
j

)2
+
(∏s

j=1 b
kj
j

)2
r −

(∏s
j=1 b

kj
j

)
n

n(n− 1)

+

(∏s
j=1 b

kj
j

)
− 2

(∏s
j=1 b

kj
j

)
r + n2 − 1

n(n− 1)

=
n−

(∏s
j=1 b

kj
j

)
n− 1

+
1

(n− 1)n

( s∏
j=1

b
kj
j

)2

r −

(
s∏

j=1

b
kj
j

)2

r2 − 2

(
s∏

j=1

b
kj
j

)
r +

(
s∏

j=1

b
kj
j

)
− 1

 .

Now, Cb(k, Pn) ≤ 1 if and only if((∏s
j=1 b

kj
j

)2
r −

(∏s
j=1 b

kj
j

)2
r2 − 2

(∏s
j=1 b

kj
j

)
r +

(∏s
j=1 b

kj
j

)
− 1

)
n

≤

(
s∏

j=1

b
kj
j

)
− 1.

Rearranging yields:((∏s
j=1 b

kj
j

)2
r −

(∏s
j=1 b

kj
j

)2
r2 − 2

(∏s
j=1 b

kj
j

)
r +

(∏s
j=1 b

kj
j

)
− 1

)
(∏s

j=1 b
kj
j

)
− 1

≤ n

⇐⇒

(
s∏

j=1

b
kj
j

)
(r − r2) + (1− r − r2)− r + r2(∏s

j=1 b
kj
j

)
− 1
≤ n.

The last inequality is satisfied, as the maximum value that
∏s

j=1 b
kj
j can take is n − 1,

and thus the first term in the sum is at most n − 1 as 0 ≤ r ≤ 1, the second term
is at most 1, and the third term is negative. Thus, Cb(k, Pn) ≤ 1 for all k ∈ Ns, so
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Cb = supk∈Ns Cb(k, Pn) ≤ 1.

Combining Theorem 4.3.10 with Theorem 4.3.9, we have the main result of this chapter:

Theorem 4.3.11. Let bP̃n be a scrambled Halton point set. Then, bP̃n is an NLOD
sampling scheme.

4.4 Assessing the quality of Halton sequences via de-

pendence measures

The dependence framework introduced in the previous sections has allowed us to analyze
scrambled Halton point sets. It can also be used to design quality criteria for measuring
the uniformity of different low-discrepancy sequences, including Halton sequences.

As argued in [90], the Cb(k;Pn) values can be interpreted as a measure such that when
it is smaller than 1, scrambling Pn will yield a well-distributed point set that can in turn
produce estimators for multivariate integrals with lower variance than MC, under some
conditions on the integrand. It is also argued in [90] that one can compute Cb(k;Pn)
values in a base b other than the one used to construct the point set, because if it remains
relatively small in other bases (e.g., in base 2), in some sense it suggests that scrambling
does not need to be performed in a specific base in order for the randomized point set to
have good uniformity properties, which suggests a form of “robustness” for Pn that should
hold only if it is already well distributed, in which case a simple digital shift might be
enough to randomize it. In particular, when b is large, evaluating C2(k;Pn) is more likely
to identify potential issues with the point set Pn than using the base in which the point
set was constructed, as when n is small compared to b, it is easy for Pn to obtain small
Cb(k;Pn) values, as discussed in [90].

As mentioned in the introduction, the approaches that have been used to measure the
quality of generalized and randomized Halton sequences have been to either use them to
integrate certain test-functions, or compute their L2−discrepancy. The latter is more useful
to compare the asymptotic behaviour of low-discrepancy sequences, and is not necessarily
that useful to compare point sets Pn with relatively small sample sizes [52].

Here, we suggest measuring the quality of low-discrepancy point sets by using a criterion
based on the Cb(k;Pn) values for different vectors k and for b = (2, . . . , 2). In order to make
sense of the proposed criterion, it is useful to notice that the set of non-zero components
of k correspond to the coordinates over which the quality of the point set is measured.
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We use the criterion c(b,K;Pn) as defined in Section 3.2.2. Since b is of the form
b = (b, . . . , b), we simply write c(b,K;Pn). We use this criterion for two purposes: first,
we use it within a search algorithm to find good factors to define a generalized Halton
sequence that we expect to have better uniformity properties than the original Halton
sequence. Second, we use it to compare low-discrepancy point sets based on different
construction paradigms (i.e., nets in base 2, base b ≥ s, or Halton) that would otherwise
be hard to compare, at least for finite sample sizes.

4.4.1 Searching for good multipliers for the Halton sequence

In this subsection, for a s-dimensional point set, we use the c(2,Kd,w,s;Pn) criterion with
d = 3 and w ∈ {5, 8} to find factors fj for a simple one-factor linear deterministic scram-
bling of the Halton sequence of the form σj(i) = (fji) mod bj for j = 1, . . . , s, as in
[26].

These simple permutations are chosen over more sophisticated permutations for several
reasons: i) we want permutations that satisfy σ(0) = 0 to ensure the sequence remains
unbiased [13], as in practice a finite number of digits are generated for each point within
the Halton sequence; ii) it takes much less space to store a list of factors than a list
of permutations; iii) it allows for a more comprehensive search—we can test every fj ∈
{1, . . . , bj − 1} rather than taking a subset of unrestricted permutations.

Algorithm 1 below describes the component-by-component approach [74] to find the
successive factors fj. The window size w is chosen to be equal to 8 for j ≤ 120 and 5
for j > 120. These relatively small window sizes were chosen for runtime reasons. As
mentioned above, the projection size is d = 3. A small projection size is used as it keeps
the runtime low, and for our test functions as well as many financial applications, even
high dimensional integration problems have low effective dimension [89]. The effective
dimension of an integration problem is the size of the projection that explains the majority
of the variance of a function. For example, if a function has an effective dimension of 2 in
the superposition sense with a threshold of 0.99, it means that 99% of the variance can be
explained with 2-dimensional projections of these functions. Thus, if the lower dimensional
projections of the point set are good, the performance of the point set on the integration
problem should be good as well.

The reason for decreasing the window and projection size for large j is for runtime rea-
sons: the calculation for the unrestricted Cb = c(b,Ks,s,s;Pn) isO(n

2s+n2s
∑γmax

k=1

(
k+s−1

k

)
) =

O(n2s + n2s
(
γmax+s

s

)
), where the sum is simplified using the Chu-Vandermonde identity.

Here, γmax = maxx,y γ
s
b(x,y), the maximum number of common digits shared between two
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points. The complexity depends on the maximum value of γ between all pairs of points,
and as discussed previously, the correlation between consecutive dimensions increases with
the dimension, causing the value of γmax and thus the runtime to increase. This is in
addition to the fact that the search for the best fj in higher dimension has more potential
values to consider as bj increases with j. Thus, by restricting the window and projection
size, we can obtain results within a reasonable timeframe.

Algorithm 3: Algorithm to search for Halton factors using c(2,Kd,wj ,s;Pn) crite-
rion to find jth factor.

INPUT: s, n, d, w[1. . . s];
OUTPUT: factors[1. . . s];
factors[1] = 1;
for j in 2,. . . ,s: do

p = jth smallest prime;
wj = min(j,w[j]);
for i in 1,. . . ,p-1 do

factors[j] = i;
pointSet = genHalton(factors[1:j],n)[,(j-wj+1):j] # Generates an n by j
array of points from the generalized Halton sequence using the first j
factors and returns the last wj dimensions;
c2Values[i] = c(2,Kd,wj,j; pointSet);

factors[j] = index i where c2Values takes its minimum;

return factors

Table A.1 in the appendix gives the factors fj found using this algorithm along with
their values of c(2,Kd,wj ,s;Pn). Using the Compute Canada cluster Graham on a single
NVIDIA Tesla P100 GPU with 12 GB RAM using a Python script, the results in Table
A.1 were found after several days of searching.

4.4.2 Comparing different constructions

As mentioned earlier, the Cb(k;Pn) values can also be used to make comparisons between
point sets based on different construction paradigms. To illustrate this point, in Table
4.1 we compute c(2,N2, Pn) values for the point sets shown in Figure 4.1, which are two-
dimensional point sets obtained by taking the projection of various constructions over the
19th and 20th coordinates. This demonstrates that point sets with fewer clusters and empty
spaces results in smaller Cb(k;Pn) values.
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(a) Original Halton sequence
(Halton)

(b) Using factors from [26]
(FL)

(c) Using permutations from
[25] (F)

(d) Using factors found using
c(2,Kd,w,s;Pn) values (DL)

(e) Generalized Faure Se-
quence (gFaure)

(f) Sobol’ Sequence (Sobol)

Figure 4.1: First 1000 points of different point sets over coordinates 19 and 20.

k 1 2 3 4 5 6 7 8 9 Cb

Halton 0.999 1.01 1.01 1.03 1.04 1.05 1.51 2.50 3.37 3.37
FL 0.999 0.997 0.994 0.987 0.988 0.961 0.992 0.989 1.01 1.01
F 0.999 0.998 0.994 0.989 0.992 1.00 0.999 1.03 0.928 1.03
DL 0.999 0.997 0.993 0.986 0.972 0.947 0.909 0.841 0.853 0.999
Faure 0.999 1.01 1.01 1.02 1.03 1.09 1.34 1.77 2.43 2.43
Sobol 0.999 0.997 0.993 0.986 0.972 0.944 1.68 1.64 1.42 1.68

Table 4.1: c(2,N2, Pn) values for the 2−dimensional point sets in Figures 4.1.
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4.5 Numerical experiments on the Halton sequence

In this section, we conduct some experiments on numerical integration problems to compare
different Halton sequences constructions. Our goals are two-fold: first, we want to assess
the performance of the factors we found in the previous section compared with other
constructions. Second, we want to numerically investigate the more fundamental question
of whether it is best to address the shortcomings of the original Halton sequence via random
scrambling or via a well-chosen generalized construction that can then be randomized using
a simple (and cheaper to compute) digital shift.

To address this latter question, we designed an experiment involving the well-known
family of Genz integrand functions. In this experiment, we use histograms to compare
the integration error obtained using specific generalized Halton sequences— randomized
via a digital shift—with the variance distribution obtained using a base b random linear
scrambling. The point of this experiment is as follows: if a specific construction can
easily be “beaten” by (have a larger error than) a randomized sequence obtained through
scrambling, then this would be an argument in favour of using random scrambling to
improve the Halton sequence instead of relying on a specific generalized Halton sequence
construction. If a construction consistently ranks better than most scrambled sequences,
then this would be an argument to use those instead of scrambled sequences.

The generalized Halton sequences considered in this experiment are: the one obtained
using the factors from the previous section (referred to as “DL Factors”), the one based
on the factors from [26]—referred to as FL factors—and we also assess the original Halton
sequence. In addition, we provide results obtained using the MC method.

4.5.1 Experiments with Genz integrand functions

The Genz integrand functions [29] are summarized in Table 4.2. Each of the six inte-
grand families has a different property that makes it “difficult” to integrate. Each function
depends on two parameters. The vector a is the scaling parameter and is randomly gen-
erated uniformly over [0, 1)s, and then scaled such that sej |a| = hj, where j indexes the
integrand family. This is to fix the integration difficulty for a series of tests, and larger
values of ||a|| result in a more difficult integration. We use e = (2, 2, 2, 1, 1.5, 2) and
h = (150, 600, 100, 100, 110, 600), as suggested in [30] and used in [60]. The vector b
is the location parameter, and is randomly generated uniformly over [0, 1)s without any
additional scaling. To obtain meaningful results, the parameters a and b are randomly
generated, and the numerical experiment is repeated R = 50 times. The reported error
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is the average of the 50 obtained estimated mean square relative errors (MSRE), and is
estimated using V = 25 replications. The same set of parameters are used for all methods
and randomizations for a fair comparison. The tests are performed in dimension s = 20
and with a sample size of n = 10, 000.

Figure 4.2 shows histograms of 100 MSREs for each of the Genz functions based on
a randomly linearly scrambled Halton point set, as explained above. For each of the six
functions, either DL or FL appears to be more accurate than scrambled point sets (e.g.,
in the lower quartile of the histogram), but neither is consistently doing so. This suggests
that well-chosen factors have the potential to do better than scrambling, but probably need
to be chosen based on the type of function being integrated. Hence, if one is looking for a
multipurpose construction, scrambling appears as a better choice.

Integrand Family Attribute
u1(x) = cos (2πb1 +

∑s
i=1 aixi) Oscillatory

u2(x) =
∏s

i=1

(
a−2
i + (xi − bi)2

)−1
Product Peak

u3(x) = (1 +
∑s

i=1 aixi)
−(s+1)

Corner Peak

u4(x) = exp
(
−
∑s

i=1 a
2
i (xi − bi)

2) Gaussian Peak
u5(x) = exp (−

∑s
i=1 ai |xi − bi|) Continuous

u6(x) = exp (
∑s

i=1 aixi)1x1≤b1,x2≤b2 Discontinuous

Table 4.2: Six families of Genz integrand functions.
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(a) Halton: 1.813e-11 (b) Halton: 0.000316 (c) Halton: 4.177e-10

(d) Halton: 3.213e-09 (e) Halton: 3.382e-12 (f) Halton: 1.558e-05

Figure 4.2: Genz integrand family functions: Comparing our factors, factors from qrng

and the original Halton sequence with 100 Halton sequences randomized with Random
Linear Scrambling.

4.5.2 Experiments with fixed-parameters integration problems

We now consider specific test-functions with fixed parameters and defined in higher dimen-
sions than the previous experiment. Specifically, from Section 2.5, we consider functions
g, the Asian Call Option pricing problem, as well as the Mortgage Backed Security prob-
lem. We study the behaviour of the estimated MSE or variance of the different estimators
as n increases from 2000 to 100,000 rather than fixing the sample size to n = 10, 000 as
in the previous subsection. Table 4.3 describes the constructions being compared in the
experiments in this section.
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MC: Monte Carlo
DL Factors: Permutations found using c(2,Kd,w,s;Pn) values, then

randomize with a digital shift in base bj, j = 1, . . . , s
FL Factors: Permutations from [26] then randomize with

a digital shift in base bj, j = 1, . . . , s
RLS: Random linear scrambling in base bj, j = 1, . . . , s

Okten: Ökten’s “random start scrambled Halton
sequence”, with implementation provided in [85]

Owen: Owen’s scrambling from [63]
Shift: Original Halton sequence with digital shift

Table 4.3: Methods compared in Figure 4.3.

Sobol’ test function

The first test function we consider is given by g(x) =
∏s

j=1 (1 + c(xj − 0.5)), with s =
120, c = 0.1, and s = 96, c = 0.25. The true value of the integral of g is 1 for both cases.
Figure 4.3 shows the estimated MSE for both cases. The MSEs are estimated using V = 100
independent randomizations. The larger number of independent randomizations are used
for this experiment to create smoother plots for easier visual comparisons, especially for
smaller values of n. We can see that the random linear scrambling outperforms using
well-chosen factors, and as n increases, outperforms all other methods except for Owen’s
scrambling, which is much more computationally effective but gives comparable results.
Comparing the two sets of permutations, the factors found using the c(2,Kd,w,s;Pn) values
seems to outperform those from [26].
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Figure 4.3: Estimated MSEs when Integrating Test Function g(x).

We also repeat the experiment from Section 4.5.1 but with this test function instead of
the Genz integrands. Hence, here the function is fixed. The MSE is again estimated using
25 RQMC randomizations. The sample size is n = 10, 000. Figure 4.4 compares random
linear scrambling with the DL and FL factors, as well as the Halton sequence (randomly
shifted) and MC. As was seen in Figure 4.3, random linear scrambling outperforms using
either set of well-chosen factors. The results on this test function further motivate using a
base b-digital scramble to randomize the Halton sequence.

Arithmetic Asian call option

Next, we consider the Asian Call option, with parameters specified in Section 2.5. These
results were not part of [22].

Figure 4.5 shows the estimated variances for each of these cases. Variances are esti-
mated using V = 25 independent randomizations. The variances seem similar between the
different randomization methods, but as n increases, we can see some separation between
the results, especially for the s = 75, K = 55 and s = 40, K = 45 case where the factors
from [26] outperform the other methods, and in the s = 75, K = 50 case where using
random linear scrambling gives the lowest variance.

Mortgage backed security

Finally, we consider the mortgage backed security problem. These results were not part of
[22]. Figure 4.6 shows the estimated MSE using 25 replications.
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Figure 4.4: Test function g(x): Comparing our factors, factors FL from qrng, MC, and
the original Halton sequence with 100 Halton sequences randomized with Random Linear
Scrambling; on the LHS we exclude Halton and MC to better see the histograms.

From these plots, we can see that random linear scrambling is consistently one of the
best methods to use.

4.6 Assessing different forms of scrambling

This work in this section has not been published yet and is the topic of the working paper
[20], which is done in collaboration with Christiane Lemieux and Henri Faure. This section
uses the same setup and experiments as in Sections 3.2.3 - 3.2.5, and we include this section
here rather than in the previous chapter due to the work being on the Halton sequence,
which is the focus of this chapter, whereas the previous chapter focuses on experiments on
the Sobol’ and Faure sequences.

As shown earlier in this chapter, a form of perfect equidistribution holds for the Halton
sequence. However, just like for the Faure sequence, this optimal behaviour can require a
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Figure 4.5: Estimated Variances of the Asian Option Pricing Problem.
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Figure 4.6: Estimated MSEs of the Mortgage Backed Security Pricing Problem.
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very large number of points before being observed, which can be observed in the top-left
image of Figure 4.1, which consists of points that are constructed in bases 67 and 71 in
their two coordinates: there are not enough points to evenly fill out the unit square as
the image is of the first 1000 points of the sequence and to see good properties in this
two-dimensional projection, we would need to have 67× 71 = 4757 points.

To alleviate this problem, as mentioned earlier in this chapter, several authors have
proposed to apply both deterministic and random scrambling to the Halton sequence.
Some early work in this area goes back to [25], who proposed to use permutations of the
integers in [0, . . . , b − 1] for the van der Corput sequence in base b. Following this work,
many other deterministic scramblings based on permutations have been proposed for the
Halton sequences: see [22, 26, 85] and the references therein. The scramblings based on
factors studied in the previous sections of this chapter can be thought of as a special case
based on very simple permutations consisting of a multiplication by a factor.

We explore the use of permutations based on the ones originally proposed in [25] to
construct generalized Halton sequences. Algorithm 2 on page 46 from Chapter 3 sum-
marizes the steps for generating a permutation πb for any integer b, and we consider the
original permutations from [25], as well as ones reordered with an additional offset term as
explained on page 47 in Section 3.2.3, which we refer to as the “Offset” permutation, e.g.,
in Table 4.5 and 4.4. While these permutations have been proposed to improve the discrep-
ancy of one-dimensional van der Corput sequences, they can (and have been) used to create
generalized Halton sequences [58], which is what we propose to analyze via dependence
concepts.

4.6.1 Comparisons based on negative dependence criterion

In Tables 4.4 and 4.5, we compute the two criteria as explained in Section 3.2.2 for point
sets based on the (generalized) Halton sequence. Here, “Regular” refers to the original
construction from [35], “Faure 1992” refers to the permutations obtained using the method
from [25], as detailed in Algorithm 2 on page 46, while “Offset” refers to the permutation
obtained when we add m = ⌊b/2⌋ to each term of the “Faure 1992” permutation. In all
cases, we consider every 2-dimensional projection over the point set when computing the
criteria, and the values reported give us information about the two-dimensional projections
of these point sets.
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Halton Permutations s d n c(2,Kd,w=s,s, Pn) c̄(2,Kd,w=s,s, Pn)
Regular 4 2 3125 0.999685 0.999683
Faure 1992 4 2 3125 0.999682 0.999682
Offset 4 2 3125 0.999681 0.99968
Regular 12 2 2197 4.036052 1.892203
Faure 1992 12 2 2197 1.819365 1.071718
Offset 12 2 2197 1.635136 1.053001
Regular 52 2 2809 13.65113 6.534291
Faure 1992 52 2 2809 4.204183 1.21624
Offset 52 2 2809 4.179257 1.197399

Table 4.4: Values of criteria based on C2(k;Pn) for point sets obtained from (generalized)
Halton Sequences.

Halton Permutations s d n c(2,Kd,w=s,s, Pn) c̄(2,Kd,w=s,s, Pn)
Regular 4 2 5000 0.99980252 0.99980183
Faure 1992 4 2 5000 0.9998014 0.99980089
Offset 4 2 5000 0.99979996 0.99979996
Regular 12 2 5000 4.68872783 2.13327165
Faure 1992 12 2 5000 1.47878792 1.05099389
Offset 12 2 5000 1.40865037 1.03312189
Regular 52 2 5000 18.82439336 4.81624748
Faure 1992 52 2 5000 4.73002376 1.24112783
Offset 52 2 5000 4.62842264 1.21837901

Table 4.5: C2 values of point sets based on the Halton Sequence with n = 5000.

Applying permutations clearly improves the quality of the original construction, espe-
cially for larger dimensions. This improvement is captured by the criteria – if we look at the
Tables 4.4 and 4.5. In dimensions 12 and 52, both the c(2,Kd,w=s,s, Pn) and c̄(2,Kd,w=s,s, Pn)
values are significantly greater for the “regular” Halton sequence compared to using either
set of permutations. This means that not only are the worst two-dimensional projections
less well distributed, the average two-dimensional projection within the point set is not as
well distributed. For the s = 4 case, all the two-dimensional projections give a Cb value
of less than 1, meaning that they are all well distributed. This is not surprising, as the
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points are constructed using smaller prime bases, and thus we need less points for the unit
square to be evenly filled.

When comparing Tables 3.9 from the previous chapter and 4.5—which both use n =
5000—the Halton sequence and its generalizations appear to be of better quality compared
to their respective counterpart for the Faure sequence, with the generalized Halton se-
quences achieving values for c̄(2,Kd,w=s,s, Pn) that are not much higher than 1. We think
this may be happening because the permutations introduce a more substantial “scram-
bling” than simply multiplying each generating matrix by a fixed factor.

4.6.2 Integration problems

In this section, we numerically investigate the fundamental question of whether it is best
to randomize via random scrambling or via a well-chosen generalized construction that can
then be randomized using a simple digital shift.

We again use h0, h1, g, and the stochastic activity network from Section 2.5. For these
functions, we respectively have the true integrands of µ(h0) = 0, µ(h1) = s/3 + s(s− 1)/4
and µ(g) = 1.

The different constructions and scramblings are compared using two approaches. First
in Section 4.6.2 we plot the MSE or variance as a function of n to see how quickly they
converge to 0. Then in Section 4.6.2, we fix n and plot a histogram of the MSE or variance
constructed from randomly scrambled point sets and look at where different determinis-
tically scrambled point sets compare with this distribution, as approximated by the his-
togram. This approach is similar to what was done in Section 4.5 to assess deterministic
scramblings based on factors.

Convergence results

What is plotted on Figures 4.7 to 4.11 are the MSE for functions h0, h1, and g, and
the variance for the SAN. In all cases, the MSE or variance is estimated using V = 25
randomizations.

We compare the following constructions:

1. Halton sequence, randomized with a digital shift, (“Regular, Shifted”);

2. Generalized Halton sequence, using permutations from Algorithm 2, then randomized
with a digital shift (“Faure 1992, Shifted”);
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3. Generalized Halton sequence, using permutations from Algorithm 2 with an offset
term added, then randomized with a digital shift (“Offset, Shifted”);

4. Halton sequence, randomized with random linear scrambling (“Scrambled”).

Figure 4.7: Estimated MSEs of test functions at n ∈ {3125m, 1 ≤ m ≤ 40}, using the
4-dimensional Halton Sequence.
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Figure 4.8: Estimated MSEs and Variances at n ∈ {2197m, 1 ≤ m ≤ 60} of test functions
using the 12-dimensional Halton Sequence.
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Figure 4.9: Estimated MSEs of test functions at n ∈ {2809m, 1 ≤ m ≤ 45}, using the
52-dimensional Halton Sequence.
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Figure 4.10: Estimated MSEs and Variances of test functions using the 13-dimensional
Halton sequence.
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Figure 4.11: Estimated MSEs at n ∈ {2000m, 1 ≤ m ≤ 50}, when integrating Test
Function g using Halton and Faure Sequences.

The majority of the results show that scrambling is superior to generalizing then ran-
domizing with a digital shift. They also show that a point set that is well distributed over
the unit cube performs much better when randomized with a shift compared to a point set
with poor distribution properties.

The results from this numerical experiment can also be somewhat explained by the
criterion values in Tables 4.4 and 4.5. If the c values are high, that suggests a “bad” point
set that cannot be fixed via a digital shift. However, even a “bad” point set can be fixed
with scrambling. The “Regular” Halton sequence, which had the highest c values, had the
worst performance by far when randomized with a digital shift. The “Faure 1992” and
“Offset” sequences, which had lower c values, had RQMC errors almost as good as the
scrambled Halton sequence, even when randomized with a digital shift.

Comparing results using histograms

As done in Sections 3.2.5 and 4.5.1, we use histograms of the integration error of the
functions h0 and h1 to compare the use of deterministic permutations versus scrambling
for the Halton sequence. We consider 3 values of s: 4, 12, and 52. The reported error is
the Mean Squared Error (MSE), and is estimated using V = 25 replications and a sample
size of n = 10000, except in the s = 52 case where n ∈ {2809, 10000}.

For the Halton sequence, we compare the distribution of randomly scrambled point
sets (as shown by the histogram) with the same types of deterministic permutations as in
Section 4.6.2.
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Some values (namely “Regular Shifted” and Monte Carlo) obtained are sometimes quite
large compared to the rest of the results. Therefore, to better visualize the results, these
large values have been excluded from the plots and their error values are reported in the
caption instead.

(a) Halton: 1.8421e-09, MC: 3.8787e-06 (b) Halton: 8.4177e-09, MC: 2.2075e-05

Figure 4.12: Comparing Random Linear Scrambling of the Halton sequence with other
Halton sequences with s = 4
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(a) Halton: 2.979e-08, MC: 1.1629e-05 (b) Halton: 1.541e-06, MC: 0.000584

Figure 4.13: Comparing Random Linear Scrambling of the Halton sequence with other
Halton sequences with s = 12

(a) Halton: 7.02e-06, MC: 5.024e-05 (b) Halton: 0.006982, MC: 0.04699

Figure 4.14: Comparing Random Linear Scrambling of the Halton sequence with other
Halton sequences with s = 52
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Just like the results in the previous sections of this chapter, in general, random linear
scrambling is better than using well-chosen permutations. This suggests that well-chosen
permutations have the potential to do better than scrambling, but probably need to be
chosen based on the type of function being integrated. Hence, if one is looking for a
multipurpose construction, scrambling appears as a better choice.

4.7 Conclusion

We showed that a Halton point set randomized with a base b-digital scramble is an
NLOD sampling scheme. This result was established by defining and carefully studying
the Cb(k;Pn) values, which are an extension of the Cb(k;Pn) values introduced in [90].

We established that random linear scrambling of Halton sequences satisfies the prop-
erties of being a base b-digital scramble and investigated its performance via numerical
results on different integration problems. These results further motivate randomizing the
Halton sequence with this type of scrambling, which has not been done in practice yet. In
addition, unlike fixing a permutation, it does not require any data to be stored.

We also used a criterion based on the Cb(k;Pn) values to search for permutations
to generalize the Halton sequence. From our numerical results on different integration
problems, our searched permutations give variance results comparable to those of other
currently used generalized Halton sequence constructions. However, neither appears to
consistently outperform random linear scrambling, which reinforces our assessment that
this randomization offers promising outcomes in the quest to make the Halton sequence a
robust choice for numerical integration.

Extending on our work on assessing different forms of scrambling, we evaluated two
choices for permutations used to generalize the Halton sequence based on the ones from
[25]. We evaluated their performance using a numerical study as well as studying the
Cb(k, Pn) values. While these factors can break up some poor projection properties of
these point sets, they do not generally outperform using scrambling to randomize the
point.

An interesting extension of this work is that our main theoretical result could easily be
proved for constructions based on juxtaposed van der Corput sequences from which consec-
utive points are extracted at different starting points, leading to additional randomization
methods and modifications to the sequence. We plan to explore this idea in future work.
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Chapter 5

A randomized implementation of the
triangular van der Corput sequence

This chapter details joint work between myself, Erik Hintz, Christiane Lemieux, and Marius
Hofert. This work has not been published yet and is the topic of the working paper
[21]. My contribution to this topic includes the work on implementing the scrambled
triangular van der Corput sequence as nested scrambling, i.e., Section 5.2 as well as the
numerical experiments in Section 5.3. The working paper also includes the development
of an extensible lattice construction on the triangle, but is omitted from this thesis, as the
majority of the work on that topic was done by Erik Hintz.

In the previous chapters of this thesis, the constructions for low-discrepancy sequences
discussed were designed for the unit hypercube [0, 1)s. Here, we consider constructions
of point sets on the triangle in two dimensions, which has applications in, among other
things, computer graphics [7, 68].

Basu and Owen [7] have proposed two low-discrepancy constructions with vanishing
discrepancy for the triangle that construct points directly on the triangle, rather than
mapping points from the unit cube to the triangle, such as in [2,23,69]. The first is based
on a finite lattice. This construction attains a discrepancy of O(log(n)/n), which is the
best possible rate [9] and work prior to this have only indicated that such a discrepancy
was possible without providing a construction. The other is a triangular van der Corput
sequence based on the one-dimensional van der Corput sequence in base 4 that places points
in a two-dimensional triangle by recursively subdividing the triangle. The triangular van
der Corput sequence can also be generalized by replacing each digit from a base 4 sequence
with a sequence of two digits from a base 2 sequence, but using the same subdivisions [33].
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Although various constructions and mappings for sampling on the triangle exist, there
are very few, if any, work done comparing these different methods on numerical integration
examples. We also perform numerical examples on the triangle that allow us to differentiate
between the performance of these constructions on some integration problems.

A shortcoming of the deterministic triangular van der Corput sequence is that its one-
dimensional projections over some of the sides of the triangle have the undesirable property
of collapsing onto a few non-unique points. This is evident in Figure 5.1, which shows the
first 1000 points of the triangular van der Corput sequence on the right-angle triangle. The
points form vertical and horizontal lines that have the same x1 or x2 values.

One of the main contributions of this chapter is that we address the issue of having non-
unique points in the one-dimensional projections. As mentioned in the previous chapters of
this thesis, poor projection qualities of a point set can be fixed by applying a randomization
to the point set. Since the triangular van der Corput sequence is based on the van der
Corput sequence, a natural randomization to use is scrambling. In the triangular van
der Corput sequence, the sampling scheme subdivides the triangle into a finer and finer
partition of triangles until each sub-triangle gets at most one point, and the van der Corput
sequence decides the order that the points are placed into the triangles, just as it does
normally with the b-adic intervals over the unit interval. When we randomize the triangular
van der Corput sequence, this is akin to randomizing the one-dimensional van der Corput
sequence with randomizing before mapping it to the triangle. In one dimension, we will
show how scrambling is very closely related to stratification by constructing an extensible
stratified sampling scheme on the triangle that avoids the poor projection properties. This
stratified sampling scheme is still based on the triangular van der Corput sequence –
the strata we use are the sub-triangles used in each recursive step of constructing the
triangular van der Corput sequence. Figure 5.2 on page 113 shows the subdivision of the
equilateral and right-angle triangles into 4 such strata, and Figure 5.4 on page 131 shows
the subdivision of the equilateral triangle into 16 strata.

We also show that, in general and not only on triangles, the stratified sampling scheme
has the same distribution as the nested scrambling of the van der Corput sequence, while
being more efficient to implement. This connection between stratified sampling and nested
scrambling allows us to have the benefits of nested scrambling without the expensive com-
putational costs. On the flip side, we also show that nested scrambling is a way to imple-
ment an extensible stratified estimator based on a stochastic but balanced allocation.

We begin this chapter in Section 5.1 by introducing notation and describing common
methods used to sample on the triangle. We then explain how to construct points sets
using the triangular van der Corput sequence of Basu and Owen, and then propose our
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Figure 5.1: The first 1000 points of the triangular van der Corput (vdC) sequence of Basu
and Owen
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stratified sampling design in Section 5.2 and show that it is an efficient equivalent to nested
scrambling using the tools from negative dependence concepts from the earlier chapters
of this thesis, and show how to then map the resulting one-dimensional point set to the
two-dimensional triangle. Finally, in Section 5.3, we conduct a numerical study to compare
different constructions on the two-dimensional triangle.

5.1 Background

In this section, we review some definitions and properties of triangles and give some com-
mon methods to sample on the triangle, including methods that both sample directly on
the triangle, as well as methods that transform point sets from the unit square to the
triangle.

In the general case, let points A,B,C lie on a hyperplane in Rd, forming a non-
degenerate triangle, i.e., not lying on the same line. Define the triangle with corners
A, B and C as

△(A,B,C) =

{
λ1A+ λ2B + λ3C | min{λj} ≥ 0,

3∑
j=1

λj = 1

}
.

Without loss of generality, we can consider A,B,C ∈ R2 for this chapter. We often
construct point-sets on special triangles, such as the equilateral triangle,

△E = △
(
(0, 0), (1, 0), (1/2,

√
3/2)

)
,

or the right-angle triangle,

△R = △ ((0, 0), (0, 1), (1, 0)) ,

as it is simpler than constructing point sets on an arbitrary triangle. It is thus useful to
be able to map a point set constructed on one triangle to any other arbitrary triangle.

Indeed, we can use an affine transformation which preserves the ratios of the lengths
of parallel line segments and ratios of distances between points lying on a straight line.
When mapping to a non-degenerate triangle △′, this transformation is one-to-one.

Let △ = △(A,B,C) and △′ = △(A′, B′, C ′) be two arbitrary triangles. Algorithm 4
explains how to transform a point x = (x, y) ∈ △ to x′ = (x′, y′) ∈ △′.
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This transformation would be applied to every point within △ to create a sampling
scheme on △′ [82].

Algorithm 4: Transforming a point from △ to △′.

Given △ = △(A,B,C), △′ = △(A′, B′, C ′), and a point x = (x, y) ∈ △:

1. Define the matrices

M(△) =

a1 b1 c1
a2 b2 c2
1 1 1

 and M(△′) =

a′1 b′1 c′1
a′2 b′2 c′2
1 1 1

 ,

where A = (a1, a2), B = (b1, b2), C = (c1, c2), A
′ = (a′1, a

′
2), B

′ = (b′1, b
′
2), and

C ′ = (c′1, c
′
2).

2. Let M(△,△′) =M(△′)M(△)−1 be our affine transformation matrix.

3. The point x′ = (x′, y′) are the first two components of the matrix-vector product

(x′, y′, z′) =M(△,△′)

x′y′
1

 . (5.1)

4. Return x′.

We illustrate the affine transformation in Figure 5.2. The first four points of the scram-
bled triangular van der Corput sequence are generated on the equilateral triangle △E,
and then mapped using Algorithm 4 to the right-angle triangle △R. Clearly, the ratios of
distances between points are preserved, as are the low-discrepancy properties of the point
set.

112



Figure 5.2: 4 points generated on the equilateral triangle and mapped to the right-angle
triangle using Algorithm 4.

5.1.1 Creating point sets on the triangle

Transforming a low-discrepancy point-set from [0, 1)2 to △(A,B,C).

The end goal of creating point sets over some domain Ω is to estimate an integral over
said domain, say,

∫
Ω
f(x) dx, where f : Ω→ R is integrable. If constructing point sets on

Ω directly is difficult or not possible, a natural and popular approach is to sample points
from the unit hypercube U(0, 1)d and formulate this integral as

µ =

∫
Ω

f(x) dx = λ(Ω)

∫
[0,1)d

f(ϕ(u)) du,

where λ denotes the Lebesgue measure and ϕ : [0, 1)d → Ω is a mapping such that ϕ(U) ∼
U(Ω) for U ∼ U(0, 1)d. That is, we can sample points from the domain Ω if we can find
such a mapping ϕ.

For Ω = △ the right-angle triangle with 0 ≤ x1 ≤ x2 ≤ 1, [69] give six possible
transformations ϕ to map points from U [0, 1)2 to uniformly over △. Note that this right
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angle triangle is not the same as △R, but as mentioned, transforming points generated on
one triangle to another triangle is very straightforward.

1. Transformation Drop. Points are kept if they are within △ and dropped if not. This
transformation is fast, but in higher dimensions a lot of points get lost - only 1 in
every s! points are kept when working in s dimensions.

2. Transformation Sort. Points lost by transformation drop are recovered by reordering
the coordinates of a point in the unit square such that x1 ≤ x2 to be within △. This
transformation is fast and continuous.

3. Transformation Mirror. We leave the points that are already in △ and reflect the
other ones at (1/2, 1/2). The resulting transformation is fast, but discontinuous.

4. Transformation Origami. Here, Transformation sort is recursively used within the
unit square. Starting by subdividing the unit square into b2m subsquares, where b
and m are user-chosen integer values, with each iteration increasing the side length of
the subsquare by a factor of b, until it is used on the unit square. This transformation
is discontinuous.

5. Transformation Root. This transformation is based on [23] and given by

ϕ(u1, u2) = (u1
√
u2,
√
u2).

This transformation is continuous and smooth, but the two sharp corners of the
triangle are treated in different ways.

6. Transformation Shift. For each point, draw a straight line with slope -1 through the
point, and then the point is moved halfway on this line towards the closest axis. This
results in

ϕ(u1, u2) =

{
(u1 − (1− u1)/2, u2 − (1− u2)/2) if u1 ≥ 1− u2,
(u1 − u1/2, u2 + (u2/2) otherwise.

This transformation is fast and continuous, but no generalization to higher dimen-
sions exists.

In our numerical experiments later in this chapter, we use the transformation “root”
on the bivariate Sobol’ sequence as well as on pseudo-randomly generated numbers. We
use this choice of transformation as it is smooth, continuous, fast and can be extended to
go from higher-dimension cubes to simplexes.
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Inverse Rosenblatt transformation

To sample from any multivariate distribution, we can use the inverse Rosenblatt transform
[73]. In order to sample (U1, U2) ∼ U(△E), we first sample U1 and then U2 | U1. The
algorithm for sampling from △E is given in Algorithm 5.

Algorithm 5: Inverse Rosenblatt transformation to sample from U(△E)

1. Sample V1, V2 ∼ U(0, 1).

2. Set

U1 =

{√
V1/2, if V1 ≤ 1/2,

1−
√

(1− V1)/2, otherwise.

3. Set

U2 =

{
V2U1 tanπ/3, if U1 ≤ 1/2,

V2(1− U1) tanπ/3, otherwise.

4. Return (U1, U2).

The algorithm described here is used in our implementation of the randomized trian-
gular van der Corput sequence, which will be explained later in this chapter, in Algorithm
10.

Lattice constructions

Basu and Owen [7] give a rank-2 lattice construction for points on the triangle. The process
to sample n points is described in Algorithm 6.
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Algorithm 6: Rank-2 Triangular Lattice of Basu and Owen [7]

Assume a sample size n, an angle α such that tan(α) is a quadratic irrational
number, i.e., tan(α) = (a+ b

√
c)/d for b, d ̸= 0 and c > 0 not a perfect square,

and thus badly approximable (e.g., α = 3π/8), and an optional random vector
U ∼ U(−0.5, 0.5)2 for a random shift, which transforms the otherwise
deterministic points so that x ∼ U(△R) for all x ∈ P . The point-set Pn is then
obtained by rotating the lattice counterclockwise by α and intersecting with △R,
as follows:

1. N ← ⌈
√
2n⌉+ 1

2. Let P = {−N, . . . , N}2 and set x← (x+ U) for x ∈ P .

3. Set x←
(
cosα − sinα
sinα cosα

)
x/
√
2n for all x ∈ P .

4. Set Pn = P ∩△R.

5. If |Pn| ≠ n, add or remove |Pn| − n points in △R to Pn. In this step, up to
O(log(n)) arbitrarily chosen points can be added or removed without worsening the
discrepancy.

6. Return Pn.

In our numerical experiments, we also consider a rank-1 lattice with generating vector
z = (1, 182667) [16]. The idea behind this rank-1 lattice is explained in more detail in the
working paper [21].

An issue with this construction is that it is not extensible, that is, if the n points are
generated and a larger sample size of n1 > n points is required, a new point set of size n1

must be generated, rather than just the n1 − n additional points. Creating an extensible
triangular lattice based on the van der Corput sequence to mitigate this is possible [38].
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5.2 Stratified sampling based on the triangular van

der Corput sequence

5.2.1 The triangular van der Corput sequence of Basu and Owen

Recall from Section 2.2.1 that the ith point of the one-dimensional van der Corput sequence
in base b is given by ui = ϕb(i− 1) where the radical inverse function ϕb is defined as

ϕb(i) =
∑
k≥0

dkb
−k−1, i =

∑
k≥0

dkb
k ∈ {0, 1, . . . }.

With this formula, the van der Corput sequence places points at the left-most boundaries
of each of the intervals [b−m, b−m+1). Similarly, the triangular van der Corput sequence of
Basu and Owen [7], which is based on the van der Corput sequence in base 4, replaces the
intervals with bm = 4m congruent sub-triangles and places the points in the centre of each
terminal sub-triangle. Specifically, let T = △(A,B,C) be the triangle which we wish to
generate points on. Define the sub-triangle of T with index d for d ∈ {0, 1, 2, 3} as

T (d) =


△
(
B+C
2
, A+C

2
, A+B

2

)
, d = 0,

△
(
A, A+B

2
, A+C

2

)
, d = 1,

△
(
B+A
2
, B, B+C

2

)
, d = 2,

△
(
C+A
2
, C+B

2
, C
)
, d = 3.

(5.2)

For the ith point in the sequence, write the base 4 representation of i ≥ 0 as i =
∑

k≥0 dk4
k.

This representation has at most Ki = ⌈log4(i) + 1⌉ non-zero digits, which means that the
expansion is finite, and we do not have to infinitely divide the triangle into sub-triangles.
The original construction for the triangular van der Corput sequence in [7] obtains the ith

triangular point by mapping the integer i to the midpoint of the triangle T (d0, . . . , dKi
),

which is recursively defined by T (dk, dk+1) = T (dk)(dk+1), where the midpoint function
mdpt(△(A+B+C)) = (A+B+C)/3 component-wise, as detailed in Algorithm 7. For ex-
ample, if we have T = △R = △ ((0, 0), (0, 1), (1, 0)), then T (2, 3) = T (2)(3) = T ′(3), where
T ′ = △((0, 0.5), (0, 1), (0.5, 0.5)). Then, T ′(3) = △((0.25, 0.5), (0.25, 0.75), (0.5, 0.5)).
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Algorithm 7: Algorithm for generating points from the triangular van der Corput
sequence

Given input n ≥ 1 and target triangle △(A,B,C), generate the first n points,
outputted in an n× 2 array x, as follows:

1. For i = 1, . . . , n:

(a) Compute (d0, . . . , dKi
) such that i− 1 =

∑Ki

k=0 dk4
k;

(b) Initialize T = △(A,B,C);

(c) For j = 0, . . . , Ki,

Update T = T (dj) using (5.2);

(d) Set x[i] = mdpt(T);

2. Return x.

In other words, Algorithm 7 generates a van der Corput sequence in base 4, and each
digit of the base 4 expansion denotes which sub-triangle the point lies in. Advantages of
this method include that since it is based on the van der Corput sequence, it is extensible,
balanced, can be modified to be randomized, and it is easily implemented.

However, when implementing the algorithm as originally described, once the terminal
sub-triangles are identified, placing the sampling points at the centre of each results in
points that suffer from poor projection properties. For example, consider the right-angle
triangle. If T = △ ((0, 0), (0, 1), (1, 0)), such as in Figure 5.1, and Pn is the point-set
consisting of the first n points produced by Algorithm 7 for some n = 4k and k > 2, then
the projections of Pn onto either of the two axes contain 2

√
n = 2k+1 < n points [38].

That is, the one-dimensional projections have non-unique points, which will lead to poorer
integration results, especially for functions with low effective dimension where the majority
of the variance of the function is captured by one-dimensional projections. This behaviour
where the one-dimensional projections contain non-unique points can also be observed in
the equilateral triangle, as seen in Figure 5.4.

To improve the one-dimensional projections of the sequence, we propose a modification
to the triangular van der Corput sequence, where we will use the terminal sub-triangles
identified by the method to design a stratified sampling scheme.

We first explain a connection between stratified sampling and the nested scrambling
of Owen [60] in the one-dimensional case. This will allow us to then propose an efficient
implementation of nested scrambling that highlights this connection with stratified sam-
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pling. More precisely, we show that nested scrambling is a way to implement an extensible
stratified estimator based on a stochastic but balanced allocation. Since the triangular
van der Corput sequence is a mapping from the one-dimensional van der Corput sequence
in base 4 to the two-dimensional space, it is straightforward to transpose our proposed
scrambling implementation in one dimension to a randomization method for the triangular
van der Corput sequence.

We now describe how to implement the scrambled van der Corput sequence as stratified
sampling, and then map this sequence to a triangle.

5.2.2 Stratified sampling

A simple way to reduce the variance of an estimator, instead of sampling randomly through-
out the unit interval [0, 1), is to stratify the unit interval into equally sized subintervals of
length b−m for some positive integers b and m. If we allocate an equal number of points
uniformly and independently into each of these subcubes, then this is stratified sampling
with proportional allocation by area, which is guaranteed to have a lower variance than
regular Monte Carlo [47, p. 126]. That is, the RQMC estimator in this case would be
equivalent to the stratified sampling estimator. If n is the total number of points, then we
have bm strata of size b−m each with an equal number of points (nb−m points) allocated in
each stratum, then the stratified sampling estimator, µ̂stratified, when estimating a function
h, is

µ̂stratified =
bm∑
j=1

b−m

nb−m∑
i=1

1

nb−m
h(ui,j)

=
bm∑
j=1

nb−m∑
i=1

1

n
h(ui,j)

=
1

n

bm∑
j=1

nb−m∑
i=1

h(ui,j)

=
1

n

n∑
l=1

h(ul),

which is equivalent to the RQMC estimator with the aforementioned point set. The vari-
ance of this estimator is Var(µ̂stratified) = 1

n

∑bm

j=1 b
−mσ2

j = 1
nbm

∑bm

j=1 σ
2
j , where σ

2
j is the

variance within the jth subinterval.

119



In the context of this section, since the number of points is not necessarily an integer
power of b, we refer to a base b stratified sampling scheme as a sampling scheme where for
any number of points n, if we subdivide the unit interval into subintervals with length b−m

for any positive integerm, the number of points within each subcube is different by at most
one from the number of points within any other subinterval. This gives us a connection
with stratified sampling to give a more efficient implementation of nested scrambling, which
we will explain in the next section.

5.2.3 Nested scrambling as stratified sampling

We now show that we can implement a nested scrambled van der Corput sequence as
stratified sampling on the unit interval, as the two methods produce point sets with the
same joint distribution.

First, we show that the scrambled van der Corput sequence in base b is an (0, 1)−sequence
in base b. Since scrambling does not change the equidistribution properties of a point set
or sequence, it is sufficient to show that the deterministic van der Corput sequence is a
(0, 1)−sequence.

Lemma 5.2.1. Any point set Pn that is a subsequence of n = bm consecutive points from
a van der Corput sequence constructed in base b is an (0,m, 1)− net in base b.

Proof. If we consider the first m digits in the base b expansion of each point ui ∈ Pn,
there is exactly one point with each of the unique bm combinations of digits. That is,
there is exactly one point in each of the m-elementary intervals and thus, by definition, an
(0,m, 1)− net in base b and thus Pn is m-equidistributed in base b.

Lemma 5.2.2. Any point set Pn that is a subsequence of n consecutive points from a
van der Corput sequence constructed in base b can be viewed as the first n points of a
(0, 1)-sequence.

Proof. A (0, 1)-sequence in base b is a sequence of points for which each b-ary segment of
the form ulbk , . . . , u(l+1)bk with k ≥ 0 and l ≥ 0 is a (0,m, 1)-net in base b. Since every
point set Pn that is a subsequence of n = bm consecutive points from a van der Corput
sequence constructed in base b is an (0,m, 1) − net in base b, the said b-ary segment is a
(0,m, 1)-net and the result follows.

Lemma 5.2.3. Let µ̂scr,n = 1
n

∑n
i=1 f(ũi) be the estimator where ũi, i = 1 . . . n be the first n

points of a scrambled van der Corput sequence in base b. If n = bm for some positive integer
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m, then µ̂scr,n corresponds to the estimator that uses stratified sampling with proportional
allocation.

Proof. Since the scrambled van der Corput sequence with exactly bm points is a (0,m, s)−net
in base b, its equidistribution properties mean that there is exactly one point in each of the
bm subintervals, and the scrambling as defined in 2.4.4 has the point placed independently
and uniformly within each of the bm subintervals. This is exactly stratified sampling with
proportional allocation.

However, in general, n is not a power of b, in which case the number of points in
the intervals [jb−l, (j + 1)b−l) are different by at most one from each other for l ≤ m for
m = ⌊logb n⌋.This is true for both our stratified sampling scheme by definition, as well as
the van der Corput sequence, by property of the (0, 1)−sequence.

We also introduce the following notation to help define our stratified sampling algo-
rithm:

n = λbm + r, λ = ⌊n/bm⌋, 0 ≤ r < bm, q = ⌈logb n⌉, M = bq, (5.3)

and r = kb+ j, where 0 ≤ j < b.

We show formally in Proposition 5.2.4 that we can write µ̂scr,n for any sample size n
as a stratified sampling estimator over strata of the form [jb−l, (j + 1)b−l) for l = 1, . . . ,m
that is based on a stochastic allocation N1, . . . , NM , where Nj is the number of points in
[jb−q, (j + 1)b−q). That is, Nj counts the number of points (either 0 or 1) in the smallest
meaningful stratum – strata of size b−q or smaller can have at most 1 point, thus there is
no reason to subdivide further.

The scrambled van der Corput sequence satisfies the following two properties:

1. Nj ∈ {0, 1}, j = 1, . . . ,M ,
∑M

j=1Nj = n, and

2. The Nj’s have the same marginal distribution.

To define the scrambled estimator, we simply need to generate the vector of Nj’s with
the properties listed above. Rather than obtaining these Nj via scrambling, we propose a
more efficient algorithm to sample a vector of Nj’s given a base b and a number of points
n in Algorithm 8.
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Algorithm 8: Sample N1, . . . , NM to compute µ̂scr,n.

Given input n ∈ N and b ≥ 2, sample N1, . . . , NM as follows:

1. Initialize n and b. Calculate the constants q,m,M, λ, r, k, j as in (5.3).

2. If M = n, return Nj = 1 for j = 1, . . . ,M .

3. If m = 0, then n = λ, and M = b. Randomly choose λ of the b Njs to be 1 and
b− λ of the Nj’s to be 0, and return Nj for j = 1, . . . ,M .

4. If m > 0, then we recursively generate the Nj’s in each of the b sub-intervals of the
form [jb, (j + 1)b), j = 0, . . . , b− 1 as follows:

(a) Generate a vector of ni’s of length b that sums to n with b− r entries of λbm−1

and r entries of λbm−1 + 1:

i. Randomly choose a subset I of j indices from {1, . . . , b}.
ii. If i ∈ I, then ni = λbm−1 + k + 1.

iii. Otherwise, ni = λbm−1 + k.

(b) For each i = 1, . . . , b, we generate N(i−1)bm+1, . . . , Nibm by restarting at Step 1
with the same base b but with n = ni, and q = m. At this step, we have b
recursive calls to the function.

Note that in Step 4b, when we return to Step 1, if ni is a power of b, q is not
guaranteed to be equal to ⌈logb n⌉, as it can also take the value ⌈logb n⌉+ 1.
For example, this case may arise when sampling n = 10 points in base 3. We
would need to allocate these 10 points into 27 strata, so we will need to, at this
step, put 3 points into 9 strata. So even though 3 = 31, we would want q = 2 as
9 = 32: q is counting how many times we need to subdivide the unit interval.

After acquiring the Nj using Algorithm 8, we must generate the point set. This process
is straightforward. To generate the point set based on the Nj, for every j = 1 . . .M , if
Nj = 1, generate a point uniformly in the interval [jb−q, (j + 1)b−q). If Nj = 0, do not
generate a point in the interval.

Proposition 5.2.4. The point set created using the algorithm described in Algorithm 8 to
define the Nj’s is unbiased and has the same joint distribution as the scrambled van der
Corput sequence.

Proof. To prove Proposition 5.2.4, we only need to show that the point set created using
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Algorithm 8 has the same joint distribution as the scrambled van der Corput sequence, as
we know the scrambled van der Corput sequence is unbiased [22].

We show this property by deriving the joint pdf of our point set, and showing that it is
the same as the joint pdf of a one-dimensional scrambled van der Corput sequence. Recall
from earlier chapters and [22,90], we have the following definitions which are used to define
the joint pdf, which we will use again here:

Definition 5.2.5. Let Pn = {U1, . . . , Un} be a point set in [0, 1) and b, i, k ∈ N, b ≥ 2.
Then,

1. Nb(i;Pn) is the number of ordered pairs of distinct points (Ul, Uj) in Pn such that
γb(Ul, Uj) = i,

2. Mb(k;Pn) is the number of ordered pairs of distinct points (Ul, Uj) in Pn such that
γb(Ul, Uj) ≥ k, and

3. Nb(k;Pn, Ul) =
∑

e∈{0,1}(−1)|e|Mb(k + e;Pn, Ul).

As well, the joint pdf of a one-dimensional scrambled van der Corput is as follows:

ψ(x, y) =

{
Nb(i;Pn)
n(n−1)

b1+i

(b−1)
, if i <∞,

0, if i =∞.

We show that the scrambled van der Corput point-set and the point set constructed
using the proposed stratified sampling method based on Algorithm 8 yield the sameMb(k)
as defined in Definition 5.2.5. This means that Nb(i) and thus the joint pdf ψ(x, y) for all
pairs of points (x, y) would then be the same for both methods.

From Chapter 4, since the van der Corput sequence in base b is equivalent to a one-
dimensional Halton sequence, we know that

vdCMb(k;Pn) =

⌊
n− 1

bk

⌋(
2n−

⌊
n− 1

bk

⌋
bk − bk

)
. (5.4)

For the stratified sampling estimator, for any k, we can write n = qbk + r, where q =
⌊

n
bk

⌋
and 0 ≤ r < bk. By the construction of the stratified sampling estimator, we divide the
unit interval into bk segments and any pairs of points in the same segment will share at
least k initial common digits. There are bk − r of these segments with q points, and r
segments with q + 1 points. Thus, the number of ordered pairs of points that are in the
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same segment is (bk−r)q(q−1)+r(q+1)q. Substituting in r = n−qbk, we haveMb(k;Pn)
for the point set created via stratified sampling:

SSMb(k;Pn) = 2nq − q2bk − qbk.

Now, we substitute in q =
⌊

n
bk

⌋
and simplify and get

SSMb(k;Pn) = 2n
⌊ n
bk

⌋
−
⌊ n
bk

⌋2
bk −

⌊ n
bk

⌋
bk =

⌊ n
bk

⌋(
2n−

⌊ n
bk

⌋
bk − bk

)
.

This is very similar to (5.4), except with
⌊
n−1
bk

⌋
rather than

⌊
n
bk

⌋
. We show that SSMb(k;Pn) =

vdCMb(k;Pn) by considering the following two cases:

1.
⌊

n
bk

⌋
=
⌊
n−1
bk

⌋
. This case occurs when r ̸= 0. If this is the case, then we can

immediately conclude SSMb(k;Pn) =
⌊
n−1
bk

⌋ (
2n−

⌊
n−1
bk

⌋
bk − bk

)
= vdCMb(k;Pn) and

we are done.

2.
⌊

n
bk

⌋
̸=
⌊
n−1
bk

⌋
. In this case, r = 0 and

⌊
n
bk

⌋
= n

bk
= q and

⌊
n−1
bk

⌋
= n

bk
− 1 = q − 1.

Then, we can write SSMb(k;Pn) as:

SSMb(k;Pn) =
n

bk

(
2n− n

bk
bk − bk

)
=
n

bk
(2n− n− bk) = n2

bk
− n.

Similarly, we can write vdCMb(k;Pn) as:

vdCMb(k;Pn) =
( n
bk
− 1
)(

2n−
( n
bk
− 1
)
bk − bk

)
=
( n
bk
− 1
)
(2n− n+ bk − bk)

=
( n
bk
− 1
)
n =

n2

bk
− n.

Thus, SSMb(k;Pn) = vdCMb(k;Pn), as needed.

Hence, we find that SSMb(k;Pn) = vdCMb(k;Pn) and thus SSNb(k;Pn) = vdCNb(k;Pn) for
all k. This implies SSψ(x, y) = vdCψ(x, y) for all (x, y) ∈ [0, 1)2. Thus, the stratified
sampling estimator has the same distribution as the scrambled van der Corput estimator.

Due to the connection between our stratified sampling estimator and nested scrambling,
although n is not necessarily an integer power of b and thus it is not stratified sampling
with proportional allocation, we can still apply results about the variance of scrambled
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estimators for (0, 1)−sequences [31]. That is, even though the variance is no longer guar-
anteed to be no higher than for Monte Carlo for any function, the superior asymptotic
bounds for the variance of a scrambled estimator apply.

5.2.4 Comparative efficiency analysis for fixed n

Using the above connection between scrambling and stratified sampling, for fixed n we can
implement a scrambling by sampling the Nj’s as above and once the intervals where a point
will be placed have been identified, we simply place a point uniformly in that interval. This
approach is computationally more efficient than proceeding via recursive permutations, as
is required when implementing nested scrambling.

The recursive Algorithm 8 for stratified sampling has ⌈logb(n)⌉ layers, and each call
to the function has b sub-calls. Thus, in total, there are b + b2 + . . . + b⌈logb(n)⌉ = O(n)
operations. For nested scrambling of the van der Corput sequence, we need to scramble
the first ⌊logb(n− 1)⌋ + 1 digits for each of the n points. This means that the number of
operations needed is O(n log(n)). In addition, permutations have to be stored in a lookup
dictionary. There are b combinations of 1 digit, b2 combinations of 2 digits, and so on.
Thus, the amount of storage needed for nested scrambling is b+2b2+ . . .+(⌊logb(n−1)⌋+
1)b⌊logb(n−1)⌋+1 = O(n log(n)). Another advantage for the stratified sampling algorithm
is that it does not require any additional storage for a lookup dictionary, as the nested
scrambling algorithm does.

Figure 5.3 shows the runtime needed to generate n = 2000, 4000, . . . 100, 000 points
from the scrambled base 4 van der Corput sequence needed to construct point sets on the
triangle. Our stratified sampling implementation is compared with Owen’s nested scram-
bling. Our stratified sampling estimator is more computationally efficient, and increases
in runtime occur only at integer powers of 4.

5.2.5 Extending a stratified estimator

The above approach for stratified sampling works well when n is fixed. There, we used
the connection between stratified sampling and nested scrambling to give a faster imple-
mentation of nested scrambling. Now, we use the connection between stratified sampling
and nested scrambling to be able to extend a stratified estimator. Typically, stratified
sampling is applied for fixed n and if a larger point set a needed, a new one is generated
from scratch instead of only generating the additional points. Here we argue that the
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Figure 5.3: Runtime Comparison of the time it takes to generate a scrambled van der
Corput sequence in base 4 using Owen’s Scrambling vs Stratified Sampling.
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nested permutations used for scrambling can be thought of as a way to allow for a strati-
fied estimator to be extended easily, i.e., for points to be added without having to restart
fresh with a completely new stratified estimator by recursively choosing a stratum at each
level that has the least number of points, as explained in Algorithm 9. For simplicity, we
deal directly with the strata N1, .., NM as generated by Algorithm 8 instead of the point
set Pn, since after generating the strata, it is simply a matter of placing a point uniformly
within each stratum j with corresponding Nj = 1. This algorithm essentially works by
recursively subdividing the interval into b subintervals, and randomly choosing one with
the least points to add the next point into.

If we are working directly with the point set and not the strata, then we must modify
Algorithm 9 by changing Step 1a so that we first determine which bq strata are equivalent to
1, and set the rest to 0. Then in the following step, when putting 2 points within the same
interval of size b−q, since one of the Nj would already be set to 1 based on the point that
is already there, we only select the second subinterval of size b−q+1 without replacement.
Likewise, before Step 2a, we must first populate N1, .., NM based on the existing point set.
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Algorithm 9: Extending a stratified estimator

Given N1, .., NM be indicators for M strata where M is defined as in (5.3) and∑M
j=1Nj = n, a base b, we sample one additional point as follows:

1. If n =M , then we have to increase the number of strata from M = bq to M = bq+1

(a) Initialize N1, . . . , Nbq+1 = 0

(b) Randomly select an interval of size b−q to have 2 points in. For this interval,
subdivide into b intervals, and randomly select two of these subintervals to
have a point, i.e., Nj = 1.

(c) For the other intervals of size b−q, subdivide into b intervals, and randomly
select one of these intervals to have a point, i.e., Ni = 1.

(d) return N1, . . . , Nbq+1

2. If n ̸=M , then we do not need to increase the number of strata. We work with
N1, .., NM as follows:

(a) Divide the unit interval into b subintervals, such that each of these
subintervals is represented by M/b strata.

(b) Let Lj =
∑M/b

i=1 N(M/b)(j−1)+i for j = 1, . . . , b

(c) The Lj will differ by at most one. Randomly pick a j from the Lj that have
the minimum number of points.

(d) If Lj = 0, randomly choose one of the M/b strata to place a point in.

(e) If Lj > 0, then repeat this algorithm from Step 1 on the jth subinterval.

We now illustrate Algorithm 9 with an example showing how to extend a scrambled
estimator from n = 7 to n = 10 when working in base 3. Let P7 be the original point set
with 7 points. Denote by πl the number of points in [(l − 1)/3, l/3) for l = 1, 2, 3 within
P7. That is, π1 = N1 + N2 + N3, π2 = N4 + N5 + N6, and π3 = N7 + N8 + N9. That is,
πl and Nj both enumerate strata, just of different sizes. Given that 7 = 2 × 3 + 1, when
constructing the estimator for n = 7 we would have had to sample N1, . . . , N9 such that
one of π1, . . . , π3 is equal to 3 and the other two are equal to 2. Say we have π1 = π2 = 2
and π3 = 3. Then N7 = N8 = N9 = 1 and we also need to choose two indices in each of
{1, 2, 3} and {4, 5, 6} whose corresponding Nj will be set to 1. Say we choose 1, 3, 4, 5.

If we then want to add 3 points to go to n = 10 = 1 × 9 + 1, it means we are now
working with a stratified estimator over strata of size 1/27 instead of 1/9. In this case, we
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have that πℓ now represents the total number of points in each interval of size 1/9, and
only one of them will be equal to 2 with the other 8 being equal to 1.

Rather than jumping directly to n = 10, let us explain how each point is added.

1. (n = 8) Choose which of the two intervals of size 1/9 with no point will have a point
uniformly sampled in it

2. (n = 9) Sample a point uniformly in the last interval of size 1/9 that has no point

3. (n = 10) Choose one of the 9 intervals of size 1/9 which will have a second point
placed in it (i.e., which π1, . . . , π9 will be equal to 2, as they are currently all equal to
1); determine in which of the intervals of size 1/27 is the point that is already placed
in this interval of size 1/9; randomly choose one of the two empty intervals of size
1/27 to place the second point and then place a point uniformly in it.

Since intervals are always chosen without replacement within the group of b intervals
of size b−q are currently working with, it is clear that if we initially generate a random
permutation of [1, . . . , b], we are simply deciding beforehand in which order points will be
added within this group of sub-intervals.

5.2.6 From the one-dimensional van der Corput sequence to the
triangular van der Corput sequence

It is now straightforward to use the ideas presented thus far for the one-dimensional van
der Corput sequence to construct a scheme to sample n points on an arbitrary triangle.
The “strata” are now the sub-triangles, and we can use Algorithm 8 to sample the number
of points in each sub-triangle, say N1, . . . , NM . Then, apply Algorithm 5 to sample Nj

(either 0 or 1) points in each sub-triangle for j = 1, . . . ,M . This estimator can also be
extended using the method described in Section 5.2.5.

An algorithm similar to Algorithm 7 can be used to sample in the triangle – the steps
are described in Algorithm 10. Again, the sampling scheme subdivides the triangle into a
finer and finer partition of triangles until each sub-triangle gets at most one point. The
differences are that we now fill the sub-triangles in a non-deterministic order (that still
satisfies the equidistribution properties), and as well, the points within each sub-triangle
are uniformly placed rather than put in the centre.
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Algorithm 10: Mapping the stratified sampling estimator to the triangle

Given input n ≥ 1 and target triangle △(A,B,C), generate the first n points,
outputted in an n× 2 array x, as follows:

1. Generate a vector of indexes I1, . . . , In using Algorithm 8 with base b = 4. Each of
the indexes 0 ≤ Ii ≤ 4⌈log4n⌉ − 1, so we know that the base 4 representation is finite
for each index. The representation has at most Ki = ⌈log4(i) + 1⌉ digits, which
means that the expansion is finite, and we do not have to infinitely divide the
triangle into sub-triangles.

2. For i = 1, . . . , n:

(a) Compute (d0, . . . , dKi
) such that Ii =

∑Ki

k=0 dk4
k;

(b) Initialize T = △(A,B,C);

(c) For j = 0, . . . , Ki,

Update T = T (dj) using (5.2);

(d) Set x[i] to be a random uniformly sampled point within T . In our
implementation, we use the Inverse Rosenblatt transformation of Algorithm 5;

3. Return x;

This avoids the poor projection properties of the original triangular van der Corput
sequence as seen in Figure 5.4, as well as providing a way to randomize the point set which
allows for error estimation.
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Figure 5.4: Examples of the triangular van der Corput points generated on △E, with
n = 10 (top) and n = 16 (bottom). The images on the left have each point at the centre
of the terminal sub-triangle, while the images on the right have the points scrambled. For
the n = 10 case, the sub-triangles with points are selected via stratified sampling.

Proposition 5.2.6. The estimator µ̂scr,n is unbiased.

Proof. This is equivalent to showing that each point is uniformly distributed over the
triangle. Without loss of generality, for the equilateral triangle bounded by (0, 0), (1, 0)
and (0.5, sinπ/3), the marginal pdf f for the point u = (u1, u2) uniformly distributed over
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△E is:

f(u) =


2

sinπ/3
if 0 ≤ u1 ≤ 1/2 and u2 ≤ u1 tanπ/3

or 1/2 ≤ u1 ≤ 1 and (1− u1) tanπ/3
0 otherwise.

Given n ≥ 1, for the stratified sampling estimator, we subdivide the triangle into 4q sub-
triangles each with area 2

sin(π/3)4q
. Since each sub-triangle is chosen with equal probability

(as the Nj’s have the same marginal distribution), and then we uniformly sample within
each of the n sub-triangles, the value of the pdf f(u) within the sub-triangle is equal to

the reciprocal of its area, sin(π/3)4q

2
. Then, a point sampled using the stratified sampling

algorithm has marginal pdf g(u).

g(u) =


sin(π/3)4q

2×# sub-triangles
if u = (u1, u2) is inside the triangle bounded by

(0, 0), (1, 0) and (0.5, sin π/3),

0 otherwise.

=

{
2

sinπ/3
if (u1, u2) is inside the triangle bounded by (0, 0), (1, 0) and (0.5, sin π/3),

0 otherwise.

Thus, since g(u) = f(u), the stratified sampling algorithm samples uniformly over the
triangle and thus the resulting estimator is unbiased.

5.3 Numerical experiments on the triangle

Now that we have described our proposed construction for a point set on the triangle, we
compare its performance on numerical integration problems with existing constructions. As
mentioned, there are very few, if any, numerical experiments on the triangle that compare
RQMC integration variances, so we hope that these experiments give insight towards the
performance of the various methods.

We use the following functions over △R as described in Section 2.5 to compare different
constructions on the triangle:

1. f1(x, y) = (|x− β|+ y)d from [69].
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2. f2(x, y) = cos(2πβ + α1x+ α2y), from [69].

3. f3(x, y) = xα3 + yα3 .

We compare the following randomized methods to estimate µj:

1. PRNG + root: This is equivalent to the MC method: we generate pseudo-random
points in the unit square and then apply the transformation “root” from [69],

2. rSobol’ + root: the Sobol sequence, randomized with a digital shift with transforma-
tion root [69] applied,

3. rLattice1: the rank-1 lattice of [16,21], randomized with a shift,

4. rLattice2: the rank-2 lattice of Basu and Owen [7], randomized with a shift. This
method is not extensible, so a new point set must be generated every time n is
increased.

5. rvdC: the randomized triangular van der Corput sequence based on stratified sam-
pling.

The first n = 1000 points from these constructions are shown in Figure 5.5.
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Figure 5.5: First n = 1000 points of the point sets used in our experiments.
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For each method and each sample size n ∈ 24, 25, . . . 217, V = 25 randomizations were
used. The estimates are obtained as the sample average of the realizations, while the vari-
ance is estimated as the sample variance of the V independent draws. Figure 5.6 displays
the results. We can see from the results that the bivariate Sobol’ sequence mapped to
the triangle using transformation root is typically the best performing method on these
test functions. However, our stratified sampling method is approximately equal in perfor-
mance to the other RQMC methods. The variance reduction of stratified sampling is more
pronounced for functions where the within-strata variance is small and the between-strata
variance is larger. As well, nested scrambling has been shown to have significant variance
reductions for smooth functions. Thus, it is unsurprising that for the function f3, the
stratified sampling scheme had the best performance, as out of the three test functions
used, it is the smoothest function with the most between-strata variance.

5.4 Conclusion

In this chapter, we improved upon the triangular van der Corput sequence of Basu and
Owen by proposing a sampling scheme that uses their idea of recursively subdividing the
triangle, but with superior one-dimensional projections. We also showed that the scrambled
van der Corput sequence can be efficiently implemented using stratified sampling.

Future work in this area includes extending similar stratified sampling schemes onto
other surfaces, such as on the surfaces of spheres and simplexes. As well, we wish to explore
constructions and applications that require sampling on multiple triangles, such as objects
constructed as meshes of triangles. The stratified sampling algorithm can be implemented
in any base, and as such, it is also possible to create constructions on the triangle in higher
bases such as base 9 or 16.
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Figure 5.6: Estimates (left) and estimated variances (right) when integrating f1 (top), f2
(middle) or f3 (right). For each n, V = 25 randomizations were used.
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Chapter 6

Conclusion

This thesis is on the constructions and applications of (R)QMC point sets that have the
property of negative dependence. We found constructions for point sets with good neg-
ative dependence properties and evaluated how these constructions perform on a variety
of numerical integration problems, comparing the performance of these constructions with
each other and with Monte Carlo.

In Chapter 3, we explored using the Cb(k;Pn) values to measure the quality of various
point sets and compare their dependence properties. We gave numerical examples on
the Sobol’ and Faure sequences, primarily using two-dimensional projections, to illustrate
the ability of the Cb(k;Pn) values to differentiate between “good” and “bad” point sets
in terms of their integration power when used as a scrambled RQMC estimator. We also
evaluated several generalized Faure sequences constructed using the permutations originally
introduced in [25] for the van der Corput sequence as factors. Future research in this area
includes improving the algorithm for calculating the Cb(k;Pn) values to be more efficient
in terms of both runtime and memory.

In Chapter 4, we proved the property of negative dependence for the Halton sequence
and introduced a multi-base analogous to Cb, and based on this result, propose using
a multi-base scrambling for randomization that is not currently used in practice. We
derived a formula for the joint pdf for the Halton sequence, as well as give a set of per-
mutations to generalize the Halton sequence by optimizing the dependence properties of
low-dimensional projections of the Halton sequence. We also evaluated permutations for
the Halton sequence based on the ones introduced in [25].

In Chapter 5, we focused on the construction of low-discrepancy point sets on trian-
gles. Specifically, we improve upon the triangular van der Corput sequence of Basu and
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Owen by applying the scrambled van der Corput sequence rather than the deterministic
van der Corput sequence to greatly improve the one-dimensional projection properties of
the sequence. We provide an efficient implementation of the scrambled van der Corput
sequence using stratified scrambling, and show that this connection between scrambling
and stratification can also be used to extend a stratified estimator. We give numerical
results comparing various constructions on the triangle. Future work in this area includes
extending the stratified sampling estimator to higher-dimensional domains, such as on the
surfaces of simplexes or spheres.
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Appendix A

Factors for the Halton sequence

Dim DL Factor FL Factor c (DL) c (FL) c (Halton)
1 1 1 0.998999 0.998999 0.998999
2 2 1 0.999003 0.99901502 0.99901502
3 2 3 0.999003 0.99901502 0.99901502
4 2 3 0.999003 0.99901502 0.99903504
5 9 4 1.01784985 1.1921041 1.08242643
6 11 9 1.16955355 1.77329329 1.22797998
7 12 7 1.24643043 1.65234034 1.69231632
8 1 5 1.37660861 1.61851451 1.69231632
9 21 9 1.30998198 1.43913514 1.69231632
10 25 18 1.63388989 1.58776376 2.35755756
11 5 18 1.63388989 1.94652252 2.66301502
12 22 8 1.63593994 1.94447247 1.9823984
13 32 13 1.63388989 2.33090691 3.55171171
14 28 31 1.77944344 2.04594995 2.089001
15 9 9 1.77944344 1.81736937 2.60253854
16 34 19 1.73946747 2.10437638 2.76551752
17 17 36 1.63388989 1.79174374 3.30160561
18 10 33 1.65029029 2.02544945 4.43015816
19 20 21 2.65481481 1.81121922 3.49226026
20 8 44 1.73639239 2.0849009 4.58186186
21 36 43 2.35960761 2.38010811 5.03082282
22 6 61 2.26120521 2.2407047 5.79651652
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Dim DL Factor FL Factor c (DL) c (FL) c (Halton)
23 3 60 2.26120521 1.9741982 3.87664464
24 7 56 2.26120521 2.67326527 5.68273874
25 6 26 2.26120521 2.27043043 5.23377778
26 7 71 2.26120521 2.74399199 5.57921121
27 3 32 2.26120521 2.2243043 9.69571171
28 8 77 2.26120521 2.2243043 10.1743984
29 7 26 2.26120521 2.2243043 10.64385986
30 95 95 2.33705706 2.79114314 11.1040961
31 32 92 2.33705706 2.2243043 5.36293093
32 21 47 2.33705706 1.9208969 5.42238238
33 128 29 2.42725926 2.02954955 9.44150551
34 12 61 2.30425626 4.61671271 12.71338539
35 4 57 2.30425626 2.25915516 9.95401802
36 26 69 2.25608008 2.55846246 10.84066466
37 43 115 2.25608008 3.77721722 15.21342142
38 8 63 2.25608008 3.52096096 10.67153554
39 5 92 2.25608008 3.08122523 13.36325125
40 4 31 2.23967968 3.81001802 13.90856456
41 14 104 2.23967968 2.00494895 12.09837037
42 16 126 2.23967968 2.68044044 17.38954955
43 12 50 2.23967968 2.86802002 14.60660661
44 10 80 2.12795195 2.27863063 14.82493694
45 14 55 2.12795195 1.883996 21.80023223
46 27 152 2.07977578 1.8921962 22.27174374
47 69 114 2.07977578 2.56256256 14.66810811
48 3 80 2.07977578 2.59331331 10.56083283
49 11 83 1.9823984 2.44263463 15.74950951
50 47 97 1.9823984 2.56461261 25.7681041
51 68 95 1.86964565 5.17022623 26.27651652
52 63 150 1.72716717 2.44878478 21.63827828
53 162 148 1.70769169 2.78294294 24.75947948
54 109 55 1.70769169 2.47236036 23.33776977
55 65 80 1.97727327 2.1382022 17.52587788
56 8 192 1.84094494 2.13615215 19.00293894
57 12 71 1.84094494 1.93012212 19.58515315
58 15 76 1.84094494 2.10642643 27.73102703
59 261 82 1.64619019 3.78644244 28.35731732
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Dim DL Factor FL Factor c (DL) c (FL) c (Halton)
60 134 109 1.76714314 2.0767007 26.38106907
61 159 105 1.760993 2.181253 34.49927
62 41 173 1.64824 2.480561 26.66705
63 246 58 1.83992 2.391383 18.49043
64 13 143 1.695391 4.08165 22.95339
65 173 56 1.767143 2.44981 38.73467
66 100 177 1.779443 2.43751 38.83
67 40 203 1.755868 2.076701 25.90033
68 79 239 1.722042 2.386258 21.82586
69 226 196 1.82967 1.824545 23.36442
70 1 143 1.626715 4.374807 30.65132
71 80 278 1.835307 2.704016 43.21198
72 140 227 1.62774 1.890146 33.66387
73 52 87 1.895271 2.0316 29.02666
74 23 274 1.760993 2.419059 27.95038
75 82 264 1.760993 2.030575 31.7686
76 119 84 1.760993 2.503111 36.52779
77 382 226 1.699491 2.327832 37.60509
78 359 163 1.699491 2.139227 30.76613
79 80 231 1.699491 2.25198 34.58127
80 344 177 1.785594 2.24378 35.9015
81 54 95 1.757918 2.489786 27.85608
82 44 116 1.687191 1.955748 37.80497
83 336 165 1.676941 2.684541 39.34456
84 155 131 1.741518 2.082851 39.45629
85 239 156 1.716917 2.099251 46.36291
86 361 105 1.752793 3.162202 42.36428
87 43 188 1.746643 2.432384 42.8973
88 315 142 1.746643 2.010074 37.33961
89 92 105 1.746643 1.997774 40.95077
90 305 125 1.746643 2.490811 51.70739
91 43 269 1.746643 1.997774 51.43063
92 113 292 1.746643 2.64764 36.33611
93 159 215 1.664641 1.997774 32.13658
94 87 182 1.664641 2.213029 42.19823
95 108 294 1.687191 2.149477 41.87842
96 370 152 1.794819 2.085926 42.37351
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Dim DL Factor FL Factor c (DL) c (FL) c (Halton)
97 128 148 1.756893 2.086951 46.43671
98 94 144 1.721017 1.908597 36.91628
99 290 382 1.721017 2.109502 42.40836
100 108 194 1.781493 1.859395 38.15861
101 116 346 1.721017 2.187403 34.56692
102 80 323 1.721017 2.415984 42.84605
103 245 220 1.721017 1.82352 43.15355
104 373 174 1.736392 2.138202 48.38323
105 420 133 1.736392 2.350382 54.46573
106 158 324 1.677966 2.44776 55.50306
107 211 215 1.677966 1.954723 46.32396
108 430 246 1.767143 1.977273 46.46233
109 465 159 1.743568 4.715115 51.36195
110 337 337 1.828645 3.07815 56.52295
111 458 254 1.735367 1.995724 56.89196
112 333 423 1.681041 1.849145 52.18812
113 194 484 1.639015 2.310406 54.78861
114 233 239 1.727167 2.107451 60.92031
115 129 440 1.727167 2.292981 52.88719
116 410 362 1.622615 2.332957 44.30261
117 511 464 1.680016 2.383183 54.50673
118 524 376 1.750743 4.005798 61.97609
119 487 398 1.702567 3.148877 57.15642
120 66 174 1.697441 1.84607 54.83576

Table A.1: Factors fj found using c(2,Kd,w,s;Pn) values and the corresponding
c(2,Kd,w,s;Pn) value over all projections within window for the deterministic Halton se-
quence and permuted using FL factors and our factors for the first 120 dimensions.
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