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Abstract 

Fibre-reinforced polymer (FRP) bars have gained popularity in industry to reinforce concrete. 

They are noncorrosive, strong in tension, but they are less stiff than traditional steel bars and fail 

in a brittle manner. Therefore, the behaviour of concrete beams reinforced with FRP bars is 

different in many ways than the behaviour of traditional steel bars reinforced beams. Development 

of rational design provisions for these beams is essential for wide acceptance of FRP bars in 

industry and for safe designs of FRP reinforced concrete.  

In order to develop these design principles, a good analysis model for such structural elements is 

needed. Strut-and-tie (ST) modelling is one accepted way to analyze reinforced concrete deep 

members, however the classical ST method was developed for steel reinforced concrete, where the 

ST method is based on steel yielding. Such ST method cannot be directly applied to FRP reinforced 

concrete.  

Based on the work done by Krall (2014), the indeterminate strut-and-tie (IST) method developed 

initially for steel reinforced deep beams that does not assume steel yielding and includes the 

nonlinear behavior of concrete can predict good results for FRP reinforced deep beams. 

In this thesis, the IST methodology for FRP reinforced concrete is developed and analyzed. Several 

aspects are studied to be the most essential features of IST method, which are the proposed 

geometries for the ST models, the softened concrete stress-strain relationships, the assumed 

heights of the compression nodes (ℎ𝐶) and the softening factors for concrete struts (𝜁).  

Different ways to compute these features can affect the results predicted by the IST method, thus 

four ST models for deep beams with vertical reinforcement, four softened concrete stress-strain 

relationships, four approaches of ℎ𝐶 , and four approaches of softening factors are developed. Some 

of the approaches and models are modified from existing ones, and the others are newly proposed 

in this research.   

The approaches and models are analyzed with specimens tested in different research programs 

having different reinforcement design, different beam sizes and different slenderness ratios, in 

order to find if the approaches and models can work properly with the IST method on different 

kinds of deep beams. 

As a result, an improved IST method is proposed, which can predict accurate results and can 

capture how different factors affect the shear strengths. Although the selected combinations of the 

approaches and models for the features are slightly different for beams with and without vertical 

reinforcement, the proposed IST method is proved to work properly on all kinds of deep beams. 

It is also found that the proposed IST method cannot properly predict the shear strength of FRP 

reinforced concrete slender beams, thus it shall only apply to find the shear strength of FRP 

reinforced concrete deep beams governed by arch action.  
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1. Introduction 

This chapter briefly introduces what this research focuses on, why it is important, and what are the 

objectives and scopes of this research. 

1.1 Overview 

Fibre reinforced polymer (FRP) is light-weight, non-corrosive, linear elastic, and brittle. Because 

FRP bars are light-weight and non-corrosive, they are gained popularity as reinforcement to 

concrete structures. However, because they are brittle and generally have lower stiffness, the 

design and analysis strategies of FRP reinforced concrete (RC) members are different from that of 

steel reinforced one. For example, FRP RC members prefer concrete failing at first, and the design 

cannot be based on reinforcement yielding. 

Compared to research on FRP reinforced slender members, there are not enough research on how 

to analyze or design FRP reinforced deep members, and current codes and standards are also lack 

of information on how to analyze FRP reinforced deep beams. 

Shear strength of deep members is governed by arch action, and it is generally analyzed with the 

strut-and-tie (ST) method, which is to model the deep beams as ST models (STMs) consisting 

concrete struts and reinforcement ties. In most cases, especially when the members are reinforced 

with both vertical and horizontal rebars, ST models are statically indeterminate; and the internal 

forces of such models are usually computed based on reinforcement yielding if the members are 

reinforced with steel bars. However, FRP bars cannot yield, and how to analyze indeterminate ST 

models (ISTMs) becomes a problem for FRP RC deep members. 

Current research on FRP reinforced deep members mostly focus on beams without vertical 

reinforcement to find how to correctly soften the strength of a strut in a determinate ST model; and 

there is nearly no research work on how to analyze indeterminate ST models for deep beams with 

vertical reinforcement.  

Current codes and standards do not provide enough information for engineers to design deep 

members reinforced by FRP bars. ACI 440.1R-15 (2015) does not have the section for ST method. 

CSA S806-12 (R2017) takes the equations used for steel reinforced deep members directly to FRP 

reinforced deep members, and it does not include any explanation on how to use it if the ST model 

is indeterminate. 

Therefore, research must be done on ST method to make it available to design and analyze FRP 

RC deep members. 

Krall (2014) adopted the indeterminate strut-and-tie (IST) method initially developed for steel 

reinforced deep members to FRP reinforced deep members, because IST method considers the 

concrete non-linear behavior and avoids the assumption of reinforcement yielding. It turned out to 

work nicely on FRP reinforced deep beams.  

Hence, this research is based on the research done by Krall (2014) and focuses on developing the 

IST method into an even better method that can predict accurate shear strengths and can correctly 

capture the strength trends from other factors like slenderness, shear and flexural reinforcement 

ratios. 
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1.2 Background 

Background information is provided in this section including the explanations of shear failure in 

deep beams and how these beams are different from slender beams; the properties of fibre 

reinforced polymer (FRP) bars and how they are different from steel bars; and the properties of 

concrete. 

1.2.1 Shear Failure and Deep Beams 

Beam sections are under shear if the moments are changing along the sections, and the existence 

of shear stresses leads to inclined principal stresses as shown in Figure 1.1 (from Fig. 6-3 by 

MacGregor and Wight (2011)). Because concrete is weak in tension, the principal tensile stresses 

can easily split these concrete elements, which causes inclined cracks in the shear span, and leads 

to shear failure if no vertical reinforcement are placed crossing these inclined cracks. 

 
Figure 1.1: Principal stresses of elements in the shear span (MacGregor & Wight, 2011) 

According to MacGregor and Wight (2011), shear resistance in concrete can be achieved by beam 

action and arch action, which are the first half and second half of the following equation 

𝑉 =
𝑑(𝑇)

𝑑𝑥
𝑗𝑑 +

𝑑(𝑗𝑑)

𝑑𝑥
𝑇 (1.1) 

where 𝑇 represents the resultant tensile force in the horizontal reinforcement; and 𝑗𝑑 is the length 

of the lever arm between resultant tensile and compressive forces. 

The change in the lengths of the lever arms (𝑗𝑑) becomes negligible in beam sections away from 

supports, hence 𝑑(𝑗𝑑)/𝑑𝑥 can be assumed as zero, and the shear is resisted mainly by the beam 

action. Conversely, 𝑗𝑑 clearly varies with 𝑥 at beam sections near supports or at other disturbed 

sections (regions around openings, regions with changing heights, etc.), and the arch action takes 

place as shown in Figure 1.2 (from Fig. 6-6 by MacGregor and Wight (2011)). The regions 

governed by the beam action are called as B-regions, while the regions governed by the arch action 

are called as D-regions.  
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Figure 1.2: Arch action in a beam (MacGregor & Wight, 2011) 

If vertical reinforcement is not placed, beam action reaches its maximum when inclined cracking 

appears, and B-regions fail. However, stresses in D-regions will go with the arch action path after 

inclined cracking formed, and higher shear strengths can be reached.  

If a beam has a relatively long shear span, and the shear failure occurs in B-regions, it is a slender 

beam, and the design and analysis shall focus on the beam action. However, if a beam has a short 

shear span, and the arch action can occur in the entire span, it is seen as a deep beam, and the arch 

action governs the shear capacity. 

MacGregor and Wight (2011) present how the arch action can increase the shear resistance of 

concrete with the pictures (from fig. 6-8 by MacGregor and Wight (2011)) organized in Figure 1.3. 

 
Figure 1.3: Shear strengths of beams with different 𝒂/𝒅 ratios (MacGregor & Wight, 2011) 

According to Figure 1.3 (MacGregor & Wight, 2011), shear strength is governed by arch action 

for beams with shear span to depth (𝑎/𝑑) ratios smaller than 2.5, and the codes tend to categorize 

a beam as deep with a more conservative value. In ACI 318-19 (2019), deep beams is defined as 

those with clear span over depth (𝑙0/𝑑) ratios smaller than 4 or 𝑎/𝑑 ratios smaller than 2. 

Because sectional analysis developed specifically for beam action is not appropriate for deep 

beams, current codes (ACI 318-19, 2019; CSA A23.3-19, 2019) suggest using strut-and-tie (ST) 

method to analyze such members. 

The main idea of ST method is to simplify the load paths in concrete into concrete struts. The load 

path of a deep beam under three point bending analyzed through a preliminary finite element 

analysis (FEA) in Smith (2009) is presented in Figure 1.4, and this can be modeled by the ST 

model shown in Figure 1.5. 
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Figure 1.4:  Mises stress distribution of a deep beam under three-point bending analyzed 

with Abaqus (Smith, 2009) 

 
Figure 1.5: ST model for a deep beam under three-point bending 

Analyzing a determinate ST model is simple, but if a statically indeterminate ST model is required, 

it becomes much more complicated to analyze it. The conventional ST method assumes the 

yielding of ties to simplify the analysis, which is to calculate the forces yielding the ties at first, 

and then computes other internal forces and the shear strengths based on the force equilibrium at 

nodes.  

Conversely, indeterminate strut-and-tie (IST) method does not assume yielding of ties but solves 

the IST models based on the stiffness matrix that relates to the area, length, and elastic modulus of 

the members. As concrete behaves non-linearly, the elastic modulus of concrete struts changes 

under increasing loads, thus the analysis shall be done with incremental loadings.  

Regardless of the accuracy of both methods at predicting shear strengths, assuming tie yielding 

makes the analysis much easier, while IST method can work with more detailed analysis and can 

be applied to beams reinforced by brittle rebars.  

Strut Centerlines 

Ties (Rebars) 

Node Regions 



5 

 

Because the strength of an FRP RC member relies on concrete, and reinforcement yielding cannot 

be assumed, it is impossible to use the conventional ST method to find the shear strength of an 

FRP reinforced deep beam requiring indeterminate ST models. CSA S806-12 (R2017) did not 

provide enough information on analyzing indeterminate ST models, and ACI 440.1R-15 (2015) 

did not even have the section for analyzing the shear strength of deep beams with ST method. 

1.2.2 Fibre Reinforced Polymer Bars 

FRP is a kind of non-corroding material that is linear-elastic and brittle when being stressed in the 

fibre direction. Common FRP bars used in the industry including aramid-fibre reinforced polymer 

bars (AFRP) bars, basalt-fibre reinforced polymer bars (BFRP) bars, carbon-fibre reinforced 

polymer (CFRP) bars and glass-fibre reinforced polymer (GFRP) bars.  

Because of the low price of GFRP bars, it is the most commonly used to reinforce concrete, though 

it has a relatively low elastic modulus (𝐸) that ranges from 35 to 51 GPa, while the elastic modulus 

of AFRP bars ranges from 41 to 125 GPa, of BFRP bars ranges from 50-65 GPa, of CFRP bars 

ranges from 120-580 GPa (Ahmed et al., 2020), and of conventional steel bars is around 200 GPa 

pre-yielding.  

ACI 440R-07 (2007) presents the differences in tensile behaviors between FRP bars and steel bars 

with the stress-strain relationships shown in Figure 1.6 according to the data organized from Teng 

et al. (2002), Tamuzs et al. (1996) and Apinis et al. (1998). 

 

 
Figure 1.6: - Typical stress-strain curves for FRP products (Fig 1.5 in ACI 440R-07 (2007) 

based on data from Teng et al. (2002), Tamuzs et al. (1996) and Apinis et al. (1998)) 

FRP bars have some other differences compared to steel bars except for not yielding. Firstly, the 

ultimate strengths of FRP bars are larger than the yielding strength of steel bars. Secondly, the 

ultimate strain of FRP bars is smaller than that of steel bars. Thirdly, FRP bars are generally less 

stiff (having smaller 𝐸) than steel bars (except for some high strength CFRP bars, but those bars 

are seldomly used to reinforce concrete). 
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Due to the differences listed above, cracks are more likely to form under a lower load in an FRP 

RC member, and the tensile strain built in FRP RC sections are generally larger. Because cracks 

reduce the effective concrete area to take compressive forces, and larger tensile strains reduce 

concrete compressive strength, FRP RC members are worried to be weaker than steel reinforced 

ones. This concern was stated by Nehdi et al. (2008) specifically for FRP reinforced deep beams 

by saying that the efficiency of the concrete struts in ST models will likely be affected by the low 

axial stiffnesses of FRP bars. 

1.2.3 Concrete 

Concrete is week in tension but strong in compression, hence it is usually used to take compression 

forces. In compression, its stress-strain curve is like a parabola. In elastic range, its elastic modulus 

decreases with increasing stress and strain. In plastic range, the stress decreases with increasing 

strain till rupture. Its behavior is significantly affected by its strength as high strength concrete is 

more linear elastic but less ductile as shown in Figure 1.7 which is a part of Fig. 9 from Hognestad 

et al. (1955) based on the test data. Because FRP RC beams count on the ductility of concrete 

instead of reinforcement, how to calculate the elastic modulus of concrete and how to utilize its 

plastic behavior becomes important. 

 
Figure 1.7: Concrete stress-strain relations (Hognestad et al., 1955) 

Moreover, strength of concrete changes when it is loaded under biaxial or triaxial loading. Based 

on Kupfer et al. (1969), when concrete is loaded in biaxial pure compression, the compressive 

strength is increased; however if concrete is loaded in biaxial tension and compression, both the 

compressive and tensile strength are decreased. As the concrete inclined struts in ST models are 

always under biaxial tension and compression as shown in Figure 1.1, how to correctly alter the 

strength of these struts becomes another important problem to tackle. 

C
o

n
cr

e
te

 S
tr

es
s 

in
 k

.s
.i

 



7 

 

1.3 Objectives and Scope 

This research is aimed at developing IST method into a detailed methodology to construct and 

analyze ST models specifically for FRP RC deep beams with and without transverse reinforcement. 

The objectives are: 

1. Finding reasonable model geometries to represent load paths in the beams 

2. Finding how to correctly soften concrete stress-strain relationships for concrete struts 

3. Suggesting the ways to find the sizes and softening factors for concrete struts 

4. Applying the proposed models and methods to analyze tested beams to check their validity 

and limitations. 

This research includes analysis of beams with different slenderness ratios, including those that are 

typical deep beams and those that can be considered as semi-deep beams; even slender beams are 

analyzed to check the limitation of the IST method. Both beams with and without vertical 

reinforcements are analyzed. Most of the analyzed beams are reinforced with GFRP bars, but some 

are reinforced with AFRP bars or CFRP bars. 

All specimens introduced and analyzed in this research are tested in other research, and the detailed 

information of these beams will be specified in later chapters. 

Although the proposed method shall be applicable for all deep regions like corbels and beams with 

opening or dapped ends, this research focuses on deep beams, hence no specific ST models for 

deep regions other than deep beams are produced and analyzed. 
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2. Literature Review 

This chapter includes the reviewed literatures that help in improving the indeterminate strut-and-

tie (IST) method to analyze FRP reinforced concrete (RC) deep beams, which includes those 

focusing on how to build and analyze indeterminate strut-and-tie (ST) models and those focusing 

on predicting the strength of concrete struts. Current codes and standards are also studied to know 

what the regulations are for designing and analyzing FRP RC deep beams. 

2.1 IST method and Non-Linear analysis 

IST method was firstly developed for steel RC deep beams to increase the accuracy of the results, 

as the results from a conventional ST method can be too conservative due to the assumption of 

steel yielding or the simplified load paths.  

Research by Yun (2000) 

In Yun (2000)’s paper, complicated indeterminate ST models with not only concrete struts and 

steel ties, but also concrete ties and steel struts were developed based on the principal stress flows 

to increase the accuracy of the ST method.  

Yun (2000) didn’t assume tie yielding during computing the internal forces of the indeterminate 

ST model, but used one-dimensional finite-element analysis (elastic analysis) to calculate the 

internal forces in the members based on their stiffnesses. Yun (2000) used finite element nonlinear 

analysis to evaluate the behavior and strength of structural concrete and to obtain accurate strut 

and tie forces. In Yun (2000)’s analysis of concrete struts, each strut was supposed to have its own 

stress-strain relationship, and the tangent modulus of elasticity of every strut under incremental 

external loads was used.  

The sizes of struts and ties were designed based on the effective stresses that are decreased from 

the ultimate strengths, and the sizes were designed with steel yielding at first. The effective stresses 

of concrete members were determined based on another work done by Yun and Ramirez (1996) 

that established the method to obtain the effective stresses based on the experimental data from 

Kupfer et al. (1969).  

Yun (2000) also analyzed the bearing capacity of nodal zones based on finite-element nonlinear 

analysis; and different shapes of nodal zones were tested under different conditions. Yun (2000)’s 

approach predicts much more accurate results (compared to strengths predicted through code 

provisions) though being quite complicated. 

CAST Computing Program by Tjhin and Kuchma (2002) 

Tjhin and Kuchma (2002) introduced a computing program CAST for building and analyzing ST 

models. The computing program is developed because even the simplest ST method requires doing 

the calculations repeatedly to find the proper ST geometry and the suitable reinforcement design 

for the interest member, and the process could be massive when multiple load cases are considered. 

Tjhin and Kuchma (2002) pointed out that the conventional ST method could be confusing on 

determining the internal forces of statically indeterminate ST models. Although the plastic truss 

method (assuming all steel ties at yielding at failure) could be used, the results obtained with this 

method might be against the strain compatibility requirements and the limited ductility in concrete.  
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The methods suggested by Tjhin and Kuchma (2002) to solve this problem were from 

Anderheggen and and Schlaich (1990), which determine the forces in such a way that minimizes 

tie resistances corresponding to the minimum weight of steel ties (Tjhin & Kuchma, 2002). The 

methods considered strain compatibility while assumed steel yielding, and predicted results fall in 

between the elastic analysis and the plastic truss method. 

Tjhin and Kuchma (2002) suggested these methods because the elastic analysis considering the 

non-linear behavior of concrete members could be too time-consuming and complicated. As the 

purpose of the program was to directly show whether the proposed ST model could take the 

required load, and to save the effort for engineers to design steel RC D-regions based on code 

provisions, analysis considering concrete nonlinear behavior was not needed. 

The methods mentioned above are quite different. Yun (2000)’s work focused on establishing a 

more precise ST method taking the non-linear behavior of concrete into consideration. CAST 

(Tjhin & Kuchma, 2002) focused on making the ST method more straight-forward for engineers 

to save time on calculations while giving slightly better results than the plastic truss method. 

Research by B. H. Kim and Yun (2011a, 2011b) 

As the reinforcement of FRP RC deep regions cannot yield and the strength is relied on the 

concrete struts, process similar to Yun (2000)’s research could be adopted, which was done by 

Krall (2014). Krall (2014) specifically stated that the IST method was according to B. H. Kim and 

Yun (2011a, 2011b), which was similar to Yun (2000)’s research, but explained the steps more 

detailed in. 

B. H. Kim and Yun (2011a, 2011b) did the research for steel RC deep beams and focused on the 

load distribution ratio between the ST and the truss load transfer mechanism. To find the 

distribution ratio, B. H. Kim and Yun (2011a, 2011b) analyzed 234 simply supported deep beams 

with IST method through steps similar to what Yun (2000) did, but the analysis was conducted 

with simpler ST models and omitted the complicated finite-element nonlinear analysis on the node 

regions. 

B. H. Kim and Yun (2011a) suggested to use the softened Hognestad parabola according to Pang 

and Hsu (1995) for the stress-strain relationship of concrete, which were 

𝑓𝑐 = 𝜁𝑓𝑐
′ [2 (

𝜀𝑐

𝜁𝜀0
) − (

𝜀𝑐

𝜁𝜀0
)

2

]  for  
𝜀𝑐

𝜁𝜀0
≤ 1 (2.1) 

𝑓𝑐 = 𝜁𝑓𝑐
′ [1 − (

𝜀𝑐
𝜁𝜀0

⁄ −1

2
𝜁⁄ −1

)

2

]  for  
𝜀𝑐

𝜁𝜀0
> 1 (2.2) 

where 𝜁 represents the softening factor; 𝑓𝑐 is the concrete compressive stress at certain strain 𝜀𝑐; 

𝑓𝑐
′ is the tested concrete cylinder compressive strength; and 𝜀0 is the strain when the stress reaches 

its maximum, which is usually obtained from 2 𝑓𝑐
′ 𝐸c⁄ . 

This softening way reduced both the concrete strength (𝑓𝑐
′) and its corresponding strain (𝜀0) by the 

softening factor as shown in Figure 2.1 (from Figure 6. a) by B. H. Kim and Yun (2011a)), and the 

softening factors used by B. H. Kim and Yun (2011a) were directly from ACI 318M-08 (2008), 

which were equal to 0.85𝛽𝑠, and 𝛽𝑠 was the strut coefficient equal to 1.0 for horizontal struts, 0.75 

for inclined struts with vertical ties crossed and 0.6 for inclined struts without ties crossed (ACI 

318M-08, 2008).  
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Figure 2.1: Strength reduction in concrete struts (B. H. Kim & Yun, 2011a)  

This agrees with Hognestad (1951), as Hognestad (1951) believed that the ultimate strength of 

concrete members shall only be 0.85 of the cylinder strength, and 𝜀0 shall also be decreased by 

0.85. However, Vecchio and Collins (1986) suggested to deduct the strengths while keeping 𝜀0 the 

same as shown in Figure 2.2 (from Fig. 11 a) by Vecchio and Collins (1986)), and they developed 

the Modified Compression Field Theory (MCFT) to soften the strength of concrete struts (which 

will be introduced later).  

 
Figure 2.2: Stress-strain relationship for cracked concrete in compression (Vecchio & 

Collins, 1986) 

B. H. Kim and Yun (2011a) also specified the method to obtain the sizes of the struts and the nodes. 

They used the force equilibrium at loading point assuming the ultimate state of ties and node 

regions to compute the height of the loading node, and then obtained the widths of the struts as the 

smaller one of the values calculated based on the sizes of the loading and supporting nodes. 

However, as this method assumes tie yielding and cannot be applied to FRP RC deep beams, Krall 

(2014) cooperated this method with strain compatibility to avoid the assumption of tie yielding, 

and kept the other steps as the same. 

Research by Krall (Krall, 2014; Krall & Polak, 2019) 

Krall and Polak (2019) casted and tested 12 simply supported FRP RC deep beams with same 

shear span to depth (𝑎/𝑑) ratio under three-point bending. Beams were casted with different 

horizontal and vertical reinforcement ratio, and 9 beams had stirrups placed.  
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Shear strengths of the beams were analyzed through IST method according to B. H. Kim and Yun 

(2011a) but with new ST models proposed specifically for deep beams with stirrups. The predicted 

strengths were compared with the tested strengths, which showed that the IST method can predict 

fairly good results.  

However, the predicted strengths still contained problems. Firstly, the method overpredicts the 

strength of several beams; and secondly, the method cannot capture the increase in shear strength 

with smaller stirrup spacings.  

As the purpose of Krall (2014)’s research was to check if the IST model could be used for FPR 

RC deep beams, the analysis was preliminary and some variables were not analyzed in detail, like 

the model geometries and the softening factors.  

The ST models proposed and checked by Krall (2014) are as shown in Figure 2.3 (from Figure 6.1 

in Krall (2014)’s work). Model type I was for beams without vertical ties, type II was the design 

model based on the model used by B. H. Kim and Yun (2011a), type III was the proposed model 

for beams with larger spacings, and type IV was the proposed model for beams with smaller stirrup 

spacings. Type II, III and IV models were all indeterminate and were for beams with stirrups. 

According to Krall (2014), the design model (type II model) did not work; and the other models 

were proven to work with the softening factors from the ACI 318 (-08, -14 versions). 

 
Figure 2.3: Strut-tie model types analyzed in Krall (2014)’s research (Krall, 2014) 

Furthermore, Krall (2014) also included one more concrete stress-strain model by Thorenfeldt et 

al. (1987). Krall (2014) obtained the equations from MacGregor and Wight (2011), and modified 

them with the softening factor resulting in 

𝑓𝑐 =
𝜁𝑓𝑐

′𝑛(
𝜀𝑐

𝜁𝜀0
⁄ )

𝑛−1+(
𝜀𝑐

𝜁𝜀0
⁄ )

𝑛𝑘  (2.3) 

where 
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𝑛 = 0.8 +
𝜁𝑓𝑐

′ [𝑀𝑃𝑎]

17
  (2.4) 

𝑘 = {
1.0                           𝑓𝑜𝑟 

𝜀𝑐

𝜁𝜀0
≤ 1

0.67 +
𝜁𝑓𝑐

′[𝑀𝑃𝑎]

62
     𝑓𝑜𝑟 

𝜀𝑐

𝜁𝜀0
> 1 

  (2.5) 

As listed in the equations, Krall (2014) applied the softening factor to all parameters calculated 

from 𝑓𝑐
′ including 𝜀0, 𝑛 and 𝑘. 

Based on the analysis, Krall (2014) made several important conclusions. Firstly, the IST method 

was most sensitive to the choice of softening factors. Secondly, the IST method was not very 

sensitive to the choice of the concrete material model as these models are mainly differentiated in 

the post-peak behaviour that is ignored in the IST method. Thirdly, the method was not very 

sensitive to the initial concrete elastic modulus. Lastly, the choice of the ST model geometries 

could affect the values and the trends of the results significantly. 

Other than the research done by Krall (2014), there was no other research found on analyzing IST 

models for FRP RC deep beams. Current research on ST models for FRP RC deep beams are 

mainly for the determinate ones. They focus on the strength of the inclined struts and how the 

softening factors for these struts shall be different from them in steel reinforced beams, which will 

be discussed in the following section. 

2.2 Inclined Strut Strengths and Softening Factors for FRP RC Deep Beams 

As FRP RC deep beams rely on the strength of the concrete struts, it is important to correctly soften 

the strengths of these struts. 

Research by Nehdi et al. (2008) 

Nehdi et al. (2008) pointed out that FRP bars as reinforcement could affect the shear behavior of 

structural concrete members, such as the crack width, deflection, ultimate load capacity and 

stiffness of the members; and it might be due to the relativity low elastic modulus of some types 

of FRP bars (e.g., GFRP bars). Hence, Nehdi et al. (2008) casted and tested 8, 7, and 4 concrete 

short beams reinforced with CFRP, GFRP, and steel rebars in the longitudinal direction with shear 

span to depth (𝑎/𝑑) ratio between 1.5 to 2.5.  

Based on the test data, Nehdi et al. (2008) observed that the factors influence the ultimate capacity 

and shear behavior of the beams are the 𝑎/𝑑 ratio, the axial stiffness of the flexural reinforcement 

and the effective depth. Hence, Nehdi et al. (2008) established the following equations for the 

strengths of inclined struts, which were modified from ACI 318 codes. 

𝛽𝑠 = 0.68 − 0.012 (
𝑎

𝑑
)

4

  for  (𝐸𝑓𝜌𝑓)
1

3⁄
≤ 10 (2.6) 

𝛽𝑠 = 0.75 − 0.01 (
𝑎

𝑑
)

4

  for  (𝐸𝑓𝜌𝑓)
1

3⁄
> 10 (2.7) 

𝑘 = max (
250+𝑑

550
,   1.0)  (2.8) 

𝑓𝑐𝑒 = 0.85𝑘𝛽𝑠𝑓𝑐
′  (2.9) 

where 𝑓𝑐𝑒  is the effective strength of concrete strut; 𝐸𝑓  is the elastic modulus of flexural 

reinforcement in GPa; and 𝜌𝑓 is the flexural reinforcement ratio. 
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Research by D. J. Kim et al. (2014) 

D. J. Kim et al. (2014) casted and tested FPR RC deep beams focusing on how FRP rebars could 

affect the shear strength by having lower elastic modulus. A total of 15 beams were tested by D. 

J. Kim et al. (2014), with 7 reinforced with AFRP bars, another 7 reinforced with CFRP bars and 

the last one reinforced with steel rebars. The test focused on the effect of slenderness ratio, elastic 

modulus, effective depth, and reinforcement ratio on the shear strength.  

Beams tested by D. J. Kim et al. (2014) were organized so that there were always two beams cast 

with only one different feature while keeping all others the same.  

D. J. Kim et al. (2014) noticed that all the features could affect the shear strength; but as it would 

be too complicated to include all the factors to change the softening factor, they categorized the 

beams into two groups based on the beam size, slenderness ratio, reinforcement ratio and rebar 

strength and assigned one softening factor to each group to decrease the strength of struts. 

The test data from D. J. Kim et al. (2014) is really valuable, but the softening factor approach 

proposed by them was too simple and may not be able to reflect how shear strengths changed with 

other features. 

Research by Dhahir et al. (2021) 

To find what would be the most suitable softening factor of the strut strength for FRP RC deep 

beams, Dhahir et al. (2021) organized the test data from different research, and did a regression 

model on the actual softening factor of the tested beams. The value of softening factors derived 

was 0.25. However, this value only showed that the accuracy of the predicted results was most 

stable with this softening factor, but this softening factor could not reflect how the shear strengths 

could change with elastic modulus of FRP bars, beam sizes, reinforcement ratios and beam 

slenderness ratios. 

Some specimens were analyzed in all research mentioned above through same softening factor 

approach (e.g., approach defined by ACI 318-08 (or -14)), but the predicted strengths presented in 

different research were different from each other, which was caused by constructing the ST models 

in slightly different ways. For example, Nehdi et al. (2008) and Dhahir et al. (2021) clearly 

mentioned that the widths of the struts were obtained from the nodes in the tension side only, while 

D. J. Kim et al. (2014) didn’t specify it clearly but probably analyzed it as an average of the value 

obtained from nodes in both sides; and the assumed distance between the resultant compression 

and tension forces was expressed as 0.9d by Dhahir et al. (2021), while others didn’t mention 

anything on this.  

According to the research (Dhahir et al., 2021; D. J. Kim et al., 2014; Nehdi et al., 2008), CSA 

A23.3 codes generally predict the most conservative results, while ACI 318 codes may 

overestimate the strength but predict results close to the actual strength. However, the ACI 

approach used in these research referred to the older versions of ACI 318 codes, the factors were 

reduced in the most recent version, which will be introduced in later sections. 

Cracked Strut-and-Tie Model by (Chen et al., 2018; Chen et al., 2020) 

Chen et al. (2018) developed the cracking strut-and-tie model (CSTM) for analyzing the shear 

strength of deep beams that avoided to use the softening factor to obtain the strut strengths, and 

then modified the original model for steel RC deep beams to a model suitable for FRP RC deep 

beams (Chen et al., 2020). 
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In CSTM, the strut was divided into two portions: the cracked portion and the uncracked portion 

based on the differences between angles of the major crack and the inclined strut. The strengths of 

the cracked portion and the uncracked portion were analyzed differently. The uncracked portion 

was treated similarly to a horizontal strut, while the stress in the cracked portion were assumed to 

be taken by aggregate interlock, dowel action and horizontal web reinforcement.  

According to Chen et al. (2018); Chen et al. (2020), the results predicted by CSTM were quire 

accurate for both steel and FRP RC deep beams, but the calculations in the CSTM were 

complicated as multiple factors shall be computed and iterative process was required. Moreover, 

CSTM was designed for deep beams without vertical reinforcement, and the analysis was assumed 

to perform under an ultimate stage. 

Two-Parameter Kinematic Theory by Mihaylov et al. (2013) 

Another method to predict the shear strength of deep beams is Two-Parameter Kinematic Theory 

(2PKT) by Mihaylov et al. (2013), which predicted the capacity without utilizing the ST models. 

This method used two degrees of freedom (DOFs) to describe the deformed shape of diagonally-

cracked, point-loaded deep beams. The first DOF was based on the average strain in the bottom 

reinforcement, and the other one was based on the vertical displacement of the critical loading 

zone (CLZ) that was around the loading point connecting the upper and bottom portion divided by 

the critical crack. The deformation pattern, crack widths and shear strengths could be computed 

with these two DOFs, and the shear capacity was obtained from the shear forces resisted by the 

CLZ, the aggregate interlock, stirrups, and the dowel action.  

Mihaylov et al. (2013) applied this method to 434 simply supported steel reinforced deep beams, 

and the average value of test to predicted shear strength ratios was 1.10 with a coefficient of 

variation of 13.7%, which was better than the conventional ST method according to Mihaylov et 

al. (2013). However, as the 2PKT method is totally different from the ST method, it cannot be 

included in this research. 

Modified Compression Field Theory by Vecchio and Collins (1986) 

The theory behind the formula to calculate the strut strength in CSA codes (CSA A23.3-19 (2019) 

and CSA S806-12 (R2017)) for steel and FRP reinforced beams is the Modified Compression Field 

Theory (MCFT) from Vecchio and Collins (1986). Vecchio and Collins (1986) tested 30 concrete 

specimens under biaxial loading, and found out that the principal compressive strength of a 

concrete member was related to its principal tensile strain, and Vecchio and Collins (1986) 

established the relationship with the Hognestad parabola as 

𝑓𝑐2 = 𝑓𝑐2𝑚𝑎𝑥 [2 (
𝜀𝑐

𝜀0
) − (

𝜀𝑐

𝜀0
)

2

]   (2.10) 

𝑓𝑐2𝑚𝑎𝑥

𝑓𝑐
′ =

1

0.8−0.34
𝜀1

𝜀0
⁄

≤ 1.0   (2.11) 

where 𝑓𝑐2  is the concrete compressive stress; 𝑓𝑐2𝑚𝑎𝑥  is the compressive strength of a concrete 

member under biaxial loading; and 𝜀1  is the principal tensile strain of the member. Note that 

Vecchio and Collins (1986) required to include the positive sign for tensile strain and negative 

sign for compressive strain during using these equations. 
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2.3 Current Code Provisions 

As mentioned before, current code provisions are not well developed to analyze the strength of 

FRP RC deep members. 

ACI Codes (ACI 440, ACI 318) 

There is no suggestion on how to calculate the shear strength of deep beams in ACI 440.1R-15 

(2015) specifically for FRP RC members, and only the sectional method for slender beams was 

presented. Therefore, the ST method for FRP reinforced deep members can only follow the process 

developed for steel reinforced members in ACI 318-19 (2019). 

ACI 318-19 (2019) provisions are developed for steel reinforced members. Therefore, the ACI ST 

method assumes reinforcement yielding, hence some clauses are not suitable for FRP reinforced 

deep members. For example, ACI 318-19 (2019) suggests to compute the strut width based on the 

supporting node with the height obtained from the location of the flexural bars. This may not affect 

the shear capacity of steel reinforced deep regions, as it only requires the stress built in the struts 

to be under its effective strength; but it makes the shear capacity of FRP reinforced deep beams 

directly related to the location of flexural bars hence shall not be used. 

Furthermore, ACI 318-19 (2019) changes slightly from the previous versions. Previous versions 

of ACI 318 code (including the -08, -14 versions) calculated the effective strength 𝑓𝑐𝑒 of concrete 

struts as 

𝑓𝑐𝑒 = 0.85𝛽𝑠𝑓𝑐
′   (2.12) 

where 𝛽𝑠 was the strut coefficient equal to 1.0 for horizontal struts, 0.75 for inclined struts crossed 

by enough vertical reinforcement, and 0.6 for inclined struts not crossed by vertical reinforcement. 

Current version (ACI 318-19) changes the equation to 

𝑓𝑐𝑒 = 0.85𝛽𝑠𝛽𝑐𝑓𝑐
′   (2.13) 

which includes an extra coefficient 𝛽𝑐  used to increase the strengths of struts and nodes for 

members with bearing plates not covering the full width of the member, and the cases and values 

of 𝛽𝑠 are slightly changed.  

The change impacting the interest of this research is on 𝛽𝑠 for inclined struts not crossed by vertical 

reinforcement. The value reduced from 0.6 to 0.4.  

The equation for counting if there is enough vertical reinforcement crossing the struts is also 

changed. Previously, the minimum distributed reinforcement ratio was expressed as 

∑
𝐴𝑠𝑖

𝑏𝑠𝑠𝑖
sin 𝑎𝑖 ≥ 0.003   (2.14) 

where 𝐴𝑠𝑖  was the total area of distributed reinforcement at spacing 𝑠𝑖  in the i-th direction of 

reinforcement crossing a strut at an angle 𝑎𝑖, and 𝑏𝑠 was the width of the strut. 
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But, ACI 318-19 (2019) changes that to 

0.0025
sin2 𝑎𝑖

⁄     (2.15) 

for reinforcement in one direction, and no less than 0.0025 in each direction for orthogonal grid. 

ACI 318-19 (2019) also requires the spacing of the distributed reinforcement not exceeding 12 in 

(304.8 mm) and 𝑎𝑖 no less than 40 degrees. 

ACI 318-19 (2019) similarly adds the extra factor 𝛽𝑐 to the original 0.85𝛽𝑛𝑓𝑐
′ equation for the 

strength of node regions, but the value of 𝛽𝑛 is not changed, which is 1.0 for nodes under pure 

compression, 0.8 for nodes anchoring one tie, and 0.6 anchoring two or more ties. 

CSA Codes 

CSA provides the clauses for analyzing the shear capacity of FRP RC deep regions with STMs in 

CSA S806-12 (R2017). CSA S806-12 (R2017) provides the following requirements to calculate 

the limited strut strength (𝑓𝑐𝑢). 

𝑓𝑐𝑢 =
𝑓𝑐

′

0.8+170𝜀1
≤ 0.85𝑓𝑐

′   (2.16) 

𝜀1 = 𝜀𝐹 + (𝜀𝐹 + 0.002) cot2 𝜃𝑠   (2.17) 

where 𝜃𝑠 is the smallest angle between the strut and the adjoining ties; 𝜀𝐹 is the tensile strain in 

the tie bar located closest to the tension face of the beam and inclined at 𝜃𝑠 to the strut. If the tensile 

strain in the tie changes as the tie crosses the width of the strut, 𝜃𝑠 may be taken as the strain in the 

tie at the centreline of the strut (CSA S806-12, R2017). 

The equations are identical to the ones listed in CSA A23.3-19 (2019) for steel reinforced members, 

except that CSA A23.3-19 (2019) provides another equation by assuming the yielding strain of 

steel ties equal to 0.002, 

𝑓𝑐𝑢 =
1

1.14+0.68 cot2 𝜃𝑠
≤ 0.85𝑓𝑐

′   (2.18) 

which cannot be applied to FRP reinforced members as FRP rebars cannot yield. 

Because 𝜃𝑠  is 90 degrees for horizontal struts, these struts could have the maximum limited 

strength equal to 0.85𝑓𝑐
′, which agrees with ACI 318-19 (2019). 

CSA S806-12 (R2017) multiplies 0.85, 0.75 and 0.65 to the cylinder strength (𝑓𝑐
′) for the strengths 

of nodes under only compression, with one tie and with two or more ties. However, in CSA A23.3-

19 (2019), as it is published later than CSA S806-12 (R2017), it includes the confinement 

modification factor (𝑚) for members with bearing plates not covering the full width, which is same 

as 𝛽𝑐 in ACI 318-19 (2019). However, CSA A23.3-19 (2019) does not add this factor to increase 

the strength of struts, and specifically mentioned that this factor shall be taken as 1.0 unless 

reinforcement capable of controlling cracking is provided. 

As the strength of node regions is not extremely critical to ST method, this research consistently 

follows CSA S806-12 (R2017) for analyzing it. 

CSA S806-12 (R2017) also regulates the maximum tensile force in ties not exceeding 0.65𝐴𝐹𝑇𝑓𝐹𝑢, 

where 𝐴𝐹𝑇 is the area of reinforcement in the tie, and 𝑓𝐹𝑢 is the ultimate strength of the FRP bars. 
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Moreover, this research uses CSA A23.3-19 (2019) for the initial elastic modulus of concrete 

during modelling the concrete behavior, which are 

𝐸𝑐 = (3300√𝑓𝑐
′ + 6900) (

γ𝑐

2300
)

1.5

  for γ𝑐 between 1500 to 2500 kg/m3 (2.19) 

where γ𝑐 is the density of concrete; and  

𝐸𝑐 = 4500√𝑓𝑐
′  for 𝑓𝑐

′ between 20 to 40 MPa (2.20) 
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3. Specimens 

This chapter introduces the beams that are analyzed in this research. The Beams include specimens 

tested in different research with different flexural and shear reinforcement ratios, shear span to 

depth (𝑎/𝑑) ratios, reinforcement stiffnesses and beam sizes. 

3.1 Beams tested by Krall (Krall, 2014; Krall & Polak, 2019) 

Krall (2014) tested 12 GFRP RC deep beams with 9 beams having stirrups and 3 beams not having 

stirrups. Beams tested by Krall (2014) all had same 𝑎/𝑑 ratios equal to 2.5. Although this 𝑎/𝑑 

ratio does not fall into the range set by ACI 318-19 (2019) for deep beams, MacGregor and Wight 

(2011) proved that beams with this 𝑎/𝑑 ratio still resist shear through arch action, hence shall be 

analyzed with ST models. 

The beams were tested under three-point bending as shown in Figure 3.1 (Krall, 2014), and the 

details of the beams tested by Krall (2014) are organized in Table 3.1, where ℎ is the beam height; 

𝑏 is the beam width; 𝑑 is the effective depth; 𝐴𝐹𝑓 is the area of one GFRP bar placed as flexural 

reinforcement; 𝑓𝑓𝑢 and 𝐸𝑓 are the ultimate strength and elastic modulus of the flexural GFRP bars; 

𝜌𝑓 is the flexural reinforcement ratio; 𝐴𝐹𝑣 is the area of one leg of the GFRP stirrups; 𝑓𝑣𝑢,𝑏𝑒𝑛𝑡 is 

the ultimate strength of GFRP stirrups at bent sections that is smaller than the strength of the 

straight portions; 𝐸𝑣  is the elastic modulus of the GFRP stirrups; and 𝑠  is the spacing of the 

stirrups. 

 
Figure 3.1: Test setup of beams tested by Krall (Krall, 2014) 
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Table 3.1: Details of beams tested by Krall (2014) 

Specimens 
ℎ  

(mm) 
𝑏  

(mm) 
𝑑  

(mm) 

Flexural Reinforcement Shear Reinforcement 

𝐴𝐹𝑓 

(mm2) 

# of 

bars 

𝑓𝑓𝑢 

(MPa) 

𝐸𝑓 

(GPa) 

𝜌𝑓 

(%) 

𝐴𝐹𝑣 

(mm2) 

𝑓𝑣𝑢,𝑏𝑒𝑛𝑡 

(MPa) 

𝐸𝑣 

(GPa) 

𝑠  

(mm) 

BM12-INF 350 200 270 113 12 1000 60 2.51 - - - - 
BM12-220 350 200 270 113 12 1000 60 2.51 113 700 50 220 
BM12-150 350 200 270 113 12 1000 60 2.51 113 700 50 150 
BM12-s230 350 230 270 113 12 1000 60 2.18 314 550 50 230 

BM16-INF 345 200 270 201 6 1000 64 2.23 - - - - 
BM16-220 345 200 270 201 6 1000 64 2.23 113 700 50 220 
BM16-150 345 200 270 201 6 1000 64 2.23 113 700 50 150 
BM16-s230 345 230 270 201 6 1000 64 1.94 314 550 50 230 

BM25-INF 330 200 270 491 2 1000 60 1.82 - - - - 
BM25-220 330 200 270 491 2 1000 60 1.82 113 700 50 220 
BM25-150 330 200 270 491 2 1000 60 1.82 113 700 50 150 
BM25-s230 330 230 270 491 2 1000 60 1.58 314 550 50 230 

The names of the beams generally follow the form of BM “diameter of flexural bars” – “stirrup 

spacings”, while “INF” stands for beams without stirrups, and “s” is for beams with larger stirrups. 

For example, BM25-s230 is for the beam with 25 mm flexural bars and larger stirrups at 230 mm 

spacings. 

The designed strength of concrete was 45 MPa, and the average 28-day strength of the concrete 

cylinders was 47.3 MPa; the average density of the concrete cylinders was 2416.5 kg/m3 (Krall, 

2014). 

Furthermore, the test results of the beams are organized in Table 3.2, and the typical failure patterns 

are presented in Figure 3.2 (Krall & Polak, 2019). The test of most beams went smoothly, but 

during the test of BM16-220, power blip occurred and caused a sudden load about 43 percent of 

the peak load applied to the beam, which resulted in a much lower failure load. Hence, this test 

result is excluded in further analyses. 

Table 3.2: Test results of beams by Krall (2014) 

Specimens Failure 
Load (kN) 

Failure Pattern 

BM12-INF 163.1 Shear 
BM12-220 382.4 Critical shear crack form firstly with crushing around 

loading point at failure BM12-150 405.2 
BM12-s230 466.9 

BM16-INF 150.2 Shear 
BM16-220* 309.3 Critical shear crack form firstly with crushing around 

loading point at failure BM16-150 416.5 
BM16-s230 450.8 

BM25-INF 125.1 Shear 
BM25-220 360.1 Critical shear crack form firstly with crushing around 

loading point at failure BM25-150 415.8 
BM25-s230 444 

* BM16-220 experienced an unexpected sudden load during the test. 
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     a) Critical shear crack only                           b) Critical shear crack with concrete crushing  

Figure 3.2: Typical crack patterns of beams tested by Krall (Krall & Polak, 2019) 

Based on the test, the factors increasing the shear capacity include having smaller stirrup spacings 

and having larger stirrups, as the shear reinforcement ratio increases in both cases. Moreover, 

flexural reinforcement does not impact the shear strength significantly, but small flexural 

reinforcement ratio may decrease the shear capacity especially for beams with small vertical 

reinforcement. 

3.2 Beams tested by D. J. Kim et al. (2014) 

D. J. Kim et al. (2014) casted and tested 15 deep beams without vertical reinforcement. 7 of the 

beams were reinforced with AFRP bars, 7 others were reinforced with CFRP bars, and one more 

was reinforced with steel bars. The beams were tested under four-point bending as shown in Figure 

3.3 (D. J. Kim et al., 2014). 

 
Figure 3.3: Test setup of beams tested by D. J. Kim et al. (2014) 
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The specimen details are organized in Table 3.3, where 𝑓𝑢 is the ultimate strength of FRP bars and 

yielding strength of steel bars and 𝑑𝑏𝑎𝑟 is the bar diameter. The names of the beams were explained 

by D. J. Kim et al. (2014) in Figure 3.4 (from Fig.1 in D. J. Kim et al. (2014)). 

Table 3.3: Details of beams tested by D. J. Kim et al. (2014) 

Specimens 
𝑏 

(mm) 
𝑑 

(mm) 
𝑎/𝑑 

Reinforcement Details 

𝜌𝑓 

(%) 

𝐸𝑓 

(GPa) 

𝑓𝑓𝑢 

(MPa) 

𝑑𝑏𝑎𝑟  

(mm) 

𝐴𝐹𝑓 

(mm2) 

A3D9M-1.4 200 250 1.4 0.38 80.70 1827 9 63.62 
A3D9M-1.7 200 250 1.7 0.38 80.70 1827 9 63.62 
A3D9M-2.1 200 250 2.1 0.38 80.70 1827 9 63.62 
A4D9M-1.7 200 250 1.7 0.51 80.70 1827 9 63.62 
A5D9M-1.7 200 250 1.7 0.64 80.70 1827 9 63.62 
A3D9S-1.7 200 190 1.7 0.50 80.70 1827 9 63.62 
A5D9L-1.7 200 310 1.7 0.51 80.70 1827 9 63.62 

C3D9M-1.4 200 250 1.4 0.38 120.21 1956 9 63.62 
C3D9M-1.7 200 250 1.7 0.38 120.21 1956 9 63.62 
C3D9M-2.1 200 250 2.1 0.38 120.21 1956 9 63.62 
C4D9M-1.7 200 250 1.7 0.51 120.21 1956 9 63.62 
C5D9M-1.7 200 250 1.7 0.64 120.21 1956 9 63.62 
C3D9S-1.7 200 190 1.7 0.50 120.21 1956 9 63.62 
C5D9L-1.7 200 310 1.7 0.51 120.21 1956 9 63.62 

S4D10M-1.7 200 250 1.7 0.63 200 400 1.58 491 

 
Figure 3.4: Notation to indicate the type of each specimen (D. J. Kim et al., 2014) 

The test results are listed in Table 3.4, and the typical failure pattern is presented in Figure 3.5 (D. 

J. Kim et al., 2014). Two beams had different failure mode from others with significantly low 

failure load, which might be caused by uneven curing and compaction during the manufacturing 

process (D. J. Kim et al., 2014). Therefore, these two results are excluded during the analysis. 

Moreover, D. J. Kim et al. (2014) did not present the test result for the steel reinforced beam, and 

as this research is for FRP RC deep beams, that beam is not included in this research. Furthermore, 

the measured average compressive strength of concrete cylinders was 26.1 MPa. 
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Table 3.4: Test results of beams by D. J. Kim et al. (2014) 

Specimens 
Failure 

Load (kN) 
Failure Mode 

A3D9M-1.4 136.05 Shear-Compression 
A3D9M-1.7 98.98 Shear-Compression 
A3D9M-2.1 88.00 Shear-Compression 
A4D9M-1.7 121 Shear-Compression 
A5D9M-1.7 133.97 Shear-Compression 
A3D9S-1.7 109.58 Shear-Compression 
A5D9L-1.7 134.27 Shear-Compression 

C3D9M-1.4 169.26 Shear-Compression 
C3D9M-1.7 106.54 Shear-Compression 
C3D9M-2.1* 52.64 Shear-Tension 
C4D9M-1.7* 96.09 Shear-Tension 
C5D9M-1.7 151.39 Shear-Compression 
C3D9S-1.7 104.84 Shear-Compression 
C5D9L-1.7 145.39 Shear-Compression 

* Beams with relatively low failure load and different failure modes.  

 
Figure 3.5: Typical failure pattern of beams tested by D. J. Kim et al. (2014) 

Based on the results, factors benefitting the shear capacity of deep beams without shear 

reinforcement include smaller slenderness ratio, larger effective depth, larger flexural 

reinforcement ratio, and larger stiffness of flexural reinforcement. Hence, the improved IST 

method shall capture how these factors change the shear capacity. 

3.3 Beams tested by Tedford (Tedford, 2019) 

To verify if FRP RC slender beams governed by shear can also be analyzed with truss models, 

beams tested by Tedford (2019) are also analyzed.  

Tedford (2019) casted and tested 10 slender beams reinforced with FRP bars. As truss models can 

only apply to slender beams with stirrups and shall be used to analyze shear strengths, four beams 

listed in Table 3.5 tested by Tedford (2019) are analyzed in this research, and the names of the 

specimens follow the same format as those by Krall (2014) (BM “𝑎/𝑑” – “stirrup spacing”). The 

beams were also tested under three-point bending, and the test setup is similar to Figure 3.1 by 

Krall (2014). 
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Table 3.5: Details of beams tested by Tedford (2019) 

Specimens 
𝑑  

(mm) 
𝑎/𝑑  

Flexural Reinforcement Shear Reinforcement 

𝐴𝐹𝑓 

(mm2) 

# of 

bars 

𝑓𝑓𝑢 

(MPa) 

𝐸𝑓 

(GPa) 

𝜌𝑓 

(%) 

𝐴𝐹𝑣 

(mm2) 

𝑓𝑣𝑢,𝑏𝑒𝑛𝑡 

(MPa) 

𝐸𝑣 

(GPa) 

𝑠  

(mm) 

BM4.5-90 270 4.5 201 6 1000 64 2.23 78.5 560 45 90 
BM4.5-150 270 4.5 201 6 1000 64 2.23 78.5 560 45 150 
BM6.5-90 270 6.5 201 6 1000 64 2.23 78.5 560 45 90 
BM6.5-150 270 6.5 201 6 1000 64 2.23 78.5 560 45 150 

All beams have the same size with a height of 350 mm and a width of 200 mm, and the average 

28-day cylinder compressive strength was measured as 50.2 MPa. Normal density concrete was 

used, and the test results of these beams are organized in Table 3.6. 

Table 3.6: Test results of beams by Tedford (2019) 

Specimens 
Failure 

Load (kN) 
Failure Mode 

BM4.5-90 222.5 Shear 
BM4.5-150 171.2 Shear 
BM6.5-90* 145.6 Flexure 
BM6.5-150 141.0 Shear 

* Beam failed in flexure.  

As shown in Table 3.6, BM6.5-90 failed in flexure, but not shear. However, to find out if the 

proposed method can capture the difference in the failure mode, this specimen is still included in 

this research.  

Based on the test results, having more stirrups can increase the shear capacity, and more slender 

beams will have smaller shear strength even with the same shear and flexural reinforcement ratios.  
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4. Development of Strut-and-Tie Models 

4.1 General Ideas 

Strut-and-tie modelling is a method to simplify load transfer mechanism into strut-and-tie (ST) 

models with struts taking compressive forces and ties taking tensile forces. The properties and the 

failure criterion of the elements in the ST models shall be assigned in a proper way as they can 

affect the predicted results. The analysis of steel reinforced deep beams is based on steel yielding; 

thus, the material properties can be simplified. However, it cannot apply to FRP RC deep beams, 

as FRP bars cannot yield and such beams fail by crushing of concrete compressive struts, which 

makes it much more complicated to construct and analyze ST models, hence the details are 

described in this chapter. 

4.2 Elements 

ST models representing FRP reinforced deep beams consist of FRP ties taking tensile forces, 

concrete struts taking compressive forces and nodes connecting struts to other elements. 

4.2.1 Ties 

Ties are located where FRP bars are placed to take tensile forces. One tie represents all the bars 

taking one resultant tensile force. Each tie is at the centroid of the bars that it represents, and it has 

the summed area and the mechanics properties of those bars. Because FRP bars are linear-elastic 

and brittle, its elastic modulus is constant till rupture. 

As beams analyzed in this research are all singly reinforced with same material, the properties of 

the ties are easy to define. Both vertical and horizontal ties shall be placed in the ST models for 

beams having shear reinforcement.  

4.2.2 Struts 

Struts are concrete blocks assumed to be the paths transferring compressive stresses. They are 

always simplified into lines like in the ST model in Figure 4.1 for calculations of internal forces, 

strains, etc.  

 
Figure 4.1: Example of an ST model 

Struts 

Ties 

Load 

Support 

T1 T2 T3 

T6 T7 

S4 S5 

S8 S9 S10 S11 S12 
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Unlike ties where the areas can be obtained directly from the rebars, the area of a strut is calculated 

from multiplying the beam width with the assumed strut width (𝑤𝑠) that is unique for each strut. 

Because one strut connects to two nodes, the values obtained from those nodes are different. Take 

a beam without vertical reinforcement under three-point bending as an example, Figure 4.2 shows 

that 

𝑤𝑠𝑇 = ℎ𝑇 𝑐𝑜𝑠 𝜃𝑠𝑡𝑟𝑢𝑡 + 𝑙𝑇 𝑠𝑖𝑛 𝜃𝑠𝑡𝑟𝑢𝑡  (4.1) 

𝑤𝑠𝐶 = ℎ𝐶 𝑐𝑜𝑠 𝜃𝑠𝑡𝑟𝑢𝑡 + 𝑙𝐶 𝑠𝑖𝑛 𝜃𝑠𝑡𝑟𝑢𝑡  (4.2) 

 
Figure 4.2: Example of calculating strut widths 

where ℎ𝐶 , 𝑙𝐶 , ℎ𝑇 , 𝑙𝑇  are the horizontal and vertical sizes of the node regions that the strut is 

connected to, and 𝜃𝑠𝑡𝑟𝑢𝑡 is the incline of the strut as shown in Figure 4.2. 

ACI 318-19 (2019) allows to use 𝑤𝑠𝑇  (which can be calculated more easily based on the 

reinforcement design and is generally the larger one) as the strut width for steel reinforced beams, 

because shear capacity of those beams does not relate directly to the strength of concrete struts. 

However, 𝑤𝑠 directly relates to the predicted shear capacity of FRP reinforced beams as concrete 

crushing is preferred, hence both 𝑤𝑠𝑇 and 𝑤𝑠𝐶 shall be considered. 

In some research (Eom & Park, 2010; Mohamed et al., 2020), 𝑤𝑠 is taken as the average value of 

𝑤𝑠𝑇 and 𝑤𝑠𝐶; and in some other research (B. H. Kim & Yun, 2011a; Krall, 2014), 𝑤𝑠 is taken as 

the smaller of 𝑤𝑠𝑇  and 𝑤𝑠𝐶 . In this research, 𝑤𝑠  is taken as the smaller of 𝑤𝑠𝑇  and 𝑤𝑠𝐶  to be 

conservative. Horizontal struts only connect to nodes in the compression side, hence 𝑤𝑠 are equal 

to ℎ𝐶 . 

Another important property of the struts is the elastic modulus. Concrete is not linear under 

compression, and elastic modulus decreases with increased applied loads. This study uses 

tangential modulus consistent with the iterative process. Therefore, the elastic modulus can be the 

derivative from stress-strain curve at the interest points. 

Tie 

𝜃𝑠𝑡𝑟𝑢𝑡 

ℎ𝐶  

𝑙𝐶  

𝑙𝑇 

ℎ𝑇 
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4.2.3 Node Regions 

Nodes are the points where struts and ties connect to each other. Because concrete struts have 

relatively large areas, nodes become node regions for connecting struts to other members or 

external forces. Node regions can be in different shapes, and the most common shape is triangle, 

which is also the shape used in this research for making the construction of nodes simple. The 

dimensions of node regions depend on the forces and members that meet at the nodes.  

As shown in Figure 4.2, the heights of all nodes in the tension side are equal to ℎ𝑇 , while the 

heights of all nodes in the compression side are equal to ℎ𝐶 . ℎ𝑇 is based on the flexural bars, which 

is equal to the height of the bearing plate if there is one, or twice the distance between the centroid 

of flexural reinforcement and the outmost concrete tensile fibre.  

There is no determined way to calculate ℎ𝐶  for FRP RC deep beams based on current codes and 

standards, and no research is found specifically on how to obtain it. In this research, it is called the 

assumed compression height and will be further discussed and analyzed in following chapters, as 

it is a key feature in the IST method. 

The base of the loading and supporting nodes shall be determined based on the widths of the 

bearing plates or columns, as the compression fan (the name for having multiple struts with 

different angles connected to one node) connects to them; and the base of other nodes can be 

determined by assuming the inclined faces of the nodes perpendicular to the centerlines of the 

inclined strut connected to it, which are 

𝑙𝑇 = ℎ𝑇 tan 𝜃𝑠𝑡𝑟𝑢𝑡  (4.3) 

𝑙𝐶 = ℎ𝐶 tan 𝜃𝑠𝑡𝑟𝑢𝑡  (4.4) 

With the heights and bases determined, the sizes of the inclined faces of the nodes can be easily 

obtained. 

4.3 Failure Modes 

The shear strength of a deep beam is achieved when members of the ST models reach the defined 

failure including the rupture of ties and the crushing of concrete struts and node regions. As 

indeterminate ST (IST) models can still be stable after the failure of one member, the load causes 

the system to fail is generally larger than the load failing the first member. 

4.3.1 Tie Rupture 

Tie rupture occurs when the stress calculated in any of the ties reaching its ultimate strength. The 

strengths of the ties representing stirrups are taken as the strength at the bent sections instead of 

the strengths in the straight portions, as the bent sections are weaker (with less strength).  

As tie rupture is brittle and shall be avoided in the design, a factor can be applied to the ultimate 

strength ensuring that ties will not be near rupture at the system failure. However, for research 

perspective, this kind of safety factor shall not be included in the analysis. 
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4.3.2 Strut Crushing 

Concrete crushing is the preferred failure for FRP RC beams as it is more ductile than tie rupture. 

Because FRP RC members need to utilize the ductility of concrete, the failure of concrete strut is 

assumed to occur when strain reaches 𝜀0 (the strain corresponds to the compressive strength of 

concrete), but not 𝜀𝑐𝑢 (the crushing strain). As this research uses tangential elastic modulus, strut 

crushing can also be defined to occur when the elastic modulus reaches zero. 

However, as IST models may require multiple members to fail, and the negative stiffnesses can 

cause errors during the calculation of internal forces, the elastic modulus of a “crushed” strut 

cannot still be the derivative of the post-peak stress-strain curve. As a failed strut in an IST model 

shall be a zero-force member, and the force shall be distributed to other members, the elastic 

modulus of a failed strut can be set to a small number to make the internal force distributed to it 

close to zero. In this research, the remained elastic modulus of a failed strut is set to 1% of it 

original elastic modulus at zero strain according to Krall (2014). 

4.3.3 Node Crushing 

Node crushing is also caused by concrete crushing. However, as it is generally caused by 

concentrated loads and can be avoided simply by increasing the area to spread out the loads (for 

example, increasing the sizes of the load bearing plates), it shall also be avoided. 

The node crushing criteria are based on CSA S806-12 (R2017), which is to apply the reduction 

factors of 0.85, 0.75 and 0.65 to concrete strengths (𝑓𝑐
′) depending on how many ties connect to 

this node (0.85 if the node is under pure compression, 0.75 if one tie connects it, and 0.65 if two 

or more ties connect to it) (CSA S806-12, R2017). 

4.3.4 System Failure and Preferred Failure Mode 

The failure of a statically determinate ST model occurs when any member of the model fails, which 

is straightforward; and the failure of the inclined strut indicates the shear failure mode of the beam. 

However, the failure of an IST model happens when enough members failed leading the model 

unstable. As tie rupture and node crushing are the undesirable failure modes, analysis shall be 

stopped and the changes in reinforcement ratios, beam widths or the node sizes shall be made if 

they occur prior to the failure of the struts. 

System failure can be categorized into three types, failure of only inclined struts (shear failure), 

failure of horizontal struts (flexural failure) and failure of both kinds of struts (combined).  

Failure of inclined struts is the most straight forward type. The failure mode of this type is shear 

failure, and the strength predicted through this failure type is the shear strength. 

The combined failure mode usually follows a pattern with multiple members failing after the 

failure of one member, and the failed members include both horizontal and inclined struts. This 

happens because the alternative load paths can neither take the load failing the first load path. This 

failure type also predicts that the beam will fail in shear, and the predicted strength is the shear 

strength, no matter if the first failed element is horizontal or inclined strut.  
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Moreover, if the IST model is predicted to fail in the combined way, the actual failure pattern of 

the deep beam is more likely to have both critical shear cracks and concrete crushed, especially 

when the first failed member is predicted to be a horizontal strut. Sometimes, node crushing occurs 

simultaneously with the failure of multiple struts leading to a system failure, which can also be 

defined as the combined failure type. It always occurs in some IST model types for beams with 

relatively small spacings between vertical reinforcement, as the shear strengths of those beams are 

relatively closer to their flexural strengths.  

In contrast, IST models are not designed to predict the flexural failure as the predicted results can 

be affected by the location and the number of ties, which is not true. Hence, all failed struts being 

horizontal can only indicate that the beam is governed by flexural failure, but the predicted load is 

not the flexural strength of the beam, and a further flexural analysis is required. 

The IST models in Figure 4.3 under same load (P) are analyzed to show how the predicted flexural 

strength can be affected by the ties. The force equilibriums in x and y directions for the models in 

Figure 4.3 can be organized into equations listed below by assuming the stirrups are placed at 𝑥1, 

𝑥2 to 𝑥𝑛 from support. 

𝑆10𝑦 + 𝑆11𝑦 + 𝑆12𝑦 = 𝑃     for y-direction in a) (4.5) 

𝑆5 + 𝑆10𝑦
𝑎

𝑗𝑑
+ 𝑆11𝑦

𝑎−𝑥1

𝑗𝑑
+ 𝑆12𝑦

𝑎−𝑥2

𝑗𝑑
= 𝑃

𝑎

𝑗𝑑
     for x-direction in a) (4.6) 

𝑆14𝑦 + 𝑆15𝑦 + 𝑆16𝑦 + 𝑆17𝑦 = 𝑃     for y-direction in b) (4.7) 

𝑆7 + 𝑆14𝑦
𝑎

𝑗𝑑
+ 𝑆15𝑦

𝑎−𝑥1

𝑗𝑑
+ 𝑆16𝑦

𝑎−𝑥2

𝑗𝑑
+ 𝑆17𝑦

𝑎−𝑥3

𝑗𝑑
= 𝑃

𝑎

𝑗𝑑
     for x-direction in b) (4.8) 

where 𝑆𝑛 is the force in 𝑆𝑛; 𝑎 is the length of the shear span; and 𝑗𝑑 is the length of the lever arm 

between resultant compressive and tensile forces. 

 
              a) with two ties                                                   b) with three ties 

Figure 4.3: IST models with different stirrup spacings 

The following equations can be computed by multiplying the y-direction equations with 𝑎/𝑗𝑑, and 

then subtracting them by the x-direction equations 

Struts 

Ties 
P 

T1 T2 T4 T3 

S5 S6 S7 

T8 T9 T10 

S11 S12 
S13 S14 

S15 

S16 S17 

P 

T1 T2 T3 

S4 S5 

T6 T7 

S8 S9 S10 

S11 S12 



29 

 

𝑆5 = 𝑆11𝑦
𝑥1

𝑗𝑑
+ 𝑆12𝑦

𝑥2

𝑗𝑑
     in a) (4.9) 

𝑆7 = 𝑆15𝑦
𝑥1

𝑗𝑑
+ 𝑆16𝑦

𝑥2

𝑗𝑑
+ 𝑆17𝑦

𝑥3

𝑗𝑑
     in b) (4.10) 

Therefore, it is nearly impossible to have 𝑆5 and 𝑆7 be the same, even if stirrups equally divide the 

shear span with each strut afford same amount of P in y-direction, which makes 

𝑆5 =
𝑃

3

𝑎

3𝑗𝑑
+

𝑃

3

2𝑎

3𝑗𝑑
=

𝑃𝑎

3𝑗𝑑
     in a) (4.11) 

𝑆7 =
𝑃

4

𝑎

4𝑗𝑑
+

𝑃

4

2𝑎

4𝑗𝑑
+

𝑃

4

3𝑎

4𝑗𝑑
=

3𝑃𝑎

8𝑗𝑑
     in b) (4.12) 

It is only possible when there is no force taken by the strut connecting the support and the loading 

point (S10 and S14 in Figure 4.3 a) and b)) with stirrups equally dividing the shear span and each 

stirrup taking the same amount of force. Furthermore, even with same numbers of stirrups, forces 

taken by 𝑆5 and 𝑆7 will be different when the locations of these stirrups are changed. 

Therefore, when an IST model shows failure of only horizontal struts, it only indicates that the 

beam will be failed in flexure, and a further flexural analysis is required to determine the flexural 

strength. However, the analysis of the flexural strength of deep beams is not included in this 

research as this research focuses on the shear strength. 

4.4 Analysis Process 

Iterative analysis is done through following incremental loading steps and is organized as a flow 

chart in Figure 4.4.  

1. Before applying loads to the model, the geometry of the model and the sizes of the members 

shall be determined based on the size of the beam and the arrangement of the longitudinal 

and vertical reinforcement.  

2. In each load step, the forces, stresses, and strains of members are calculated based on the 

stiffness matrix that is according to the areas, lengths, and elastic moduli of the members.  

- The elastic modulus of a tie is constant 

- The elastic modulus of a strut changes in each load step, and the elastic modulus used 

in this step is calculated based on the strains obtained from last step.  

- If it is the initial step, the elastic moduli of concrete struts are based on zero strain. 

3. After the forces, stresses and strains are obtained. The failure of each member shall be 

checked.  

- The stresses of ties are compared with their strengths to find if they are ruptured.  

- The failure of a struts is checked based on its elastic modulus calculated from newly 

obtained strain.  

- To find if a node region is crushed, a resultant force exerted on the node can be 

calculated based on the x and y components of all forces exerted on this node; and the 

stress of this node can be computed and compared with its strength according to its 

type. 

4. Based on the check on the strength of the members, the following actions can be made: 
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- If no member is failed in this step, the next increased load can be applied to the model.  

- If bar rupture or node crushing happens in this step, the process shall be stopped as 

unwanted failure occurs, and the design shall be changed to increase the reinforcement 

ratio or the node region size.  

- If any strut is failed in this step, the number or name of that strut shall be recorded 

along with the load failing it, and the elastic modulus of the failed strut in all following 

steps is set to 1% of its initial elastic modulus. 

5. The analysis ends when the model becomes unstable with enough struts failing. Based on 

the types of the failed struts, the failure type of the system can be determined. 

- If the failure type is shear failure or combined failure, the system failing load is the 

beam’s shear strength, and the failure mode of the beam is shear failure.  

- If the flexural failure type is observed, the failure mode of the beams is flexural failure, 

and the strength of the beam shall be further evaluated based on the flexural analysis. 

 

 
Figure 4.4: Flow chart of the overall analysis process 
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5. Features of Indeterminate Strut-and-Tie Method 

As the design logic for FRP and steel RC deep beams is quite different, the approaches of several 

features that work for steel RC deep beams do not work appropriately for FRP RC deep beams 

(like softening factors). Hence, this chapter introduces these factors that are essential to the IST 

method with their existing and proposed approaches, which are analyzed and compared in later 

chapters to determine the ones that are suitable. 

5.1 Proposed Strut-and-Tie Models 

The structure of an ST model is used to represent the load transfer path in the deep beams and 

affects the predicted results. 

Models analyzed in this research are presented in this section. The models are single-shear-span 

models as the specimens are symmetric, and one zero-force tie is located under the loading point 

for the convenience in constructing the models in computing programme. Dashed lines in models 

are for the struts while the thicker continued lines are for the ties. 

5.1.1 STM for Deep Beams without Vertical Reinforcement 

deep beams without vertical reinforcement are always analyzed with the model geometry 

presented in Figure 5.1. It is determinate and has a main strut connecting the loading and 

supporting points. The numbering system is also shown in Figure 5.1. 

Because it only has one load path, the failure of this model occurs when S2 is failed. 

 
Figure 5.1: STM for beams without vertical reinforcement 

5.1.2 STM for Deep Beams with Vertical Reinforcement 

ST models to analyze deep beams with vertical reinforcement are generally indeterminate, and 

there are different types of IST models. This research includes the models used by Krall (2014), 

by B. H. Kim and Yun (2011a, 2011b) (which was also the design model used by Krall (2014)) 

and two proposed models.  

During the construction of the models, the stirrups too close to the supports (those located inside 

the supporting node region) are excluded as they cannot help in transferring the loads. 

S2 

T1 

T3 

N1 N2 

N3 



32 

 

5.1.2.1 Kr Model according to Krall (2014) 

The models proposed by Krall (2014) place ties at the exact locations stirrups designed, with one 

main strut connecting the loading and supporting nodes and multiple struts in between the ties as 

shown in Figure 5.2. This model is called “Kr model” in this research, and the numbering system 

is included in Figure 5.2.  

 
a) with 220/230mm spacing 

 
b) with 150mm spacing 

Figure 5.2: Kr model (Krall, 2014) for beams with stirrups 

As there are two load paths included in this type of model, the system failure of Kr models occurs 

when failure occurs in the main strut (S12 and S20 in Figure 5.2 a) and b)) and any other strut. 

5.1.2.2 Design Model according to B. H. Kim and Yun (2011a, 2011b) 

The model used by B. H. Kim and Yun (2011a, 2011b) is presented in Figure 5.3 with the 

numbering system. This model is also the one typically used in the industry for designing steel RC 

deep beams with vertical reinforcement, because it is easy to construct and analyze by 

consolidating all stirrups into one tie. In this research, it is called “design model”. 
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Figure 5.3: Design model for beams with stirrups 

This model also has two load paths; thus, the system failure occurs when S8 and any other strut 

fail.  

5.1.2.3 Two Proposed Models (WSF Model and HSF Model) 

As will be shown later, Kr model has an issue of overpredicting the results and not capturing the 

increase in strength with smaller stirrup spacings; two models are proposed in this research to 

improve the performance of IST modelling. The proposed models are based on the idea of having 

compression fan in deep sections. 

Compression fan is constructed for the whole deep beam in the first proposed model type as shown 

in Figure 5.4, hence this model type is called “WSF model” (whole section fanning model) in this 

research. 
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a) with 220/230mm spacing 

 
b) with 150mm spacing 

Figure 5.4: WSF model for beams with stirrups 

In WSF models, the number of load paths is equal to the number of vertical ties, and the load paths 

other than the one governed by the main strut connecting the loading and supporting nodes (S11 

and S19 in Figure 5.4 a) and b)) consist of the inclined struts connected to the same vertical tie. 

The system failure occurs when all the load paths are failed, and the failure of a load path occurs 

when any inclined strut in that load path is failed or when any node in that load path cannot be in 

equilibrium. Note that the failure of horizontal struts next to loading nodes (S5 and S9 in Figure 

5.4 a) and b)) can cause the failure of all other load paths except for the one governed by that main 

strut. 

Because the specimens tested by Krall (2014) were not very deep, another model type with 

compression fan extended to 2.0𝑑 is proposed and is presented in Figure 5.5. As about half of the 

ST model is constructed as compression fan, it is called “HSF model” (half section fanning model) 

in this research. 
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a) with 220/230mm spacing 

 
b) with 150mm spacing 

Figure 5.5: HSF model for beams with stirrups 

The load paths of the HSF model also consist of the inclined struts connected to the same vertical 

tie, and the system failure occurs when all load paths are failed. HSF model has less load paths 

compared to WSF model, and there is no strut connecting the supporting and the loading nodes. 

5.2 Concrete Stress – Strain Relationships 

As FRP RC deep beams rely on the strength of concrete, and the key elements of ST models are 

the concrete struts, the concrete stress-strain relationship shall be important to the analysis. 

Although Krall (2014) concluded that the IST method was not sensitive to the choice of concrete 

stress-strain models, it is still considered as an essential feature in this research, because the pre-

peak elastic modulus of concrete could change dramatically if the softening factors are applied in 

different ways. 

As mentioned before, Krall (2014) and B. H. Kim and Yun (2011a, 2011b) applied the softening 

factor (𝜁) to not only the compressive strength (𝑓𝑐
′) but also the corresponding strain (𝜀0), hence 

the pre-peak softened stress-strain relationships and elasticity-strain relationships based on the 

Hognestad parabola and the model by Thorenfeldt et al. (1987) are as shown in Equation (5.1) to 

(5.2) and Equation (5.3) to (5.4).  
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𝑓𝑐 = 𝜁𝑓𝑐
′ [2 (

𝜀𝑐

𝜁𝜀0
) − (

𝜀𝑐

𝜁𝜀0
)

2

]   (5.1) 

𝐸 =
2∙𝑓𝑐

′

𝜀0
(1 −

𝜀𝑐

𝜁𝜀0
)   (5.2) 

where 𝜀0  can be calculated from 2𝑓𝑐
′ 𝐸c⁄  ; and 𝐸c  is concrete initial elastic modulus and is 

calculated based on CSA A23.3-19 (2019) in  this research; 

𝑓𝑐 =
𝑛∙𝜁𝑓𝑐

′(
𝜀𝑐

𝜁𝜀0
⁄ )

𝑛−1+(
𝜀𝑐

𝜁𝜀0
⁄ )

𝑛𝑘   (5.3) 

𝐸 =
𝑛∙𝑓𝑐

′

𝜀0
⁄

𝑛−1+(
𝜀𝑐

𝜁𝜀0
⁄ )

𝑛𝑘 [1 −
𝑛𝑘(

𝜀𝑐
𝜁𝜀0

⁄ )
𝑛𝑘

𝑛−1+(
𝜀𝑐

𝜁𝜀0
⁄ )

𝑛𝑘]  (5.4) 

where 𝜀0 can be calculated from 𝑛 𝑓𝑐
′ [𝐸c(𝑛 − 1)]⁄ ; and 𝑛 and 𝑘 are parameters for the model by 

Thorenfeldt et al. (1987). 𝑘 is equal to 1.0, and 𝑛 can be obtained from 0.8 + 𝜁𝑓𝑐
′ [𝑀𝑃𝑎] 17⁄  for 

pre-peak relationships. Note that 𝑛 is also softened according to Krall (2014), as it is also a factor 

obtained from 𝑓𝑐
′. 

However, only the strength was suggested to be reduced in the Modified Compression Field 

Theory (MCFT) developed by Vecchio and Collins (1986), and the softened Hognestad parabola 

and the model by Thorenfeldt et al. (1987) become 

𝑓𝑐 = 𝜁𝑓𝑐
′ [2 (

𝜀𝑐

𝜀0
) − (

𝜀𝑐

𝜀0
)

2

]   (5.5) 

𝐸 =
2∙𝜁𝑓𝑐

′

𝜀0
(1 −

𝜀𝑐

𝜀0
)   (5.6) 

𝑓𝑐 =
𝑛∙𝜁𝑓𝑐

′(
𝜀𝑐

𝜀0
⁄ )

𝑛−1+(
𝜀𝑐

𝜀0
⁄ )

𝑛𝑘   (5.7) 

𝐸 =
𝑛∙𝜁𝑓𝑐

′

𝜀0
⁄

𝑛−1+(
𝜀𝑐

𝜀0
⁄ )

𝑛𝑘 [1 −
𝑛𝑘(

𝜀𝑐
𝜀0

⁄ )
𝑛𝑘

𝑛−1+(
𝜀𝑐

𝜀0
⁄ )

𝑛𝑘]  (5.8) 

where Equation (5.5), (5.6) are for Hognestad parabola, and Equation (5.7), (5.8) are for the model 

by Thorenfeldt et al. (1987); and 𝑛 is calculated as 0.8 + 𝑓𝑐
′ [𝑀𝑃𝑎] 17⁄ , which is not softened. 

In this research, the softened Hognestad parabola and Thorenfeldt et al. (1987) model with only 

the strength reduced are called “H1 model” and “T1 models” respectively, and the models will 

softening all of the factors calculated from the strength are called “H2 model” and “T2 models” 

respectively. 

The differences in elastic modulus of the models can be found in Figure 5.6 under constant 

softening factor equal to 0.6375 (the factor from ACI 318-19 (2019) for beams with vertical 

reinforcement).  
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Figure 5.6: Elastic modulus versus strain with different models 

It is clear that the initial elastic modulus at zero strain is different if the softening factors are applied 

in different ways, and the curves from different models are quite different. When the strain is small, 

the predicted elastic modulus from T2 model tends to be larger than that of H2 model than that of 

T1 model than that of H1 model; but the strain corresponding to the zero elastic modulus predicted 

by T2 is smaller than that by H2 than by T1 than by H1. 

It is difficult to tell which model will reduce the shear strength the most by only looking at the 

elastic modulus to strain curves, as different struts are under different stresses, and the relationship 

between elastic modulus and force distribution is too complicated to determine. Therefore, only 

the analysed results of the specimens can verify if the models are suitable, and if the shear strength 

is sensitive to the choice of the softened stress-strain relationships. 

5.3 Assumed Concrete Compression Height 

As mentioned before, the assumed concrete compression height (ℎ𝐶) determines the struts’ widths 

and affects the predicted shear strengths. However, there is no determined way to calculate it, and 

it is computed in different ways in different research and are related to different beam parameters. 

5.3.1 Based on Strain Compatibility 

Krall (2014) suggested to obtain ℎ𝐶  from strain compatibility with the assumption of concrete top 

fibre reaches ultimate strain (𝜀𝑐𝑢 of 0.0035) and linear strain distribution as shown in Figure 5.7.  

 
Figure 5.7: Assumed strain distribution and resultant forces 
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Therefore, the following relationship can be established.  

𝛼1𝑓𝑐
′𝛽1𝑐𝑏 = 𝐴𝐹𝑅𝑃𝐸𝐹𝑅𝑃(𝑑 − 𝑐)

0.0035

𝑐
   (5.9) 

where 𝑓𝑐
′ is the concrete cylinder compressive strength; 𝛼1and 𝛽1 are the factors suggested in CSA 

A23.3-19 (2019) for concrete equivalent stress block with concrete reaching ultimate strain of 

0.0035 (𝛼1 = 0.85 − 0.0015𝑓𝑐
′; 𝛽1 = 0.97 − 0.0025𝑓𝑐

′); 𝐴𝐹𝑅𝑃 is the total area of the longitudinal 

FRP bars; 𝐸𝐹𝑅𝑃 is the elastic modulus of the FRP bars; d is the effective depth; and c is the only 

unknown labelled in Figure 5.7.  

Therefore, c can be computed, and ℎ𝐶  can also be obtained. 

𝑐 =
−0.0035𝐴𝐹𝑅𝑃𝐸𝐹𝑅𝑃+√(0.0035𝐴𝐹𝑅𝑃𝐸𝐹𝑅𝑃)2−4(𝛼1𝑓𝑐

′𝛽1𝑏)(0.0035𝐴𝐹𝑅𝑃𝐸𝐹𝑅𝑃𝑑)

2(𝛼1𝑓𝑐
′𝛽1𝑏)

  (5.10) 

ℎ𝐶 = 𝛽1𝑐 (5.11) 

However, there are several problems of this approach. Firstly, the assumption of plane section 

remaining plane (linear strain distribution) does not hold true for deep beams. Secondly, the 

assumption of top fibre reaching 𝜀𝑐𝑢 is for beams failing in flexure, but the top fibre of concrete 

may not reach the ultimate strain when the beam is failed in shear. 

ℎ𝐶  calculated based on this approach are organized in Table 5.1, which clearly shows the influence 

of elastic modulus and ratio of flexural reinforcement (𝐸𝑓 and 𝜌𝑓) on the value of ℎ𝐶 . 
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Table 5.1: 𝒉𝑪 of specimens based on strain compatibility 

Specimens 𝜌𝑓 (%) 𝐸𝑓 (GPa) ℎ𝐶  (mm) 

BM12-INF 2.51 60 76.89 

BM12-220 2.51 60 76.89 

BM12-150 2.51 60 76.89 

BM12-s230 2.18 60 72.68 

BM16-INF 2.23 64 75.03 

BM16-220 2.23 64 75.03 

BM16-150 2.23 64 75.03 

BM16-s230 1.94 64 71.15 

BM25-INF 1.82 60 67.42 

BM25-220 1.82 60 67.42 

BM25-150 1.82 60 67.42 

BM25-s230 1.58 60 63.28 

A3D9M-1.4 0.38 80.70 52.7 

A3D9M-1.7 0.38 80.70 52.7 

A3D9M-2.1 0.38 80.70 52.7 

A4D9M-1.7 0.51 80.70 59.76 

A5D9M-1.7 0.64 80.70 65.75 

A3D9S-1.7 0.50 80.70 45.15 

A3D9L-1.7 0.51 80.70 74.35 

C3D9M-1.4 0.38 120.21 62.68 

C3D9M-1.7 0.38 120.21 62.68 

C3D9M-2.1 0.38 120.21 62.68 

C4D9M-1.7 0.51 120.21 70.79 

C5D9M-1.7 0.64 120.21 77.62 

C3D9S-1.7 0.50 120.21 53.5 

C3D9L-1.7 0.51 120.21 88.07 

BM4.5-90 2.23 64 74.00 

BM4.5-150 2.23 64 74.00 

BM6.5-90 2.23 64 74.00 

BM6.5-150 2.23 64 74.00 

    

5.3.2 Based on Force Equilibrium 

The approach of ℎ𝐶  usually found in IST modelling of steel RC deep beams is based on the force 

equilibrium, which is to assume that the resultant compressive force at ultimate state makes the 

stress in the concrete equivalent stress block reaching 0.85𝑓𝑐
′, and the resultant tensile force at 

ultimate state makes flexural bars yielding. Hence, based on the force equilibrium, 

ℎ𝑐 =
𝐴𝑠𝑓𝑦

0.85𝑓𝑐
′𝑏

  (5.12) 

where 𝐴𝑠 is the total area of steel flexural bars; 𝑓𝑦 is the yielding strength of steel bars; and 𝑏 is 

beam width. 

However, FRP bars do not yield; hence, an assumed strength at ultimate state shall be proposed to 

adopt this approach. As CSA S806-12 (R2017) regulated the stress in FRP bars shall not exceed 

65% of its ultimate strength, this approach can be modified to 

ℎ𝑐 =
0.65𝐴𝐹𝑅𝑃𝑓𝑢

0.85𝑓𝑐
′𝑏

  (5.13) 

where 𝐴𝐹𝑅𝑃 is the total area of flexural FRP bars; and 𝑓𝑢 is the strength of these flexural bars. 
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Therefore, ℎ𝐶  based on this approach can be easily computed, and Table 5.2 organized ℎ𝐶  through 

this approach. The value of ℎ𝐶  also changes with the flexural reinforcement area; but the values 

obtained from this approach are quite large and are extremely sensitive to the flexural 

reinforcement compared to the values obtained based on strain compatibility. The predicted values 

being relatively large may be due to that the stresses in flexural rebars are generally smaller than 

the regulated 65% of its ultimate strength. 

Table 5.2: 𝒉𝑪 of specimens based on force equilibrium 

Specimens 𝜌𝑓 (%) 𝐸𝑓 (GPa) ℎ𝐶  (mm) 

BM12-INF 2.51 60 109.61 
BM12-220 2.51 60 109.61 
BM12-150 2.51 60 109.61 
BM12-s230 2.18 60 85.78 

BM16-INF 2.23 64 97.49 
BM16-220 2.23 64 97.49 
BM16-150 2.23 64 97.49 
BM16-s230 1.94 64 76.29 

BM25-INF 1.82 60 79.38 
BM25-220 1.82 60 79.38 
BM25-150 1.82 60 79.38 
BM25-s230 1.58 60 62.12 

A3D9M-1.4 0.38 80.70 51.08 
A3D9M-1.7 0.38 80.70 51.08 
A3D9M-2.1 0.38 80.70 51.08 
A4D9M-1.7 0.51 80.70 68.11 
A5D9M-1.7 0.64 80.70 85.13 
A3D9S-1.7 0.50 80.70 51.08 
A3D9L-1.7 0.51 80.70 85.13 

C3D9M-1.4 0.38 120.21 54.68 
C3D9M-1.7 0.38 120.21 54.68 
C3D9M-2.1 0.38 120.21 54.68 
C4D9M-1.7 0.51 120.21 72.91 
C5D9M-1.7 0.64 120.21 91.14 
C3D9S-1.7 0.50 120.21 54.68 
C3D9L-1.7 0.51 120.21 91.14 

BM4.5-90 2.23 64 91.67 
BM4.5-150 2.23 64 91.67 
BM6.5-90 2.23 64 91.67 
BM6.5-150 2.23 64 91.67 
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5.3.3 FEA Analysis 

Because the results from methods mentioned above are quite different from each other, and the 

assumption of the previous methods may not agree with the behavior of FRP RC deep beams at 

peak loads, a preliminary finite element analysis (FEA) is conducted in Abaqus (Smith, 2009) to 

find out the values of ℎ𝐶  in beams with different beam designs having different parameters 

including different slenderness ratios, beam dimensions, and reinforcement ratios. 

At first, the pinned boundary conditions (BCs) are applied on all three directions to the supporting 

areas with the load (set as increasing displacement at the loading direction) applied to the loading 

area. Under this kind of boundary conditions, the analyzed crack pattern and stress distribution 

diagram do not change when the beam design is changed, which reflects that such model cannot 

reflect the beam behavior. Therefore, the boundary conditions of the supporting area used by 

Stoner and Polak (2020) are referred, which is to restrain the lines parallel to x-axis in x-direction 

and to restrain the lines parallel to y-axis in y-direction with the coordinate system as shown in 

Figure 5.8, which leads to much better results similar to the ones presented by Stoner and Polak 

(2020). 

 
Figure 5.8: Coordinate system and BCs for FEA from Abaqus (Smith, 2009) 

Because this is a preliminary analysis, the material parameters are not studied in detail and the 

reinforcements are embedded into the concrete region without considering the bond-slip. As the 

mesh sizes depend on the beam sizes, and different concrete stress-strain models are used, they 

will be specified after the analyzed specimens are introduced. 

Moreover, because the FEA in this research focuses on how ℎ𝐶  is affected by the parameters of 

beam design (e.g., beam dimensions, reinforcement ratios), the analysis is conducted on mostly 

imaginary beams, and the models can only be briefly validated through checking the crack patterns 

and the load-displacement curves. A detailed and thorough FEA cannot be performed on ℎ𝐶  

limited to the scope of this research, thus this can be a good topic for future study. 
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The general process to compute ℎ𝐶  goes as: 

1. Suitable loads (increasing displacements) are applied at loading points, which can lead to 

plateau appearing in loading versus displacement plot. 

2. The stresses in the x-direction (S11 from Abaqus (Smith, 2009), based on the coordinate 

system presented in Figure 5.8) of each element under the loading point (usually at the mid 

span) are obtained from Abaqus (Smith, 2009).  

3. The load step that failure occurred is found based on the load-displacement plot and the 

analyzed crack pattern.  

4. ℎ𝐶  is computed as twice the distance from the centroid of the compressive stress curve to 

concrete top along the height of the beam at the failure step. 

The distribution of the stresses in x-direction (S11 from Abaqus (Smith, 2009) on the cross section 

of a beam under the loading point is presented in Figure 5.9, where negative values are for stresses 

in compression and positive values are for stresses in tension. Moreover, because loads are applied 

to the full width of the beams, the stresses in the elements under the loading point and at the same 

height (the stresses in the elements on the same row in Figure 5.9) are almost the same, thus the 

elements labelled in red in Figure 5.9 are selected to find the stress along the beam height at failure. 

 
Figure 5.9: Stress profile along beam height 

Figure 5.10 shows an example graph of stress along the beam height at failure. Continuous lines 

label out the elements and show the stress exerted on each element, while dash lines connect the 

stresses in the elements into a stress profile. Based on the stress profile, ℎ𝑐 can be calculated as 

twice the distance from concrete top to the centroid of the compression part, thus 

ℎ𝑐 = 2
∑ 𝑦𝑖𝜎𝑥𝑖Δ𝑖

∑ 𝜎𝑥𝑖Δ𝑖
  (5.14) 
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where 𝑦𝑖 is the distance in y-direction from the beam top to the centerline of i-th element;  𝜎𝑥𝑖 is 

the stress in x-direction exerted on that element; Δ𝑖 is the size of the element; and only elements 

in compression are included. 

 
Figure 5.10: Stress profile along beam height 

Firstly, the following beams with features listed in Table 5.3 are analyzed, where 𝑎/𝑑 is the shear 

span to depth ratio, 𝐴𝑏𝑎𝑟 is the area of one rebar, and 𝜌𝑓 is the longitudinal reinforcement ratio. 

Most of the beams are imaginary beams with several beams from Krall (2014). 

Table 5.3: First set of beams analyzed with FEA 

Name 
Height 

(mm) 

Width 

(mm) 

Depth 

(mm) 
𝑎/𝑑 # of bars 

A𝑏𝑎𝑟 

(mm2) 
𝜌𝑓 (%) 

ad1 360 60 - - 0 - - 

ad1b60 360 60 300 1 2 491 5.46 

ad1b60-h 360 60 300 1 2 200 2.22 

ad1b60-d 360 60 300 1 2 1000 11.11 

ad1b60-3000 360 60 300 1 2 3000 33.33 

ad1b60w150 360 150 300 1 2 491 2.18 

ad1b100 400 60 300 1 2 491 5.46 

ad1b100-d 400 60 300 1 2 1000 11.11 

ad1.5b60 360 60 300 1.5 2 491 5.46 

ad1.5b60-h 360 60 300 1.5 2 200 2.22 

ad1.5b60-d 360 60 300 1.5 2 1000 11.11 

ad1.5b60w150 360 150 300 1.5 2 491 2.18 

ad2b60 360 60 300 2 2 491 5.46 

ad2.5b60 360 60 300 2.5 2 491 5.46 

ad2.5b60-d 360 60 300 2.5 2 1000 11.11 

ad3b60 360 60 300 3 2 491 5.46 

ad4b60 360 60 300 4 2 491 5.46 

BM25-INF 330 200 270 2.5 2 491 1.82 

BM25-220 330 200 270 2.5 2 491 1.82 

BM25-150 330 200 270 2.5 2 491 1.82 

It is assumed that these imaginary beams use the same material as BM25 beams from Krall (2014) 

(for material properties), and the concrete models used for these beams are the modified Hognestad 

parabola suggested by Stoner and Polak (2020) for compressive behavior and exponential tension 

model in the following equations with 𝑛 equal to 0.4 for tensile behavior of concrete. 
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𝑓𝑐 = 𝑓𝑐
′ [2 (

𝜀𝑐

𝜀0
) − (

𝜀𝑐

𝜀0
)

2

]  for  
𝜀𝑐

𝜀0
≤ 1 (5.15) 

𝑓𝑐 = 𝑓𝑐
′ [1 − (

𝜀𝑐
𝜀0

⁄ −1

2
)

2

]  for  
𝜀𝑐

𝜀0
> 1 (5.16) 

𝑓𝑡 = 𝐸𝑐𝜀𝑡  for  
𝜀𝑡

𝜀𝑟
≤ 1 (5.17) 

𝑓𝑡 = 𝑓𝑟 (
𝜀𝑟

𝜀𝑡
)

𝑛

  for  
𝜀𝑡

𝜀𝑟
> 1 (5.18) 

where 𝑓𝑡 is concrete tensile stress at tensile strain 𝜀𝑡; 𝑓𝑟 is the rupture strength of concrete equal to 

0.6√𝑓𝑐
′; and 𝜀𝑟 is the rupture strain equal to 𝑓𝑟/𝐸𝑐. The symbols used in compressive model are 

the same as those in previous equations for concrete compressive models, and 𝐸𝑐 is assumed to be 

same for concrete in compression and in tension. 

Compared to using the same equation for pre- and post-peak compressive behavior, the modified 

Hognestad parabola increase the post-peak capacity of concrete as shown in Figure 5.11 (for 

concrete with cylinder strength of 40 MPa). 

 
Figure 5.11: Compressive stress-strain curves of original and modified Hognestad parabola 

The exponential tension model is commonly used to model the concrete post-peak tensile behavior, 

and the factor 𝑛 controls the post-peak capacity. The post peak capacity increases when the value 

of 𝑛 decreases as shown in Figure 5.12 with 𝑛 equal to 0.4 and 1.0. 

 
Figure 5.12: Exponential tension model with different n  
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Based on the sizes of these beams, the values of ℎ𝐶  obtained with the mesh size of 20 mm and 10 

mm are not that different, hence 20 mm C3D8R (8-node linear brick, reduced integration, 

hourglass control) elements (Smith, 2009) are used for the analysis, and the results are organized 

in Table 5.4, where ℎ  is the beam height, 𝑑  is the effective depth and 𝜌𝑓  is the longitudinal 

reinforcement ratio. 

Table 5.4: Results of beams analyzed with first set of concrete models 

Name ℎ𝑐 (mm) ℎ𝑐/ℎ ℎ𝑐/𝑑 𝜌𝑓 (%) 

ad1 37.95 0.1054 - - 

ad1b60 71.94 0.1998 0.2398 5.46 

ad1b60-h 46.64 0.1296 0.1555 2.22 

ad1b60-d 71.42 0.1984 0.2381 11.11 

ad1b60-3000 79.62 0.2212 0.2654 33.33 

ad1b60w150 62.27 0.1730 0.2076 2.18 

ad1b100 67.12 0.1678 0.2237 5.46 

ad1b100-d 66.89 0.1672 0.2230 11.11 

ad1.5b60 48.95 0.1360 0.1632 5.46 

ad1.5b60-h 43.81 0.1217 0.1460 2.22 

ad1.5b60-d 48.91 0.1358 0.1630 11.11 

ad1.5b60w150 48.34 0.1343 0.1611 2.18 

ad2b60 51.92 0.1442 0.1731 5.46 

ad2.5b60 60.70 0.1686 0.2023 5.46 

ad2.5b60-d 62.11 0.1725 0.2070 11.11 

ad3b60 84.61 0.2350 0.2820 5.46 

ad4b60 89.31 0.2481 0.2977 5.46 

BM25-INF 53.90 0.1633 0.1996 1.82 

BM25-220 53.40 0.1618 0.1978 1.82 

BM25-150 51.25 0.1553 0.1898 1.82 

Average of  

deep beams 
- 0.16 0.20  

     

The results showed that firstly, ℎ𝐶  is affected by the flexural reinforcement ratio, but the influence 

is limited; secondly, ℎ𝐶  relates more closely to depth but not height according to specimens ad1b60, 

ad1b60-d, ad1b100 and ad1b100-d; thirdly, slender beams tend to have larger ℎ𝐶  than deep beams; 

and lastly, with the first set of material models, ℎ𝐶  ranges from 0.15d to 0.25d for deep beams, and 

the average value is about 0.2d. 

It is interesting to find that the average value of 0.2d agrees with the effective shear depth value of 

0.9d suggested by CSA A23.3-19 (2019), which is used to assume the distance between resultant 

tensile and compressive forces for beams under shear. 

To verify the findings and to test how ℎ𝐶  changes when the post-peak behaviour is modelled 

differently. Most of the beams are analyzed again with the original Hognestad parabola for the 

post-peak behavior of concrete in compression and the exponential tension model having 𝑛 equal 

to 1.0, and the results are organized in Table 5.5. 
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Table 5.5: Results of beams analyzed with second set of concrete models 

Name ℎ𝑐 (mm) ℎ𝑐/ℎ ℎ𝑐/𝑑 𝜌𝑓 (%) 

ad1 36.91 0.1025 - - 

ad1b60 66.14 0.1837 0.2205 5.46 

ad1b60-h 41.61 0.1156 0.1387 2.22 

ad1b60-d 77.27 0.2146 0.2576 11.11 

ad1b60-3000 92.36 0.2566 0.3079 33.33 

ad1b60w150 49.19 0.1367 0.1640 2.18 

ad1.5b60 45.80 0.1272 0.1527 5.46 

ad2b60 47.80 0.1328 0.1593 5.46 

ad2.5b60 54.07 0.1502 0.1802 5.46 

ad2.5b60-d 53.02 0.1473 0.1767 11.11 

ad3b60 59.19 0.1644 0.1973 5.46 

ad4b60 58.30 0.1619 0.1943 5.46 

BM25-INF 50.06 0.1517 0.1854 1.82 

BM25-220 59.03 0.1789 0.2186 1.82 

BM25-150 56.99 0.1727 0.2111 1.82 

Average of  

deep beams 
- 0.16 0.20  

     

The results show that the influence from both the flexural and vertical reinforcement becomes 

slightly larger with this set of concrete models; the influence from slenderness is not as obvious as 

previously; and the value of ℎ𝑐 ranges similarly from 0.13d to 0.3d and the average ℎ𝑐 value for 

deep beams is also around 0.2d. 

Furthermore, to find if ℎ𝑐/𝑑 values can be still inside a similar range for beams with different 

heights and material properties, the following beams in Table 5.6 based on the specimens tested 

by D. J. Kim et al. (2014) are also analyzed along with some of the previously mentioned beams. 

Table 5.6: Beams based on specimens by D. J. Kim et al. (2014) analyzed with FEA 

Name 
Height 

(mm) 

Width 

(mm) 

Depth 

(mm) 
a/d # of bars 

A𝑏𝑎𝑟 

(mm2) 
𝜌𝑓 (%) 

A3D9M1.4 285 200 250 1.4 3 63.62 0.38 

A3D9M1.7 285 200 250 1.7 3 63.62 0.38 

A3D9M2.1 285 200 250 2.1 3 63.62 0.38 

A4D9M1.7 285 200 250 1.7 4 63.62 0.51 

A5D9M1.7 285 200 250 1.7 5 63.62 0.64 

A3D9S1.7 225 200 190 1.7 3 63.62 0.50 

A5D9L1.7 345 200 310 1.7 5 63.62 0.51 

A3D9M1.3 285 200 250 3 3 63.62 0.38 

A3D9M1.5 285 200 250 3 3 63.62 0.38 

A3D9M1.6 285 200 250 3 3 63.62 0.38 

A3D9M1.4d 285 200 250 1.4 3 491 2.95 

As the size of these beams are smaller, mesh size is reduced to 10 mm to ensure the accuracy of 

the analyzed results. Moreover, to find what will happen to the results if only the tension 

exponential model has decreased post-peak capacity with 𝑛 equal to 1.0 while use the modified 

Hognestad parabola for compression post-peak behavior, the beams are analyzed with this third 

set of material models, and the results are organized in Table 5.7. 
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Table 5.7: Results of beams analyzed with third set of concrete models 

Name ℎ𝑐 (mm) ℎ𝑐/ℎ ℎ𝑐/𝑑 𝜌𝑓 (%) 

ad1 32.83 0.0912 - - 

ad1b60 62.33 0.1731 0.2078 5.46 

ad1b60-h 45.46 0.1263 0.1515 2.22 

ad1b60-d 70.85 0.1968 0.2362 11.11 

ad1b60-3000 92.40 0.2567 0.3080 33.33 

ad1b60w150 44.77 0.1244 0.1492 2.18 

ad1.5b60 46.61 0.1295 0.1554 5.46 

ad2b60 46.10 0.1280 0.1537 5.46 

ad2.5b60 51.28 0.1425 0.1709 5.46 

ad2.5b60-d 55.23 0.1534 0.1841 11.11 

ad3b60 52.86 0.1468 0.1762 5.46 

ad4b60 57.72 0.1603 0.1924 5.46 

BM25-INF 48.69 0.1475 0.1803 1.82 

BM25-220 47.90 0.1451 0.1774 1.82 

BM25-150 47.43 0.1437 0.1757 1.82 

A3D9M1.4 30.78 0.1080 0.1231 0.38 

A3D9M1.7 33.34 0.1170 0.1334 0.38 

A3D9M2.1 42.87 0.1504 0.1715 0.38 

A4D9M1.7 33.51 0.1176 0.1340 0.51 

A5D9M1.7 37.77 0.1325 0.1511 0.64 

A3D9S1.7 26.61 0.1183 0.1400 0.50 

A5D9L1.7 44.54 0.1291 0.1437 0.51 

A3D9M1.3 34.63 0.1215 0.1385 0.38 

A3D9M1.5 34.25 0.1202 0.1370 0.38 

A3D9M1.6 33.11 0.1162 0.1325 0.38 

A3D9M1.4d 77.06 0.2704 0.3082 2.95 

Average of  

deep beams 
- 0.14 0.17  

ℎ𝑐 ranges similarly from 0.13d to 0.3d, and the average value of ℎ𝑐/𝑑 slightly decreases to 0.17 

but is still close to 0.2. The decrease in the average value is mainly from the new specimens based 

on beams tested by D. J. Kim et al. (2014), which were casted with lower strength concrete and 

much lower reinforcement ratios.  

Because the analysis is preliminary, most of the beams are imaginary beams without test data to 

verify the behavior, and the trends are not clear, thus it is difficult to find the relationships between 

ℎ𝑐 and the parameters of beam design (e.g., beam dimensions, reinforcement ratios). However, as 

the value of ℎ𝑐 always fall into the range of 0.13d to 0.3d, and the average value is always around 

0.2d, it may be a good guess to always obtain  ℎ𝑐 as 0.2d for analysis.  

Computing ℎ𝑐 as 0.2d does not give precise value of ℎ𝑐 for beams with different design, but this 

guess is neither a bad guess based on the analyzed range of ℎ𝑐 (0.13d to 0.3d) and shall not give 

values much different from the real situation. This approach slightly overestimates ℎ𝑐 of beams 

that are deeper and do not have stirrups, and it gives conservative values when the beams are 

slenderer and have stirrups. 

Moreover, the value of 0.2d is always more conservative than the two other approaches introduced 

previously based on strain compatibility and force equilibrium as shown in Table 5.8. 
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Table 5.8: 𝒉𝑪 equal to 0.2d of specimens 

Specimens 𝑑  (mm) ℎ𝐶  (mm) 

BM12-INF 270 54.00 
BM12-220 270 54.00 
BM12-150 270 54.00 
BM12-s230 270 54.00 

BM16-INF 270 54.00 
BM16-220 270 54.00 
BM16-150 270 54.00 
BM16-s230 270 54.00 

BM25-INF 270 54.00 
BM25-220 270 54.00 
BM25-150 270 54.00 
BM25-s230 270 54.00 

A3D9M-1.4 250 50.00 
A3D9M-1.7 250 50.00 
A3D9M-2.1 250 50.00 
A4D9M-1.7 250 50.00 
A5D9M-1.7 250 50.00 
A3D9S-1.7 190 38.00 
A3D9L-1.7 310 62.00 

C3D9M-1.4 250 50.00 
C3D9M-1.7 250 50.00 
C3D9M-2.1 250 50.00 
C4D9M-1.7 250 50.00 
C5D9M-1.7 250 50.00 
C3D9S-1.7 190 38.00 
C3D9L-1.7 310 62.00 

BM4.5-90 270 54.00 
BM4.5-150 270 54.00 
BM6.5-90 270 54.00 
BM6.5-150 270 54.00 

   

5.3.4 New Approach 

Although assuming ℎ𝑐 equal to 0.2d is simple to use and more conservative than the other two 

approaches, it cannot capture how the parameters of beam design (e.g., beam dimensions, 

reinforcement ratios) affect the value of ℎ𝑐, hence a further analysis of ℎ𝑐 is conducted to propose 

a new approach. 

Based on the FEA done previously, the strain profile of beams with different loading conditions 

are obtained. The pre-crack strain profile is presented in Figure 5.13 for deep beams under three-

point bending, four-point bending and uniformly distributed load (UDL) and slender beams. The 

profiles are similar to the ones suggested by Abdel-Nasser et al. (2017). It is only that Figure 5.13 

shows similar proposed strain profile of deep beams under three-point bending and four-point 

bending, but Abdel-Nasser et al. (2017) suggested that the strain profile of deep beams under four-

point bending is similar to that under UDL. 

Hence, if linear strain profile is assumed for deep beams under three-point and four-point bending, 

the value of ℎ𝑐 is over-estimated; but this assumption is safe for deep beams under UDL. Moreover, 

if the linear strain distribution is only assumed to the section under compression, the estimated 

value would be closer to the actual value. Furthermore, the strain in the top fibre of concrete is far 

smaller than the ultimate strain. 
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Figure 5.13: Pre-crack strain profile 

If the beams are cracked, the strain profiles at crack near loading point for deep beams under one-

point load are presented in Figure 5.14; the strain profiles for deep beams under two-point load are 

presented in Figure 5.15. 
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Figure 5.14: Strain profile at crack for deep beams under three-point bending 

 
Figure 5.15: Strain profile at crack for deep beams under four-point bending 

Based on the analyzed strain profile for cracked beams, the strain profile at compression section is 

much closer to linear distribution compared to uncracked beams, and the whole strain profile is 

like a combination of two straight lines, one shows the strain distribution of uncracked section, 

and the other one shows the crack opening.  

Moreover, Figure 5.16 presents the strain profile not at the crack of a cracked deep beam, which 

shows a nearly linear strain distribution of uncracked section, but the cracked section almost loses 

the ability to take the tensile force. 

 
Figure 5.16: Strain profile not at crack for cracked deep beams 

Therefore, a linear strain distribution in the compression part is assumed for both uncracked and 

cracked beams as shown in Figure 5.17, and the strain distribution can be expressed as 

𝜀(𝑥) =
𝜀𝑇𝑜𝑝

𝑐
𝑥  (5.19) 

where 𝜀𝑇𝑜𝑝 is the strain of the concrete top fibre, or the outmost compressive fibre; 𝑐 is the depth 

of concrete in compression; and 𝑥 is the distance from neutral axis (N. A.) as shown in Figure 5.17. 
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Figure 5.17: Assumed strain profile 

With Hognestad parabola modelling the concrete compressive stress-strain relationship, and by 

setting an unknown factor 𝑘 equal to 𝜀𝑇𝑜𝑝 𝑐⁄ , the relationship between concrete compressive stress 

(𝑓𝑐) and 𝑥 is developed as 

𝑓𝑐(𝑥) =
2𝑓𝑐

′

𝜀0
𝑘𝑥 −

𝑓𝑐
′

𝜀0
2 𝑘2𝑥2  (5.20) 

As the total compression force (𝑅𝐶) is equal to the integral of Equation (5.20) times the beam width 

(𝑏), the following equation can be obtained 

𝑅𝐶

𝑏
= ∫ 𝑓𝑐(𝑥)

𝑐

0
=

𝑓𝑐
′

𝜀0
𝑘𝑐2 −

𝑓𝑐
′

3𝜀0
2 𝑘2𝑐3 =

𝑓𝑐
′

𝜀0
𝜀𝑇𝑜𝑝𝑐 −

𝑓𝑐
′

3𝜀0
2 𝜀𝑇𝑜𝑝

2𝑐  (5.21) 

Meanwhile, based on force equilibrium as shown in Figure 5.18, 

𝑃𝑎 = 𝑅𝐶(𝑗𝑑)  (5.22) 

where 𝑎 is the length of the shear span; P is the applied load; and 𝑗𝑑 is the distance between the 

resultant forces, which is equal to 𝑑 − ℎ𝑐/2. 

 
Figure 5.18: Forces exerted on shear span 
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the following relationship is established by combining the two equations related to 𝑅𝐶 

𝑓𝑐
′

𝜀0
𝜀𝑇𝑜𝑝𝑐 −

𝑓𝑐
′

3𝜀0
2 𝜀𝑇𝑜𝑝

2𝑐 =
𝑃𝑎

𝑗𝑑∙𝑏
  (5.23) 

which can be rearranged into 

𝜀𝑇𝑜𝑝
2 − 3𝜀0𝜀𝑇𝑜𝑝 +

3𝑃∙𝑎∙𝜀0
2

𝑗𝑑∙𝑏∙𝑓𝑐
′∙𝑐

= 0  (5.24) 

However, there are two unknowns, 𝜀𝑇𝑜𝑝 and 𝑐 in this equation; hence, one of the unknowns shall 

be solved with another equation. As 𝑐 is related to the location of neutral axis, it can be solved 

with the following equations for uncracked and cracked concrete sections. 

𝑐 =
ℎ∙𝑏∙ℎ 2⁄ +𝐴𝐹𝑅𝑃∙𝑑

ℎ∙𝑏+(𝑛−1)𝐴𝐹𝑅𝑃
 when beam is uncracked (5.25) 

𝑐 = (√(𝜌𝑛)2 + 2𝜌𝑛 − 𝜌𝑛)𝑑  when beam is fully cracked (5.26) 

where ℎ is the height of the beam; 𝑏 is the width of the beam; 𝑑 is the effective depth of the beam; 

𝐴𝐹𝑅𝑃 is the total area of the flexural FRP bars; 𝜌 is the flexural reinforcement ratio; and 𝑛 is equal 

to 𝐸𝐹𝑅𝑃 𝐸𝑐⁄  to count the difference in the elastic modulus of FRP bars and concrete. 

Because it is hard to define the transition zone between beams being uncracked and fully cracked, 

it is conservatively assumed that beam is fully cracked after the strain in FRP flexural bars reaching 

the concrete rupture tensile strain. 

Therefore, 𝜀𝑇𝑜𝑝 can be calculated after 𝑐 is computed. 

𝜀𝑇𝑜𝑝 =

3𝜀0−√(3𝜀0)2−
12𝑃∙𝑎∙𝜀0

2

𝑗𝑑∙𝑏∙𝑓𝑐
′ ∙𝑐

2
≤ 1.5𝜀0  

(5.27) 

Because 𝑐 is conservatively computed, and the post-peak behavior of concrete is modeled with the 

original Hognestad parabola which decreases fast, the value inside the square root may become 

negative if the shear strength is close to the flexural strength. Hence, the value inside the square 

root is assumed to be zero when it is computed as negative, which gives a maximum limit of 𝜀𝑇𝑜𝑝 

equal to 1.5𝜀0. 

Furthermore, the centroid of the stress distribution from neutral axis can be computed with the 

assumed strain distribution and the relationship between concrete compressive stress (𝑓𝑐) and 𝑥 

presented in Equation (5.20) 

𝑦
𝑓𝑟𝑜𝑚𝑁.𝐴.

=
∫ 𝑓𝑐∙𝑥(𝑥)

𝑐

0

∫ 𝑓𝑐(𝑥)
𝑐

0

  (5.28) 

where 

∫ 𝑓𝑐 ∙ 𝑥(𝑥)
𝑐

0
=

2𝑓𝑐
′

3𝜀0
𝑘𝑐3 −

𝑓𝑐
′

4𝜀0
2 𝑘2𝑐4 =

2𝑓𝑐
′

3𝜀0
𝜀𝑇𝑜𝑝𝑐2 −

𝑓𝑐
′

4𝜀0
2 𝜀𝑇𝑜𝑝

2𝑐2  (5.29) 

As the integral of 𝑓𝑐(𝑥) has been computed in Equation (5.21), 

𝑦
𝑓𝑟𝑜𝑚_𝑁.𝐴.

=
∫ 𝑓𝑐∙𝑥(𝑥)

𝑐

0

∫ 𝑓𝑐(𝑥)
𝑐

0

=

2𝑓𝑐
′

3𝜀0
𝜀𝑇𝑜𝑝𝑐2−

𝑓𝑐
′

4𝜀0
2𝜀𝑇𝑜𝑝

2𝑐2

𝑓𝑐
′

𝜀0
𝜀𝑇𝑜𝑝𝑐−

𝑓𝑐
′

3𝜀0
2𝜀𝑇𝑜𝑝

2𝑐
=

8𝜀0𝑐−3𝜀𝑇𝑜𝑝𝑐

12𝜀0−4𝜀𝑇𝑜𝑝
  (5.30) 
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Because ℎ𝑐 is twice the distance from concrete top to the centroid, it can be computed with 

ℎ𝑐 = 2 (𝑐 − 𝑦
𝑓𝑟𝑜𝑚_𝑁.𝐴.

) =
4𝜀0−𝜀𝑇𝑜𝑝

6𝜀0−2𝜀𝑇𝑜𝑝
𝑐  (5.31) 

Moreover, the maximum value of ℎ𝑐 would be 
5

6
𝑐 that is around 0.833c with the maximum value 

of 𝜀𝑇𝑜𝑝 mentioned previously. 

This approach of ℎ𝑐 can only be used if the applied load is known, which would be the case with 

a known design load or with incremental loading like the IST method. Hence, ℎ𝑐 cannot be pre-

determined and changes when the specimens are analyzed in different ways. 

5.4 Softening Factors 

According to Krall (2014), the predicted results from ST method are most sensitive to the softening 

factors applied to the struts, and most of the research on predicting the shear strength of FRP RC 

deep beams without vertical reinforcement focusing on establishing this factor. Hence, this 

research analyzed the specimens with three existing approaches (two are modified for IST method 

and for deep beams with vertical reinforcement) and one proposed approach to find the approaches 

suitable for the IST method. 

5.4.1 ACI Approach 

The softening factors suggested by (ACI 318-19, 2019) is straightforward. As all the specimens 

have bearing plates extended to the full beam widths, the softening factors from ACI approach 

(𝜁𝐴𝐶𝐼) are simply 0.6375 (obtained from 0.85 times 0.75) for beams with stirrups; 0.34 (obtained 

from 0.85 times 0.4) for beams without stirrups; and 0.85 for horizontal struts (which are boundary 

struts classified by (ACI 318-19, 2019)). 

5.4.2 Modified Nehdi et al. (2008)’s Approach 

As mentioned in literature review, Nehdi et al. (2008) tested multiple deep beams without stirrups 

with 𝑎/𝑑 between 1.5 to 2.5, and established following equations for softening factors of inclined 

struts based on the previous versions of ACI code provision. 

𝛽𝑠 = 0.68 − 0.012 (
𝑎

𝑑
)

4

  for  (𝐸𝑓𝜌𝑓)
1

3⁄
≤ 10 (5.32) 

𝛽𝑠 = 0.75 − 0.01 (
𝑎

𝑑
)

4

  for  (𝐸𝑓𝜌𝑓)
1

3⁄
> 10 (5.33) 

𝑘 = max (
250+𝑑

550
,   1.0)  (5.34) 

𝑓𝑐𝑒 = 0.85𝑘𝛽𝑠𝑓𝑐
′  (5.35) 

where 𝑓𝑐𝑒 is the reduced effective strength of concrete strut; 𝐸𝑓 is the elastic modulus of flexural 

reinforcement in GPa; 𝜌𝑓 is the flexural reinforcement ratio. 

However, there are limitations of this approach, and shall be modified to fit the IST method. 

Firstly, as the 𝑎/𝑑 ratios of beams tested by Nehdi et al. (2008) are in the range of 1.5 to 2.5, the 

𝑎/𝑑 value in the equations shall be limited with a maximum of 2.5 and a minimum of 1.5; hence, 

the values shall be decreased or increased to 2.5 or 1.5 for specimens with 𝑎/𝑑 ratios outside the 

range. 
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Secondly, the equations are developed for beams without vertical reinforcement, and are analyzed 

through ST models with only one type of inclined strut. However, IST models contain multiple 

inclined struts with different angles. If the equations are directly applied to all inclined struts, the 

results would have poor accuracy as it is way too conservative. As 𝑎 𝑑⁄  is approximately equal to 

the cotangent of the angle of the inclined strut in the ST models for deep beams without stirrups, 

the approach is modified into 

𝛽𝑠 = 0.68 − 0.012(cot 𝜃𝑠)4  for  (𝐸𝑓𝜌𝑓)
1

3⁄
≤ 10 (5.36) 

𝛽𝑠 = 0.75 − 0.01(cot 𝜃𝑠)4  for  (𝐸𝑓𝜌𝑓)
1

3⁄
> 10 (5.37) 

𝑘 = max (
250+𝑑

550
,   1.0)  (5.38) 

𝜁
𝑁𝑑

= 0.85𝑘𝛽𝑠  (5.39) 

where 𝜃𝑠 is the angle of the inclined strut from the flexural rebars measured counter-clockwise; 

and 𝜁𝑁𝑑 represents the softening factor obtained from the modified Nehdi et al. (2008)’s Approach. 

𝜁𝑁𝑑 is equal to 0.85 for horizontal struts. 

5.4.3 Modified CSA Approach 

According to CSA S806-12 (R2017), 

𝑓𝑐𝑢 =
𝑓𝑐

′

0.8+170𝜀1
≤ 0.85𝑓𝑐

′   (5.40) 

𝜀1 = 𝜀𝐹 + (𝜀𝐹 + 0.002) cot2 𝜃𝑠   (5.41) 

where 𝑓𝑐𝑢 is the limited strength of concretes struts; 𝜃𝑠 is the smallest angle between the strut and 

the adjoining ties; 𝜀𝐹 is the tensile strain in the tie bar located closest to the tension face of the 

beam and inclined at 𝜃𝑠 to the strut. If the tensile strain in the tie changes as the tie crosses the 

width of the strut, 𝜃𝑠 may be taken as the strain in the tie at the centreline of the strut (CSA S806-

12, R2017). 

With the Modified Compression Field Theory (MCFT) by Vecchio and Collins (1986) shown 

below, Equation (5.40) is found to be the same as MCFT assuming 𝜀0 as (-)0.002.  

𝑓𝑐2𝑚𝑎𝑥

𝑓𝑐
′ =

1

0.8−0.34
𝜀1

𝜀0
⁄

≤ 1.0   (5.42) 

where 𝑓𝑐2𝑚𝑎𝑥 is the compressive strength of a concrete member under biaxial loading; 𝜀1 is the 

principal tensile strain of the member in positive; and 𝜀0 is the compressive strain in negative 

corresponding to compressive strength 𝑓𝑐
′. 

Moreover, Equation (5.41) is actually developed from Mohr’s circle as presented in Figure 5.19 

with 𝜀1 as the principal tensile strain; 𝜀2 as the principal compressive strain; 𝜀𝑥 as the strain in x-

direction; 𝜀𝑦 as the strain in y-direction; 𝛾𝑥𝑦 as the shear strain; and 𝜃 as the orientation of the 

stress element. 
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Figure 5.19: Typical Mohr’s circle 

Based on different triangles in the Mohr’s circle, the following relationships can be obtained. 

tan 𝜃 =
𝛾𝑥𝑦

2⁄

𝜀1−𝜀𝑥
   (5.43) 

tan 𝜃 =
𝜀𝑥−𝜀2
𝛾𝑥𝑦

2⁄
   (5.44) 

By combining these two equations, 

tan 𝜃 =
𝜀𝑥−𝜀2

(tan 𝜃)(𝜀1−𝜀𝑥)
   (5.45) 

Hence, 

𝜀1 =
𝜀𝑥−𝜀2

tan2 𝜃
+ 𝜀𝑥 = 𝜀𝑥 + (𝜀𝑥 − 𝜀2) cot2 𝜃  (5.46) 

and Equation (5.41) from CSA S806-12 (R2017) is developed from Equation (5.46) of Mohr’s 

circle by assuming 𝜀2 equal to (-)0.002, and 𝜀𝑥 equal to 𝜀𝐹. 

Because strains can be calculated inside each iteration of IST method, there is no need to assume 

the value of 𝜀2 in the struts; and 𝜀0 can be calculated based on the concrete models; the CSA 

approach is modified into 

𝜁
𝐶𝑆𝐴

=
1

0.8−0.34
𝜀1

𝜀0
⁄

≤ 0.85   (5.47) 

𝜀1 = 𝜀𝑓 + (𝜀𝑓 − 𝜀𝑠) cot2 𝜃𝑠   (5.48) 

𝛾𝑥𝑦
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where 𝜁𝐶𝑆𝐴 is for the softening factor obtained from CSA approach; 𝜀0 is based on the concrete 

stress-strain relationship and is in negative; 𝜀𝑓 is the maximum tensile strain in the flexural FRP 

ties inside the projection of the interest strut; and 𝜀𝑠 is the compressive strain in the interest strut 

in negative. 

5.4.4 Proposed Approach Based on MCFT 

The modified CSA approach has one problem of not reflecting the confinement from vertical 

reinforcement properly, which makes the approach quite conservative; hence a new approach is 

proposed to count the influence from the stirrups. 

CSA S806-12 (R2017) used Equation (5.41) because the vertical strain cannot be obtained if an 

analysis with iterative process (like IST method) is not used; but if the vertical strain can be 

computed, 𝜀1 can be computed simply as  

𝜀1 = 𝜀𝑥 + 𝜀𝑦 − 𝜀2   (5.49) 

Therefore, a new method can be proposed with 

𝜁
𝑛𝑒𝑤

=
1

0.8−0.34
𝜀1

𝜀0
⁄

≤ 0.85   (5.50) 

𝜀1 = 𝜀𝑓 + 𝜀𝑣 − 𝜀𝑠   (5.51) 

where 𝜁𝑛𝑒𝑤  is the softening factor obtained from the proposed approach; 𝜀0  is based on the 

concrete stress-strain relationship in negative; 𝜀𝑠 is the compressive strain in the interest strut in 

negative; and 𝜀𝑓 and 𝜀𝑣 are the strain in the flexural and vertical FRP ties inside the projection of 

the interest strut. 

however, 𝜀𝑓 is not simply the maximum strain of the flexural ties in this approach. 𝜀𝑓 and 𝜀𝑣 values 

are treated as a whole, and the combination of 𝜀𝑓 and 𝜀𝑣 having the maximum value is used to 

calculate 𝜀1 of the interest strut. 

Take the HSF model shown in Figure 5.20 as an example, the value of strain in T1 plus strain in 

T6 is compared with the value of strain in T2 plus strain in T7, and the larger value is used as 𝜀𝑓 +

𝜀𝑣 for computing the softening factor of S10. 

 
Figure 5.20: HSF model for beams with stirrups 
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Furthermore, because there are no vertical ties in ST models for beams without stirrups, the shear 

capacity will be overpredicted if 𝜀𝑣 is simply assumed to be zero; hence multiple imaginary ties 

with nearly no stiffness can be placed to find the strain in the y-direction.  

The beam can be modeled to have the ST model with a main strut at the front and the truss model 

with the imaginary ties behind, in order to find the strain in the y-direction, which is close to the 

Kr model, except that the shear strength shall be calculated as 

𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = 𝐶𝑠𝑡𝑟𝑢𝑡@𝑓𝑎𝑖𝑙𝑢𝑟𝑒 sin 𝜃𝑠   (5.52) 

where 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡 is the predicted shear strength; 𝐶𝑠𝑡𝑟𝑢𝑡@𝑓𝑎𝑖𝑙𝑢𝑟𝑒 is the force taken by the main strut at 

failure; and 𝜃𝑠 is the incline of the main strut. 

As the stiffnesses of the stirrups are set to a value close to zero, there is nearly no difference 

between 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡 and the failure load, which can be neglected in most cases. 

The influence of the number of the imaginary ties and if this approach can predict accurate results 

is unknown at this point, hence this approach shall be tested by the specimens. 

 

 

  



58 

 

6. Analyses and Results 

This chapter presents the analyzed results on the specimens described in Chapter 3 through IST 

method described in Chapter 4 with the approaches and models of the features mentioned in 

Chapter 5. Through the analyses, the validity of the method is checked, the suitable approaches 

and models are suggested, and the limitation of this method is tested. 

All analyses in this research are conducted with incremental loadings of 10 newtons, and the results 

presented are rounded to the nearest kilonewtons for beam with stirrups and to the nearest 0.1 

kilonewtons for beams without stirrups, as the strengths of beams without stirrups are much 

smaller. 

6.1 Verification of the IST Method used by Krall (2014) 

As the IST method for FRP RC deep beams was initially adopted and checked by Krall (2014), 

the predicted strengths are firstly checked through the same approaches used by Krall (2014) to 

verify the IST method. 

Because Krall (2014) analyzed the specimens with softening factors based on old versions of ACI 

codes, and ACI 318-19 (2019) changed the factor for beams without vertical reinforcement, the 

specimens analyzed for the verification are the beams with stirrups tested by Krall (2014). 

The results are presented in Table 6.1 with the predicted strengths by Krall (2014) through using 

the H2 model for concrete stress-strain relationship, Kr model for IST structure, ℎ𝐶  based on strain 

compatibility, and ACI approach for softening factors. 

Table 6.1: Test results of beams by Krall (2014) 

Specimens 𝑃𝑡𝑒𝑠𝑡  (kN) 𝑃𝑝𝑟𝑒𝑑. (kN) 𝑃𝐾𝑟𝑎𝑙𝑙  (kN) 

BM12-220 382.4 411 391 
BM12-150 405.2 296 295 
BM12-s230 466.9 469 484 

BM16-220* 309.3 412 395 
BM16-150 416.5 295 286 
BM16-s230 450.8 455 451 

BM25-220 360.1 427 406 
BM25-150 415.8 296 285 
BM25-s230 444 383 395 

    

Although there are small differences between the results predicted in this research and those done 

by Krall (2014), which may be caused by using different initial concrete elastic modulus and 

having different incremental loadings, the results prove that this IST method is applicable to find 

the shear strengths of FRP RC deep beams, as most of the predicted results are close to the tested 

results, especially for those with larger spacing.  

The results also show the problems of the method used by Krall (2014) include overestimating the 

strengths, and not capturing the shear strength increase with smaller stirrup spacings, which are 

also why different approaches for the essential features are developed in Chapter 5. 

Therefore, the new models and approaches need to be analyzed, and the improved IST method for 

FRP RC deep beams shall be proposed. 
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6.2 Analyses on Deep Beams with Stirrups 

This chapter introduces the analyses done on deep beams with stirrups, which are the 9 specimens 

tested by Krall (2014), and presents the results obtained through different models and approaches 

of the essential features to exclude the ones not suitable and to find out which ones work best with 

the IST method. 

6.2.1 Preliminary Analysis on Concretes Stress-Strain Relationships 

Based on the models and approaches developed, there could be 256 ways to analyze one specimen 

with stirrups. Hence, to analyze the specimens with less variables, a throughout analysis on 

concrete stress-strain models is firstly done to find if the IST method is sensitive to the concrete 

stress-strain relationship, and if there is any concrete model inappropriate to use with this method. 

The results are presented in Table 6.2 with ℎ𝐶  constantly equal to 0.2d to control the number of 

variables. 

Table 6.2: Comparison of concrete stress-strain models 

  Averaged values with different 𝜁 approaches 

Model Type Specimen 
𝑃𝐻1

𝑃𝐻2

 
𝑃𝐻2

𝑃𝐻2

 
𝑃𝑇1

𝑃𝐻2

 
𝑃𝑇2

𝑃𝐻2

 

Kr model BM12-220 1.12 1 1.21 1.10 
 BM12-150 1.03 1 1.22 1.17 
 BM12-s230 1.02 1 1.23 1.12 
 BM16-220 1.12 1 1.21 1.10 
 BM16-150 1.03 1 1.22 1.16 
 BM16-s230 1.01 1 1.22 1.11 
 BM25-220 1.11 1 1.18 1.07 
 BM25-150 1.03 1 1.22 1.16 
 BM25-s230 1.03 1 1.22 1.11 
 Average 1.05 1.00 1.22 1.12 

WSF model BM12-220 0.99 1 1.06 0.99 
 BM12-150 1.03 1 1.13 1.07 
 BM12-s230 1.04 1 1.13 0.99 
 BM16-220 0.99 1 1.07 0.99 
 BM16-150 1.04 1 1.14 1.06 
 BM16-s230 1.05 1 1.14 0.99 
 BM25-220 1.01 1 1.11 1.01 
 BM25-150 1.05 1 1.19 1.06 
 BM25-s230 1.09 1 1.18 0.99 
 Average 1.03 1.00 1.13 1.02 

HSF model BM12-220 0.99 1 1.15 1.05 
 BM12-150 1.00 1 1.21 1.13 
 BM12-s230 0.99 1 1.14 1.04 
 BM16-220 1.00 1 1.15 1.04 
 BM16-150 1.00 1 1.21 1.13 
 BM16-s230 1.00 1 1.14 1.03 
 BM25-220 1.00 1 1.15 1.04 
 BM25-150 1.00 1 1.21 1.13 
 BM25-s230 1.01 1 1.15 1.02 
 Average 1.00 1.00 1.17 1.07 
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Design model BM12-220 0.98 1 1.15 1.04 
 BM12-150 0.99 1 1.14 1.03 
 BM12-s230 1.00 1 1.15 1.02 
 BM16-220 0.98 1 1.15 1.04 
 BM16-150 0.99 1 1.14 1.02 
 BM16-s230 1.01 1 1.15 1.02 
 BM25-220 0.98 1 1.14 1.02 
 BM25-150 1.02 1 1.16 1.02 
 BM25-s230 1.03 1 1.17 1.01 
 Average 1.00 1.00 1.15 1.02 

Total Average 1.02 1.00 1.16 1.06 

Based on the analysis, the only outliner is T1 model, which is the one modelling the concrete 

behavior through Thorenfeldt et al. (1987) model with only the compressive strength reduced. As 

it predicts results generally 10% larger than the other models, this model is considered as 

inappropriate. 

Moreover, softening all factors calculated from concrete compressive strength (𝑓𝑐
′, 𝜀0, 𝑛, 𝑘) seems 

to be better than just softening the strength, as the difference between H2 and T2 models is much 

less than the difference between H1 and T1 models. 

In order to limit the numbers of variables, H2 model as the most conservative model is chosen to 

use for the analyses on other features; and H1, T2 models are used to verify the proposed method 

after the proper approaches of other features are determined. 

6.2.2 General Results for Different Approaches and Models 

As four IST model types, four approaches for ℎ𝐶  and another four approaches for softening factors 

need to be analyzed, it is better to find the general suitability of the approaches with the ratios 

between predicted and test strengths, and the predicted failure modes, which are presented in Table 

6.3 to Table 6.6.  

The tables also include the average differences between the ratios to indicate the accuracy of that 

combination of approaches, and the standard deviations of the ratios to show if the accuracy is 

stable and if the predicted results from those approaches generally follow a similar trend with the 

test results. Moreover, the overestimated results and unwanted predicted failure mode are labelled 

out in bold. 
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Table 6.3: Results with 𝒉𝑪 based on strain compatibility 
  𝑃!"#$%&' 𝑃'#('⁄  with **Predicted Failure Mode with 
Model 
Type Specimen 𝜁)*+ 𝜁,& 𝜁*-) 𝜁,#. 𝜁)*+ 𝜁,& 𝜁*-) 𝜁,#. 

Kr 
model 

BM12-220 1.08 0.85 0.80 0.76 Combined Combined Shear Shear 
BM12-150 0.73 0.72 0.72 0.72 Combined Combined Combined Combined 
BM12-s230 1.01 0.96 0.68 1.01 Combined Combined Shear Combined 
BM16-220* 1.33 1.03 0.97 0.93 Combined Combined Shear Shear 
BM16-150 0.71 0.68 0.68 0.68 Combined Combined Combined Combined 
BM16-s230 1.01 0.97 0.69 1.01 Combined Combined Shear Combined 
BM25-220 1.18 0.81 0.73 0.78 Combined Combined Shear Shear 
BM25-150 0.71 0.62 0.62 0.62 Combined Combined Combined Combined 
BM25-s230 0.86 0.79 0.62 0.87 Combined Combined Shear Combined 

 Avg. Diff. 0.16 0.20 0.31 0.20     
 Std. Dev. 0.18 0.12 0.06 0.14     
WSF 
model 

BM12-220 1.25 1.21 0.70 1.02 Node Failure Shear Shear Shear 
BM12-150 1.06 1.06 0.78 1.07 Flexure Combined Shear Combined 
BM12-s230 1.00 0.91 0.55 0.88 Combined Shear Shear Shear 
BM16-220* 1.53 1.46 0.84 1.22 Shear Shear Shear Shear 
BM16-150 0.99 1.00 0.73 1.00 Flexure Combined Shear Combined 
BM16-s230 1.00 0.91 0.55 0.88 Combined Shear Shear Shear 
BM25-220 1.16 1.09 0.60 0.89 Combined Shear Shear Shear 
BM25-150 0.84 0.84 0.62 0.84 Flexure Combined Shear Combined 
BM25-s230 0.86 0.66 0.46 0.74 Combined Shear Shear Shear 

 Avg. Diff. 0.10 0.13 0.38 0.11     
 Std. Dev. 0.14 0.17 0.10 0.11     
HSF 
model 

BM12-220 1.08 1.00 0.63 0.86 Bar Failure Shear Shear Shear 
BM12-150 0.99 0.99 0.77 0.98 Combined Combined Shear Combined 
BM12-s230 0.99 0.89 0.55 0.87 Combined Shear Shear Shear 
BM16-220* 1.31 1.21 0.76 1.04 Combined Shear Shear Shear 
BM16-150 0.94 0.94 0.73 0.94 Combined Combined Shear Combined 
BM16-s230 1.01 0.90 0.55 0.88 Combined Shear Shear Shear 
BM25-220 1.03 0.96 0.57 0.80 Combined Shear Shear Shear 
BM25-150 0.85 0.85 0.65 0.85 Combined Combined Shear Combined 
BM25-s230 0.92 0.70 0.48 0.78 Combined Shear Shear Shear 

 Avg. Diff. 0.05 0.10 0.38 0.13     
 Std. Dev. 0.07 0.10 0.10 0.07     
Design 
model 

BM12-220 1.11 0.98 0.64 0.89 Shear Shear Shear Shear 
BM12-150 0.94 0.86 0.58 0.87 Shear Shear Shear Shear 
BM12-s230 0.87 0.80 0.52 0.80 Shear Shear Shear Shear 
BM16-220* 1.34 1.20 0.77 1.06 Shear Shear Shear Shear 
BM16-150 0.89 0.82 0.54 0.83 Shear Shear Shear Shear 
BM16-s230 0.87 0.81 0.53 0.81 Shear Shear Shear Shear 
BM25-220 1.00 0.91 0.57 0.79 Shear Shear Shear Shear 
BM25-150 0.77 0.72 0.46 0.72 Shear Shear Shear Shear 
BM25-s230 0.75 0.61 0.45 0.69 Shear Shear Shear Shear 

 Avg. Diff. 0.13 0.18 0.46 0.20     
 Std. Dev. 0.12 0.11 0.06 0.07     
* Note that test result of BM16-220 contains error, hence the specimen excluded for calculating averages and 
deviations. 
** All beams failed in shear during test; both shear failure mode and combined failure mode predict shear failure. 
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Table 6.4: Results with 𝒉𝑪 based on force equilibrium 
  𝑃!"#$%&' 𝑃'#('⁄  with **Predicted Failure Mode with 
Model 
Type Specimen 𝜁)*+ 𝜁,& 𝜁*-) 𝜁,#. 𝜁)*+ 𝜁,& 𝜁*-) 𝜁,#. 

Kr 
model 

BM12-220 1.48 1.13 0.86 0.91 Bar Failure Combined Shear Shear 
BM12-150 0.97 0.95 0.95 0.95 Combined Combined Combined Combined 
BM12-s230 1.11 1.08 0.70 1.05 Combined Combined Shear Shear 
BM16-220* 1.68 1.27 1.02 1.06 Bar Failure Combined Shear Shear 
BM16-150 0.87 0.85 0.85 0.85 Combined Combined Combined Combined 
BM16-s230 1.05 1.02 0.70 1.04 Combined Combined Shear Shear 
BM25-220 1.35 0.92 0.76 0.85 Node Failure Combined Shear Shear 
BM25-150 0.81 0.72 0.72 0.72 Combined Combined Combined Combined 
BM25-s230 0.85 0.78 0.61 0.86 Combined Combined Shear Combined 

 Avg. Diff. 0.19 0.13 0.23 0.12     
 Std. Dev. 0.24 0.15 0.11 0.11     
WSF 
model 

BM12-220 1.54 1.32 0.72 1.08 Node Failure Shear Shear Shear 
BM12-150 1.24 1.26 0.78 1.27 Flexure Combined Shear Combined 
BM12-s230 1.09 0.94 0.56 0.90 Combined Shear Shear Shear 
BM16-220* 1.77 1.58 0.86 1.28 Node Failure Shear Shear Shear 
BM16-150 1.13 1.14 0.74 1.15 Flexure Combined Shear Combined 
BM16-s230 1.04 0.93 0.56 0.89 Combined Shear Shear Shear 
BM25-220 1.27 1.16 0.62 0.94 Bar Failure Shear Shear Shear 
BM25-150 0.91 0.92 0.63 0.92 Flexure Combined Shear Combined 
BM25-s230 0.85 0.66 0.46 0.74 Combined Shear Shear Shear 

 Avg. Diff. 0.19 0.18 0.37 0.14     
 Std. Dev. 0.22 0.22 0.11 0.17     
HSF 
model 

BM12-220 1.42 1.17 0.68 0.98 Bar Failure Shear Shear Shear 
BM12-150 1.29 1.29 0.82 1.24 Bar Failure Bar Failure Shear Combined 
BM12-s230 1.13 0.97 0.57 0.93 Combined Shear Shear Shear 
BM16-220* 1.61 1.39 0.81 1.15 Bar Failure Shear Shear Shear 
BM16-150 1.15 1.15 0.77 1.15 Combined Combined Shear Combined 
BM16-s230 1.07 0.94 0.57 0.90 Combined Shear Shear Shear 
BM25-220 1.17 1.06 0.59 0.86 Bar Failure Shear Shear Shear 
BM25-150 0.97 0.97 0.68 0.97 Combined Combined Shear Combined 
BM25-s230 0.91 0.70 0.48 0.77 Combined Shear Shear Shear 

 Avg. Diff. 0.17 0.14 0.35 0.12     
 Std. Dev. 0.16 0.18 0.11 0.15     
Design 
model 

BM12-220 1.24 1.13 0.85 0.98 Shear Shear Shear Shear 
BM12-150 1.03 0.95 0.58 0.93 Shear Shear Shear Shear 
BM12-s230 0.90 0.83 0.53 0.82 Shear Shear Shear Shear 
BM16-220* 1.46 1.33 0.79 1.15 Shear Shear Shear Shear 
BM16-150 0.95 0.88 0.55 0.87 Shear Shear Shear Shear 
BM16-s230 0.89 0.82 0.53 0.81 Shear Shear Shear Shear 
BM25-220 1.07 0.99 0.58 0.84 Shear Shear Shear Shear 
BM25-150 0.83 0.77 0.47 0.73 Shear Shear Shear Shear 
BM25-s230 0.74 0.61 0.45 0.69 Shear Shear Shear Shear 

 Avg. Diff. 0.13 0.16 0.43 0.17     
 Std. Dev. 0.16 0.16 0.12 0.10     
* Note that test result of BM16-220 contains error, hence the specimen excluded for calculating averages and 
deviations. 
** All beams fail in shear during test; both shear failure mode and combined failure mode predict shear failure. 
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Table 6.5: Results with 𝒉𝑪 equal to 0.2d 
  𝑃!"#$%&' 𝑃'#('⁄  with **Predicted Failure Mode with 
Model 
Type Specimen 𝜁)*+ 𝜁,& 𝜁*-) 𝜁,#. 𝜁)*+ 𝜁,& 𝜁*-) 𝜁,#. 

Kr 
model 

BM12-220 0.83 0.63 0.63 0.65 Combined Combined Combined Combined 
BM12-150 0.57 0.53 0.53 0.53 Combined Combined Combined Combined 
BM12-s230 0.82 0.73 0.59 0.81 Combined Combined Combined Combined 
BM16-220* 1.04 0.77 0.77 0.81 Combined Combined Combined Shear 
BM16-150 0.56 0.51 0.51 0.51 Combined Combined Combined Combined 
BM16-s230 0.83 0.77 0.61 0.83 Combined Combined Combined Combined 
BM25-220 0.99 0.66 0.66 0.71 Combined Combined Combined Shear 
BM25-150 0.61 0.51 0.51 0.51 Combined Combined Combined Combined 
BM25-s230 0.77 0.66 0.60 0.78 Combined Combined Shear Combined 

 Avg. Diff. 0.25 0.37 0.42 0.33     
 Std. Dev. 0.15 0.10 0.06 0.14     
WSF 
model 

BM12-220 1.04 0.97 0.63 0.91 Combined Shear Shear Shear 
BM12-150 0.95 0.85 0.74 0.86 Combined Combined Shear Combined 
BM12-s230 0.84 0.82 0.52 0.82 Combined Shear Shear Shear 
BM16-220* 1.27 1.20 0.76 1.11 Combined Shear Shear Shear 
BM16-150 0.93 0.82 0.69 0.82 Combined Combined Shear Combined 
BM16-s230 0.85 0.83 0.53 0.83 Combined Shear Shear Shear 
BM25-220 1.00 0.99 0.57 0.84 Combined Shear Shear Shear 
BM25-150 0.73 0.74 0.60 0.75 Flexure Combined Shear Combined 
BM25-s230 0.78 0.63 0.45 0.72 Combined Shear Shear Shear 

 Avg. Diff. 0.12 0.17 0.41 0.18     
 Std. Dev. 0.11 0.12 0.09 0.06     
HSF 
model 

BM12-220 0.81 0.80 0.56 0.74 Combined Shear Shear Shear 
BM12-150 0.73 0.73 0.70 0.73 Combined Combined Shear Combined 
BM12-s230 0.78 0.75 0.50 0.77 Combined Shear Shear Shear 
BM16-220* 1.00 0.99 0.68 0.90 Combined Shear Shear Shear 
BM16-150 0.71 0.71 0.67 0.71 Combined Combined Shear Combined 
BM16-s230 0.81 0.77 0.51 0.78 Combined Shear Shear Shear 
BM25-220 0.85 0.83 0.52 0.73 Combined Shear Shear Shear 
BM25-150 0.71 0.71 0.61 0.71 Combined Combined Shear Combined 
BM25-s230 0.81 0.64 0.46 0.73 Combined Shear Shear Shear 

 Avg. Diff. 0.22 0.26 0.43 0.26     
 Std. Dev. 0.05 0.06 0.09 0.03     
Design 
model 

BM12-220 0.88 0.74 0.57 0.76 Shear Shear Shear Shear 
BM12-150 0.75 0.68 0.55 0.75 Shear Shear Shear Shear 
BM12-s230 0.71 0.65 0.51 0.72 Shear Shear Shear Shear 
BM16-220* 1.07 0.92 0.70 0.93 Shear Shear Shear Shear 
BM16-150 0.72 0.66 0.52 0.71 Shear Shear Shear Shear 
BM16-s230 0.72 0.67 0.51 0.73 Shear Shear Shear Shear 
BM25-220 0.85 0.77 0.55 0.72 Shear Shear Shear Shear 
BM25-150 0.67 0.62 0.47 0.65 Shear Shear Shear Shear 
BM25-s230 0.67 0.55 0.45 0.67 Shear Shear Shear Shear 

 Avg. Diff. 0.25 0.33 0.48 0.29     
 Std. Dev. 0.08 0.07 0.04 0.04     
* Note that test result of BM16-220 contains error, hence the specimen excluded for calculating averages and 
deviations. 
** All beams fail in shear during test; both shear failure mode and combined failure mode predict shear failure. 
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Table 6.6: Results with new 𝒉𝑪 approach proposed in this research 
  𝑃!"#$%&' 𝑃'#('⁄  with **Predicted Failure Mode with 
Model 
Type Specimen 𝜁)*+ 𝜁,& 𝜁*-) 𝜁,#. 𝜁)*+ 𝜁,& 𝜁*-) 𝜁,#. 

Kr 
model 

BM12-220 0.89 0.59 0.59 0.64 Combined Combined Combined Combined 
BM12-150 0.55 0.49 0.49 0.51 Combined Combined Combined Combined 
BM12-s230 0.84 0.69 0.53 0.83 Combined Combined Combined Combined 
BM16-220* 1.10 0.72 0.72 0.78 Combined Combined Combined Combined 
BM16-150 0.54 0.47 0.47 0.49 Combined Combined Combined Combined 
BM16-s230 0.84 0.72 0.54 0.84 Combined Combined Combined Combined 
BM25-220 0.96 0.55 0.55 0.66 Combined Combined Combined Shear 
BM25-150 0.54 0.42 0.42 0.46 Combined Combined Combined Combined 
BM25-s230 0.68 0.50 0.49 0.68 Combined Combined Combined Combined 

 Avg. Diff. 0.27 0.44 0.49 0.36     
 Std. Dev. 0.17 0.11 0.05 0.15     
WSF 
model 

BM12-220 1.09 1.04 0.62 0.94 Node Failure Shear Shear Shear 
BM12-150 1.01 0.91 0.74 0.91 Combined Combined Shear Combined 
BM12-s230 0.86 0.83 0.51 0.83 Combined Shear Shear Shear 
BM16-220* 1.34 1.26 0.74 1.13 Node Failure Shear Shear Shear 
BM16-150 0.98 0.86 0.69 0.86 Combined Combined Shear Combined 
BM16-s230 0.86 0.83 0.51 0.83 Combined Shear Shear Shear 
BM25-220 0.97 0.97 0.54 0.83 Combined Shear Shear Shear 
BM25-150 0.71 0.72 0.59 0.74 Flexure Combined Shear Combined 
BM25-s230 0.73 0.58 0.42 0.69 Combined Shear Shear Shear 

 Avg. Diff. 0.12 0.17 0.42 0.17     
 Std. Dev. 0.14 0.14 0.10 0.08     
HSF 
model 

BM12-220 0.87 0.85 0.55 0.73 Combined Shear Shear Shear 
BM12-150 0.73 0.73 0.70 0.73 Combined Combined Combined Combined 
BM12-s230 0.80 0.73 0.48 0.78 Combined Shear Shear Shear 
BM16-220* 1.06 1.04 0.66 0.88 Combined Shear Shear Shear 
BM16-150 0.70 0.70 0.66 0.70 Combined Combined Combined Combined 
BM16-s230 0.81 0.74 0.48 0.79 Combined Shear Shear Shear 
BM25-220 0.77 0.78 0.48 0.68 Combined Shear Shear Shear 
BM25-150 0.62 0.62 0.58 0.62 Combined Combined Shear Combined 
BM25-s230 0.74 0.55 0.42 0.67 Combined Shear Shear Shear 

 Avg. Diff. 0.24 0.29 0.46 0.29     
 Std. Dev. 0.08 0.09 0.10 0.06     
Design 
model 

BM12-220 0.95 0.73 0.56 0.76 Shear Shear Shear Shear 
BM12-150 0.81 0.67 0.55 0.75 Shear Shear Shear Shear 
BM12-s230 0.67 0.61 0.50 0.70 Shear Shear Shear Shear 
BM16-220* 1.13 0.89 0.68 0.91 Shear Shear Shear Shear 
BM16-150 0.72 0.63 0.52 0.71 Shear Shear Shear Shear 
BM16-s230 0.67 0.61 0.51 0.70 Shear Shear Shear Shear 
BM25-220 0.83 0.68 0.53 0.67 Shear Shear Shear Shear 
BM25-150 0.60 0.54 0.45 0.60 Shear Shear Shear Shear 
BM25-s230 0.57 0.45 0.44 0.59 Shear Shear Shear Shear 

 Avg. Diff. 0.27 0.39 0.49 0.32     
 Std. Dev. 0.13 0.09 0.04 0.06     
* Note that test result of BM16-220 contains error, hence the specimen excluded for calculating averages and 
deviations. 
** All beams fail in shear during test; both shear failure mode and combined failure mode predict shear failure. 
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Several approaches can be discarded according to the results. Firstly, the ℎ𝐶  approach based on 

force equilibrium overpredicts the strengths of some specimens while falsely predicting their 

failure modes, especially when it is combined with the 𝜁𝐴𝐶𝐼 approach. According to Table 6.4, this 

ℎ𝐶  approach can only work with 𝜁𝐶𝑆𝐴  approach regardless the choice of models to avoid 

overestimating, but the accuracy is poor. The only way to have it predicting good results is to use 

it with the design model and the new 𝜁 approach, but other ℎ𝐶  approaches also work well with 

those approaches and are with smaller standard deviations. This approach especially does not work 

well with BM12 series, as it predicts ℎ𝐶  too large for these specimens, which shows that this 

approach is too sensitive to the flexural reinforcement area and cannot correctly predict ℎ𝐶 , hence 

shall be discarded and shall not be used with the IST method. 

Secondly, the 𝜁𝐴𝐶𝐼 approach also predicts unconservative results and the false failure modes, even 

with ℎ𝐶  approach other than the one based on force equilibrium mentioned above. The problem of 

this method is that it cannot sufficiently reduce the strength of the inclined struts, which makes the 

predicted strength of the inclined struts much higher than what it should be and leads to an 

unwanted failure mode with overpredicted strengths. Therefore, 𝜁𝐴𝐶𝐼  approach is excluded for 

further analyses on deep beams with stirrups, but it will be included for analyses on deep beams 

without stirrups as it suggests different values for them. 

6.2.3 Trends of the Predicted Strengths 

Another problem observed in the IST method used by Krall (2014) is not capturing the strength 

increase with smaller stirrup spacings. To use the IST method for analyzing and designing FRP 

RC deep beams with stirrups, it must be able to predict the correct trends of having larger shear 

strength with smaller stirrup spacings and larger stirrup areas. Hence, the detailed analysis on the 

trends of the strengths is conducted. 

The predicted shear strengths with the tested strengths and the predicted failure modes are 

organized in Table 6.7 to Table 6.9 to analyze the trends of the predicted results. 
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Table 6.7: Shear strengths with 𝒉𝑪 based on strain compatibility 
  𝑃𝑡𝑒𝑠𝑡  

(kN) 

𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡  (kN) with **Predicted Failure Mode with 

Model Type Specimen 𝜁𝑁𝑐  𝜁𝐶𝑆𝐴 𝜁𝑁𝑒𝑤  𝜁𝑁𝑐  𝜁𝐶𝑆𝐴 𝜁𝑁𝑒𝑤 

Kr model BM12-220 382.4 325 306 292 Combined Shear Shear 

 BM12-150 405.2 291 291 291 Combined Combined Combined 

 BM12-s230 466.9 446 317 469 Combined Shear Combined 

 BM16-220* 309.3 319 299 289 Combined Shear Shear 

 BM16-150 416.5 285 285 285 Combined Combined Combined 

 BM16-s230 450.8 438 310 456 Combined Shear Combined 

 BM25-220 360.1 290 264 283 Combined Shear Shear 

 BM25-150 415.8 259 259 259 Combined Combined Combined 

 BM25-s230 444 352 276 387 Combined Shear Combined 

WSF model BM12-220 382.4 462 267 389 Shear Shear Shear 

 BM12-150 405.2 431 314 433 Combined Shear Combined 

 BM12-s230 466.9 423 258 410 Shear Shear Shear 

 BM16-220* 309.3 451 258 378 Shear Shear Shear 

 BM16-150 416.5 417 305 418 Combined Shear Combined 

 BM16-s230 450.8 411 249 396 Shear Shear Shear 

 BM25-220 360.1 394 217 321 Shear Shear Shear 

 BM25-150 415.8 350 258 351 Combined Shear Combined 

 BM25-s230 444 293 206 330 Shear Shear Shear 

HSF model BM12-220 382.4 382 242 328 Shear Shear Shear 

 BM12-150 405.2 399 312 399 Combined Shear Combined 

 BM12-s230 466.9 415 257 406 Shear Shear Shear 

 BM16-220* 309.3 376 235 322 Shear Shear Shear 

 BM16-150 416.5 391 305 390 Combined Shear Combined 

 BM16-s230 450.8 408 250 396 Shear Shear Shear 

 BM25-220 360.1 346 204 290 Shear Shear Shear 

 BM25-150 415.8 354 272 354 Combined Shear Combined 

 BM25-s230 444 312 214 345 Shear Shear Shear 

Design model BM12-220 382.4 376 244 339 Shear Shear Shear 

 BM12-150 405.2 350 234 354 Shear Shear Shear 

 BM12-s230 466.9 374 244 375 Shear Shear Shear 

 BM16-220* 309.3 370 238 329 Shear Shear Shear 

 BM16-150 416.5 343 227 344 Shear Shear Shear 

 BM16-s230 450.8 364 237 363 Shear Shear Shear 

 BM25-220 360.1 329 206 285 Shear Shear Shear 

 BM25-150 415.8 298 193 298 Shear Shear Shear 

 BM25-s230 444 272 201 307 Shear Shear Shear 

* Note that test result of BM16-220 contains error, hence is not compared with others. 

** All beams fail in shear during test; both shear failure mode and combined failure mode predict shear 

failure. 
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Table 6.8: Shear strengths with 𝒉𝑪 equal to 0.2d 
  𝑃𝑡𝑒𝑠𝑡  

(kN) 

𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡  (kN) with **Predicted Failure Mode with 

Model Type Specimen 𝜁𝑁𝑐  𝜁𝐶𝑆𝐴 𝜁𝑁𝑒𝑤  𝜁𝑁𝑐  𝜁𝐶𝑆𝐴 𝜁𝑁𝑒𝑤 

Kr model BM12-220 382.4 239 239 249 Combined Shear Shear 

 BM12-150 405.2 213 213 213 Combined Combined Combined 

 BM12-s230 466.9 342 277 379 Combined Shear Combined 

 BM16-220* 309.3 239 239 249 Combined Shear Shear 

 BM16-150 416.5 213 213 213 Combined Combined Combined 

 BM16-s230 450.8 348 276 374 Combined Shear Combined 

 BM25-220 360.1 239 239 255 Combined Shear Shear 

 BM25-150 415.8 213 213 213 Combined Combined Combined 

 BM25-s230 444 294 264 345 Combined Shear Combined 

WSF model BM12-220 382.4 371 240 350 Shear Shear Shear 

 BM12-150 405.2 346 298 347 Combined Shear Combined 

 BM12-s230 466.9 382 245 384 Shear Shear Shear 

 BM16-220* 309.3 372 235 342 Shear Shear Shear 

 BM16-150 416.5 340 289 341 Combined Shear Combined 

 BM16-s230 450.8 374 237 373 Shear Shear Shear 

 BM25-220 360.1 356 206 302 Shear Shear Shear 

 BM25-150 415.8 307 251 313 Combined Shear Combined 

 BM25-s230 444 280 201 319 Shear Shear Shear 

HSF model BM12-220 382.4 306 215 281 Shear Shear Shear 

 BM12-150 405.2 297 283 297 Combined Shear Combined 

 BM12-s230 466.9 348 234 359 Shear Shear Shear 

 BM16-220* 309.3 306 211 279 Shear Shear Shear 

 BM16-150 416.5 296 279 296 Combined Shear Combined 

 BM16-s230 450.8 347 229 353 Shear Shear Shear 

 BM25-220 360.1 300 189 263 Shear Shear Shear 

 BM25-150 415.8 294 256 294 Combined Shear Combined 

 BM25-s230 444 285 204 323 Shear Shear Shear 

Design model BM12-220 382.4 284 218 292 Shear Shear Shear 

 BM12-150 405.2 277 224 303 Shear Shear Shear 

 BM12-s230 466.9 304 238 335 Shear Shear Shear 

 BM16-220* 309.3 285 216 287 Shear Shear Shear 

 BM16-150 416.5 274 218 297 Shear Shear Shear 

 BM16-s230 450.8 300 232 328 Shear Shear Shear 

 BM25-220 360.1 279 199 260 Shear Shear Shear 

 BM25-150 415.8 256 194 269 Shear Shear Shear 

 BM25-s230 444 245 200 296 Shear Shear Shear 

* Note that test result of BM16-220 contains error, hence is not compared with others. 

** All beams fail in shear during test; both shear failure mode and combined failure mode predict shear 

failure. 
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Table 6.9: Shear strengths with new 𝒉𝑪 approach proposed in this research 
  𝑃𝑡𝑒𝑠𝑡  

(kN) 

𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡  (kN) with **Predicted Failure Mode with 

Model Type Specimen 𝜁𝑁𝑐  𝜁𝐶𝑆𝐴 𝜁𝑁𝑒𝑤  𝜁𝑁𝑐  𝜁𝐶𝑆𝐴 𝜁𝑁𝑒𝑤 

Kr model BM12-220 382.4 279 212 291 Combined Shear Shear 

 BM12-150 405.2 270 221 306 Combined Combined Combined 

 BM12-s230 466.9 283 235 325 Combined Shear Combined 

 BM16-220* 309.3 275 209 283 Combined Shear Shear 

 BM16-150 416.5 263 216 295 Combined Combined Combined 

 BM16-s230 450.8 274 228 314 Combined Shear Combined 

 BM25-220 360.1 245 190 241 Combined Shear Shear 

 BM25-150 415.8 225 187 249 Combined Combined Combined 

 BM25-s230 444 202 196 264 Combined Shear Combined 

WSF model BM12-220 382.4 397 236 361 Shear Shear Shear 

 BM12-150 405.2 369 298 369 Combined Shear Combined 

 BM12-s230 466.9 387 237 387 Shear Shear Shear 

 BM16-220* 309.3 391 229 351 Shear Shear Shear 

 BM16-150 416.5 357 288 357 Combined Shear Combined 

 BM16-s230 450.8 376 229 374 Shear Shear Shear 

 BM25-220 360.1 348 194 298 Shear Shear Shear 

 BM25-150 415.8 298 244 306 Combined Shear Combined 

 BM25-s230 444 257 189 307 Shear Shear Shear 

HSF model BM12-220 382.4 326 209 279 Shear Shear Shear 

 BM12-150 405.2 297 282 297 Combined Shear Combined 

 BM12-s230 466.9 343 223 364 Shear Shear Shear 

 BM16-220* 309.3 320 203 273 Shear Shear Shear 

 BM16-150 416.5 290 275 290 Combined Shear Combined 

 BM16-s230 450.8 335 217 355 Shear Shear Shear 

 BM25-220 360.1 279 174 244 Shear Shear Shear 

 BM25-150 415.8 257 243 257 Combined Shear Combined 

 BM25-s230 444 246 185 299 Shear Shear Shear 

Design model BM12-220 382.4 279 212 291 Shear Shear Shear 

 BM12-150 405.2 270 221 306 Shear Shear Shear 

 BM12-s230 466.9 283 235 325 Shear Shear Shear 

 BM16-220* 309.3 275 209 283 Shear Shear Shear 

 BM16-150 416.5 263 216 295 Shear Shear Shear 

 BM16-s230 450.8 274 228 314 Shear Shear Shear 

 BM25-220 360.1 245 190 241 Shear Shear Shear 

 BM25-150 415.8 225 187 249 Shear Shear Shear 

 BM25-s230 444 202 196 264 Shear Shear Shear 

* Note that test result of BM16-220 contains error, hence is not compared with others. 

** All beams fail in shear during test; both shear failure mode and combined failure mode predict shear 

failure. 

Based on the tested and predicted strengths, it is found that no matter which model and approach 

is used with Kr model, the increase in shear strengths from having smaller stirrup spacings is never 

captured though it can capture the increase in shear strengths by having larger stirrups. The 

decrease in shear strength predicted with Kr model by having smaller stirrup spacings can be seen 

clearly with the plots organized in Figure 6.1. 
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Figure 6.1: Trends of shear strengths predicted by Kr model 

This may be caused by that the applied load is only taken by the y-component of the main strut 

and one stirrup in Kr model, while all the other stirrups do not contribute on affording the applied 

load but work as transferring the loads. Hence, even the beam is designed with more stirrups, these 

extra stirrups cannot take any more loads in the Kr model, but increase the load exerted on the 

horizontal struts with these extra members and decreased spacings, which as a result, decrease the 

analyzed failure load. 

Therefore, Kr model shall not be sued with IST method, as it cannot correctly model the load 

transfer mechanism in the deep beams. 

Furthermore, the combinations that can correctly show the increase in strengths with smaller 

stirrup spacings or having larger stirrups for all specimens are organized in Table 6.10. 

Table 6.10: Results from approaches predicting correct trends 

with ℎ𝐶  based on strain compatibility 

 
𝑃𝑡𝑒𝑠𝑡  

(kN) 

𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡  (kN) with 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑃𝑡𝑒𝑠𝑡⁄  with 

 WSF HSF Design WSF HSF Design 

Specimens 𝜁𝐶𝑆𝐴 𝜁𝐶𝑆𝐴 𝜁𝑁𝑒𝑤 𝜁𝑁𝑒𝑤 𝜁𝐶𝑆𝐴 𝜁𝐶𝑆𝐴 𝜁𝑁𝑒𝑤 𝜁𝑁𝑒𝑤 

BM12-220 382.4 267 242 328 339 0.70 0.63 0.86 0.89 

BM12-150 405.2 314 312 399 354 0.78 0.77 0.98 0.87 

BM12-s230 466.9 258 257 406 375 0.55 0.55 0.87 0.80 

BM16-220* 309.3 258 235 322 329     

BM16-150 416.5 305 305 390 344 0.73 0.73 0.94 0.83 

BM16-s230 450.8 249 250 396 363 0.55 0.55 0.88 0.81 

BM25-220 360.1 217 204 290 285 0.60 0.57 0.80 0.79 

BM25-150 415.8 258 272 354 298 0.62 0.65 0.85 0.72 

BM25-s230 444 206 214 345 307 0.46 0.48 0.78 0.69 

Average Difference 0.38 0.38 0.13 0.20 

Standard Deviation 0.10 0.10 0.07 0.07 
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with ℎ𝐶  equal to 0.2d 

 
𝑃𝑡𝑒𝑠𝑡  

(kN) 

𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡  (kN) with  𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑃𝑡𝑒𝑠𝑡⁄  with  

 HSF Design  HSF Design  

Specimens 𝜁𝐶𝑆𝐴 𝜁𝑁𝑒𝑤 𝜁𝑁𝑒𝑤  𝜁𝐶𝑆𝐴 𝜁𝑁𝑒𝑤 𝜁𝑁𝑒𝑤  

BM12-220 382.4 215 281 292  0.56 0.74 0.76  

BM12-150 405.2 283 297 303  0.70 0.73 0.75  

BM12-s230 466.9 234 359 335  0.50 0.77 0.72  

BM16-220* 309.3 211 279 287      

BM16-150 416.5 279 296 297  0.67 0.71 0.71  

BM16-s230 450.8 229 353 328  0.51 0.78 0.73  

BM25-220 360.1 189 263 260  0.52 0.73 0.72  

BM25-150 415.8 256 294 269  0.61 0.71 0.65  

BM25-s230 444 204 323 296  0.46 0.73 0.67  

Average Difference 0.43 0.26 0.29  

Standard Deviation 0.09 0.03 0.04  

with the new ℎ𝐶  approach 

 
𝑃𝑡𝑒𝑠𝑡  

(kN) 

𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡  (kN) with 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑃𝑡𝑒𝑠𝑡⁄  with 

 WSF HSF Design WSF HSF Design 

Specimens 𝜁𝑁𝑒𝑤 𝜁𝐶𝑆𝐴 𝜁𝑁𝑒𝑤 𝜁𝑁𝑒𝑤 𝜁𝑁𝑒𝑤 𝜁𝐶𝑆𝐴 𝜁𝑁𝑒𝑤 𝜁𝑁𝑒𝑤 

BM12-220 382.4 361 209 279 291 0.94 0.55 0.73 0.76 

BM12-150 405.2 369 282 297 306 0.91 0.70 0.73 0.75 

BM12-s230 466.9 387 223 364 325 0.83 0.48 0.78 0.70 

BM16-220* 309.3 351 203 273 283     

BM16-150 416.5 357 275 290 295 0.86 0.66 0.70 0.71 

BM16-s230 450.8 374 217 355 314 0.83 0.48 0.79 0.70 

BM25-220 360.1 298 174 244 241 0.83 0.48 0.68 0.67 

BM25-150 415.8 306 243 257 249 0.74 0.58 0.62 0.60 

BM25-s230 444 307 185 299 264 0.69 0.42 0.67 0.59 

Average Difference 0.17 0.46 0.29 0.32 

Standard Deviation 0.08 0.10 0.06 0.06 

* Note that test result of BM16-220 contains error, hence is not compared with others. 

The results show that: 

1. The closest results are predicted by analyzing the beams through HSF models with ℎ𝐶  

based on strain compatibility and 𝜁𝑛𝑒𝑤 to soften struts.  

2. The predicted results following the nearest trend with the test results are analyzed by HSF 

model with  ℎ𝐶  equal to 0.2d and 𝜁𝑛𝑒𝑤 to soften struts.  

3. The approaches constantly capture the influence from stirrups are the HSF model with 𝜁𝑛𝑒𝑤 

to soften struts and Design model with 𝜁𝑛𝑒𝑤 to soften struts. 

Because the design model and the ℎ𝐶  approach equal to 0.2d can be analyzed without a detailed 

reinforcement design, they can be used to initially design the beams though the accuracy of the 

results predicted by this combination is not as good as the combination with HSF model and ℎ𝐶  

based on strain compatibility. 

Based on the results, the improved IST method for FRP RC deep beams with vertical reinforcement 

can be proposed. 
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For designing such beams, ℎ𝐶  can be preliminary calculated as 0.2d, and the design model with 

𝜁𝑛𝑒𝑤  can be used to find the suitable flexural and vertical reinforcement ratio. After the 

reinforcement design is determined, the design can be re-analyzed by HSF model with 𝜁𝑛𝑒𝑤 and 

ℎ𝐶  based on strain compatibility. 

6.2.4 Verification of the Proposed Method with Other Concrete Models 

The proposed method for designing and analyzing FRP RC deep beams are analyzed again with 

H1 and T2 concrete models to check if the proposed method will work with other concrete stress-

strain relationships, and the results are presented in Table 6.11 and Table 6.12. 

Table 6.11: Verification of HSF model with 𝜻𝒏𝒆𝒘 

with ℎ𝐶  based on strain compatibility 

 𝑃𝑡𝑒𝑠𝑡 

(kN) 

𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡  (kN) with 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑃𝑡𝑒𝑠𝑡⁄  with 

Specimens 𝐻1 𝐻2 𝑇2 𝐻1 𝐻2 𝑇2 

BM12-220 382.4 328 328 327 0.86 0.86 0.86 

BM12-150 405.2 396 399 433 0.98 0.98 1.07 

BM12-s230 466.9 409 406 409 0.88 0.87 0.88 

BM16-220* 309.3 322 322 320    

BM16-150 416.5 388 390 424 0.93 0.94 1.02 

BM16-s230 450.8 400 396 399 0.89 0.88 0.88 

BM25-220 360.1 293 290 288 0.81 0.80 0.80 

BM25-150 415.8 353 354 379 0.85 0.85 0.91 

BM25-s230 444 353 345 346 0.80 0.78 0.78 

  Average Difference 0.13 0.13 0.12 

  Standard Deviation 0.06 0.07 0.10 

with ℎ𝐶  equal to 0.2d 

 𝑃𝑡𝑒𝑠𝑡 

(kN) 

𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡  (kN) with 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑃𝑡𝑒𝑠𝑡⁄  with 

Specimens 𝐻1 𝐻2 𝑇2 𝐻1 𝐻2 𝑇2 

BM12-220 382.4 282 281 284 0.74 0.74 0.74 

BM12-150 405.2 295 297 352 0.73 0.73 0.87 

BM12-s230 466.9 359 359 365 0.77 0.77 0.78 

BM16-220* 309.3 280 279 280 0.90 0.90 0.91 

BM16-150 416.5 295 296 352 0.71 0.71 0.84 

BM16-s230 450.8 355 353 358 0.79 0.78 0.80 

BM25-220 360.1 266 263 263 0.74 0.73 0.73 

BM25-150 415.8 293 294 347 0.70 0.71 0.84 

BM25-s230 444 330 323 326 0.74 0.73 0.73 

  Average Difference 0.26 0.26 0.21 

  Standard Deviation 0.03 0.03 0.05 

* Note that test result of BM16-220 contains error, hence is not compared with others. 
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Table 6.12: Verification of the design model with 𝜻𝒏𝒆𝒘 

with ℎ𝐶  based on strain compatibility 

 𝑃𝑡𝑒𝑠𝑡 

(kN) 

𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡  (kN) with 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑃𝑡𝑒𝑠𝑡⁄  with 

Specimens 𝐻1 𝐻2 𝑇2 𝐻1 𝐻2 𝑇2 

BM12-220 382.4 337 339 342 0.88 0.89 0.89 

BM12-150 405.2 364 354 361 0.90 0.87 0.89 

BM12-s230 466.9 390 375 384 0.84 0.80 0.82 

BM16-220* 309.3 329 329 332    

BM16-150 416.5 355 344 351 0.85 0.83 0.84 

BM16-s230 450.8 378 363 371 0.84 0.81 0.82 

BM25-220 360.1 290 285 287 0.81 0.79 0.80 

BM25-150 415.8 311 298 303 0.75 0.72 0.73 

BM25-s230 444 323 307 312 0.73 0.69 0.70 

  Average Difference 0.18 0.20 0.19 

  Standard Deviation 0.06 0.07 0.07 

with ℎ𝐶  equal to 0.2d 

 𝑃𝑡𝑒𝑠𝑡 

(kN) 

𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡  (kN) with 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑃𝑡𝑒𝑠𝑡⁄  with 

Specimens 𝐻1 𝐻2 𝑇2 𝐻1 𝐻2 𝑇2 

BM12-220 382.4 287 292 301 0.75 0.76 0.79 

BM12-150 405.2 307 303 315 0.76 0.75 0.78 

BM12-s230 466.9 343 335 347 0.73 0.72 0.74 

BM16-220* 309.3 283 287 295 0.92 0.93 0.96 

BM16-150 416.5 302 297 308 0.73 0.71 0.74 

BM16-s230 450.8 337 328 340 0.75 0.73 0.76 

BM25-220 360.1 263 260 265 0.73 0.72 0.74 

BM25-150 415.8 278 269 277 0.67 0.65 0.67 

BM25-s230 444 308 296 308 0.69 0.67 0.69 

  Average Difference 0.27 0.29 0.26 

  Standard Deviation 0.03 0.04 0.04 

* Note that test result of BM16-220 contains error, hence is not compared with others. 

The proposed method works well with other two concrete stress-strain model. It is only that T2 

model may overpredict the shear strength with HSF model for specimens with tight stirrup 

spacings, and the method works better with the two models softened from Hognestad parabola. 

In conclusion, to initially design a FRP RC deep beam: 

- ℎ𝐶  can be preliminary assumed as 0.2d, 

- analysis can be performed on the design model (ST geometry), 

- struts can be modelled with Hognestad parabola softened by 𝜁𝑛𝑒𝑤. 

After the reinforcement design is determined, the design can be re-analyzed by: 

- ℎ𝐶  based on strain compatibility, 

- HSF model to represent the load paths, 

- Hognestad parabola softened by 𝜁𝑛𝑒𝑤. 
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Although it is recommended to model the concrete behavior with softened Hognestad parabola 

based on the results, this may be due to that the specimens analyzed in this research are all 

constructed with normal-density, normal-strength concrete, which is what Hognestad parabola is 

designed for.  

However, if the concrete used is not with normal-density or normal-strength and shall not be 

analyzed with Hognestad parabola, other models like the model by Thorenfeldt et al. (1987) shall 

be used. Because T2 model predicts correct trends and with generally conservative results, the 

proposed method shall work properly with other concrete models as long as the softening factors, 

𝜁𝑛𝑒𝑤 are applied correctly to all factors related to compressive strength, like 𝜀0, and the factor 𝑛 

of the Thorenfeldt et al. (1987) model. 

6.3 Analyses on Deep Beams without Stirrups 

There is one statically determinate ST model to analyze deep beams without stirrups, and all 

approaches of other features are analyzed again for these specimens, except that the ℎ𝐶  approach 

based on force equilibrium is excluded as it is too sensitive to the flexural reinforcement.  

Specimens analyzed in this section includes the 3 specimens from Krall (2014), and 14 specimens 

from D. J. Kim et al. (2014). As the strengths of these specimens are much lower than those of the 

deep beams with vertical reinforcement, the results in this section are rounded to 0.1 kilonewtons.  

Based on the analyzed result, the proper approaches and models are found, and the IST method 

specifically for deep beams without stirrups is proposed. 

6.3.1 Analysis on the Details of 𝜻𝒏𝒆𝒘 approach with specimens tested by Krall (2014) 

How to apply 𝜁𝑛𝑒𝑤  to deep beams without stirrups shall be determined before analyzing and 

comparing the approaches. As mentioned in Chapter 5, this approach requires imaginary ties with 

nearly no stiffness to find the strain in y-direction; hence, analysis is conducted to find the 

relationship between the numbers of imaginary stirrups and the predicted strengths on specimens 

tested by Krall (2014) , and the results are presented in Figure 6.2 with H2 concrete model and ℎ𝐶  

equal to 0.2d. 

 
Figure 6.2: 𝜻𝒏𝒆𝒘 approach with different numbers of imaginary ties 
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It is clear that the curves converge with increased imaginary ties, which proves that using the 

imaginary ties to predict the vertical strain is similar to conducting a simplified finite element 

analysis for the vertical strain. Hence, to save the analysis time and to be slightly more conservative, 

it is decided to consistently use 5 imaginary ties for the 𝜁𝑛𝑒𝑤 approach, which is as shown in Figure 

6.3. 

 

Figure 6.3: Proposed STM for 𝜻𝒏𝒆𝒘 approach with 5 imaginary ties 

Moreover, as the zero-force tie under the loading point is counted, the minimum number of 

imaginary ties is two but not one. 

6.3.2 Analyzed Results with Different Approaches 

The H2 concrete stress-strain relationship is firstly used to determine which combination of the 

approaches works best with the method. As the analyzed failure mode can only be shear failure, 

the predicted strengths along with the ratios between the predicted and tested strengths are 

presented in Table 6.13. The average differences of the ratios are computed to determine the 

accuracy, and the standard deviations are computed to check if the predicted results follow a 

similar trend with the test results, and if the accuracy is stable. 
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Table 6.13: Results for FRP RC deep beams without stirrups 

with ℎ𝐶  based on strain compatibility 

 𝑃𝑡𝑒𝑠𝑡  

(kN) 

𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡  (kN) with 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑃𝑡𝑒𝑠𝑡⁄  with 

Specimens 𝜁𝐴𝐶𝐼  𝜁𝑁𝑑  𝜁𝐶𝑆𝐴 𝜁𝑁𝑒𝑤 𝜁𝐴𝐶𝐼  𝜁𝑁𝑑  𝜁𝐶𝑆𝐴 𝜁𝑁𝑒𝑤 

BM12-INF 163.1 93.3 83.9 90.7 159.1 0.57 0.51 0.56 0.98 

BM16-INF 150.2 91.8 82.5 88.6 155.6 0.61 0.55 0.59 1.04 

BM25-INF 125.1 85.7 77.0 78.5 139.6 0.68 0.62 0.63 1.12 

  Average Difference 0.38 0.44 0.41 0.06 

  Standard Deviation 0.06 0.05 0.04 0.07 

A3D9M-1.4 136.05 94.4 143.3 86.8 128.5 0.69 1.05 0.64 0.94 

A3D9M-1.7 98.98 77.5 101.3 62.8 101.8 0.78 1.02 0.63 1.03 

A3D9M-2.1 88 61.4 48.5 43.1 77.0 0.70 0.55 0.49 0.87 

A4D9M-1.7 121 81.3 104.2 71.4 114.8 0.67 0.86 0.59 0.95 

A5D9M-1.7 133.97 84.5 106.3 78.6 125.6 0.63 0.79 0.59 0.94 

A3D9S-1.7 109.58 70.8 90.8 58.6 95.1 0.65 0.83 0.53 0.87 

A5D9L-1.7 134.27 91.9 117.7 83.9 134.0 0.68 0.88 0.62 1.00 

C3D9M-1.4 169.26 100.3 150.6 103.1 151.1 0.59 0.89 0.61 0.89 

C3D9M-1.7 106.54 82.9 105.3 74.9 120.1 0.78 0.99 0.70 1.13 

C3D9M-2.1* 52.64 66.2 46.6 51.6 91.1     

C4D9M-1.7* 96.09 87.1 107.8 84.6 134.6     

C5D9M-1.7 151.39 90.5 109.3 92.7 146.5 0.60 0.72 0.61 0.97 

C3D9S-1.7 104.84 74.8 92.7 69.0 110.9 0.71 0.88 0.66 1.06 

C5D9L-1.7 145.39 99.4 122.9 99.9 157.8 0.68 0.85 0.69 1.09 

Average Difference 0.32 0.15 0.39 0.07 

Standard Deviation 0.06 0.14 0.06 0.08 

with ℎ𝐶  equal to 0.2d 

 𝑃𝑡𝑒𝑠𝑡  

(kN) 

𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡  (kN) with  𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑃𝑡𝑒𝑠𝑡⁄  with  

Specimens 𝜁𝐴𝐶𝐼  𝜁𝑁𝑑  𝜁𝐶𝑆𝐴 𝜁𝑁𝑒𝑤 𝜁𝐴𝐶𝐼  𝜁𝑁𝑑  𝜁𝐶𝑆𝐴 𝜁𝑁𝑒𝑤 

BM12-INF 163.1 74.3 66.7 81.9 136.6 0.46 0.41 0.50 0.84 

BM16-INF 150.2 74.3 66.7 80.6 135.1 0.49 0.44 0.54 0.90 

BM25-INF 125.1 74.3 66.7 73.8 127.4 0.59 0.53 0.59 1.02 

  Average Difference 0.49 0.54 0.46 0.09 

  Standard Deviation 0.07 0.06 0.04 0.09 

A3D9M-1.4 136.05 92.7 141.2 86.4 127.4 0.68 1.04 0.64 0.94 

A3D9M-1.7 98.98 76.0 100.1 62.5 100.8 0.77 1.01 0.63 1.02 

A3D9M-2.1 88 60.1 48.8 42.8 76.2 0.68 0.55 0.49 0.87 

A4D9M-1.7 121 76.0 100.1 70.2 111.0 0.63 0.83 0.58 0.92 

A5D9M-1.7 133.97 76.0 100.1 76.5 118.9 0.57 0.75 0.57 0.89 

A3D9S-1.7 109.58 67.2 88.5 58.1 93.0 0.61 0.81 0.53 0.85 

A5D9L-1.7 134.27 84.8 111.7 81.8 128.4 0.63 0.83 0.61 0.96 

C3D9M-1.4 169.26 92.7 141.2 101.0 145.1 0.55 0.83 0.60 0.86 

C3D9M-1.7 106.54 76.0 100.1 73.3 114.9 0.71 0.94 0.69 1.08 

C3D9M-2.1* 52.64 60.1 48.8 50.3 86.9     

C4D9M-1.7* 96.09 76.0 100.1 81.7 125.2     

C5D9M-1.7 151.39 76.0 100.1 88.5 133.0 0.50 0.66 0.58 0.88 

C3D9S-1.7 104.84 67.2 88.5 67.9 105.5 0.64 0.84 0.65 1.01 

C5D9L-1.7 145.39 84.8 111.7 95.0 144.2 0.58 0.77 0.65 0.99 

Average Difference 0.37 0.19 0.40 0.08 

Standard Deviation 0.07 0.14 0.06 0.07 
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with the new ℎ𝐶  approach 

 𝑃𝑡𝑒𝑠𝑡  

(kN) 

𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡  (kN) with 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑃𝑡𝑒𝑠𝑡⁄  with 

Specimens 𝜁𝐴𝐶𝐼  𝜁𝑁𝑑  𝜁𝐶𝑆𝐴 𝜁𝑁𝑒𝑤 𝜁𝐴𝐶𝐼  𝜁𝑁𝑑  𝜁𝐶𝑆𝐴 𝜁𝑁𝑒𝑤 

BM12-INF 163.1 74.3 66.7 81.9 130.6 0.46 0.41 0.50 0.80 

BM16-INF 150.2 74.3 66.7 80.6 128.0 0.49 0.44 0.54 0.85 

BM25-INF 125.1 74.3 66.7 73.8 115.1 0.59 0.53 0.59 0.92 

  Average Difference 0.49 0.54 0.46 0.14 

  Standard Deviation 0.07 0.06 0.04 0.06 

A3D9M-1.4 136.05 77.7 120.8 81.8 116.4 0.57 0.89 0.60 0.86 

A3D9M-1.7 98.98 62.1 86.5 58.6 91.0 0.63 0.87 0.59 0.92 

A3D9M-2.1 88 47.7 46.6 39.6 67.6 0.54 0.53 0.45 0.77 

A4D9M-1.7 121 64.2 88.8 66.3 101.5 0.53 0.73 0.55 0.84 

A5D9M-1.7 133.97 66.0 90.7 72.9 110.2 0.49 0.68 0.54 0.82 

A3D9S-1.7 109.58 58.9 81.5 56.3 87.4 0.54 0.74 0.51 0.80 

A5D9L-1.7 134.27 69.5 96.2 75.8 114.7 0.52 0.72 0.56 0.85 

C3D9M-1.4 169.26 80.9 125.7 96.6 134.9 0.48 0.74 0.57 0.80 

C3D9M-1.7 106.54 65.1 89.8 69.5 105.8 0.61 0.84 0.65 0.99 

C3D9M-2.1* 52.64 50.4 47.7 47.3 79.0     

C4D9M-1.7* 96.09 67.5 92.3 78.3 117.3     

C5D9M-1.7 151.39 69.6 94.4 85.7 126.8 0.46 0.62 0.57 0.84 

C3D9S-1.7 104.84 61.2 83.7 66.3 100.8 0.58 0.80 0.63 0.96 

C5D9L-1.7 145.39 73.9 101.0 89.8 132.9 0.51 0.69 0.62 0.91 

Average Difference 0.46 0.26 0.43 0.14 

Standard Deviation 0.05 0.10 0.05 0.07 

* Note that test results of these specimens contain error, hence are not compared with others. 

Firstly, both 𝜁𝐴𝐶𝐼 and 𝜁𝑁𝑑 cannot predict the increase in shear strength from having stiffer flexural 

bars without ℎ𝐶  capturing that feature, hence these two approaches shall not be used with ℎ𝐶  equal 

to 0.2d, as ℎ𝐶  equal to 0.2d is neither related to the stiffness of the rebars. 

Secondly, though 𝜁𝐴𝐶𝐼 and 𝜁𝐶𝑆𝐴 can capture the influence on the shear capacity from other features, 

the predicted results are too conservative, which may be good for code provisions, but makes them 

less accurate than other approaches. 

Thirdly, both 𝜁𝑁𝑑 and 𝜁𝑁𝑒𝑤 predict accurate results but overestimate the shear strengths of several 

beams with ℎ𝐶  based on strain compatibility or equal to 0.2. Among these two approaches, 𝜁𝑁𝑒𝑤 

predicts better results, as it predicts closer results with more stable accuracies. 

Therefore, the proposed method is to analyze and design FRP RC deep beams without vertical 

reinforcement with the new ℎ𝐶  approach and 𝜁𝑁𝑒𝑤. 
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6.3.3 Verification of the Proposed Method with Other Concrete Models 

As the proposed method is developed, it is analyzed against different concrete models to check the 

validity, and the results are organized in Table 6.14. 

Table 6.14: Results of the proposed method with different concrete models 

 𝑃𝑡𝑒𝑠𝑡  

(kN) 

𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡  (kN) with 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑃𝑡𝑒𝑠𝑡⁄  with 

Specimens 𝐻1 𝐻2 𝑇2 𝐻1 𝐻2 𝑇2 

BM12-INF 163.1 120.4 130.6 146.0 0.74 0.80 0.90 

BM16-INF 150.2 118.0 128.0 142.8 0.79 0.85 0.95 

BM25-INF 125.1 106.1 115.1 126.8 0.85 0.92 1.01 

  Average Difference 0.21 0.14 0.06 

  Standard Deviation 0.06 0.06 0.06 

A3D9M-1.4 136.05 111.1 116.4 108.7 0.82 0.86 0.80 

A3D9M-1.7 98.98 86.2 91.0 84.6 0.87 0.92 0.85 

A3D9M-2.1 88 63.5 67.6 62.6 0.72 0.77 0.71 

A4D9M-1.7 121 96.1 101.5 95.7 0.79 0.84 0.79 

A5D9M-1.7 133.97 104.3 110.2 105.0 0.78 0.82 0.78 

A3D9S-1.7 109.58 82.8 87.4 81.5 0.76 0.80 0.74 

A5D9L-1.7 134.27 108.6 114.7 109.1 0.81 0.85 0.81 

C3D9M-1.4 169.26 128.5 134.9 128.4 0.76 0.80 0.76 

C3D9M-1.7 106.54 100.1 105.8 100.3 0.94 0.99 0.94 

C3D9M-2.1* 52.64 73.9 79.0 74.4    

C4D9M-1.7* 96.09 111.0 117.3 112.7    

C5D9M-1.7 151.39 119.9 126.8 123.0 0.79 0.84 0.81 

C3D9S-1.7 104.84 95.4 100.8 95.8 0.91 0.96 0.91 

C5D9L-1.7 145.39 125.8 132.9 132.9 0.87 0.91 0.91 

  Average Difference 0.18 0.14 0.18 

  Standard Deviation 0.07 0.07 0.07 

* Note that test results of these specimens contain error, hence are not compared with 

others. 

The predicted strengths are similar to each other, and H2 model and T2 could be slightly more 

accurate. It proves that the proposed method is able to work and works well with different stress-

strain relationships. Hence, if a specific concrete model is required, it is safe to use that concrete 

model as long as it is properly softened. 

The only outliner is BM25-INF analyzed with T2 model, as the strength is slightly overpredicted. 

However, it is only overpredicted about two kilonewtons, hence can be ignored. 

In a conclusion, to design or analyze a FRP RC deep beam without vertical reinforcement, it is 

recommended  

- to use the new approach to calculate ℎ𝐶  inside each iteration,  

- and to use 𝜁𝑁𝑒𝑤 with five imaginary ties having nearly no stiffness to find the strain in 

vertical direction.  

Moreover, the number of imaginary ties can be reduced to two if more conservative results are 

wanted. 
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6.4 Analyses of Slender Beams 

Selected beams bested by Tedford (2019) are also analyzed to verify if the IST method for FRP 

RC deep beams can be applied to truss models for FRP RC slender beams. Similarly, concrete is 

modeled with H2 model to limit the numbers of variables. 

The truss models for slender beams generally have compression fans located at supports and 

loading points extended out to a certain distance as shown in Figure 6.4. 

 
Figure 6.4: Typical truss model for slender beams with compression fans 

Analyzing shear strengths of steel RC slender beams with truss models is to find how many ties 

are connected to the loading or supporting point by the compression fans. Therefore, the focus of 

a truss model is to determine how far the compression fan can be extended to, as it determines the 

number of stirrups can be utilized to take the shear force. If a beam is designed with large stirrup 

spacings, the compression fan might disappear as shown in Figure 6.5, and the shear strength is 

equal to the yielding force of one vertical tie. 

 
Figure 6.5: Typical truss model for slender beams without compression fans 

However, reinforcement in FRP RC beams cannot yield, and the strength shall be governed by 

concrete crushing. Hence, the truss models can only be analyzed with the IST method. If the 

inclined struts are failed, it is predicted to fail in shear; if the horizontal struts are failed, it is 

predicted to fail in flexure.  

How far should the compression fan extended to could also be important to FRP RC slender beams, 

as it defines the angles of the inclined struts and the number of struts utilized to take the applied 

force, which could still affect the predicted results. 
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Thus, truss models with compression fans extended to 2d and 0.9d from supports and loading points are constructed and analyzed. The 
value of 2d is from the maximum 𝑎/𝑑 value regulated by ACI 318-19 (2019) for deep beams, while the value of 0.9d is the generally 
govern value for the effective shear depth (𝑑!) from CSA A23.3-19 (2019), and CSA A23.3-19 (2019) defined that the region inside 𝑑! 
from supports could be considered as deep regions inside slender beams in sectional shear analysis. 
The results analyzed from these two truss models are presented in Table 6.15. 

Table 6.15: Results for slender beams 
Compression fan extended to 2d  
  𝑃!"#! 

(kN) 
𝑃$%"&'(! (kN) with Predicted Failure Mode Actual 

Failure ℎ) approach Specimens 𝜁*)+ 𝜁,& 𝜁)-* 𝜁,". 𝜁*)+ 𝜁,& 𝜁)-* 𝜁,". 
Based on Strain 
Compatibility 

BM4.5-90 222.5 157.1 157.1 157.1 157.1 Flexure Flexure Flexure Flexure Shear 
BM4.5-150 171.2 162.5 162.5 162.5 162.5 Flexure Flexure Flexure Flexure Shear 
BM6.5-90 145.6 99.5 99.5 99.5 99.5 Flexure Flexure Flexure Flexure Flexure 
BM6.5-150 141.0 101.8 101.8 101.8 101.8 Flexure Flexure Flexure Flexure Shear 

Equal to 0.2d BM4.5-90 222.5 120.1 120.1 120.1 120.1 Flexure Flexure Flexure Flexure Shear 
BM4.5-150 171.2 124.1 124.1 124.1 124.1 Flexure Flexure Flexure Flexure Shear 
BM6.5-90 145.6 76.0 76.0 76.0 76.0 Flexure Flexure Flexure Flexure Flexure 
BM6.5-150 141.0 77.7 77.7 77.7 77.7 Flexure Flexure Flexure Flexure Shear 

New Approach BM4.5-90 222.5 109.0 109.0 109.0 109.0 Flexure Flexure Flexure Flexure Shear 
BM4.5-150 171.2 112.9 112.9 112.9 112.9 Flexure Flexure Flexure Flexure Shear 
BM6.5-90 145.6 68.5 68.5 68.5 68.5 Flexure Flexure Flexure Flexure Flexure 
BM6.5-150 141.0 70.1 70.1 70.1 70.1 Flexure Flexure Flexure Flexure Shear 

Compression fan extended to 0.9d  
  𝑃!"#! 

(kN) 
𝑃$%"&'(! (kN) with Predicted Failure Mode Actual 

Failure ℎ) approach Specimens 𝜁*)+ 𝜁,& 𝜁)-* 𝜁,". 𝜁*)+ 𝜁,& 𝜁)-* 𝜁,". 
Based on Strain 
Compatibility 

BM4.5-90 222.5 137.1 137.1 137.1 137.1 Flexure Flexure Flexure Flexure Shear 
BM4.5-150 171.2 139.0 139.0 139.0 139.0 Flexure Flexure Flexure Flexure Shear 
BM6.5-90 145.6 91.5 91.5 91.5 91.5 Flexure Flexure Flexure Flexure Flexure 
BM6.5-150 141.0 92.3 92.3 92.3 92.3 Flexure Flexure Flexure Flexure Shear 

Equal to 0.2d BM4.5-90 222.5 104.4 104.4 104.4 104.4 Flexure Flexure Flexure Flexure Shear 
 BM4.5-150 171.2 105.9 105.9 105.9 105.9 Flexure Flexure Flexure Flexure Shear 
 BM6.5-90 145.6 69.7 69.7 69.7 69.7 Flexure Flexure Flexure Flexure Flexure 
 BM6.5-150 141.0 70.4 70.4 70.4 70.4 Flexure Flexure Flexure Flexure Shear 
New Approach BM4.5-90 222.5 93.8 93.8 93.8 93.8 Flexure Flexure Flexure Flexure Shear 
 BM4.5-150 171.2 95.2 95.2 95.2 95.2 Flexure Flexure Flexure Flexure Shear 
 BM6.5-90 145.6 62.5 62.5 62.5 62.5 Flexure Flexure Flexure Flexure Flexure 
 BM6.5-150 141.0 63.1 63.1 63.1 63.1 Flexure Flexure Flexure Flexure Shear 
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Although the results prove that the compression fan influences the results, they also prove that 
FRP RC slender beams shall not be analyzed with truss models through IST method. The results 
show too many problems, and the only thing that the models can capture is the decrease in strengths 
by having more slender beams. 

The problems shown by the results include: 
1. The method cannot predict the correct failure mode. No matter which approach is chosen, 

the beams are predicted to fail in flexure, but most of the beams failed in shear according 
to Tedford (2019) (except for BM6.5-90 that was filed in flexure). The flexural failure 
mode also causes all softening factor approaches predicting identical results as the 
approaches are mainly different for the inclined struts. 

2. It cannot capture the increase in shear strength with smaller stirrup spacings. Even if the 
predicted strength is treated as the reinforcement contribution to the shear strength, it shall 
capture the increase in shear strengths when more stirrups are placed. 

3. Most of the predicted results are not close to the tested strengths especially for beams with 
𝑎/𝑑 ratio equal to 6.5. 

Therefore, the IST method shall only be used to find the shear strength of FRP RC deep beams, 
which is to find the shear strength by arch action, and it is not suitable for FRP RC slender beams. 
There may be a way to properly utilize the truss models, but as the main purpose of this research 
is to predict the shear strength of deep beams with IST method, it is not further developed in this 
work. 
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7. Conclusions and Recommendations 

7.1 Conclusions and Proposed IST Method 

Conclusions on IST model types for FRP RC deep beams with vertical reinforcement: 

- Kr model works well at capturing the increase in shear strength with lager stirrups but fails 

to capture the increase in shear strength with smaller stirrup spacings (or more stirrups); 

which may be caused by only connecting one stirrup to the loading/supporting nodes 

leading to inefficient load paths. 

- Design model commonly used to design steel RC deep beams with vertical reinforcement 

works well on FRP RC deep beams. Though it predicts slightly more conservative results, 

the trend of the strengths can be well reflected with the proposed new softening factor (𝜁) 

approach. 

- Both proposed IST model types work well, WSF model works best with the new ℎ𝐶  and 

the new softening factor approach, while HSF model works best with the ℎ𝐶   approach 

based on strain compatibility and the new softening factor approach. 

- HSF model is considered to be slightly better than WSF model, as it can work with all three 

ℎ𝐶   approach (excluding the inappropriate ℎ𝐶   approach based on force equilibrium) and 

both 𝜁𝐶𝑆𝐴 and 𝜁𝑛𝑒𝑤, and its best combination predicts slightly better results than the best 

combination of WSF model. 

Conclusions on concrete stress-strain modelling: 

- Stress-strain relationships shall be softened with 𝜁 applied to all factors calculated from the 

concrete compressive strength. 

- Based on the specimens analyzed in this test, stress-strain models softened from Hognestad 

parabola are slightly better than those softened from the model by Thorenfeldt et al. (1987). 

However, the difference is small and the model by Thorenfeldt et al. (1987) may be better 

if the specimens are not casted with normal-strength, normal-density concrete, as 

Hognestad parabola is not suitable for some concrete types. 

Conclusions on the assumed concrete compression height (ℎ𝐶): 

- Although the approach based on force equilibrium is suggested for steel FRP RC deep 

beams, it shall not be applied to FRP RC deep beams, as it is too sensitive to flexural 

reinforcement and is possible to predict extremely high or extremely low ℎ𝐶 . 

- All the other three approaches work well, and the IST method is not extremely sensitive to 

ℎ𝐶 . However, 𝜁𝐴𝐶𝐼 and 𝜁𝑁𝑑 shall not be used with ℎ𝐶  equal to 0.2d to predict the strength 

of deep beams without stirrups, as these softening approaches cannot reflect the changes 

in the stiffnesses of the flexural reinforcement. 

- ℎ𝐶  equal to 0.2d can be used as a preliminary assumption as it is simple and can be obtained 

without a developed reinforcement design. 

- ℎ𝐶  based on strain equilibrium works better with more slender beams with stirrups as the 

shear strength of those beams are closer to the flexural strength, and the assumptions used 

in this ℎ𝐶  approach is actually for flexural failure. 
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- The new ℎ𝐶  approach works better with more deep beams without stirrups, and generally 

predicts more conservative results than the other two approaches. 

Conclusions on Softening factor approaches: 

- 𝜁𝐴𝐶𝐼 is not suggested for FRP RC deep beams with vertical reinforcement, as it cannot 

efficiently soften the strength of the inclined struts, which makes it predict false failure 

mode with overestimated strengths. 

- 𝜁𝑁𝑑 works good for some specimens under certain conditions but is not generally good. It 

may because that this approach does not relate to enough factors, thus cannot capture how 

strut strengths shall change under different loads during the analysis. 

-  𝜁𝐶𝑆𝐴 works well at predicting the trends, but generally being too conservative for FRP RC 

deep beams both with and without vertical reinforcement. 

- The new strut coefficient included in 𝜁𝐴𝐶𝐼 for deep beams without vertical reinforcement 

makes this method too conservative for such beams. It may be even more conservative than 

𝜁𝐶𝑆𝐴 in some cases. 

- 𝜁𝑁𝑒𝑤  works really well for specimens both with and without vertical reinforcement. It 

captures the factors influencing the strengths properly while predicting accurate and 

generally conservative results.  

Proposed IST method: 

- To design deep beams with vertical reinforcement, it is recommended to preliminary 

assume ℎ𝐶  as 0.2d, to use the concrete models with all factors related to 𝑓𝑐
′ softened by 

𝜁𝑛𝑒𝑤 to model behavior of concretes struts, and to analyze with the design model, which 

makes it easier to try different vertical and flexural reinforcement ratios and bar stiffnesses 

for the beam design. After the reinforcement design is developed, the design can be re-

analyzed by HSF model with the same softened concrete model and ℎ𝐶  based on strain 

compatibility.  

- The design and analysis process of deep beams without vertical reinforcement is the same. 

It is recommended to use the new approach to calculate ℎ𝐶  inside each iteration, and to 

soften the concrete by 𝜁𝑁𝑒𝑤 (in the proper way mentioned above). The 𝜁𝑁𝑒𝑤 approach can 

be reached with a simple truss model having imaginary ties with nearly no stiffness placed 

behind the ST model to calculate the strain in the y-direction, and the recommended 

number of the imaginary ties is five. If a more conservative result is wanted, the number 

of imaginary ties can be reduced to two (the minimum value). If a simpler method is 

required, ℎ𝐶  can be changed to be equal to 0.2d, and the number of imaginary ties shall be 

decreased to two. 

- Furthermore, the IST method is only applicable to calculate the shear strength governed by 

arch action. Hence, it shall not be applied to analyze truss models for slender beams. 

Although it is possible to use the ST method analyzing truss models for steel RC slender 

beams to find the reinforcement contribution, the IST method does not focus on the 

reinforcement contribution, thus cannot analyze the truss models for FRP RC slender 

beams properly. 
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7.2 Recommendations 

- More deep beams with stirrups shall be tested and analyzed through the proposed method 

to verify the method. 

- How to use the proposed method to other deep regions can be analyzed, and tests can be 

done to find if the proposed method is only good to deep beams or is good to all deep 

regions. 

- The new ℎ𝐶  approach can be further developed to include a better model for post-peak 

relationship or to analyze the semi-cracked concrete beams in a better way, thus this 

approach will not be limited to a specific range of deep beams. 

- A more detailed and throughout finite element analysis on ℎ𝐶  can be conducted to find how 

ℎ𝐶  exactly changes with different factors, and how the strain profiles of deep beams are 

influenced by slenderness ratios, applied load cases, etc. if a throughout new method can 

be produced for ℎ𝐶 , the IST method could be further improved. 

- Although the current IST method focuses on the strut strengths cannot be applied to slender 

beams, there may be a way to alter this method to focus on the reinforcement contribution, 

which may lead to a new method for predicting the shear strengths of slender beams. 
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Appendices 

A: MATLAB Code 

For beams tested by Krall (2014) and Tedford (2019) 

clc, clear all, close all, format short 

%% Initial Inputs 

% Beams 

Beam1 = [12.22,16.22,25.22; 

         12.15,16.15,25.15; 

         112,  116,  125; 

         45.09, 45.15,  45; 

         65.09, 65.15,  65]; 

Beam1 = [Beam1(1:3,:)];%,Beam1(1:3,2),Beam1(1:3,3)]; 

% ST Model 

Model_num1 = [1,3,4,6]; %[1Krall, 2no_stir, 3whole_deep, 4half_deep, 5slender, 

6design] 

% Softening Factor 

sfModel1= [1,2.1,3,3.2]; lim = 0; %lim is only for 3, input 0 or 0.4 

                        %2.1 based on theta, 2.2 based on a/d, 2.3 based on s/d; 

                        % 3 based on theta, 3.1 based on s/d 

                        % 3.2 new method based on ex ey 

% Assumed Concrete Properties 

mode = [1,1.1,2.1]; % Put 1 for Hognestad; 2 for Thorenfeldt; .1 for all factors 

reduced 

  

%% Figure on/off 

fi=1; 

fid=0; 

fisf=0; 

fiE=0; 

Ti=0; Tn=1; 

%% Models 

for im = 1%:numel(Model_num1) 

Model_num = Model_num1(im); 

for ib = 1:numel(Beam1) 

Beam = Beam1(ib);  

INF = 0; INFd1 = 5; 

for inf = 1%:numel(INFd1) 

    INFd = INFd1(inf); 

for isf = 4%:numel(sfModel1) 

    sfModel = sfModel1(isf); 

for iss = 1:numel(mode) 

    model = mode(iss); 

  

if Model_num==2 && sfModel==1 

    sfModel=1.1; 

end 

  

     

Name = [Beam,Model_num,sfModel,model,INF,INFd]; 

fprintf('\n------------\nBM-%g, ST# %g, SF# %g, M %g, INF %g, INFd %g',Name) 

  

%% Inputs 

[Area_flex,E_flex,bar_c,Area_stirrup,E_stirrup,f_FRP_cu,f_cc,L_full,h_full,d_eff,... 

    s_stirrup,bearing_s,bearing_P,z,P_exp,fflex,h_Cf,gamma_c,f_FRP_v] = 

Input_MK(Beam,INF,INFd); 

%d_eff=270; 

%h_Ci = h_Cf; 

%h_Ci = 0.65*f_FRP_cu*Area_flex/(0.85*f_cc*z); 
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h_Ci = 0.2*d_eff; 

aaa = 1; 

  

if Model_num == 2 

    s_stirrup=L_full; 

end 

  

if Model_num == 6 

    n_effstir= floor((L_full-bearing_s/2)/s_stirrup); 

    Area_stirrup = Area_stirrup*n_effstir; 

end 

  

[e,n,nodes,conn,e_s_pris,e_s_bottle,e_s,e_b_flex,e_b_stirrup,e_b,... 

    nodes_defined,defined_dimensions,nodes_nocheck,nodes_C,Rstrut_C,nodes_T,... 

    Rstrut_T,nodes_load,ndof,fixed_dofs,fixed_u,free_dofs,dof_load,h_T,a]... 

    = Model(Model_num,h_Ci,bar_c,L_full,s_stirrup,bearing_s,bearing_P,d_eff); 

  

  

%% Plot Original truss------------------------------------------------------------ 

if fi==1 

%figure(11); 

%figure('Name',"MODEL") 

for i = 1:e 

    element_x(i,:)=nodes(1,[conn(i,1),conn(i,2)]); 

    element_y(i,:)=nodes(2,[conn(i,1),conn(i,2)]); 

    locx=max(element_x(i,:))-s_stirrup/2; locy=max(element_y(i,:)); 

    lxx = min(element_x(i,:))+(max(element_x(i,:))-min(element_x(i,:)))*2/3; 

    if ismember(i,e_b_flex) 

    plot(element_x(i,:),element_y(i,:),'k-') 

    if i==1 

        text(max(element_x(i,:))/2, locy+7, num2str(i)) 

    else 

        text(locx, locy+7, num2str(i)) 

    end 

    elseif ismember(i,e_b_stirrup) 

    plot(element_x(i,:),element_y(i,:),'k-') 

    text(max(element_x(i,:))-15, locy/2, num2str(i)) 

    elseif ismember(i,e_s_pris) 

    plot(element_x(i,:),element_y(i,:),'r--') 

    text(locx, locy+7, num2str(i)) 

    elseif ismember(i,e_s_bottle) 

        plot(element_x(i,:),element_y(i,:),'r--') 

        if max(element_x(i,:))-min(element_x(i,:))==L_full 

        text(max(element_x(i,:))*3/4-10, locy*3/4, num2str(i)) 

        else 

            text(lxx, locy*2/3, num2str(i)) 

        end 

    end 

    hold on 

end 

for i = 1:n 

    txt= sprintf('N%d',i); 

    text(nodes(1,i),nodes(2,i),txt) 

end 

end 

  

%% element geometries 

[theta, Nodalzone, Area, Length] = Geometry(e,n,conn, nodes,... 

    nodes_defined,defined_dimensions,h_Ci,nodes_C,Rstrut_C,h_T,nodes_T,... 

    Rstrut_T,e_b_flex,e_b_stirrup,e_s_pris,Area_flex,Area_stirrup,z); 

  

  

%% Analysis 
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% Initial Parameters 

P_in = 0; %N initial applied load set to be 0 

P_inc = -10; %N add 10N applied load every loop 

strain_c = zeros(1,e); % initial strain set to be 0 

P_max = -600E3; % N to define maximum number of loops 

[E_origi,strain0,aabb,Ec] = Elasticity(e,e_b_flex,E_flex,e_b_stirrup,E_stirrup,... 

    e_s_bottle,strain_c,e_s_pris,model,f_cc,L_full,d_eff,theta,sfModel,lim,... 

    a,conn,fflex,s_stirrup,gamma_c); 

  

% Checks 

% strut check 

E_check = 0.01*E_origi; 

% system check 

Uns_check_1 = e-2*n+4; 

Uns_check_2 = size(find(conn(:,2)==n),1); 

Unstable_check = min(Uns_check_1);%,Uns_check_2); 

if INF ==1 

Unstable_check = 1; 

end 

% nodalzone check 

lim_CCC = 0.85*f_cc; lim_CCT = 0.75*f_cc; lim_CTT = 0.65*f_cc; 

% FRP check 

lim_FRP(e_b) = f_FRP_cu; 

lim_FRP(e_b_stirrup) = f_FRP_v; 

  

% Iterative IST Analysis 

[d,r,stress,strain,f_internal,E_end,Ebs,strain0_end,sfb,P_fail,h_C]... 

    =ISTAnalysis(P_max,P_in,P_inc,h_Ci,nodes_nocheck,E_origi,E_flex,... 

    E_stirrup,model,f_cc,E_check,lim_CCC,lim_CCT,lim_CTT,lim_FRP,INF,... 

    Model_num,bar_c,bearing_s,bearing_P,Unstable_check,z,P_exp,L_full,... 

    d_eff,sfModel,lim,a,fflex,s_stirrup,Area_flex,Area_stirrup,gamma_c,aaa,h_full); 

  

%% Plot softening factor 

if ismember(sfModel,[3,3.1,3.2]) && fisf==1 

figure('Name',num2str(sfModel)); 

for ii = 1:size(e_s_bottle,2) 

Px=0:P_inc:P_fail*2; 

sfy=sfb(:,ii); 

plot(-Px/1000,sfy') 

Leg{ii}=sprintf('S%d',e_s_bottle(ii)); 

end 

legend(Leg','Location','southwest') 

xlabel('P(kN)') 

ylabel('Soften Factors') 

hold on 

end 

SoftenF_end=sfb(end-10,:); 

softenF_end_E = SoftenF_end(end); 

  

%% Plot Elasticity change 

if fiE==1 

figure('Name',"Elasticity") 

for ii = 1:size(e_s_bottle,2) 

Px=0:P_inc:P_fail*2; 

Eis=Ebs(:,ii)/1000; 

plot(-Px/1000,Eis') 

Leg{ii}=sprintf('S%d',e_s_bottle(ii)); 

end 

legend(Leg','Location','southwest') 

xlabel('P(kN)') 

ylabel('Elasticity(GPa)') 

hold on 

end 
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%% Plot Deformed Shape 

if fid ==1 

for i3 =1:n 

    dx(i3)=d(i3*2-1); 

    dy(i3)=d(i3*2); 

end 

nodes_new(1,:) = nodes(1,:)+dx; 

nodes_new(2,:) = nodes(2,:)+dy; 

  

figure(11); 

for i3 = 1:e 

    element_x(i3,:)=nodes_new(1,[conn(i3,1),conn(i3,2)]); 

    element_y(i3,:)=nodes_new(2,[conn(i3,1),conn(i3,2)]); 

    if ismember(i3,e_b) 

    plot(element_x(i3,:),element_y(i3,:),'b-') 

    elseif ismember(i3,e_s) 

    plot(element_x(i3,:),element_y(i3,:),'g--') 

    end 

    hold on 

end 

dx=[]; dy=[]; nodes_new=[]; 

end 

StrengthV = -P_fail*2/1000; 

if Ti==1 

T(Tn,:) = table(Model_num, Beam, sfModel, model,StrengthV); 

Tn=Tn+1; 

writetable(T,'ShearStrength.xlsx','sheet',5) 

end 

  

h_C; 

%Ebs(end,:) 

%stress 

%f_internal 

%strain 

end 

end 

end 

end 

end 

%% ------------------------------------------------------------------------- 

With Inputs: 

function[Area_flex,E_flex,bar_c,Area_stirrup,E_stirrup,f_FRP_cu,f_cc,L_full,h_full,... 

    d_eff,s_stirrup,bearing_s,bearing_P,z,P_exp,fflex,h_Cf,gamma_c,f_FRP_v] = 

Input_MK(Beam,INF,INFd) 

% known element properties (areas, elasticities, strengths) 

%% For all beams 

% Concrete 

f_cc = 47.3; %MPa peak compressive strength of concrete 

gamma_c = 2416.5; %kg/m3 concrete density 

strain_cr = 0.0035; % crushing strain of concrete 

alpha1 = 0.85-0.0015*f_cc; beta1 = 0.97-0.0025*f_cc; % ahlpha1 beta1 

% Bearing Plates 

bearing_s = 75; bearing_P = 50; %mm beraing plate widths 

  

%Beam = 45.15; INF = 0; 

  

%% For z=200 beams 

if Beam < 100 

z = 200; %mm beam width 

L_full = 675; %mm beam geometries & spacing 
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% Stirrups 

Area_stirrup = 2*113.1; %mm2 Area of bars 

E_stirrup = 50*1000; %MPa elasticity of stirrups 

% for FRP 

f_FRP_cu = 1000; %MPa ultimate FRP strength 

f_FRP_v = 700; %MPa ultimate FRP strength at bent 

  

if INF==1 

Area_stirrup = 2*113.1; %mm2 Area of bars 

E_stirrup = 2.2; %MPa elasticity of stirrups 

end 

Beam2 = 0; 

if floor(Beam)==45 || floor(Beam)==65 

    f_cc = 50.3; 

    L_full = 270*floor(Beam)/10; 

    f_FRP_v = 560; %MPa ultimate FRP strength at bent 

    Beam2 = Beam; 

    Beam = Beam-(floor(Beam)-16); 

end 

  

%% BM Inputs 

% BM12 

if floor(Beam) == 12 

% Flexural bars 

ly_bar = 3; % Define # layers of bars 

A_bar = [113,113,113]; h_bar = [47.7,80.1,112.5]; n_bar = [4,4,4]; % for bar layouts 

Area_flex = sum(A_bar.*n_bar); % mm2 Area of bars 

E_flex = 60*1000; %MPa elasticity of flexural bars 

% Beam Height 

h_full = 350; %mm 

% Experimental Result 

P_exp1 = [382.4,405.2,163.1]; % kN applied load from experiment. 

%------------------------------------------------------------------------------- 

% BM16 

elseif floor(Beam) == 16 

% Flexural bars 

ly_bar = 2; % Define # layers of bars 

A_bar = [201,201]; h_bar = [47+9.6,87+9.6]; n_bar = [3,3]; % for bar layouts 

Area_flex = sum(A_bar.*n_bar); % mm2 Area of bars 

E_flex = 64*1000; %MPa elasticity of flexural bars 

% Beam Height 

h_full = 345; %mm 

% Experimental Result 

P_exp1 = [309.34,416.5,150.2]; % kN applied load from experiment. 

%------------------------------------------------------------------------------- 

% BM25 

elseif floor(Beam) == 25 

% Flexural bars 

ly_bar = 1; % Define # layers of bars 

A_bar = [491]; h_bar = [37.9+22.2]; n_bar = [2]; % for bar layouts 

Area_flex = sum(A_bar.*n_bar); % mm2 Area of bars 

E_flex = 60*1000; %MPa elasticity of flexural bars 

% Beam Height 

h_full = 330; %mm 

% Experimental Result 

P_exp1 = [360.1,415.8,125.1]; % kN applied load from experiment. 

end 

  

if floor(Beam2)==45 

h_full = 350; 

P_exp1 = [222.5;171.2;108]; 

elseif floor(Beam2)==65 

h_full = 350; 
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P_exp1 = [145.6,141.0]; 

end 

  

  

%% Spacings 

BeamS = round(Beam-floor(Beam),2); 

if BeamS == 0.22 

    s_stirrup = 220; P_exp = P_exp1(1); 

elseif BeamS == 0.15 

    s_stirrup = 150; P_exp = P_exp1(2); 

elseif BeamS == 0.09 

    s_stirrup = 90; P_exp = P_exp1(1); 

end 

  

end 

  

%% For stiffer stirrup beams 

if Beam>=100 

z = 230; %mm beam width 

L_full = 675; %mm beam geometries & spacing 

% Stirrups 

Area_stirrup = 2*314.2; %mm2 Area of bars 

E_stirrup = 50*1000; %MPa elasticity of stirrups 

% for FRP 

f_FRP_cu = 900; %MPa ultimate FRP strength 

f_FRP_v = 550; %MPa ultimate FRP strength at bent 

%% BM Inputs 

% BM12 

if Beam == 112 

% Flexural bars 

ly_bar = 3; % Define # layers of bars 

A_bar = [113,113,113]; h_bar = [62.7,95.1,127.5]; n_bar = [4,4,4]; % for bar layouts 

Area_flex = sum(A_bar.*n_bar); % mm2 Area of bars 

E_flex = 60*1000; %MPa elasticity of flexural bars 

% Beam Height 

h_full = 365; %mm 

% Experimental Result 

P_exp = 466.9; % kN applied load from experiment. 

%------------------------------------------------------------------------------- 

% BM16 

elseif Beam == 116 

% Flexural bars 

ly_bar = 3; % Define # layers of bars 

A_bar = [201,201,201]; h_bar = [56.5,74.4,111.6]; n_bar = [1,2,3]; % for bar layouts 

Area_flex = sum(A_bar.*n_bar); % mm2 Area of bars 

E_flex = 64*1000; %MPa elasticity of flexural bars 

% Beam Height 

h_full = 360; %mm 

% Experimental Result 

P_exp = 450.8; % kN applied load from experiment. 

%------------------------------------------------------------------------------- 

% BM25 

elseif Beam == 125 

% Flexural bars 

ly_bar = 1; % Define # layers of bars 

A_bar = [491]; h_bar = [30+25+22.5]; n_bar = [2]; % for bar layouts 

Area_flex = sum(A_bar.*n_bar); % mm2 Area of bars 

E_flex = 60*1000; %MPa elasticity of flexural bars 

% Beam Height 

h_full = 345; %mm 

% Experimental Result 

P_exp = 444; % kN applied load from experiment. 

end 
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%% Spacings 

s_stirrup = 230; 

end 

  

%% Computed Values 

% Geometries 

for i = 1:ly_bar 

    Ah_bar(i) = A_bar(i)*n_bar(i)*h_bar(i); 

end 

bar_c = sum(Ah_bar)/Area_flex; %mm location of center of flexural bars 

d_eff = h_full-bar_c; % effective depth 

if INF==1 

    s_stirrup = L_full/INFd; P_exp = P_exp1(3); 

end 

% Flexural Reinf. 

rou_f = Area_flex/(z*d_eff); 

fflex = rou_f*E_flex; 

% Compute c (stress strain block when strain_c reaches strain_cu) 

aa = alpha1*f_cc*beta1*z; 

bb = E_flex*Area_flex*strain_cr; 

cc = -bb*d_eff; 

h_Cf = (-bb+sqrt(bb^2-4*aa*cc))/(2*aa); 

h_Cf = beta1*h_Cf; 

  

end 
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For beams tested by D. J. Kim et al. (2014) 

clc, clear all, close all, format short 

%% Initial Inputs 

% Beams 

Beam1 = [1:7;11:17;21:27]; 

Beam1 = [Beam1(1,:),Beam1(2,:)]; 

%Beam1 = Beam1(16); 

% ST Model 

Model_num1 = [1]; %[1Krall, 2no_stir, 3whole_deep, 4half_deep, 5slender] 

% Softening Factor 

sfModel1= [1,2.1,3,3.2]; lim = 0; %lim is only for 3, input 0 or 0.4 

                        %2.1 based on theta, 2.2 based on L/d, 2.3 based on s/d; 

                        % 3 based on theta, 3.01 modified for elasticities 

                        % 3.1 based on s/d, 3.2 based on ex ey 

% Assumed Concrete Properties 

mode = [1,1.1,2.1]; % Put 1 for Hognestad; 2 for Thorenfeldt; 3 for Feentra 

  

%% Figure on/off 

fi=0; 

fid=0; 

fisf=0; 

  

%% Models 

for ib = 1:numel(Beam1) 

Beam = Beam1(ib); INF = 1; INFd1 = [5]; 

for im = 1 

Model_num = Model_num1(im); 

for isf = 4 

sfModel = sfModel1(isf); 

if Model_num==2 && sfModel==1 

    sfModel=1.1; 

end 

for iss = 1:numel(mode) 

    model = mode(iss); 

for inf = 1%numel(INFd1) 

    INFd = INFd1(inf); 

     

     

Name = [Beam,Model_num,sfModel,model,INF,INFd]; 

fprintf('\n------------\nBM-%g, ST# %g, SF# %g, M %g, INF %g, INFd %g',Name) 

  

%% Inputs 

[Area_flex,E_flex,bar_c,Area_stirrup,E_stirrup,f_FRP_cu,f_cc,L_full,h_full,d_eff,... 

    s_stirrup,bearing_s,bearing_P,z,P_exp,fflex,h_Cf,gamma_c] = 

Input_Kim(Beam,INF,INFd); 

%h_Ci = h_Cf; 

%h_Ci = 0.65*f_FRP_cu*Area_flex/(0.85*f_cc*z); 

h_Ci = 0.2*d_eff; 

aaa = 1; 

  

[e,n,nodes,conn,e_s_pris,e_s_bottle,e_s,e_b_flex,e_b_stirrup,e_b,... 

    nodes_defined,defined_dimensions,nodes_nocheck,nodes_C,Rstrut_C,nodes_T,... 

    Rstrut_T,nodes_load,ndof,fixed_dofs,fixed_u,free_dofs,dof_load,h_T,a]... 

    = Model(Model_num,h_Ci,bar_c,L_full,s_stirrup,bearing_s,bearing_P,d_eff); 

  

  

%% Plot Original truss------------------------------------------------------------ 

if fi ==1 

figure(1); 

for i = 1:e 

    element_x(i,:)=nodes(1,[conn(i,1),conn(i,2)]); 

    element_y(i,:)=nodes(2,[conn(i,1),conn(i,2)]); 
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    locx=max(element_x(i,:))-s_stirrup/2; locy=max(element_y(i,:)); 

    lxx = min(element_x(i,:))+(max(element_x(i,:))-min(element_x(i,:)))*2/3; 

    if ismember(i,e_b_flex) 

    plot(element_x(i,:),element_y(i,:),'k-') 

    if i==1 

        text(max(element_x(i,:))/2, locy+7, num2str(i)) 

    else 

        text(locx, locy+7, num2str(i)) 

    end 

    elseif ismember(i,e_b_stirrup) 

    plot(element_x(i,:),element_y(i,:),'k-') 

    text(max(element_x(i,:))-15, locy/2, num2str(i)) 

    elseif ismember(i,e_s_pris) 

    plot(element_x(i,:),element_y(i,:),'r--') 

    text(locx, locy+7, num2str(i)) 

    elseif ismember(i,e_s_bottle) 

        plot(element_x(i,:),element_y(i,:),'r--') 

        if max(element_x(i,:))-min(element_x(i,:))==L_full 

        text(max(element_x(i,:))*3/4-10, locy*3/4, num2str(i)) 

        else 

            text(lxx, locy*2/3, num2str(i)) 

        end 

    end 

    hold on 

end 

for i = 1:n 

    txt= sprintf('N%d',i); 

    text(nodes(1,i),nodes(2,i),txt) 

end 

end 

  

%% element geometries 

[theta, Nodalzone, Area, Length] = Geometry(e,n,conn, nodes,... 

    nodes_defined,defined_dimensions,h_Ci,nodes_C,Rstrut_C,h_T,nodes_T,... 

    Rstrut_T,e_b_flex,e_b_stirrup,e_s_pris,Area_flex,Area_stirrup,z); 

  

%% Analysis 

% Initial Parameters 

P_in = 0; %N initial applied load set to be 0 

P_inc = -10; %N add 10N applied load every loop 

strain_c = zeros(1,e); % initial strain set to be 0 

P_max = -500E3; % N to define maximum number of loops 

[E_origi,strain0,aabb,Ec] = Elasticity(e,e_b_flex,E_flex,e_b_stirrup,E_stirrup,... 

    e_s_bottle,strain_c,e_s_pris,model,f_cc,L_full,d_eff,theta,sfModel,lim,... 

    a,conn,fflex,s_stirrup,gamma_c); 

  

% Checks 

% strut check 

E_check = 0.01*E_origi; 

% system check 

Uns_check_1 = e-2*n+4; 

Uns_check_2 = size(find(conn(:,2)==n),1); 

if Uns_check_2>1 

    Uns_check_2=Uns_check_2-1; 

end 

Unstable_check = min(Uns_check_1);%,Uns_check_2); 

if INF ==1 

Unstable_check = 1; 

end 

% nodalzone check 

lim_CCC = 0.85*f_cc; lim_CCT = 0.75*f_cc; lim_CTT = 0.65*f_cc; 

% FRP check 

lim_FRP = f_FRP_cu; 
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% Iterative IST Analysis 

[d,r,stress,strain,f_internal,E_end,Ebs,strain0_end,sfb,P_fail,h_C]... 

    =ISTAnalysis(P_max,P_in,P_inc,h_Ci,nodes_nocheck,E_origi,E_flex,... 

    E_stirrup,model,f_cc,E_check,lim_CCC,lim_CCT,lim_CTT,lim_FRP,INF,... 

    Model_num,bar_c,bearing_s,bearing_P,Unstable_check,z,P_exp,L_full,... 

    d_eff,sfModel,lim,a,fflex,s_stirrup,Area_flex,Area_stirrup,gamma_c,aaa,h_full); 

  

%% Plot softening factor 

if ismember(sfModel,[3,3.1,3.2]) && fisf==1 

figure('Name',num2str(sfModel)); 

for ii = 1:size(e_s_bottle,2) 

Px=0:P_inc:P_fail*2; 

sfy=sfb(:,ii); 

plot(-Px/1000,sfy') 

Leg{ii}=sprintf('S%d',e_s_bottle(ii)); 

end 

legend(Leg','Location','southwest') 

xlabel('P(kN)') 

ylabel('Soften Factors') 

hold on 

end 

SoftenF_end=sfb(end-10,:); 

softenF_end_E = SoftenF_end(end) 

  

%% Plot Deformed Shape 

if fid ==1 

for ii =1:n 

    dx(ii)=d(ii*2-1); 

    dy(ii)=d(ii*2); 

end 

nodes_new(1,:) = nodes(1,:)+dx; 

nodes_new(2,:) = nodes(2,:)+dy; 

  

figure(1); 

for ii = 1:e 

    element_x(ii,:)=nodes_new(1,[conn(ii,1),conn(ii,2)]); 

    element_y(ii,:)=nodes_new(2,[conn(ii,1),conn(ii,2)]); 

    if ismember(ii,e_b) 

    plot(element_x(ii,:),element_y(ii,:),'b-') 

    elseif ismember(ii,e_s) 

    plot(element_x(ii,:),element_y(ii,:),'g--') 

    end 

    hold on 

end 

dx=[]; dy=[]; nodes_new=[]; 

end 

close all 

h_C 

%f_internal 

end 

end 

end 

end 

end 

f_internal; 

strain; 

%% ------------------------------------------------------------------------- 
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With Inputs 

function[Area_flex,E_flex,bar_c,Area_stirrup,E_stirrup,f_FRP_cu,f_cc,L_full,h_full,... 

    d_eff,s_stirrup,bearing_s,bearing_P,z,P_exp,fflex,h_Ci,gamma_c] = 

Input_Kim(Beam,INF,INFd) 

% known element properties (areas, elasticities, strengths) 

%Beam = 350 

%INF = 1; INFd = 70; 

%% For all beams 

% Beam 

z=200; 

bar_c=45; 

% Imaginary Stirrups 

if INF==1 

Area_stirrup = 400; %mm2 Area of bars 

E_stirrup = 1; %MPa elasticity of stirrups 

else 

Area_stirrup = 400; %mm2 Area of bars 

E_stirrup = 1; %MPa elasticity of stirrups 

end 

% Reinf. 

Abar = 63.62; %mm^2 per AFRP/CFRP bar 

% Concrete 

f_cc = 26.1; %MPa peak compressive strength of concrete 

gamma_c = 0; %kg/m3 concrete density not specified 

strain_cr = 0.0035; % crushing strain of concrete 

% Bearing Plates 

bearing_s = 100; bearing_P = 100; %mm beraing plate widths 

% Beam 

d_eff = [250,250,250,250,250,190,310]; 

ad = [1.4,1.7,2.1,1.7,1.7,1.7,1.7]; %mm beam geometries & spacing 

% Reinf. 

Nbar = [3,3,3,4,5,3,5]; 

  

%% Variables 

if Beam < 10 

%% For AFRP 

E_flex = 80697; %MPa elasticity of flexural bars 

f_FRP_cu = 1826.9; %MPa ultimate FRP strength 

% Experimental Result 

P_exp1 = [136.05,98.98,88,121,133.97,109.58,134.27]; %kN failure load from lab. 

iND = Beam; 

% different ones 

Area_flex = Abar*Nbar(iND); 

L_full = d_eff(iND)*ad(iND); 

P_exp = P_exp1(iND); 

d_eff = d_eff(iND); 

  

elseif Beam < 20 

%% For CFRP 

E_flex = 120214; %MPa elasticity of flexural bars 

f_FRP_cu = 1955.8; %MPa ultimate FRP strength 

% Experimental Result 

P_exp1 = [169.58,106.54,52.64,96.09,151.39,104.84,145.39]; %kN failure load from lab. 

iND = Beam-10; 

% different ones 

Area_flex = Abar*Nbar(iND); 

L_full = d_eff(iND)*ad(iND); 

P_exp = P_exp1(iND); 

d_eff = d_eff(iND); 

  

else 
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%% For Steel Reinforced 

E_flex = 200000; %MPa elasticity of flexural bars 

f_FRP_cu = 40000; %MPa ultimate FRP strength 

% Experimental Result 

P_exp1 = [169.58,106.54,52.64,96.09,151.39,104.84,145.39]; %kN failure load from lab. 

iND = Beam-20; 

% different ones 

Area_flex = Abar*Nbar(iND); 

L_full = d_eff(iND)*ad(iND); 

P_exp = P_exp1(iND); 

d_eff = d_eff(iND); 

end 

  

%% Computed Values 

% Geometries 

h_full = d_eff+bar_c; %mm 

% Spacings 

if INF==1 

    s_stirrup = L_full/INFd; 

else 

    s_stirrup = L_full; 

end 

% Flexural Reinf. 

rou_f = Area_flex/(z*d_eff); 

fflex = rou_f*E_flex; 

% Compute c (stress strain block when strain_c reaches strain_cu) 

alpha1 = 0.85-0.0015*f_cc; beta1 = 0.97-0.0025*f_cc; % ahlpha1 beta1 

aa = alpha1*f_cc*beta1*z; 

bb = E_flex*Area_flex*strain_cr; 

cc = -bb*d_eff; 

h_Ci = (-bb+sqrt(bb^2-4*aa*cc))/(2*aa); 

  

end 

 %% ------------------------------------------------------------------------- 
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With Functions: 

function [E,strain0,sf_bottle,Ec] = 

Elasticity(e,e_b_flex,E_flex,e_b_stirrup,E_stirrup,... 

    e_s_bottle,strain_c,e_s_pris,model,f_cc,L_full,d_eff,theta,sfModel,lim,... 

    a,conn,fflex,s_stirrup,gamma_c) 

  

if gamma_c == 0 

Ec = 4500*sqrt(f_cc); 

else 

Ec = (3300*sqrt(f_cc)+6900)*(gamma_c/2300)^1.5; % initial concrete elasticity 

end 

  

E = zeros(1,e); 

  

% softening factor 

  

[sf_bottle,sf_pris] = FSoften(sfModel,L_full,d_eff,e_s_bottle,... 

    e_s_pris,theta,lim,strain_c,f_cc,Ec,a,conn,fflex,s_stirrup,E_flex); 

  

for i = 1:e 

     

if ismember(i,e_b_flex)==1 

            E(i) = E_flex; 

elseif ismember(i,e_b_stirrup)==1 

            E(i) = E_stirrup; 

             

elseif floor(model)==1 

        if ismember(i,e_s_bottle)==1 

            sf = sf_bottle(i); 

        elseif ismember(i,e_s_pris)==1 

            sf = sf_pris(i); 

        end 

        f_cp = sf*f_cc; 

        strain0 = 2*f_cc/Ec; 

        if model==floor(model) 

            k_b = strain_c(i)/strain0; 

            if k_b <=1 

                E(i)=2*f_cp/strain0*(1-k_b); %strain0 stays as the same 

            else 

                E(i) =Ec-2*Ec^2/(4*f_cp)*strain_c(i); 

            end 

        elseif model-floor(model)<0.2 

            k_b = strain_c(i)/strain0/sf; 

            if k_b <=1 

                E(i)=2*f_cc/strain0*(1-k_b); %strain0 moves to left with f'c 

            else 

                E(i) =Ec-2*Ec^2/(4*f_cp)*strain_c(i); 

            end 

        end 

             

         

elseif floor(model)==2 

        if ismember(i,e_s_bottle)==1 

            sf = sf_bottle(i); 

        elseif ismember(i,e_s_pris)==1 

            sf = sf_pris(i); 

        end 

        f_cp = sf*f_cc; 

        if model==floor(model) 

        n = 0.8+ f_cc/17; 

        strain0 = f_cc/Ec*n/(n-1); 
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        a_a = strain_c(i)/strain0; 

        a_b = f_cp*n/strain0; 

        elseif (model-floor(model))<0.2 

        n = 0.8+ f_cp/17; 

        strain0 = f_cc/Ec*n/(n-1); 

        a_a = strain_c(i)/strain0/sf; 

        a_b = f_cc*n/strain0; 

        end 

            if a_a<=1 

                k = 1; 

            else 

                k = 0.67+ f_cc/62; 

            end 

        b_b = n-1; 

        c_b = a_a^(n*k); 

        E(i) = a_b/(b_b+c_b)*(1-(n*k*c_b)/(b_b+c_b)); 

             

                             

elseif floor(model)==3 

    if ismember(i,e_s_bottle)==1 

            sf = sf_bottle(i); 

        elseif ismember(i,e_s_pris)==1 

            sf = sf_pris(i); 

    end 

    f_cp = sf*f_cc; 

    e03 = f_cc/(3*Ec); 

    strain0 = 5*e03; 

    E(i) = 4*f_cp/(3*(strain0-e03)^2)*(strain0-strain_c(i)); 

    

end 

  

end 

  

end 

%% ------------------------------------------------------------------------- 

 

 

 

 

%% ------------------------------------------------------------------------- 

function [d,r,strain,stress,f_internal]=FEASystem(ndof,e,conn,theta,Area,E,Length,... 

    dof_load,fixed_dofs,free_dofs,fixed_u,P) 

%% Stiffness Matricx 

K = zeros(ndof,ndof); 

for i = 1:e 

    k_conn = conn(i,:); 

    enodes = [2*k_conn(1)-1, 2*k_conn(1), 2*k_conn(2)-1, 2*k_conn(2)]; 

    c = cosd(theta(i)); 

    s = sind(theta(i)); 

    f_K = Area(i)*E(i)/Length(i); 

    % Local Stiffness matrices 

    Ke = f_K*[c^2, c*s, -c^2, -c*s; 

              c*s, s^2, -c*s, -s^2; 

              -c^2, -c*s, c^2, c*s; 

              -c*s, -s^2, c*s, s^2]; 

    % Tranfer to Global system 

    K(enodes,enodes) = K(enodes,enodes)+Ke; 

end 

  

K_EE = K(fixed_dofs,fixed_dofs); %for K_EE 

K_EF = K(fixed_dofs,free_dofs); % K_EF 

K_FF = K(free_dofs,free_dofs); % K_FF 
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%% Load matrix 

f = zeros(ndof,1); 

f(dof_load) = P; 

f_F = f(free_dofs); % known external forces on the free nodes 

  

%% Displacemnt matrix 

d = zeros(ndof,1); 

d(fixed_dofs) = fixed_u; 

dE = d(fixed_dofs); 

  

%% Compute unknowns (displacements and reactions) 

dF = (K_FF)\(f_F-K_EF'*dE); % compute the unknown displacements 

  

f_E = K_EE*dE+K_EF*dF; % Force at the fixed end 

r = f_E-f(fixed_dofs); % Reaction at the fixed end 

  

d(fixed_dofs) = dE; % Transfer d_E to d matrix  

d(free_dofs) = dF; % Transfer d_F to d matrix 

  

  

%% Compute strain stress and internal forces 

strain = zeros(e,1); 

for i = 1:e 

    s_conn = conn(i,:); 

    enodes = [2*s_conn(1)-1, 2*s_conn(1), 2*s_conn(2)-1, 2*s_conn(2)]; 

    c = cosd(theta(i)); 

    s = sind(theta(i)); 

    strain_e = [-c, -s, c, s]*d(enodes)/Length(i); 

    strain(i) = strain_e; 

end 

  

stress = zeros(e,1); 

for i = 1:e 

    stress(i) = E(i)*strain(i); 

end 

  

f_internal = zeros(e,1); 

for i = 1:e 

    f_internal(i) = stress(i)*Area(i); 

end 

  

end 

%% ------------------------------------------------------------------------- 

 

 

 

 

%% ------------------------------------------------------------------------- 

function [sf_bottle,sf_pris] = FSoften(sfModel,L_full,d_eff,e_s_bottle,... 

    e_s_pris,theta,lim,strain_c,f_cc,Ec,a,conn,fflex,s_stirrup,E_flex) 

  

if sfModel ==0   

    sf_bottle(e_s_bottle) = 1;  

    sf_pris(e_s_pris) = 1; 

     

elseif sfModel ==1   

    sf_bottle(e_s_bottle) = 0.85*0.75;  

    sf_pris(e_s_pris) = 0.85; 
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elseif sfModel ==1.1   

    sf_bottle(e_s_bottle) = 0.85*0.4;  

    sf_pris(e_s_pris) = 0.85; 

     

elseif sfModel ==2.1 

    sf_pris(e_s_pris) = 0.85; 

    for i = e_s_bottle 

        aod = 1/(tand(theta(i))); 

        if aod < 1.5 

            aod = 1.5; 

        elseif aod > 2.5 

            aod = 2.5; 

        end 

    if fflex^(1/3)<=10 

        sf_bottle(i) = 0.68-0.012*aod^4; 

    else 

        sf_bottle(i) = 0.75-0.01*aod^4; 

    end 

        sf_bottle(i)=0.85*sf_bottle(i); 

    end 

     

elseif sfModel ==2.2 

    sf_pris(e_s_pris) = 0.85; 

    aod = L_full/d_eff; 

    if aod < 1.5 

       aod = 1.5; 

    elseif aod > 2.5 

       aod = 2.5; 

    end 

    if fflex^(1/3)<=10 

        sf_a = 0.68-0.012*aod^4; 

    else 

        sf_a = 0.75-0.01*aod^4; 

    end 

    sf_bottle(e_s_bottle)=0.85*sf_a; 

  

elseif sfModel ==2.3 

    sf_pris(e_s_pris) = 0.85; 

    aod = s_stirrup/d_eff; 

    if aod < 1.5 

       aod = 1.5; 

    elseif aod > 2.5 

       aod = 2.5; 

    end 

    if fflex^(1/3)<=10 

        sf_a = 0.68-0.012*aod^4; 

    else 

        sf_a = 0.75-0.01*aod^4; 

    end 

    sf_bottle(e_s_bottle)=0.85*sf_a; 

  

elseif sfModel ==3 

    sf_pris(e_s_pris) = 0.85; 

    s0 = -2*f_cc/Ec; 

    strain = -strain_c; 

    for i = e_s_bottle 

        if strain(i) == 0 

            sf = 0.85; 

        else 

        ex = strain(conn(i,2)-a-1); 

        e2 = strain(i); 

        e1 = ex+(ex-e2)/(tand(theta(i)))^2; 
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        sf = 1/(0.8-0.34*e1/s0); 

        end 

        if sf>0.85 

            sf=0.85; 

        end 

        if sf<lim 

           sf=lim; 

        end 

        sf_bottle(i)=sf; 

    end 

  

elseif sfModel ==3.01 

    sf_pris(e_s_pris) = 0.85; 

    s0 = -2*f_cc/Ec; 

    strain = -strain_c; 

    for i = e_s_bottle 

        if strain(i) == 0 

            sf = 0.85; 

        else 

        ex = strain(conn(i,2)-a-1); 

        %ex = E_flex/200000*ex; 

        e2 = strain(i); 

        e1 = ex+(ex-e2)/(tand(theta(i)))^2; 

        e1 = E_flex/200000*e1; 

        sf = 1/(0.8-0.34*e1/s0); 

        end 

        if sf>0.85 

            sf=0.85; 

        end 

        if sf<lim 

           sf=lim; 

        end 

        sf_bottle(i)=sf; 

     end 

  

elseif sfModel ==3.1 

    sf_pris(e_s_pris) = 0.85; 

    s0 = -2*f_cc/Ec; 

    strain = -strain_c; 

    for i = e_s_bottle 

        if strain(i) == 0 

            sf = 0.85; 

        else 

        ex = strain(conn(i,2)-a-1); 

        e2 = strain(i); 

        e1 = ex+(ex-e2)/(d_eff/s_stirrup)^2; 

        sf = 1/(0.8-0.34*e1/s0); 

        end 

        if sf>0.85 

            sf=0.85; 

        end 

        if sf<lim 

           sf=lim; 

        end 

        sf_bottle(i)=sf; 

    end 

  

elseif sfModel ==3.2 

    sf_pris(e_s_pris) = 0.85; 

    s0 = -2*f_cc/Ec; 

    strain = -strain_c; 

    for i = e_s_bottle 

        if strain(i) == 0 
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            sf = 0.85; 

        else 

        sizey=max(size((conn(i,1)+a+1):conn(i,2))); 

        for ii = 1:sizey 

            ey = strain(conn(i,2)+a-2+ii-sizey); 

            ex = strain(conn(i,1)+ii-1); 

            exey(ii)=ex+ey; 

        end 

        e2 = strain(i); 

        e1 = max(exey)-e2; 

        sf = 1/(0.8-0.34*e1/s0); 

        end 

        if sf>0.85 

            sf=0.85; 

        end 

        sf_bottle(i)=sf; 

    end 

     

end 

  

end 

 %% ------------------------------------------------------------------------- 

 

 

 

 

 

 

%% ------------------------------------------------------------------------- 

function [theta, Nodalzone, Area, Length] = Geometry(e,n,conn, nodes,... 

    nodes_defined,defined_dimensions,h_C,nodes_C,Rstrut_C,h_T,nodes_T,... 

    Rstrut_T,e_b_flex,e_b_stirrup,e_s_pris,Area_flex,Area_stirrup,z) 

theta = zeros(1,e); 

for i = 1:e 

    conn_e = conn(i,:); 

    delta_x = nodes(1, conn_e(2))- nodes(1, conn_e(1)); 

    delta_y = nodes(2, conn_e(2))- nodes(2, conn_e(1)); 

    theta(i) = atand(delta_y/delta_x); 

end 

  

% nodal zones mm 

Nodalzone = zeros(n,2); 

for i = 1:n 

    if ismember(i,nodes_defined)==1 

        Nodalzone(i,:)=defined_dimensions(find(nodes_defined==i),:); 

    elseif ismember(i,nodes_C)==1 

        Nodalzone(i,1)=h_C*tand(theta(Rstrut_C(find(nodes_C==i)))); 

        Nodalzone(i,2)=h_C; 

    elseif ismember(i,nodes_T)==1 

        Nodalzone(i,1)=h_T*tand(theta(Rstrut_T(find(nodes_T==i)))); 

        Nodalzone(i,2)=h_T; 

    else 

        Nodalzone(i,:)=0; 

    end 

end 

  

% Area of elements mm^2 

Area = zeros(1,e); 

for i = 1:e 

    if ismember(i,e_b_flex)==1 

        Area(i) = Area_flex; 

    elseif ismember(i,e_b_stirrup)==1 

        Area(i) = Area_stirrup; 
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    elseif ismember(i,e_s_pris)==1 

        Area(i) = z*h_C; 

    else 

        s_conn = conn(i,:); 

        s_width1 = Nodalzone(s_conn(1),1)*sind(theta(i))... 

                   +Nodalzone(s_conn(1),2)*cosd(theta(i)); 

        s_width2 = Nodalzone(s_conn(2),1)*sind(theta(i))... 

                   +Nodalzone(s_conn(2),2)*cosd(theta(i)); 

        Area(i) = z*min(s_width1, s_width2); 

    end 

end 

  

% Length of elements mm 

Length = zeros(1,e); 

for i = 1:e 

    l_conn = conn(i,:); 

    Length(i) = sqrt((nodes(1,l_conn(1))-nodes(1,l_conn(2)))^2+... 

                (nodes(2,l_conn(1))-nodes(2,l_conn(2)))^2); 

end 

  

end 

%% ------------------------------------------------------------------------- 

 

 

 

 

 

 

%% ------------------------------------------------------------------------- 

function [d,r,stress,strain,f_internal,E_end,Ebs,strain0_end,sfb,P_fail,h_C]... 

    =ISTAnalysis(P_max,P_in,P_inc,h_Ci,nodes_nocheck,E_origi,E_flex,... 

    E_stirrup,model,f_cc,E_check,lim_CCC,lim_CCT,lim_CTT,lim_FRP,INF,... 

    Model_num,bar_c,bearing_s,bearing_P,Unstable_check,z,P_exp,L_full,... 

    d_eff,sfModel,lim,a,fflex,s_stirrup,Area_flex,Area_stirrup,gamma_c,aaa,h_full) 

  

fail_location = []; exclude = nodes_nocheck; out = []; P_fail = 0; 

  

for i = 1:(P_max/P_inc+1) 

  

P = (P_in+P_inc*(i-1))/2; 

  

fail_location_prev = fail_location; 

  

  

%% Truss Model 

% h_C 

if i<2 

    h_C = h_Ci; 

else 

    if aaa==1 

    % Compute N.A. location (c) 

    nn = E_flex/Ec; 

    dd=d_eff-h_C; 

    s_cTlim = 0.33*sqrt(f_cc)/Ec; 

    s_FRP = -P*L_full/(dd*Area_flex*E_flex); 

    if s_FRP < s_cTlim 

        % Uncracked concrete 

        Aconc = h_full*z; yconc=h_full/2; 

        Afrp = (nn-1)*Area_flex; 
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        c = (Aconc*yconc+Afrp*d_eff)/(Aconc+Afrp); 

    else 

        % Cracked concrete 

        rouflex=Area_flex/(d_eff*z); 

        rounn=rouflex*nn; 

        c = (sqrt(2*rounn+rounn^2)-rounn)*d_eff; 

    end 

    % Compute top fibre strain and beta1 

    f_c1=f_cc; 

    strain00 = 2*f_c1/Ec; 

    AA=-1; BB=3*strain00;  

    CC=-3*strain00^2*(-P)*L_full/dd/z/f_c1/c; 

    DD=BB^2-4*AA*CC; 

    if DD<0 

    DD=0; 

    %P_fail=P; 

    %fprintf('\nFlexural Failure\n') 

    end 

    strain_ctop=(-BB+sqrt(DD))/2/AA; 

    b1 = (4*strain00-strain_ctop)/(6*strain00-2*strain_ctop); 

    % Actual hc under this load. 

    h_C = b1*c; 

    end 

end 

% Geometries 

[e,n,nodes,conn,e_s_pris,e_s_bottle,e_s,e_b_flex,e_b_stirrup,e_b,... 

    nodes_defined,defined_dimensions,nodes_nocheck,nodes_C,Rstrut_C,nodes_T,... 

    Rstrut_T,nodes_load,ndof,fixed_dofs,fixed_u,free_dofs,dof_load,h_T,a]... 

    = Model(Model_num,h_C,bar_c,L_full,s_stirrup,bearing_s,bearing_P,d_eff); 

  

[theta, Nodalzone, Area, Length] = Geometry(e,n,conn,nodes,... 

    nodes_defined,defined_dimensions,h_C,nodes_C,Rstrut_C,h_T,nodes_T,... 

    Rstrut_T,e_b_flex,e_b_stirrup,e_s_pris,Area_flex,Area_stirrup,z); 

  

%% Analysis 

% Elasticity MPa (softened Hognestad Parabola) 

if i == 1 

    E = E_origi; 

else 

    E = E_loop; 

end 

  

% Solving system (FEA) 

[d,r,strain,stress,f_internal]=FEASystem(ndof,e,conn,theta,Area,E,Length,... 

    dof_load,fixed_dofs,free_dofs,fixed_u,P); 

  

% Check new Elasticity MPa 

strain_c = -strain; 

[E_loop,strain0,ccc,Ec] = Elasticity(e,e_b_flex,E_flex,e_b_stirrup,E_stirrup,... 

    e_s_bottle,strain_c,e_s_pris,model,f_cc,L_full,d_eff,theta,sfModel,lim,... 

    a,conn,fflex,s_stirrup,gamma_c); 

fl_a = find(E_loop<=E_check); 

if size(fl_a,2) > size(fail_location,2) 

    fail_location = fl_a; 

end 

E_loop(fail_location) = E_check(fail_location); 

  

if isempty(fail_location) == 1 

    fail_location_prev = 0; 

end 

  

ssf(i,:)=ccc; 

Esf(i,:)= E_loop; 
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%% Checks----------------------------------------------------------------- 

% Check FRP Rupture 

for ib = setdiff(e_b,out) 

    s_b(ib) = stress(ib); 

     

    if s_b(ib) >= lim_FRP 

        P_fail = P; 

        fprintf('Bar %d failed @ P = %f kN\n',ib, -2*P/1000) 

        out = union(out,ib); 

    end 

     

end 

  

% Check Node Strengths 

for in = setdiff(1:n,exclude) 

    [sc_node, direc] = find(conn==in); 

    Anodex = Nodalzone(in,1)*z; 

    Anodey = Nodalzone(in,2)*z; 

    Anodexy = sqrt((Anodex/z)^2+(Anodey/z)^2)*z; 

     

    if sum(ismember(sc_node, e_b))>=2 

        Nodecheck = lim_CTT; 

    elseif sum(ismember(sc_node, e_b))==1 

        Nodecheck = lim_CCT; 

    else 

        Nodecheck = lim_CCC; 

    end 

    if in==nodes_load 

        Nodecheck = lim_CCC; 

    end 

     

    direc(ismember(sc_node,e_b))=[]; 

    sc_node = setdiff(sc_node,e_b); 

     

    f_x1 = sum(f_internal(sc_node(direc==1))'.*cosd(theta(sc_node(direc==1)))); 

    f_y1 = sum(f_internal(sc_node(direc==1))'.*sind(theta(sc_node(direc==1)))); 

    f_xy1 = sqrt(f_x1^2 + f_y1^2); 

    f_x2 = sum(f_internal(sc_node(direc==2))'.*cosd(theta(sc_node(direc==2)))); 

    f_y2 = sum(f_internal(sc_node(direc==2))'.*sind(theta(sc_node(direc==2)))); 

    f_xy2 = sqrt(f_x2^2 + f_y2^2); 

    s_xy1(in) = f_xy1/Anodexy; s_xy2(in) = f_xy2/Anodexy; 

     

    if sum([s_xy1(in), s_xy2(in)]>=Nodecheck)>=1 

        P_fail = P; 

        fprintf('\nNode %d failed @ P = %.2f kN\n',in, -2*P/1000) 

        exclude = union(exclude,in); 

    end 

end 

  

% Check the crushing of struts 

  

%if aaa==1 

%fail_location1 = fail_location; 

%for ifl=1:numel(fail_location) 

    %if ismember(fail_location(ifl), e_s_pris)==1 

        %fail_location1(ifl)=[]; 

    %end 

%end 

%fail_location = fail_location1; 

%end 
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if fail_location~=0 

    if size(fail_location,2) ~= size(fail_location_prev,2) 

        if size(fail_location,2)<=Unstable_check 

        fprintf('\n#%d element failed', fail_location) 

        fprintf('\n@ P = %.4f kN\n', -P*2/1000) 

        end 

        if size(fail_location,2)==Unstable_check 

        P_fail = P; 

        elseif size(fail_location,2)<Unstable_check 

        fprintf('System not yet failed\n') 

        end 

    end 

end 

  

if P_fail ~= 0 

        fprintf('System Failed\n\n') 

    if INF ==1 

        P = f_internal(end)*(sind(theta(end))); 

    end 

        P_predict = -P*2/1000; % kN 

        ratio = P_predict/P_exp; 

        fprintf('Predicted Applied load is %.2f kN\n', P_predict) 

        fprintf('P_predict/P_exp = %.4f\n', ratio) 

        break 

           if exclude == nodes_nocheck 

              fprintf('\nNo Nodal section is failed\n') 

           end 

           if isempty(out) == 1 

               fprintf('\nNo FRP bar is failed\n') 

           end 

elseif i == (P_max/P_inc+1) 

P_fail = P; 

if size(fail_location,2)==0 

    disp('No element has failed, increase P_max') 

elseif size(fail_location,2)<Unstable_check 

    disp('\nIncrease P_max') 

end            

end 

  

end 

  

E_end = E_loop; 

strain0_end = strain0; 

sfb=ssf(:,e_s_bottle); 

Ebs = Esf(:,e_s_bottle); 

  

end 

%% ------------------------------------------------------------------------- 
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B: General Results for Concrete Model Comparison on 

Beams with Stirrups 

ISTM Type Beam sfModel model StrengthV over H1 

Kr Model BM12-220 ACI H1 359.43 1.131956 

Kr Model BM12-220 ACI H2 317.53 1 

Kr Model BM12-220 ACI T1 384.22 1.210027 

Kr Model BM12-220 ACI T2 322.85 1.016754 

Kr Model BM12-220 Nehdi H1 274.8 1.147774 

Kr Model BM12-220 Nehdi H2 239.42 1 

Kr Model BM12-220 Nehdi T1 290.91 1.215061 

Kr Model BM12-220 Nehdi T2 285.2 1.191212 

Kr Model BM12-220 CSA H1 249.64 1.042861 

Kr Model BM12-220 CSA H2 239.38 1 

Kr Model BM12-220 CSA T1 295.55 1.234648 

Kr Model BM12-220 CSA T2 285.19 1.191369 

Kr Model BM12-220 Proposed H1 284.15 1.143369 

Kr Model BM12-220 Proposed H2 248.52 1 

Kr Model BM12-220 Proposed T1 295.7 1.189844 

Kr Model BM12-220 Proposed T2 249.41 1.003581 

Kr Model BM12-150 ACI H1 260.12 1.118844 

Kr Model BM12-150 ACI H2 232.49 1 

Kr Model BM12-150 ACI T1 285.43 1.227709 

Kr Model BM12-150 ACI T2 254.09 1.092907 

Kr Model BM12-150 Nehdi H1 205.36 0.962866 

Kr Model BM12-150 Nehdi H2 213.28 1 

Kr Model BM12-150 Nehdi T1 254.38 1.192704 

Kr Model BM12-150 Nehdi T2 254.1 1.191392 

Kr Model BM12-150 CSA H1 211.76 0.992966 

Kr Model BM12-150 CSA H2 213.26 1 

Kr Model BM12-150 CSA T1 262.14 1.229204 

Kr Model BM12-150 CSA T2 254.09 1.191456 

Kr Model BM12-150 Proposed H1 224.24 1.051388 

Kr Model BM12-150 Proposed H2 213.28 1 

Kr Model BM12-150 Proposed T1 262.49 1.23073 

Kr Model BM12-150 Proposed T2 254.12 1.191485 

Kr Model BM12-s230 ACI H1 379.3 0.994181 

Kr Model BM12-s230 ACI H2 381.52 1 

Kr Model BM12-s230 ACI T1 460.97 1.208246 

Kr Model BM12-s230 ACI T2 446.25 1.169663 

Kr Model BM12-s230 Nehdi H1 337.06 0.98426 

Kr Model BM12-s230 Nehdi H2 342.45 1 

Kr Model BM12-s230 Nehdi T1 418.4 1.221784 



111 

 

Kr Model BM12-s230 Nehdi T2 363.02 1.060067 

Kr Model BM12-s230 CSA H1 306.54 1.108483 

Kr Model BM12-s230 CSA H2 276.54 1 

Kr Model BM12-s230 CSA T1 358.5 1.296377 

Kr Model BM12-s230 CSA T2 308.37 1.115101 

Kr Model BM12-s230 Proposed H1 371.12 0.979105 

Kr Model BM12-s230 Proposed H2 379.04 1 

Kr Model BM12-s230 Proposed T1 452.12 1.192803 

Kr Model BM12-s230 Proposed T2 424.2 1.119143 

Kr Model BM16-220 ACI H1 363.07 1.123569 

Kr Model BM16-220 ACI H2 323.14 1 

Kr Model BM16-220 ACI T1 391.34 1.211054 

Kr Model BM16-220 ACI T2 329.42 1.019434 

Kr Model BM16-220 Nehdi H1 277.4 1.159021 

Kr Model BM16-220 Nehdi H2 239.34 1 

Kr Model BM16-220 Nehdi T1 290.88 1.215342 

Kr Model BM16-220 Nehdi T2 285.09 1.191151 

Kr Model BM16-220 CSA H1 249.63 1.043168 

Kr Model BM16-220 CSA H2 239.3 1 

Kr Model BM16-220 CSA T1 295.49 1.23481 

Kr Model BM16-220 CSA T2 285.12 1.191475 

Kr Model BM16-220 Proposed H1 284.99 1.143941 

Kr Model BM16-220 Proposed H2 249.13 1 

Kr Model BM16-220 Proposed T1 297.09 1.19251 

Kr Model BM16-220 Proposed T2 249.63 1.002007 

Kr Model BM16-150 ACI H1 262.96 1.117457 

Kr Model BM16-150 ACI H2 235.32 1 

Kr Model BM16-150 ACI T1 288.88 1.227605 

Kr Model BM16-150 ACI T2 254 1.079381 

Kr Model BM16-150 Nehdi H1 205.34 0.963133 

Kr Model BM16-150 Nehdi H2 213.2 1 

Kr Model BM16-150 Nehdi T1 254.35 1.193011 

Kr Model BM16-150 Nehdi T2 254 1.19137 

Kr Model BM16-150 CSA H1 211.7 0.993058 

Kr Model BM16-150 CSA H2 213.18 1 

Kr Model BM16-150 CSA T1 262.06 1.22929 

Kr Model BM16-150 CSA T2 253.99 1.191434 

Kr Model BM16-150 Proposed H1 224.42 1.052627 

Kr Model BM16-150 Proposed H2 213.2 1 

Kr Model BM16-150 Proposed T1 262.41 1.230816 

Kr Model BM16-150 Proposed T2 254.03 1.19151 

Kr Model BM16-s230 ACI H1 374.66 0.99755 

Kr Model BM16-s230 ACI H2 375.58 1 

Kr Model BM16-s230 ACI T1 453.87 1.208451 
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Kr Model BM16-s230 ACI T2 438.28 1.166942 

Kr Model BM16-s230 Nehdi H1 335.32 0.964422 

Kr Model BM16-s230 Nehdi H2 347.69 1 

Kr Model BM16-s230 Nehdi T1 415.08 1.193822 

Kr Model BM16-s230 Nehdi T2 374.86 1.078144 

Kr Model BM16-s230 CSA H1 304.26 1.100637 

Kr Model BM16-s230 CSA H2 276.44 1 

Kr Model BM16-s230 CSA T1 350.88 1.269281 

Kr Model BM16-s230 CSA T2 302.58 1.094559 

Kr Model BM16-s230 Proposed H1 367.64 0.983415 

Kr Model BM16-s230 Proposed H2 373.84 1 

Kr Model BM16-s230 Proposed T1 447.25 1.196367 

Kr Model BM16-s230 Proposed T2 415.03 1.110181 

Kr Model BM25-220 ACI H1 370.67 1.035738 

Kr Model BM25-220 ACI H2 357.88 1 

Kr Model BM25-220 ACI T1 400.89 1.12018 

Kr Model BM25-220 ACI T2 372.68 1.041355 

Kr Model BM25-220 Nehdi H1 290.73 1.217411 

Kr Model BM25-220 Nehdi H2 238.81 1 

Kr Model BM25-220 Nehdi T1 290.69 1.217244 

Kr Model BM25-220 Nehdi T2 284.46 1.191156 

Kr Model BM25-220 CSA H1 248.87 1.042082 

Kr Model BM25-220 CSA H2 238.82 1 

Kr Model BM25-220 CSA T1 283.83 1.188468 

Kr Model BM25-220 CSA T2 256.65 1.074659 

Kr Model BM25-220 Proposed H1 288.08 1.13079 

Kr Model BM25-220 Proposed H2 254.76 1 

Kr Model BM25-220 Proposed T1 306.25 0 

Kr Model BM25-220 Proposed T2 252.65 0.991718 

Kr Model BM25-150 ACI H1 280.76 1.109153 

Kr Model BM25-150 ACI H2 253.13 1 

Kr Model BM25-150 ACI T1 310.74 0 

Kr Model BM25-150 ACI T2 265.14 1.047446 

Kr Model BM25-150 Nehdi H1 205.2 0.964739 

Kr Model BM25-150 Nehdi H2 212.7 1 

Kr Model BM25-150 Nehdi T1 254.18 1.195016 

Kr Model BM25-150 Nehdi T2 253.41 1.191396 

Kr Model BM25-150 CSA H1 211.33 0.993606 

Kr Model BM25-150 CSA H2 212.69 1 

Kr Model BM25-150 CSA T1 261.61 1.230006 

Kr Model BM25-150 CSA T2 253.41 0 

Kr Model BM25-150 Proposed H1 226.17 1.063279 

Kr Model BM25-150 Proposed H2 212.71 1 

Kr Model BM25-150 Proposed T1 261.95 1.231489 
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Kr Model BM25-150 Proposed T2 253.45 1.191528 

Kr Model BM25-s230 ACI H1 348.69 1.015021 

Kr Model BM25-s230 ACI H2 343.53 1 

Kr Model BM25-s230 ACI T1 417.2 1.21445 

Kr Model BM25-s230 ACI T2 397.49 1.157075 

Kr Model BM25-s230 Nehdi H1 309.36 1.053356 

Kr Model BM25-s230 Nehdi H2 293.69 1 

Kr Model BM25-s230 Nehdi T1 380.97 1.297184 

Kr Model BM25-s230 Nehdi T2 341.81 1.163846 

Kr Model BM25-s230 CSA H1 272.76 1.031697 

Kr Model BM25-s230 CSA H2 264.38 1 

Kr Model BM25-s230 CSA T1 312.22 1.180952 

Kr Model BM25-s230 CSA T2 274.74 1.039186 

Kr Model BM25-s230 Proposed H1 349.18 1.012644 

Kr Model BM25-s230 Proposed H2 344.82 1 

Kr Model BM25-s230 Proposed T1 408.51 1.184705 

Kr Model BM25-s230 Proposed T2 366.84 1.063859 

WSF BM12-220 ACI H1 400.89 1.003203 

WSF BM12-220 ACI H2 399.61 1 

WSF BM12-220 ACI T1 400.89 1.003203 

WSF BM12-220 ACI T2 400.89 1.003203 

WSF BM12-220 Nehdi H1 371.94 1.002993 

WSF BM12-220 Nehdi H2 370.83 1 

WSF BM12-220 Nehdi T1 400.89 1.081061 

WSF BM12-220 Nehdi T2 375.19 1.011757 

WSF BM12-220 CSA H1 223.39 0.929591 

WSF BM12-220 CSA H2 240.31 1 

WSF BM12-220 CSA T1 256.26 1.066373 

WSF BM12-220 CSA T2 229.9 0.956681 

WSF BM12-220 Proposed H1 353.16 1.009836 

WSF BM12-220 Proposed H2 349.72 1 

WSF BM12-220 Proposed T1 387.1 1.106886 

WSF BM12-220 Proposed T2 346.54 0.990907 

WSF BM12-150 ACI H1 400.89 1.044093 

WSF BM12-150 ACI H2 383.96 1 

WSF BM12-150 ACI T1 400.89 1.044093 

WSF BM12-150 ACI T2 395.09 1.028987 

WSF BM12-150 Nehdi H1 348.23 1.005138 

WSF BM12-150 Nehdi H2 346.45 1 

WSF BM12-150 Nehdi T1 400.89 1.157137 

WSF BM12-150 Nehdi T2 397.81 1.148247 

WSF BM12-150 CSA H1 307.01 1.030131 

WSF BM12-150 CSA H2 298.03 1 

WSF BM12-150 CSA T1 347.53 1.166091 
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WSF BM12-150 CSA T2 278.15 0.933295 

WSF BM12-150 Proposed H1 363.9 1.048945 

WSF BM12-150 Proposed H2 346.92 1 

WSF BM12-150 Proposed T1 400.89 1.155569 

WSF BM12-150 Proposed T2 399.34 1.151101 

WSF BM12-s230 ACI H1 416.57 1.063492 

WSF BM12-s230 ACI H2 391.7 1 

WSF BM12-s230 ACI T1 437.19 1.116135 

WSF BM12-s230 ACI T2 418.5 1.06842 

WSF BM12-s230 Nehdi H1 402.96 1.055118 

WSF BM12-s230 Nehdi H2 381.91 1 

WSF BM12-s230 Nehdi T1 452.24 1.184153 

WSF BM12-s230 Nehdi T2 368.57 0.96507 

WSF BM12-s230 CSA H1 235.93 0.964712 

WSF BM12-s230 CSA H2 244.56 1 

WSF BM12-s230 CSA T1 267.06 1.092002 

WSF BM12-s230 CSA T2 234.13 0.957352 

WSF BM12-s230 Proposed H1 410.02 1.068512 

WSF BM12-s230 Proposed H2 383.73 1 

WSF BM12-s230 Proposed T1 435.52 1.134965 

WSF BM12-s230 Proposed T2 373.96 0.974539 

WSF BM16-220 ACI H1 397.24 1.008479 

WSF BM16-220 ACI H2 393.9 1 

WSF BM16-220 ACI T1 400.89 1.017746 

WSF BM16-220 ACI T2 400.89 1.017746 

WSF BM16-220 Nehdi H1 370.63 0.995782 

WSF BM16-220 Nehdi H2 372.2 1 

WSF BM16-220 Nehdi T1 400.89 1.077082 

WSF BM16-220 Nehdi T2 374.55 1.006314 

WSF BM16-220 CSA H1 218.73 0.928908 

WSF BM16-220 CSA H2 235.47 1 

WSF BM16-220 CSA T1 250.41 1.063448 

WSF BM16-220 CSA T2 224.43 0.953115 

WSF BM16-220 Proposed H1 348.03 1.016413 

WSF BM16-220 Proposed H2 342.41 1 

WSF BM16-220 Proposed T1 379.98 1.109722 

WSF BM16-220 Proposed T2 338.21 0.987734 

WSF BM16-150 ACI H1 400.89 1.033408 

WSF BM16-150 ACI H2 387.93 1 

WSF BM16-150 ACI T1 400.89 1.033408 

WSF BM16-150 ACI T2 387.51 0.998917 

WSF BM16-150 Nehdi H1 345.03 1.013989 

WSF BM16-150 Nehdi H2 340.27 1 

WSF BM16-150 Nehdi T1 400.89 1.178153 
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WSF BM16-150 Nehdi T2 390.41 1.147354 

WSF BM16-150 CSA H1 300.17 1.037753 

WSF BM16-150 CSA H2 289.25 1 

WSF BM16-150 CSA T1 339.57 1.173967 

WSF BM16-150 CSA T2 271.52 0.938704 

WSF BM16-150 Proposed H1 359.7 1.056202 

WSF BM16-150 Proposed H2 340.56 1 

WSF BM16-150 Proposed T1 400.89 1.177149 

WSF BM16-150 Proposed T2 391.97 1.150957 

WSF BM16-s230 ACI H1 410.74 1.067994 

WSF BM16-s230 ACI H2 384.59 1 

WSF BM16-s230 ACI T1 429.65 1.117164 

WSF BM16-s230 ACI T2 410.02 1.066122 

WSF BM16-s230 Nehdi H1 399.5 1.067982 

WSF BM16-s230 Nehdi H2 374.07 1 

WSF BM16-s230 Nehdi T1 446.1 1.192558 

WSF BM16-s230 Nehdi T2 360.18 0.962868 

WSF BM16-s230 CSA H1 230.82 0.973595 

WSF BM16-s230 CSA H2 237.08 1 

WSF BM16-s230 CSA T1 260.76 1.099882 

WSF BM16-s230 CSA T2 226.62 0.95588 

WSF BM16-s230 Proposed H1 401.49 1.076727 

WSF BM16-s230 Proposed H2 372.88 1 

WSF BM16-s230 Proposed T1 425.32 1.140635 

WSF BM16-s230 Proposed T2 363.16 0.973933 

WSF BM25-220 ACI H1 372.2 1.03034 

WSF BM25-220 ACI H2 361.24 1 

WSF BM25-220 ACI T1 400.89 1.109761 

WSF BM25-220 ACI T2 400.89 1.109761 

WSF BM25-220 Nehdi H1 362.4 1.018492 

WSF BM25-220 Nehdi H2 355.82 1 

WSF BM25-220 Nehdi T1 400.89 1.126665 

WSF BM25-220 Nehdi T2 352.03 0.989349 

WSF BM25-220 CSA H1 195.66 0.951006 

WSF BM25-220 CSA H2 205.74 1 

WSF BM25-220 CSA T1 221.61 1.077136 

WSF BM25-220 CSA T2 194.61 0.945903 

WSF BM25-220 Proposed H1 319.46 1.056485 

WSF BM25-220 Proposed H2 302.38 1 

WSF BM25-220 Proposed T1 342.42 1.132416 

WSF BM25-220 Proposed T2 299.52 0.990542 

WSF BM25-150 ACI H1 400.89 1 

WSF BM25-150 ACI H2 400.89 1 

WSF BM25-150 ACI T1 400.89 1 
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WSF BM25-150 ACI T2 400.89 1 

WSF BM25-150 Nehdi H1 326.55 1.064617 

WSF BM25-150 Nehdi H2 306.73 1 

WSF BM25-150 Nehdi T1 388.99 1.268184 

WSF BM25-150 Nehdi T2 359.33 1.171486 

WSF BM25-150 CSA H1 266.34 1.059722 

WSF BM25-150 CSA H2 251.33 1 

WSF BM25-150 CSA T1 300.49 1.195599 

WSF BM25-150 CSA T2 236.31 0.940238 

WSF BM25-150 Proposed H1 338.58 1.082486 

WSF BM25-150 Proposed H2 312.78 1 

WSF BM25-150 Proposed T1 400.89 1.2817 

WSF BM25-150 Proposed T2 354.68 1.13396 

WSF BM25-s230 ACI H1 378.89 1.089641 

WSF BM25-s230 ACI H2 347.72 1 

WSF BM25-s230 ACI T1 390.39 1.122714 

WSF BM25-s230 ACI T2 367.59 1.057144 

WSF BM25-s230 Nehdi H1 320.22 1.144992 

WSF BM25-s230 Nehdi H2 279.67 1 

WSF BM25-s230 Nehdi T1 359.08 1.283942 

WSF BM25-s230 Nehdi T2 275.24 0.98416 

WSF BM25-s230 CSA H1 205.61 1.025077 

WSF BM25-s230 CSA H2 200.58 1 

WSF BM25-s230 CSA T1 229.99 1.146625 

WSF BM25-s230 CSA T2 192.09 0.957673 

WSF BM25-s230 Proposed H1 357.38 1.119086 

WSF BM25-s230 Proposed H2 319.35 1 

WSF BM25-s230 Proposed T1 374.39 1.17235 

WSF BM25-s230 Proposed T2 310.94 0.973665 

HSF BM12-220 ACI H1 309.92 1.005711 

HSF BM12-220 ACI H2 308.16 1 

HSF BM12-220 ACI T1 360.2 1.168873 

HSF BM12-220 ACI T2 359.17 1.165531 

HSF BM12-220 Nehdi H1 313.88 1.024413 

HSF BM12-220 Nehdi H2 306.4 1 

HSF BM12-220 Nehdi T1 366.2 1.19517 

HSF BM12-220 Nehdi T2 314.71 1.027121 

HSF BM12-220 CSA H1 202.68 0.942391 

HSF BM12-220 CSA H2 215.07 1 

HSF BM12-220 CSA T1 234.97 1.092528 

HSF BM12-220 CSA T2 211.38 0.982843 

HSF BM12-220 Proposed H1 282.04 1.002381 

HSF BM12-220 Proposed H2 281.37 1 

HSF BM12-220 Proposed T1 316.28 1.124072 
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HSF BM12-220 Proposed T2 283.52 1.007641 

HSF BM12-150 ACI H1 296.39 0.99872 

HSF BM12-150 ACI H2 296.77 1 

HSF BM12-150 ACI T1 366.11 1.233649 

HSF BM12-150 ACI T2 352.79 1.188766 

HSF BM12-150 Nehdi H1 295.6 0.996628 

HSF BM12-150 Nehdi H2 296.6 1 

HSF BM12-150 Nehdi T1 365.5 1.232299 

HSF BM12-150 Nehdi T2 352.6 1.188806 

HSF BM12-150 CSA H1 283.88 1.001588 

HSF BM12-150 CSA H2 283.43 1 

HSF BM12-150 CSA T1 323.48 1.141305 

HSF BM12-150 CSA T2 273.3 0.964259 

HSF BM12-150 Proposed H1 295.44 0.996055 

HSF BM12-150 Proposed H2 296.61 1 

HSF BM12-150 Proposed T1 364.95 1.230404 

HSF BM12-150 Proposed T2 352.48 1.188362 

HSF BM12-s230 ACI H1 367.67 1.009417 

HSF BM12-s230 ACI H2 364.24 1 

HSF BM12-s230 ACI T1 413.4 1.134966 

HSF BM12-s230 ACI T2 411.98 1.131067 

HSF BM12-s230 Nehdi H1 358.92 1.030432 

HSF BM12-s230 Nehdi H2 348.32 1 

HSF BM12-s230 Nehdi T1 423.93 1.217071 

HSF BM12-s230 Nehdi T2 355.43 1.020412 

HSF BM12-s230 CSA H1 219.03 0.935466 

HSF BM12-s230 CSA H2 234.14 1 

HSF BM12-s230 CSA T1 253.73 1.083668 

HSF BM12-s230 CSA T2 228.41 0.975527 

HSF BM12-s230 Proposed H1 359.22 1.001561 

HSF BM12-s230 Proposed H2 358.66 1 

HSF BM12-s230 Proposed T1 403.82 1.125913 

HSF BM12-s230 Proposed T2 364.77 1.017036 

HSF BM16-220 ACI H1 309.68 1.005846 

HSF BM16-220 ACI H2 307.88 1 

HSF BM16-220 ACI T1 359.56 1.167858 

HSF BM16-220 ACI T2 358.49 1.164382 

HSF BM16-220 Nehdi H1 313.81 1.027134 

HSF BM16-220 Nehdi H2 305.52 1 

HSF BM16-220 Nehdi T1 365.69 1.196943 

HSF BM16-220 Nehdi T2 313.74 1.026905 

HSF BM16-220 CSA H1 198.9 0.943996 

HSF BM16-220 CSA H2 210.7 1 

HSF BM16-220 CSA T1 230.3 1.093023 
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HSF BM16-220 CSA T2 206.46 0.979877 

HSF BM16-220 Proposed H1 279.64 1.003841 

HSF BM16-220 Proposed H2 278.57 1 

HSF BM16-220 Proposed T1 313.34 1.124816 

HSF BM16-220 Proposed T2 280.39 1.006533 

HSF BM16-150 ACI H1 296 0.99892 

HSF BM16-150 ACI H2 296.32 1 

HSF BM16-150 ACI T1 365.58 1.233734 

HSF BM16-150 ACI T2 352.23 1.188681 

HSF BM16-150 Nehdi H1 295.24 0.996927 

HSF BM16-150 Nehdi H2 296.15 1 

HSF BM16-150 Nehdi T1 365.01 1.232517 

HSF BM16-150 Nehdi T2 352.06 1.188789 

HSF BM16-150 CSA H1 278.77 0.999857 

HSF BM16-150 CSA H2 278.81 1 

HSF BM16-150 CSA T1 317.8 1.139844 

HSF BM16-150 CSA T2 267.81 0.960547 

HSF BM16-150 Proposed H1 295.06 0.996286 

HSF BM16-150 Proposed H2 296.16 1 

HSF BM16-150 Proposed T1 364.47 1.230652 

HSF BM16-150 Proposed T2 351.94 1.188344 

HSF BM16-s230 ACI H1 367.09 1.009848 

HSF BM16-s230 ACI H2 363.51 1 

HSF BM16-s230 ACI T1 411.78 1.132789 

HSF BM16-s230 ACI T2 410.31 1.128745 

HSF BM16-s230 Nehdi H1 358.09 1.033419 

HSF BM16-s230 Nehdi H2 346.51 1 

HSF BM16-s230 Nehdi T1 421.69 1.216963 

HSF BM16-s230 Nehdi T2 353.12 1.019076 

HSF BM16-s230 CSA H1 214.83 0.937713 

HSF BM16-s230 CSA H2 229.1 1 

HSF BM16-s230 CSA T1 248.48 1.084592 

HSF BM16-s230 CSA T2 222.85 0.972719 

HSF BM16-s230 Proposed H1 354.59 1.00459 

HSF BM16-s230 Proposed H2 352.97 1 

HSF BM16-s230 Proposed T1 397.91 1.12732 

HSF BM16-s230 Proposed T2 358.45 1.015525 

HSF BM25-220 ACI H1 308.29 1.006628 

HSF BM25-220 ACI H2 306.26 1 

HSF BM25-220 ACI T1 355.85 1.161921 

HSF BM25-220 ACI T2 354.59 1.157807 

HSF BM25-220 Nehdi H1 313.97 1.045382 

HSF BM25-220 Nehdi H2 300.34 1 

HSF BM25-220 Nehdi T1 362.82 1.208031 
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HSF BM25-220 Nehdi T2 308.08 1.025771 

HSF BM25-220 CSA H1 180.1 0.953415 

HSF BM25-220 CSA H2 188.9 1 

HSF BM25-220 CSA T1 207.19 1.096824 

HSF BM25-220 CSA T2 182.35 0.965326 

HSF BM25-220 Proposed H1 266.3 1.011893 

HSF BM25-220 Proposed H2 263.17 1 

HSF BM25-220 Proposed T1 297.15 1.129118 

HSF BM25-220 Proposed T2 263.35 1.000684 

HSF BM25-150 ACI H1 293.68 0.999966 

HSF BM25-150 ACI H2 293.69 1 

HSF BM25-150 ACI T1 362.5 1.234295 

HSF BM25-150 ACI T2 348.97 1.188226 

HSF BM25-150 Nehdi H1 293.12 0.998467 

HSF BM25-150 Nehdi H2 293.57 1 

HSF BM25-150 Nehdi T1 362.08 1.233369 

HSF BM25-150 Nehdi T2 348.86 1.188337 

HSF BM25-150 CSA H1 252.53 0.98795 

HSF BM25-150 CSA H2 255.61 1 

HSF BM25-150 CSA T1 289.18 1.131333 

HSF BM25-150 CSA T2 241.34 0.944173 

HSF BM25-150 Proposed H1 292.89 0.997718 

HSF BM25-150 Proposed H2 293.56 1 

HSF BM25-150 Proposed T1 361.76 1.23232 

HSF BM25-150 Proposed T2 347.22 1.182791 

HSF BM25-s230 ACI H1 363.7 1.01219 

HSF BM25-s230 ACI H2 359.32 1 

HSF BM25-s230 ACI T1 402.6 1.12045 

HSF BM25-s230 ACI T2 401.15 1.116414 

HSF BM25-s230 Nehdi H1 301.6 1.057837 

HSF BM25-s230 Nehdi H2 285.11 1 

HSF BM25-s230 Nehdi T1 352.78 1.237347 

HSF BM25-s230 Nehdi T2 280.5 0.983831 

HSF BM25-s230 CSA H1 193.98 0.951582 

HSF BM25-s230 CSA H2 203.85 1 

HSF BM25-s230 CSA T1 222.57 1.091832 

HSF BM25-s230 CSA T2 195.58 0.959431 

HSF BM25-s230 Proposed H1 329.9 1.020257 

HSF BM25-s230 Proposed H2 323.35 1 

HSF BM25-s230 Proposed T1 366.83 1.134467 

HSF BM25-s230 Proposed T2 325.65 1.007113 

Design BM12-220 ACI H1 342.02 1.015951 

Design BM12-220 ACI H2 336.65 1 

Design BM12-220 ACI T1 400.89 1.190821 
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Design BM12-220 ACI T2 361.97 1.075212 

Design BM12-220 Nehdi H1 276.43 0.972797 

Design BM12-220 Nehdi H2 284.16 1 

Design BM12-220 Nehdi T1 338.59 1.191547 

Design BM12-220 Nehdi T2 297.75 1.047825 

Design BM12-220 CSA H1 209.55 0.961591 

Design BM12-220 CSA H2 217.92 1 

Design BM12-220 CSA T1 242.56 1.113069 

Design BM12-220 CSA T2 220.55 1.012069 

Design BM12-220 Proposed H1 287.07 0.982141 

Design BM12-220 Proposed H2 292.29 1 

Design BM12-220 Proposed T1 324.78 1.111157 

Design BM12-220 Proposed T2 301.46 1.031373 

Design BM12-150 ACI H1 320.29 1.049512 

Design BM12-150 ACI H2 305.18 1 

Design BM12-150 ACI T1 368.17 1.206403 

Design BM12-150 ACI T2 318.57 1.043876 

Design BM12-150 Nehdi H1 266.78 0.964602 

Design BM12-150 Nehdi H2 276.57 1 

Design BM12-150 Nehdi T1 318.19 1.150486 

Design BM12-150 Nehdi T2 286.84 1.037133 

Design BM12-150 CSA H1 206.39 0.92229 

Design BM12-150 CSA H2 223.78 1 

Design BM12-150 CSA T1 236.58 1.057199 

Design BM12-150 CSA T2 221.09 0.987979 

Design BM12-150 Proposed H1 306.76 1.012175 

Design BM12-150 Proposed H2 303.07 1 

Design BM12-150 Proposed T1 343.18 1.132346 

Design BM12-150 Proposed T2 314.52 1.03778 

Design BM12-s230 ACI H1 353.08 1.067804 

Design BM12-s230 ACI H2 330.66 1 

Design BM12-s230 ACI T1 401.09 1.212998 

Design BM12-s230 ACI T2 342.37 1.035414 

Design BM12-s230 Nehdi H1 300.21 0.987111 

Design BM12-s230 Nehdi H2 304.13 1 

Design BM12-s230 Nehdi T1 354.2 1.164634 

Design BM12-s230 Nehdi T2 312.69 1.028146 

Design BM12-s230 CSA H1 223.81 0.938682 

Design BM12-s230 CSA H2 238.43 1 

Design BM12-s230 CSA T1 255.08 1.069832 

Design BM12-s230 CSA T2 233.96 0.981252 

Design BM12-s230 Proposed H1 342.76 1.024694 

Design BM12-s230 Proposed H2 334.5 1 

Design BM12-s230 Proposed T1 381.77 1.141315 
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Design BM12-s230 Proposed T2 347.32 1.038326 

Design BM16-220 ACI H1 338.97 1.019857 

Design BM16-220 ACI H2 332.37 1 

Design BM16-220 ACI T1 400.89 1.206156 

Design BM16-220 ACI T2 356.15 1.071547 

Design BM16-220 Nehdi H1 275.42 0.965234 

Design BM16-220 Nehdi H2 285.34 1 

Design BM16-220 Nehdi T1 336.38 1.178874 

Design BM16-220 Nehdi T2 298.89 1.047487 

Design BM16-220 CSA H1 205.34 0.950208 

Design BM16-220 CSA H2 216.1 1 

Design BM16-220 CSA T1 237.24 1.097825 

Design BM16-220 CSA T2 216.52 1.001944 

Design BM16-220 Proposed H1 283.25 0.986109 

Design BM16-220 Proposed H2 287.24 1 

Design BM16-220 Proposed T1 319.7 1.113007 

Design BM16-220 Proposed T2 295.43 1.028513 

Design BM16-150 ACI H1 316.99 1.053788 

Design BM16-150 ACI H2 300.81 1 

Design BM16-150 ACI T1 363.37 1.207972 

Design BM16-150 ACI T2 313.47 1.042086 

Design BM16-150 Nehdi H1 265.49 0.96926 

Design BM16-150 Nehdi H2 273.91 1 

Design BM16-150 Nehdi T1 315.84 1.153079 

Design BM16-150 Nehdi T2 283.58 1.035304 

Design BM16-150 CSA H1 202.18 0.925436 

Design BM16-150 CSA H2 218.47 1 

Design BM16-150 CSA T1 231.38 1.059093 

Design BM16-150 CSA T2 215.26 0.985307 

Design BM16-150 Proposed H1 302.09 1.015599 

Design BM16-150 Proposed H2 297.45 1 

Design BM16-150 Proposed T1 337.44 1.134443 

Design BM16-150 Proposed T2 308.23 1.036241 

Design BM16-s230 ACI H1 348.9 1.071922 

Design BM16-s230 ACI H2 325.49 1 

Design BM16-s230 ACI T1 395.59 1.215368 

Design BM16-s230 ACI T2 336.74 1.034563 

Design BM16-s230 Nehdi H1 298.42 0.994269 

Design BM16-s230 Nehdi H2 300.14 1 

Design BM16-s230 Nehdi T1 351.29 1.17042 

Design BM16-s230 Nehdi T2 308.12 1.026588 

Design BM16-s230 CSA H1 219.11 0.944399 

Design BM16-s230 CSA H2 232.01 1 

Design BM16-s230 CSA T1 249.37 1.074824 
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Design BM16-s230 CSA T2 227.14 0.97901 

Design BM16-s230 Proposed H1 336.89 1.027135 

Design BM16-s230 Proposed H2 327.99 1 

Design BM16-s230 Proposed T1 374.93 1.143114 

Design BM16-s230 Proposed T2 340.37 1.037745 

Design BM25-220 ACI H1 320.6 1.041653 

Design BM25-220 ACI H2 307.78 1 

Design BM25-220 ACI T1 372.66 1.2108 

Design BM25-220 ACI T2 325.31 1.056956 

Design BM25-220 Nehdi H1 268.68 0.963114 

Design BM25-220 Nehdi H2 278.97 1 

Design BM25-220 Nehdi T1 322.91 1.157508 

Design BM25-220 Nehdi T2 291.56 1.04513 

Design BM25-220 CSA H1 184.35 0.924616 

Design BM25-220 CSA H2 199.38 1 

Design BM25-220 CSA T1 210.98 1.05818 

Design BM25-220 CSA T2 193.4 0.970007 

Design BM25-220 Proposed H1 262.59 1.008604 

Design BM25-220 Proposed H2 260.35 1 

Design BM25-220 Proposed T1 293.29 1.126522 

Design BM25-220 Proposed T2 264.86 1.017323 

Design BM25-150 ACI H1 298.12 1.075081 

Design BM25-150 ACI H2 277.3 1 

Design BM25-150 ACI T1 338.11 1.219293 

Design BM25-150 ACI T2 287.5 1.036783 

Design BM25-150 Nehdi H1 257.47 1.003938 

Design BM25-150 Nehdi H2 256.46 1 

Design BM25-150 Nehdi T1 302.58 1.179833 

Design BM25-150 Nehdi T2 263.45 1.027256 

Design BM25-150 CSA H1 181.29 0.952654 

Design BM25-150 CSA H2 190.3 1 

Design BM25-150 CSA T1 205.88 1.081871 

Design BM25-150 CSA T2 185.38 0.974146 

Design BM25-150 Proposed H1 277.5 1.032251 

Design BM25-150 Proposed H2 268.83 1 

Design BM25-150 Proposed T1 308.23 1.146561 

Design BM25-150 Proposed T2 277.43 1.03199 

Design BM25-s230 ACI H1 325.72 1.091409 

Design BM25-s230 ACI H2 298.44 1 

Design BM25-s230 ACI T1 367.13 1.230164 

Design BM25-s230 ACI T2 308.64 1.034178 

Design BM25-s230 Nehdi H1 247.6 1.01243 

Design BM25-s230 Nehdi H2 244.56 1 

Design BM25-s230 Nehdi T1 294.28 1.203304 
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Design BM25-s230 Nehdi T2 244.24 0.998692 

Design BM25-s230 CSA H1 195.86 0.980526 

Design BM25-s230 CSA H2 199.75 1 

Design BM25-s230 CSA T1 221.46 1.108686 

Design BM25-s230 CSA T2 193.62 0.969312 

Design BM25-s230 Proposed H1 307.81 1.039899 

Design BM25-s230 Proposed H2 296 1 

Design BM25-s230 Proposed T1 341.87 1.154966 

Design BM25-s230 Proposed T2 307.64 1.039324 
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C: Spreadsheets and Plots of Detailed Analyses 

Most of the data here are with the H2 concrete model, except the ones to verify the proposed method with different concrete models. 

For deep beams with stirrups analyzed with ℎ𝐶  based on strain compatibility: 
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ζACI Fail.Elem ζNd Fail.Elem ζCSA Fail.Elem ζNew Fail.Elem

BM12 220 382.4 411.07 S12 199.73 S12 155.34 S12 290.76 S12

76.89 411.11 S5 325.26 S5 305.98 S11 292.48 S10

411.11 Combine 325.26 Combine 305.98 Shear 292.48 Shear

150 405.2 295.48 S20 142.00 S20 126.32 S20 247.45 S20

295.69 S9 290.88 S9 290.87 S9 290.91 S9

295.69 Combine 290.88 Combine 290.87 Combine 290.91 Combine

s230 466.9 469.31 S5 445.88 S5 273.90 S12 469.38 S5

72.68 469.33 S12 445.89 S12 317.17 S11 469.39 S12

469.33 Combine 445.89 Combine 317.17 Shear 469.39 Combine

BM16 220 309.3 411.97 S12 200.45 S12 153.23 S12 288.66 S12

75.03 412.01 S5 318.51 S5 298.54 S11 288.94 S10

412.01 Combine 318.51 Combine 298.54 Shear 288.94 Shear

150 416.5 294.44 S20 141.52 S20 124.16 S20 244.29 S20

294.58 S9 284.76 S9 284.75 S9 284.79 S9

294.58 Combine 284.76 Combine 284.75 Combine 284.79 Combine

s230 450.8 454.76 S5 438.12 S5 273.65 S12 456.20 S5

71.15 454.78 S12 438.13 S12 309.64 S11 456.22 S12

454.78 Combine 438.13 Combine 309.64 Shear 456.22 Combine

BM25 220 360.1 426.61 S12 210.64 S12 144.44 S12 282.43 S12

67.424 426.62 S5 290.06 S5 263.82 S11 282.50 S10

426.62 Combine 290.06 Combine 263.82 Shear 282.50 Shear

150 415.8 295.91 S20 142.35 S20 114.46 S20 231.41 S20

295.97 S9 258.99 S9 258.98 S9 259.02 S9

295.97 Combine 258.99 Combine 258.98 Combine 259.02 Combine

s230 444 382.89 S5 351.70 S12 275.62 S12 387.35 S5

63.28 382.92 S12 351.75 S5 275.80 S11 387.37 S12

382.92 Combine 351.75 Combine 275.80 Shear 387.37 Combine

M. Krall P_exp.
P_predict with
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ζACI Fail.Elem ζNd Fail.Elem ζCSA Fail.Elem ζNew Fail.Elem
BM12 220 382.4 478.61 N7 462.02 S10 266.75 S10 389.42 S10

462.03 S11 266.76 S11 389.46 S11
462.04 S12 266.77 S12 389.48 S12

478.61 Node Crush 462.04 Shear 266.77 Shear 389.48 Shear
150 405.2 427.94 S9 431.35 S9 310.88 S18 432.49 S9

478.61 N11 431.37 S19 314.09 S21 432.53 S19
431.38 S20 314.12 S19 432.55 S20
431.40 S21 314.12 S20 432.56 S21
431.41 N9 314.14 S17 432.57 S17/N9

427.94 Flexure 431.37 Combine 314.14 Shear 432.53 Combine
s230 466.9 466.46 S5 423.19 S10 258.26 S10 410.18 S10

466.51 S11 423.22 S11 258.28 S12 410.24 S12
466.52 S12 423.22 S12 258.29 S11 410.25 S11
466.51 Combine 423.22 Shear 258.29 Shear 410.25 Shear

BM16 220 309.3 472.20 N7 451.32 S10 258.35 S10 377.57 S10
451.33 S11 258.36 S11 377.62 S11
451.34 S12 258.36 S12 377.63 S12

472.20 Shear 451.34 Shear 258.36 Shear 377.63 Shear
150 416.5 413.27 S9 416.52 S9 299.71 S18 417.67 S9

472.20 N11 416.54 S19 304.48 S21 417.72 S19
416.55 S20 304.51 S19 417.74 S20
416.58 S21 304.52 S20 417.75 S21
416.61 S17 304.53 S17 417.76 S17/N9

413.27 Flexure 416.54 Combine 304.53 Shear 417.72 Combine
s230 450.8 451.87 S5 410.60 S10 249.20 S10 396.39 S10

451.92 S11 410.63 S11 249.22 S12 396.45 S12
451.93 S12 410.63 S12 249.23 S11 396.46 S11
451.92 Combine 410.63 Shear 249.23 Shear 396.46 Shear

BM25 220 360.1 416.68 S5 394.18 S10 216.62 S10 320.56 S10
416.71 S11 394.20 S11 216.64 S11 321.11 S11
416.73 S12 394.20 S12 216.65 S12 321.11 S12
416.71 Combine 394.20 Shear 216.65 Shear 321.11 Shear

150 415.8 347.33 S9 349.59 S9 246.92 S18 350.99 S9
446.02 N11 349.62 S19 258.32 S21 351.26 S19

349.64 S20 258.37 S20 351.29 S20
349.66 S21 258.38 S19 351.30 S21
349.70 S17 258.38 S17 351.32 S17

347.33 Flexure 349.62 Combine 258.38 Shear 351.26 Combine
s230 444 380.72 S5 292.53 S10 206.21 S10 330.30 S10

380.82 S11 292.56 S12 206.23 S12 330.37 S12
380.83 S12 292.57 S11 206.24 S11 330.39 S11
380.82 Combine 292.57 Shear 206.24 Shear 330.39 Shear

Whole Section 
Fanning

P_exp. P_predict with
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ζACI Fail.Elem ζNd Fail.Elem ζCSA Fail.Elem ζNew Fail.Elem
BM12 220 382.4 414.00 S5 382.18 S10 242.23 S10 328.27 S10

414.01 B6 382.20 S11 242.24 S11 328.30 S11
414.00 Flexure+Bar 382.20 Shear 242.24 Shear 328.30 Shear

150 405.2 399.54 S9 399.24 S9 311.63 S19 398.95 S9
399.58 S19 399.27 S19 311.71 S18 398.97 S19
399.59 N9 399.28 N9 311.72 S17 398.98 S17/N9
399.58 Combine 399.27 Combine 311.72 Shear 398.97 Combine

s230 466.9 464.36 S5 415.22 S10 257.39 S10 405.52 S10
464.37 S11 415.24 S11 257.39 S11 405.54 S11
464.37 Combine 415.24 Shear 257.39 Shear 405.54 Shear

BM16 220 309.3 405.46 S5 375.70 S10 235.39 S10 321.54 S10
405.48 S11 375.72 S11 235.40 S11 321.56 S11
405.48 Combine 375.72 Shear 235.40 Shear 321.56 Shear

150 416.5 390.99 S9 390.73 S9 304.53 S19 390.47 S9
391.03 S19 390.76 S19 304.60 S18 390.49 S19
391.04 N9 390.77 N9 304.61 S17 390.50 S17/N9
391.03 Combine 390.76 Combine 304.61 Shear 390.49 Combine

s230 450.8 455.54 S5 407.94 S10 250.09 S10 395.55 S10
455.56 S11 407.95 S11 250.10 S11 395.56 S11
455.56 Combine 407.95 Shear 250.10 Shear 395.56 Shear

BM25 220 360.1 369.27 S5 346.23 S10 203.53 S10 289.75 S10
369.29 S11 346.25 S11 203.54 S11 289.78 S11
369.29 Combine 346.25 Shear 203.54 Shear 289.78 Shear

150 415.8 354.50 S9 354.37 S9 271.67 S19 354.27 S9
354.55 S19 354.40 S19 271.72 S18 354.29 S19
354.56 N9 354.41 N9 271.73 S17 354.30 N9
354.55 Combine 354.40 Combine 271.73 Shear 354.29 Combine

s230 444 409.42 S5 311.73 S10 214.29 S10 344.97 S10
409.44 S11 311.75 S11 214.30 S11 344.99 S11
409.44 Combine 311.75 Shear 214.30 Shear 344.99 Shear

Half Section 
Fanning

P_exp. P_predict with
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ζACI Fail.Elem ζNd Fail.Elem ζCSA Fail.Elem ζNew Fail.Elem
BM12 220 382.4 425.37 S7 375.66 S7 243.75 S7 338.63 S6

76.89 425.39 S8 375.67 S8 243.75 S8 338.65 S8
425.39 Shear 375.67 Shear 243.75 Shear 338.65 Shear

150 405.2 379.59 S7 349.74 S7 233.53 S7 354.12 S6
379.61 S8 349.74 S8 233.53 S8 354.14 S8
379.61 Shear 349.74 Shear 233.53 Shear 354.14 Shear

s230 466.9 404.09 S7 374.37 S7 244.40 S7 375.11 S7
72.68 404.12 S8 374.38 S8 244.41 S8 375.13 S8

404.12 Shear 374.38 Shear 244.41 Shear 375.13 Shear
BM16 220 309.3 415.69 S7 369.63 S7 237.75 S7 329.15 S6

75.03 415.71 S8 369.64 S8 237.76 S8 329.17 S8
415.71 Shear 369.64 Shear 237.76 Shear 329.17 Shear

150 416.5 371.23 S7 342.49 S7 226.57 S7 343.99 S6
371.25 S8 342.50 S8 226.58 S8 344.01 S8

347.10 S7
371.25 Shear 342.50 Shear 226.58 Shear 344.01 Shear

s230 450.8 392.52 S6 364.05 S6 236.95 S7 363.25 S7
71.148 392.55 S8 364.06 S8 236.96 S8 363.27 S8

392.55 Shear 364.06 Shear 236.96 Shear 363.27 Shear
BM25 220 360.1 359.23 S6 329.09 S6 205.88 S7 284.80 S6

67.424 359.25 S8 329.10 S8 205.89 S8 284.83 S8
359.25 Shear 329.10 Shear 205.89 Shear 284.83 Shear

150 415.8 321.46 S6 298.48 S6 193.30 S7 298.27 S6
321.49 S8 298.49 S8 193.31 S8 298.29 S8
321.49 Shear 298.49 Shear 193.31 Shear 298.29 Shear

s230 444 330.88 S6 271.91 S6 201.42 S7 307.46 S7
63.279 330.90 S8 271.92 S8 201.43 S8 307.49 S8

330.90 Shear 271.92 Shear 201.43 Shear 307.49 Shear

Design Model P_exp. P_predict with
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H1 Fail.Elem H2 Fail.Elem T2 Fail.Elem
BM12 220 382.4 328.04 S10 328.27 S10 327.03 S10

328.05 S11 328.30 S11 327.07 S11
328.05 Shear 328.30 Shear 327.07 Shear

150 405.2 396.42 S9 398.95 S9 433.37 S17
396.44 S19 398.97 S19 433.40 S19
396.46 S17 399.28 N9/17 433.40 N10
396.44 Combine 398.97 Combine 433.40 Combine

s230 466.9 408.88 S10 405.52 S10 409.35 S10
408.89 S11 405.54 S11 409.38 S11
408.89 Shear 405.54 Shear 409.38 Shear

BM16 220 309.3 321.86 S10 321.54 S10 320.22 S10
321.87 S11 321.56 S11 320.26 S11
321.87 Shear 321.56 Shear 320.26 Shear

150 416.5 388.17 S9 390.47 S9 423.97 S17
388.19 S19 390.49 S19 423.99 S19
388.20 S17 390.50 N9/17 424.00 S18/N10
388.19 Combine 390.49 Combine 424.00 Combine

s230 450.8 399.77 S10 395.55 S10 398.84 S10
399.78 S11 395.56 S11 398.86 S11
399.78 Shear 395.56 Shear 398.86 Shear

BM25 220 360.1 292.73 S10 289.75 S10 287.82 S10
292.74 S11 289.78 S11 287.86 S11
292.74 Shear 289.78 Shear 287.86 Shear

150 415.8 353.05 S9 354.27 S9 379.02 S17
353.07 S19 354.29 S19 379.04 S19
353.09 S17 354.30 N9 379.05 S18/N10
353.07 Combine 354.29 Combine 379.05 Combine

s230 444 353.13 S10 344.97 S10 346.03 S10
353.14 S11 344.99 S11 346.05 S11
353.14 Shear 344.99 Shear 346.05 Shear

Half Section 
Fanning

P_exp. P_predict with



135 
 

 

 



136 
 

 
 
 

H1 Fail.Elem H2 Fail.Elem H3 Fail.Elem
BM12 220 382.4 336.91 S6 338.63 S6 342.06 S6

76.89 336.93 S8 338.65 S8 342.08 S8
336.93 Shear 338.65 Shear 342.08 Shear

150 405.2 364.39 S6 354.12 S6 361.21 S6
364.41 S8 354.14 S8 361.23 S8
364.41 Shear 354.14 Shear 361.23 Shear

s230 466.9 389.93 S7 375.11 S7 383.76 S7
72.68 389.95 S8 375.13 S8 383.79 S8

389.95 Shear 375.13 Shear 383.79 Shear
BM16 220 309.3 328.73 S6 329.15 S6 332.26 S6

75.03 328.75 S8 329.17 S8 332.28 S8
328.75 Shear 329.17 Shear 332.28 Shear

150 416.5 354.89 S6 343.99 S6 350.99 S6
354.91 S8 344.01 S8 351.01 S8
354.91 Shear 344.01 Shear 351.01 Shear

s230 450.8 378.34 S7 363.25 S7 371.06 S7
71.148 378.36 S8 363.27 S8 371.09 S8

378.36 Shear 363.27 Shear 371.09 Shear
BM25 220 360.1 290.16 S6 284.80 S6 286.77 S6

67.424 290.18 S8 284.83 S8 286.80 S8
290.18 Shear 284.83 Shear 286.80 Shear

150 415.8 311.27 S6 298.27 S6 303.26 S6
311.29 S8 298.29 S8 303.29 S8
311.29 Shear 298.29 Shear 303.29 Shear

s230 444 323.45 S7 307.46 S7 311.94 S7
63.279 323.47 S8 307.49 S8 311.97 S8

323.47 Shear 307.49 Shear 311.97 Shear

Design Model P_exp. P_predict with
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For deep beams with stirrups analyzed with ℎ!  based on force equilibrium: 
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ζACI Fail.Elem ζNd Fail.Elem ζCSA Fail.Elem ζNew Fail.Elem
BM12 220 382.4 566.59 S12 276.20 S12 172.18 S12 347.93 S12

566.59 B6/B7 430.65 S5 328.51 S11 348.09 S10
566.59 Bar Failure 430.65 Combine 328.51 Shear 348.09 Shear

150 405.2 391.85 S20 188.29 S20 137.55 S20 290.93 S20
392.07 S9 386.23 S9 386.27 S9 386.34 S9
392.07 Combine 386.23 Combine 386.27 Combine 386.34 Combine

s230 466.9 519.43 S5 506.15 S5 299.81 S12 491.68 S11
519.45 S12 506.16 S12 328.26 S11 491.70 S12
519.45 Combine 506.16 Combine 328.26 Shear 491.70 Shear

BM16 220 309.3 518.34 S12 252.64 S12 165.55 S12 328.80 S12
518.34 B6/B7 393.80 S5 315.21 S11 328.97 S10
518.34 Bar Failure 393.80 Combine 315.21 Shear 328.97 Shear

150 416.5 360.98 S20 173.48 S20 132.63 S20 275.17 S20
361.16 S9 352.91 S9 352.93 S9 352.99 S9
361.16 Combine 352.91 Combine 352.93 Combine 352.99 Combine

s230 450.8 475.40 S5 461.88 S5 284.22 S12 470.08 S11
475.42 S12 461.88 S12 314.19 S11 470.10 S12
475.42 Combine 461.88 Combine 314.19 Shear 470.10 Shear

BM25 220 360.1 487.21 N7 243.61 S12 152.33 S12 306.63 S12
332.85 S5 272.81 S11 306.70 S10

487.21 Node Crush 332.85 Combine 272.81 Shear 306.70 Shear
150 415.8 335.64 S20 161.44 S20 119.70 S20 249.16 S20

335.70 S9 297.70 S9 297.71 S9 297.75 S9
335.70 Combine 297.70 Combine 297.71 Combine 297.75 Combine

s230 444 378.22 S5 344.41 S12 272.50 S12 382.01 S5
378.25 S12 344.45 S5 272.81 S11 382.02 S12
378.25 Combine 344.45 Combine 272.81 Shear 382.02 Combine

Kr Model P_exp. P_predict with
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ζACI Fail.Elem ζNd Fail.Elem ζCSA Fail.Elem ζNew Fail.Elem
BM12 220 382.4 588.52 N7 504.20 S10 275.66 S10 413.61 S10

504.23 S11 275.68 S11 413.86 S11
504.23 S12 275.68 S12 413.86 S12

588.52 Node Crush 504.23 Shear 275.68 Shear 413.86 Shear
150 405.2 502.59 S9 511.33 S9 304.91 S18 513.59 S9

588.52 N11 511.36 S19 315.34 S21 513.64 S19
511.37 S20 315.42 S19 513.66 S20
511.39 S21 315.42 S20 513.66 S21
511.44 S17 315.45 S17 513.67 S17

502.59 Flexure 511.36 Combine 315.45 Shear 513.64 Combine
s230 466.9 507.60 S5 438.48 S10 262.38 S10 421.90 S10

507.66 S11 438.51 S12 262.39 S12 421.97 S12
507.67 S12 438.52 S11 262.40 S11 421.99 S11
507.66 Combine 438.52 Shear 262.40 Shear 421.99 Shear

BM16 220 309.3 548.83 N7 489.68 S10 267.06 S10 397.29 S10
489.70 S11 267.07 S11 397.42 S11
489.71 S12 267.07 S12 397.43 S12

548.83 Node Crush 489.71 Shear 267.07 Shear 397.43 Shear
150 416.5 469.25 S9 474.89 S9 298.23 S18 477.56 S9

548.83 N11 474.92 S19 307.60 S21 477.61 S19
474.93 S20 307.66 S20 477.63 S20
474.95 S21 307.67 S19 477.64 S21
475.00 S17 307.69 S17 477.65 S17

469.25 Flexure 474.92 Combine 307.69 Shear 477.61 Combine
s230 450.8 468.92 S5 417.85 S10 251.30 S10 401.56 S10

468.97 S11 417.88 S12 251.32 S12 401.61 S12
468.99 S12 417.89 S11 251.33 S11 401.63 S11
468.97 Combine 417.89 Shear 251.33 Shear 401.63 Shear

BM25 220 360.1 457.49 S5 416.73 S10 222.06 S10 331.74 S10
457.52 S11 416.76 S11 222.08 S11 339.16 S11
457.53 B6 416.76 S12 222.08 S12 339.16 S12
457.52 Combine+Bar 416.76 Shear 222.08 Shear 339.16 Shear

150 415.8 378.32 S9 381.06 S9 247.74 S18 383.61 S9
487.21 N11 381.10 S19 261.22 S21 383.77 S19

381.11 S20 261.32 S20 383.80 S20
381.14 S21 261.33 S19 383.81 S21
381.19 S17 261.34 S17 383.83 S17

378.32 Flexure 381.10 Combine 261.34 Shear 383.77 Combine
s230 444 376.84 S5 291.17 S10 205.62 S10 329.07 S10

376.94 S11 291.21 S11 205.64 S12 329.14 S12
376.95 S12 291.21 S12 205.65 S11 329.16 S11
376.94 Combine 291.21 Shear 205.65 Shear 329.16 Shear

Whole Section 
Fanning

P_exp. P_predict with
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ζACI Fail.Elem ζNd Fail.Elem ζCSA Fail.Elem ζNew Fail.Elem
BM12 220 382.4 543.50 S5 448.57 S10 260.43 S10 376.16 S10

543.51 B6 448.59 S11 260.44 S11 376.19 S11
543.50 Flexure+Bar 448.59 Shear 260.44 Shear 376.19 Shear

150 405.2 524.13 S9 523.62 S9 333.70 S19 504.15 S9
524.17 S19 523.64 S19 333.80 S18 504.17 S19
524.18 B12 523.65 B12 333.82 S17 504.18 S18/N10
524.17 Combine+Bar 523.64 Combine+Bar 333.82 Shear 504.17 Combine

s230 466.9 528.42 S5 451.80 S10 268.15 S10 432.06 S10
528.44 S11 451.82 S11 268.16 S11 432.07 S11
528.44 Combine 451.82 Shear 268.16 Shear 432.07 Shear

BM16 220 309.3 497.95 S5 428.85 S10 250.31 S10 356.69 S10
497.96 B6 428.87 S11 250.32 S11 356.72 S11
497.96 Flexure+Bar 428.87 Shear 250.32 Shear 356.72 Shear

150 416.5 480.11 S9 479.72 S9 321.84 S19 478.32 S17
480.15 S19 479.75 S19 321.93 S18 478.34 S19
480.20 S17 479.78 S17 321.95 S17 390.50 S18/N10
480.15 Combine 479.75 Combine 321.95 Shear 478.34 Combine

s230 450.8 481.46 S5 423.58 S10 254.82 S10 406.53 S10
481.48 S11 423.59 S11 254.83 S11 406.54 S11
481.48 Combine 423.59 Shear 254.83 Shear 406.54 Shear

BM25 220 360.1 421.74 S5 380.68 S10 213.01 S10 309.84 S10
421.75 B6 380.70 S11 213.03 S11 309.87 S11
421.75 Flexure+Bar 380.70 Shear 213.03 Shear 309.87 Shear

150 415.8 404.96 S9 404.79 S9 282.80 S19 404.64 S9
405.01 S19 404.82 S19 282.86 S17 404.66 S19
405.06 S17 404.86 S17 282.86 S18 404.67 S17
405.01 Combine 404.82 Combine 282.86 Shear 404.66 Combine

s230 444 403.32 S5 308.64 S10 213.11 S10 342.43 S10
403.34 S11 308.66 S11 213.12 S11 342.45 S11
403.34 Combine 308.66 Shear 213.12 Shear 342.45 Shear

Half Section 
Fanning

P_exp. P_predict with
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ζACI Fail.Elem ζNd Fail.Elem ζCSA Fail.Elem ζNew Fail.Elem
BM12 220 382.4 474.87 S7 431.70 S7 251.75 S7 374.47 S6

76.89 474.89 S8 431.71 S8 325.60 S8 374.50 S8
474.89 Shear 431.71 Shear 325.60 Shear 374.50 Shear

150 405.2 417.94 S7 383.40 S7 233.90 S7 377.88 S7
417.97 S8 383.41 S8 233.91 S8 377.91 S8
417.97 Shear 383.41 Shear 233.91 Shear 377.91 Shear

s230 466.9 418.76 S7 389.48 S7 245.73 S7 382.71 S7
72.68 418.79 S8 389.49 S8 245.74 S8 382.74 S8

418.79 Shear 389.49 Shear 245.74 Shear 382.74 Shear
BM16 220 309.3 450.55 S7 411.78 S7 244.66 S7 357.04 S6

75.03 450.57 S8 411.79 S8 244.67 S8 357.06 S8
450.57 Shear 411.79 Shear 244.67 Shear 357.06 Shear

150 416.5 397.63 S7 367.85 S7 228.07 S7 362.24 S7
397.66 S8 367.86 S8 228.08 S8 362.26 S8
397.66 Shear 367.86 Shear 228.08 Shear 362.26 Shear

s230 450.8 400.00 S6 371.60 S6 237.68 S7 366.16 S7
71.148 400.03 S8 371.61 S8 237.69 S8 366.19 S8

400.03 Shear 371.61 Shear 237.69 Shear 366.19 Shear
BM25 220 360.1 385.37 S7 355.95 S7 208.59 S7 301.51 S6

67.424 385.40 S8 355.96 S8 208.59 S8 301.54 S8
385.40 Shear 355.96 Shear 208.59 Shear 301.54 Shear

150 415.8 343.03 S7 319.21 S7 194.48 S7 302.81 S7
343.06 S8 319.22 S8 194.49 S8 302.84 S8
343.06 Shear 319.22 Shear 194.49 Shear 302.84 Shear

s230 444 326.96 S6 268.63 S6 201.25 S7 306.94 S7
63.279 326.99 S8 268.64 S8 201.26 S8 306.97 S8

326.99 Shear 268.64 Shear 201.26 Shear 306.97 Shear

Design Model P_exp. P_predict with



145 
 

For deep beams with stirrups analyzed with ℎ!  equal to 0.2d: 
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ζACI Fail.Elem ζNd Fail.Elem ζCSA Fail.Elem ζNew Fail.Elem
BM12 220 382.4 317.50 S12 154.62 S12 140.21 S12 248.39 S12

317.53 S5 239.42 S5 239.38 S5 248.52 S5
317.53 Combine 239.42 Combine 239.38 Combine 248.52 Combine

150 405.2 232.41 S20 111.75 S20 114.45 S20 212.00 S20
232.49 S9 213.28 S9 213.26 S9 213.28 S9
232.49 Combine 213.28 Combine 213.26 Combine 213.28 Combine

s230 466.9 381.51 S5 342.44 S12 238.38 S12 379.02 S5
381.52 S12 342.45 S5 276.54 S5 379.04 S12
381.52 Combine 342.45 Combine 276.54 Combine 379.04 Combine

BM16 220 309.3 323.11 S12 157.57 S12 139.16 S12 249.13 S12
323.14 S5 239.34 S5 239.30 S5 400.89 N7
323.14 Combine 239.34 Combine 239.30 Combine 249.13 Shear

150 416.5 235.24 S20 113.13 S20 113.26 S20 211.60 S20
235.32 S9 213.20 S9 213.18 S9 213.20 S9
235.32 Combine 213.20 Combine 213.18 Combine 213.20 Combine

s230 450.8 375.56 S5 347.69 S5 239.30 S12 373.82 S5
375.58 S12 347.69 S12 276.44 S5 373.84 S12
375.58 Combine 347.69 Combine 276.44 Combine 373.84 Combine

BM25 220 360.1 357.86 S12 176.98 S12 134.74 S12 254.70 S12
357.88 S5 238.81 S5 238.82 S5 254.76 S10
357.88 Combine 238.81 Combine 238.82 Combine 254.76 Shear

150 415.8 253.08 S20 121.80 S20 107.50 S20 210.11 S20
253.13 S9 212.70 S9 212.69 S9 212.71 S9
253.13 Combine 212.70 Combine 212.69 Combine 212.71 Combine

s230 444 343.51 S5 293.61 S12 250.66 S12 344.80 S5
343.53 S12 293.69 S5 264.38 S11 344.82 S12
343.53 Combine 293.69 Combine 264.38 Shear 344.82 Combine

Kr Model P_exp. P_predict with



147 
 

 



148 
 

 

ζACI Fail.Elem ζNd Fail.Elem ζCSA Fail.Elem ζNew Fail.Elem
BM12 220 382.4 399.57 S5 370.81 S10 240.30 S10 349.68 S10

399.59 S11 370.82 S11 240.30 S11 349.71 S11
399.61 S12 370.83 S12 240.31 S12 349.72 S12
399.59 Combine 370.83 Shear 240.31 Shear 349.72 Shear

150 405.2 345.34 S9 346.39 S9 297.79 S18 346.82 S9
383.90 S19 346.41 S19 298.00 S21 346.88 S19
383.93 S20 346.42 S20 298.01 S19 346.90 S20
383.95 S21 346.44 S21 298.02 S20 346.91 S21
383.96 N9 346.45 N9 298.03 S17 346.92 S17/N9
383.90 Combine 346.41 Combine 298.03 Shear 346.88 Combine

s230 466.9 391.65 S5 381.89 S10 244.54 S10 383.67 S10
391.69 S11 381.91 S11 244.55 S12 383.71 S12
391.70 S12 381.91 S12 244.56 S11 383.73 S11
391.69 Combine 381.91 Shear 244.56 Shear 383.73 Shear

BM16 220 309.3 393.86 S5 372.18 S10 235.46 S10 342.38 S10
393.88 S11 372.19 S11 235.46 S11 342.41 S11
393.90 S12 372.20 S12 235.47 S12 400.89 N7
393.88 Combine 372.20 Shear 235.47 Shear 342.41 Shear

150 416.5 338.83 S9 340.21 S9 288.50 S18 340.45 S9
387.87 S19 340.23 S19 289.22 S21 340.51 S19
387.90 S20 340.24 S20 289.24 S19 340.53 S20
387.92 S21 340.26 S21 289.24 S20 340.55 S21
387.93 N9 340.27 N9 289.25 S17 340.56 S17/N9
387.87 Combine 340.23 Combine 289.25 Shear 340.51 Combine

s230 450.8 384.54 S5 374.04 S10 237.05 S10 372.82 S10
384.58 S11 374.06 S12 237.07 S12 372.86 S12
384.59 S12 374.07 S11 237.08 S11 372.88 S11
384.58 Combine 374.07 Shear 237.08 Shear 372.88 Shear

BM25 220 360.1 361.19 S5 355.80 S10 205.72 S10 302.26 S10
361.22 S11 355.81 S11 205.73 S11 302.38 S11
361.24 S12 355.82 S12 205.74 S12 302.38 S12
361.22 Combine 355.82 Shear 205.74 Shear 302.38 Shear

150 415.8 304.84 S9 306.65 S9 242.03 S18 306.93 S9
400.89 N11 306.68 S19 251.29 S21 312.73 S19

306.69 S20 251.33 S17 312.76 S20
306.72 S21 251.33 S19 312.77 S21
306.73 N9 251.33 S20 312.78 N9

304.84 Flexure 306.68 Combine 251.33 Shear 312.73 Combine
s230 444 347.63 S5 279.64 S10 200.55 S10 319.26 S10

347.71 S11 279.67 S11 200.57 S12 319.33 S12
347.72 S12 279.67 S12 200.58 S11 319.35 S11
347.71 Combine 279.67 Shear 200.58 Shear 319.35 Shear

Whole Section 
Fanning

P_exp. P_predict with
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ζACI Fail.Elem ζNd Fail.Elem ζCSA Fail.Elem ζNew Fail.Elem
BM12 220 382.4 308.14 S5 306.38 S10 215.06 S10 281.34 S10

308.16 S11 306.40 S11 215.07 S11 281.37 S11
308.16 Combine 306.40 Shear 215.07 Shear 281.37 Shear

150 405.2 296.72 S9 296.56 S9 283.43 S19 296.57 S9
296.76 S19 296.59 S19 400.89 N11 296.60 S19
296.77 N9 296.60 N9 296.61 N9
296.76 Combine 296.59 Combine 283.43 Shear 296.60 Combine

s230 466.9 364.22 S5 348.31 S10 234.13 S10 358.64 S10
364.24 S11 348.32 S11 234.14 S11 358.66 S11
364.24 Combine 348.32 Shear 234.14 Shear 358.66 Shear

BM16 220 309.3 307.86 S5 305.50 S10 210.68 S10 278.54 S10
307.88 S11 305.52 S11 210.70 S11 278.57 S11
307.88 Combine 305.52 Shear 210.70 Shear 278.57 Shear

150 416.5 296.26 S9 296.12 S9 278.76 S19 296.12 S9
296.31 S19 296.14 S19 278.81 S18 296.15 S19
296.32 N9 296.15 N9 278.81 S17 296.16 N9
296.31 Combine 296.14 Combine 278.81 Shear 296.15 Combine

s230 450.8 363.49 S5 346.49 S10 229.09 S10 352.95 S10
363.51 S11 346.51 S11 229.10 S11 352.97 S11
363.51 Combine 346.51 Shear 229.10 Shear 352.97 Shear

BM25 220 360.1 306.24 S5 300.32 S10 188.88 S10 263.13 S10
306.26 S11 300.34 S11 188.90 S11 263.17 S11
306.26 Combine 300.34 Shear 188.90 Shear 263.17 Shear

150 415.8 293.63 S9 293.53 S9 255.57 S19 293.52 S9
293.68 S19 293.56 S19 255.61 S17 293.55 S19
293.69 N9 293.57 N9 255.61 S18 293.56 S17/N9
293.68 Combine 293.56 Combine 255.61 Shear 293.55 Combine

s230 444 359.30 S5 285.10 S10 203.84 S10 323.33 S10
359.32 S11 285.11 S11 203.85 S11 323.35 S11
359.32 Combine 285.11 Shear 203.85 Shear 323.35 Shear

Half Section 
Fanning

P_exp. P_predict with
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ζACI Fail.Elem ζNd Fail.Elem ζCSA Fail.Elem ζNew Fail.Elem
BM12 220 382.4 336.64 S6 284.16 S6 217.89 S8 292.27 S6

76.89 336.65 S8 284.16 S8 217.92 S7 292.29 S8
336.65 Shear 284.16 Shear 217.92 Shear 292.29 Shear

150 405.2 305.16 S6 276.56 S6 223.78 S7 303.05 S6
305.18 S8 276.57 S8 223.78 S8 303.07 S8
305.18 Shear 276.57 Shear 223.78 Shear 303.07 Shear

s230 466.9 330.64 S6 304.12 S6 238.42 S7 334.48 S6
72.68 330.66 S8 304.13 S8 238.43 S8 334.50 S8

330.66 Shear 304.13 Shear 238.43 Shear 334.50 Shear
BM16 220 309.3 332.36 S6 285.33 S6 216.08 S8 287.22 S6

75.03 332.37 S8 285.34 S8 216.10 S7 287.24 S8
332.37 Shear 285.34 Shear 216.10 Shear 287.24 Shear

150 416.5 300.79 S6 273.90 S6 218.47 S7 297.43 S6
300.81 S8 273.91 S8 218.47 S8 297.45 S8
300.81 Shear 273.91 Shear 218.47 Shear 297.45 Shear

s230 450.8 325.46 S6 300.13 S6 232.00 S7 327.97 S6
71.148 325.49 S8 300.14 S8 232.01 S8 327.99 S8

325.49 Shear 300.14 Shear 232.01 Shear 327.99 Shear
BM25 220 360.1 307.76 S6 278.96 S6 199.37 S7 260.32 S6

67.424 307.78 S8 278.97 S8 199.38 S8 260.35 S8
307.78 Shear 278.97 Shear 199.38 Shear 260.35 Shear

150 415.8 277.27 S6 256.45 S6 194.48 S7 268.81 S6
277.30 S8 256.46 S8 194.49 S8 268.83 S8
277.30 Shear 256.46 Shear 194.49 Shear 268.83 Shear

s230 444 298.41 S6 244.56 S6 199.74 S7 295.97 S6
63.279 298.44 S8 244.56 S8 199.75 S8 296.00 S8

298.44 Shear 244.56 Shear 199.75 Shear 296.00 Shear

Design Model P_exp. P_predict with
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H1 Fail.Elem H2 Fail.Elem T2 Fail.Elem
BM12 220 382.4 282.03 S10 281.34 S10 283.52 S10

282.04 S11 281.37 S11 358.96 N6
282.04 Shear 281.37 Shear 283.52 Shear

150 405.2 295.40 S9 296.57 S9 352.45 S9
295.43 S19 296.60 S19 352.47 S19
295.44 N9 296.61 N9 352.48 S17/N9
295.43 Combine 296.60 Combine 352.47 Combine

s230 466.9 359.22 S10 358.64 S10 364.75 S10
359.22 S11 358.66 S11 364.77 S11
359.22 Shear 358.66 Shear 364.77 Shear

BM16 220 309.3 279.62 S10 278.54 S10 280.39 S10
279.64 S11 278.57 S11 358.92 N6
279.64 Shear 278.57 Shear 280.39 Shear

150 416.5 295.02 S9 296.12 S9 351.91 S9
295.05 S19 296.15 S19 351.93 S19
295.06 N9 296.16 N9 351.94 S17/N9
295.05 Combine 296.15 Combine 351.93 Combine

s230 450.8 354.58 S10 352.95 S10 358.43 S10
354.59 S11 352.97 S11 358.45 S11
354.59 Shear 352.97 Shear 358.45 Shear

BM25 220 360.1 266.29 S10 263.13 S10 263.30 S10
266.30 S11 263.17 S11 263.35 S11
266.30 Shear 263.17 Shear 263.35 Shear

150 415.8 292.85 S9 293.52 S9 347.18 S17
292.88 S19 293.55 S19 347.21 S19
292.89 S17 293.56 S17/N9 347.22 S18/N10
292.88 Combine 293.55 Combine 347.21 Shear

s230 444 329.89 S10 323.33 S10 325.62 S10
329.90 S11 323.35 S11 325.65 S11
329.90 Shear 323.35 Shear 325.65 Shear

Half Section 
Fanning

P_exp. P_predict with
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H1 Fail.Elem H2 Fail.Elem T2 Fail.Elem
BM12 220 382.4 287.05 S6 292.27 S6 301.44 S6

76.89 287.07 S8 292.29 S8 301.46 S8
287.07 Shear 292.29 Shear 301.46 Shear

150 405.2 306.74 S6 303.05 S6 314.50 S6
306.76 S8 303.07 S8 314.52 S8
306.76 Shear 303.07 Shear 314.52 Shear

s230 466.9 342.74 S6 334.48 S6 347.30 S6
72.68 342.76 S8 334.50 S8 347.32 S8

342.76 Shear 334.50 Shear 347.32 Shear
BM16 220 309.3 283.24 S6 287.22 S6 295.41 S6

75.03 283.25 S8 287.24 S8 295.43 S8
283.25 Shear 287.24 Shear 295.43 Shear

150 416.5 302.07 S6 297.43 S6 308.21 S6
302.09 S8 297.45 S8 308.23 S8
302.09 Shear 297.45 Shear 308.23 Shear

s230 450.8 336.87 S6 327.97 S6 340.35 S6
71.148 336.89 S8 327.99 S8 340.37 S8

336.89 Shear 327.99 Shear 340.37 Shear
BM25 220 360.1 262.57 S6 260.32 S6 264.83 S6

67.424 262.59 S8 260.35 S8 264.86 S8
262.59 Shear 260.35 Shear 264.86 Shear

150 415.8 277.48 S6 268.81 S6 277.41 S6
277.50 S8 268.83 S8 277.43 S8
277.50 Shear 268.83 Shear 277.43 Shear

s230 444 307.79 S6 295.97 S6 307.61 S6
63.279 307.81 S8 296.00 S8 307.64 S8

307.81 Shear 296.00 Shear 307.64 Shear

Design Model P_exp. P_predict with
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For deep beams with stirrups analyzed with ℎ!  based on new approach: 

 



158 
 

 

ζACI Fail.Elem ζNd Fail.Elem ζCSA Fail.Elem ζNew Fail.Elem
BM12 220 382.4 338.75 S12 145.64 S12 136.36 S12 243.20 S12

338.78 S5 226.94 S5 226.89 S5 243.30 S5
338.78 Combine 226.94 Combine 226.89 Combine 243.30 Combine

150 405.2 223.68 S20 104.75 S20 111.07 S20 205.81 S20
223.75 S9 199.58 S9 199.56 S9 205.96 S9
223.75 Combine 199.58 Combine 199.56 Combine 205.96 Combine

s230 466.9 391.45 S5 324.06 S12 225.33 S12 388.92 S5
391.47 S12 324.07 S5 248.48 S5 388.93 S12
391.47 Combine 324.07 Combine 248.48 Combine 388.93 Combine

BM16 220 309.3 339.68 S12 146.28 S12 134.44 S12 241.79 S12
339.71 S5 222.23 S5 222.18 S5 241.88 S5
339.71 Combine 222.23 Combine 222.18 Combine 241.79 Combine

150 416.5 223.50 S20 104.59 S20 109.22 S20 203.57 S20
223.56 S9 195.41 S9 195.39 S9 203.70 S9
223.56 Combine 195.41 Combine 195.39 Combine 203.70 Combine

s230 450.8 378.96 S5 326.25 S5 223.60 S12 377.24 S5
378.98 S12 326.25 S12 243.29 S5 377.26 S12
378.98 Combine 326.25 Combine 243.29 Combine 377.26 Combine

BM25 220 360.1 346.28 S12 151.59 S12 125.52 S12 236.01 S12
346.29 S5 199.18 S5 199.15 S5 393.34 N7
346.29 Combine 199.18 Combine 199.15 Combine 236.01 Shear

150 415.8 224.86 S20 104.64 S20 100.33 S20 193.07 S20
224.90 S9 174.95 S9 174.94 S9 193.15 S9
224.90 Combine 174.95 Combine 174.94 Combine 193.15 Combine

s230 444 300.80 S5 222.85 S12 217.18 S12 301.03 S5
300.83 S12 223.02 S5 217.95 S5 301.05 S12
300.83 Combine 223.02 Combine 217.95 Combine 301.05 Combine

Kr Model P_exp. P_predict with
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ζACI Fail.Elem ζNd Fail.Elem ζCSA Fail.Elem ζNew Fail.Elem
BM12 220 382.4 418.64 N7 396.75 S10 235.60 S10 360.98 S10

396.75 S11 235.61 S11 361.01 S11
396.76 S12 235.61 S12 361.02 S12

418.64 Node Crush 396.76 Shear 235.61 Shear 361.02 Shear
150 405.2 367.17 S9 368.78 S9 297.92 S18 369.26 S9

410.76 S19 368.79 S19 298.14 S21 369.30 S19
410.80 S20 368.80 S20 298.15 S19 369.32 S20
410.82 S21 368.82 S21 298.16 S20 369.34 S21
410.83 N9 368.83 N9 298.17 S17 369.35 S17/N9
410.76 Combine 368.79 Combine 298.17 Shear 369.30 Combine

s230 466.9 400.32 S5 387.28 S10 237.16 S10 386.97 S10
400.36 S11 387.31 S11 237.18 S12 387.02 S12
400.37 S12 387.31 S12 237.18 S11 387.03 S11
400.36 Combine 387.31 Shear 237.18 Shear 387.03 Shear

BM16 220 309.3 414.25 N7 390.69 S10 229.07 S10 350.59 S10
390.70 S11 229.08 S11 350.63 S11
390.71 S12 229.09 S12 350.64 S12

414.25 Node Crush 390.71 Shear 229.09 Shear 350.64 Shear
150 416.5 354.95 S9 356.69 S9 287.07 S18 357.03 S9

408.60 S19 356.71 S19 287.60 S21 357.09 S19
408.64 S20 356.72 S20 287.61 S19 357.11 S20
408.66 S21 356.74 S21 287.62 S20 357.12 S21
408.67 N9 356.75 N9 287.63 S17 357.13 S17/N9
408.60 Combine 356.71 Combine 287.63 Shear 357.09 Combine

s230 450.8 387.50 S5 375.85 S10 228.68 S10 373.93 S10
387.54 S11 375.87 S12 228.70 S11 373.98 S12
387.55 S12 375.88 S11 228.70 S12 373.99 S11
387.54 Combine 375.88 Shear 228.70 Shear 373.99 Shear

BM25 220 360.1 350.49 S5 347.74 S10 193.52 S10 298.38 S10
350.52 S11 347.75 S11 193.53 S11 298.49 S11
350.54 S12 347.76 S12 193.54 S12 298.49 S12
350.52 Combine 347.76 Shear 193.54 Shear 298.49 Shear

150 415.8 296.58 S9 298.30 S9 236.09 S18 298.42 S9
393.34 N11 298.33 S19 244.04 S21 306.10 S19

298.34 S20 244.07 S17 306.12 S20
298.37 S21 244.07 S19 306.14 S21
298.38 N9 244.07 S20 306.15 N9

296.58 Flexure 298.33 Combine 244.07 Shear 306.10 Combine
s230 444 326.24 S5 256.85 S10 188.54 S10 307.17 S10

326.31 S11 256.87 S11 188.56 S12 307.23 S12
326.32 S12 256.88 S12 188.57 S11 307.25 S11
326.31 Combine 256.88 Shear 188.57 Shear 307.25 Shear

Whole Section 
Fanning

P_exp. P_predict with
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ζACI Fail.Elem ζNd Fail.Elem ζCSA Fail.Elem ζNew Fail.Elem
BM12 220 382.4 334.06 S5 325.98 S10 209.38 S10 278.55 S10

334.08 S11 326.00 S11 209.39 S11 278.58 S11
334.08 Combine 326.00 Shear 209.39 Shear 278.58 Shear

150 405.2 296.88 S9 296.61 S9 281.74 S19 296.63 S9
296.93 S19 296.64 S19 281.78 S9 296.66 S19
296.93 N9 296.65 N9 281.79 S17 296.67 N9
296.93 Combine 296.64 Combine 281.78 Combine 296.66 Combine

s230 466.9 375.02 S5 342.84 S10 223.19 S10 363.93 S10
375.04 S11 342.86 S11 223.20 S11 363.95 S11
375.04 Combine 342.86 Shear 223.20 Shear 363.95 Shear

BM16 220 309.3 327.46 S5 320.34 S10 203.26 S10 272.90 S10
327.48 S11 320.36 S11 203.27 S11 272.93 S11
327.48 Combine 320.36 Shear 203.27 Shear 272.93 Shear

150 416.5 289.94 S9 289.71 S9 274.99 S19 289.74 S9
289.99 S19 289.74 S19 275.03 S9 289.77 S19
290.00 N9 289.75 N9 275.04 S17 289.78 N9
289.99 Combine 289.74 Combine 275.03 Combine 289.77 Combine

s230 450.8 367.26 S5 335.09 S10 216.54 S10 354.79 S10
367.28 S11 335.11 S11 216.55 S11 354.81 S11
367.28 Combine 335.11 Shear 216.55 Shear 354.81 Shear

BM25 220 360.1 277.10 S5 279.33 S10 173.96 S10 244.18 S10
277.13 S11 279.35 S11 173.98 S11 244.21 S11
277.13 Combine 279.35 Shear 173.98 Shear 244.21 Shear

150 415.8 256.96 S9 256.85 S9 242.60 S19 256.89 S9
257.01 S19 256.88 S19 242.63 S17 256.92 S19
257.02 N9 256.89 N9 242.63 S18 256.93 N9
257.01 Combine 256.88 Combine 242.63 Shear 256.92 Combine

s230 444 328.98 S5 245.66 S10 184.61 S10 298.97 S10
329.00 S11 245.68 S11 184.62 S11 298.99 S11
329.00 Combine 245.68 Shear 184.62 Shear 298.99 Shear

Half Section 
Fanning

P_exp. P_predict with
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ζACI Fail.Elem ζNd Fail.Elem ζCSA Fail.Elem ζNew Fail.Elem
BM12 220 382.4 361.41 S6 278.98 S6 212.29 S8 291.27 S6

76.89 361.43 S8 278.98 S8 212.32 S7 291.29 S8
361.43 Shear 278.98 Shear 212.32 Shear 291.29 Shear

150 405.2 326.29 S6 270.24 S6 221.34 S7 305.50 S6
326.31 S8 270.25 S8 221.35 S8 305.52 S8
326.31 Shear 270.25 Shear 221.35 Shear 305.52 Shear

s230 466.9 314.11 S6 282.67 S6 234.94 S7 324.72 S6
72.68 314.13 S8 282.68 S8 234.94 S8 324.74 S8

314.13 Shear 282.68 Shear 234.94 Shear 324.74 Shear
BM16 220 309.3 350.72 S6 275.16 S6 208.83 S8 282.65 S6

75.03 350.74 S8 275.16 S8 208.86 S7 282.67 S8
350.74 Shear 275.16 Shear 208.86 Shear 282.67 Shear

150 416.5 298.85 S6 262.69 S6 215.49 S7 295.15 S6
298.87 S8 262.69 S8 215.50 S8 295.17 S8
298.87 Shear 262.69 Shear 215.50 Shear 295.17 Shear

s230 450.8 303.34 S6 274.17 S6 228.35 S7 313.87 S6
71.148 303.36 S8 274.18 S8 228.36 S8 313.89 S8

303.36 Shear 274.18 Shear 228.36 Shear 313.89 Shear
BM25 220 360.1 298.19 S6 244.86 S6 189.80 S8 241.09 S6

67.424 298.21 S8 244.86 S8 189.81 S7 241.11 S8
298.21 Shear 244.86 Shear 189.81 Shear 241.11 Shear

150 415.8 247.73 S6 224.79 S6 186.59 S7 248.85 S6
247.76 S8 224.80 S8 186.59 S8 248.87 S8
247.76 Shear 224.80 Shear 186.59 Shear 248.87 Shear

s230 444 253.90 S6 201.86 S6 196.44 S7 263.98 S6
63.279 253.93 S8 201.87 S8 196.45 S8 264.01 S8

253.93 Shear 201.87 Shear 196.45 Shear 264.01 Shear

Design Model P_exp. P_predict with
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H1 Fail.Elem H2 Fail.Elem T2 Fail.Elem
BM12 220 382.4 279.42 S10 278.55 S10 281.18 S10

279.43 S11 278.58 S11 387.00 N6
279.43 Shear 278.58 Shear 281.18 Shear

150 405.2 294.74 S9 296.63 S9 382.34 S9
294.77 S19 296.66 S19 382.36 S19
294.78 N9 296.67 N9 382.37 S17/N9
294.77 Combine 296.66 Combine 382.36 Combine

s230 466.9 364.83 S10 363.93 S10 369.98 S10
364.84 S11 363.95 S11 370.00 S11
364.84 Shear 363.95 Shear 370.00 Shear

BM16 220 309.3 274.29 S10 272.90 S10 275.30 S10
274.30 S11 272.93 S11 380.16 N6
274.30 Shear 272.93 Shear 275.30 Shear

150 416.5 288.12 S9 289.74 S9 374.52 S9
288.15 S19 289.77 S19 374.54 S19
288.16 N9 289.78 N9 374.55 S17/N9
288.15 Combine 289.77 Combine 374.54 Combine

s230 450.8 356.52 S10 354.79 S10 360.23 S10
356.53 S11 354.81 S11 360.25 S11
356.53 Shear 354.81 Shear 360.25 Shear

BM25 220 360.1 248.04 S10 244.18 S10 245.47 S10
248.05 S11 244.21 S11 245.52 S11
248.05 Shear 244.21 Shear 245.52 Shear

150 415.8 256.36 S9 256.89 S9 335.82 S9
256.39 S19 256.92 S19 335.84 S19
256.40 N9 256.93 N9 335.85 S17/N9
256.39 Combine 256.92 Combine 335.85 Combine

s230 444 306.47 S10 298.97 S10 303.03 S10
306.48 S11 298.99 S11 303.05 S11
306.48 Shear 298.99 Shear 303.05 Shear

Half Section 
Fanning

P_exp. P_predict with



167 
 

 



168 
 

 
 
 

H1 Fail.Elem H2 Fail.Elem T2 Fail.Elem
BM12 220 382.4 284.90 S6 291.27 S6 302.83 S6

76.89 284.92 S8 291.29 S8 302.85 S8
284.92 Shear 291.29 Shear 302.85 Shear

150 405.2 312.85 S6 305.50 S6 327.26 S6
312.87 S8 305.52 S8 327.28 S8
312.87 Shear 305.52 Shear 327.28 Shear

s230 466.9 334.79 S6 324.72 S6 344.23 S6
72.68 334.81 S8 324.74 S8 344.25 S8

334.81 Shear 324.74 Shear 344.25 Shear
BM16 220 309.3 277.68 S6 282.65 S6 293.07 S6

75.03 277.70 S8 282.67 S8 293.09 S8
277.70 Shear 282.67 Shear 293.09 Shear

150 416.5 301.67 S6 295.15 S6 317.73 S6
301.69 S8 295.17 S8 317.75 S8
301.69 Shear 295.17 Shear 317.75 Shear

s230 450.8 323.50 S6 313.87 S6 330.76 S6
71.148 323.52 S8 313.89 S8 330.78 S8

323.52 Shear 313.89 Shear 330.78 Shear
BM25 220 360.1 241.86 S6 241.09 S6 248.01 S6

67.424 241.88 S8 241.11 S8 248.03 S8
241.88 Shear 241.11 Shear 248.03 Shear

150 415.8 256.47 S6 248.85 S6 259.86 S6
256.49 S8 248.87 S8 259.88 S8
256.49 Shear 248.87 Shear 259.88 Shear

s230 444 273.15 S6 263.98 S6 277.22 S6
63.279 273.17 S8 264.01 S8 277.25 S8

273.17 Shear 264.01 Shear 277.25 Shear

Design Model P_exp. P_predict with
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For deep beams without stirrups: 

 

 

 

 

P_Predict Sften. Factor @ Failure
ζACI ζNd ζCSA ζNew ζACI ζNd ζCSA ζNew ζACI ζNd ζCSA ζNew h_C

BM12 INF 163.1 93.3 83.9 90.7 159.1 0.34 0.3055 0.3288 0.5772 0.57 0.51 0.56 0.98 76.89
BM16 INF 150.2 91.8 82.5 88.6 155.6 0.34 0.3055 0.3259 0.5735 0.61 0.55 0.59 1.04 75.03
BM25 INF 125.1 85.7 77.0 78.5 139.6 0.34 0.3055 0.3098 0.5521 0.68 0.62 0.63 1.12 67.42

Error 0.38 0.44 0.41 0.06
STDV 0.06 0.05 0.04 0.07

Strain 
Compatibility

P_exp.

P_Predict Sften. Factor @ Failure
ζACI ζNd ζCSA ζNew ζACI ζNd ζCSA ζNew ζACI ζNd ζCSA ζNew h_C

BM12 INF 163.1 74.3 66.7 81.9 136.6 0.34 0.3055 0.3734 0.6228 0.46 0.41 0.50 0.84 54.00
BM16 INF 150.2 74.3 66.7 80.6 135.1 0.34 0.3055 0.3672 0.6168 0.49 0.44 0.54 0.90 54.00
BM25 INF 125.1 74.3 66.7 73.8 127.4 0.34 0.3055 0.3363 0.5811 0.59 0.53 0.59 1.02 54.00

Error 0.49 0.54 0.46 0.09
STDV 0.07 0.06 0.04 0.09

0.2d P_exp.

P_Predict Sften. Factor @ Failure
ζACI ζNd ζCSA ζNew ζACI ζNd ζCSA ζNew ζACI ζNd ζCSA ζNew h_C

BM12 INF 163.1 74.3 66.7 81.9 130.6 0.34 0.3055 0.3734 0.6336 0.46 0.41 0.50 0.80 48.97
BM16 INF 150.2 74.3 66.7 80.6 128.0 0.34 0.3055 0.3672 0.6297 0.49 0.44 0.54 0.85 47.88
BM25 INF 125.1 74.3 66.7 73.8 115.1 0.34 0.3055 0.3363 0.6087 0.59 0.53 0.59 0.92 42.60

Error 0.49 0.54 0.46 0.14
STDV 0.07 0.06 0.04 0.06

New P_exp.

P_Predict Sften. Factor @ Failure
H1 H2 T2 H1 H2 T2 H1 H2 T2 h_C

BM12 INF 163.1 120.4 130.6 146.0 0.5848 0.6336 0.6366 0.74 0.80 0.90 48.97
BM16 INF 150.2 118.0 128.0 142.8 0.5815 0.6297 0.6329 0.79 0.85 0.95 47.88
BM25 INF 125.1 106.1 115.1 126.8 0.562 0.6087 0.6096 0.85 0.92 1.01 42.60

Error 0.21 0.14 0.06
STDV 0.06 0.06 0.06

Proposed P_exp.
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P_predict Sften. Factor @ Failure
ζACI ζNd ζCSA ζNew ζACI ζNd ζCSA ζNew ζACI ζNd ζCSA ζNew h_C

A3D9M-1.4 INF 136.05 94.4 143.3 86.8 128.5 0.34 0.5168 0.3115 0.4612 0.69 1.05 0.64 0.94 52.7
A3D9M-1.7 INF 98.98 77.5 101.3 62.8 101.8 0.34 0.445 0.2743 0.445 0.78 1.02 0.63 1.03 52.7
A3D9M-2.1 INF 88 61.4 48.5 43.1 77.0 0.34 0.2683 0.237 0.4244 0.70 0.55 0.49 0.87 52.7
A4D9M-1.7 INF 121 81.3 104.2 71.4 114.8 0.34 0.4363 0.297 0.4782 0.67 0.86 0.59 0.95 59.76
A5D9M-1.7 INF 133.97 84.5 106.3 78.6 125.6 0.34 0.4283 0.3148 0.5033 0.63 0.79 0.59 0.94 65.75
A3D9S-1.7 INF 109.58 70.8 90.8 58.6 95.1 0.34 0.4367 0.2798 0.4553 0.65 0.83 0.53 0.87 45.15
A5D9L-1.7 INF 134.27 91.9 117.7 83.9 134.0 0.34 0.436 0.3089 0.4936 0.68 0.88 0.62 1.00 74.35
C3D9M-1.4 INF 169.26 100.3 150.6 103.1 151.1 0.34 0.511 0.3478 0.5101 0.59 0.89 0.61 0.89 62.68
C3D9M-1.7 INF 106.54 82.9 105.3 74.9 120.1 0.34 0.4324 0.3058 0.4906 0.78 0.99 0.70 1.13 62.68
C3D9M-2.1 INF 52.64 66.2 46.6 51.6 91.1 0.34 0.239 0.2636 0.4664 1.26 0.88 0.98 1.73 62.68
C4D9M-1.7 INF 96.09 87.1 107.8 84.6 134.6 0.34 0.4211 0.3287 0.523 0.91 1.12 0.88 1.40 70.79
C5D9M-1.7 INF 151.39 90.5 109.3 92.7 146.5 0.34 0.4107 0.3462 0.5477 0.60 0.72 0.61 0.97 77.62
C3D9S-1.7 INF 104.84 74.8 92.7 69.0 110.9 0.34 0.4217 0.3123 0.5024 0.71 0.88 0.66 1.06 53.5
C5D9L-1.7 INF 145.39 99.4 122.9 99.9 157.8 0.34 0.4208 0.3401 0.5375 0.68 0.85 0.69 1.09 88.07

Error 0.32 0.15 0.39 0.07
St D 0.06 0.14 0.06 0.08

Strain 
Compatibility

P_exp.
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P_predict Sften. Factor @ Failure
ζACI ζNd ζCSA ζNew ζACI ζNd ζCSA ζNew ζACI ζNd ζCSA ζNew h_C

A3D9M-1.4 INF 136.05 92.7 141.2 86.4 127.4 0.34 0.5183 0.3155 0.4655 0.68 1.04 0.64 0.94 50
A3D9M-1.7 INF 98.98 76.0 100.1 62.5 100.8 0.34 0.4482 0.2783 0.4495 0.77 1.01 0.63 1.02 50
A3D9M-2.1 INF 88 60.1 48.8 42.8 76.2 0.34 0.2757 0.2409 0.4294 0.68 0.55 0.49 0.87 50
A4D9M-1.7 INF 121 76.0 100.1 70.2 111.0 0.34 0.4482 0.3124 0.4944 0.63 0.83 0.58 0.92 50
A5D9M-1.7 INF 133.97 76.0 100.1 76.5 118.9 0.34 0.4482 0.3406 0.5301 0.57 0.75 0.57 0.89 50
A3D9S-1.7 INF 109.58 67.2 88.5 58.1 93.0 0.34 0.4482 0.2928 0.4687 0.61 0.81 0.53 0.85 38
A5D9L-1.7 INF 134.27 84.8 111.7 81.8 128.4 0.34 0.4482 0.3264 0.5126 0.63 0.83 0.61 0.96 62
C3D9M-1.4 INF 169.26 92.7 141.2 101.0 145.1 0.34 0.5183 0.3689 0.5297 0.55 0.83 0.60 0.86 50
C3D9M-1.7 INF 106.54 76.0 100.1 73.3 114.9 0.34 0.4482 0.3263 0.5122 0.71 0.94 0.69 1.08 50
C3D9M-2.1 INF 52.64 60.1 48.8 50.3 86.9 0.34 0.2757 0.2832 0.4895 1.14 0.93 0.96 1.65 50
C4D9M-1.7 INF 96.09 76.0 100.1 81.7 125.2 0.34 0.4482 0.3637 0.5581 0.79 1.04 0.85 1.30 50
C5D9M-1.7 INF 151.39 76.0 100.1 88.5 133.0 0.34 0.4482 0.394 0.5929 0.50 0.66 0.58 0.88 50
C3D9S-1.7 INF 104.84 67.2 88.5 67.9 105.5 0.34 0.4482 0.3422 0.5319 0.64 0.84 0.65 1.01 38
C5D9L-1.7 INF 145.39 84.8 111.7 95.0 144.2 0.34 0.4482 0.379 0.9919 0.58 0.77 0.65 0.99 62

Error 0.37 0.19 0.40 0.08
St D 0.07 0.14 0.06 0.07

0.2d P_exp.
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P_predict Sften. Factor @ Failure h_C
ζACI ζNd ζCSA ζNew ζACI ζNd ζCSA ζNew ζACI ζNd ζCSA ζNew ζACI ζNd ζCSA ζNew

A3D9M-1.4 INF 136.05 77.7 120.8 81.8 116.4 0.34 0.5264 0.3566 0.5051 0.57 0.89 0.60 0.86 25.968 26.718 26.027 26.624
A3D9M-1.7 INF 98.98 62.1 86.5 58.6 91.0 0.34 0.4722 0.3195 0.4937 0.63 0.87 0.59 0.92 25.937 26.403 25.88 26.504
A3D9M-2.1 INF 88 47.7 46.6 39.6 67.6 0.34 0.3327 0.2817 0.4784 0.54 0.53 0.45 0.77 25.885 25.864 25.732 26.338
A4D9M-1.7 INF 121 64.2 88.8 66.3 101.5 0.34 0.469 0.3497 0.5321 0.53 0.73 0.55 0.84 29.485 29.93 29.519 30.209
A5D9M-1.7 INF 133.97 66.0 90.7 72.9 110.2 0.34 0.4661 0.3731 0.561 0.49 0.68 0.54 0.82 32.537 32.971 32.648 33.393
A3D9S-1.7 INF 109.58 58.9 81.5 56.3 87.4 0.34 0.4687 0.3236 0.4998 0.54 0.74 0.51 0.80 22.451 22.939 22.405 23.101
A5D9L-1.7 INF 134.27 69.5 96.2 75.8 114.7 0.34 0.4691 0.3686 0.5547 0.52 0.72 0.56 0.85 36.533 36.973 36.629 37.336
C3D9M-1.4 INF 169.26 80.9 125.7 96.6 134.9 0.34 0.5264 0.4037 0.5608 0.48 0.74 0.57 0.80 30.992 31.704 31.212 31.888
C3D9M-1.7 INF 106.54 65.1 89.8 69.5 105.8 0.34 0.4676 0.3614 0.5465 0.61 0.84 0.65 0.99 30.967 31.407 31.039 31.756
C3D9M-2.1 INF 52.64 50.4 47.7 47.3 79.0 0.34 0.322 0.3179 0.5277 0.96 0.91 0.90 1.50 30.922 30.871 30.863 31.568
C4D9M-1.7 INF 96.09 67.5 92.3 78.3 117.3 0.34 0.4636 0.3919 0.5835 0.70 0.96 0.82 1.22 35.132 35.56 35.308 36.097
C5D9M-1.7 INF 151.39 69.6 94.4 85.7 126.8 0.34 0.46 0.4156 0.6114 0.46 0.62 0.57 0.84 38.694 39.115 38.959 39.805
C3D9S-1.7 INF 104.84 61.2 83.7 66.3 100.8 0.34 0.4634 0.3663 0.5538 0.58 0.80 0.63 0.96 26.711 27.155 26.801 27.596
C5D9L-1.7 INF 145.39 73.9 101.0 89.8 132.9 0.34 0.4636 0.4106 0.6043 0.51 0.69 0.62 0.91 43.564 43.999 43.811 44.62

Error 0.46 0.26 0.43 0.14
St D 0.05 0.10 0.05 0.07

New P_exp.



173 
 

 
 

P_predict Sften. Factor @ Failure h_C
H1 H2 M2 H1 H2 M2 H1 H2 M2 H1 H2 M2

A3D9M-1.4 INF 136.05 111.1 116.4 108.7 0.4807 0.5051 0.5275 0.82 0.86 0.80 25.968 26.624 26.47
A3D9M-1.7 INF 98.98 86.2 91.0 84.6 0.4667 0.4937 0.5163 0.87 0.92 0.85 26.397 26.504 26.361
A3D9M-2.1 INF 88 63.5 67.6 62.6 0.4477 0.4784 0.5018 0.72 0.77 0.71 26.233 26.338 26.212
A4D9M-1.7 INF 121 96.1 101.5 95.7 0.5021 0.5321 0.5526 0.79 0.84 0.79 30.085 30.209 30.077
A5D9M-1.7 INF 133.97 104.3 110.2 105.0 0.5301 0.561 0.5812 0.78 0.82 0.78 33.255 33.393 33.271
A3D9S-1.7 INF 109.58 82.8 87.4 81.5 0.4721 0.4998 0.5222 0.76 0.80 0.74 22.974 23.101 22.939
A5D9L-1.7 INF 134.27 108.6 114.7 109.1 0.5235 0.5547 0.5747 0.81 0.85 0.81 37.209 37.336 37.219
C3D9M-1.4 INF 169.26 128.5 134.9 128.4 0.5329 0.5608 0.5802 0.76 0.80 0.76 31.758 31.888 31.755
C3D9M-1.7 INF 106.54 100.1 105.8 100.3 0.5162 0.5465 0.5668 0.94 0.99 0.94 31.625 31.756 31.629
C3D9M-2.1 INF 52.64 73.9 79.0 74.4 0.4929 0.5277 0.5488 1.40 1.50 1.41 31.438 31.568 31.451
C4D9M-1.7 INF 96.09 111.0 117.3 112.7 0.5512 0.5835 0.6021 1.15 1.22 1.17 35.948 36.097 35.987
C5D9M-1.7 INF 151.39 119.9 126.8 123.0 0.5775 0.6114 0.6292 0.79 0.84 0.81 39.642 39.805 39.714
C3D9S-1.7 INF 104.84 95.4 100.8 95.8 0.523 0.5538 0.5736 0.91 0.96 0.91 27.443 27.596 27.455
C5D9L-1.7 INF 145.39 125.8 132.9 132.9 0.5713 0.6043 0.6043 0.87 0.91 0.91 44.468 44.62 44.62

Error 0.18 0.14 0.18
St D 0.07 0.07 0.07

Proposed P_exp.


