
Complexity of Ck-Coloring in Hereditary Classes
of Graphs
Maria Chudnovsky
Princeton University, Princeton, NJ 08544, USA
mchudnov@math.princeton.edu

Shenwei Huang1

College of Computer Science, Nankai University, Tianjin 300350, China
shenweihuang@nankai.edu.cn

Paweł Rzążewski
Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
p.rzazewski@mini.pw.edu.pl

Sophie Spirkl
Rutgers University, Piscataway, NJ 08854, USA
sophiespirkl@gmail.com

Mingxian Zhong
Lehman College, CUNY, Bronx, NY 10468, USA
mingxian.zhong@lehman.cuny.edu

Abstract
For a graph F , a graph G is F -free if it does not contain an induced subgraph isomorphic to F .
For two graphs G and H, an H-coloring of G is a mapping f : V (G)→ V (H) such that for every
edge uv ∈ E(G) it holds that f(u)f(v) ∈ E(H). We are interested in the complexity of the problem
H-Coloring, which asks for the existence of an H-coloring of an input graph G. In particular, we
consider H-Coloring of F -free graphs, where F is a fixed graph and H is an odd cycle of length
at least 5. This problem is closely related to the well known open problem of determining the
complexity of 3-Coloring of Pt-free graphs.

We show that for every odd k ≥ 5 the Ck-Coloring problem, even in the precoloring-extension
variant, can be solved in polynomial time in P9-free graphs. On the other hand, we prove that the
extension version of Ck-Coloring is NP-complete for F -free graphs whenever some component of
F is not a subgraph of a subdivided claw.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases homomorphism, hereditary class, computational complexity, forbidden
induced subgraph

Digital Object Identifier 10.4230/LIPIcs.ESA.2019.31

Funding Maria Chudnovsky: Supported by NSF grant DMS-1763817. This material is based upon
work supported in part by the U. S. Army Research Laboratory and the U. S. Army Research Office
under grant number W911NF-16-1-0404.
Shenwei Huang: This research is supported by the National Natural Science Foundation of China
(11801284).
Sophie Spirkl: This material is based upon work supported by the National Science Foundation
under Award No. DMS1802201.

Acknowledgements We are grateful to anonymous reviewers for their comments that helped improve
the presentation of the paper.

1 Corresponding author

© Maria Chudnovsky, Shenwei Huang, Paweł Rzążewski, Sophie Spirkl, and Mingxian Zhong;
licensed under Creative Commons License CC-BY

27th Annual European Symposium on Algorithms (ESA 2019).
Editors: Michael A. Bender, Ola Svensson, and Grzegorz Herman; Article No. 31; pp. 31:1–31:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mchudnov@math.princeton.edu
mailto:shenweihuang@nankai.edu.cn
mailto:p.rzazewski@mini.pw.edu.pl
mailto:sophiespirkl@gmail.com
mailto:mingxian.zhong@lehman.cuny.edu
https://doi.org/10.4230/LIPIcs.ESA.2019.31
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Complexity of Ck-Coloring in Hereditary Classes of Graphs

1 Introduction

For graphs G and H, a homomorphism from G to H is a mapping f : V (G)→ V (H) such
that f(u)f(v) ∈ E(H) for every edge uv ∈ E(G). It is straightforward to see that if H is a
complete graph with k vertices, then every homomorphism to H is in fact a k-coloring of G

(and vice versa). This shows that homomorphisms can be seen as a generalization of graph
colorings. Because of that, a homomorphism to H is often called an H-coloring, and vertices
of H are called colors. We also say that G is H-colorable if G has an H-coloring.

In what follows, the target graph H is always fixed. We are interested in the complexity
of the H-Coloring problem, which asks whether the input graph G has an H-coloring.

1.1 Complexity of variants of H-Coloring
Since H-Coloring is a generalization of k-Coloring, it is natural to try to extend results
for k-Coloring to target graphs H which are not complete graphs. For example, it is
well-known that k-Coloring enjoys a complexity dichotomy: it is polynomial-time solvable
if k ≤ 2, and NP-complete otherwise. The complexity dichotomy for H-Coloring was
described by Hell and Nešetřil in their seminal paper [23]: they proved that the problem is
polynomial-time solvable if H is bipartite, and NP-complete otherwise.

Since then, there have been numerous studies on variants of H-Coloring. Our main
focus will be on the H-Precoloring Extension problem, in which we are given a triple
(G, W, h), where G is a graph, W is a subset of V (G), and h is a mapping from W to V (H).
The problem is to decide if h can be extended to an H-coloring of G, that is, if there is an
H-coloring f of G such that f |W = h.

Note that this problem is closely related to the List H-Coloring problem, where the
input consists of a graph G with an H-list assignment, which is a function L : V (G)→ 2V (H)

that assigns a subset of V (H) (called list) to each vertex of G. We ask if there is an
H-coloring f of G such that f(v) ∈ L(v) for each v ∈ V (G). In such a case we say that
(G, L) is H-colorable and f is an H-coloring of (G, L). Clearly H-Precoloring Extension
can be seen as a restriction of List H-Coloring, in which every list is either a singleton,
or contains all vertices of H. This is the reason why it is sometimes called one-or-all list
homomorphism (coloring) problem [13].

In general, variants of H-Coloring can be seen in a wider context of Constraint
Satisfaction Problems (CSP). A full complexity dichotomy for this family of problems has
been a long-standing open question, known as the CSP dichotomy conjecture of Feder and
Vardi [15]. After a long series of partial results, the problem was finally solved very recently,
independently by Bulatov [5] and by Zhuk [33].

A natural approach in dealing with computationally hard problems is to consider restricted
instances, in hope to understand the boundary between easy and hard cases. For example, it
is known that H-Coloring can be solved in polynomial time for perfect graphs, because
it suffices to test whether ω(G) > ω(H), which can be done in O(|V (G)||V (H)|) time. If
ω(G) > ω(H), then the answer is no, as there is no way to map the largest clique of G to H.
Otherwise the answer is yes, since ω(G)-coloring of G can be translated to a homomorphism
of G to the largest clique of H, and thus to H. The situation changes when we consider the
more general setting of H-Precoloring Extension and List H-Coloring. For any fixed
graph H, List H-Coloring (and thus H-Precoloring Extension and H-Coloring)
can be solved in polynomial time for input graphs with bounded tree-width. Combining this
with an observation that any graph with a clique larger than ω(H) has no H-coloring, we
obtain polynomial-time algorithms for chordal graphs [14]. For permutations graphs, List

M. Chudnovsky, S. Huang, P. Rzążewski, S. Spirkl, and M. Zhong 31:3

H-Coloring can also be solved in polynomial time via a recursive branching algorithm [11].
For bipartite input graphs, however, 3-Precoloring Extension (i.e., K3-Precoloring
Extension) is already NP-complete [29]. Other restricted inputs have been studied too,
e.g. bounded-degree graphs [16]. For more results on graph homomorphisms, we refer to the
monograph by Hell and Nešetřil [22].

1.2 Graphs with forbidden induced subgraphs
A rich family of restricted graph classes comes from forbidding some small substructures.
For graphs G and F , we say that G contains F if F is an induced subgraph of G. By F -free
graphs we mean the class of graphs that do not contain F . Note that this class is hereditary,
that is, it is closed under taking induced subgraphs.

The complexity of k-Coloring for hereditary graph classes has received much attention
in the past two decades and significant progress has been made. Of particular interest is the
class of F -free graphs for a fixed graph F . For any fixed k ≥ 3, the k-Coloring problem
remains NP-complete for F -free graphs whenever F is not a linear forest (a collection
of disjoint paths) [25, 31]. The simplest linear forests are paths, and the complexity of
k-Coloring in Pt-free graphs has been studied by many researchers.

On the positive side, Hoàng, Kamiński, Lozin, Sawada, and Shu [24] gave a recursive
algorithm showing that k-Coloring can be solved in polynomial time for P5-free graphs
for any fixed k. Bonomo, Chudnovsky, Maceli, Schaudt, Stein, and Zhong [4] showed that
3-Coloring can be solved in polynomial time in P7-free graphs. Moreover, very recently,
Chudnovsky, Spirkl, and Zhong proved that 4-Coloring is polynomial-time solvable in
P6-free graphs [7, 8, 9].

On the negative side, Woeginger and Sgall [32] demonstrated the NP-completeness of
5-Coloring for P8-free graphs and 4-Coloring for P12-free graphs. Later on, these
NP-completeness results were improved by various researchers and the strongest result is
due to Huang [26] who proved that 4-Coloring is NP-complete for P7-free graphs and
5-Coloring is NP-complete for P6-free graphs. These results settle the complexity of
k-Coloring for Pt-free graphs for all pairs (k, t), except for the complexity of 3-Coloring
for Pt-free graphs when t ≥ 8. Interestingly, all polynomial-time results carry over to the list
variant, except for the case of List 4-Coloring of P6-free graphs, which was shown to be
NP-complete by Golovach, Paulusma, and Song [18]. We refer the reader to the survey by
Golovach, Johnson, Paulusma, and Song [17] for more information about coloring graphs
with forbidden subgraphs.

Understanding the complexity of 3-Coloring in Pt-free graphs seems a hard problem
– on the one hand, algorithms even for small values of t are difficult to construct, and on
the other hand all our hardness reductions appear to introduce long induced paths. Let us
mention a problem whose complexity is equally elusive: Independent Set. Alekseev [1]
observed that Independent Set is NP-complete in F -free graphs whenever F is not a
path or a subdivided claw. For Pt-free graphs, polynomial-time algorithms are known only
for small values of t: currently, the best result is the recent polynomial-time algorithm for
P6-free graphs by Grzesik, Klimošova, Pilipczuk, and Pilipczuk [20, 21]. On the other hand,
the problem is not known to be NP-hard for any fixed t.

A natural question to ask is if the similar behavior of 3-Coloring and Independent
Set in Pt-free graphs is a part of a more general phenomenon. Recently, Groenland, Okrasa,
Rzążewski, Scott, Seymour, and Spirkl [19] shed some light on this question by showing that
if H does not contain two vertices with two common neighbors, then a very general, weighted
variant of H-Coloring can be solved in time 2O(

√
tn log n) for Pt-free graphs. Clearly K3

ESA 2019

31:4 Complexity of Ck-Coloring in Hereditary Classes of Graphs

does not have two vertices with two common neighbors. Moreover, Independent Set can be
expressed as a weighted homomorphism to , which has the same property, and thus,
for every t, both 3-Coloring and Independent Set can be solved in subexponential time
in Pt-free graphs (we note that a subexponential algorithm for Independent Set in Pt-free
graphs was known before [2]). This implies that if one attempts to prove NP-completeness
of any of these problems in Pt-free graphs, then, assuming the Exponential Time Hypothesis
[27, 28], such a reduction should be sufficiently complicated to introduce at least a quadratic
blow-up of the instance.

In this paper, we study the complexity of variants of H-Coloring when H is an odd
cycle of length at least five. Note that by the result of Groenland et al. [19], this problem can
be solved in subexponential time in Pt-free graphs. We are interested in better classification
of polynomial and NP-hard cases.

1.3 Our contribution
The contribution of the paper is twofold: First, we show that the Ck-Precoloring Exten-
sion problem can be solved in polynomial time in P9-free graphs.

I Theorem 1.1. Let k ≥ 5 be odd, G be a P9-free graph of order n, W be a subset of its
vertices, and h be a mapping from W to V (Ck). Then one can determine in O(n12k+3) time
if h can be extended to a Ck-coloring of G, and find such a Ck-coloring if one exists.

The algorithm is described in detail in Section 3. It builds on the recent work on 3-
Coloring P7-free graphs [4]. The high-level idea of the algorithm is the following: First, we
partition the graph into a so-called layer structure and guess the colors of a constant number
of vertices. This precoloring propagates to other vertices using the layer structure, reducing
the lists of possible colors. We keep guessing the colors of other vertices, transforming the
input instance into a set of nO(k) subinstances of List H-Coloring, such that:
(i) (G, W, f) is a yes-instance of Ck-Precoloring Extension if and only if one of these

subinstances is a yes-instance of List Ck-Coloring; and
(ii) each subinstance can be solved in polynomial time by a reduction to 2-Sat.

In Section 4, we study the complexity of variants of H-Coloring in F -free graphs and
prove the following theorem.

I Theorem 1.2. Let F be a connected graph. If F is not a subgraph of a subdivided claw,
then for every odd k ≥ 5 the Ck-Precoloring Extension problem is NP-complete for
F -free graphs.

We prove the theorem in several steps, analyzing the possible structure of F and trimming
the hard cases. Observe that the statement of Theorem 1.2 is similar to the previously
mentioned result of Alekseev for Independent Set [1]. In most cases, we actually prove
hardness for the more restricted Ck-Coloring problem.

Finally, in Section 5, we state some open questions for future research.

2 Preliminaries

Let G be a simple graph. For X ⊆ V (G), we denote by G|X the subgraph induced by
X, and denote by G \ X the graph G|(V (G) \ X). We say that X is connected if G|X
is connected. For two disjoint subsets A, B ⊂ V (G), we say that A is complete to B if
every vertex of A is adjacent to every vertex of B, and that A is anticomplete to B if every

M. Chudnovsky, S. Huang, P. Rzążewski, S. Spirkl, and M. Zhong 31:5

vertex of A is nonadjacent to every vertex of B. If A = {a} we write a is complete (or
anticomplete) to B to mean that {a} is complete (or anticomplete) to B. For X ⊆ V (G),
we say that e ∈ E(G) is an edge of X if both endpoints of e are in X. For v ∈ V (G) we
write NG(v) (or N(v) when there is no danger of confusion) to mean the set of vertices of G

that are adjacent to v. Observe that since G is simple, v 6∈ N(v). For X ⊆ V (G) we define
N(X) =

(⋃
v∈X N(v)

)
\X. We say that the set S dominates X, or S is a dominating set of

X if X ⊆ S ∪N(S). We write that S dominates G when we mean that it dominates V (G).
A component of G is trivial if it has only one vertex and nontrivial otherwise.

We use [k] to denote the set {1, 2, . . . , k}. We denote by Pt the path with t vertices. A
path in a graph G is a sequence v1 − · · · − vt of pairwise distinct vertices such that for any
i, j ∈ [t], vivj ∈ E(G) if and only if |i− j| = 1. The length of this path is t. We denote by
V (P) the set {v1, . . . , vt}. If a, b ∈ V (P), say a = vi and b = vj with i < j, then a−P − b is
the path vi − vi+1 − · · · − vj , and b− P − a is the path vj − vj−1 − · · · − vi.

Let k ≥ 3 be an odd integer. We denote by Ck a cycle with k vertices 1, 2, . . . , k that
appear along the cycle in this order. The calculations on vertices of Ck will be preformed
modulo k, with 0 unified with vertex k.

We say that (G, L′) is a subinstance of (G, L) if L′(v) ⊆ L(v) for every v ∈ V (G). Two
Ck-list assignments L and L′ of G are equivalent if (G, L) is Ck-colorable if and only if (G, L′)
is Ck-colorable. A Ck-list assignment L is equivalent to a set L of Ck-list assignments of a
graph G if there is L′ ∈ L such that (G, L) is equivalent to (G, L′).

Let (G, L) be an instance of List Ck-Coloring. We say that the list L(x) of a vertex x

is good if |L(x)| ∈ {1, 2, 3, k} and in addition
if |L(x)| = 2, then L(x) = {i− 1, i + 1} for some i ∈ [k], and
if |L(x)| = 3, then L(x) = {i, i− 2, i + 2} for some i ∈ [k].

We say that L is good if L(v) is good for all v ∈ V (G).
For an edge vw ∈ E(G), we update v from w if one of the following is performed.
If L(w) = {i} for some i ∈ [k], then replace the list of v by {i− 1, i + 1} ∩ L(v).
If L(w) = {i− 1, i + 1} for some i ∈ [k], then replace the list of v by {i, i + 2, i− 2}∩L(v).
If L(w) = {i, i− 2, i + 2}, L(v) = {j, j + 2, j − 2} for some i, j ∈ [k], then replace the list
of v by {i− 1, i + 1, i− 3, i + 3} ∩ L(v).

Clearly, any update creates an equivalent subinstance of (G, L). Note that in the graph
homomorphism literature this operation is usually referred to as edge (or arc) consistency and
it is performed in the beginning of most algorithms solving variants of H-Coloring [22, 30].
However, we keep the name “update” to emphasize that we will only perform it at certain
points in our algorithm. We say that an update of v from w is effective if the size of the
list of v decreases by at least 1, and ineffective otherwise. Note that an update is effective
if and only if there exists an element c ∈ L(v) which is not an element of {i − 1, i + 1},
{i, i + 2, i − 2} or {i − 1, i + 1, i − 3, i + 3} depending on the case in the definition of an
update. We observe that the update does not change the goodness of the list2.

I Lemma 2.1 (♠). If the lists of v and w are good before updating v from w, then the list
of v is good or empty after the update.

A Ck-list assignment L is said to be reduced if no effective update can be performed. It
is well-known that one can obtain a reduced list assignment in polynomial time.

2 The proofs of theorems and lemmas marked with ♠ are omitted due to space constraints.

ESA 2019

31:6 Complexity of Ck-Coloring in Hereditary Classes of Graphs

I Lemma 2.2 (♠). Let G be a graph of order n, and L be a Ck-list assignment. There exists
an O(n3)-time algorithm to obtain an equivalent reduced subinstance (G, L′) of (G, L) or
determine that (G, L) has no Ck-coloring.

We now introduce two more tools that are important for our purpose. The first one is
purely graph-theoretic and describes the structure of Pt-free graphs.

I Theorem 2.3 ([6]). Let G be a connected Pt-free graph with t ≥ 4. Then G has a connected
dominating set D such that G|D is either Pt−2-free or isomorphic to Pt−2.

The next observation generalizes the observation by Edwards [10] that List k-Coloring
can be solved in polynomial time, whenever the size of each list is at most two. This was
already noted by e.g. Feder and Hell [12].

I Theorem 2.4 (♠). Let (G, L) be an instance of List H-Coloring where G is of order
n and |L(v)| ≤ 2 for every v ∈ V (G). Then one can determine in O(n2) time if (G, L) is
H-colorable and find an H-coloring if one exists.

3 Polynomial algorithm for P9-free graphs

In this section, we show that Ck-Precoloring Extension can be solved in polynomial
time for P9-free graphs.

I Theorem 1.1. Let k ≥ 5 be odd, G be a P9-free graph of order n, W be a subset of its
vertices, and h be a mapping from W to V (Ck). Then one can determine in O(n12k+3) time
if h can be extended to a Ck-coloring of G, and find such a Ck-coloring if one exists.

Outline of the proof

The overall strategy is to reduce the instance (G, W, h), in polynomial time, to a set I of
polynomially many instances of List Ck-Coloring, in which every list has size at most 2,
and (G, W, h) is an yes-instance if and only if at least one instance from I is a yes-instance.
We then apply Theorem 2.4 to solve each instance from I in polynomial time.

More specifically, our algorithm, at a high level, consists of five phases. In the first
three of them, we focus on processing the graph G′ := G \W . First, we apply Theorem 2.3
to show that the vertex set of G′ can be partitioned into four sets (S, X, Y, Z) such S is
connected and dominates X, X dominates Y , and Y dominates Z. Second, we branch on
every possible Ck-coloring of G′|S. For each of these colorings of G′|S, we propagate the
coloring of S to the vertices of G′ \ S via updates. After updating, the vertices in S ∪X

will have lists of size at most 2, but the vertices in Y ∪ Z may still have larger lists. In
the third phase, we reduce the instance to polynomially many subinstances via branching
in such a way that each of the subinstances avoids certain configurations, which we call
bad paths. Finally, using the fact that each subinstance has no bad paths, in the last two
phases we reduce the list size of vertices in Y ∪Z to at most 2, restore the set W , creating a
set of instances, which is equivalent to (G, W, h), and use Theorem 2.4 to solve the created
instances in polynomial time.

Proof of Theorem 1.1. We view (G, W, h) as an equivalent instance (G, L) of List Ck-
Coloring where L(v) = {h(v)} if v ∈W and L(v) = [k] otherwise.

Clearly, h can be extended to an Ck-coloring of G if and only if (G, L) is Ck-colorable.
Moreover, observe that if G contains a triangle, then we can immediately report a no-instance.
Checking for existence of triangles can clearly be done in O(n3) time, so from now on we
assume that G is triangle-free.

M. Chudnovsky, S. Huang, P. Rzążewski, S. Spirkl, and M. Zhong 31:7

For the first three phases we consider the graph G′ := G \W . We may assume that G′ is
connected, for otherwise we can apply the same reasoning to every connected component.

Phase I. Obtaining a layer structure

Let us start with imposing some structure on the vertices of G′.

B Claim 3.1. There exists S ⊆ V (G′) such that |S| ≤ 7, the graph G′|S is connected, and
S ∪N(S) ∪N(N(S)) dominates G′.

Proof. We apply Theorem 2.3 to G′: G′ has a connected dominating set D that induces a
subgraph that is either P7-free or isomorphic to a P7. If G′|D is isomorphic to a P7, then D

is the desired set S. Otherwise we apply Theorem 2.3 on G′|D to conclude that G′|D has a
connected dominating set D′ that induces a subgraph that is either P5-free or isomorphic to
a P5. If G′|D′ is isomorphic to a P5, then D′ is the desired set S. Otherwise G′|D′ is P5-free.
We again apply Theorem 2.3 on G′|D′: G|D′ has a connected dominating set D′′ that
induces a subgraph that is either P3-free or isomorphic to P3. Then D′′∪N(D′′)∪N(N(D′′))
dominates G′. Since G′ is triangle-free, if G′|D′′ is P3-free, then D′′ is a clique of size at
most 2. It follows that |D′′| ≤ 3 and thus we can choose D′′ for S. C

Let S be the set given by Claim 3.1. Define X = N(S), Y = N(N(S)) \ S and
Z = V (G′) \ (X ∪ Y ∪ Z). Then (S, X, Y, Z) is a partition of V (G′), where S dominates X,
X dominates Y and Y dominates Z, and there is no edge between S and Y ∪ Z or between
X and Z. Moreover, S is connected. Such a quadruple P = (S, X, Y, Z) is called a layer
structure of G′. The set S is called the seed of P.

Phase II. Obtaining a canonical Ck-list assignment via updates

We now branch on every possible Ck-coloring of G′|S, there are at most k7 such colorings
since |S| ≤ 7. Note that k7 is a constant since k is a fixed number. To prove the theorem,
therefore, it suffices to determine whether there is a branch, in which the precoloring of
S ∪W can be extended to a Ck-coloring of (G, L) in polynomial time.

In the following, we consider a fixed coloring f : S → [k], and we continue with the
instance (G′, L′) of List Ck-Coloring, where L′(v) = {f(v)} if v ∈ S and L′(v) = [k]
otherwise.

We further partition the sets S, X, and Y as follows. For 1 ≤ i ≤ k, we define

Si :={s ∈ S : L(s) = {i}},

Xi :={x ∈ X \ (
i−1⋃
j=1

Xj) : N(x) ∩ Si 6= ∅},

Yi :={y ∈ Y \ (
i−1⋃
j=1

Yj) : N(y) ∩Xi 6= ∅}.

Clearly, (X1, X2, . . . , Xk) is a partition of X and (Y1, Y2, . . . , Yk) is a partition of Y .
We now perform the following updates for all 1 ≤ i ≤ k in the following order.

For every edge sx with s ∈ Si and x ∈ Xi, we update x from s.
For every edge xy with x ∈ Xi and y ∈ Yi, we update y from x.

ESA 2019

31:8 Complexity of Ck-Coloring in Hereditary Classes of Graphs

We continue to denote the resulting Ck-list assignment by L′. Then |L′(s)| = 1 for every
s ∈ S, L′(x) ⊆ {i− 1, i + 1} for every x ∈ Xi and L′(y) ⊆ {i, i− 2, i + 2} for every y ∈ Yi.
We call such a Ck-list assignment L′ canonical for P = (S,

⋃k
i=1 Xi,

⋃k
i=1 Yi, Z).

B Claim 3.2 (♠). If Xi is not stable, then (G′, L′) is not Ck-colorable.

Note that one can determine in O(n2) time if there exists an Xi that is not stable. If so,
we stop and correctly determine that (G′, L′) is not Ck-colorable by Claim 3.2. Otherwise,
we may assume that Xi is stable for all 1 ≤ i ≤ k from now on.

Phase III. Eliminating bad paths via branching (O(n12k) branches)

In this phase, we shall reduce the instance (G′, L′) to an equivalent set of polynomially many
subinstances so that every subinstance has no bad paths, which we define now.

An induced path a − b − c is a bad path in P = (S, X, Y, Z) = (S,
⋃k

i=1 Xi,
⋃k

i=1 Yi, Z)
if for some i ∈ [k] we have a ∈ Yi, b, c ∈ (Y ∪ Z) \ Yi, and {b, c} is anticomplete to Xi.
We call a the starter of a − b − c. Let Qi be the set of all bad paths with starters in Yi,
clearly |Qi| = O(n3).

A vertex v ∈ Yi is of depth at least ` in P if for every x ∈ N(v) ∩ Xi, there exists an
induced path v − x− P of length at least ` such that V (P) ⊆ S. Observe that every vertex
in Y is of depth at least 3 to S (because we may assume that |S| ≥ 2 and so no vertex in X

is complete to S since G is triangle-free), and that the starter of a bad path is of depth at
most 7 to S since G′ is P9-free.

Note that for any Ck-coloring of (G′, L′) and every i ∈ [k], either there exists a bad
path in Qi whose starter is colored with a color in {i− 2, i + 2} or the starters of all bad
paths in Qi are colored with i. This leads to the following branching scheme, which only
updates the lists.

Branching.
(2k = O(1) branches.) For every subset I ⊆ [k], we have a branch BI intended to find
possible colorings such that there exists a bad path in Qi whose starter is colored with
a color in {i − 2, i + 2} if i ∈ I, and all starters of bad paths in Qi are colored with
color i if i /∈ I. Clearly, (G′, L′) is Ck-colorable if and only if at least one of the BI is a
yes-instance. In the following, we fix a branch BI .
(O(2kn3k) = O(n3k) branches.) We further branch to obtain a set of size O(n3k) of
subinstances within BI by guessing, for each i ∈ I, a bad path in Qi, and guessing the
color of its starter from {i−2, i+2}. The union over all branches BI of these subinstances
is equivalent to (G′, L′).
Specifically, for each element (ai− bi− ci)i∈I in Πi∈IQi, we have one branch where we set
L′′(ai) := L′(ai) ∩ {i− 2, i + 2} for every i ∈ I, and we set L′′(a) := L′(a) ∩ {i} for every
starter a of a bad path in Qi for every i /∈ I. We denote the resulting Ck-list assignment
by L′′. For each such branch and for every element (qi)i∈I in Πi∈IL′′(ai), we have one
branch where L′′(ai) = {qi} for all i ∈ I. It follows that for all i ∈ I and x ∈ Xi ∩N(ai),
the only possible color for x is (qi + i)/2, and so we set L′′(x) = {(qi + i)/2}. Since
L′′(ai) ⊆ {i− 2, i + 2} for all i ∈ I, it follows that there are 2|I| ≤ 2k branches. Let us fix
one such branch and denote the resulting instance by (G′, L′′).
(O(k3k) = O(1) branches.) We let I∗ be the subset of [k] \ I of indices i such that Qi

contains a bad path. For each i ∈ I∗, we choose a bad path ai − bi − ci in Qi such that
|N(ai) ∩Xi| is minimum, where the minimum is taken over all bad paths in Qi. Choose
a vertex xi ∈ N(ai) ∩Xi for each i ∈ I∗. Define

Q :=
⋃
i∈I

{bi, ci} ∪
⋃

i∈I∗

{bi, ci, xi},

M. Chudnovsky, S. Huang, P. Rzążewski, S. Spirkl, and M. Zhong 31:9

where for i ∈ I, bi, ci are two vertices on the bad path we guessed in the previous bullet.
We branch on every possible coloring of Q. Since |Q| ≤ 3k, the number of branches is at
most k3k. In the following, we fix a coloring g of Q and denote the resulting subinstance
by (G′, L′′′), where L′′′(v) = {g(v)} if v ∈ Q and L′′′(v) = L′′(v) otherwise.

Obtaining a new layer structure with a canonical Ck-list assignment. We now deal with
(G′, L′′′). Define

A =
⋃
i∈I

((N(ai) ∩Xi) ∪ {ai, bi, ci}) ∪
⋃

i∈I∗

{xi, ai, bi, ci},

and note that in L′′′, every vertex in A has a list of size at most 1. We update all vertices of
G′ from all vertices in A and continue to denote the resulting Ck-list assignment by L′′′. We
now obtain a new partition P ′ = (S′, X ′, Y ′, Z ′) of G′ as follows.

Let S′ := S ∪A.
For each 1 ≤ j ≤ k, let Kj := ∅. For each vertex v ∈ Y ∪Z, if v has a neighbor in S′, let j

be the smallest integer in [k] such that there exists a vertex s ∈ N(v)∩S′ with L(s) = {j},
and add v to Kj . For each 1 ≤ j ≤ k, let X ′j = (Xj ∪Kj) \A. Let X ′ :=

⋃k
i=1 X ′i.

For 1 ≤ i ≤ k, let Y ′i be the set of vertices in V (G′) \ (S′ ∪X ′ ∪ (
⋃

j<i Y ′j)) that have a
neighbor in X ′i. Let Y ′ :=

⋃k
i=1 Y ′i .

Let Z ′ := V (G′) \ (S′ ∪X ′ ∪ Y ′).

B Claim 3.3 (♠). The new partition P ′ := (S′, X ′, Y ′, Z ′) is a layer structure of G’ and L′′′

is a canonical Ck-list assignment for P ′.

B Claim 3.4 (♠). For every i ∈ [k] it holds that
1. X ′i \Xi ⊆ Y ∪ Z.
2. If a vertex in Y ′ ∪ Z ′ is anticomplete to X ′i, then it is anticomplete to Xi.
3. Y ′i \ Yi is anticomplete to Xi.

The following claim is the key to our branching algorithm.

B Claim 3.5. Let a be a starter of a bad path in P ′. If the depth of the starter of any bad
path in P is at least `, then the depth of a in P ′ is at least ` + 1.

Proof. Let a′ − b′ − c′ be a bad path in P ′ with a′ ∈ Y ′i . Consider the following cases.

Case 1: a′ ∈ Yi ∩ Y ′i . Then ∅ 6= N(a′) ∩ Xi ⊆ X ′i. By item 2. in Claim 3.4, {b′, c′} is
anticomplete to Xi and so a′− b′− c′ is also a bad path in P = (S, X, Y, Z). This implies
that Qi 6= ∅. Therefore, there exist a, b, c, x ∈ S′ such that a− b− c is a bad path in P
with a ∈ Yi and x ∈ N(a) ∩Xi.
We first claim that it is possible to pick a vertex x′ ∈ N(a′) ∩Xi that is not adjacent
to a. Recall that the branch we consider corresponds to a set I ⊆ [k]. If i ∈ I, then all
vertices in N(a) ∩Xi are in A and hence are now in S′. So every vertex in N(a′) ∩Xi

is not adjacent to a, and our claim holds. If i 6∈ I, then i ∈ I∗, and so a = ai. By the
choice of ai, it follows that |N(a)∩Xi| ≤ |N(a′)∩Xi|. Since a′ ∈ Y ′i , it follows that a′ is
not adjacent to x. Therefore, there exists a vertex x′ ∈ N(a′) ∩Xi such that x′ is not
adjacent to a.
Note that x and x′ are not adjacent by Claim 3.2. Moreover, x′ is anticomplete to
{b′, c′, b, c} by the definition of bad path. Let P ′ be the shortest path from x to x′ with
internal vertices contained in S. Note that P ′ exists since S is connected. Then P ′ is an

ESA 2019

31:10 Complexity of Ck-Coloring in Hereditary Classes of Graphs

induced path. Since V (P ′) \ {x, x′} ⊆ S, it follows that V (P ′) \ {x, x′} is anticomplete
to {a, b, c, a′, b′, c′}. Therefore, c− b− a− x− P ′ − x′ − a′ − b′ − c′ is an induced path of
order at least 9, a contradiction.

Case 2: a′ ∈ Y ′i \ Yi. It follows from Claim 3.4, item 3. that N(a′) ∩X ′i ⊆ X ′i \Xi. Pick a
vertex x′ ∈ N(a′) ∩X ′i. Since x ∈ X ′i \Xi, x′ has a neighbor s′ ∈ S′ by the definition
of X ′i. By Claim 3.4, item 1., x′ ∈ Y ∪ Z and so s′ ∈ S′ \ S = A. Thus there exists
j ∈ I such that x′ is not anticomplete to Q = {xj , aj , bj , cj}, where xj ∈ N(aj) ∩ Xj .
Let aj − xj − P be an induced path of length ` with V (P) ⊆ S. Note that x′ ∈ Y ∪ Z

is anticomplete to V (P) ⊆ S. Let x′ − P ′′ − xj be the shortest path from x′ to xj such
that V (P ′′) ⊆ Q. Since a′ is anticomplete to {x} ∪ V (P) ∪ V (P ′′) ⊆ S′, it follows that
a′ − x′ − P ′′ − xj − P is an induced path of length at least ` + 1. This proves the claim.

C

Therefore, we have obtained an equivalent set of subinstances of size O(n3k). For each
such subinstance, the minimum depth of the starter of a bad path has increased by at least 1
compared to P due to Claim 3.5. Note that the depth of any starter of a bad path in P is at
least 3. Moreover, since G′ is P9-free, the depth of any starter of a bad path is at most 7.

By branching 4 times, therefore, we obtain an equivalent set of O(n12k) subinstances
such that each subinstance has no bad paths.

Phase IV. Reducing the list size of vertices in Z

Now we go back to processing the graph G. Let us fix an instance of List Ck-Coloring on
G′, created in the previous phase, and let (G, L) denote the instance obtained by restoring
the vertices of W . By P = (S, X, Y, Z) we denote the layer structure of G′ with no bad paths
and L is canonical for P. We first reduce the list size of vertices in Z.

B Claim 3.6 (♠). The set Z is stable and each z ∈ Z has neighbors in at most one of
{Y1, Y2, . . . , Yk}.

B Claim 3.7 (♠). Let z ∈ Z be anticomplete to W and have a neighbor in Yi. If (G, L) has
a Ck-coloring, then (G, L) has a Ck-coloring c such that c(z) ∈ {i− 1, i + 1}.

We now modify the lists of vertices in Z: let L(z) := L(z) ∩ {i− 1, i + 1} for every z ∈ Z

that is anticomplete to W and has a neighbor in Yi. It follows from Claim 3.7 that the
resulting list is equivalent to the original one. We still denote by the resulting list L.

Phase V. Reducing the list size of vertices in Y

We now apply Lemma 2.2 to obtain a reduced Ck-list assignment L′. Then (G, L′) is an
equivalent subinstance of (G, L). If L′(v) = ∅ for some v ∈ V (G), we stop and report a
no-instance. Define:

S′ :={v ∈ V (G′) : |L′(v)| = 1},
X ′i :={v ∈ V (G′) \ S′ : L′(v) ⊆ {i− 1, i + 1}}, 1 ≤ i ≤ k,

Y ′i :={v ∈ V (G′) \ (S′ ∪X ′ ∪
⋃
j<i

Y ′j) : L′(v) ⊆ {i, i− 2, i + 2}}, 1 ≤ i ≤ k,

X ′ :=
k⋃

i=1
X ′i,

Y ′ :=
k⋃

i=1
Y ′i .

M. Chudnovsky, S. Huang, P. Rzążewski, S. Spirkl, and M. Zhong 31:11

Note W ⊆ S′ and that (S′, X ′, Y ′, ∅) is almost a layer structure of G except that S′ is not
necessarily connected. It follows from the definition of (S′, X ′, Y ′) and Lemma 2.1 that
L′(x) = {i − 1, i + 1} for every x ∈ X ′i and L′(y) = {i − 2, i, i + 2} for every y ∈ Y ′i . For
1 ≤ i ≤ k, we partition Y ′i into two subsets Y 1

i and Y 2
i , where Y 2

i is the set of isolated
vertices in G|Y ′i and Y 1

i = Y ′i \ Y 2
i . We prove a few properties for S′, X ′ and Y ′.

B Claim 3.8 (♠). The following hold for S′, X ′ and Y ′.
1. V (G) = S′ ∪X ′ ∪ Y ′.
2. For every i ∈ [k] and y ∈ Y ′i , we have N(y) ∩X ′ ⊆ X ′i.
3. For every i ∈ [k], we have Xi ⊆ X ′i ∪ S′ and Y ′i ⊆ Yi.
4. For every i ∈ [k] and y ∈ Y 2

i , the vertex y is anticomplete to Y ′ \ (Y 2
i+1 ∪ Y 2

i−1).

B Claim 3.9. If (G, L′) is Ck-colorable, then there exists a Ck-coloring c of (G, L′) such that
for each 1 ≤ i ≤ k, c(y) = i for all y ∈ Y 2

i and c(y) ∈ {i− 2, i + 2} for all y ∈ Y 1
i .

Proof. Suppose that c′ is a Ck-coloring of (G, L′). Note that each u ∈ Y 1
i has a neighbor

v ∈ Y 1
i by the definition. Since L′(u), L′(v) ⊆ {i − 2, i, i + 2} and c′ is a Ck-coloring of

(G, L′), it follows that c′(u) 6= i and c′(v) 6= i. So c′(u) ∈ {i− 2, i + 2}.
Let u ∈ Y 2

i . Note that u can only have neighbors in X ′i or in Y 2
i+1 ∪ Y 2

i−1 by item 2. and
item 4. of Claim 3.8. Define c : V (G)→ [k] such that c(v) := i if v ∈ Y 2

i and c(v) := c′(v) if
v /∈

⋃k
i=1 Y 2

i .
Then c is a Ck-coloring of (G, L′), since c′(x) ∈ {i − 1, i + 1} for every x ∈ X ′i. This

completes the proof. C

Let us point out that the special treatment of the sets Y 1
i is needed only for the case

k = 5. For k > 5, if one Yi contains two adjacent vertices, one can observe that there is no
way to color them. Thus we can immediately report a no-instance (or let it be reported when
we solve the corresponding 2-Sat instance).

Let us now modify the lists as follows. For each 1 ≤ i ≤ k and each y ∈ Y ′i , let
L′(y) := L′(y) ∩ {i − 2, i + 2} if y ∈ Y 1

i and L′(y) := L′(y) ∩ {i} if y ∈ Y 2
i . By Claim 3.9,

the new list assignment is equivalent to the original one. Now for each v ∈ V (G) we have
|L′(v)| ≤ 2 and so Theorem 2.4 applies.

This completes the proof of correctness of our algorithm. Clearly, the most expensive
part of our algorithm is Phase III where we branch into O(n12k) subinstances. Since each
subinstance can be constructed in O(n3) time by Lemma 2.2 and each 2-Sat instance can
be solved in O(n2) time by Theorem 2.4, the total running time is O(n12k+3). J

4 Hardness results

In this section we prove the following theorem.

I Theorem 1.2. Let F be a connected graph. If F is not a subgraph of a subdivided claw,
then for every odd k ≥ 5 the Ck-Precoloring Extension problem is NP-complete for
F -free graphs.

We will prove Theorem 1.2 in several steps in which we analyze possible structure of F .
We start with the following simple observation that will be repeatedly used. For the rest of
this section, let k = 2s + 1 for s ≥ 2.

I Observation 4.1. Let s ≥ 2 be an integer and P be a 2s-vertex path with endvertices a

and b. Then the following holds.
In any C2s+1-coloring h of P we have h(a) 6= h(b).
For any distinct i, j ∈ {1, 2, . . . , 2s + 1}, there exists a C2s+1-coloring h of P such that
h(a) = i and h(b) = j.

ESA 2019

31:12 Complexity of Ck-Coloring in Hereditary Classes of Graphs

4.1 Eliminate cycles
The girth of a graph G, denoted by girth(G), is the length of a shortest cycle in G. A vertex
in a graph is called a branch vertex if its degree is at least 3. By Γp we denote the class of
graphs, in which the number of edges in any path joining two branch vertices is divisible by p.

We first show that the problem is NP-hard in F -free graphs, unless F is a tree in Γ2s−1.

I Theorem 4.2. For each fixed integer s ≥ 2 and each connected graph F , C2s+1-Coloring
is NP-complete for F -free graphs whenever F contains a cycle or is not in Γ2s−1.

Proof. It is known (see e.g. [31]) that the (2s + 1)-Coloring problem is NP-complete for
graphs of girth at least g for each fixed g ≥ 3. We reduce this problem to C2s+1-Coloring.
Given a graph G, we obtain a graph G′ by replacing each edge of G by a (2s − 1)-edge
path. Then it follows from Observation 4.1 that G is (2s + 1)-colorable if and only if G′

is C2s+1-colorable. Clearly, girth(G′) = girth(G) · (2s− 1) ≥ g(2s− 1). Thus, if we choose
g ≥ 3 such that g(2s− 1) > girth(F), e.g., g = |V (F)|+ 1, it follows that all graphs of girth
at least g(2s − 1) are F -free. Moreover, it is easy to see that the number of edges in any
path joining two branch vertices of G′ is divisible by 2s− 1, so if F /∈ Γ2s−1, then G′ does
not contain F . J

4.2 Eliminate vertices of degree at least 4
From now on it suffices to consider trees with branch vertices at distance divisible by 2s− 1.
We now show that Ck-Coloring is NP-complete for F -free graphs if F contains a vertex of
degree at least 4. Note that in this case every subcubic graph is F -free.

I Theorem 4.3 (♠). For each fixed s ≥ 2, C2s+1-Coloring is NP-complete for subcubic
graphs.

4.3 Eliminate multiple branch vertices
Before we prove the main theorem we need one more intermediate step that allows us to
eliminate those F in which there are two branch vertices that are at distance not divisible by
s. The proof is a reduction from the problem called Non-Rainbow Coloring Extension,
whose instance is a 3-uniform hypergraph H and a partial coloring f of some of its vertices
with colors {1, 2, 3}. We ask whether f can be extended to a 3-coloring of V (H) such that
no hyperedge is rainbow (i.e., contains three distinct colors). This problem is known to be
NP-complete [3].

I Theorem 4.4. For each fixed integer s ≥ 2, C2s+1-Precoloring Extension is NP-
complete for bipartite graphs in Γs.

Proof. We reduce from Non-Rainbow Coloring Extension. Let H = (V, E) be a
3-uniform hypergraph and let f be a partial 3-coloring of H. We construct an instance of
C2s+1-Precoloring Extension as follows.

For each vertex v ∈ V , we introduce a variable vertex, denoted by v′. If v is precolored
by f , we precolor v′ with the color f(v).
For each v that is not precolored by f , we introduce 2s − 2 new vertices and precolor
them with 4, 5, . . . , 2s + 1, respectively. Then each of these new vertices is joined by a
(2s− 1)-edge path to v′. It follows from Observation 4.1 that each vertex v′ can only be
mapped to one of 1, 2, 3, and any of these three choices is possible.
For each hyperedge e = {x, y, z} ∈ E, we add a new vertex ve and three s-edge paths
connecting ve to x′,y′, and z′, respectively. This whole subgraph is called an edge gadget.

M. Chudnovsky, S. Huang, P. Rzążewski, S. Spirkl, and M. Zhong 31:13

Observe that if x′ is mapped to i ∈ {1, 2, 3}, then the possible colors for ve are {s + i, s + i−
2, . . . , s + i− 2bs/2c} ∪ {s + i + 1, s + i + 3, . . . , s + i + 1 + 2bs/2c}. Thus, if each of x′, y′, z′

is mapped to a different vertex from {1, 2, 3}, then there is no way to extend this mapping to
the whole edge gadget. On the other hand, such an extension is possible whenever x′, y′, z′

receive at most two distinct colors.
We denote by G the resulting graph. By the properties of variable vertices and edge

gadgets, (H, f) is an yes-instance of Non-Rainbow Coloring Extension if and only if
the precoloring of G can be extended to a C2s+1-coloring of G. Clearly, G is bipartite and
belongs to Γs. J

By Theorems 4.2, 4.3, and 4.4, the C2s+1-Precoloring Extension problem is NP-
complete for F -free graphs unless F is a tree in Γs(2s−1) (observe that s and 2s − 1 are
relatively prime). We are now ready to show that the problem is NP-hard if F has more
than one branch vertex.

I Theorem 4.5. Let s ≥ 2 be an integer and let F be a tree. If F contains two branch
vertices, then C2s+1-Coloring is NP-complete for F -free graphs.

Proof. Let d be the distance between two closest branch vertices in F . We reduce from
Positive Not-All-Equal Sat with all clauses containing exactly three literals. Consider
an instance with variables x1, x2, . . . , xn and clauses D1, D2, . . . , Dm.

We start our construction by introducing one special vertex z.
For each variable xi, we introduce a vertex vi, adjacent to z.
For each clause D` = {xi, xj , xk}, we introduce three new vertices y`,i, y`,j , and y`,k,
and join each pair of them with a (2s − 1)-edge path. This guarantees that in every
C2s+1-coloring, they get three distinct colors. These three paths constitute the clause
gadget.
For each variable xi belonging to a clause D`, we join each y`,i to vi by a path P`,i with
2d(2s− 1) + 1 edges. Let vi = p1, p2, . . . , p2d(2s−1)+2 = y`,i be the consecutive vertices of
P`,i. We add edges joining z and p1+j(2s−1) for every 1 ≤ j ≤ 2d.

This completes the construction of a graph G. We claim that G is C2s+1-colorable if and
only if the initial formula is satisfiable, and that G belongs to our class.

B Claim 4.6 (♠). G is C2s+1-colorable if and only if the initial formula is satisfiable.

B Claim 4.7 (♠). G is F -free.

This completes the proof of Theorem 4.5. J

Now Theorem 1.2 comes from combining the Theorems 4.2, 4.3, 4.4, and 4.5. We observe
that all reductions in our hardness proofs are linear in the number of vertices (the target
graph is assumed to be fixed, so s is a constant). Moreover, all problems we are reducing
from can be shown to be NP-complete by a linear reduction from 3-Sat. Thus we get the
following result, conditioned on the Exponential Time Hypothesis (ETH), which, along with
the sparsification lemma, implies that 3-Sat with n variables and n clauses cannot be solved
in time 2o(n+m) [27, 28].

I Corollary 4.8. Unless the ETH fails, the following holds. If F is a connected graph that
is not a subgraph of a subdivided claw, then for every s ≥ 2, the C2s+1-Precoloring
Extension problem cannot be solved in time 2o(n) in F -free graphs with n vertices.

ESA 2019

31:14 Complexity of Ck-Coloring in Hereditary Classes of Graphs

5 Conclusion

In this paper, we initiate a study of C2s+1-Coloring for F -free graphs for a fixed graph F .
We prove that C2s+1-Precoloring Extension is NP-complete for F -free graphs if some
component of F is not a subdivided claw. Moreover, we show that C2s+1-Precoloring
Extension is polynomial-time solvable for P9-free graphs. Note that all our hardness results
work for C2s+1-Coloring, except for Theorem 4.4. Thus it is natural to ask whether
analogous hardness results holds for C2s+1-Coloring too. Moreover, the following questions
seem natural to explore.

Are there values of s and t such that C2s+1-Coloring is NP-complete for Pt-free graphs?
Is C2s+1-Coloring polynomial for F -free graphs when F is a subdivided claw?
Is C2s+1-Coloring FPT for Pt-free graphs, when parameterized by s?

References
1 Vladimir E Alekseev. The effect of local constraints on the complexity of determination of the

graph independence number. Combinatorial-algebraic methods in applied mathematics, pages
3–13, 1982.

2 Gábor Bacsó, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Zsolt Tuza, and Erik Jan
van Leeuwen. Subexponential-Time Algorithms for Maximum Independent Set in Pt-Free and
Broom-Free Graphs. Algorithmica, 81(2):421–438, 2019. doi:10.1007/s00453-018-0479-5.

3 Manuel Bodirsky, Jan Kára, and Barnaby Martin. The complexity of surjective homomorphism
problems – a survey. Discrete Applied Mathematics, 160(12):1680–1690, 2012. doi:10.1016/
j.dam.2012.03.029.

4 Flavia Bonomo, Maria Chudnovsky, Peter Maceli, Oliver Schaudt, Maya Stein, and Mingxian
Zhong. Three-Coloring and List Three-Coloring of Graphs Without Induced Paths on Seven
Vertices. Combinatorica, 38(4):779–801, 2018. doi:10.1007/s00493-017-3553-8.

5 Andrei A. Bulatov. A Dichotomy Theorem for Nonuniform CSPs. In Chris Umans, editor,
58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley,
CA, USA, October 15-17, 2017, pages 319–330. IEEE Computer Society, 2017. doi:10.1109/
FOCS.2017.37.

6 Eglantine Camby and Oliver Schaudt. A New Characterization of Pk-Free Graphs. Algorithmica,
75(1):205–217, 2016. doi:10.1007/s00453-015-9989-6.

7 Maria Chudnovsky, Sophie Spirkl, and Mingxian Zhong. Four-coloring P6-free graphs. I.
Extending an excellent precoloring. CoRR, abs/1802.02282, 2018. arXiv:1802.02282.

8 Maria Chudnovsky, Sophie Spirkl, and Mingxian Zhong. Four-coloring P6-free graphs. II.
Finding an excellent precoloring. CoRR, abs/1802.02283, 2018. arXiv:1802.02283.

9 Maria Chudnovsky, Sophie Spirkl, and Mingxian Zhong. Four-coloring P6-free graphs. In
Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages
1239–1256. SIAM, 2019. doi:10.1137/1.9781611975482.76.

10 Keith Edwards. The Complexity of Colouring Problems on Dense Graphs. Theor. Comput.
Sci., 43:337–343, 1986. doi:10.1016/0304-3975(86)90184-2.

11 Jessica Enright, Lorna Stewart, and Gábor Tardos. On List Coloring and List Homomorphism
of Permutation and Interval Graphs. SIAM J. Discrete Math., 28(4):1675–1685, 2014. doi:
10.1137/13090465X.

12 Tomas Feder and Pavol Hell. List Homomorphisms to Reflexive Graphs. J. Comb. Theory,
Ser. B, 72(2):236–250, 1998. doi:10.1006/jctb.1997.1812.

13 Tomás Feder, Pavol Hell, and Jing Huang. List Homomorphisms and Circular Arc Graphs.
Combinatorica, 19(4):487–505, 1999. doi:10.1007/s004939970003.

14 Tomás Feder, Pavol Hell, Sulamita Klein, Loana Tito Nogueira, and Fábio Protti. List matrix
partitions of chordal graphs. Theor. Comput. Sci., 349(1):52–66, 2005. doi:10.1016/j.tcs.
2005.09.030.

https://doi.org/10.1007/s00453-018-0479-5
https://doi.org/10.1016/j.dam.2012.03.029
https://doi.org/10.1016/j.dam.2012.03.029
https://doi.org/10.1007/s00493-017-3553-8
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.1007/s00453-015-9989-6
http://arxiv.org/abs/1802.02282
http://arxiv.org/abs/1802.02283
https://doi.org/10.1137/1.9781611975482.76
https://doi.org/10.1016/0304-3975(86)90184-2
https://doi.org/10.1137/13090465X
https://doi.org/10.1137/13090465X
https://doi.org/10.1006/jctb.1997.1812
https://doi.org/10.1007/s004939970003
https://doi.org/10.1016/j.tcs.2005.09.030
https://doi.org/10.1016/j.tcs.2005.09.030

M. Chudnovsky, S. Huang, P. Rzążewski, S. Spirkl, and M. Zhong 31:15

15 Tomás Feder and Moshe Y. Vardi. Monotone monadic SNP and constraint satisfaction. In
S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal, editors, Proceedings of the Twenty-
Fifth Annual ACM Symposium on Theory of Computing, May 16-18, 1993, San Diego, CA,
USA, pages 612–622. ACM, 1993. doi:10.1145/167088.167245.

16 Anna Galluccio, Pavol Hell, and Jaroslav Nesetril. The complexity of H -colouring of bounded
degree graphs. Discrete Mathematics, 222(1-3):101–109, 2000. doi:10.1016/S0012-365X(00)
00009-1.

17 Petr A. Golovach, Matthew Johnson, Daniël Paulusma, and Jian Song. A Survey on the
Computational Complexity of Coloring Graphs with Forbidden Subgraphs. Journal of Graph
Theory, 84(4):331–363, 2017. doi:10.1002/jgt.22028.

18 Petr A. Golovach, Daniël Paulusma, and Jian Song. Closing complexity gaps for coloring
problems on H-free graphs. Inf. Comput., 237:204–214, 2014. doi:10.1016/j.ic.2014.02.004.

19 Carla Groenland, Karolina Okrasa, Paweł Rzążewski, Alex Scott, Paul Seymour, and Sophie
Spirkl. H-colouring Pt-free graphs in subexponential time. Discrete Applied Mathematics, (to
appear), 2019.

20 Andrzej Grzesik, Tereza Klimošová, Marcin Pilipczuk, and Michal Pilipczuk. Polynomial-time
algorithm for Maximum Weight Independent Set on P6-free graphs. CoRR, abs/1707.05491,
2017. arXiv:1707.05491.

21 Andrzej Grzesik, Tereza Klimošova, Marcin Pilipczuk, and Michal Pilipczuk. Polynomial-time
algorithm for Maximum Weight Independent Set on P6-free graphs. In Timothy M. Chan,
editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 1257–1271. SIAM, 2019.
doi:10.1137/1.9781611975482.77.

22 Pavol Hell and Jaroslav Nesetril. Graphs and Homomorphisms. Oxford University Press, July
2004. doi:10.1093/acprof:oso/9780198528173.001.0001.

23 Pavol Hell and Jaroslav Nešetřil. On the complexity of H-coloring. J. Comb. Theory, Ser. B,
48(1):92–110, 1990. doi:10.1016/0095-8956(90)90132-J.

24 Chính T. Hoàng, Marcin Kamiński, Vadim V. Lozin, Joe Sawada, and Xiao Shu. Deciding
k-Colorability of P5-Free Graphs in Polynomial Time. Algorithmica, 57(1):74–81, 2010.
doi:10.1007/s00453-008-9197-8.

25 Ian Holyer. The NP-Completeness of Edge-Coloring. SIAM J. Comput., 10(4):718–720, 1981.
doi:10.1137/0210055.

26 Shenwei Huang. Improved complexity results on k-coloring Pt-free graphs. Eur. J. Comb.,
51:336–346, 2016. doi:10.1016/j.ejc.2015.06.005.

27 Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

28 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which Problems Have Strongly
Exponential Complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.
2001.1774.

29 Jan Kratochvíl. Precoloring extension with fixed color bound. Acta Mathematica Universitatis
Comenianae. New Series, 62, January 1993.

30 Benoit Larose and Adrien Lemaître. List-homomorphism problems on graphs and arc consist-
ency. Discrete Mathematics, 313(22):2525–2537, 2013. doi:10.1016/j.disc.2013.07.018.

31 Vadim V. Lozin and Marcin Kamiński. Coloring edges and vertices of graphs without short or
long cycles. Contributions to Discrete Mathematics, 2(1), 2007. URL: http://cdm.ucalgary.
ca/cdm/index.php/cdm/article/view/60.

32 Gerhard J. Woeginger and Jirí Sgall. The complexity of coloring graphs without long in-
duced paths. Acta Cybern., 15(1):107–117, 2001. URL: http://www.inf.u-szeged.hu/
actacybernetica/edb/vol15n1/Woeginger_2001_ActaCybernetica.xml.

33 Dmitriy Zhuk. A Proof of CSP Dichotomy Conjecture. In Chris Umans, editor, 58th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA,
October 15-17, 2017, pages 331–342. IEEE Computer Society, 2017. doi:10.1109/FOCS.2017.
38.

ESA 2019

https://doi.org/10.1145/167088.167245
https://doi.org/10.1016/S0012-365X(00)00009-1
https://doi.org/10.1016/S0012-365X(00)00009-1
https://doi.org/10.1002/jgt.22028
https://doi.org/10.1016/j.ic.2014.02.004
http://arxiv.org/abs/1707.05491
https://doi.org/10.1137/1.9781611975482.77
https://doi.org/10.1093/acprof:oso/9780198528173.001.0001
https://doi.org/10.1016/0095-8956(90)90132-J
https://doi.org/10.1007/s00453-008-9197-8
https://doi.org/10.1137/0210055
https://doi.org/10.1016/j.ejc.2015.06.005
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1016/j.disc.2013.07.018
http://cdm.ucalgary.ca/cdm/index.php/cdm/article/view/60
http://cdm.ucalgary.ca/cdm/index.php/cdm/article/view/60
http://www.inf.u-szeged.hu/actacybernetica/edb/vol15n1/Woeginger_2001_ActaCybernetica.xml
http://www.inf.u-szeged.hu/actacybernetica/edb/vol15n1/Woeginger_2001_ActaCybernetica.xml
https://doi.org/10.1109/FOCS.2017.38
https://doi.org/10.1109/FOCS.2017.38

	Introduction
	Complexity of variants of H-Coloring
	Graphs with forbidden induced subgraphs
	Our contribution

	Preliminaries
	Polynomial algorithm for P_9-free graphs
	Hardness results
	Eliminate cycles
	Eliminate vertices of degree at least 4
	Eliminate multiple branch vertices

	Conclusion

