
Algorithmica (2017) 77:287–308
DOI 10.1007/s00453-015-0067-x

Fast Prefix Adders for Non-uniform Input Arrival
Times

Stephan Held1 · Sophie Spirkl2

Received: 2 March 2015 / Accepted: 1 September 2015 / Published online: 22 September 2015
© Springer Science+Business Media New York 2015

Abstract Weconsider the problemof constructing fast and small parallel prefix adders
for non-uniform input arrival times. In modern computer chips, adders with up to hun-
dreds of inputs occur frequently, and they are often embedded into more complex
circuits, e.g. multipliers, leading to instance-specific non-uniform input arrival times.
Most previous results are based on representing binary carry-propagate adders as par-
allel prefix graphs, inwhich pairs of generate and propagate signals are combined using
complex gates called prefix gates. Examples of commonly-used adders are constructed
based on theKogge–Stone or Ladner–Fischer prefix graphs. Adders constructed in this
model usually minimize the delay in terms of these prefix gates. However, the delay in
terms of logic gates can be worse by a factor of two. In contrast, we aim to minimize
the delay of the underlying logic circuit directly. We prove a lower bound on the delay
of a carry bit computation achievable by any prefix carry bit circuit and develop an
algorithm that computes a prefix carry bit circuit with optimum delay up to a small
additive constant. Our algorithm improves the running time of a previous dynamic
program for constructing a prefix carry bit from O(n3) to O(n log2 n) while simul-
taneously improving the delay and size guarantee, where n is the number of bits in
the summands. Furthermore, we use this algorithm as a subroutine to compute a full
adder in near-linear time, reducing the delay approximation factor of 2 from previous
approaches to 1.441 for our algorithm.

B Sophie Spirkl
sspirkl@princeton.edu

Stephan Held
held@or.uni-bonn.de

1 Research Institute for Discrete Mathematics, University of Bonn, Lennéstr. 2, 53113 Bonn,
Germany

2 Program for Applied and Computational Mathematics, Princeton University, Fine Hall,
Washington Road, Princeton, NJ 08544, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-015-0067-x&domain=pdf
http://orcid.org/0000-0002-2536-5618

288 Algorithmica (2017) 77:287–308

Keywords Circuit · Delay · Parallel prefix problem · Addition · Prefix adder ·
Non-uniform input arrival times

Mathematics Subject Classification 68Q25 · 65Y04

1 Introduction

The addition of binary numbers is one of the most fundamental computational tasks
performed by computer chips. Given two binary addends A = (an . . . a1) and
B = (bn . . . b1), where index n denotes the most significant bit, their sum S = A+ B
has n + 1 bits. For each position 1 ≤ i ≤ n, we compute a generate signal gi and a
propagate signal pi , which are defined as follows:

gi = ai ∧ bi ,

pi = ai ⊕ bi , (1)

where ∧ and ⊕ denote the binary And and Xor functions. The carry bit at position
i + 1 can be computed recursively as ci+1 = gi ∨ (pi ∧ ci) [4,13]. From the carry
bits, we can compute the output S via si = ci ⊕ pi for 1 ≤ i ≤ n and sn+1 = cn+1.

For two pairs (gi , pi) and (g j , p j) of generate and propagate signals, we define a
binary prefix operator as

(
gi
pi

)
◦

(
g j

p j

)
=

(
gi ∨ (pi ∧ g j)

pi ∧ p j

)
. (2)

This operator is associative, and it can be used to compute the carry bit ci+1 using
the identity

(
ci+1

pi ∧ pi−1 ∧ · · · ∧ p1

)
=

(
gi
pi

)
◦

(
gi−1

pi−1

)
◦ · · · ◦

(
g1
p1

)
.

The prefix operator allows us to simplify notation by combining generate and prop-
agate signals into a single term zi = (gi , pi) and computing ci+1 as the first component
of zi ◦ · · · ◦ z1. Figure 1 shows a prefix gate computing z ◦ z′ for the prefix operator
in (2) on the left and its underlying logic circuit on the right.

Formally, a logic circuit is a non-empty connected acyclic directed graph consisting
of nodes that are either inputs with at least one outgoing edge and no incoming edges,
outputs with exactly one incoming edge and no outgoing edges, or gates with one or
two incoming edges representing one of the 2-bit logical functions And (∧), Or (∨),
Xor (⊕), Not and their negations.

The number of gates is the size of the circuit. The (maximum) fan-out of the circuit
is the maximum fan-out (out-degree) of its nodes. The depth of the circuit is the
maximum number of gates on a directed path.

A logic circuit with inputs g1, p1, . . . , gn, pn is called a prefix carry bit circuit if it
computes cn+1 and p1 ∧· · ·∧ pn , it is built from prefix operator gadgets in Fig. 1, and

123

Algorithmica (2017) 77:287–308 289

Fig. 1 Prefix gate and
underlying logic circuit

AB

C

z z

z ◦ z

g gp p

p ∧ pg ∨ (p ∧ g)

the subcircuit computing p1 ∧ · · · ∧ pn is a tree. Similarly, a prefix adder is a logic
circuit built using the gadgets in Fig. 1 that computes ci+1 and p1 ∧ · · · ∧ pi for all
i = 1, . . . , n at its 2n outputs.

A graph that arises from a prefix carry bit circuit by contracting each gadget into a
prefix gate as in Fig. 1, and by contracting all input pairs (gi , pi) into zi and the output
pair (cn+1, pn ∧ · · · ∧ p1), is called a prefix tree. Likewise, a parallel prefix graph
arises from a prefix adder by contracting each gadget, all input pairs (gi , pi) = zi and
output pairs (ci+1, p1 ∧ · · · ∧ pi) for all i = 1, . . . , n. For inputs z1, . . . , zn , a prefix
tree computes the last carry bit of an addition zn ◦· · ·◦ z1, while a parallel prefix graph
computes zi ◦ · · · ◦ z1 for all 1 ≤ i ≤ n, i.e. all carry bits of an addition.

In a parallel prefixgraph every vertex computes a signal of the form zi, j = z j◦z j−1◦
· · ·◦zi for some 1 ≤ i ≤ j ≤ n. In accordance with the generate and propagate signals
gk, pk at the inputs 1 ≤ k ≤ n, we call the first component of zi, j the generate signal
(sequence) and the second component the propagate signal (sequence) computed at
the vertex.

When aiming for a bounded fan-out, we allow the use of repeater gates with fan-in
one (a single incoming edge) and fan-out at least two in all types of circuits and graphs.

An example of the transition between parallel prefix graphs and prefix adders is
given in Fig. 2. On the left the serial parallel prefix graph with depth 3 is replaced by
an And- Or-path with logic circuit depth 6 known as the ripple-carry adder. For the
Kogge–Stone parallel prefix graph [5] on the right, the depth increases from two to
four and the maximum fan-out increases from two to three.

Additions are typically not performed as isolated tasks, but the input signals result
from preceding computational stages and become available at different fixed arrival
times ti ∈ N0 (i ∈ {1, . . . , n}), e. g. when used within a multiplier. Here we make the
simplifying assumption that gi and pi have the same arrival time at the inputs, which
is essentially fulfilled if they are generated as in (1). We define the delay of a directed
path in a logic circuit starting at an input as its depth plus its input arrival time. The
delay of a vertex is the maximum delay of a path ending in the vertex and the delay of
the circuit is the maximum delay of its outputs. Depth and delay coincide if all input
arrival times are zero. Paths and outputs attaining the delay of the circuit are called
critical. The delay of all vertices can be computed in linear time by a longest path
computation in an acyclic network.

123

290 Algorithmica (2017) 77:287–308

z4 z3 z2 z1

(a)

g2 g1p2 p1g4 g3p4 p3

(b)

z4 z3 z2 z1

(c)

g2 g1p2 p1g4 g3p4 p3

(d)

Fig. 2 Prefix graphs as logic circuits. a Serial prefix graph. b And- Or-path. c Kogge–Stone prefix graph.
d Kogge–Stone logic circuit

In Fig. 3, we show an example with five inputs and its optimum solutions for
different arrival time patterns. Each tree is optimal for neither of the other two arrival
times sequences.

We aim for a prefix carry bit circuits and adders with close to minimum delay and
small size.

Examples of minimum-depth prefix graphs for uniform input arrival times are the
Kogge–Stone graph [5] or the Ladner–Fischer graph [6]. Both have depth 	log2 n
 in
terms of prefix gates, but a non-minimal depth of 2	log2 n
 as a logic circuit. For non-
uniform arrival times, these circuits might be by a factor of three worse than the lower
bound, for example for the arrival time pattern t1 = log2 n and t2 = · · · = tn = 0.
In Fig. 2c, if z1 has arrival time two and all other arrival times are zero, the delay of
Fig. 2d is 6.

Parallel prefix graphs minimizing the overall prefix graph delay for special input
arrival time patterns that occur mostly in certain multipliers were presented by Oklob-
dzija [7] and Zimmermann [15].

123

Algorithmica (2017) 77:287–308 291

z5

z4

z3 z2

z1

(a) (b) (c)

z5

z4

z3

z2

z1 z5

z4 z3

z2

z1

Fig. 3 Different arrival times profiles and their optimum prefix trees. a Arrival times 0, 0, 0, 0, 0; delay 4.
b Arrival times 4, 3, 2, 1, 0; delay 6. c Arrival times 0, 1, 2, 3, 4; delay 7

An algorithm for constructing optimum-delay parallel prefix graphs for arbitrary
non-uniform input arrival times is given by Choi [1], however this approach may
require O(n2) gates for a full n-bit adder. Roy et al. [11] enumerate parallel prefix
adders with heuristic pruning to achieve good performance-area tradeoffs in practice.
In [12] they proposed a variant with polynomial running time. All these approaches
minimize the delay of the prefix graph rather than the underlying logic circuit. As the
prefix operator contains two subsequent gates, the resulting delay of the underlying
circuit may be worse by a factor of two. Variants of the prefix operator have led to
improved constructions for small sizes. Examples are the so-called Ling adders or
Jackson adders, which were recently compared with other adders by Keeter et al. [3].

As it is commonpractice in logic synthesis [5,6,11,14],we use a simple technology-
independent circuit and delay model in this work. In hardware, the delay of a gate
certainly depends on its physical structure. Despite its simplicity, the same model is
successfully used in practice for re-optimizing carry bit functions even late in the
design flow by Werber et al. [14]. Our lower bounds are based on the definition of
delay motivated by the properties of logic circuits; for different computational models,
even faster prefix addition (such as by Cole and Vishkin [2]) is possible. In CMOS
technology, Nand/Nor gates are faster than And/Or gates and efficient implementa-
tions exist for integratedmulti-inputAnd- Or-Inversion gates andOr- And-Inversion
gates. Therefore, wewill also describe techniques for an efficient technologymapping.

1.1 Our Contribution

We will use the delay properties of the prefix operator (2) aiming to minimize the
delay of logic circuits for additions instead of the corresponding prefix graphs. This
idea was used by [8], who proposed a cubic-time dynamic programming algorithm to
compute a fast carry bit circuit.

With a deeper structural analysis of near-optimum prefix trees in Sect. 2, we can
construct a carry bit circuit with a better delay bound, size, and running time as shown
in the rows with “C” (for carry) as their type (column “T”) of Table 1.

123

292 Algorithmica (2017) 77:287–308

Table 1 Improvements over [8,9], where W = log2
(∑n

i=1 2
ti
)
is a lower bound for the delay

T Delay Size Fan-out Runtime

[8] C 1.441W + 3 4n − 3 1, 2, 3 O(n3)

Here C 1.441W + 2.674 3n − 3 1, 2 O(n log n)

[9] A 2W + 6 log2 log2 n + O(1) 6n log2 log2 n
√
n + 1 O(n2)

Here A 1.441W + 5 log2 log2 n + 4.5 6n log2 log2 n
√
n + 1 O(n log n)

Running times assume constant time for binary addition

In Sect. 3, we apply the carry bit algorithm to substantially improve the delay
bound given by Rautenbach et al. [9] for a full n-bit adder with input arrival times
t1, . . . , tn ∈ N0. The result is listed in the rows with type “A” (for adder) in Table 1.
Here, all running times are listed assuming constant-time addition. In Theorem 3, we
show that assuming linear-time addition costs only an additional factor of O(log n)

for all running times. For a comparison with traditional fast adders for uniform input
arrival times, recall that adders based on the Kogge–Stone [5] or Ladner–Fischer [6]
prefix graphs have delays of 2W for uniform input arrival times and 3W for arbitrary
input arrival times.

Then in Sect. 4, we prove a lower bound on the delay of any prefix carry bit circuit,
which shows that our carry bit algorithm is delay-optimal up to an additive constant
of 5.

Finally in Sect. 5, we show how to map our new carry bit circuits and full adders
to Nand, Nor, and Not gates economically without increasing the asymptotic delay
bound.

2 Algorithm for Single Carry Bit Circuits

We start with a method that given a parallel prefix graph allows us to compute the
delay of the underlying logic circuit up to an additive error of one, without inspecting
the underlying logic circuit.

Proposition 1 Given a parallel prefix graph or prefix tree, we propagate the arrival
times (which might all be zero) through the prefix gates so that the delay t of a gate
with left input (higher indices) l and right input (lower indices) r with delay tl and
tr , respectively, is defined as t = max{tr + 2, tl + 1}. Let d be the maximum delay
computed with this procedure, maximized over all gates, inputs and outputs, then the
delay D of the logic circuit corresponding to the given prefix graph or prefix tree
satisfies d ≤ D ≤ d + 1.

Proof This is a consequence of a longest path computation in acyclic networks. We
construct a logic circuit from theprefixgraph. For every input pair (g, p) corresponding
to an input with arrival time t , we set the arrival time of g and p to be t and t − 1,
respectively.

We prove by induction that for every signal pair (g, p) corresponding to a signal z
at a vertex in the prefix graph, g has delay at least one more than p, we also say that

123

Algorithmica (2017) 77:287–308 293

the pair (g, p) has skewed arrival times. Now, if z is not an input, the delay of g is the
maximum of two plus the delay of the generate signal of its right predecessor and one
plus the delay of the generate signal of its left predecessor. This is clear for inputs. Now
consider a signal z ◦ z′ as in Fig. 1. Let tg, tp, tg′ , and tp′ denote the delay of g, p, g′
and p′, respectively. By induction hypothesis, tp′ +1 ≤ tg′ and tp +1 ≤ tg . Therefore,
g∨ (p∧g′) has delay max

{
tp + 2, tg′ + 2, tg + 1

} = max
{
tg′ + 2, tg + 1

}
. Further-

more, max
{
tp + 2, tg′ + 2, tg + 1

} ≥ 1 + max
{
tp + 1, tp′ + 1

}
, which proves that

p′ ∧ p is indeed by at least one time unit earlier.
Inductive application of the argument above yields that the generate signal of every

output arrives at time≤ d under the assumption that all propagate signals of the inputs
arrive one time unit earlier than their actual arrival time. Shifting all computed delays
up by one time unit yields that the delay of the logic circuit for the actual arrival times
is at most d + 1.

To show that d ≤ D, consider only the generate signals, i.e. using the notation of
Fig. 1, consider a logic circuit G in which all gates of type A and inputs pi computing
propagate signals are removed, and gates of type B are replaced by repeaters. It follows
that for every output c, the subcircuit of G which consists of all ancestors of c is a tree.
This is certainly true in the parallel prefix graph, and after the removal of propagate
signals, every prefix gate internally corresponds to a tree as well. Removing gates and
inputs from a circuit does not increase its delay, because a critical path in G is also a
path in the original circuit.

Computing the delay of a signal in a tree is easy: when combining the generate
signals of two inputs, one of them has to pass through two gates (a repeater instead of
B, and C and the other has to pass through only one (namely C). This shows that the
given method for computing d indeed yields a lower bound. �

For uniform arrival times, d = D, but for arbitrary arrival times, D = d + 1 is
possible, for example by choosing the arrival times of z and z′ in Fig. 1 as 1 and 0,
respectively.

The prefix graph and its underlying logic circuit can vary greatly in depth and
delay. For example, a prefix graph of optimal depth

⌈
log2 n

⌉
as in Fig. 2c contains

a balanced binary tree computing its last output, therefore its logic circuit depth is
2

⌈
log2 n

⌉
. However, the depth only doubles for the lower (right) input of a prefix gate

by Proposition 1, which we exploit in the following.
For a single carry bit computation with arrival times, Rautenbach et al. [8] give a

dynamic programming algorithm with cubic running time. The algorithm restructures
anAnd- Or-path similar to a prefix tree. Here the right-to-left ordering of the leaves of
this tree is fixed as z1, . . . , zn , because ◦ is not commutative. The algorithm recursively
splits the sequence of inputs into two parts at an index l attaining the minimum in the
recursive delay function

D(t1, . . . , tn) = min
l=1,...,n−1

max {D(t1, . . . , tl) + 2,D(tl+1, . . . , tn) + 1} . (3)

This solution can be computed for every subsequence ti , ti+1, . . . , t j of indices via
dynamic programming by choosing the D-optimum position l at which to split the
sequence, which yields the following result.

123

294 Algorithmica (2017) 77:287–308

Theorem 1 (Rautenbach et al. [8]) For n input pairs (gi , pi) for 1 ≤ i ≤ n with
arrival times t1, . . . , tn ≥ 0, there is a logic circuit computing the carry bit cn+1 with

delay(cn+1) ≤ 1.441 log2

(
n∑

i=1

2ti

)
+ 3. (4)

This circuit can be constructed in O(n3) time. It has size at most 4n − 3, and its
maximum fan-out is bounded by two at all gates and bounded by three at all inputs.

Using our definition of a prefix tree, the size of the carry bit circuit can be reduced by
n.

Lemma 1 Any prefix tree computing a single carry bit has an underlying logic circuit
size of at most 3n − 3 and an underlying maximum fan-out of two.

Proof This is clear as any prefix tree for n inputs has exactly n − 1 prefix gates. �
To analyze the structure of fast prefix carry bit circuits we begin with a well-known
definition: let Fn be the n-th Fibonacci number, where F0 = 0, F1 = 1 and Fn =
Fn−1 + Fn−2. The exact formula for computing the n-th Fibonacci number is Fn =
1√
5
(ϕn − ψn), where ϕ = 1+√

5
2 is the golden section and ψ = 1−√

5
2 .

We first prove a similar delay bound to [8], but instead of bounding the recursive
function D, we explicitly construct our solution and obtain useful structural informa-
tion about it.

Lemma 2 Let t1, . . . , tn ∈ N0 be a sequence of input arrival times for inputs
z1, . . . , zn, and let Fk be the first Fibonacci number that is at least as large as∑n

i=1(Fti+3 − 1). Then there is a prefix tree computing zn ◦ · · · ◦ z1 with logic gate
delay at most k.

Proof Throughout the proof, we assume that every input signal pair has skewed arrival
times, i. e. gi has arrival time ti and pi has arrival time at most ti −1 for all 1 ≤ i ≤ n.
By the proof of Proposition 1, all generate and propagate signal pairs in the prefix
tree will have skewed arrival times under this assumption. Thus, all prefix gates have
depth two for the input with smaller indices and depth one for the input with larger
indices, and we will proof that the delay of the circuit is at most k − 1. Without the
skew assumption, this yields a circuit delay of k and conclude the proof, where we
pay a delay of 1 to establish the skew assumption at the inputs.

The proof has two main parts. In the first part, we construct a binary tree T with
Fk leaves in such a way that if we consider its internal nodes as prefix gates and its
leaves as inputs with arrival time 0, then its overall delay is k − 1. During the second
step, we replace sections of consecutive leaves and the corresponding subtrees of T
with our original inputs so that the arrival time of the input does not exceed the depth
of the subtree.

Let T be a tree constructed by starting at the root r and recursively constructing a
binary tree with Fk−1 leaves on the left and one with Fk−2 leaves on the right as in
Fig. 4. We refer to T as a Fibonacci tree for k.

123

Algorithmica (2017) 77:287–308 295

20 17 15 12 9 7 4 2

1921 18 16 14 13 11 10 8 6 5 3 1

Depth

0

1

2

3

4

5

6

7

Fig. 4 Fibonacci tree T for k = 8

Replacing all non-leaf nodes with prefix gates and leaves with new inputs (with
arrival time 0 and unrelated to the original inputs) as well as adding an output at
the root yields a prefix tree for Fk inputs with logic gate depth k − 1. This can be
seen inductively; it is certainly true for k = 2, 3 and thus for k > 3, the left tree
has depth k − 2, the right tree has depth k − 3, and the last prefix gate has delay
max{k − 2+ 1, k − 3+ 2} = k − 1. The minimum depth of a prefix tree with l leaves
is at most k − 1 if and only if l ≤ Fk .

Now we show how to replace parts of the tree by inputs with skewed arrival times
t1, . . . , tn without increasing the delay. We start by subdividing the leaves of the tree:
from right to left, the first Ft1+3−1 leaves are assigned to the first input, the next Ft2+3−
1 leaves are assigned to the second input, and input i gets leaves 1+∑i−1

j=1(Ft j+3 −1)

up to
∑i

j=1(Ft j+3 − 1). Our choice of k ensures that every input i gets Fti+3 − 1
successive leaves assigned to it; leftover leaves can be deleted without increasing the
delay. The ordering of the inputs is preserved within the tree.

We define a subtree of size l to be a tree obtained by taking a vertex v and all its
successors with l leaves in total. By construction, every subtree of size l must be a
Fibonacci tree for some j with Fj = l. Furthermore, for every Fj with j ≤ k − 1, we
can find subtrees of T of size Fj . A vertex v in T is the root of a subtree of size Fj �= 1
if and only if v has depth j−1. For Fj = 1, we know that j ∈ {0, 1} and v has depth 0.

Our goal is to show that every input i with arrival time ti owns all the leaves of a
subtree of size Fti+1. In order to see this, we remove all edges connecting a vertex with
depth at most ti to a vertex with depthmore than ti from the tree. This separates the tree
into a connected component containing the root and several subtrees of size at most
Fti+1. For example, if ti = 4, then Fig. 4 would contain the component containing the
root as well as subtrees indicated by the coloring and patterns of size 3, 5, 5, 3, 5 in
that order. In general, since every gate has depth 1 or 2, each root of such a tree has
depth ti or ti−1, therefore the subtrees can only have size Fti+1 or Fti . Our next goal

123

296 Algorithmica (2017) 77:287–308

is to prove that this ordered subtree sequence has a special structure. Since only the
roots of “big” subtrees of size Fti+1 can be replaced by input i without increasing the
delay, we show that there are few small subtrees of size Fti .

Due to the fact that the depth difference between a node and its left child is always
one, the leftmost root in the subtree sequence of a Fibonacci tree for some k ≥ ti
has depth ti and its parent has depth ti+1. Therefore, the subtree rooted here has size
Fti+1. We will now show that in a Fibonacci tree, the ordered subtree sequence of the
trees of size Fti+1 and size Fti never contains two consecutive subtrees of size Fti . For
k = ti +1, this is clear. For k = ti +2, there are only two subtrees, and the left one has
size Fti+1. For k > ti + 2, the subtree sequence of a Fibonacci tree for k corresponds
to the concatenation of the subtree sequences corresponding to a tree for k − 1 and a
tree for k − 2. As those satisfy the claim by induction hypothesis and each sequence
starts with a tree of size Fti+1, the Fibonacci tree for k has the stated property as well.

We know that input i owns Fti+3−1 consecutive leaves. In the subtree sequence, at
most the first Fti+1 −1 leaves belonging to input i are part of subtrees of which i does
not own the first (rightmost) leaf. Of the remaining leaves, the first Fti might cover a
subtree of that size. This accounts for Fti+1+Fti −1 = Fti+2−1 leaves. The next Fti+1
leaves are owned by i as well, so at that point, at the latest, there must be a subtree of
size Fti+1 of which i owns all leaves. For ti �= 1, we can replace the root of this subtree
with one input with arrival time ti . By construction, this does not increase the delay.

Here we used that Fti+1 > Fti to give a lower bound of the depth of the owned
subtree. The only exception from this is the case ti = 1, which can be treated analo-
gously: every input with ti = 1 owns two leaves, and by similar arguments as for the
subtree sequence, one of them must be at depth 1 in the Fibonacci tree.

After removing all leaves that have not been replaced by any original input, we
obtain a prefix tree computing zn ◦ · · · ◦ z1 with delay k − 1. All of these arguments
used the assumption of skewed arrival times also for the inputs, which can be achieved
in such a way that the actual delay of the circuit increases to at most k. �

The upper bound of k is tight for the final logic circuit as evident from the example
0, 1, 0, where

∑3
i=1(Fti+3 − 1) = 1 + 2 + 1 = 4, so k = Fk = 5 (see Fig. 5).

(a) (b) (c)

Fig. 5 A tight example. a T for k = 5. b Prefix tree. c Logic circuit

123

Algorithmica (2017) 77:287–308 297

For this arrival time profile, the algorithm will (implicitly) construct the Fibonacci
tree T and assign leaves to the inputs as in Fig. 5a, where the colored and patterned
vertices represent the positions at which the inputs will actually be inserted into the
tree. These do not have to be leaves in general. After deleting redundant inputs, we
obtain a prefix tree (Fig. 5b) and a corresponding logic circuit (Fig. 5c). Note that p2
has arrival time 1 and the red path contains four gates, hence the logic circuit has delay
5.

From the proof of Lemma 2, it is easy to see how to avoid the enumeration of all
potential splitting positions l = 1, . . . , n − 1 in (3). Since there are Fk−1 leaves in the
left subtree of T and Fk−2 in the right subtree, let

j = min

⎧⎨
⎩1 ≤ j ≤ n :

j∑
i=1

(Fti+3 − 1) ≥ Fk−2

⎫⎬
⎭

and f = Fk−2 − ∑ j−1
i=1 (Fti+3 − 1), then f counts how many leaves belonging to

input j are part of the right subtree, and j is the only input that might have leaves
in both subtrees. Since in our decomposition the leftmost Ft j+1 leaves of the right
subtree belong to a Fibonacci tree of size Ft j+1, j should be on the right side of the
decomposition if and only if f ≥ Ft j+1. Otherwise, there are at least Ft j+2 leaves on
the left side, hence in our sequence of subtrees j might own all leaves of a subtree of
size Ft j , but the remaining leaves must belong to and cover a subtree of size Ft j+1,
hence j should be on the left side. Note that it is never optimal to assign all leaves to
the same side, thus this partition can always be assumed as proper without increasing
the delay. After updating the number of leaves belonging to j on the side it is assigned
to, this yields a recursive procedure that terminates when there is only one index left
for a subtree.

Lemma 3 Given input arrival times t1, . . . , tn ∈ N0, let Fk be the first Fibonacci
number that is at least as large as

∑n
i=1(Fti+3−1). A prefix tree for these input arrival

times with delay at most k can be found with running time O (n log n + k + max ti)
under the assumption that we can perform additions and multiplications by a constant
on numbers of arbitrary size in constant time (an assumption we will show how to
avoid later). If ti ∈ O(n) for all i , then the running time is O(n log n).

Proof We have already argued that the algorithm achieves the stated delay bound. We
show that this partitioning strategy will ensure that every input i is substituted for a
subtree of size at least Fti+1.

If there is only one index i remaining, it was either the rightmost (lowest) or leftmost
(highest) index in the previous step. If it was the rightmost index, then the subtree
previously contained Fti+2 of its leaves aswell as at least onemore leaf, hence k ≥ ti+3
and the right subtree has size at least Fti+1, so replacing this subtree by input i leads
to the claimed delay by the argument used in Lemma 2. If it was the leftmost index, a
similar argument applies.

For the running time estimate, we compute the indices assigned to every leaf and
the delay bound k in time O (n + k + max ti). There are n − 1 recursive partitioning

123

298 Algorithmica (2017) 77:287–308

(a)

0

1

3

2

3

(b)

Fig. 6 Example of the algorithm. a Output for input arrival times 3, 2, 3, 1, 0. b Prefix tree

steps, during each of which we find the input j as the input index to own leaves in
the left subtree. This can be done in logarithmic time using binary search in the sorted
array of the indices of the first leaf belonging to every input. �

Figure 6a shows how the algorithm works for the sequence of input arrival times
3, 2, 3, 1, 0. The number of leaves we need is 7 + 4 + 7 + 2 + 1 = 21, therefore
k = 8 suffices. We number the leaves from right to left as 1, . . . , 21. After the first
split, 3 light blue leaves of input 2 are in the left subtree, hence the corresponding
input is assigned to the left subtree. Note that for the orange leaves of input 4, we end
up assigning them to a right subtree that does not contain any orange leaves in the
beginning, but only green leaves of input 3, in order to ensure a proper partition. We
obtain the result shown in Fig. 6b.

Lemma 4 We can construct a prefix tree with a delay bound as in Lemma 2 for any
instance (t1, . . . , tn) by instead constructing a prefix tree for an instance (t ′1, . . . , t ′n)
with max t ′i ≤ 2n − 1.

This follows from the fact that the longest path from any input to the output contains
at most n − 1 prefix gates. The maximum delay difference can be assumed as 2n − 2,
since any input with earlier arrival time will never be critical.

Theorem 2 For n inputs with arrival times t1, . . . , tn ∈ N0, the algorithm finds a
prefix carry bit circuit for cn+1 with

delay(cn+1) ≤ k ≤
⌊
logϕ

(
n∑

i=1

ϕti

)⌋
+ 4.

The constructed logic circuit has size at most 3n − 3 and maximum fan-out two at all
logic gates and inputs. Furthermore, the delay is at most

k ≤ logϕ

(
n∑

i=1

2ti

)
+ 2.673 ≤ 1.441 log2

(
n∑

i=1

2ti

)
+ 2.673.

123

Algorithmica (2017) 77:287–308 299

Proof The size and fan-out bounds follow fromLemma1. The delay of the constructed

circuit is k. By choice of k, we know that
∑n

i=1(Fti+3−1) ≥ Fk−1+1.Withϕ = 1+√
5

2 ,

ψ = 1−√
5

2 and the exact formula Fn = 1√
5
·(ϕn−ψn), it follows that |√5Fn−ϕn| ≤ 1

and for n ≥ 1, |√5Fn − ϕn| ≤ |ψ |.
Now k − 1 = 0 can only be true if there is only one input. In this case, the stated

delay bound is trivially true. Otherwise, we obtain the estimate:

k − 1 = logϕ

(
ϕk−1

)
≤ logϕ

(√
5 (Fk−1 + 1)

)

≤ logϕ

(√
5

(
n∑

i=1

(
Fti+3 − 1

)))

≤ logϕ

(√
5

(
n∑

i=1

(
1√
5

(
ϕti+3 + 1

)
− 1

)))

≤ logϕ

(
n∑

i=1

ϕti+3

)
= logϕ

(
n∑

i=1

ϕti

)
+ 3,

which proves the first claim.
For a single input, the second delay bound is trivially true. Furthermore, for ti ≥ 0,

Fti+3 − 1 ≤ 2ti . We obtain the estimate:

k − 1 = logϕ

(
ϕk−1

)
≤ logϕ

(√
5 (Fk−1 + 1)

)

≤ logϕ

(√
5

(
n∑

i=1

(
Fti+3 − 1

)))

≤ logϕ

(√
5

(
n∑

i=1

2ti

))

= logϕ

(
n∑

i=1

2ti

)
+ logϕ

√
5 ≤ 1.441 log2

(
n∑

i=1

2ti

)
+ 1.673.

�
Our proof allows an improvement over the delay bound of [8] due to a refined

analysis. A running time of O(n log n) follows from Lemma 3 assuming that we can
add numbers of linear size and multiply them by a constant in constant time. Under
the more practical assumption that these operations take linear time with respect to
the number of digits, the algorithm has super-quadratic running time, which can be
avoided as follows:

Theorem 3 For any fixed γ > 1, a prefix carry bit circuit as in the setting ofTheorem2
with

delay(cn+1) ≤ logϕ

(
n∑

i=1

ϕti

)
+ 4 + 2.1 · n1−γ

123

300 Algorithmica (2017) 77:287–308

can be found in O(nγ log2 n) time assuming linear-time addition and multiplication
with constants. It satisfies

delay(cn+1) ≤ 1.441 log2

(
n∑

i=1

2ti

)
+ 2.673 + 2.1 · n1−1.4γ .

Proof By Lemma 4 and Theorem 2, we can solve instances with max ti − min ti
≤ γ

⌈
logϕ n

⌉
in O(nγ log2 n) time with linear-time addition.

Given an instance with arrival times t1, . . . , tn ∈ N≥0, we define a new instance
t ′i = max

{
ti ,max j∈{1,...,n} t j − γ

⌈
logϕ n

⌉}
and compute a circuit for the modified

instance in O(nγ log2 n). When reverting to the original arrival times, the delay of
this solution does not increase, because none of the arrival times do. Therefore,

delay(cn+1) − 4 ≤ logϕ

(
n∑

i=1

φt ′i

)

≤ logϕ

(
n · φmax ti−γ

⌈
logϕ n

⌉
+

n∑
i=1

φti

)

≤ logϕ

(
φmax ti+(1−γ) logϕ n +

n∑
i=1

φti

)

≤ logϕ

(
n∑

i=1

φti

)
+ logϕ

(
1 + φ(1−γ) logϕ n

)

≤ logϕ

(
n∑

i=1

φti

)
+ logϕ e · n1−γ ,

and logϕ e < 2.1. For the dual logarithm-based delay bound, we have

delay(cn+1) − 2.673 ≤ logϕ 2 · log2
(

n∑
i=1

2t
′
i

)

≤ logϕ 2 · log2
(
n · 2max ti−γ

⌈
logϕ n

⌉
+

n∑
i=1

2ti

)

≤ logϕ 2 · log2
(
2max ti−(1−γ logϕ 2) log2 n +

n∑
i=1

2ti

)

≤ logϕ 2

(
log2

(
n∑

i=1

2ti

)
+ log2

(
1 + 2(1−γ logϕ 2) log2 n

))

≤ logϕ 2 · log2
(

n∑
i=1

2ti

)
+ (logϕ e)n

1−γ logϕ 2,

and 1.4 < logϕ 2 < 1.441. �

123

Algorithmica (2017) 77:287–308 301

For γ > 1, the additional error decreases with growing n. Since the algorithm is
only useful if n ≥ 2, choosing a sufficiently large constant γ yields the delay bound
1.441 log2

(∑n
i=1 2

ti
) + 2.674 with running time O(n log2 n).

3 Algorithm for Prefix Adder Circuits

The naïve parallel prefix graph construction, in which all carry bits are computed
separately by a carry bit circuit, might contain a quadratic number of gates. Therefore,
Rautenbach et al. also developed a parallel prefix graph construction computing all
carry bits [9].

Theorem 4 (Rautenbach et al. [9]) Given arrival times t1, . . . , tn ∈ N0, there
is a parallel prefix graph for n inputs of size O(n log log n) with logic delay
2 log2

(∑n
i=1 2

ti
) + 6 log2 log2 n + O(1).

The primary objective in [9] is to minimize the delay of the prefix graph instead of
the underlying logic circuit. We will improve the performance guarantee for a similar
construction as in [9] by using a carry bit circuit as in Sect. 2 as a subroutine.

Given n inputs, we partition the set {1, . . . , n} into l = ⌈√
n
⌉
subsets V1, . . . , Vl ,

each containing l or l−1 consecutive indices. Let Zi = ◦ j∈Vi z j , where Zi is computed
by a circuit constructed by the carry bit algorithm. This is shown in green, labeled
“Best”, in Fig. 7. The parallel prefix graph construction is applied recursively to com-
pute prefixes for all groups without their highest index as well as for the l − 1 inputs
Z1, . . . , Zl−1 (which corresponds to the red boxes labeled “Recursion” in Fig. 7), i.e.
we build l + 1 parallel prefix graphs, each with at most l − 1 inputs. As a final step,
we combine all prefixes from group i with the (i − 1)-th prefix of the Zi and add
one more prefix gate combining Zl with the (l − 1)-th prefix of the Zi . This yields a
parallel prefix graph.

The following two lemmas analyze the size of the resulting parallel prefix graph
and the running time of its construction.

Lemma 5 The parallel prefix graph in [9] and the modified construction above have
the same size; for n ≥ 3, it is bounded by 2n log2 log2 n in terms of prefix gates and
6n log2 log2 n in terms of logic gates.

Proof Consider Fig. 8 and proceed by induction on the number of inputs. On a level
with n inputs, the number of prefix gates in all the green carry bit circuits (labeled

Fig. 7 Prefix graph construction

123

302 Algorithmica (2017) 77:287–308

z25 z24 z23 z22 z21 z20 z19 z18 z17 z16 z15 z14 z13 z12 z11 z10 z9 z8 z7 z6 z5 z4 z3 z2 z1

Fig. 8 Parallel prefix graph for uniform arrival times

“Best”) and the number of yellow prefix gates in the bottom row are both at most n.
The total number of inputs of recursion blocks can be bounded by n as well: if there
are l groups, then n − l original inputs are inputs of recursion blocks; one further
recursion block has l − 1 inputs. For small n, the correctness follows from Fig. 8, e.
g. for n = 3, the size bound is 5 and 3 gates are required.

Let V1, . . . , Vl be the groups, l ≥ 3, then by induction hypothesis, the prefix gate
size is bounded by

2n + 2(l − 1) log2 log2(l − 1) +
l∑

i=1

2(|Vi | − 1) log2 log2(|Vi | − 1)

≤ 2n +
l∑

i=1

2|Vi | log2 log2(l − 1)

≤ 2n + 2n log2 log2
√
n = 2n log2 log2 n.

For logic gates, the size increases by a factor of three. �
Lemma 6 The parallel prefix graph above can be computed in O(n log2 n) time.

Proof As in Theorem 3, we round all running times up to at least max ti − γ
⌈
log2 n

⌉
for a fixed γ > 1. For this arrival time profile, we have already shown that

1.441

(
n∑

i=1

2t
′
i

)
≤ 1.441 log2

(
n∑

i=1

2ti

)
+ 2.1 · n1−1.4γ .

Therefore, we can use the rounded arrival time profile to achieve a delay guarantee of

1.441 log2

(
n∑

i=1

2ti

)
+ 5 log2 log2 n + 4.5

for γ = 3. Thismeans that all numbers in the computations have size at mostO(log n),
thus it remains to bound the number of operations by O(n log n).

123

Algorithmica (2017) 77:287–308 303

For each level l = 1, . . . , log2 log2 n of the recursion, we have a partition of the n

inputs into groups, where the maximum group size is bounded by n1/2
l
. Therefore, the

prefix trees for the Zi can be computed inO
(
n log

(
n1/2

l
))

= O
((1

2

)l
n log n

)
time.

All Zi require timeO(n log n), because this is a geometric series. All remaining gates
are prefix gates; they have fixed positions, thus each of them requires only constant
time to compute, and there are O(n log log n) such gates in total. �

The new parallel prefix graph construction is summarized in the following theorem.

Theorem 5 Given n ∈ N and arrival times t1, . . . , tn ∈ N0, our algorithm finds a
parallel prefix graph with logic gate delay at most

logϕ

(
n∑

i=1

ϕti

)
+ 5 log2 log2 n + 4.5 ≤ 1.441 log2

(
n∑

i=1

2ti

)
+ 5 log2 log2 n + 4.5.

It can be implemented with running time O(n log2 n) and the computed circuit has
size at most 6n log2 log2 n in terms of logic gates.

This theorem implies that if the number n of inputs is sufficiently large, we have a
1.441-approximation algorithm in terms of the delay for a prefix adder. The algorithm
of [9] has a running time of �(n2), which the use of our carry bit algorithm improves
to a near-linear running time, even with linear-time addition.

To prove the delay bound, we assume that all arrival times are skewed by one
time unit. Under this assumption, let w = ∑n

i=1 ϕti , and let delay(w, n) denote the
maximum delay for a circuit constructed as above with n ≥ 3 inputs and an arrival
time profile leading to the same w. Then delay(w, n) + 1 is an upper bound on the
delay of the constructed circuit, and we have:

Lemma 7 For n input pairs with skewed arrival times t1, . . . , tn, let w = ∑n
i=1 ϕti .

Then we have

delay(w, n) ≤ logϕ w + 5 log2 log2 n + 3.

Proof Wemay assume that the given arrival time profile achieves the maximum delay,
i.e. for t1, . . . , tn , the construction has a delay of delay(w, n).

ByTheorem2 and using the assumption that the propagate signals arrive earlier than

the generate signals, we can compute Zi with a delay of at most logϕ

(∑
j∈Vi ϕt j

)
+3.

Therefore, their prefix graph has delay at most

delay

(
l∑

i=1

ϕ
logϕ

(∑
j∈Vi ϕ

t j
)
+3

,
⌈√

n
⌉ − 1

)
= delay

⎛
⎝ϕ3 ·

n∑
j=1

ϕt j ,
⌈√

n
⌉ − 1

⎞
⎠.

For each of the groups Vi containing
⌈√

n
⌉
or

⌈√
n
⌉ − 1 inputs, the prefix graph of

all but its last input (highest index) has delay at most

delay(w,
⌈√

n
⌉ − 1) ≤ delay(ϕ3w,

⌈√
n
⌉ − 1),

123

304 Algorithmica (2017) 77:287–308

as delay(w, n) is monotonically increasing in w and n. Therefore, the combination of
a prefix of one of the Vi and the corresponding prefix of the Zi has logic gate delay at
most delay(w, n) ≤ delay

(
ϕ3w,

⌈√
n
⌉ − 1

) + 2.
We prove the absolute delay estimate by induction on n. For n ≤ 3, delay(w, n) −

logϕ w ≤ 3 for all input sequences with this parameter w as logϕ w ≥ maxi ti .
Therefore, for n ≥ 4, delay(w, n) is bounded by

delay(ϕ3w,
⌈√

n
⌉ − 1) + 2 ≤ logϕ(ϕ3w) + 5 log2 log2(

√
n) + 5

≤ logϕ w + 5 log2(0.5 log2 n) + 8

= logϕ w + 5 log2 log2 n − 5 + 8

= logϕ w + 5 log2 log2 n + 3.

�

Without assuming skewed arrival times, this construction has a delay bound of
logϕ w + 5 log2 log2 n + 4. For n = 25, an example is shown in Fig. 8. Gates are
colored by the part of the recursion they represent; in this special case, some gates can
be used to compute the Zi as well as the group prefixes, hence they are colored both
red (right half) and green (left half).

The construction in [9] and our variant of it both have a very high fan-out; for
n inputs, the fan-out is at least

⌈√
n
⌉
. In a physical implementation such a high

fanout induces a significant delay and requires the insertion of duplicate gates into
the interconnect to repeat the signals. The high fan-outs occur precisely at the Zi -
prefixes, therefore they accumulate on a critical path. For n inputs, the fan-out can be
redistributed to duplicate gates with fan-out 2 using depth 1

2

⌈
log2 n

⌉ + 1; this will
lead to an overall increase in delay of

⌈
log2 n

⌉ + O(log2 log2 n) for a given path [9].
Therefore, we obtain a 2.441-approximation algorithm if the fan-out is bounded by 2,
improving the 3-approximation achieved by [9] in this scenario. A 3-approximation is
also obtained by the Kogge–Stone adder [5] for arbitrary input arrival times. However,
it comes with a larger size of O(n log2 n).

4 A Lower Bound for Prefix Adders

Proposition 1 shows that a lower bound for the delay of a prefix tree for a single carry
bit is given by an optimal binary tree with depth one for the left child and depth two
for the right child in which the leaves represent inputs and their right-to-left order
corresponds to the ordering of the inputs. For zero arrival times, this is achieved by
a Fibonacci tree. Rautenbach et al. [10] observed that this a special case of a more
general concept: alphabetic code trees with unequal letter costs. These can be used
to obtain general lower bounds, which we improve and state explicitly by using the
specific properties of our application.

Lemma 8 Given n inputs with integral arrival times t1, . . . , tn ∈ N0, a prefix tree
computing their carry bit cn+1 has logic gate delay at least

123

Algorithmica (2017) 77:287–308 305

delay(cn+1) ≥ logϕ

(
n∑

i=1

ϕti

)
− 1.

Proof In Sect. 2 we saw that Fti+1 inputs with arrival time zero can be combined with
depth ti . Therefore, an optimal prefix tree for inputs with arrival times t1, . . . , tn of
delay k can be restructured into a prefix tree with

∑n
i=1 Fti+1 inputs with depth k by

replacing input i by a Fibonacci tree for ti + 1. If there is only one input, the lemma is
trivially true, thus we may assume

∑n
i=1 Fti+1 ≥ 2. But a tree of depth k has at most

Fk+1 leaves, hence k ≥ 2 and

k + 1 = logϕ

(
ϕk+1

)
≥ logϕ

(√
5

(
Fk+1 + ψ3

√
5

))

≥ logϕ

(√
5

(
n∑

i=1

Fti+1 + ψ3

√
5

))

≥ logϕ

(
n∑

i=1

(
ϕti+1 − ψ2 + ψ3

))

= logϕ

(
n∑

i=1

(
ϕti+1 − ϕψ2

))

≥ logϕ

(
ϕ(1 − ψ2) ·

n∑
i=1

ϕti

)
= logϕ

(
n∑

i=1

ϕti

)
,

and k ≥ logϕ

(∑n
i=1 ϕti

) − 1 as claimed. �
This lemma shows that the single carry bit circuits in Sect. 2 have optimum delay up
to an additive margin of 5.

5 Technology Mapping

In CMOS technology, And and Or gates are significantly slower than their negated
counterparts. Therefore, in the following we will transform the constructed logic cir-
cuits to use only Nand and Nor gates without increasing their delay too much.

To this end, we introduce two new prefix gates, ∧ and ∨ shown in Fig. 9a, b.
Much like the non-inverted prefix gate in Fig. 1, they take as input two pairs of generate
and a propagate signals, and compute as output their combined generate and propagate
signal. Unlike ◦ gates, these gates assume that exactly one g and p is inverted, and the
same is true for the output generate and propagate signal.

The new prefix gates also preserve the property that the delay of the gate is one
for the left input and two for the right input assuming skewed arrival times as before.

Therefore, replacing non-inverted prefix gates with ∧ and ∨ almost preserves the
delay, as the following lemma shows.

123

306 Algorithmica (2017) 77:287–308

∧

z z

z ◦ z

g

gp

p

p ∧ pg ∨ (p ∧ g)

(a)

∨

z z

z ◦ z

g

gp

p

p ∧ pg ∨ (p ∧ g)

(b)
Fig. 9 Inverting prefix gates. a A prefix gate using only Nand and Not. b A prefix gate using only Nor
and Not

Lemma 9 A non-inverted prefix gate tree computing a single carry bit can trans-

formed into a prefix tree of ∧ and ∨ gates without increasing the delay by more
than 1. The transformed circuit has size 5n − 4.

Proof We begin at the root of the tree, where we replace the prefix gate by a ∧
gate, thus ensuring that the output carry bit (generate signal) is non-inverted. For the
predecessors we proceed as follows. The right child of an inverted prefix gate requires

the same inversion for g and p as the output pair, so the right child of a ∧ gate should

be a ∧ gate, and the right child of a ∨ gate should be a ∨ gate. The left child

requires the reverse inversion of g and p, so the left child of a ∨ should be a ∧ and
vice versa. Making these replacements as needed is possible since the original prefix
circuit is a tree in terms of prefix gates. Since the delay of the non-inverted and inverted
prefix gates are the same, so is the delay of the resulting tree. However, since each pair
input signals (gi , pi) will be used with exactly one of the components inverted, each
input has to use an additional inverter, thus increasing the overall delay by one. The

size is the sum of 4(n − 1) logic gates in the n − 1 ∨ and ∧ gates, and n inverters
at the inputs. �

Similarly, we can map the non-inverted full adder from Fig. 7 to Nand, Nor-, and
Not gates, by applying Lemma 9 to the prefix carry bit circuits labeled “Best”.

Lemma 10 Given n ∈ N and arrival times t1, . . . , tn ∈ N0, we can compute a full
adder (computing all carry bits) using only Nand, Nor and Not gates with delay at
most

1.441 log2

(
n∑

i=1

2ti

)
+ 6

⌈
log2 log2 n

⌉ + 6.5

and size O(n log2 log2 n).

123

Algorithmica (2017) 77:287–308 307

Proof We require an additional delay of one to ensure that in the beginning all signals
are available inverted and non-inverted as needed, and an additional delay of one at
the outputs as well. The recursion has

⌈
log2 log2 n

⌉
levels. For each level, we need

to correct inversions at most once, after the first level of “Best” and “Recursion”
computations, thus also supplying each input signal of the next level of the recursion
in inverted and non-inverted form. Depending on how the outputs are inverted after
the recursion is applied to the carry bits of the groups as computed by “Best”, the

prefix gates in Fig. 7 are replaced by ∧ or ∨ gates. After correcting the inversion
at the outputs, the resulting circuit computes all carry bits with an additional delay of
log2 log2 n + 2 compared to the non-inverted construction. The additional number of
gates is at most linear at every level, and thus O(n log2 log2 n) overall. �

This shows how the given constructions that were formulated in terms of non-
inverted prefix gates can be transformed into circuits using only inverting gates, which
are more useful for practical applications. The transformations do not increase the
asymptotic delays. For the carry bit circuit the delay increases just by one. Thereby,
the size bounds grow by a small constant factor.

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no conflict of interest.

References

1. Choi, Y.: Parallel Prefix Adder Design. Dissertation, University of Texas at Austin (2004)
2. Cole, R., Vishkin, U.: Faster optimal parallel prefix sums and list ranking. Inf. Comput. 81(3), 334–352

(1989)
3. Keeter, M., Harris, D.M., Macrae, A., Glick, R., Ong, M., Schauer, J.: Implementation of 32-bit Ling

and Jackson adders. In: Proceedings of the Forty Fifth Asilomar Conference on Signals, Systems and
Computers, pp. 170–175 (2011)

4. Knowles, S.: A family of adders. In: Proceedings of the 15th IEEESymposiumonComputerArithmetic
(ARITH-15), pp. 277–281 (2001)

5. Kogge, P.M., Stone, H.S.: A parallel algorithm for the efficient solution of a general class of recurrence
equations. IEEE Trans. Comput. 100(8), 786–793 (1973)

6. Ladner, R.E., Fischer, M.J.: Parallel prefix computation. J. ACM 27(4), 831–838 (1980)
7. Oklobdzija, V.G.: Design and analysis of fast carry-propagate adder under non-equal input signal

arrival profile. In: Proceedings of the Twenty-Eighth Asilomar Conference on Signals, Systems and
Computers, vol. 2, pp. 1398–1401 (1994)

8. Rautenbach, D., Szegedy, C., Werber, J.: Delay optimization of linear depth Boolean circuits with
prescribed input arrival times. J. Discrete Algorithms 4(4), 526–537 (2006)

9. Rautenbach, D., Szegedy, C., Werber, J.: The delay of circuits whose inputs have specified arrival
times. Discrete Appl. Math. 155(10), 1233–1243 (2007)

10. Rautenbach, D., Szegedy, C., Werber, J.: On the cost of optimal alphabetic code trees with unequal
letter costs. Eur. J. Comb. 29(2), 386–394 (2008)

11. Roy, S., Choudhury, M., Puri, R., Pan, D.Z.: Towards optimal performance-area trade-off in adders by
synthesis of parallel prefix structures. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 33(10),
1517–1530 (2014)

12. Roy, S., Choudhury, M., Puri, R., Pan, D.Z.: Polynomial time algorithm for area and power efficient
adder synthesis in high-performance designs. In: Proceedings of the 20thAsia and South PacificDesign
Automation Conference (ASP-DAC), pp. 249–254 (2015)

13. Weinberger, A., Smith, J.L.: A logic for high-speed addition. Natl. Bur. Stand. Circul. 591, 3–12 (1958)

123

308 Algorithmica (2017) 77:287–308

14. Werber, J., Rautenbach, D., Szegedy, C.: Timing optimization by restructuring long combinator-
ial paths. In: Proceedings of the IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pp. 536–543 (2007)

15. Zimmermann, R.: Binary Adder Architectures for Cell-Based VLSI and Their Synthesis. Dissertation,
Swiss Federal Institute of Technology (ETH) in Zurich (1998)

123

	Fast Prefix Adders for Non-uniform Input Arrival Times
	Abstract
	1 Introduction
	1.1 Our Contribution

	2 Algorithm for Single Carry Bit Circuits
	3 Algorithm for Prefix Adder Circuits
	4 A Lower Bound for Prefix Adders
	5 Technology Mapping
	References

