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1 Introduction

All graphs in this paper are finite and simple. Let G be a graph. Gc denotes
the complement of G, obtained from G by replacing each edge with a non-edge
and vice versa. For X ⊆ V (G), G|X denotes the induced subgraph of G with
vertex set X . For X, Y ⊆ V (G) with X ∩ Y = ∅, we say that X is complete to
Y if for all x ∈ X, y ∈ Y , xy ∈ E(G); we say that X is anticomplete to Y if
for all x ∈ X, y ∈ Y , xy 6∈ E(G). For v ∈ V (G), X ⊆ V (G) \ {v}, we say that
v is complete (anticomplete) to X if {v} is complete (anticomplete) to X .

Let G1 = (V1, E1), G2 = (V2, E2), then G2 is a supergraph of G1 if V1 = V2

and E1 ⊆ E2. A pair (G1, G2) of graphs such that G2 is a supergraph of G1

is called a sandwich instance. A graph G is called a sandwich graph for the
sandwich instance (G1, G2) if G2 is a supergraph of G and G is a supergraph of
G1. For a graph G and a set E′ of edges with both endpoints in V (G), G ∪ E′

denotes the supergraph G′ = (V (G), E(G) ∪ E′) of G, and G \ E′ denotes the
graph G′′ = (V (G), E(G) \ E′), and G is a supergraph of G′′.

Let P be a graph property. We define the complementary property Pc by
saying that G satisfies Pc if and only if Gc satisfies P .

The P recognition problem is the problem of deciding whether a given
graph G satisfies P . The P sandwich problem is the following: For a given
sandwich instance (G1, G2), does there exist a sandwich graph G for (G1, G2)
such that G satisfies P? This generalization of the recognition problem was
introduced by Golumbic and Shamir [23]. The sandwich problem becomes the
recognition problem when G1 = G2, and thus, if the P recognition problem is
NP -hard, so is the P sandwich problem.

Sandwich problems have attracted much attention lately, see [4,16,22,23,
24,32,33]. Starting with [24], research has focused on the sandwich problem for
subclasses of perfect graphs, and for decompositions related to perfect graphs.
The complexity of the perfect graph sandwich problem remains one of the
most prominent open questions in this area.

Let G, G′ be a pair of graphs such that G′ is a supergraph of G. Then G′

is a (P, N)-probe graph for G if (P, N) is a partition of V (G), N is a stable set
in G, and every edge in E(G′) \ E(G) has both of its endpoints in N .

For a graph property P , a graph G = (V, E) is a P probe graph with
partition (P, N) if there exists a (P, N)-probe graph G′ for G such that G′

satisfies P . A graph G is a P probe graph if there exists a partition (P, N)
of its vertex set such that G is a P probe graph with partition (P, N). The
vertices in P are called probes, and the vertices in N are called non-probes.

For a graph property P , the P partitioned probe problem is the fol-
lowing: Given a graph G = (V, E), and a stable set N ⊆ V , is G a P probe
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The sandwich problem for decompositions and almost monotone properties 3

graph with partition (V \N, N)? The partitioned probe problem was first intro-
duced in [28,36] for interval graphs because of its applications to the physical
mapping of DNA.

The P partitioned probe problem with input graph G = (V, E) and stable
set N ⊆ V is a special case of the P sandwich problem in which E(G1) = E

and the edges in E(G2) \ E(G1) are precisely the edges between all pairs of
distinct vertices in N .

The complexity of the Pc sandwich problem is the same as the complexity
of the P sandwich problem, because an instance (G1, G2) is a Yes instance for
the former if and only if (Gc

2, Gc
1) is a Yes instance for the latter. The same is

true for the P partitioned probe problem: A graph G with partition (P, N) is
a Yes instance for the P partitioned probe problem if and only if the graph
G′ arising from Gc by removing all edges with both endpoints in N with the
partition (P, N) is a Yes instance for the Pc partitioned probe problem.

Let P be a graph property. The P unpartitioned probe problem is
the following: Given a graph G, is G a P probe graph? We also consider the P
unpartitioned probe problem in the complement: Given a graph G, is
Gc a Pc probe graph? In other words, in the unpartitioned probe problem,
the goal to decide whether there is a stable set N in G and a set of edges
E′ with both endpoints in N such that G ∪ E′ satisfies P , whereas in the
unpartitioned probe problem in the complement, the goal to decide whether
there is a clique N in G and a set of edges E′ with both endpoints in N

such that G \ E′ satisfies P . Therefore, these problems are not equivalent in
general, and indeed we will show an example (containing a full star cutset)
for which the unpartitioned probe problem is NP -hard, but the unpartitioned
probe problem in the complement is in P .

The partitioned and unpartitioned probe problems have been studied ex-
tensively, see for example [2,14,25,28,36]. Couto, Faria, Gravier and Klein
[14] conjectured that the perfect partitioned and unpartitioned probe prob-
lems can be solved in polynomial time, and proved that if the perfect unpar-
titioned probe problem can be solved in polynomial time, this also follows for
the partitioned case.

This paper is organized as follows: In Section 2, we show that the sandwich
problem can be reduced to the recognition problem for almost monotone prop-
erties, and we prove that several properties related to containing an induced
subgraph from a certain set of graphs are almost monotone. In particular, we
give a polynomial-time algorithm for the recognition of Berge trigraphs. In
Section 3, we consider several decompositions that are related to the study of
perfect graphs, and we study the hardness of testing for these decompositions
for the partitioned probe problem and the unpartitioned probe problem in the
graph and in the complement. In Section 3.1, we present resulting polynomial-
time algorithms, and in Section 3.2, we give NP -hardness results. In Section 4,
we mention some open problems.
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4 Maria Chudnovsky et al.

2 Almost monotone properties

A property P of graphs is ancestral if for all G = (V, E) that satisfy P and E′ ⊇
E, G′ = (V, E′) also satisfies P . It is hereditary if for all G = (V, E) that satisfy
P and E′ ⊆ E, G′ = (V, E′) also satisfies P . If a property is either ancestral
or hereditary, it is called monotone. If a property P is ancestral, then Pc is
hereditary, and vice versa. For monotone properties, the sandwich problem
reduces to the recognition problem for either G1 or G2. Since the partitioned
probe problem is a special case of the sandwich problem, it follows that this
holds for the partitioned probe problem as well. Moreover, the unpartitioned
probe problem for a hereditary property P with input G is the same as the
P recognition problem with input G, and the unpartitioned probe problem in
the complement for an ancestral property P with input G is the same as the
Pc recognition problem with input Gc.

In the following, we define a more general notion of monotonicity, which
allows us to reduce solving the sandwich problem to solving a polynomial
number of recognition problems in this case.

A property P of graphs is k-edge monotone if for all sandwich instances
(G1, G2), if there exists a sandwich graph G that satisfies P , then there exists
a sandwich graph G′ that satisfies P with the additional property that |E(G′)\
E(G1)| ≤ k or |E(G2) \ E(G′)| ≤ k.

A property P of graphs is k-vertex monotone if for all sandwich instances
(G1, G2), if there exists a sandwich graph G that satisfies P , then there exists
a sandwich graph G′ that satisfies P and a set S ⊆ V (G) satisfying |S| ≤ k

and such that for V1 = {v ∈ V (G) : NG′(v) \ S = NG1
(v) \ S} and V2 = {v ∈

V (G) : NG′(v) \ S = NG2
(v) \ S} we have V1 ∪ V2 = V (G) and V (G) \ V1 ⊆ S

or V (G) \ V2 ⊆ S.
Clearly, any monotone property is 0-edge monotone and 0-vertex mono-

tone. We also remark the following simple consequence of these definitions.

Lemma 1 If a property P is k-edge monotone, it is 2k-vertex monotone. The
converse is not true in general.

Lemma 2 Let P be a k-edge monotone property, then the P sandwich problem
for a sandwich instance (G1, G2) with |V (G1)| = n can be decided by solving
the P recognition problem for O(kn2k) graphs.

Proof If there exists a sandwich graph that satisfies P , then there exists a sand-
wich graph G with |E(G)\E(G1)| ≤ k or |E(G2)\E(G)| ≤ k. Thus, it suffices
to check for all subsets F ⊆ E(G2)\E(G1) with |F | ≤ k if (V (G1), E(G1)∪F )
or (V (G2), E(G2) \ F ) satisfies P . Since there are O(n2) edges, it follows that
there are O(kn2k) sets F to consider.

Lemma 3 Let P be a k-vertex monotone property, then the P sandwich prob-
lem for a sandwich instance (G1, G2) with |V (G1)| = n can be decided by

solving the P recognition problem for O(knk2(k+1

2 )) graphs.
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The sandwich problem for decompositions and almost monotone properties 5

Proof It suffices to solve the recognition problem for all sandwich graphs G

with a set S ⊆ V (G) satisfying |S| ≤ k and such that for V1 = {v ∈ V (G) :
NG(v) \ S = NG1

(v) \ S} and V2 = {v ∈ V (G) : NG(v) \ S = NG2
(v) \ S} we

have V1 ∪ V2 = V (G) and V (G) \ V1 ⊆ S or V (G) \ V2 ⊆ S. There are O(knk)
sets S ⊆ V of size at most k, and two choices such that either V (G) \ V1 ⊆ S

or V (G) \ V2 ⊆ S. This determines all edges in G with both endpoints not
in S. For each vertex in S, we choose whether it is in V1 or V2. There are 2k

options for this, and they determine all edges in G with exactly one endpoint
in S. Finally, we choose any subset of the edges in E(G2) \ E(G1) with both

endpoints in S to be in G; there are at most 2(k

2) possibilities. Thus, the

number of possible graphs G is O(knk2(k+1

2 )).

Let C be a set of graphs. We say that G is C-free if no induced subgraph
of G is isomorphic to a graph in C. We say that C is almost edge monotone
(almost vertex monotone) if there exists a k such that the property of not being
C-free is k-edge monotone (k-vertex monotone). If C is almost edge monotone
or almost vertex monotone, so is the set of graphs whose complement is in C.
Moreover, any finite set C of graphs is almost edge monotone.

The following lemma is a simple consequence of the definition of almost
monotone properties.

Lemma 4 Let C, C′ be almost edge (vertex) monotone sets of graphs. Then
their union is almost edge (vertex) monotone.

An induced cycle Ck with k ≥ 4 vertices is called a hole; it is called an odd
hole if k is odd, and an even hole if k is even. An antihole is the complement
of a hole. It is an odd antihole if its complement is an odd hole, and an even
antihole otherwise.

Lemma 5 Let C be the set of odd holes. Then C is almost edge monotone; in
particular, the property of containing an odd hole is 5-edge monotone. Con-
sequently, the property of containing an odd antihole is also 5-edge monotone.

Proof Let (G1, G2) be a sandwich instance such that there is a sandwich graph
for (G1, G2) that contains an odd hole. Let G be the sandwich graph for
(G1, G2) with |E(G2) \ E(G)| minimum subject to G containing an odd hole,
and let C be an odd hole in G. There is no edge in E(G2) \ E(G) with at least
one endpoint not in V (C), since adding such an edge to G would preserve the
odd hole C. Our goal is to prove that |E(G2) \ E(G)| ≤ 5.

Let v1, . . . , vk denote the vertices of C in order along C. All edges in E(G2)\
E(G) have both endpoints in C. For each edge e ∈ E(G2) \ E(G), adding e

to G splits C into two smaller induced cycles whose number of edges sums to
k + 2. Therefore, one of these cycles is odd, but since it is not an odd hole, it
follows that it is a triangle. Let v(e) denote the vertex of this triangle that is
not an endpoint of e. Clearly, v(e) = v(e′) implies that e = e′. Suppose first
that there are two edges e1, e2 ∈ E(G) such that v(e1) and v(e2) are non-
adjacent, then {v1, . . . , vk}\{v(e1), v(e2)} induces an odd cycle in G∪{e1, e2}
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6 Maria Chudnovsky et al.

which is not an odd hole, and therefore, this cycle is a triangle. This implies
that k = 5, and thus there are at most five edges connecting two non-adjacent
vertices in C, which implies the result that |E(G2) \ E(G)| ≤ 5. Thus, we may
assume that for all distinct e1, e2 ∈ E(G2) \ E(G), v(e1) is adjacent to v(e2).
This implies that {v(e) : e ∈ E(G2) \ E(G)} is a clique in C, and since C has
clique number two, we conclude in this case that |E(G2) \ E(G)| ≤ 2.

A graph is Berge if it contains no odd hole and no odd antihole as an
induced subgraph. A graph G is perfect if for each induced subgraph H of G,
the clique number of H equals the chromatic number of H . The strong perfect
graph theorem [8], first conjectured in [1], states that a graph is perfect if and
only if it is Berge. An important tool for the proof of this theorem are Berge
trigraphs, which were introduced by the first author in [5,7]. A trigraph is
defined as a sandwich pair (G1, G2). A trigraph (G1, G2) satisfies a property
P if there is no sandwich graph G for (G1, G2) which does not satisfy P . In
this sense, trigraphs are complementary to sandwich graphs.

It is known that Berge graphs can be recognized in polynomial time [6],
but the recognition of Berge trigraphs was previously open. Note that it is not
known if the recognition of graphs containing an odd hole is in P .

Corollary 1 Recognizing Berge trigraphs is in P ; equivalently, the imperfect
sandwich problem is in P .

Proof Note that (G1, G2) is a Berge trigraph if and only if (G1, G2) is a No

instance for the imperfect sandwich problem.
By Lemma 5, the property of containing an odd hole is 5-edge monotone,

and the property of containing an odd antihole is 5-edge monotone as well.
Let (G1, G2) be a trigraph. Suppose that (G1, G2) is not Berge. Then there is
a sandwich graph for (G1, G2) which contains an odd hole or an odd antihole,
and consequently there is a sandwich graph G which differs from either G1 or
G2 by at most five edges, and which is not Berge. We can check whether or
not every such sandwich graph is Berge by using the Berge graph recognition
algorithm. If we find a sandwich graph that is not Berge, then (G1, G2) is not
a Berge trigraph. If all of the graphs we checked are Berge, then no sandwich
graph for (G1, G2) contains an odd hole or an odd antihole, and consequently,
(G1, G2) is a Berge trigraph.

A pyramid is a graph consisting of distinct vertices a, b1, b2, b3 and three
induced internally vertex-disjoint paths P1, P2, P3, each consisting of at least
one edge, such that

– for i = 1, 2, 3, Pi has endpoints a and bi; and
– for distinct i, j ∈ {1, 2, 3}, bibj is an edge, and this is the only edge between

V (Pi) \ {a} and V (Pj) \ {a}; and
– a is adjacent to at most one of b1, b2, b3.

The vertex a is called the apex of the pyramid, and {b1, b2, b3} is called the
base of the pyramid. P1, P2, P3 are called the paths of the pyramid. A graph
contains a pyramid if it contains a pyramid as an induced subgraph.
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The sandwich problem for decompositions and almost monotone properties 7

The recognition algorithm for Berge graphs in [6] uses a recognition al-
gorithm for pyramid-free graphs as a subroutine. In particular, the recognition
of graphs containing a pyramid is in P [6]. Pyramids are studied in relation
to perfect graphs, because if a graph contains a pyramid, it contains an odd
hole.

Theorem 1 Let C be the set of all pyramids. Then C is almost vertex mono-
tone.

Proof Let (G1, G2) be a sandwich instance which is a Yes instance for the
property of containing a pyramid. Let G be a sandwich graph for (G1, G2)
with |E(G2) \ E(G)| minimum subject to G containing a pyramid P . Let
{b1, b2, b3} be the base of P , and let a be the apex of P ; let P1, P2, P3 be
the paths of P . Let S′ be the set of vertices of P adjacent to at least one of
{b1, b2, b3, a}, and let S = S′ ∪ {b1, b2, b3, a}. Then |S| ≤ 10. Let G′ be the
sandwich graph with vertex set V (G1) in which NG′(v) \ S = NG2

(v) \ S for
all v ∈ V (G)\{b1, b2, b3, a}, and NG′(v)\S = NG1

(v)\S for v ∈ {b1, b2, b3, a},
and for x, y ∈ S, xy ∈ E(G′) if and only if x and y are adjacent in P . We
claim that P is a pyramid in G′, which then implies the result of the lemma.

Suppose for a contradiction that P is not a pyramid in G′. If some edge e

of P is not an edge of G′, then e ∈ E(G2), and so by definition of G′, e has
exactly one endpoint in S; consequently e is incident with {b1, b2, b3, a}. But
then the other endpoint of e is in S as well, contradicting the definition of G′.
Thus, there is an edge e = xy of G′ with x, y ∈ V (P ) that is not an edge of
P , and therefore e 6∈ E(G), and so e ∈ E(G2) \ E(G1). By definition of G′,
x, y 6∈ {a, b1, b2, b3}. Suppose that x, y ∈ V (Pi) for some i ∈ {1, 2, 3}, and let C

denote the unique cycle in (G|Pi)∪{xy}. Then P ′ = P \(V (C)\{x, y})∪{xy}
is an induced pyramid in G ∪ {xy}, which contradicts the definition of G.

By symmetry, we may assume that x ∈ V (P1) and y ∈ V (P2), and y 6∈ S.
Now let P ′

3 denote the subpath of P1 from x to a, let P ′
2 denote the subpath

of P2 from y to b2, and let P ′
1 denote the subpath of P1 from x to b1. Let Q

denote the subpath of P2 from a to y, and note that since y 6∈ S, it follows
that Q contains more than one edge. Then P \ (V (Q) \ {a, y}) ∪ {xy} induces
a pyramid with paths P ′

1, xyP ′
2, P ′

3P3, apex x and base {b1, b2, b3} in G∪{xy}.
Note that x is non-adjacent to b2, b3, where P ′

3P3 denotes the concatenation
of the paths P ′

3 and P3. This is a contradiction to the definition of G. Thus,
P is a pyramid in G′, and the result follows.

A theta is a graph consisting of two distinct non-adjacent vertices a, b

and three induced internally vertex-disjoint paths P1, P2, P3 with ends a

and b such that for all distinct i, j ∈ {1, 2, 3}, V (Pi) \ {a, b} is anticomplete
to V (Pj) \ {a, b}; the vertices a, b are the ends of the theta, and P1, P2, P3

are the paths of the theta. A prism is a graph consisting of distinct vertices
a1, a2, a3, b1, b2, b3 and three induced vertex-disjoint paths P1, P2, P3 such that

– for i = 1, 2, 3, Pi has endpoints ai and bi; and
– {a1, a2, a3} is a clique and {b1, b2, b3} is a clique; and
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8 Maria Chudnovsky et al.

– for distinct i, j ∈ {1, 2, 3}, there are no edges between V (Pi) \ {ai, bi} and
V (Pj) \ {aj , bj}.

The sets {a1, a2, a3} and {b1, b2, b3} are called the triangles of the prism, and
P1, P2, P3 are called the paths of the prism.

Testing if a graph contains a theta as an induced subgraph is in P [10],
and testing if a graph contains a theta or a prism as an induced subgraph is
in P as well [9], but testing if a graph contains a prism is NP -hard [27]. The
theta-free sandwich problem is NP -hard [16], and as a consequence of [27],
the prism-free sandwich problem and the not prism-free sandwich problem are
NP -hard as well.

Theorem 2 Let C be the set of thetas, and let C′ be the set of thetas and
prisms. Both C and C′ are almost vertex monotone.

Proof Let (G1, G2) be a sandwich instance, and suppose that some sandwich
graph contains a theta. Let G be a sandwich graph with |E(G2) \ E(G)| min-
imum subject to G containing a theta. Let P be a theta in G with ends a, b

and paths P1, P2, P3. Let S be the set of vertices of P at distance at most one
from {a, b} in P . Let S′ be the set of vertices of P at distance at most two
from {a, b} in P ; it follows that |S′| ≤ 14. We claim that E(G2) \ E(G) does
not contain an edge with both endpoints in V (P ) \ {S}. Suppose for a contra-
diction that it does contain such an edge, say e = xy. If both endpoints of e

are contained in the same path Pi, then we can replace Pi by a shorter path
containing e and still have a theta in G∪{e}; this is a contradiction. Therefore,
there exist distinct i, j ∈ {1, 2, 3} such that x ∈ V (Pi) and y ∈ V (Pj). Let
{k} = {1, 2, 3}\{i, j}. Let Qi be the subpath of Pi with endpoints x and b; let
Qj be the concatenation of xy and the subpath of Pj from y to b; let Qk be the
concatenation of the subpath of Pi from x to a and Pk. Then G ∪ {e} contains
a theta with ends x and b and paths Q1, Q2, Q3. This is a contradiction, and
thus our claim is proved.

Let G′ be the graph with vertex set V (G1) and NG′(x)\S′ = NG2
(x)\S′ for

all x ∈ V (G′)\S, NG′(x)\S′ = NG1
(x)\S′ for all x ∈ S, and for x, y ∈ S′, let

xy be an edge if and only if xy is an edge in P . We claim that G′ contains P as
an induced subgraph. This follows because G′ contains every edge of P , and if
G′ contains an edge e with endpoints in P which is not an edge in P , then e has
an endpoint x in S by the claim proved above. The other endpoint, say y, of e

is not in S′, because by definition G′|S′ = P |S′. But NG′(x)\S′ = NG1
(x)\S′

for all x ∈ S, and so y ∈ NG1
(x), and thus xy ∈ E(G) and xy ∈ E(P ), a

contradiction. This proves that C is almost vertex monotone.
To prove that C′ is almost vertex monotone, we may assume that no

sandwich graph for (G1, G2) contains a theta. Suppose that some sandwich
graph for (G1, G2) contains a prism, and let G be the sandwich graph with
|E(G2) \ E(G)| minimum subject to G containing a prism; let P be a prism
in G. Let {a1, a2, a3} and {b1, b2, b3} be the triangles of P , and let T =
{a1, a2, a3, b1, b2, b3}. Let S be the set containing all vertices in T as well as
their neighbors (with respect to G) in P .
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The sandwich problem for decompositions and almost monotone properties 9

By definition of G, every edge in E(G2) \ E(G) has both endpoints in P .
Suppose that there exists i ∈ {1, 2, 3} such that E(G2)\E(G) contains an edge
e = xy with {x, y} ⊆ V (Pi) \ {S}. Then we can replace Pi by a shorter path
using only e and edges of Pi, and obtain a prism in G ∪ {e}. This contradicts
the definition of G.

Next, we claim that for each pair Pi, Pj of paths of P , all edges in E(G2) \
E(G) with one endpoint in V (Pi) \ {S} and one endpoint in V (Pj) \ {S}
share a common endpoint. Suppose not; then there exist edges xy and x′y′ in
E(G2)\E(G) with x, x′ ∈ V (Pi)\{S} and y, y′ ∈ V (Pj)\{S}, and with x 6= x′

and y 6= y′. Without loss of generality, let ai, x, x′, bi lie in this order on Pi.
Let k = {1, 2, 3} \ {i, j}. We consider two cases. Suppose first that aj , y, y′, bj

lie in this order on Pj . Let Q1 be the concatenation of the 1-edge path xy

and the subpath of Pj with ends y and y′; let Q2 be the concatenation of the
subpath of Pi with ends x and x′ and the 1-edge path x′y′; let Q3 be the
concatenation of the subpath of Pi with ends x and ai, the 1-edge path aiak,
the path Pk, the 1-edge path bkbj, and the subpath of Pj with ends bj and y′.
Then G∪{xy, x′y′} contains a theta with ends x and y′ and paths Q1, Q2, Q3.
This is a contradiction, because we assumed that no sandwich graph contains
a theta. For the other case, suppose that aj , y′, y, bj lie in this order along Pj .
Let Q1 be the concatenation of the 1-edge path xy and the subpath of Pj with
endpoints y and y′; let Q2 be the concatenation of the subpath of Pi with
endpoints x and x′ and the 1-edge path x′y′; let Q3 be the concatenation of
the subpath of Pi with endpoints x and ai, and the 1-edge path aiaj , and the
subpath of Pj with endpoints aj and y′. Then G ∪ {xy, x′y′} contains a theta
with ends x and y′ and paths Q1, Q2, Q3. Again, this is a contradiction, and
the claim follows.

Thus, there exists a set U of at most three vertices (one in each of P1, P2, P3)
such that each edge in E(G2)\E(G) has an endpoint either in S or in U . Let S′

be the set of all vertices in S ∪U as well as their neighbors in P . Clearly, |S′| ≤
27. Let G′ be the graph with vertex set V (G1) and NG′(x) \ S′ = NG2

(x) \ S′

for all x ∈ V (G′) \ (S ∪ U), NG′(x) \ S′ = NG1
(x) \ S′ for all x ∈ S ∪ U , and

for x, y ∈ S′, let xy be an edge if and only if xy is an edge in P . As above,
it follows that G′ contains P as an induced subgraph. This proves that C′ is
almost vertex monotone.

Theorem 3 For n, j ∈ N, the set of holes of length j mod n is almost edge
monotone if and only if it is almost vertex monotone if and only if j ≡ 2
mod n or n ≤ 2.

Proof Let C be a cycle with vertex set v1, . . . , vl such that vivi+1 is an edge
for all i (where we use the convention vl+1 = v1 from now on). Vertices vi and
vi+1 are called consecutive. An edge connecting two non-consecutive vertices is
a chord. Two distinct chords vavb, vcvd of C are related in one of the following
three ways: either they share an endpoint, or they are parallel, i. e. their
endpoints are distinct and lie in the order vavbvcvd along C (up to cyclic
permutation and switching the label of va with vb as well as vc with vd), or
they cross, i. e. their endpoints are distinct and lie in the order vavcvbvd along
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10 Maria Chudnovsky et al.

C (up to cyclic permutation and switching the label of va with vb as well as
vc with vd).

We first give constructions for n ≥ 3 and j 6≡ 2 mod n proving that the
class of holes of length j mod n is not almost vertex monotone. Suppose for
a contradiction that there exists a k ∈ N such that the property of containing
such a hole is k-vertex monotone. Let N = (2k +2)n+ j and let G2 be a graph
with vertex set {v1, . . . , vN } and the following edges:

– For i ∈ {1, . . . , N − 1}, vivi+1 is and edge, and v1vN is an edge; and
– for i ∈ {1, . . . , k + 1}, vin−1vN−in is an edge, and these edges are called

special.

In other words, G2 is a long cycle C in which the special edges form parallel
chords such that the number of edges of the hole C between the two consecutive
endpoints of different special edges is n. This construction is shown in Figure 1.
By inspection, it follows that no hole in any sandwich graph contains three
or more special edges; therefore, every hole in a sandwich graph contains at
most two special edges. If it contains two special edges, its length is 2 mod n;
if it contains one special edge, its length is either j + 1 mod n or 1 mod n;
if it contains no special edge, it is the hole C containing all vertices of G2 in
order, and this is the only hole of length j mod n in any sandwich graph for
(G1, G2) unless j ≡ 1 mod n.

n n n

n n n

n j + n

Fig. 1 Construction showing that j ≡ 1 mod n

n n n

n n n

n + 2 j + n − 2

Fig. 2 Construction showing that j ≡ 3 mod n
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The sandwich problem for decompositions and almost monotone properties 11

Next, consider the following, slightly modified construction. Let N = (2k+
2)n + j and let G′

2 be a graph with vertex set {v1, . . . , vN } and the following
edges:

– For i ∈ {1, . . . , N − 1}, vivi+1 is and edge, and v1vN is an edge; and
– for i ∈ {1, . . . , k + 1}, vin−1vN−in−2 is an edge, and these edges are called

special.

Let G1 be the graph with V (G1) = V (G′
2) and E(G1) = ∅. Then (G1, G′

2) is
a sandwich instance and the sandwich graph obtained by removing all special
edges from G′

2 contains a hole of length j mod n. This construction is shown
in Figure 2. As before, every hole in a sandwich graph contains at most two
special edges. If it contains two special edges, its length is 2 mod n; if it
contains one special edge, its length is either j − 1 mod n or 3 mod n; if it
contains no special edge, it is the hole C containing all vertices of G2 in order,
and this is the only hole of length j mod n in any sandwich graph for (G1, G′

2)
unless j ≡ 3 mod n. If 3 ≡ 1 mod n, and then n = 2, but we assumed that
n ≥ 3.

Therefore, the hole C is the only hole of length j mod n in any sandwich
graph for at least one of (G1, G2) and (G1, G′

2). Since we assumed that the
property of containing a hole of length j mod n was k-vertex monotone, it
follows that there exists a set S of k vertices such that there is a sandwich
graph G containing a hole of length j mod n, and either all edges with no
endpoint in S are as in G1, or all edges with no endpoint in S are as in G2.
If edges outside S are as in G1, then there are at most 3k edges in G, but C

has N ≥ 2kn ≥ 6k edges, so G does not contain the hole C. If edges outside
S are as in G2, then S does not include either endpoint for at least one of
the special edges, and so C is not induced in G. In both cases, we reached a
contradiction, and thus the property of containing a hole of length j mod n

is not monotone if n ≥ 3 and j 6≡ 2 mod n.
Let n ≤ 2 and j 6≡ 2 mod n. Then we must have j ≡ 1 mod n, and thus

holes of length ≡ j mod n are precisely odd holes, for which we proved the
result in Lemma 5.

Now, let j = 2 and n ∈ N. Let (G1, G2) be a sandwich instance such that
some sandwich graph contains a hole of length 2 mod n, and let G be the
sandwich graph with |E(G2) \ E(G)| minimum subject to G containing a hole
C of length 2 mod n. It follows that all edges in E(G2) \ E(G) have both
endpoints in V (C).

(1) Let v ∈ V (C). The number of edges in E(G2)\E(G) incident with
v is at most n.

Suppose for a contradiction that v ∈ V (C) is the endpoint of n + 1
distinct chords. Let w1, . . . , wn+1 be the endpoints in V (C) \ {v} of these
chords, and without loss of generality, let v, w1, . . . , wn+1 lie in this order
along C. Let Pi denote the w1-wi path in C \ {v}. If there is an i > 1
such that the number of edges of Pi is 0 mod n, then v ∪ V (Pi) induces a
hole of length 2 mod n in G ∪ {vw1, vwi}. This is a contradiction. Therefore,
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12 Maria Chudnovsky et al.

(|E(Pi)| mod n) ∈ {1, . . . , n − 1} for all i > 1, and by the pigeonhole prin-
ciple, there exist 1 < i < j such that |E(Pi)| ≡ |E(Pj)| mod n. But then
(V (Pj) \ V (Pi)) ∪ {wi, v} induces a hole of length 2 mod n in G ∪ {vwi, vwj}.
This is a contradiction, and (1) is proved.

(2)
Let E′ ⊆ E(G2) \ E(G) such that either for all distinct e, e′ ∈ E′,
e and e′ cross, or for all distinct e, e′ ∈ E′, e and e′ are parallel.
Then |E′| ≤ n.

Suppose for a contradiction that there exist distinct vertices v1, . . . , vn+1

and w1, . . . , wn+1 such that either v1, . . . , vn+1, w1, . . . , wn+1 lie in this order
along C, or v1, . . . , vn+1, wn+1, . . . , w1 lie in this order along C, and viwi ∈
E(G2) \ E(G) for all i ∈ {1, . . . , n + 1}. Let Pi denote the v1-vi path in C \
{w1, wi}, and let P ′

i denote the w1-wi path in C \ {v1, vi}. If there is an i > 1
such that |E(Pi) + E(P ′

i )| ≡ 0 mod n, then V (Pi) ∪ V (P ′
i ) induces a hole of

length 2 mod n in G ∪ {v1w1, viwi}, a contradiction. Thus, (|E(Pi) + E(P ′
i )|

mod n) ∈ {1, . . . , n − 1} for all i > 1. By the pigeonhole principle, there exist
1 < i < j such that |E(Pi) + E(P ′

i )| ≡ |E(Pj) + E(P ′
j)| mod n. But then

(V (Pj) \ V (Pi)) ∪ (V (P ′
j) \ V (P ′

i )) ∪ {wi, vi} induces a hole of length 2 mod n

in G ∪ {viwi, vjwj}. This is a contradiction, and (2) is proved.
By Ramsey’s theorem [30], there exists a number R(n) such that if C has at

least R(n) chords, then C has at least n chords that either all have a common
endpoint, or all pairs of them cross, or all pairs of them are parallel. Thus,
|E(G2) \ E(G)| ≤ R(n), which proves that the set of holes of length 2 mod n

is R(n)-edge monotone.

In particular, the set of even holes is almost vertex monotone. Since even-
hole-free graphs can be recognized in polynomial time [13], we obtain the
following.

Corollary 2 The sandwich problems for the following properties can be solved
in polynomial time:

– containing a pyramid as an induced subgraph;
– containing a theta as an induced subgraph;
– containing a theta or a prism as an induced subgraph;
– containing an even hole.

In particular, we proved that the property of containing a pyramid is 10-vertex
monotone, containing a theta is 14-vertex monotone, and containing a theta
or a prism is 27-vertex monotone. These constants are not best possible, and
it is not hard to see that these properties are almost edge monotone as well.
We leave the proof to the reader.

We presented a number of results that imply polynomial-time algorithms
for the not C-free sandwich problem, and thus also for the corresponding parti-
tioned probe problem. The following lemma shows that both the unpartitioned
and the partitioned probe problem can be reduced to the recognition problem
in this context, even if C is not almost vertex monotone.
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The sandwich problem for decompositions and almost monotone properties 13

Lemma 6 The unpartitioned probe and partitioned probe problem are in P

for all not C-free problems such that recognition of C-free graphs is in P .

Proof We may assume that C 6= ∅. Let k be the minimum number of vertices of
a graph in C. Let G be a graph, possibly with a given partition into probe and
non-probe vertices P and N . If |N | ≥ k in the partitioned probe problem, or
if G contains a stable set of size at least k in the unpartitioned probe problem,
then there is a choice of optional edges such that a subset of N induces a
graph in C. Otherwise, in the partitioned probe problem, |N | is constant and
thus the number of optional edges is constant, so we may check C-freeness for
each choice of optional edges. In the unpartitioned probe problem, there are
at most |V (G)|k possible choices for N , and for each of them, we check in
polynomial time whether the resulting partitioned probe graph is a not C-free
probe graph.

3 Decompositions

In this section, we will focus on the partitioned and unpartitioned probe prob-
lems, and consider the property of having a certain decomposition.

Let G be a graph. A cutset in G is a set X ⊆ V (G) such that G \ X is
not connected. A cut vertex is a vertex x such that {x} is a cutset. A clique
cutset in G is a cutset X such that X is a clique in G. A star cutset in G

is a cutset X with a special vertex v such that v is complete to X \ v; here,
v is called a center of the star cutset. A star cutset is full if its center has
no neighbors outside the cutset. A homogeneous set in G is a set X ⊆ V (G)
with |X | ≥ 2 and |V (G) \ X | ≥ 1 such that for all v ∈ V (G) \ X , either v

is complete to X or v is anticomplete to X . A homogeneous pair in G is a
partition (Q1, Q2, A, B, S1, S2) of V (G) such that

– |Q1| ≥ 2 or |Q2| ≥ 2 and |V (G) \ (Q1 ∪ Q2)| ≥ 2; and
– A is complete to Q1 and Q2; and
– B is anticomplete to Q1 and Q2; and
– S1 is complete to Q1 and anticomplete to Q2; and
– S2 is complete to Q2 and anticomplete to Q1.

A 1-join in G is a partition (A1, B1, A2, B2) of V (G) such that A1 is complete
to A2, B1 is anticomplete to A2 ∪ B2 and B2 is anticomplete to A1 ∪ B1, and
|A1 ∪ B1| ≥ 2, |A2 ∪ B2| ≥ 2.

Table 1 gives an overview of the hardness of the decomposition problems
we will consider. New results are in bold; known results are shown for clique
cutset due to [32,35], star cutset due to [12,32] (for completeness, we give an
algorithm for the full star cutset sandwich problem in Lemma 9) homogeneous
set due to [4], homogeneous pair due to [19], and 1-join due to [15,22].
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14 Maria Chudnovsky et al.

Table 1 Hardness of decomposition problems for recognition, sandwich problem, parti-
tioned probe problem, unpartitioned probe problem, and unpartitioned probe problem in
the complement

Recogn. Sandwich Part. Unpart. Unp. in Gc

Clique cutset P NP c P NP c ?
Full star cutset P P P NP c P

Homogeneous set P P P P P

Homogeneous pair P ? P ? ?
1-join P NP c P P P

3.1 Algorithms

We first consider the clique cutset partitioned probe problem. The clique cutset
sandwich problem is known to be NP -complete [32]. Whitesides [35] gave a
polynomial-time algorithm for the problem of finding a clique cutset in a graph,
which we adapt here.

A graph is chordal if it does not contain a hole as an induced subgraph.
Every chordal graph either is a complete graph or has a clique cutset [17].

Theorem 4 (Berry, Golumbic, Lipshteyn [2]) A graph G is a chordal
probe graph with partition (P, N) if and only if N is stable and for every hole
C of G, G|(V (C) ∩ P ) is stable. The chordal partitioned probe problem can be
solved in polynomial time.

Theorem 5 The clique cutset partitioned probe problem can be solved in poly-
nomial time.

Proof Let G be a graph and N ⊆ V (G) be a stable set; let P = V (G) \ N .
Suppose G is chordal probe with partition (P, N) and G′ is a supergraph of
G which is chordal and such that every edge in E(G′) \ E(G) has both of its
endpoints in N . If G′ has a clique cutset, then G is a Yes instance for the
clique cutset partitioned probe problem. If G′ is a complete graph, then either
G is a complete graph, and thus there is no clique cutset in any probe graph
and G is a No instance, or there exist x, y ∈ N . Let G′′ arise from G′ by
removing the edge xy. Then G′′ has the clique cutset V (G) \ {x, y}, and hence
G is a Yes instance.

Now we may assume that G is not a chordal probe graph with partition
(P, N), and thus there exists an induced subgraph of G which is a hole con-
taining two consecutive vertices x, y ∈ P . We find such a hole as follows: for
each edge xy with x, y ∈ P , let X be the set of vertices adjacent to both x

and y. Then there is a hole in G using xy if and only if there is a path from
x to y in G′′ = (G \ {xy}) \ X , which can be checked in polynomial time, and
by choosing an induced x-y-path in G′′, we can find such a hole C. Let z be
the neighbor 6= x of y in C.

We say that S ⊆ V (G) is inseparable if for every (P, N)-probe graph H for
G and every clique cutset K of H , S \K is included in a connected component
of H \ K. If S is a clique, then S is inseparable. We claim that S0 = {x, y, z}
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The sandwich problem for decompositions and almost monotone properties 15

is inseparable. Let H be a (P, N) probe graph for G. Then H |V (C) contains
x, y, z, and an induced path Q from x to z not using any neighbors of y (because
y ∈ P , NH(y) = NG(y)). Since x ∈ P , xz is not an edge, it follows that Q has
at least two edges, and hence H |(V (Q) ∪ {y}) is a hole C′ containing x, y, z.
But a hole has no clique cutset, and thus, for every clique cutset K of H ,
C′ \ K is connected. This proves our claim.

Now let Si be an inseparable set which is not a clique in any (P, N)-
probe graph H for G. We claim that either Si = V (G), or there exists an
inseparable set Si+1 which is a proper superset of Si and can be found in
polynomial time, or some (P, N)-probe graph for G has a clique cutset. This
claim implies that starting with S0, which is not a clique in any (P, N) probe
graph since x ∈ P is non-adjacent to z, it follows that we can grow a maximal
sequence S0, S1, . . . , Sk with k ≤ |V (G)| and Si a proper subset of Si+1 and
Si inseparable for all i in polynomial time, and if Sk = V (G), then V (G)
is inseparable, and so G is a No instance; if Sk 6= V (G), then G is a Yes

instance. Thus, our result follows from the claim.
To prove the claim, let Si be an inseparable set which is not a clique in

any (P, N)-probe graph, and let Si 6= V (G). Let Z be a connected component
of G \ Si, and let Y be the set of neighbor of Z in Si. If Y ∩ P is a clique
complete to Y ∩ N , then the (P, N)-probe graph H for G in which we add
an edge ab if and only if a, b ∈ Y ∩ N has the clique cutset Y separating
Z from H \ (Z ∪ Y ), and since Si is not a clique in H , but Y is, it follows
that V (H) \ (Z ∪ Y ) ⊇ Si \ Y 6= ∅. Thus, we may assume that there exists
a ∈ Y ∩ P, b ∈ Y with a non-adjacent to b. Let Q be an induced a-b path in
G|(Z ∪ {a, b}), and let c be the neighbor of a in Q. Suppose that Si ∪ {c} is
not inseparable. Then there exists a (P, N)-probe graph H for G and a clique
cutset K in H such that in H \ K, Si ∪ {c} contains vertices from at least two
connected components. Since Si is inseparable, it follows that there exists a
connected component T of H \ K containing Si \ K, and Si ∩ V (T ) 6= ∅ since
Si is not a clique in H . Thus, there exists a second connected component T ′

of H \ K containing c. Since a is adjacent to c, it follows that a ∈ K. Since
a ∈ P , it follows that V (Q) ∩ K = {a}, because a has exactly one neighbor in
V (Q) \ {a}, and this neighbor is c ∈ T ′. Since G|(V (Q) \ {a}) is connected, so
is H |(V (Q) \ {a}), and therefore, V (Q) \ {a} ⊆ T ′. But now b ∈ Si ⊆ T ∪ K,
and also b ∈ V (Q)\{a} ⊆ T ′. This is a contradiction as (T ∪K)∩T ′ = ∅. Thus,
Si ∪ {c} is inseparable, and we may choose Si+1 = Si ∪ {c}. This concludes
the proof.

The disconnected sandwich problem can be solved in polynomial time,
because it is hereditary; thus the partitioned probe problem and the unparti-
tioned probe problem can be solved in polynomial time as well.

Lemma 7 The disconnected unpartitioned probe problem in the complement
can be solved in polynomial time.

Proof A graph G is a Yes instance for the disconnected unpartitioned probe
problem in the complement if there exists N ⊆ V (G) such that N is a clique
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16 Maria Chudnovsky et al.

in G and a partition (A, B) of V (G) such that the edges with one endpoint in
each of A and B have both endpoints in N . In other words, G has a biclique
cutset, which is defined as a partition (A1, B1, A2, B2) of V (G) with A1 ∪B1 6=
∅, A2 ∪ B2 6= ∅ such that B1 is anticomplete to A2 ∪ B2, B2 is anticomplete to
A1 ∪ B1, and A1 ∪ A2 is a clique.

If G is disconnected, then G has a biclique cutset with A1 = A2 = ∅.
Otherwise, every biclique cutset satisfies that A1, A2 6= ∅.

Let v, w ∈ V (G). Suppose that there is a biclique cutset (A∗
1, B∗

1 , A∗
2, B∗

2)
with v ∈ A∗

1 and w ∈ A∗
2. We find this biclique cutset as follows. First, if v

is non-adjacent to w, then no such biclique cutset exists. Let A be the set
containing v, w and all common neighbors of v and w. From the definition of
a biclique cutset it follows that A = A∗

1 ∪A∗
2. If A is not a clique, then no such

biclique cutset exists. Let C1, . . . , Ck be the connected components of G \ A.
For i = 1, . . . , k, let Di be the set of neighbors of Ci in A. If there is a vertex
u in A \ (D1 ∪ · · · ∪ Dk), then ({u} , ∅, A \ {u} , V (G) \ A) is a biclique cutset.
Therefore, we may assume that D1 ∪ · · · ∪ Dk = A. Let H be the hypergraph
with vertex set A and edges D1, . . . , Dk. If H is not connected, then there
exists a partition (A1, A2) of A with A1, A2 6= ∅ such that for i ∈ {1, . . . k},
either Di ⊆ A1 or Di ⊆ A2. Let B1 be the union of V (Ci) for i with Di ⊆ A1

and B2 the union of V (Ci) for i with Di ⊆ A2. Then (A1, B1, A2, B2) is a
biclique cutset. If H is connected, then there exists an i ∈ {1, . . . , k} such
that Di ∩ A∗

1, Di ∩ A∗
2 6= ∅. But then Ci ⊆ B1 and also Ci ⊆ B2, because Ci

is connected and has neighbors in A∗
1 and A∗

2. This is a contradiction, which
proves that if H is connected, then no biclique cutset containing v ∈ A∗

1 and
u ∈ A∗

2 exists.
Every step of the procedure described above can be done in polynomial

time, and by applying it to all pairs of vertices, we find a biclique cutset
if there is one. Therefore, this solves the disconnected unpartitioned probe
problem in the complement.

Lemma 8 (Chvátal [12]) In a graph G, v is the center of a star cutset if
and only if either

– G \ ({v} ∪ N(v)) is disconnected; or
– N(v) = V (G) \ {v} and N(v) contains two non-adjacent vertices; or
– N(v) contains a vertex anticomplete to V (G) \ ({v} ∪ N(v)).

Lemma 9 The full star cutset sandwich problem can be solved in polynomial
time.

Proof Let (G1, G2) be a sandwich instance, and suppose that v is the center of
a full star cutset in some sandwich graph G for (G1, G2); let X be the cutset
and let (A, B) be a partition of G\X such that A, B 6= ∅ and A is anticomplete
to B. If G1 \ ({v} ∪ NG2

(v)) is disconnected, then v is the center of a full star
cutset in the sandwich graph arising from G1 by adding all edges incident
with v in G2. If v is complete to V (G1) \ {v} in G2, then v has at least two
non-adjacent non-neighbors x and y in G1 (one in A, one in B). Therefore, v

is the center of a full star cutset in G2 \ {xv, yv, xy}.
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The sandwich problem for decompositions and almost monotone properties 17

Finally, we consider the case that G1 \ ({v} ∪ NG2
(v)) is non-empty and

connected, and without loss of generality, V (G1) \ ({v} ∪ NG2
(v)) ⊆ A. Let

x ∈ B, then x is anticomplete to A ∪ {v} in G1. Thus, v is the center of a
full star cutset in the sandwich graph arising from G2 by removing all edges
incident with x in E(G2) \ E(G1).

Applying this to every vertex v ∈ V (G1) yields a polynomial-time al-
gorithm for checking if some sandwich graph has a full star cutset.

This implies that the full star cutset partitioned probe problem can be solved
in polynomial time as well.

Lemma 10 The star cutset unpartitioned probe problem in the complement
can be solved in polynomial time. The same is true for the full star cutset
unpartitioned probe problem in the complement.

Proof Let G be a graph. For each vertex v ∈ V (G), we check if there is a probe
graph in the complement G′ for G in which v is the center of a star cutset, i. e.
if there is a clique N in G so that G′ arises from G by removing a set of edges
with both endpoints in N . Let X be the cutset and let (A, B) be a partition
of G′ \ X such that A, B 6= ∅ and A is anticomplete to B.

Suppose first that NG(v) ∪ {v} = V (G). If v has two adjacent neighbors
x, y, then G \ {xy, xv, yv} has a full star cutset with center v. Thus, we may
assume that V (G) \ {v} is a stable set. If |V (G)| ≤ 2, then no unpartitioned
probe graph in the complement for G has a star cutset. If |V (G)| ≥ 3, let w

be a neighbor of v, then {v, w} is a full star cutset with center w. This can be
done in polynomial time.

The next case we consider is when G′ \ (NG(v) ∪ {v}) is connected and
non-empty. Without loss of generality, let V (G) \ ({v} ∪ NG(v)) ⊆ A. Then
B contains a vertex x ∈ NG(v) anticomplete to V (G) \ ({v} ∪ NG(v)) in G′

and adjacent to v, i. e. NG(x) \ ({v} ∪ NG(v)) is a clique. If NG(v) contains
such a vertex x, then let N = NG(x) \ ({v} ∪ NG(v)) and let G′ be the probe
graph in the complement for G in which all edges with both endpoints in N

are removed. Then G′ contains a star cutset with center v in which x is one
of the connected components of G′ \ ({v} ∪ NG(v)). Now, suppose that X is
a full star cutset in G′. Since B ⊆ NG(v), this implies that v ∈ N , and thus
every vertex in B is non-adjacent to every vertex in V (G) \ ({v} ∪ NG(v)),
because no such vertex is in a clique also containing v. Let x ∈ B, and let
N = {x, v}. Let G′′ = G \ {xv}. Then G′′ is a probe graph in the complement
for G, and G′′ has a full star cutset with center v, because x is an isolated
vertex of G′′ \ ({v} ∪ NG′′(v)). This shows that in this case, we can test all
combinations of v and x and find a (full) star cutset in polynomial time.

Therefore, we may assume that G′ \ (NG(v) ∪ {v}) is disconnected. This
implies that G \ (NG(v) ∪ {v}) is a Yes instance for the disconnected unpar-
titioned probe problem in the complement. By Lemma 7, we find a clique N

in polynomial time such that if G′′ is the graph arising from G after removing
edges with both endpoints in N , G′′ \ (NG(v) ∪ {v}) is disconnected, and so
NG(v) ∪ {v} is a full star cutset in G′′. This concludes the proof.
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18 Maria Chudnovsky et al.

Lemma 10 is of particular interest because we will prove in Theorem 13 that
the full star cutset unpartitioned probe problem is NP -hard, thus giving an
example of a problem for which the unpartitioned probe problem has a different
complexity in the graph and in its complement assuming that P 6= NP .

In the following, we will use a tool from [20]. Let k ∈ N, and let M be
a symmetric (k × k)-matrix with entries in {0, 1, ∗}. Let G be a graph, and
let L : V (G) → 2{1,...,k} be a function assigning to each vertex a subset of
{1, . . . , k}. An M-list partition of G with respect to L is a partition of V (G)
into sets (A1, . . . , Ak) such that

– if v ∈ Ai, then i ∈ L(v); and
– for all i ∈ {1, . . . , k}, if Mii = 0, then Ai is a stable set in G, and if Mii = 1,

then Ai is a clique in G; and
– for all distinct i, j ∈ {1, . . . , k}, if Mij = 0, then Ai is anticomplete to Aj ,

and if Mij = 1, then Ai is complete to Aj .

This problem is quite general, but here we will only use Lemma 11:

Lemma 11 (Feder, Hell, Klein, Motwani [20]) The list partition problem
with lists of size at most two can be solved in polynomial time.

By slightly adapting the proof of Lemma 11, we can extend its result to
the sandwich problem.

Corollary 3 The M -list partition sandwich problem with respect to L with
lists of size at most two can be solved in polynomial time.

Proof Let (G1, G2) be a sandwich instance with V (G1) = V (G1) = V and
E(G1) ⊆ E(G2). The reduction uses a variable vi for each v ∈ V, i ∈ L(v)
which is true if v ∈ Ai. If L(v) = {i, j}, we add the clause (vi ∨ vj), and if
L(v) = {i}, we add the clause (vi). For each pair vi, wj with v 6= w, if Mij = 0,
and vw ∈ E(G1), we add a clause (vi ∨ wj); if Mij = 1, and vw 6∈ E(G2), we
add a clause (vi ∨wj) as well. If there is a valid list partition (A1, . . . , Ak), then
the assignment in which vi is true if and only if v ∈ Ai satisfies all clauses. For
the other direction, if we have a satisfying assignment, then for each variable,
vi is true for some i ∈ L(v); put v in Ai. Suppose that this is not a valid
list partition, then there exists i, j ∈ {1, . . . , k} and v ∈ Ai, w ∈ Aj , v 6= w,
such that either Mij = 1 and vw 6∈ E(G2), or Mij = 0 and vw ∈ E(G1).
Therefore, the instance has a clause (vi ∨ wj), but by definition, vi and wj

are true in our assignment, and hence it is not a satisfying assignment. This
reduction uses at most 2|V (G)| variables and |V (G)|2 clauses, hence the fact
that 2-Satisfiability can be solved in polynomial time [18] implies the result.

Theorem 6 The unpartitioned probe homogeneous set problem and the same
problem in the complement can be solved in polynomial time.

Proof First, note that if H is a homogeneous set in G, then H is a homogeneous
set in Gc. Therefore, the property P of having a homogeneous set satisfies
P = Pc, and hence the complexity of the unpartitioned probe problem is the
same in the graph and in the complement.
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The sandwich problem for decompositions and almost monotone properties 19

To solve the unpartitioned probe homogeneous set problem, we note that
a homogeneous set in G is a partition of V (G) into H , A and B with |H | ≥ 2
and |V (G) \ H | ≥ 1, A complete to H and B anticomplete to H . Suppose that
there exists a partition (P, N) of V (G) and a (P, N)-probe graph G′ for G such
that G′ has a homogeneous set H with A complete to H and B anticomplete
to H in G′. We may assume N ⊆ H ∪ A, because if E(G′) \ E(G) contains
any edge with an endpoint in B, removing it from E(G′) preserves that H is
a homogeneous set complete to A and anticomplete to B.

If N ∩A = ∅ or N ∩H = ∅, then H is complete to A in G, and therefore G

has a homogeneous set. A homogeneous set in G can be found in polynomial
time [31]. Therefore, we may assume that N ∩A 6= ∅ and N ∩H 6= ∅. If H ⊆ N ,
then H is complete to A \ N and anticomplete to B ∪ (A ∩ N) in G, and thus
H is a homogeneous set in G, and again, H can be found in polynomial time.
Thus, we may assume that H \ N 6= ∅.

To prove the result, we need to show for v, w, u ∈ V (G) how to find a
homogeneous set H complete to A and anticomplete to B in a (P, N)-probe
graph for G with v ∈ H \ N , w ∈ H ∩ N , and u ∈ A ∩ N . Let X be the
set containing u as well as all vertices of G that are non-adjacent to w, non-
adjacent to u, and adjacent to v. It follows that (N ∩ A) ⊆ X ⊆ N , and hence
G \ X has a homogeneous set containing v and w (because H \ X is complete
to A \ X and anticomplete to B).

Let H ′ ⊆ H . If there is a vertex x ∈ V (G) \ (H ′ ∪ X) such that x has
a neighbor and a non-neighbor in H ′, we call x a mixed vertex for H ′; then
x 6∈ A \ X , x 6∈ B, x 6∈ X , and so x ∈ H , which implies that {x} ∪ H ′ ⊆ H . If
there is a vertex x ∈ X \ H ′ such that H ′ \ N(x) is not a stable set, we call
x a non-stable vertex for H ′; then x 6∈ N ∩ A, and so x ∈ N ∩ H , and thus
{x} ∪ H ′ ⊆ H . If there is a vertex x ∈ X \ H ′ such that x has a neighbor
y ∈ H ′ with y non-adjacent to u, we call x a conflict vertex for H ′; since
all non-neighbors of u in H ′ ⊆ H are in N , it follows that y ∈ N , but since
X ⊆ N , x ∈ N . But then N is not stable, which is a contradiction, and so
H ′ 6⊆ H . If there is a vertex x ∈ X \H ′ such that x has a non-neighbor y ∈ H ′

with y adjacent to u, we call x a small vertex for H ′; then x 6∈ B, but since
u is adjacent to y, it follows that y ∈ P ∩ H , and so x 6∈ A, and thus x ∈ H ;
therefore, {x} ∪ H ′ ⊆ H .

This gives rise to the following algorithm. For all v, w, u ∈ V (G), let H ′ =
{v, w}. Compute X as above. While there exists a mixed vertex, a non-stable
vertex, or a small vertex for H ′, we add it to H ′. If X is not stable, or u

was added to H ′, or there is a conflict vertex, the algorithm terminates with
a No, because there is no homogeneous set H in a (P, N)-probe graph for G

with v ∈ H \ N , w ∈ H ∩ N , and u ∈ A ∩ N . Clearly, this algorithm takes
polynomial time, since it runs for at most |V (G)| steps, each of which takes
time polynomial in |V (G)|.

Let H ′′ be the set we obtain if the algorithm does not terminate with a
No. Let N ′′ = (H ′′ \ NG(u)) ∪ (X \ H ′′), and let G′′ be the graph arising from
G by adding edges between every pair of vertices in N ′′. Since u 6∈ H ′′ and
u is not a non-stable vertex, it follows that (H ′′ \ NG(u)) is stable, and X is
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20 Maria Chudnovsky et al.

stable. If there is a vertex x in X \H ′′ with a neighbor in H ′′ \NG(u), then x is
a conflict vertex. Since the algorithm did not terminate with a No, it follows
that N ′′ is a stable set, and so G′′ is a probe graph for G. Let x ∈ V (G′′)\H ′′,
and suppose that x has a neighbor in H ′′ and a non-neighbor in H ′′ with
respect to G′′. Then x is not a mixed vertex for H ′′ in G, and so x ∈ X \ H ′′.
Let y be a non-neighbor of x in H ′′ with respect to G′′, then y ∈ NG(u), but
then x is a small vertex for H ′′, a contradiction. Thus, no such vertex x exists.
Since v, w ∈ H ′′ and u 6∈ H ′′, it follows that H ′′ is a homogeneous set in the
(V (G) \ N ′′, N ′′)-probe graph G′′ for G. We found H ′′ in polynomial time,
which proves the result.

Theorem 7 The partitioned probe homogeneous pair problem can be solved in
polynomial time.

Proof Let G be a graph and N a stable set in G; let P = V (G) \ N . Suppose
that there is a partition (Q1, Q2, A, B, S1, S2) of V (G) which is a homogeneous
pair in a (P, N)-probe graph G′ for G, and that S1, S2 ⊆ N and N ∩ Q1, N ∩
Q2 6= ∅. Let Q = (Q1 ∪Q2)∩N . We claim that (Q1 \Q, Q2 ∪Q, A, B, S1, S2) is
a homogeneous pair in some (P, N)-probe graph G′′ for G. Let G′′ arise from
G′ by removing all edges from S1 to Q and adding all edges from S2 to Q.
Then S1 is complete to Q1 \ Q and anticomplete to Q2 ∪ Q, S2 is complete to
Q2 ∪ Q, and A is complete to Q1 ∪ Q2, B is anticomplete to Q1 ∪ Q2. Since
N ∩Q1, N ∩Q2 6= ∅, it follows that |Q2∪Q| ≥ 2. Moreover, |A∪B∪S1 ∪S2| ≥ 2,
because these sets remain unchanged. By symmetry, this proves that if G with
partition (P, N) is a Yes instance for the partitioned probe homogeneous pair
problem, then there exists a partition (Q1, Q2, A, B, S1, S2) of V (G) which is
a homogeneous pair in a (P, N)-probe graph G′, and S1 ∩ P 6= ∅ or Q1 ⊆ P .

We consider two steps. First, if Q2 = ∅, or if S1 = S2 = ∅, then we are
looking for a homogeneous set Q1 in some (P, N)-probe graph for G with the
additional requirement that |V (G) \ Q1| ≥ 2. This can be found as follows.
For all pairs of vertices p, q ∈ V (G), we test if there is such a homogeneous set
containing p and q. Let H = {p, q}. While there is a vertex x with a neighbor
y and a non-neighbor z in H such that {x, z} ∩ P 6= ∅, add x to H . Let H ′

be the set after this terminates. In the beginning, H ⊆ Q1 ∪ Q2. At every
step, we add a vertex x to H if there exist y and z in H such that xy is an
edge and xz is a non-edge in every (P, N)-probe graph for G. Since Q1 ∪ Q2

is a homogeneous set containing H , it follows that x is in Q1 ∪ Q2, and thus,
H ′ ⊆ Q1 ∪ Q2. Let G′ be the (P, N)-probe graph for G in which we add an
edge from x ∈ N ∩ (V (G) \ (Q1 ∪ Q2)) to y ∈ N ∩ (Q1 ∪ Q2) if and only
if x has a neighbor (in G) in (Q1 ∪ Q2) \ N . Suppose that there is a vertex
x ∈ V (G′) \ H ′ such that x has a neighbor in H ′ and a non-neighbor in H ′

with respect to G′. Then x 6∈ P , because we would have added x to H ′. So
x ∈ N , and since x has a neighbor in H ′, x has a neighbor in H ′ \ N . If x

had a non-neighbor in H ′ \ N , we would have added x to H ′. But then, by
definition of G′, x is complete to H ′ \ N and to H ′ ∩ N . Thus, every vertex in
V (G′) \ H ′ is either complete to anticomplete to H ′. Moreover, |H ′| ≥ 2 as H ′

includes p, q, and |V (G) \ H ′| ≥ |V (G) \ (Q1 ∪ Q2)| ≥ 2. Therefore, we have
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The sandwich problem for decompositions and almost monotone properties 21

found H ′, a homogeneous pair with Q2 = ∅, and with S1 = S2 = ∅, in G′, a
(P, N)-probe graph for G, in polynomial time.

For the second step, suppose that there is a partition (Q1, Q2, A, B, S1, S2)
of V (G) which is a homogeneous pair in a (P, N)-probe graph for G, and
Q1, Q2 6= ∅ and hence |Q1 ∪ Q2| ≥ 3. Suppose further that S1 ∪ S2 6= ∅, and
S1 ∩ P 6= ∅ or Q1 ⊆ P . For p, q, r, x ∈ V (G), we will show how to test if there
is such a partition with {p, q, r} ⊆ Q1 ∪ Q2, and one of the following holds:

(a) x ∈ S1 ∩ P ; or
(b) x ∈ S1 ∩ N , Q1 ⊆ P ; or
(c) x ∈ S2 ∩ N , Q1 ⊆ P .

Every homogeneous pair that was not found in the first step satisfies one
of these assumptions (up to symmetry) for some choice of {p, q, r, x}. Now
suppose such a partition (Q1, Q2, A, B, S1, S2) of V (G) which is a homogen-
eous pair in a (P, N)-probe graph for G exists with {p, q, r, x} as above. Let
Q′

1, Q′
2 = ∅. For each vertex v in {p, q, r}, if we are in case (a) or (b), add v

to Q′
1 is v is adjacent to x, and add v to Q′

2 otherwise. If we are in case (c),
add v to Q′

1 if v is non-adjacent to x and v ∈ P , and add v to Q′
2 otherwise.

It follows that Q′
1 ⊆ Q1 and Q′

2 ⊆ Q2.
While there is a vertex v ∈ V (G) \ (Q1 ∪ Q2) and there exist a, b with

{a, b} ⊆ Q1 or {a, b} ⊆ Q2 such that {v, a} ∩ P 6= ∅ and {v, b} ∩ P 6= ∅, and
va ∈ E(G), vb 6∈ E(G), we add v to Q′

1 ∪ Q′
2. In case (a), we add v to Q′

1

if vx ∈ E(G), and we add v to Q′
2 otherwise. In case (b), we add v to Q′

2

if v ∈ N , and otherwise proceed as for (a). In case (c), we add v to Q′
2 if

v ∈ N or vx ∈ E(G), and we add v to Q′
1 otherwise. In each case, it follows

that this algorithm preserves the property that Q′
1 ⊆ Q1, Q′

2 ⊆ Q2. After at
most |V (G)| iterations, this algorithm terminates with Q′

1 ⊆ Q1, Q′
2 ⊆ Q2 in

polynomial time. Let G′ be the (P, N) probe graph for G arising from G by
adding all edges from z ∈ V (G) \ (Q′

1 ∪ Q′
2) to N ∩ Q′

1 if z has a neighbor
in Q′

1 \ N , and adding all edges from z ∈ V (G) \ (Q′
1 ∪ Q′

2) to N ∩ Q′
2 if z

has a neighbor in Q′
2 \ N . Suppose for a contradiction that there is a vertex

z ∈ V (G′) \ Q′
1 ∪ Q′

2 such that either z is neither complete nor anticomplete
to Q′

1 in G′, or z is neither complete nor anticomplete to Q′
2 in G′; without

loss of generality, let this be the case for Q′
1. Then z 6∈ P , for otherwise the

algorithm would have added z to Q′
1 or Q′

2. It follows that z ∈ N , and since z

has a neighbor in Q′
1 with respect to G′, by definition, z has a neighbor a in

Q′
1 ∩ P with respect to G. But then there exists b ∈ Q′

1 \ NG′(z) ⊆ P , and a

and b would have caused the algorithm to add z to Q′
1 or Q′

2. This implies that
V (G′) can be partitioned into (S′

1, S′
2, A′, B′) such that S′

1 is complete to Q′
1

and anticomplete to Q′
2, S′

2 is complete to Q′
2 and anticomplete to Q′

1, A′ is
complete to Q′

1∪Q′
2 and B′ is anticomplete to Q′

1∪Q′
2. If |S′

1∪S′
2 ∪A′ ∪B′| ≥ 2,

then this is a homogeneous pair in a (P, N)-probe graph for G. If not, then
Q′

1 ∪ Q′
2 ⊆ Q1 ∪ Q2 implies that (Q1, Q2, S1, S2, A, B) is not a homogeneous

pair either, a contradiction showing that no homogeneous pair with x, p, q, r

as chosen exists. By checking all combinations of x, p, q, r, and each of cases
(a), (b) and (c), we find a homogeneous pair with the specified properties in
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22 Maria Chudnovsky et al.

a (P, N)-probe graph in polynomial time, if there is one. This concludes the
proof.

Theorem 8 The 1-join partitioned probe problem and the 1-join unpartitioned
probe problem can be solved in polynomial time.

Proof For the partitioned probe problem, we claim that for G and a partition
(P, N), if there is a (P, N)-probe graph for G that has a 1-join, then there is
a (P, N)-probe graph with a 1-join (A1, B1, A2, B2) such that either A1 ⊆ N

and A2 ⊆ P , or A1 ∩ P 6= ∅ and A2 ∩ P 6= ∅. Suppose not, then there is a
(P, N)-probe graph G′ for G with a 1-join (A1, B1, A2, B2), and without loss
of generality A1 ⊆ N , A2 ∩ N 6= ∅. Let G′′ be the graph obtained from G′ by
removing all edges with one endpoint in A1 and one endpoint in A2 ∩ N . This
is a (P, N)-probe graph for G, because we have only modified edges with both
endpoints in N . But now (A1, B1, A2 ∩P, (A2 ∩N)∪B2) is a 1-join in G′′, and
it satisfies the first condition. This proves the claim.

Next, note that if G contains a 1-join, we can find it in polynomial time
[15]. Thus, we may assume that G does not contain a 1-join, and hence if there
is a 1-join (A1, B1, A2, B2) in a probe graph for G, then N ∩ A1, N ∩ A2 6= ∅.
In particular, if there is a 1-join in a probe graph with A1 ⊆ N, A2 ⊆ P , then
G has a 1-join. This implies that we only need to show how to find a 1-join
(A1, B1, A2, B2) in a probe graph with A1 ∩ N, A1 ∩ P, A2 ∩ N, A2 ∩ P 6= ∅.

For distinct u, v ∈ P , we show how to find a (P, N)-probe graph with a 1-
join (A1, B1, A2, B2) such that u ∈ A1 ∩P, v ∈ A2 ∩P , if it exists. We consider
the four sets A, B, S1, S2 where A is the set of common neighbors of u and
v in G, B is the set of vertices of G non-adjacent to both u and v, S1 is the
set of vertices of G adjacent to u and non-adjacent to v, and S2 is the set of
vertices of G adjacent to v and non-adjacent to u. Clearly, (A, B, S1, S2) is a
partition of V (G) \ {u, v}. Moreover, by definition of a 1-join, and since we
cannot modify edges adjacent with either u or v in a (P, N)-probe graph, it
follows that A ⊆ A1 ∪ A2, B ⊆ B1 ∪ B2, S1 ⊆ B1 ∪ A2, and S2 ⊆ B2 ∪ A1.

We can now formulate the 1-join partitioned probe problem as a list par-
tition sandwich problem with G1 = G and G2 the graph arising from G by
adding edges between every pair of vertices in N . For each w ∈ V (G) \ {u, v},
if w ∈ A, we set L(w) = {A1, A2}; if w ∈ B, we set L(w) = {B1, B2}; if
w ∈ S1, we set L(w) = {B1, A2}; and if w ∈ S2, we set L(w) = {B2, A1}.
We set L(u) = {A1} , L(v) = {A2}. Moreover, we require that A1 is complete
to A2, B1 is anticomplete to A2 and B2, and B2 is anticomplete to A1. To
satisfy the cardinality constraint, we check for all pairs x, y ∈ V (G) \ {u, v} if
the list partition sandwich instance has a solution when L(x) is replaced by
L(x) ∩ {A1, B1} and L(y) is replaced by L(y) ∩ {A2, B2}. If there is a solution
for any pair x, y, then the corresponding partition is a 1-join in the (P, N)-
probe graph arising from G by adding all edges between A1 ∩ N and A2 ∩ N .
On the other hand, if there is a 1-join in a (P, N)-probe graph, then there
exists x ∈ (A1 ∪ B1) \ {u} and y ∈ (A2 ∪ B2) \ {v}, and for this choice of
x, y, there is a valid solution of the list partition sandwich instance. By Corol-
lary 3, the list partition sandwich problem with lists of size at most two can
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The sandwich problem for decompositions and almost monotone properties 23

be solved in polynomial time. Therefore, we can find a 1-join (A1, B1, A2, B2)
in a (P, N)-probe graph such that u ∈ A1, v ∈ A2 in polynomial time, if it
exists.

For the unpartitioned probe problem, we consider the same cases, and show
how to find a partition (P, N) and a 1-join (A1, B1, A2, B2) in a probe graph
for G. As before, we may assume that G does not contain a 1-join, and we
only need to show how to find a 1-join (A1, B1, A2, B2) in a probe graph with
A1 ∩ N, A1 ∩ P, A2 ∩ N, A2 ∩ P 6= ∅. For p, q, r, s ∈ V (G), we will give an
algorithm for finding a 1-join (A1, B1, A2, B2) in a probe graph with some
partition (P, N) and with p ∈ A1 ∩ N, q ∈ A1 ∩ P, r ∈ A2 ∩ N, s ∈ A2 ∩ P . We
may assume that B1 ∩ N = B2 ∩ N = ∅.

We now show that this can be written as a list partition problem with
six parts A1 ∩ P, A1 ∩ N, A2 ∩ P, A2 ∩ N, B1, B2 such that B1 is anticomplete
to B2 ∪ A2, B2 is anticomplete to B1 ∪ A1, A1 is complete to A2 ∩ P , A2 is
complete to A1 ∩ P , A1 ∩ N is anticomplete to A2 ∩ N , and A1 ∩ N , A2 ∩ N

are stable sets. This is a list partition problem, and if it has a solution with
p ∈ A1 ∩N, q ∈ A1 ∩P, r ∈ A2 ∩N, s ∈ A2 ∩P , then the graph G′ arising from
G by adding all edges with both endpoints in N ∩(A1 ∪A2) is a (N, V (G)\N)-
probe graph for G in which (A1, B1, A2, B2) is a 1-join.

By Lemma 11, it suffices to show that in this list partition problem, all lists
have size at most two. Then the problem can be solved in polynomial time, and
by solving it for every choice of {p, q, r, s}, we solve the 1-join unpartitioned
probe problem in polynomial time. Let w ∈ V (G) \ {p, q, r, s}. If w is non-
adjacent to q and s, then w ∈ B1 ∪ B2. If w is non-adjacent to q, adjacent to
s, and non-adjacent to r, then w ∈ B2 ∪ (A1 ∩ N). If w is non-adjacent to q,
adjacent to s, and adjacent to r, then w ∈ B2 ∪ (A1 ∩ P ). If w is adjacent to
q, non-adjacent to s, and non-adjacent to p, then w ∈ B1 ∪ (A2 ∩ N). If w is
adjacent to q, non-adjacent to s, and adjacent to p, then w ∈ B1 ∪ (A2 ∩ P ).
Now we may assume that w is adjacent to q and s. If w is non-adjacent to p

and r, then w ∈ (A1 ∩ N) ∪ (A2 ∩ N). If w is adjacent to at least one of p and
r, then w 6∈ N , and so w ∈ (A1 ∩ P ) ∪ (A2 ∩ P ). Every vertex in {p, q, r, s} has
a list of size one, and as we have shown, every other vertex has a list of size
two. This shows that the list partition problem can be solved in polynomial
time, which implies the result.

Theorem 9 The 1-join unpartitioned probe problem in the complement can
be solved in polynomial time.

Proof Let G be a graph, and suppose that there exists a partition (P, N) of
V (G) and a (P, N)-probe graph in the complement G′ for G such that G′ has
a 1-join (A1, B1, A2, B2). As in Theorem 8, note that if G contains a 1-join,
we can find it in polynomial time [15]. Thus, we may assume that G does not
contain a 1-join, and hence if there is a 1-join (A1, B1, A2, B2) in a probe graph
in the complement for G with partition (P, N), then (B1 ∪ B2) ∩ N 6= ∅.

Suppose first that there is a 1-join (A1, B1, A2, B2) in a probe graph in the
complement for G with partition (P, N) and with B1 ∩ N, B2 ∩ N 6= ∅. For
u, v ∈ V (G), we will show how to find such a 1-join with u ∈ B1∩N, v ∈ B2∩N ,
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24 Maria Chudnovsky et al.

if it exists. Let N ′ be the set containing u and v as well as all of the common
neighbors of u and v in G. Then N ′ ⊆ N , because vertices in (B1 ∪ A1) \ N

are non-adjacent to v, and vertices in (B2 ∪A2)\N are non-adjacent to u, but
N is a clique, so N ⊆ N ′. Thus, we have reduced this to the partitioned probe
problem, which can be solved in polynomial time by Theorem 8. By repeating
this for all u, v ∈ V (G), we find a 1-join of this kind in polynomial time, if it
exists.

Now suppose that B1 ∩ N = ∅. Then we may assume that A2 ∩ N = ∅,
because B1 is already anticomplete to A2 in G, and thus N ⊆ A1 ∪B2. Since G

does not have a 1-join, it follows that N 6⊆ A1 and N 6⊆ B2, and consequently,
B2 ∩N, A1 ∩N 6= ∅. Moreover, (A1, B1, (B2 ∩N)∪A2, B2 ∩P ) is not a 1-join in
G, and so A1∩P 6= ∅. Furthermore, (A1∩N, B1∪(A1∩P ), A2∪(B2∩N), B2∩P )
is not a 1-join in G, and so A2 ∩P 6= ∅. For u, v, x, y we show how to find such
a 1-join with u ∈ A1 ∩ N, v ∈ B2 ∩ N, x ∈ A1 \ N, y ∈ A2 ⊆ P . Let N ′ be the
set containing v and all vertices adjacent to u and v, and non-adjacent to x.
It follows that B2 ∩ N ⊆ N ′ ⊆ N = (A1 ∩ N) ∪ (B2 ∩ N). We can now reduce
the 1-join problem to a list partition problem with lists of size at most two.
We partition into the six sets A1 ∩ N, A1 ∩ P, B1 ⊆ P, A2 ⊆ P, B2 ∩ N, B2 ∩ P .
For each of u, v, x, y, we have a list of size one. For n ∈ N ′, we let L(n) =
{A1 ∩ N, B2 ∩ N}. For n 6∈ N ′, it follows that n 6∈ B2 ∩N . If n is non-adjacent
to x and y, then L(n) = {B1, B2 ∩ P }. If n is adjacent to x and non-adjacent to
y, then L(n) = {B1, A2}. If n is non-adjacent to x and n is adjacent to v, then
L(n) = {A1 ∩ N, B2 ∩ P }. If n is adjacent to y and non-adjacent to x, and n

is non-adjacent to v, then L(n) = {A1 ∩ P, B2 ∩ P }. If n is adjacent to x and
adjacent to y and adjacent to v, then L(n) = {A1 ∩ N, A2}. If n is adjacent
to x and adjacent to y and non-adjacent to v, then L(n) = {A1 ∩ P, A2}. We
require that A1 ∩ P is complete to A2 and anticomplete to B2, A1 ∩ N is a
clique and complete to A2 and B2 ∩ N , and anticomplete to B2 ∩ P , B1 is
anticomplete to A2 and B2, and B2 ∩ N is a clique. If there is a list partition
with these lists and these properties, then N is a clique, and by removing
all edges with both endpoints in N , we obtain a 1-join (A1, B1, A2, B2). By
solving this list partition problem with lists of size two in polynomial time by
Lemma 11, and by checking all choices of u, v, x, y, we find a 1-join in a probe
graph in the complement in polynomial time, if there is one. This concludes
the proof.

3.2 Hardness results

Let G be a graph. A set M ⊆ E(G) is a matching if no two edges in M share
an endpoint. G is decomposable if there exists a partition (V1, V2) of V (G) with
V1, V2 6= ∅ such that the set of edges of G with one endpoint in V1 and one
endpoint in V2 is a matching; (V1, V2) is called a decomposition of G if this
holds. The line graph L(G) is the graph with vertex set E(G), and in which
distinct e, f ∈ E(G) are connected by an edge in E(L(G)) if and only if e and
f share an endpoint.
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Theorem 10 (Chvátal [11]) Recognizing decomposable graphs is NP -hard,
even when the maximum degree of the input graph is bounded by four.

Lemma 12 Let G be a graph. If G is not connected, then G is decomposable.
If G has a cut vertex v separating G\{v} into A and B with A anticomplete to
B, then G is decomposable if and only if at least one of G|(A∪{v}), G|(B∪{v})
is.

Proof Let G be a graph that has a cut vertex v separating G \ {v} into A and
B with A anticomplete to B.

Suppose that G is decomposable with decomposition (V1, V2) such that
V1, V2 6= ∅, and v ∈ V1. Since V2 6= ∅, without loss of generality, let V2 ∩A 6= ∅.
Then ((A ∪ {v}) ∩ V1, (A ∪ {v}) ∩ V2) is a decomposition of G|(A ∪ {v}).

For the other direction, suppose that G|(A ∪ {v}) has a decomposition
(V1, V2), and without loss of generality, v ∈ V1. Then (V1 ∪ B, V2) is a decom-
position of G.

By Lemma 12, it follows that the decomposable problem is still NP -hard
in 2-connected graphs. Theorem 10 was used in [3] to prove, by going to the
line graph and using Lemma 13, that the problem of finding a stable cutset in
a graph is NP -hard.

Lemma 13 (Brandstädt, Dragan, Szymczak [3]) If L(G) has a stable
cutset, then G is decomposable. If G is decomposable and has minimum degree
at least two, then L(G) has a stable cutset.

Theorem 11 (Moshi [29]) The problem of recognizing decomposable graphs
is NP -hard, even when the input graph is required to be bipartite.

Theorem 11 uses the following construction: Let G be a graph. Then ✸(G)
is defined as the graph containing a vertex for each vertex in G, as well as
two vertices e1 and e2 for each e ∈ E(G). For each v ∈ V (G) and each edge
e ∈ E(G) incident with v, we add two edges ve1 and ve2 to ✸(G), and no other
edges. Clearly, ✸(G) is bipartite (the two parts correspond to vertices of G and
edges of G, respectively), and Moshi [29] showed that ✸(G) is decomposable
if and only if G is. An example is shown in Figure 3.

In a graph G, a vertex star at v ∈ V (G) is a set of edges of G that are all
incident with v.

Theorem 12 The clique cutset unpartitioned probe problem is NP -hard, even
when the input is restrict to line graphs of bipartite graphs with clique number
at most eight.

Proof We give a reduction from the problem of recognizing 2-connected de-
composable graphs with maximum degree four.

Let G be a 2-connected graph with maximum degree four. Consider the
graph H = L(✸(G)). We claim that H is a clique cutset probe graph if and
only if G is decomposable. Note that since G has maximum degree four, ✸(G)
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Fig. 3 An example with G = P c

5
(left) and ✸(G) (right)

has maximum degree eight. Since ✸(G) is bipartite, it follows that L(✸(G))
has clique number at most eight.

By Lemma 13 and Theorem 11, it suffices to show that H is a clique cutset
probe graph if and only if H has a stable cutset. If H has a stable cutset N ,
then H is a clique cutset probe graph with partition (V (H) \ N, N), because
the graph H ′ obtained from H by adding all edges with both endpoints in N

has the clique cutset N .
For the converse direction, let H ′ be a clique cutset probe graph for H

with partition (P, N), and let S be a clique cutset in H ′. We may assume that
N ⊆ S, because removing all edges in E(H ′) \ E(H) that do not have both
endpoints in S preserves that S is a clique in H ′ and H ′ \ S is disconnected.
If N = S, then S is a stable cutset in H , which is what we wanted to show.
Therefore, we may assume that |P ∩ S| ≥ 1.

If |N | ≤ 1, then H ′ = H , and H contains a clique cutset. A clique in the
line graph of a bipartite graph corresponds to a vertex star in the bipartite
graph, and a clique cutset in the line graph of a bipartite graph corresponds
to 1-vertex cutset in the bipartite graph. Since G and ✸(G) are 2-connected,
it follows that ✸(G) has no 1-vertex cutset, and therefore, |N | ≥ 2.

It is well-known that line graphs of bipartite graphs contain neither a claw
(K1,3) nor a diamond (K4 \ e) as an induced subgraph. If |N | ≥ 3, then H

contains a claw, and if |P ∩ S| ≥ 2, then H contains a diamond. Therefore,
|N | = 2, |P ∩ S| = 1. Let {n1, n2} = N , {p} = P ∩ S. Then, there exists an
edge e = vw ∈ E(G) such that p corresponds to the edge ve1 or ve2 in ✸(G);
by symmetry, we may assume that the former holds. Since n1 and n2 are non-
adjacent and the edges of ✸(G) incident with v form a clique in L(✸(G)), it
follows that one of n1, n2 corresponds to the edge e1w in ✸(G); by symmetry,
we may assume that n1 = e1w. It follows that n2 corresponds either to ve2 or
to ve′

1 or ve′
2 for some e′ 6= e.

Since S is a cutset in H , it follows that ✸(G)\{n1, n2, p} has more than one
connected component that is not just a single vertex. If n2 = ve′

1 or n2 = ve′
2

for some edge e′ 6= e, then every vertex of V (G) can be reached from every
other vertex of V (G) in ✸(G) \ {n1, n2, p}, because every edge e = xy in a
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path in G can be replaced with xe2 and e2y in ✸(G). Thus, every vertex of
V (G) is in the same connected component in ✸(G) \ {n1, n2, p}, and every
other component is therefore a single vertex (because ✸(G) \ V (G) is a stable
set). This is a contradiction, since S was a cutset in H .

It follows that n2 = ve2. The vertex v can be reached from w in ✸(G) \
{n1, n2, p}, because G is 2-connected, and hence there exists a path in G from
v to w not using the edge e = vw. Every edge of ✸(G) not incident with e1 or
e2 is not in the cutset, and since G \ e is connected, every vertex of V (G) can
be reached from every other vertex of V (G) in ✸(G) \ {n1, n2, p}. As before,
this yields a contradiction.

This proves that if H is a clique cutset probe graph, then H has a stable
cutset.

In a graph G, two vertices x, y ∈ V (G) are clones if NG(x) = NG(y).
A graph G′ arises from G by cloning x ∈ V (G) if V (G′) = V (G) ∪ {x′},
G′|V (G) = G, and NG′(x′) = NG(x).

Theorem 13 The full star cutset unpartitioned probe problem is NP -hard.

Proof To prove this, we modify the previous construction as follows. Let G be
a 2-connected graph, and let G′ arise from G by adding a vertex v complete
to V (G). Let ✸v(G′) arise from ✸(G′) by cloning twice each vertex e1 for
e ∈ E(G′) with e incident to v to obtain two new vertices e3, e4 with the
same set of neighbors as e1 (and e2), and {e1, e2, e3, e4} a stable set. We claim
that H ′ = L(✸v(G′)) is a full star cutset probe graph if and only if G is
decomposable. ✸v(G′) consists of ✸(G), v, and for each vertex w of G, four
vertices e1, e2, e3, e4, each adjacent to precisely v and w. In the line graph,
we1, we2, we3, we4 correspond to a K4 we will call t(w), and ve1, ve2, ve3, ve4

correspond to a K4 we will call k(w). The edges between t(w) and k(w) are
precisely edges from vei to wei for i = 1, 2, 3, 4. Moreover, for w, u ∈ V (G),
t(w) is anticomplete to t(u) ∪ k(u) and k(w) is complete to k(u). For w ∈
V (G), we denote by s(w) the clique in H ′ corresponding to edges incident
with w in ✸(G); s(w)∪ t(w) is a clique. Let V ∗ denote the union of the cliques
s(w), i. e. denote the vertices in H ′ corresponding to edges of ✸(G). Then
H ′|V ∗ = L(✸(G)). Let K denote the union of the cliques k(w), i. e. the clique
in H ′ corresponding to the vertex star at v in ✸v(G′). Let T denote the union
of the cliques t(w) for w ∈ V (G). Then V (H ′) = V ∗ ∪ K ∪ T , where K is
anticomplete to V ∗, and k(w) is anticomplete to V ∗ ∪ (T \ s(w)).

From the proof of Theorem 12, we know that G is decomposable if and
only if H = L(✸(G)) is a clique cutset probe graph, if and only if H has a
stable cutset.

If G is decomposable, then H = L(✸(G)) has a stable cutset S and a
partition (A, B) of V (H) \ S such that A is anticomplete to B. Then K is
anticomplete to S in H ′, and so we may choose k ∈ K and N = {k}∪S, make
k complete to S, and obtain a probe graph H ′′ for H ′ which has a star cutset
N(k) ∪ S ⊃ S ∪ K with center k. This is a cutset, because S is a cutset of H ,
and for w ∈ V (G), N(x) ⊆ s(w) ∪ t(w) ∪ k(w) for x ∈ t(w), and since s(w)
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is a clique, s(w) ∩ A = ∅ or s(w) ∩ B = ∅. If s(w) ∩ A = ∅, add t(w) to B,
otherwise, to A. By the properties of H ′ it follows that the resulting sets are
still anticomplete to each other.

To prove the other direction, let X be a full star cutset in a probe graph H ′′

with partition (P, N) for H ′, and let b be the center of X , and A = X \ {b} =
NH′′(b). Let (C, D) be a partition of H ′′ \ X such that C is anticomplete to
D.

Suppose first that b ∈ V ∗, and so b ∈ s(w) for some w ∈ V (G). Then b

corresponds to an edge e = ww′, say b = we1. Then NH′(b) = (s(w) \ {b}) ∪
t(w)∪{e1w′}. In particular, we may assume that |K ∩X | ≤ 1 and K \X ⊆ C.
For w′ ∈ V (G) \ {w}, |t(w′) ∩ X | ≤ 1, and so t(w′) ∩ C 6= ∅. Consequently,
s(w′) ∪ t(w′) ⊆ X ∪ C for all w′ 6= w. But then D = ∅, a contradiction.

Now suppose that b ∈ t(w) for some w ∈ V (G). Then b has exactly one
neighbor k ∈ K, and NH′(b) = (t(w)\{b})∪s(w)∪{k}. Therefore, X contains
at most two vertices of K, and hence we may assume that |K \ C| ≤ 2. Since
X contains at most one vertex from t(w′) for all w′ ∈ V (G) \ {w}, it follows
that each such t(w′) intersects C, and thus t(w′) ∪ s(w′) ⊆ C ∪ X . But then
D = ∅, a contradiction.

This implies that b ∈ K, and let w ∈ V (G) such that b ∈ k(w); let b′ be
the unique neighbor of b in t(w). Then NH′(b) = K ∪ {b′}, and thus X ∩ V ∗ is
a stable set. We may assume that X ∩ V ∗ is not a cutset of H ′|V ∗, and thus
V ∗ \{X} ⊆ C. For all w′ ∈ V (G), X contains at most one vertex in s(w′), and
thus, s(w′) ∪ t(w′) ⊆ C ∪ X . But then D = ∅, a contradiction. This concludes
the proof.

Note that this proof does not imply that the star cutset unpartitioned probe
problem is NP -hard: In the bipartite graph ✸v(G′), the maximum degree on
one side of the bipartition is two. This implies that in the line graph, every
vertex w has a neighborhood consisting of a single vertex x anticomplete to a
clique C. By picking y ∈ C, setting N = {x, y}, and adding the edge xy, we
have produced the star cutset {x} ∪ C with center y separating w from the
rest of the graph.

4 Conclusion and open questions

We introduced almost monotone properties, and showed that the sandwich
problem can be reduced to the recognition problem for almost monotone prop-
erties. We proved that the imperfect sandwich problem can be solved in poly-
nomial time.

In the not C-free sandwich problem, we are asking if there exists a sandwich
graph in which there exists an induced subgraph isomorphic to a graph in
C, whereas in the C-free sandwich problem, we are testing if there exists a
sandwich graph G such that for every induced subgraph H of G, H is not
in C. The latter problem has an additional alternation, which is an indication
that the not C-free sandwich problem might always be “easy”, or at least easier
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than the C-free sandwich problem. Clearly, if the recognition problem for C-
free graphs is NP -hard (e. g. if C is the set of prisms), then the not C-free
sandwich problem is NP -hard. This leads to two open questions:

– Is there a set C such that recognition of C-free graphs is in P , but the not
C-free sandwich problem is NP -hard?

– Is there a set C such that the C-free sandwich problem is in P , but the not
C-free sandwich problem is NP -hard?

Three kinds of graphs we considered for the not C-free sandwich problems
were the Truemper configurations [34], prisms, thetas, and pyramids. In partic-
ular, [27] implies that the prism-free and not prism-free sandwich problems are
NP -hard, because the recognition problem is NP -hard. However, the theta-
free sandwich problem is NP -hard [16], but we proved that the not theta-free
sandwich problem is in P . We also proved that the not pyramid-free sandwich
problem is in P , but the complexity of the pyramid-free sandwich problem
remains open.

We considered the hardness of probe problems for deciding if certain de-
compositions exist. Our results are summarized in Table 1. In particular, we
gave an NP -hardness reduction for the clique cutset unpartitioned probe prob-
lem, and we generalized it to the full star cutset unpartitioned probe problem.
This reduction is mainly based on the fact that in those probe problems, we
make changes to a stable set (the set of non-probes) to create a cutset with a
certain structure. This allows us to reduce the problem to a variant of the stable
cutset problem. It is possible that a similar reduction can be used for the star
cutset problem or the skew cutset problem, i. e. the problem of finding a cutset
X of a graph G such that Gc|X is not connected, which is a generalization of
star cutsets. The skew cutset recognition problem is in P [21], and the skew
cutset sandwich problem is NP -hard [33]. The fast skew partition recognition
algorithm in [26] is based on the clique cutset recognition algorithm, and since
we gave a polynomial-time algorithm for the partitioned probe clique cutset
problem, similar ideas as in [26] might lead to a polynomial-time algorithm
for the partitioned probe skew cutset problem.

We also showed that all probe problems are in P for the homogeneous set
problem. For the sandwich problem, as well as all probe problems except the
partitioned probe problem, it is open if the homogeneous pair problem, a gen-
eralization of the homogeneous set problem, can be solved in polynomial time.
In general, our algorithms were based on showing that the non-probe vertices
could only occur in certain ways in the decomposition, and then assigning a
few vertices in key places and checking if these initial choices would lead to a
full decomposition using Lemma 11 and Corollary 3. This approach seems use-
ful in general for adapting algorithms for recognition problems to algorithms
for the partitioned and unpartitioned probe problem.
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