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ABSTRACT

In voice-based interfaces, non-verbal features represent a simple and underuti-
lized design space for hands-free, language-agnostic interactions. This work
evaluates the performance of three fundamental types of voice-based musical
interactions: pitch, interval, and melody. These interactions involve singing
or humming a sequence of one or more notes. A 21-person study evaluates
the feasibility and enjoyability of these interactions. The top performing par-
ticipants were able to perform all interactions reasonably quickly (<5s) with
average error rates between 1.3% and 8.6% after training. Others improved
with training but still had error rates as high as 46% for pitch and melody
interactions. The majority of participants found all tasks enjoyable. Using
these results, we propose design considerations for using singing interactions
as well as potential use cases for both standard computers and augmented
reality glasses.
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INTRODUCTION

With the proliferation of voice-activated devices, people are increasingly using
their voice to perform hands-free interactions: as of 2018, 27% of the global
online population used voice search on mobile devices [15]. Most of these
systems use verbal interactions that translate spoken words and phrases
into commands. On the other hand, non-verbal vocal interactions provide
opportunities for language-independent, simple, continuous controls [32].
Instead of recognizing words, these techniques detect properties of vocal
sound, such as vowel sounds or pitch, making them simple enough to process
locally on consumer hardware in real time. Despite its simplicity, much less
work has explored the non-verbal vocal input design space.

Past research has evaluated how we can use various vocal features, such as
blowing puffs of air [6, 37], hissing [25], producing vowel sounds [9, 11], and
singing or humming pitches. Within this last category, past work has used
pitch for continuous control by sliding pitch up and down [18, 31] or discrete
control by assigning portions of the frequency space to different functionality
[5, 24, 26, 29]. In these systems, users can either hum or produce sustained
sounds like “la” and “do.” However, most work does not leverage musical
concepts like semitones and intervals to expand these vocal interactions, and
those that do have not performed formal evaluations.

Unlike past work in non-verbal vocal interactions, this work leverages
musical concepts to design interactions that make computer use more musical
and potentially more enjoyable. The presented techniques are versatile: by
using pitches from the major scale, a larger number of distinct interaction
variations are possible. Furthermore, frequently using these interactions could
help users improve their vocal ability. We envision using singing interactions
as a way to replace or supplement current interface methods for functions
like command shortcuts, mode switching, and parameter control by singing
melodies from popular music. These interactions could also provide a hands-
free input method for augmented reality glasses. Before considering such
applications, this work first evaluates the feasibility of fundamental types of
singing interactions.

This work explores pitch, interval, and melody interactions, correspond-
ing to sequences of one, two, and three distinct musical notes, respectively
(Fig. 1.1). A 21-person study evaluates their feasibility and enjoyability for
participants who self-identified as singers (n = 10) and non-singers (n = 11).
For each technique, participants were prompted to sing or hum 7 possible se-
quences of notes, both with and without background music. We hypothesized
that background music would improve performance by providing a reference
pitch for the notes to sing. The findings demonstrate that top performers
are able to perform all interaction types sufficiently fast (3.5-5s) with low
error rates (<10%) after training. The lowest performers had comparable
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Figure 1.1: Examples of fundamental singing interaction techniques, visualized as
vocal frequency over time: (a) pitch is a single note; (b) interval is a
sequence of two notes; and (c) melody is a sequence of three notes.

speeds (4.5-5.5s), but error rates as high as 46% after training. Of the three
techniques, pitch interactions are the easiest to learn and interval interactions
are the hardest to master. Participants found background music helpful in all
tasks, despite having a limited effect on measured performance. Overall, the
majority of participants found all interactions enjoyable.

Our work makes three contributions: (1) experimental results validating the
effectiveness of pitch, interval, and melody interactions as a form of computer
input; (2) an evaluation of how background music impacts performance; and
(3) a set of design considerations and potential use cases that leverage these
interactions.



RELATED WORK

Pitch, interval, and melody interactions are types of non-verbal vocal inter-
actions: they facilitate vocal control without the use of words. This chapter
provides an overview of recent and current non-verbal vocal input mecha-
nisms, with a focus on those incorporating vocal pitch.

2.1 NON-VERBAL VOCAL INTERACTIONS

The simplest non-verbal vocal interactions are binary in nature. For example,
with Pufftext [6], users blow into a microphone to select characters on a
hands-free spinning keyboard for mobile phones. Similarly, with Blowclick
[37], users blow into a microphone to make selections with low latency.
Polacek et al. [25] leverage hissing to select characters on a virtual keyboard.
These on/off interactions enable fast, precise, hands-free control, but they are
limited: the only degree of freedom is the duration of the interaction.

Other techniques have more degrees of freedom by interpreting a wider
range of vocal sounds. In particular, some systems map vowel sounds like “a,”
“e,” “i,” “0,” “u,” and their intermediaries to a single continuous parameter.
For example, Vocal Joystick [8] is a voice-controlled mouse that moves based
on the shape of a vowel, as classified by a multi-layer perceptron. A small Fitts’
Law study with four expert users showed movement time was comparable to
using a joystick, but much slower than using a mouse. The same strategy has
been applied to drawing applications with VoiceDraw [10] and video games
with Harada et al.’s Pacman [11]. Unlike our work, these techniques attempt
to replace traditional inputs with more accessible non-verbal vocal inputs.

Some work has considered how non-verbal commands can work in tandem
with other interactions for general computing. Igarashi and Hughes [14] use
verbal commands followed by vowel sounds to support more precise control
of various parameters. Sakamoto et al. [27] augment touch input with vowel
sounds to allow continuous control of scrolling and zooming. VoicePen [9]
augments pen input with vowel sounds to configure drawing parameters in
an enjoyable manner. In a similar manner, we envision our singing interactions
as augmenting standard user input.

2.2 PITCH FOR CONTINUOUS CONTROL

Our work focuses on non-verbal vocal interactions that leverage pitch. While
these typically still involve producing vowel sounds, the interaction is in-
dependent of the vowel used. Instead, the fundamental frequency of the
voice determines the interaction. Such interactions can be mapped to a single
continuous parameter, in which users can sing any pitch to continuously
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adjust the parameter, or multiple discrete parameters, in which the sound
frequency space is partitioned into ranges that trigger different functionality.
Unlike the detection of vowel sounds, continuous pitch-based interactions
intuitively map to relative movement control by singing higher or lower.
Voodle [18] uses pitch and rhythm to control a one-dimensional robot, and
VoiceBot [12] uses pitch and vowels to control a robotic arm. Similarly, Sporka
et al. [31] use pitch to determine movement direction of a mouse pointer.
Peixoto et al. [22] use pitch for smooth control of wheelchair speed. These
works have evaluated application-specific task performance, but the results
are not generalizable. Furthermore, in all cases, pitch is only mapped to a
single parameter. Our work discretizes the spectrum of pitches to facilitate a
wider variety of functionality.

2.3 PITCH FOR DISCRETE CONTROL

Instead of directly using the continuous frequency space, discrete pitch-based
interactions divide it into two or more ranges that map to different parameters.
Some techniques use a single threshold pitch to determine when the voice
is above, below, or crossing the threshold. Chanjaradwichai et al. [5] detect
pitches above and below a threshold to select one of four cells in a grid.
A small 6-person study indicated that short pitch-based vocalizations were
faster than using speech commands and had error rates around 12%. Polacek
and Mikovec [24] use hummed commands above and below a threshold for
mouse clicks, finding the approach faster but more error-prone than speech
commands (6% vs. 3.5%). This approach has also been adapted to the more
complex context of text entry. Humsher [26] detects frequencies above and
below a threshold to select characters for text entry and CHANTI [30] uses
similar interactions with an ambiguous keyboard, where each keyboard key
is associated with multiple possible letters. In all cases, a single threshold
pitch still restricts control to a small number of parameters.

Other work has divided the frequency space with multiple threshold
pitches, enabling control of more parameters. For instance, Sporka et al.
[28] distinguish between four pitches for keyboard input, where each pitch
sung divides the number of possible letters by 4 until only one possibility
remains. More related is the work of Hamaildinen et al. [13], which uses many
threshold pitches for music education video games. The pitch thresholds
align with the twelve semitones of Western music, making this interaction
technique more musical. However, their system is designed for showing vi-
sual pitch feedback when singing songs instead of providing an interaction
mechanism for general use. They do not perform any formal evaluation of
their technique.

Sporka [29] evaluates how effectively people can sing discrete pitches in
general. The author compares performance when there are different sized
ranges of pitches to sing, using ranges two, four, and eight times larger than a
baseline size of one semitone. The findings demonstrate that non-singers have
a lower error rate when the range is four times larger than the baseline, with
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error rates of 23% and 52%, respectively. Our work differs in four ways. First,
the pitch recognition method is different: instead of determining pitch based
on the last frequency detected, which might slide off the desired pitch, our
technique determines it by holding a pitch for 20oms. Second, our experiment
considers sequences of one, two, and three notes instead of just one. Third,
our analysis explores in what ways background music can affect performance,
which was not considered in any past work. Finally, our interactions are not
arbitrary: they are designed to be musically appealing and harmonious with
background music.



MUSIC BACKGROUND

Since our interactions involve singing, this chapter provides background on
singing abilities and relevant music theory.

3.1 ACCOMMODATING USER SINGING ABILITIES

An important consideration for our work is how people perceive pitch. People
with absolute pitch (also referred to as perfect pitch) are able to identify and
produce musical tones without needing an external reference pitch. However,
this is a rare ability, estimated at less than 0.01% of the population [33]. Most
people process pitches they hear and sing relative to other pitches. Providing
a tonic note as a reference point can help people identify and produce relative
pitches. Unlike past work in pitch-based non-verbal vocal interactions, we
use background music to provide this reference.

Another consideration is how easily people match pitch. Amir et al. [1]
measured the ability for musicians and non-musicians to reproduce pitches.
While musicians could match pitches within 0.5 semitones, non-musicians
were within 1.3 semitones. In practical terms, this means our techniques need
to accommodate users that sing the wrong pitch before finding the correct
one.

Finally, visual feedback has been shown to improve pitch accuracy. Using
a visualization that highlights keys on a virtual piano, Wilson et al. [35]
demonstrate that while visualizations increase cognitive load during use,
participants improve their pitch accuracy afterwards. Similar types of feed-
back have been used in classroom settings. Welch et al. [34] use a simple
frequency-over-time graph to improve pitch matching abilities for seven-year-
olds. Similarly, Callaghan et al. [4] use a 2D graph of both frequency and
volume over time to provide immediate feedback for pitch accuracy and
vibrato. Because this feedback is visual, it should help people with good
pitch, poor pitch, and potentially deafness sing in tune. Our needs for visual
feedback are different. Specifically, users need to see the pitches being sung
and interactions being recognized in a single interface. Furthermore, to use
singing as an input modality, the visualization needs to be a simple overlay
on top of existing interfaces.

3.2 MUSICAL TERMINOLOGY AND NOTATION

Since we define our interactions using standard concepts in music theory, this
section provides an overview and a set of formalizations for common musical
terminology. The pitch of a sound can be quantified using the fundamental
frequency, fo € R™, of its waveform. A note is a sound that has some associ-
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ated pitch. Following the Musical Instrument Digital Interface specification
[2], a note with a fundamental frequency f is assigned an integer note number,
p=69+12x logz(JTOO). For reference, A4 concert pitch has fy = 440 and
note number 69. For a note with note number p, a semitone is the difference
between p and p + 1 and an octave is the difference between p and p + 12.

For the purposes of this work, a scale is a vector of notes ordered by
increasing pitch, independent of the octave. A scale is represented by an
ordered pair (t,s), where note number ¢ (0 < t < 12) is the tonic, or the first
note in the scale, and s is a vector representing the notes in the scale relative
to t. Each s; (0 < s; < 12) represents the note s; semitones above the tonic .
For a given scale (t,s), the degree d of a note p is its index in the scale, where
1<d<dim(s)ands;_1 =p —t (mod 12).

This work uses the major scale, (¢,s), for any tonic f and s = (0,2,4,5,7,
9,11). This is because a large portion of Western music is based on this scale,
making the pitches pleasing and familiar for the average person. Because the
major scale has 7 notes, there are effectively only dim(s) = 7 distinct pitches
that are used in our interactions.

When discussing interval and melody interactions, we sometimes use the
pitch one octave above the first pitch sung, which is always the tonic in our
case. We abuse the standard definition of degree to refer to the pitch one
octave above the first pitch sung as degree d = 8.

Our work assumes users have a vocal range of one octave, which is reason-
able for both singers and non-singers [29]. However, different people have
different ranges: some can only sing high pitches while others can only sing
low pitches. To accommodate different vocal ranges, the techniques require a
calibration step to determine the appropriate tonic ¢ for a given person.

For the remainder of this paper, numeric values for a note or pitch refer to
its degree as opposed to its note number.



TECHNIQUE

This chapter presents three types of singing interactions: pitch, interval, and
melody. In each, users can hum or sing on any vowel, such as “la,” “tee,” or
I/do‘ll

4.1 SINGLE PITCH INTERACTIONS

The simplest type of singing interaction involves a single note. Our technique
first involves detecting pitch by determining the fy of microphone input every
5oms using a fast Fourier transform with size 2048 and processing it using
the McLeod Pitch Method [19]. As suggested by the method, if a frequency is
below a minimum clarity of 95%, it is ignored to reduce noise. Each time a
frequency is detected and not ignored, the current time step increments by 1.
The frequency at the i-th time step is f;. Note that time steps are at least 5oms
apart, but gaps may be longer since unclear frequencies are ignored.

To ensure only intentional interactions are recognized, a user must sing
and hold a note for at least 4 consecutive time steps (> 200ms). If the user
sings a different note and holds for 4 time steps, the new pitch is recognized
and the old one is discarded. The recognized pitch is confirmed after a silence
of s50oms. We informed this design with a series of pilot tests to find the best
trade-off between facilitating quick interactions and ignoring accidental ones.
An important benefit of this design is that users can correct their pitch during
an interaction: they can start by singing one note, then slide into the desired
note. This is crucial for usability since both musicians and non-musicians can
have difficulty singing pitches precisely [20]. Our design also allows users to
slide off pitch at the end of an interaction without penalty, improving on the
pitch recognizer used by Sporka [29].

To compensate for variable audio quality, the technique smooths the de-

tected frequencies using a recursive definition: f{ = f1 and f} = % + f’bT*l
This can add an additional 50-100ms latency, but it improved performance in
our pilot tests. Also, poor audio quality can sometimes result in large, sudden
changes of pitch. To resolve this problem, if a frequency f; is more than an
octave away from f;_1, it is ignored unless sustained for 3 time steps.

Since we assume users have a one-octave range, our technique is restricted
to 12 possible semitones in Western music. However, since we are especially
interested in interactions that sound harmonious with background music,
we only evaluate interactions that use the 7 degrees in the major scale. Thus,
there are n = 7 single pitch interactions.

An important part of our technique is a circular visualization for helping
users find their desired pitch. We had four design objectives for our visual-
ization. First, we wanted to show which notes are valid. Second, we needed



4.2 INTERVAL INTERACTIONS

to show which pitch was being sung, providing a feedback loop for users
to improve their pitch. Third, we needed a consistent way to show which
interaction was recognized, regardless of which technique was used. Finally,
we wanted to illustrate how the pitches “wrap around,” by our definition of
pitch degree. Existing approaches in non-verbal vocal interfaces were insuffi-
cient for our purposes. In particular, Sporka’s [29] visualization, with a 1D
horizontal line of frequencies and a vertical line indicating the current pitch,
does not satisfy the latter two objectives. Furthermore, existing pitch visual-
izations for music education [4, 34, 35] are not designed to show interactions
being recognized.

For this reason, we designed a visualization inspired by circular pitch
pipes (Fig. 4.1). The circular design illustrates how pitches “wrap around”
by displaying all recognizable notes along the circumference of a circle. An
arc outside the circle indicates the currently detected pitch. Once a pitch is
recognized, the outer arc turns blue and a thick blue arc appears inside the
circle indicating which pitch is recognized. This also indicates when the user
can stop singing. The visualization is easily extensible to interval and melody
interactions by making the inner arc span across all of the recognized pitches.

4.2 INTERVAL INTERACTIONS

Interval interactions entail singing two notes in sequence. Users sing one note
for at least 4 time steps (> 200ms), change to another note for at least 3 time
steps (> 150ms), and fall silent for 50oms. To keep this interaction easy to
perform during our study, we consider only intervals starting at the tonic ¢
and ascending to an end pitch with degree 1 < d, < 8.

In total, our technique encompasses n = 7 interval interactions. In the
future, this approach is easily extensible to have 7 x 7 = 49 possible interval
interactions within a one-octave range, with 7 possible start degrees 1 < ds <
7, and 7 possible end degrees 1 < d, < 8,d; # d.. Note that d; # 8 by our
definition of degree 8.

The interval visualization is identical to pitch, except once the second note
is recognized, the inside arc spans from the first note d; to the second note
de.

4.3 MELODY INTERACTIONS

Melody interactions go one step further with three or more notes in sequence.
Users first sing a note for at least 4 time steps (> 200ms), then sing at least two
more notes for any duration, subsequently falling silent for 500ms. Inspired
by Lin et al.’s system for evaluating people’s ability to accurately sing songs
[17], we use dynamic time warping (DTW) to determine the cost of warping a
sequence to match each of the possible melodies. The melody with the lowest
cost at the end of the interaction is the recognized melody. Because DTW does
not consider the timing of a melody;, it is possible to have longer melodies
without holding onto pitches for 150ms each, unlike our interval interaction
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(a) Before recognition

b) Pitch (c) Interval d) Melody

Figure 4.1: Our pitch visualization is a circle divided into 12 semitones, with the 7
degrees of the major scale labelled as 1 to 7: (a) before an interaction is
recognized, the gray arc indicates the frequency detected and the bold
“1” indicates degree 1 is detected but not yet recognized; (b) for pitch
interactions, the outer arc turns blue and a thick inner arc appears when
degree 1 is recognized; (c) for interval interactions, sliding vocal pitch to
degree 5 moves the outer arc around the circle and creates a trail from the
start degree “1” to the end degree “5”; (d) for melody interactions, sliding
vocal pitch to degree 5 and then down to degree 3 moves the outside arc
around the circle and shows the recognized melody using two inner light

“u_n 1/ ”

blue arcs from degree “1” to
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and “5” to “3.

technique. It also means a user does not need to accurately sing the second
and third notes. As long as they briefly get close to the appropriate pitch,
DTW can typically determine the intended melody.

For simplicity and tractability, our study involves n = 7 three-note melodies
(Table 4.1), all of which start at the tonic note, use only notes in the major
scale, and stay within a one-octave vocal range. We designed the melodies
to be relatively easy to sing by typically focusing on degrees 1, 3, and 5 (the
degrees in a major chord) or moving by one degree at a time. The number
of melodies is theoretically unbounded: they can have different start notes
and unbounded length. In practice, this is limited by the number that one can
accurately and quickly distinguish using DTW.

An alternative approach to our technique might allow users to sing any
initial note followed by a sequence relative to that note. This has one fewer
degree of freedom, but it is likely easier to perform. We chose to specify a
specific initial note for two reasons. First, it maintains consistency with the

10
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Table 4.1: Melodies evaluated by our experiment.

Melodies (sequences of notes)

1-3-2
1-2-3

1-5-1
1-4-1

1-5-3
1-3-5

1-5-8

other two techniques, making it possible to leverage all techniques in a single
interface. Second, it ensures that melodies will use the same scale as the
background music. Choosing a different initial note could cause the melody
to clash with the notes in the background, thereby making the tasks more
challenging. Thus, for this study, all melodies start with the tonic note.

Our visualization for melodies is similar to that of intervals. The difference
is that there are two arcs inside the circle showing the melody detected: one
from the first to the second note and one from the second to the third note in
the melody.

All three types of singing interactions could be used in a single interface.
For instance, one could sing the interval 1 — 5, then melody 3 — 5 — 3, followed
by pitch 4. The requirement for these combinations is that each starting pitch
ds can only be mapped to one type of interaction. In this example, 1 is mapped
to interval interactions, 3 is mapped to melody, and 4 is mapped to pitch. Our
exploration focuses on each technique individually, but an application could
incorporate all of them.

4.4 USING BACKGROUND MUSIC

A novel part of our interaction technique is in its use of background music.
The music provides users with a reference pitch, which should make it easier
to find the desired notes. Additionally, singing along with music has the
potential to increase enjoyability. For the experiments, some conditions play a
single 30 second loop of solo piano music, transposed into a specific user’s
vocal range using their tonic t. The background music uses a single tonic
chord, emphasizes the tonic note, and maintains a constant go bpm. Using
different music has the potential to impact performance, but comparing audio
stimuli is outside of the scope of this study. We maintain internal validity by
using the same simple background loop for all experiments.

11
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EXPERIMENTAL DESIGN

For each interaction technique (pitch, interval, and melody), we performed an
experiment to evaluate its feasibility and enjoyability. Because each technique
builds on the previous one by adding additional notes, we always ran the
pitch experiment first, followed by the interval and melody experiments.
Given that singing accuracy decreases as the number of pitches increases for
many tasks [23], this ordering should have increasing difficulty. Nevertheless,
there is likely a learning effect between the three experiments. Our analysis
takes this into consideration. This chapter outlines the shared experimental
design. An accompanying video also demonstrates the different experiment
tasks.

5.1 PARTICIPANTS

We recruited 25 participants, of which 4 were excluded due to technical issues
with their audio setup. These 4 excluded participants self-reported technical
problems, and we manually verified logs and audio recordings to confirm.
The remaining 21 included participants averaged 25.8 years of age (min: 20,
max: 57), of which 8 were female, 11 were male, and 2 were non-binary.
Participants were recruited using email, social media, and an HCI course
discussion board, receiving $20 for successful completion of the study. No
participants had any experience with our system prior to the experiments.

When asked to rate their agreement with the statement, “I consider myself
a good singer,” 10 participants responded with “Agree” or “Strongly agree”
and 11 participants responded with “Slightly agree” or lower. We used this
as a guide to recruit participants with different musical ability.

5.2 APPARATUS

The study was conducted online through a React web application.” All par-
ticipants were required to use Google Chrome on a laptop or desktop with
a microphone and headphones. Participants were instructed to perform the
tasks in a quiet room to ensure accuracy of the pitch detection. Ambient noise
was recorded and analysed periodically throughout the experiment to ensure
the levels were sufficiently low.

To ensure each participant’s microphone input worked sufficiently well
for the experiment tasks, participants completed an audio test. The laptop
interface instructed participants to open a custom phone web app on a
separate device. Then, participants tapped buttons indicated on screen to

Experiment source code is available at
https://github.com/exii-uw/evaluating-singing-input
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5.3 TASKS

Figure 5.1: Setup for the audio test. The laptop interface instructs participants to tap
buttons on a separate phone or tablet to test the laptop’s microphone
input.

3 «—— Target

Interaction

“— visualization

( ) Success
indicator
Figure 5.2: Illustration of the experiment task interface, showing an example for pitch
tasks with target 3 while a participant is singing note 3.

produce tones and verify that their laptop could recognize the correct pitches
(Fig. 5.1). This allowed us to verify that the audio system could detect pitches
properly without excluding participants with poor pitch matching abilities
from the study.

5.3 TASKS

Each of the three experiments prompted participants to perform tasks related
to the interaction techniques explained in Chapter 4. Participants pressed a
button to start the first trial in each block. Then, they were shown an interface
with the interaction visualization at the bottom and the target above with the
notes to sing (Fig. 5.2 and 5.3). Singing for at least 200ms and falling silent
for sooms ended the trial. During training, a green check mark or red x-mark
appeared after each trial to indicate success or failure. During each task, the
fo of microphone input was logged at every time step for post-hoc analysis.

13



EXPERIMENTAL DESIGN

Figure 5.3: Experiment setup when a participant performs melody tasks.

5.4 PROCEDURE

Before starting the experiments, we asked participants questions regarding
their musical and technical experience, including: “How many years of private
musical lessons have you had,” “How many years of group musical lessons
have you had,” “How many years of vocal training have you had,” “How
many years of ear training have you had,” and “How many hours per day
do you use a laptop or desktop?” We also asked participants, “How often do
you sing?” on a scale from 1 (“rarely”) to 7 (“multiple times a day”).

After watching a short tutorial video, participants were asked to sing one
low note and one high note to determine vocal range and the tonic ¢ for
the interactions. Then, they were shown a slider to fine-tune their detected
vocal range (Fig. 5.4). Moving the slider played back an audio clip with the
lowest and highest notes in the selected range. A green area above the slider
indicated what the ideal range should be and deviating from the expected
range caused a warning to appear. However, participants maintained full
control over their selection, which was deemed important through pilot tests.
Following this, the three experiments began.

For each technique, participants performed an experiment with three stages:
pre-test (Blocks 1-2), training (Blocks 3-6), and post-test (Blocks 7-8) (Fig. 5.5).
Each test stage measured performance with and without background music:
the pre-test measured untrained performance and the post-test measured
trained performance. The training stage differed from the test stages in three
ways: it allowed two attempts per task; it used audio prompts, which were 5s
recordings of a piano playing the notes to sing; and it always used background
music to provide a reference pitch. To facilitate learning early in the training
stage, Block 3 played audio prompts before every attempt, whereas Blocks
4-6 played audio prompts only after failing the first attempt. All blocks had
a random ordering of task variations except Block 3, which presented each
variation twice in a row.

14
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To select your range, drag the slider ends left or right.

For best results, keep the slider under the green
rectangle, which is your estimated range.

Listen to the notes played and sing them to make
sure the range is comfortable.

RESTART REPLAY SOUND m

Figure 5.4: The interface allowing participants to fine-tune their vocal range. After
moving the slider, participants could restart the calibration or confirm
their vocal range.

Pre-test Training Post-test
) i L) 1
Block 3* Other blocks
2 repetitions x 7 variations 2 repetitions x 7 variations

DEOOCDODO0DO0OBE BODDODEDDOOERO

Figure 5.5: Example of the block structure for a participant. M indicates there is
background music for the block. Colours indicate different task variations.

5.5 DESIGN

Each experiment (pitch, interval, and melody) has a within-subjects design
with two primary independent variables: TRAINING with 2 levels (UNTRAINED
for pre-test blocks, TRAINED for post-test blocks) and BACKGROUND with 2
levels (music, No-musIc). For analysis, we classify participants based on
their error rates across the three experiments. This classification is a between-
subjects variable: skILL with 3 levels (NOVICE, INTERMEDIATE, EXPERT).

There were 7 task variations for each technique, representing the pitch,
interval, or melody to sing. Each block had 2 repetitions x 7 variations. In
each of the pre- and post-test stages, there was 1 block X 2 BACKGROUNDS,
where BACKGROUND conditions were counterbalanced. In the training stage,
all 4 blocks had music. The training blocks are solely for training purposes,
so our analysis relies solely on the data from blocks in the two test stages.

15



EXPERIMENTAL DESIGN

The primary measures computed from logs are Total Time, Sing Time, and
Error Rate. Total Time is the time from the end of the previous trial until an
interaction is completed. Sing Time is the time from the first detected pitch
until the last detected pitch in a trial. Error Rate is the proportion of trials in a
block that ended with an error.

In addition, a questionnaire after each experiment provides 6 NASA-TLX
metrics for measuring task workload [21] and 2 subjective measures for
measuring enjoyability and perception of background music. All measures
are rated on a 7-point numeric scale for consistency. Participants could provide
feedback in a free-form text box at the end of each experiment.

In summary: 4 blocks x 7 variations x 2 repetitions = 56 data points per
participant, for each of the 3 experiments.
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RESULTS

In all experiments, performance varied widely between participants. To mean-
ingfully evaluate the data, we cluster the participants into groups of low-
and high-performing individuals. We hypothesized performance would be
strongly correlated with participant musical experience. However, using all
measures of musical experience we collected, some musical participants per-
formed poorly in the study, and similarly, some non-musical participants
performed very well. Two factors likely contributed to this result. First, we
relied on self-reported metrics as opposed to more objective musical evalua-
tions. Second, using singing for computer input requires a moderate level of
comfort with technology.

For analysis purposes, we instead use k-means to cluster participants into
three skiLL levels based on their error rate across all three experiments. Since
clustering was performed across all experiments, these skILL levels represent
three user groups with varying pitch control and comfort with technology.
We use these clusters to explore the wide variation in performance and better
understand the contexts in which our techniques are feasible.

The resulting k-means skiLL levels include EXPERT (8.8% error rate, n = 8),
INTERMEDIATE (30.2% error rate, n = 6), and NOVICE (54.6% error rate, n = 7).
Using the non-parametric Spearman correlation method, skiLL was correlated
with years of private music lessons (rs = .48, p = .029) and years of group
music lessons (rs = .45, p = .043), but interestingly, not years of music ear
training (p = .098), years of vocal training (p = .298), participant perception of
singing ability (p = .195), frequency of day-to-day informal singing (p = .19), or
hours per day using laptops and desktops (p = .563). This indicates that while
musical experience predicts performance to an extent, singing experience is
not required or sufficient to perform well.

In the analysis to follow, a SKILL X TRAINING X BACKGROUND ANOVA
with Tukey HSD post hoc tests was used, unless noted otherwise. When the
assumption of sphericity was violated, degrees of freedom were corrected
using Greenhouse-Geisser (e < 0.75) or Huynh-Feldt (¢ > 0.75). According to
the Shapiro-Wilk Normality test, none of the residuals for collected data were
normally distributed, so Box-Cox or ART-transformed [36] values were used
for statistical analysis. For each measure, trials were aggregated by participant
and factors being analysed.

6.1 PITCH INTERACTIONS

For every participant (n = 21), trial times more than 3 standard deviations
from the mean time were excluded as outliers. Before removal, outliers
skewed trial times longer, mostly for novices and intermediates before training.
Outliers had minimal effect on post-training performance and on expert
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Figure 6.1: Pitch task Total Time and Sing Time by skiLL for each BACKGROUND (error
bars in all graphs are 95% confidence).

participants. Upon further analysis, outliers were typically either: the first
trial in a block, in which the participant took a long time to start singing; a
trial where the participant had unusual difficulty finding the note to sing; or
a trial where the participant sang too softly. In total, 15 outlier trials (1.3%)
were removed.

Of the remaining trials, a minor error in client-side code resulted in 8 false
positives and 2 false negatives that were corrected based on the system logs,
representing 0.9% of the included trials.

6.1.1 Total Time

Time was consistent across most conditions. There were no main effects
involving SKILL (p = .32), BACKGROUND (p = .10), or TRAINING (p = .25) on Total
Time (Fig. 6.1).

Background music increased Total Time by 15% for novices, whereas it had
an insignificant effect on other participants. There was an interaction between
BACKGROUND and SKILL on boxcox-transformed Total Time (F 15 = 3.91, p = .039,
n2 = .03). Post hoc tests show, for the NOVICE participants, MUSIC (5129ms)
was slower than No-MUSIC (4447ms, p < .0001). While the standardized effect
size of .03 is considered small [3], it is intriguing that music increases time.

6.1.2 Sing Time

Background music increased Sing Time by 241ms (Fig. 6.1). There was a
main effect of BACKGROUND on on boxcox-transformed Sing Time (F; 15 = 2.21,
p < .007, 7% = .03), where MUSIC (2648ms) was slower than No-MUSIC (2407ms).
This represents a 10% increase in time.

There was no interaction between BACKGROUND and skILL for Sing Time
(p = 47).
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Figure 6.2: Pitch task Error Rate by skiLL and TRAINING for each BACKGROUND.

6.1.3 Error Rate

Training decreased Error Rate by 29.1% (Fig. 6.2). There was a main effect
of TRAINING on Error Rate (Fy 13 = 43.52, p < .0001, 17% = .71), where TRAINED
(19.6%) was lower than UNTRAINED (48.7%). The large .71 standardized effect
size of TRAINING on Error Rate shows that people can improve, even if they
perform poorly initially.

Unsurprisingly, skill affected Error Rate because we classified participant
sKILL using this metric. Nevertheless, the results provide insight into the large
variation in error rate for people with different pitch control and comfort with
technology. There was a main effect of skiLL on aligned rank transformed
(ART) Error Rate (Fy15 = 43.73, p < .0001, 2 = .83). Post hoc tests show how
EXPERT Error Rate (10.6%) was lower than INTERMEDIATE (35.8%), which was
lower than NOVICE (59.6%) (all p < .01). This represents a decrease in error
rate of 49.0% for the strongest participants, and the standardized effect size
of .83 is considered large [3].

Training had a larger effect on Error Rate for intermediates than others.
There was an interaction between TRAINING and SKILL on Error Rate (F,15 =
3.74, p = .044, n% = 29). The decrease in Error Rate after training was larger for
INTERMEDIATES (—45%) compared to EXPERTS (—19%, p = .014). After training,
EXPERTS had a very low error rate of 1.3%. Considering the large standardized
effect size of .50, intermediates have much more to gain from training than
the others, while experts are able to nearly perfect the technique.

6.1.4 NASA-TLX

We measured task workload using the NASA Task Load Index (TLX) on a
7-point numeric scale [21]. Since measures were not normally distributed, all
were analysed using Wilcoxon signed-rank tests with Holm-Bonferonni cor-
rections. Experts had lower task load metrics than the other groups (Fig. 6.3).
EXPERTS (4.0) perceived a lower Mental Demand than INTERMEDIATES (5.0,
p = .032), but there were no significant differences between other groups.
EXPERTS (1.9) also perceived better Performance than NOVICES (3.9, p < .020).
Furthermore, EXPERTS (1.9) perceived lower Frustration than both INTERME-
DIATES (3.8, p = .039) and NOVICES (5.0, p < .003). There were no significant
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Figure 6.3: NASA-TLX ratings for pitch tasks. Lower values correspond to lower
mental, physical, and temporal demand, as well as greater performance,
lower effort, and lower frustration.

differences between ratings based on skiLL for Physical Demand, Temporal
Demand, or Effort.

6.1.5 Subjective Ratings

Overall, 71% of participants perceived that background music made the
tasks easier. When asked, “Did the presence of background music make the
tasks easier or harder?” 15 rated it “somewhat easier” or better, 4 rated it
“somewhat harder” or worse, and 2 said it had “no effect.”

The majority of participants (62%) found pitch tasks enjoyable. When asked,
“To what extent did you find the tasks enjoyable?” 13 rated the tasks “slightly
enjoyable” or better, 3 rated them “slightly unenjoyable” or worse, and 5 rated
them “neither enjoyable nor unenjoyable.”

6.2 INTERVAL INTERACTIONS
As with the pitch experiment, for every participant (n = 21), outliers were

removed (16 trials, 1.4%) and false positives (3) and false negatives (16) were
corrected (1.6% of included trials).

6.2.1 Total Time and Sing Time

None of the studied factors impacted Total Time nor Sing Time for interval
interactions (Fig. 6.4).

6.2.2 Error Rate
Training decreased Error Rate by 15.7% (Fig. 6.5). There was a main effect of

TRAINING on Error Rate (Fj 15 = 9.28, p < .007, 7% = .34), where TRAINED (20.9%)
was lower than UNTRAINED (36.6%).
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Figure 6.5: Interval task Error Rate by skiLL and TRAINING for each BACKGROUND.

As before, skill affected Error Rate due to our clustering. There was a main
effect of skiLL on ART-transformed Error Rate (F,15 = 22.33, p < .0001, 2 =
.71). Post hoc tests show how EXPERT error rate (8.3%) was lower than both
INTERMEDIATE (30.1%) and NOVICE (50.9%) rates (all p < .002). This represents
a decrease in Error Rate of 42.6% for experts and the standardized effect size
of .71 is considered large [3].

Interestingly, while training improved the Error Rate for most participants,
it did not for experts. There was an interaction between TRAINING and SKILL
on Error Rate (Fy15 = 3.94, p = .038, 72 = .30). Post hoc tests show the decrease
in Error Rate after training for NovICEs (—32.3%) was much larger than for
EXPERTS (+0.5%, p = .014). The large .30 standardized effect size shows that
NOVICES improve much more than others.

While background music did not directly affect Error Rate, training im-
proved error rates more when there was no background music present. There
was an interaction between skILL and BACKGROUND on Error Rate (F,13 = 6.31,
p = .022, 72 = .26). Post hoc tests show TRAINING reduced Error Rate for No-
MUsIC (—21.4%) more than for music (—9.9%) (p < .007). Since the TRAINED
Error Rates are comparable for both conditions, with 19.5% for No-musIc
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Figure 6.6: NASA-TLX ratings for interval tasks. Lower values correspond to lower
mental, physical, and temporal demand, as well as greater performance,
lower effort, and lower frustration.

and 22.3% for music, this suggests training is needed most when there is no
music.

6.2.3 NASA-TLX

Again, experts had lower task load metrics than other groups (Fig. 6.6). Ex-
PERTS (4.3) perceived lower Effort than INTERMEDIATES (5.7, p = .049). EXPERTS
(2.9) also perceived lower Frustration than NOVICES (5.1, p = .018). There were
no significant differences between ratings based on skiLL for Mental Demand,
Physical Demand, Temporal Demand, or Performance.

6.2.4 Subjective Ratings

Overall, 67% of participants perceived that background music made the tasks
easier. When asked how background music affected task difficulty, 14 rated
the tasks “somewhat easier” or better, 4 rated them “somewhat harder” or
worse, and 3 said background music had “no effect.” As with pitch tasks, the
majority of participants (57%) found the interval tasks enjoyable. 12 rated the
tasks “slightly enjoyable” or better, 8 rated them “slightly unenjoyable” or
worse, and 1 rated them “neither enjoyable nor unenjoyable.”

6.3 MELODY INTERACTIONS
As with the previous two experiments, for every participant (n = 21), outliers

were removed (15 trials, 1.3%) and false positives (8) and false negatives (10)
were corrected (1.6% of included trials).

6.3.1 Total Time

Neither skill nor background music directly affected Total Time for melody
interactions (Fig. 6.7). However, unlike the other tasks, training reduced Total
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Figure 6.7: Melody task Total Time and Sing Time by TRAINING and skILL for each
BACKGROUND.

Time by 607ms. There was a main effect of TRAINING on boxcox-transformed
Total Time (F»15 = 14.36, p < .001, 7% = .07), where TRAINED (5073ms) was faster
than UNTRAINED (5680oms). This represents a 11% decrease in Total Time.

Training impacted novices differently than experts when music was present.
There was an interaction between SKILL, BACKGROUND, and TRAINING on Total
Time (Fy15 = 3.95, p = .038, né = .03). Post hoc tests show that with music,
training increased Total Time for NOVICES (+211ms) and decreased Total Time
for ExPERTS (—1076ms) (all p < .002). This might indicate that novices found
music distracting for these complex tasks.

6.3.2 Sing Time

Training improved Sing Time by 406ms (Fig. 6.7). There was a main effect of
TRAINING on boxcox-transformed Sing Time (Fy 15 = 7.57, p = .013, 17?; = .04),
where TRAINED (3456ms) was faster than UNTRAINED (3862ms). This represents
a 11% decrease in Sing Time.

Again, there was an interaction between SKILL, BACKGROUND, and TRAINING
on Sing Time (Fy13 = 4.67, p = .023, 7% = .03). Post hoc tests show that with
MUSIC, training increased Sing Time for NOVICES (+189ms) and decreased Sing
Time for EXPERTS (—982ms) (all p < .002).

6.3.3 Error Rate

Training decreased Error Rate by 10.4% (Fig. 6.8). There was a main effect of
TRAINING on Error Rate (Fj 15 = 4.82, p = .041, qé = .21), with TRAINED (22.3%)
lower than UNTRAINED (32.7%). Thus, training improved both time and error
rate for melody tasks.

As before, skill affected Error Rate due to our clustering. There was a
main effect of skiLL on ART-transformed Error Rate (F,15 = 54.77, p < .0001,
n% = 86). Post hoc tests show how ExPERT Error Rate (7.2%) was lower than
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Figure 6.9: NASA-TLX ratings for melody tasks. Lower values correspond to lower
mental, physical, and temporal demand, as well as greater performance,
lower effort, and lower frustration.

INTERMEDIATE (24.6%), which was lower than NovICE (53.3%) (all p < .001).
This represents a decrease in error rate of 46.1% for the highest performing
participants and the standardized effect size of .86 is considered large [3].

6.3.4 NASA-TLX

Again, experts had lower task load metrics than other groups (Fig. 6.9).
EXPERTS (2.5) perceived a lower Temporal Demand than INTERMEDIATES (5.1,
p = .016). EXPERTS (2.1) also perceived better Performance than NOVICES (4.1,
p = .015). There were no significant differences between ratings based on skiLL
for Mental Demand, Physical Demand, Effort, or Frustration.

6.3.5 Subjective Ratings

Opverall, 57% of participants perceived that background music made the tasks
easier. When asked how background music affected difficulty, 12 rated the
tasks “somewhat easier” or better, 4 rated them “somewhat harder” or worse,
and 5 said background music had “no effect.” Similar to the other tasks,
62% of participants found the tasks enjoyable. 13 rated the tasks “slightly
enjoyable” or better, 5 rated them “slightly unenjoyable” or worse, and 3 rated
them “neither enjoyable nor unenjoyable.”
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DISCUSSION

The main objective for our experiments was to explore the feasibility and
enjoyability of singing interactions. This chapter compares results for the
three types of interactions and discusses the design considerations emerging
from our research.

7.1 FEASIBILITY

In terms of feasibility, the main results are consistent across all types of inter-
actions. For participants classified as experts, after training in all experiments,
average time per trial was under 5s with error rates under 10%. For pitch
tasks in particular, experts had a very low error rate of 1.3% after training.
This is despite the pitch experiment’s being first: the learning effect would
have improved performance for interval and melody techniques, but pitch
remained the easiest. On the other hand, those classified as novices performed
poorly even after training, with average error rates between 35% (interval)
and 46% (pitch and melody). This result shows that these techniques are only
effective for a subset of potential users.

From our observations, the techniques work best for users with good
pitch control and comfort with technology. Each of the 8 expert participants
used laptops and desktops for at least 4h/day and had at least one year of
private music lessons, excluding the one outlier who had no formal musical
training. On the other hand, each of the 7 novices lacked either musical or
technological experience: 5 had no private musical lessons and the remaining
2 spent only 1h/day using laptops and desktops. This time was much lower
than the average of 7.7h/day. Lack of experience in either area likely made
the interactions less intuitive and more difficult to perform. Thus, the results
suggest both musical and technological skills contribute to user performance.

7.1.1  Impact of Training

While training improved performance for most groups and techniques, partic-
ipants classified as intermediates showed the greatest improvement in error
rates after training. This was particularly true for pitch, which is not surpris-
ing because it was the first technique evaluated. It also shows an expert does
not have as much room for improvement as does an intermediate. Neverthe-
less, the results suggest that some people who perform poorly initially can
improve with relatively little practice.

Of the three techniques, interval appears to be the hardest to master. Even
experts had an error rate of 8.6% after training, whereas they achieved 1.3%
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Figure 7.1: Heatmap for successful pitch trials showing frequency (number of semi-
tones away from the target pitch) by time (from the start to the end of
each trial) for each SKILL.

on pitch and 4.5% on melody tasks. Furthermore, with interval tasks, experts
slightly worsened after training, perhaps indicating fatigue or impatience.

The pitch technique showed the best performance after training. Before
training, novices (73.4%), intermediates (58.5%), and experts (19.9%) all had
high error rates. While novices continued to have high error rates after training
(45.9%), error rates were reasonably low for both intermediates (13.1%) and
experts (1.3%) after training. Especially considering how the learning effect
would have improved metrics for other techniques, our results demonstrate
the pitch technique is the most effective.

7.1.2  Patterns in Successful Trials

Further analysis of the pitch experiment’s data shows that experts were
frequently able to find targets immediately, whereas novices typically had
to slide into the appropriate pitch. The heatmap in Fig. 7.1 shows novices
start on target for very few successful trials. On the other hand, for experts,
the high density concentration on the correct target, along y = 0 in the
figure, shows they frequently start on target. Furthermore, from observing
the distribution of frequencies at the start of the trials, most EXPERT trials
were within 3 semitones of the target pitch right from the beginning, whereas
NovICEs were frequently much further. This indicates novices heavily rely on
the visualization to find the correct pitch, whereas experts only need it for
fine-tuning.

7.1.3 Comparing Total Time

Unsurprisingly, total time increases with interactions that have more notes.
After training for all participants, pitch averaged 4319ms, interval averaged
4720ms, and melody averaged 5073ms. Interestingly, time does not increase
proportionally to the number of notes in an interaction. This lack of increase
is likely caused by two factors. First, the learning effect between experiments
meant that participants were well practiced with pitch and interval interac-
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7.2 ENJOYABILITY

tions before performing melody interactions. Second, the recognition methods
were different: after singing the first note, subsequent notes could be shorter
(150ms for intervals, 5oms for melodies). Thus, adding additional notes to
our interactions had less of an impact on time than expected.

In summary, all of our presented techniques are feasible for a subset of the
population. However, some adjustments are necessary to make them easier
for non-musical users.

7.2 ENJOYABILITY

Overall ratings of enjoyability indicate that all interactions were at least some-
what enjoyable for most participants. P6 (EXPERT), Py, and P13 (INTERMEDIATES)
remarked that they really enjoyed the single pitch tasks. Furthermore, beyond
their uses for general computing, the interactions could be used for ear train-
ing while performing day-to-day computing tasks. P6 remarked that they
would “definitely use it to train my pitch in the future!”

P6 (ExPERT) and P16 (NOVICE) noted that by the melody experiment, they
had mental and vocal fatigue. One can mitigate vocal fatigue by singing more
softly or humming. With practice, the techniques would likely become much
less mentally fatiguing. Nevertheless, these techniques are demanding and
should be used in moderation in a real-world application.

Some participants found the tasks very challenging. P21 (NovICE) said that
the tasks were stressful and difficult to understand. Regarding melody tasks,
P1 (INTERMEDIATE) said, “As a person who absolutely does not sing, I would
have rather ran [sic] a 5km than do the task.” Our techniques are probably
best suited for motivated users who want to sing and improve their pitch.

It is possible that enjoyability could be improved by customizing the in-
teractions based on the user’s musical tastes and knowledge. For instance,
users could define their own interactions in an application, such as intervals
or melodies from a favourite song. This would make the interactions more
familiar. Furthermore, using melodies from songs they enjoy might help them
enjoy the interactions.

7.3 DESIGN CONSIDERATIONS

Our three experiments highlight key design considerations for using pitch,
interval, and melody interactions in real computer interfaces.

7.3.1  Use Background Music

Interfaces using singing interactions should incorporate some form of back-
ground audio with an appropriate tonic and tuning. While background music
did not affect error rate, and despite slightly increasing total time for pitch
tasks, the majority of participants found tasks easier with background music
in all experiments. P14 (EXPERT) stated that not having background music at
the start of the study made it difficult to find notes until they figured out
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their tonic, and P4 (ExPERT) said the music helped them “count up” from the
tonic to find notes. Background music also had positive effects for ensuring
consistent performance over time: P12 (ExPERT) found it prevented them from
getting out of tune, and P5 (INTERMEDIATE) said, “the music made it easier to
hold the note steady.” Thus, while background music did not always improve
error rate, it did improve subjective metrics.

Background music should be simple and subtle. P4 (ExPErRT) and P19
(Novice) found the music distracting and P12 (EXPERT) suggested simply play-
ing the tonic every few seconds would be as good as having full background
music. These comments might explain why background music increased
total time for pitch tasks. P16 (NOVICE) also said that when the background
music played the tonic, it was easier to sing notes correctly. Thus, simpler
music that places even more emphasis on the tonic might improve error
rates. Future work should explore how various types of auditory stimulation
impacts performance.

7.3.2  Facilitate Re-calibration

For interfaces using singing interactions, it should be easy to recalibrate
the system to a different vocal range. In our experiment, we disabled this
functionality to ensure differences in performance were due to training.
However, P19 (NovICE), P5 (INTERMEDIATE), and P24 (EXPERT) felt tasks would
have been easier with a different range than those they selected initially.

7.3.3 Reduce Pitch Detection Granularity

Pitch detection can use a lower granularity to reduce errors. Our system
was capable of recognizing any of 12 possible notes in Western music by
determining which of the 12 semitones were closest to the fj of the voice. This
was a high level of granularity, resulting in small margins for error. This made
it challenging to sing some notes, according to comments from P1 (NOVICE),
P12, and P24 (ExrErTs). Reducing the granularity could allow for a larger
margin of error.

Our experimental data logs included frequencies at every time step for every
trial, allowing us to simulate how many trials would have been successful
with a reduced granularity for pitch recognition. For instance, suppose only 3
of the 12 possible notes were recognizable. Then, singing a semitone off target
would be labelled as correct, whereas the original pitch recognizer would
have labelled it as incorrect. While user reactions might differ in a system
with different granularity, our simulation still gives insight into how much
granularity affected various skill levels.

This follow-up analysis adds an independent variable to our existing model:
GRANULARITY with 3 levels (GRANULARITY-12, GRANULARITY-7, GRANULARITY-
3). Each level represents a different pitch recognizer: GRANULARITY-12 recog-
nizes all 12 notes, as in our original experiments; GRANULARITY-7 recognizes
only the 7 notes in the major scale; and GRANULARITY-3 recognizes only de-
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Figure 7.2: Pitch task Error Rate by skiLL for each GRANULARITY.

grees 1, 3, and 5. In the former two, all interactions were possible because our
interactions used only notes in major scale. In the latter, only 3 interaction
types could be used for each technique because of the much more limited
granularity.

For brevity, we present results for only the pitch technique (Fig. 7.2). The
interval technique has similar results, while the melody technique shows
minimal improvement due to the use of DTW. In the analysis to follow, a
GRANULARITY X SKILL ANOVA with Tukey HSD post hoc tests was used on
ART-transformed Error Rate.

Decreasing granularity decreased Error Rate by as much as 14.3% for the
pitch technique. There was a main effect of GRANULARITY on ART-transformed
Error Rate (Fy36 = 115.13, p < .0001, 2 = .86). Post hoc tests show GRANULARITY-
12 Error Rate (34.1%) was higher than GRANULARITY-7 (29.9%, p < .003), which
was higher than GRANULARITY-3 (19.8%, p < .0001). This analysis shows a large
improvement in Error Rate, as indicated by the standardized effect size of .86.

Decreasing granularity primarily improved Error Rate for novices and
intermediates. There was an interaction between SKILL and GRANULARITY on
Total Time (Fy36 = 27.8, p < .0001, n2 = .76). Post hoc tests show decreasing
granularity from GRANULARITY-12 t0 GRANULARITY-3 decreased Error Rate
much more for Novices (—25.0%) and INTERMEDIATES (—15.0%) than for
EXPERTS (—4.6%) (all p <.0001). This suggests that while EXPERTS perform
better with lower granularity, they are quite capable with higher granularity
interactions.

In practice, one should certainly use GRANULARITY-7 instead of GRANULARITY-
12. It has a positive effect on performance and virtually no drawbacks since
we already recommend using only the 7 notes from the major scale. For
NOVICE users, it might make sense to use GRANULARITY-3 to further improve
performance and make the techniques more accessible initially. Of course,
there is a tradeoff in the number of commands or modes that can be invoked
in a real application. Since the improvement is relatively small for experts,
one could use GRANULARITY-3 as a beginner mode before a user is ready for
GRANULARITY-7.
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Figure 7.3: Confusion matrix with the number of times each melody was recognized
for each target melody.
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Figure 7.4: Melody task Error Rate by skiILL for each set of MELODIES.

7.3.4 Reduce the Number of Melodies

Choosing melodies requires care and using fewer melodies can improve
performance. Our experiment evaluated 7 melodies, chosen to be easy to sing
and distinguish. Despite this, some melodies were frequently confused with
one another, as indicated by the confusion matrix in Fig. 7.3.

Three of our targets were frequently confused with other melodies: 1 -3 —2,
1-5—1,and 1 -5 — 3. This observation aligns with participant feedback:
P5 (INTERMEDIATE) found it difficult to sing melodies that went up and then
down again, especially when they did not return to note 1.

To see if recognizing fewer melodies could reduce error rates, we simulated
the melody experiment using a melody recognizer that recognized only
the other four melodies. This follow-up analysis adds another independent
variable: MELODIES with 2 levels (MELODIES-7, MELODIES-4) representing the
number of possible melodies. In the analysis to follow, a MELODIES X SKILL
ANOVA with Tukey HSD post hoc tests was used on ART-transformed Error
Rate.

Decreasing the number of melodies decreased Error Rate by 7.5% (Fig. 7.4).
There was a main effect of MELODIES on Error Rate (F 13 = 42.21, p < .0001,
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n% = .70), where MELODIES-7 (27.5%) was higher than MELODIES-4 (20.4%).
This is a large improvement, as indicated by the standardized effect size of
.70.

Decreasing the number of melodies was especially helpful for novices. There
was an interaction between MELODIES and SKILL on Error Rate (F,15 = 6.01,
p < .01, y2 = .40). Post hoc tests show Novices (—14.1%) improved their
rate more than EXPERTS (—3.7%, p < .003). This result mirrors how decreasing
granularity especially improved Error Rate for novices.

The practical implication of these results is that using fewer melodies
can improve performance for novices. To make interactions easier, one can
consider using melodies that only ascend or that return to the tonic, making
them easier to perform. Furthermore, one must ensure that melodies are very
different from one another to ensure that they can be distinguished effectively.

7.3.5 Interface Visualization Improvements

The visualization should clearly communicate when a user can stop singing
and what melody is recognized. P2 (INTERMEDIATE) noted it was hard to see
how long they needed to hold a pitch. A clearer indication than just changing
the colour of the arc (see Fig. 4.1), such as changing the background colour,
might reduce Total Time. Furthermore, both P4 (EXPERT) and P (INTERMEDIATE)
found it challenging to understand the visualization for melody tasks because
the recognized melody changed frequently based on the most recent estimate
from the DTW algorithm. The visualization could be improved by refreshing
the recognized melody less frequently, perhaps once per second, as opposed
to every 5oms.

7.4 LIMITATIONS

One potential limitation in our work is the variable system setup, which
is a consequence of being a remote study. While all devices passed our
system test, some participants likely used slower systems in suboptimal
environments. This may have reduced performance compared to a tightly
controlled experiment, but it allowed us to achieve some degree of external
validity in varied environments.

Additionally, our study was limited to 21 participants. Since people vary
widely in musical experience, the mean error rates could differ with different
sample sets. We structured our analysis to illustrate the spread of performance
for a variety of individuals.

The self-reported metrics for musical experience were not useful for our
analysis. This was partially because self-reported measures of musical experi-
ence do not perfectly predict one’s musical ability [16]. We instead relied on
k-means to classify participants into skill levels. This allowed us to evaluate
the spread of performance, but it prevented us from thoroughly analysing
how musical ability affected performance. Future work should use a more
objective measurement of musical ability [16].
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We assumed participants had a one-octave vocal range. While this is gener-
ally a reasonable assumption [29], it is possible some participants had a more
limited vocal range, thereby skewing the data for the novices in particular.

Another limitation is that our interaction feedback visualizations were not
explicitly evaluated. While there was no strong evidence that the visualization
caused significant problems, it is possible alternative visualizations could
result in different performance. Because we needed a visualization that would
support pitch, interval, and melody interactions, we deviated from the simple
linear visualization suggested by Sporka [29]. Pilot studies guided our design
for comprehension and visual appeal, but more research is needed to evaluate
the effect of visualization on task performance.
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While the focus of our work is an initial evaluation of generalized singing in-
teraction techniques, this chapter presents a series of envisioned use cases for
these interactions. Specifically, it explores contexts where singing interactions
can complement traditional input methods or provide standalone input.

8.1 COMPLEMENTING TRADITIONAL INPUT

Singing interactions can be used in tandem with traditional input, similar to
how keyboard shortcuts supplement mouse input.

As one concrete example, consider a drawing application (Fig. 8.1). When
drawing, one could switch to the eraser tool by singing pitch 4, then back to
the paintbrush with 5. Changing brush size could be done with an interval
starting at 1 and sliding up to the desired brush size. The melody 3 —2 — 1
could copy the user’s selection and 3 — 4 — 5 could paste. It would also be
possible for users to create custom mappings for specific workflows. For
instance, mapping the melody of the “Batman” theme song to inverting
colour, or the starting interval in “All Star” by Smash Mouth to selecting a
star shaped brush.

Singing interactions could be used to change how people experience com-
puting, for both musicians and non-musicians alike. For example, in creative
applications, this could integrate into an artist’s flow to foster a new type
of human-interface relationship, regardless of efficiency and productivity.
Furthermore, users could choose to use singing interactions to improve their
vocal skills while performing everyday computer tasks. Finally, melodies
have the potential to be highly memorable: future research could compare
the memorability of singing shortcuts to other techniques, such as keyboard
shortcuts [7].

8.2 PROVIDING STANDALONE INPUT

Singing interactions can provide primary input for usage contexts like ubiq-
uitous computing. For instance, low-power augmented reality (AR) glasses
typically rely on speech recognition, which has latency and privacy concerns,
or hand tracking and touch sensors, which can cause arm fatigue. Singing
interactions could provide a viable alternative since they are hands-free and
require minimal processing power.

A simple example is a 3D block construction application (Fig. 8.2). Users
could use singing interactions to select colours, place new blocks, and delete
existing blocks. For instance, singing intervals starting at degree 1 could select
colours; singing degree 3 could create a new block with the current colour;
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(@)

Brush size Brush size

Select a size... Size 2

Figure 8.1: Illustration of how pitch can be used in a drawing application: (a) singing
opens a visualization around the cursor with possible tools and settings;
(b) when the first pitch of an interval interaction is recognized, more op-
tions appear for the second pitch; (c) when the second pitch is recognized,
the interface displays the resulting effect.

and singing degree 5 could delete an indicated block. A translucent block at
the centre of the view could indicate which block to delete or the location
of a new block. As discussed in Chapter 7.3.3, using a limited set of pitches
improves performance for novice users.

This design can be refined for expert users with low error rates. Instead of
separate interactions for selecting colours and spawning blocks, experts could
do both simultaneously. For instance, singing degree 5 could immediately
spawn a blue block and 6 could spawn a purple block. Degree 7 could delete
the indicated block. Using a wider range of interactions would decrease the
time required for tasks with frequent mode switches. Furthermore, degree 1
could trigger standard and user-defined controls: singing a series of degrees
1 —8 —1 could clear existing blocks, 1 —3 — 5 could save, and 1 — 8 — 5 could
load the last saved model. Adding these melody commands provides expert
users with an array of shortcuts without needing physical inputs or speech
recognition.
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Figure 8.2: Illustration of expert singing interactions for an AR glasses 3D block
construction application: (a) singing opens a visualization with a palette
of colours for a translucent new block being placed in the middle of the
view; (b) when a pitch interaction is recognized, the corresponding colour
is selected for the new block; (c) when the interaction ends, the block
becomes opaque.

83 EXTENDING TO EYES-FREE CONTEXTS

Singing interactions could be adapted to eyes-free contexts. Future work
could explore how effectively non-visual feedback could help users perform
the interactions. For instance, one could change the A/C fan speed in a car by
singing an interval. This would allow a driver to make adjustments without
letting go of the wheel, or a backseat passenger to take control without
leaning forward. The physical feedback of air movement could be a sufficient
replacement for a visualization, assuming a constrained range of possible
interactions. Similarly, one could sing either a melody to play music or an
interval to control volume on Bluetooth earbuds. The auditory feedback from
changing the volume or changing playback could be sufficient to help users
perform their desired interactions. Our work represents an early step towards
making these types of eyes-free interactions possible.

8.4 SINGING FOR ACCESSIBILITY

Future work should examine how effectively singing interactions can help
users with motor or speech impairments. Other pitch-based non-verbal vocal
interactions, such as CHANTI [30], have been effective for quadriplegic users,
as well as users with Friedreich ataxia and carpal tunnel syndrome. While our
singing interactions require greater pitch control than CHANTI, the wider
selection of possible pitches, intervals, and melodies could facilitate a broader
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set of interactions. Additionally, because our interactions rely on pitch and
not vowel or consonant sounds, they may be feasible even for people with
speech impediments.
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CONCLUSION

Our work has explored the design of pitch, interval, and melody interactions
for computer input and evaluated their feasibility and enjoyability. All inter-
actions were feasible for the highest performers, with very low error rates
for pitch interactions in particular. While a subset of participants had high
error rates, the majority thought the interactions were enjoyable. Using our
results, we made recommendations for using singing interactions, includ-
ing using background music, recalibration, reduced pitch granularity, and
fewer melodies. Our findings demonstrate that people with good pitch and
comfort with technology can feasibly use singing for interactions. With possi-
ble applications in traditional, ubiquitous, and eyes-free computing, singing
interactions have the potential to add a musical layer to interface tasks.
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