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Abstract

The digital transformation of our society is creating a tremendous amount of data at an
unprecedented rate. A large part of this data is in unstructured text format. While enjoying
the benefit of instantaneous data access, we are also burdened by information overload. In
healthcare, clinicians have to spend a significant portion of their time reading, writing and
synthesizing data in electronic patient record systems. Information overload is reported as
one of the main factors contributing to physician burnout; however, information overload
is not unique to healthcare. We need better practical tools to help us access the right
information at the right time. This has led to a heightened interest in high-performing
Natural Language Processing research and solutions.

Natural Language Processing (NLP), or Computational Linguistics, is a sub-field of
computer science that focuses on analyzing and representing human language. The most
recent advancements in NLP are large pre-trained contextual language models (e.g., trans-
former based models), which are pre-trained on massive corpora, and their context-sensitive
embeddings (i.e., learned representation of words) are used in downstream tasks. The in-
troduction of these models has led to significant performance gains in various downstream
tasks, including sentiment analysis, entity recognition, and question answering. Such mod-
els have the ability to change the embedding of a word based on its imputed meaning,
which is derived from the surrounding context.

Contextual models can only encode the knowledge available in raw text corpora. In-
jecting structured domain-specific knowledge into these contextual models could further
improve their performance and efficiency. However, this is not a trivial task. It requires
a deep understanding of the model’s architecture and the nature and structure of the
domain knowledge incorporated into the model. Another challenge facing NLP is the
“low-resource” problem, arising from a shortage of publicly available (domain-specific)
large datasets for training purposes. The low-resource challenge is especially acute in the
biomedical domain, where strict regulation for privacy protection prohibits many datasets
from being publicly available to the NLP community. The severe shortage of clinical ex-
perts further exacerbates the lack of labeled training datasets for clinical NLP research.

We approach these challenges from the knowledge augmentation angle. This thesis ex-
plores how knowledge found in structured knowledge bases, either in general-purpose lexical
databases (e.g., WordNet) or domain-specific knowledge bases (e.g., the Unified Medical
Language Systems or the International Classification of Diseases), can be used to address
the low-resource problem. We show that by incorporating domain-specific prior knowledge
into a deep learning NLP architecture, we can force an NLP model to learn the associations
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between distinctive terminologies that it otherwise may not have the opportunity to learn
due to the scarcity of domain-specific datasets.

Four distinct yet complementary strategies have been pursued. First, we investigate
how contextual models can use structured knowledge contained in the lexical database
WordNet to distinguish between semantically similar words. We update the input policy
of a contextual model by introducing a new mix-up embedding strategy for the input
embedding of the target word. We also introduce additional information, such as the
degree of similarity between the definitions of the target and the candidate words. We
demonstrate that this supplemental information has enabled the model to select candidate
words that are semantically similar to the target word rather than those that are only
appropriate for the sentence’s context.

Having successfully proven that lexical knowledge can aid a contextual model in distin-
guishing between semantically similar words, we extend this approach to highly specialized
vocabularies such as those found in medical text. We explore whether using domain-specific
(medical) knowledge from a clinical Metathesaurus (UMLS Metathesaurus) in the archi-
tecture of a transformer-based encoder model can aid the model in building ‘semantically
enriched’ contextual representations that will benefit from both the contextual learning
and the domain knowledge. We also investigate whether incorporating structured medical
knowledge into the pre-training phase of a transformer-based model can incentivize the
model to learn more accurately the association between distinctive terminologies. This
strategy is proven to be effective through a series of benchmark comparisons with other
related models.

After demonstrating the effect of structured domain (medical) knowledge on the perfor-
mance of a transformer-based encoder model, we extend the medical features and illustrate
that structured medical knowledge can also boost the performance of a (medical) summa-
rization transformer-based sequence-to-sequence model. We introduce a guidance signal
consisting of the medical terminologies in the input sequence. Moreover, the input pol-
icy is modified by utilizing the semantic types from UMLS, and we also propose a novel
weighted loss function. Our study demonstrates the benefit of these strategies in providing
a stronger incentive for the model to include relevant medical facts in the summarized
output.

We further examine whether an NLP model can take advantage of both the relational
information between different labels and contextual embedding information by introducing
a novel attention mechanism (instead of augmenting the architecture of contextual models
with structured information as described in the previous paragraphs). We tackle the chal-
lenge of automatic ICD coding, which is the task of assigning codes of the International
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Classification of Diseases (ICD) system to medical notes. Through a novel attention mech-
anism, we integrate the information from a Graph Convolutional Network (GCN) that
considers the relationship between various codes with the contextual sentence embeddings
of the medical notes. Our experiments reveal that this enhancement effectively boosts the
model’s performance in the automatic ICD coding task.

The main contribution of this thesis is two-fold: (1) this thesis contributes to the com-
puter science literature by demonstrating how domain-specific knowledge can be effectively
incorporated into contextual models to improve model performance in NLP tasks that lack
helpful training resources; and (2) the knowledge augmentation strategies and the con-
textual models developed in this research are shown to improve NLP performance in the
biomedical field, where publicly available training datasets are scarce but domain-specific
knowledge bases and data standards have achieved a wide adoption in electronic medical
records systems.
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Chapter 1

Introduction

Living in an increasingly digital society, we generate and consume a large amount of data
daily. Even though we have already accumulated a tremendous volume of data in private
and public information systems, our desire and need for more data will continue to grow
[2]. The COVID-19 pandemic has further accelerated digitalization in nearly every indus-
try, and we are now generating data at an unprecedented rate. Having access to this much
data is a double-edged sword. On the one hand, accessing and sharing information enables
us to make informed decisions and work collaboratively; on the other hand, navigating
such a large amount of data to locate precise information is extremely time-consuming. In
healthcare, a clinician needs to spend a significant portion of their time reading, writing
and synthesizing data in electronic patient record systems [107]. The documentation re-
quirements for electronic health records (EHR) have been shown to be a significant factor
contributing to physician burnout [112]. We need practical tools that can handle data for
us - to search, organize, visualize, translate, summarize and, ultimately, have the correct
information at the right time, instantaneously.

A significant part of the data currently available is in text format, such as news, books
and scientific publications, legal and medical reports and social media posts, to name a
few. Automating the processing and understanding of text data requires Natural Language
Processing (NLP), or Computational Linguistics techniques that focus on the analysis and
representation of human language [121]. Some of the major research areas that are part
of NLP include (i) machine translation (i.e., the translation of text from one language
to another without human interference [42]); (ii) automatic summarization (i.e., creating
a summary that contains the most important information derived from input text [26])
and (iii) text classification (i.e., the assignment of a set of predefined classes to a set of
documents [75]).
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NLP research has made significant advancements in recent years. Some of the most
recent trends in NLP include [104]: (i) Transfer learning: leveraging data from additional
domains or tasks to train highly accurate models [92]; (ii) Knowledge augmentation: incor-
porating external knowledge to provide comprehensive relational information [63] in order
to enhance the reasoning of pre-trained language models [120] and (iii) Low-resource NLP
tasks: constructing accurate models for NLP tasks that lack useful training resources such
as labeled data or number of experts [64].

This dissertation focuses on knowledge augmentation: i.e., augmenting NLP models
with knowledge obtained from structured knowledge bases like WordNet [73] and biomedi-
cal knowledge bases like UMLS [18] to tackle the low-resource NLP challenge. We explore
the strategies of incorporating domain-specific prior knowledge into a deep learning archi-
tecture to force an NLP model to learn the associations between distinctive terminologies,
which it otherwise may not have the opportunity to learn, due to the scarcity of domain
specific datasets, particularly in the biomedical domain. We also examine the effectiveness
of these strategies in improving the performance and generalization of contextual models.

1.1 Evolution of Natural Language Processing Mod-

els

The birth of NLP can be traced back to the 1940s. NLP originally focused on machine
translation, where words were mapped from one language to another using predefined
dictionaries [48]. In the 1990s, machine learning models were used to infer probabilities
instead of hard-coded syntactic rules from massive datasets. These models transformed
the input text to numerical data by using common feature engineering methods like Bag
of Words (BoW), where a set of vectors containing the count of word occurrences in the
document were created, or Term Frequency-Inverse Document Frequency (TF-IDF), where
each word count was divided by the number of documents that each word appears in. These
transformations enabled tabular data models, such as support vector machines [38], and
regression to be employed for different NLP tasks, for example, the text categorization
task [12]. However, the models mentioned above were unable to assess the dependencies
between the words.

Recurrent Neural Networks (RNN) [17] could learn the dependencies between words by
taking into consideration not only the input text, but also the output of the previous layer.
RNN models created hidden states (memory) at each step to maintain the information
calculated in the previous steps, using previous outputs and the current token as inputs.
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The main disadvantage of RNN models was that during back-propagation, the gradient
at each output depended on the calculation of the current and the previous steps, thus
introducing the exploding/vanishing gradient problems for long-term dependencies. By
using a gating mechanism, a popular variant of RNN, Long Short Term Memory Networks
(LSTM)[40] circumvented the vanishing gradient problem. The main difference between
an LSTM and a vanilla RNN was that the cell state of the LSTM was regulated by a
structure called a gate, with each gate consisting of a pointwise multiplication operation
and a sigmoid layer (Figure 1.1). By learning the parameters of its gate, the model could
then acquire a better understanding of the input sentence. Recurrent models were widely
applied in different sequence modeling problems, such as machine translation and language
modeling [10, 101]. RNN models used word embedding as their main structured represen-
tation of words. Word embeddings were numerical vectors with fixed dimensionality and
whose relative geometrical positions reflect similarity properties of the embedded words
[78]. However, traditional word embedding methods such as Word2vec [72] produced a
constant context-independent vector representation for each word. Therefore, they could
not distinguish between a word’s different meanings in a given context. The contextualized
word embeddings in a bidirectional language model (ELMo) introduced by Peters et al.
[82] extended traditional word embeddings to learn context-sensitive features by changing
the embedding of a word based on its imputed meaning thus achieving the state-of-the-art
for major NLP benchmarks including sentiment analysis [97] and question answering [85].

Figure 1.1: LSTM architecture in [109].

Sequence-to-sequence models are a special class of RNN architectures that map the in-
put sequence to the output sequence [101]. These models were composed of an encoder and
a decoder. The task of an encoder network was to understand the input sequence and then
generate a compact representation. With such representation at hand, the decoder could
generate a target sequence. Bahdanau et al. [10] introduced the ‘attention’ mechanism to
enable the decoder to focus on the relevant parts of an input sequence. The main difference
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between an attention model and a vanilla sequence-to-sequence model was that, with the
former, the encoder passed all the hidden states to the decoder instead of only passing the
last hidden state. As a result, the main advantage of the attention mechanism was that
the decoder could take into consideration all the hidden states to generate a context vector
for each time step.

However, the sequential nature of these models precluded parallelization in training
process, which is a critical obstacle in processing long sequences.

1.2 Self-Attention Models

Self-attention is an extension of the attention mechanism relating different positions of a
single sequence in order to compute a representation of the same sequence [113].

Figure 1.2: The Transformer architecture in [113].

Transformer models [113] used self-attention layers to take into consideration the other
positions/words in the input sequence while encoding a particular word and have become
a key component in recent language models. The main advantages of the self-attention
mechanism were that the training speed of a model could be boosted, and a better word
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representation could be constructed. As a result, state-of-the-art performance could be
achieved in NLP tasks (such as machine translation [113]). In the original Transformer
paper [113] (Figure 1.2), the encoding component of a Transformer model was composed of
a stack of six encoders, with each encoder containing two sub-layers: a self-attention layer
and a feed-forward layer (followed by a normalization layer). The decoding component
comprised a self-attention layer, a cross-attention block with the encoded input, and a
feed-forward layer. The key characteristic of a Transformer model was its self-attention
mechanism. For each input vector, a Value vector V , a Query vector Q, and a Key vector
K of dimension dk were created by multiplying three matrices with the corresponding
embedding. The self-attention score was then calculated using these vectors to rank each
word against the whole sequence (equation 1.1).

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1.1)

The ranking determined which part of the sequence should get more attention when en-
coding certain words.

Language models like Bidirectional Encoder Representations from Transformers (BERT)
[23] took advantage of the Transformer’s architecture by using its encoder component. The
key idea behind BERT was that, by utilizing the bidirectional training of Transformers for
language modeling, the model could gain a deep sense of the context as the model could
learn the context of a word based on its surroundings. Thus, BERT achieved the state-
of-the-art for major NLP tasks, including language inference [117] and text classification
[115]. The pre-training of the BERT model was done on massive corpora, and the context-
sensitive embeddings could be further fine-tuned for a downstream task by integrating them
into a task-specific architecture. In Figure 1.3, we provide examples of pre-training and
downstream tasks of an encoder and an encoder-decoder architecture. One of the main
limitations of transformer models like BERT [23] was the quadratic dependency on the
sequence length due to their full attention mechanism. By introducing a sparse attention
mechanism, models like BigBird [122] and LongFormer [15] overcame these limitations and
allowed the processing of lengthier documents.

These contextual models have significantly improved some major NLP benchmarks,
including sentiment analysis [97] and question answering [85]. However, they can only
encode the knowledge available in raw text corpora, thus still retaining some of the limita-
tions of traditional static embeddings [57]. Incorporating external knowledge, particularly,
structured domain-specif knowledge into these contextual models could further improve
their performance and efficiency.
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Figure 1.3: Examples of pre-training and downstream tasks of (a) an encoder and (b) an
encoder-decoder architecture.

1.2.1 Augmentation of Contextual Models with General Lexical
Knowledge

There have been multiple attempts to augment contextual models with external lexical
knowledge. WordNet is an extensive English lexical database with words that are grouped
into sets of cognitive synonyms (synsets), where each synset expresses a distinct concept
[73]. WordNet uses conceptual-semantic and lexical relations to create meaningful connec-
tions between the different synsets.

One notable approach of augmenting contextual model with WordNet is Sense-BERT
[59]. Sense-BERT was pre-trained to predict each word’s supersenses (i.e., semantic classes).
The prediction of the supersenses was achieved by incorporating lexical semantics from the
lexical database WordNet into the model’s pre-training objective and adding supersense in-
formation to the input embedding. A subsequent attempt called GlossBERT [41] focused
on improving word sense disambiguation by using context-gloss pairs on the standard
sentence-pair classification task of a BERT model. Further enhancements were made in
LiBERT [57] by using the synonyms and direct hyponym-hypernym pairs knowledge to im-
prove its performance. It introduced an additional task into the pre-training phase of the
model to recognize a semantic relation between a word pair. The LiBERT model demon-
strated that complementing contextual information with lexical knowledge were beneficial
for multiple NLP tasks (e.g., sentence classification and sentence-pair regression) [57]. In
this thesis, WordNet is employed to examine the benefits of incorporating external knowl-
edge in lexical substitution tasks.

Lexical Substitution [66] is the task of generating appropriate words which can replace
a target word in a given sentence without changing the sentence’s meaning. The increased
research interest in Lexical Substitution is due to its utility in various NLP fields. These
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include data augmentation, which is the task of the artificial creation of training data [13]
and paraphrase generation, which is the task of creating new texts that convey the same
meaning as the original sentence while using different words or sentence structures [126].

Gaŕı Soler et al. [31] used ELMo in the lexical substitution task by calculating the
cosine similarity between the ELMo embedding of the target word and all the candidate
substitutes. Other scientists, such as Zhou et al. [127], enhanced contextual models in
the lexical substitution task by improving the BERT’s standard procedure of the masked
language modeling task.

However, these models did not consider incorporating structured knowledge from ex-
ternal lexical databases into their prediction process. These lexical resources can boost the
model’s performance by providing additional information, such as the definitions of the
target and candidate words. Having access to the definition helps ensure that the candi-
date word is semantically similar to the target word, rather than just being appropriate for
the sentence’s context. External lexical resources can also aid by enriching the proposed
candidate word list beyond the vocabulary of the contextual model.

1.2.2 Augmentation of Contextual Models with Biomedical Do-
main Knowledge

In addition to general lexical knowledge, domain-specific knowledge could further help
contextual models to understand lexical and semantic relations used in a specific field,
such as in biomedical languages.

There are several challenges facing biomedical NLP tasks, including the complexity
of biomedical language, the frequency of typing or spelling errors and the heterogeneous
formats of clinical documents across biomedical subdomains and health institutions [44].
Also, many of the publicly available data sets are specific to certain clinical disciplines or
clinical settings, which results in limited generalizability of clinical NLP models [100].

Biomedical Knowledge Bases

Fortunately, structured knowledge resources, such as terminology, ontology, and medi-
cal codes, are abundant and well established in the biomedical domain. There are multiple
international standards of structured knowledge bases of medical information. The In-
ternational Statistical Classification of Diseases and Related Health Problems (ICD) is a
widely-adopted clinical vocabulary system used in healthcare settings to collect patient
care and hospital operation data. Initially, ICD was used solely to collect mortality data
[76]. In response to a growing demand for more detailed clinical data, the original ICD
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taxonomy has been updated in subsequent versions with the ability to capture more de-
tailed data than its predecessor. Also, the National Library of Medicine has introduced
and maintains the Medical Subject Headings (MeSH) thesaurus, which is a database of
hierarchically-organized medical vocabulary [24]. The Unified Medical Language System
(UMLS) [18] integrates key international biomedical terminology, classification, and coding
standards and tools to promote interoperability among health information systems. The
specialized knowledge available in these resources could aid NLP models in learning the
associations between distinctive terminologies and better understanding the input text.

Biomedical Contextual Models

Naturally, there is a strong interest in NLP models among health data scientists. Direct
application of the contextual models described in the previous sections usually falls short
in the biomedical domain, because the distinctive terminologies and idioms are not always
present in publicly available training datasets [58]. Thus, many researchers have focused on
creating contextual models specially tailored for the biomedical domain. BioBERT [58] was
trained on PubMed abstracts and PubMed Central full-text articles. Experiments on the
BioBERT model demonstrated that incorporating biomedical corpora in the pre-training
process could improve the model’s performance on different downstream biomedical tasks
[58]. Bio ClinicalBERT [4] and BlueBERT [81] were further trained on clinical notes (e.g.,
the Medical Information Mart for Intensive Care (MIMIC) III dataset [47]) to improve their
performance on clinical-related downstream tasks. Beltagy et al. introduced SciBERT [14]
a contextual model trained in different research papers in both biomedical and computer
science domains.

He et al. [37] inserted disease knowledge into existing models by training them to
predict disease names and aspects (e.g., symptoms, diagnosis and treatment) based on
Wikipedia passages. Similarly, Hao et al. [35] introduced a new pre-trained task to enable
a BERT-based model to infer the existence of a relation between two medical concepts.
These strategies have been shown to have a positive effect on model performance in multiple
medical downstream tasks (i.e., entity recognition and natural language inference).

However, current biomedical applications of transformer-based Natural Language Pro-
cessing models do not incorporate structured medical knowledge from a standard knowl-
edge base (e.g., the UMLS [18] Metathesaurus) into their architecture. By integrating
structured medical domain knowledge, a model would more easily learn the associations
between distinctive terminologies, which it otherwise would not have the opportunity to
learn due to the scarcity of medical datasets.

Contextual Model for Medical Conversation Summarization
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Another promising application of medical knowledge-augmented contextual models is
in the medical conversation summarization.

The documentation requirements for electronic health records (EHR) is a significant
factor contributing to physician burnout [112, 107]. Various solutions have been proposed
for automatically creating medical documentation to reduce documentation workloads,
such as automatic speech recognition for dictating medical documents and medical notes
generation. Studies have shown that these solutions significantly improve the efficiency of
physicians in creating narrative reports [80].

Medical note generation by abstractive summarization can be used to automate clini-
cal documentation to reduce the workload associated with creating summaries of clinical
encounters. The model can take a transcript of a patient-doctor conversation as input and
automatically produces a summary of the relevant clinical discussion in the dialogue [29].

There have been many attempts at developing automatically generated summaries of
clinical encounters to date. Most notably, Enarvi et al. [27] proposed a seq-to-seq pointer
generator transformer model for summarizing doctor-patient conversations. Similarly, Je-
blee et al. [45] and Lacson et al. [56] used extractive methods to identify the most
important utterances from a conversation, which were then combined to form the final
summary.

However, these models have yet to take advantage of structured medical information,
which could help key information pass the model’s decision process and appear in the
summary. Furthermore, one of the main challenges facing the development of medical
summarization models is the lack of large-scale annotated summarization datasets. Their
creation requires trained doctors for an expensive and time-consuming annotation process.
Thus, a knowledge-augmented sequence-to-sequence transformer model that uses medical
knowledge can guide the summarization process in various ways to increase the likelihood
of relevant medical facts being included in the summarized output.

Contextual Models for Imbalanced Multi-Label Classification Problems in
the Biomedical Domain

Another important biomedical application of transformer-based Natural Language Pro-
cessing models is the automatic ICD coding problem, which is a highly imbalanced multi-
label classification problem.

The International Classification of Diseases (ICD) is a widely used coding system, main-
tained by the World Health Organization [8]. The ICD arranges the codes hierarchically
from general to more specific codes that are accompanied by non-essential modifiers. As-
signing the most appropriate codes is an important task in healthcare, since erroneous ICD
codes could seriously affect the organization’s ability to measure patient health outcomes.
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Recent attempts at using contextual models on the ICD classification task have failed
to achieve state-of-the-art results [125], mainly due to their inability to process long docu-
ments (e.g., medical notes). Fortunately, advances such as the BigBird model [122] allow
contextual models to process long documents, thus reducing the risk of losing information
from the original texts.

1.3 Problem Statement

As outlined in this chapter, previous works have shown that injecting structured domain-
specific knowledge into contextual models can further improve their performance and effi-
ciency. This could be a solution to the challenges facing NLP tasks that lack useful training
resources. In this thesis, we hypothesize that incorporating lexical and semantic knowledge
will significantly enhance the performance of transformer-based NLP models. The under-
lying motive of this inquiry seeks to answer the question: “Can structured domain-specific
knowledge be effectively incorporated into contextual models to tackle the low-resource
NLP challenge by forcing the model to learn the associations between distinctive termi-
nologies which it otherwise may not have the opportunity to learn, due to the scarcity of
domain-specific datasets, in particular in the biomedical domain?”

More specifically, we investigate the following research questions:

• Can lexical resources aid a contextual model in distinguishing which words are se-
mantically similar?

• What is the best way for a contextual model to quickly and effectively learn the
associations between distinctive terminologies from an external structured knowledge
base?

• Can structured medical knowledge that is integrated into a sequence-to-sequence
contextual model guide the summarization process to include relevant medical fact
in the summarized output?

• Can the relations between different class labels be efficiently encoded to improve
classification performance?
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1.4 Contributions

The thesis illustrates how structured external knowledge can direct an NLP model to
learn the associations between distinctive terminologies, which otherwise would have been
impossible to identify due to the scarcity of domain-specific datasets. The impact of
different strategies on improving the performance and generalization of contextual models
is also examined. We develop several novel strategies for augmenting contextual models
with structured domain knowledge and experimentally verified their impact on the model
performance in different NLP tasks (Figure 1.4).

Figure 1.4: The main contribution of this dissertation

The contribution of this dissertation is summarized in the following four distinct but
complementary strategies:

• We demonstrate that structured knowledge from a lexical database can aid a con-
textual model in distinguishing which words are semantically similar by developing a
framework for incorporating general lexical knowledge, such as WordNet, into trans-
former models for the lexical substitution task. In particular, we design a new mix-up
embedding strategy for the input embedding of the target word and introduce ad-
ditional information, such as the degree of similarity between the definitions of the
target and the candidate words.

11



• We confirm that augmenting a transformer-based encoder model with structured
knowledge from a specific (medical) domain can aid the model in learning more easily
the associations between distinctive terminologies by narrowing down the (general do-
main) lexical features to specific (medical) domain features. We introduce the usage
of domain (medical) knowledge from a clinical Metathesaurus (UMLSMetathesaurus)
in the pre-training phase of a BERT-based model (UmlsBERT) to build ‘semanti-
cally enriched’ contextual representations that will benefit from both the contextual
learning (BERT architecture) and the domain knowledge (UMLS Metathesaurus);

• We demonstrate that a sequence-to-sequence summarization model which uses med-
ical structured knowledge can guide the summarization process to include relevant
medical facts in the summarized output by extending the medical features for aug-
menting a transformer-based encoder model with clinical knowledge. We answer the
question of how to incorporate structured medical knowledge into a medical summa-
rization model by designing specific ‘guidance’ signals over medical entities; and

• We show that a contextual model can also take advantage of the relational informa-
tion between different labels by developing an attention mechanism for integrating a
BigBird contextual model with information from the relation of different labels for a
multi-label classification problem.

1.5 Outline

This dissertation is organized as follows:

• In Chapter 2, we propose an augmented contextual framework for the lexical substi-
tution task. We show that integrating lexical structure information into a contextual
model can improve the model’s performance, as it outperforms other state-of-the-art
models on two benchmark datasets. The results of the experiments and our qualita-
tive analysis confirm that the additional information provided to our model, such as
the degree of similarity between the definitions of the target and candidate words,
can aid our model in selecting candidate words that are semantically similar to the
target word rather than those that are only appropriate for the sentence’s context.

• In Chapter 3, we present a novel architecture, namely UmlsBERT, for augmenting
contextual embeddings with the Unified Medical Language Systems (UMLS) [18] by
narrowing down from the general domain lexical features to medical domain-specific
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features. We demonstrate that a transformer model which uses medical knowledge in
its pre-training phase and its architecture can outperform two popular medical BERT
models (i.e., BioBERT and Bio ClinicalBERT) and a general domain BERT model
in different medical named-entity recognition (NER) tasks and one clinical natural
language inference task. We also conduct a qualitative analysis which confirms that
a model augmented with structured medical domain knowledge can learn effectively
the associations between distinctive terminologies.

• In Chapter 4, we demonstrate that medical structured knowledge can also boost the
performance of a transformer-based sequence-to-sequence model to summarize med-
ical conversations by extending the medical features which were previously proposed
to augment a transformer-based encoder model. We show that providing ‘guidance’
to a summarization model is beneficial for its performance, as it outperforms previ-
ous medical note summarization models. The results of these experiments and our
qualitative analysis also demonstrate that these features can guide the summariza-
tion process and can increase the likelihood of relevant medical facts being included
in the summarized output.

• In Chapter 5, we further examine whether a model can take advantage of both the re-
lational information between different labels and contextual embedding information.
This is accomplished through a novel attention mechanism, instead of augmenting
the architecture of contextual models with structured information as described in
the previous chapters, on a multi-label classification task, namely the ICD automatic
coding problem. Our experiments verify that integrating relational information from
the labels can be beneficial for the performance of a classification model as our model
outperforms other state-of-the-art models on the MIMIC III benchmark dataset.

• The conclusion and future work are presented in Chapter 6. We describe our plan
to explore a few promising avenues to further improve knowledge argumentation in
contextual models.
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Chapter 2

Augmenting Contextual Models with
General Lexical Knowledge

2.1 Introduction

In Chapter 1, we described the main focus of this dissertation, which is to demonstrate
that structured external knowledge can force an NLP model to learn associations between
words that otherwise the model would not have the opportunity to learn. In this chapter,
we will examine the benefit of incorporating lexical knowledge into a contextual model for
the task of generating appropriate words which can replace a target word in a given sen-
tence without changing the sentence’s meaning (i.e., the lexical substitution task [66]). To
demonstrate how this can be achieved, we develop LexSubCon, an end-to-end lexical sub-
stitution framework based on contextual embedding models that uses external structured
knowledge to identify highly-accurate substitute candidates.

We will examine whether general-domain lexical resources can aid a contextual model
in distinguishing which words are semantically similar. Our focus will be on the lexical
substitution task [66] as a highly-accurate lexical substitution model can be utilized in
various NLP fields, including data augmentation [13] and paraphrase generation [126].

Our first step will be to investigate whether changing the input policy of a contextual
model to a mix-up scenario by linearly interpolating the target input embedding and the
average embedding of its synonyms can boost the model’s performance. We will examine
whether incorporating information such as the similarity of the glosses (i.e., dictionary-
style definition) of the target and the candidate words and the similarity of the initial and
the updated sentences can aid the model in providing more accurate candidates.
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We will also explore the effect of these features on two lexical substitution tasks:

1. the all-ranking task, where the model needs to identify and appropriately rank the
potential candidate words;

2. the candidate ranking task, where a list of candidates is provided and the goal is to
rank all the candidate words.

We will carry out a qualitative substitution comparison to show different cases where a
contextual model can provide more accurate predictions by benefiting from information
gathered from external resources.

The remainder of this chapter is organized into five parts. Section 2.2 presents related
work, followed by details of the characteristics and individual features that are part of the
proposed LexSubCon framework in Section 2.3. The experimental setup and data that
are used to train and test the lexical substitution model are described in Section 2.4. The
results of the experiments and the qualitative analysis are reported in Section 2.5 and
Section 2.6 concludes the chapter.

2.2 Related Work

The lexical substitution task consists of two sub-tasks:

1. generating a set of meaning preserving substitute candidates for the target word;

2. appropriately ranking the words of the set by their ability to preserve the meaning
of the initial sentence [32, 65].

However, lexical substitution models can also be tested in a ‘simpler’ problem where the
set of substitute candidates is composed of human-suggested words and the task is to
accurately rank the substitute words that are provided [28].

Melamud et al. [71] proposed the use of a word2vec model to rank the candidate
substitutions by measuring their embedding similarity. Word2vec [72] was a popular word-
embedding approach, representing each word on a fixed-size vector space through a hidden
layer neural network which effectively captured semantic and syntactic word similarities.
Later on, Roller and Erk [89] improved this approach by switching to a dot product instead
of cosine similarity and applying an additional trainable transformation of the context
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word embeddings. However, these models used a constant context-independent vector
representation for each word. Therefore, they could not distinguish between a word’s
different meanings in a given context.

As introduced in Chapter 1, Transformer models [113] used self-attention layers to
take into consideration the other positions/words in the input sequence while encoding a
particular word. As such, they have become a key component in recent language models.
The Bidirectional Encoder Representations from Transformers (BERT) [23] model took
advantage of the Transformer’s architecture by using its encoder component. The key
idea behind BERT was that by utilizing the bidirectional training of Transformers for
language modeling, the model could gain a better sense of the context. Thus, BERT
achieved the state-of-the-art for major NLP tasks, including language inference [117] and
text classification [115].

Zhou et al. [127] achieved state-of-the-art results on the lexical substitution task us-
ing the standard BERT architecture [23]. This was accomplished by applying a dropout
embedding policy to the target word embedding. They also integrated into the raking met-
ric the similarity between the original contextualized representations of the context words
and their representations after replacing the target with one of the possible substitutes to
ensure minimal changes in the sentence’s meaning.

However, these models did not consider incorporating structured knowledge from exter-
nal lexical databases into their prediction process. External lexical resources could boost
the model’s performance by providing additional information, such as the definitions of
the target and candidate words. Having access to the definition could aid the model in
selecting substitution words that are semantically similar to the target word rather than
just appropriate for the sentence’s context. External lexical resources could also enrich the
proposed candidate word list so that it is not limited to the vocabulary of the contextual
model.

2.3 LexSubCon Framework

To enhance the performance of previous approaches we developed LexSubCon, which we
demonstrate can successfully combine contextual information with knowledge from struc-
tured external lexical resources.

The architecture of LexSubCon is depicted in Figure 2.1. The key characteristic of Lex-
SubCon is its capability to integrate different substitution criteria such as contextualized
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representation, definition, and sentence similarity into a single framework to accurately
identify suitable candidates for the target words in a specific context (i.e., sentence).

In subsection 2.3.1, we will describe the initial BERT-Lexical substitution model [127]
and will outline our contribution to replacing the embedding dropout policy of the target
word with a new mix-up embedding strategy. In subsection 2.3.2, we will discuss our
policy regarding the incorporation of the degree of similarity between sentence-definition
(gloss) embeddings into the ranking metric. Finally, in subsection 2.3.3, we will present
our proposed strategy concerning the creation of a fine-tuned sentence similarity model for
calculating the effect of each substitution on the semantics of the sentence.

Figure 2.1: LexSubCon framework. LexSubCon proposes candidates for each target word
by using external lexical resources and the BERT-based lexical substitution approach. It
also ranks each candidate by considering different substitution criteria such as contextual-
ized representation, definition, and sentence similarity.

2.3.1 Proposed Score: Mix-Up Embedding Strategy

The original BERT model [23] is based on multi-layer bidirectional transformers [113] which
generate contextualized word representations. Incorporating information from bidirectional
representations allows the BERT model to capture more accurately the meaning of a word
based on its surrounding context (i.e., sentence).
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The standard BERT architecture [23] can be used in the lexical substitution task by
masking the target word and letting the model propose appropriate substitute candidates
that preserve the initial meaning of the sentence. Zhou et al. [127] showed that applying
embedding dropout to partially mask the target word is a better alternative than com-
pletely masking, or not masking, the target word. This is because the model may generate
candidates that are semantically different but appropriate for the context of the initial
sentence.

However, in this chapter, we will demonstrate that a mix-up embedding strategy can
yield even better results. We propose that by using external knowledge, we can obtain
probable synonyms of the target word and use that knowledge in a mix-up scenario [123].
This is achieved by linearly interpolating the target input embedding and the average
embedding of its synonyms. This allows the model to generate a new synthetic input
embedding by re-positioning the target embedding around the neighborhood of the em-
bedding of its synonyms. In order to obtain appropriate synonyms, we use WordNet [73]
an extensive lexical database where words are grouped into sets of synonyms called synsets.
Our experiments achieve the best performance when the list of synonyms is extracted from
the complete set of synsets for each word. This also minimizes the chances of having a
synonym set that only includes the target word itself.

Finally, we use a mix-up strategy to calculate a new input embedding for the target
word X ′

target as shown in equation 2.1:

X
′

target = λXtarget + (1− λ)Xsynonyms (2.1)

where Xtarget is the initial input embedding of the target word, Xsynonyms is the average
embedding of all the synonyms, and λ is a hyper-parameter value. It should be noted that
WordNet does not contain information about pronouns, conjunctions, or nouns that are
not common in the English vocabulary. To address this limitation, whenever a target word
cannot be found in the WordNet database, we replace the mix-up strategy by injecting
Gaussian noise into the input embedding of the target word. This produces a similar effect
as the mix-up strategy since the target embedding is re-positioned around itself in the
embedding space (equation 2.2):

X
′

target = Xtarget + e (2.2)

where e is a Gaussian noise vector with components ei ∼ N (µi, σ
2
i ).

After updating the input embedding of the target word, we use the standard BERT
architecture to calculate the proposal score for each candidate. The input embedding
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vectors pass through multiple attention-based transformer layers, and each layer produces
a contextualized embedding of each token. For each target word xt, the model outputs a
score vector of yt ∈ RD, where D is the length of the model’s vocabulary. We calculate
the proposal score sp, for each candidate word xc, as the probability for the BERT model
to propose the word xc over all the candidate words x′

c when the target word’s sentence is
provided as input to it (equation 2.3):

sp(xc) =
exp(yt[xc])∑
x′
c
exp(yt[x′

c])
(2.3)

where sp is also the first feature of the candidate score sc for each substitution candidate
xc, and α is the weight of the proposal score (equation 2.4):

sc = α · sp (2.4)

2.3.2 Gloss-Sentence Similarity Score

In the previous section, we analyzed our model, which ranks candidate substitute words by
calculating their individual proposal scores. In this section, we present a new metric that
ranks the candidate words by considering the gloss (i.e., a dictionary-style definition) of
each word. By extracting information from the WordNet database, a list of potential glosses
is created for each target or candidate word. We then determine the most appropriate gloss
based on the word and its specific context (sentence) by taking advantage of recent fine-
tuned contextual models that have achieved state-of-the-art results in the Word Sense
Disambiguation (WSD) task [41]. As the glosses are sentences (i.e., sequence of words),
they can be represented on a semantic space through a sentence embedding generating
model. Each candidate word is ranked by calculating the cosine similarity between the
gloss sentence embedding of the target word and the gloss sentence embedding of each
candidate word.

It should be noted that there are several methods for generating sentence embeddings,
such as by calculating the weighted average of its word embeddings [6]. We decide to
utilize the sentence embedding stsb-roberta-large model of Reimers et al. [87] which has
been shown to outperform other state-of-the-art sentence embeddings methods.

Given a sentence s, a target word xt, and a candidate word xc, our model first iden-
tifies the most appropriate gloss gt, for the target word given its context (by utilizing the
pre-trained GlossBERT model [41] which has achieved state-of-the-art results in multiple
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WSD tasks). After replacing the target word with the candidate xc, to create a new sen-
tence s′, the most appropriate gloss gc, for the candidate word is also determined (by also
taking advantage of the pre-trained GlossBERT model[41]). A gloss-similarity score sg, for
each candidate is then calculated as the cosine similarity between the two glosses-sentence
embeddings (equation 2.5).

sg(xc) = cos(gt, gc) (2.5)

Finally, based on the work by Loureiro et al. [62] and our experiments, we found that
uniting the synset lemma (i.e., a canonical form of a word) alongside the sentence of each
gloss can have a beneficial effect on the comparison of the sentence embeddings, especially
for the glosses that have limited length.

By calculating the gloss-similarity score, sg, the candidate score for each candidate
word, xc, is updated to (equation 2.6):

sc = α · sp + β · sg (2.6)

where β is the weight of the gloss similarity score.

2.3.3 Sentence Similarity Score

We also choose to assess the effect of each substitution on the semantics of the original
sentence by calculating the semantic textual similarity between the original sentence (s)
and an updated one (s′). An updated sentence is a sentence where we have replaced the
target word with one of its substitutions.

Many pre-trained models for semantic textual similarity have become publicly available
as described by Reimers et al. [87]. These models can be used in our task to measure
the similarity of the initial sentence to each updated sentence after replacing the target
word with one of the possible substitutes. However, to accurately calculate a similarity
score between s and s′, we first need to fine-tune the semantic textual similarity model,
namely the stsb-roberta-large model [87]. This is achieved by using the training portion
of the dataset to create pairs of sentences between the original sentence and an updated
sentence where we have substituted the target word with one of its proposed candidates.
In addition, using the methods described in subsection 2.3.2, we can identify the most
appropriate synset (from WordNet) for each target word. We can then create a new pair of
sentences between the original sentence and an updated sentence, where we have updated

20



the target word with the synonyms of the previously mentioned synset. However, due to
the limited training dataset size, our model is still not provided with enough training data
to be fully fine-tuned.

To remedy this situation, we employ a data augmentation technique to produce the
examples needed for this task. Specifically, we create a back-translation mechanism to
generate artificial training data. Back-translation or round-trip translation is the process of
translating the text into another language (i.e., forward translation) and then translating
it back into the original language (i.e., back-translation) [3]. Back-translation has been
used in different tasks to increase the size of training data [95, 7]. In our case, we provide
the initial sentence s to the back-translation module, which produces a slightly different
‘updated’ sentence s′u. For the s′u sentences that still contain the target word, we can
create a pair of sentences between the s′u and an alternative version of the s′u sentence (s′′u)
where the target word is substituted with one of the candidate words or synonyms that we
mentioned in the above paragraph. The main disadvantage of this technique is that it may
return the same initial sentence without any changes. In this case, a second translation
level is added, where the initial sentence is translated into two different languages before
being translated back.

After training our similarity model, we calculate the semantic textual similarity st,
between the original and the updated sentence. Thus, the candidate score for each substi-
tution candidate, xc, can be updated to (equation 2.7):

sc = α · sp + β · sg + γ · st (2.7)

where γ is the weight of the sentence similarity score.

2.3.4 Candidate Validation Score

In our experiments, we have also include the substitute candidate validation metric from
Zhou et al. [127] since it has been demonstrated to have a positive effect on the performance
of a lexical substitution model. The substitute candidate validation metric is derived as the
weighted sum of the cosine similarities between the contextual representation of each token
in the initial sentence and in the updated one. The weight of the token, i, is calculated
as the average self-attention score of all heads in all layers from the token of the target
word to token i. According to Zhou et al. [127], this metric evaluates the influence of the
substitution on the semantics of the sentence.

After the inclusion of the candidate validation metric sv, the candidate score can be
updated to (equation 2.8):
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sc = α · sp + β · sg + γ · st + δ · sv (2.8)

where δ is the weight of the validation score.

2.3.5 Candidate Extraction

The candidates for each target word are extracted using the external lexical resource of
WordNet and the BERT-based lexical substitution approach, where the model provides
probabilities for each candidate based on the context (i.e. sentence). We create a list of
candidates based on the synonyms, hypernyms and hyponyms of each target word that
could be identified in WordNet. The list also comprises the candidate words with the high-
est probabilities that could be identified using the BERT model and the mix-up strategy
described in subsection 2.3.1. We choose to include candidates from WordNet because
we do not want our model to be confined to candidate words from the BERT vocabulary
alone. We also include candidate words from a BERT-based model because target words
may not be included in WordNet or the lexical resource may only return the target word
as a candidate.

2.4 Experiments

2.4.1 Dataset

We evaluate LexSubCon on the English datasets SemEval 2007 (LS07)1 [66] and Concepts
In-Context (CoInCo)2 [54] which are the most widely used datasets for the evaluation of
lexical substitution models.

1. The LS07 dataset is split into 300 training and 1710 testing sentences where for each
of the 201 target words, there are 10 sentences 3. The gold standard is based on
manual annotation, where annotators provided up to 3 possible substitutes.

2. The CoInCo dataset consists of over 15K target word instances (based on texts from
the Open American National Corpus), where 35% are training and 65% are testing
data. Each annotator provided at least 6 substitutes for each target word.

1license: https://tinyurl.com/semeval-license
2license: CC-BY-3.0-US
3extracted from http://corpus.leeds.ac.uk/internet.html
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In order to have a fair comparison with previous state-of-the-art models, we use pro-
cessed versions for both datasets as used in [70, 71].

2.4.2 Experimental Setup

LexSubCon is evaluated in the following variations of the lexical substitution tasks:

All-ranking task: In this task, no substitution candidates are provided. We use
the official metrics that the organizers provided in the original lexical substitution task of
SemEval-20074. These are best and best-mode which validate the quality of the model’s
best prediction and both oot (out-of-ten) and oot-mode to evaluate the coverage of the
gold substitute candidate list by the 10-top predictions. We also use Precision@1 to have
a complete comparison with the model in [127]. We use these metrics to evaluate our
LexSubCon’s substitution candidates in both the LS07 and CoInCo datasets.

Candidate ranking task: In this task, the list of candidates is provided, and the
goal of the model is to rank all the candidate words. For the candidate ranking task, we
follow the policy of previous works and construct the candidate list by merging all the
substitutions of the target lemma and POS tag over the whole dataset. For measuring
the performance of the model we use the GAP score [103]5 which is a variant of the
Mean Average Precision (MAP). The generalized average precision (GAP) is calculated as
(equation 2.9):

GAP =

∑n
i=1 I(x

′
i)pi∑R

i=1 I(yi)yi
pi =

∑i
k=1 xi

i
(2.9)

where xi is a binary variable indicating whether the ith item provided by the model is in
the gold standard or not and x′

i is the gold standard weight of the ith item or zero if the
item is not in the gold standard. We define I(x′

i) = 1 if the x′
i is larger than zero and

zero otherwise and yi is the average weight of the ideal ranked list of gold standard y1,...,yi
[103]. Following Melamud et al. [71], we discard all multi-words from the gold substitutes
list and remove the instances that are left with no gold substitutes.

We use the uncased BERT large model [23] for calculating the proposal score and
candidate validation score. For identifying the most appropriate glosses for the target
word and its candidate, we employ the pre-trained model proposed by Huang et al. [41]
which has achieved state-of-the-art results in multiple Word Sense Disambiguation (WSD)

4www.dianamccarthy.co.uk/files/task10data.tar.gz
5https://tinyurl.com/gap-measure
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tasks and was trained on the SemCor3.0 dataset, the largest corpus manually annotated
with WordNet sense for WSD [41]. The sentence-similarity metric is computed by fine-
tuning the stsb-roberta-large model presented by Reimers et al. [87] and by employing
the OPUS-MT models by Tiedemann, and Thottingal [106] (namely, opus-mt-en-romance,
opus-mt-fr-es, and opus-mt-romance-en) for creating the back-translated sentences.

To address the reproducibility concerns of the NLP community [25] we provide the
search strategy and the bound for each hyperparameter. We use the LS07 trial set for
training the sentence similarity metric model (for 4 epochs) and for fine-tuning the param-
eters of our framework based on the best score. Empirically, the λ parameter of the mix-up
strategy are set to 0.25 and the proposal score, gloss-sentence similarity score, sentence
similarity score, and candidate validation score weights to 0.05, 0.05, 1, 0.5, respectively
(with the search space for all the parameters being [0, 1])6). For the Gaussian noise, we
select a mean value of 0 and a standard deviation of 0.01. We propose 30 candidates for
each target word in each test instance. We run LexSubCon on five different (random) seeds
to achieve more robust results and provide the average scores and standard deviation. All
the contextual models are implemented using the transformers library [118] on PyTorch
1.7.1. All experiments are executed on a Tesla K80 GPU with 64 GB of system RAM on
Ubuntu 18.04.5 LTS. LexSubCon contains 1136209468 parameters.

2.5 Results

2.5.1 Lexical Substitution Model Comparison

To enable direct comparison and to isolate gains solely due to improvements in the post-
processing strategy that each model uses (which has the potential to change its performance
[5]), we opt to reproduce and use the same strategy for the tokenization of the target words
from Bertsp,su [127]. We focus our comparison on Bertsp,su as it has achieved impressive
state-of-the-art results on both benchmark datasets7.

The results of LexSubCon and the previous state-of-the-art results in both LS07 and
CoInCo benchmark datasets are presented in Table 2.1. LexSubCon outperforms the previ-
ous methods across all metrics in the LS07 and the CoInCo datasets, given that all features

6As we only had four weight parameters, the identification of the best combination is finished in less
than half an hour.

7Note that the method proposed in [127] is implemented as faithfully as possible, to the best of our
abilities, to the original work, using elements of code kindly provided by the authors upon request. However,
the authors could not make the complete original code available to us.
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Method best best-m oot oot-m P@1
LS07 dataset

LexSubCon 21.1 ±0.03 35.5±0.07 51.3 ±0.05 68.6±0.05 51.7±0.03
Bertsp,su* 12.8 ±0.02 22.1±0.03 43.9±0.01 59.7±0.02 31.7± 0.02
T. L. 17.2 - 48.8 - -
S. V. 12.7 21.7 36.4 52.0 -
Addcos 8.1 13.4 27.4 39.1 -
S. L. 15.9 - 48.8 - 40.8
UNT 12.8 20.7 49.2 66.3 -

CoInCo dataset
LexSubCon 14.0 ± 0.02 29.7 ± 0.03 38.0 ± 0.03 59.2 ± 0.04 50.5 ± 0.02
Bertsp,su * 11.8 ± 0.02 24.2 ± 0.02 36.0 ± 0.02 56.8 ± 0.02 43.5 ± 0.02
S. V. 8.1 17.4 26.7 46.2 -
Addcos 5.6 11.9 20.0 33.8 -

Table 2.1: Results of mean ± standard deviation of five runs from our implementation
of LexSubCon and Bertsp,su*[127]. We also provide the performance of previous state-of-
the-art models. Transfer learning (T. L.) [39], Substitute vector (S. V.) [69], Addcos [71],
Supervised learning (S. L.) [102], UNT [36]. Best values are bolded.

have a positive effect on its performance (see ablation details in subsection 2.5.2). This is
because the features encourage LexSubCon to take into consideration different substitu-
tion criteria such as contextualized representation, definition, and sentence similarity. The
standard deviation of the results of LexSubCon is not zero due to the fine-tuning process
of the sentence similarity model. However, the results indicate that there are no large
fluctuations.

2.5.2 Ablation Study

In order to evaluate the effect of each feature on the performance of LexSubCon, we conduct
an ablation study. The results are presented in Table 2.2. LexSubCon achieves its best
performance when it has access to information from all the features described in Section 2.3
(first row in Table 2.2). By testing the performance of the individual features, we observe
that the gloss sentence similarity feature results in the worst performance out of all the
features. This is likely because many candidate words cannot be identified in WordNet
and thus we assign a zero value to their gloss sentence score. Another factor is that the
models used to select the most appropriate gloss for each word may introduce noise in the
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Method best best-m oot oot-m P@1
LS07

LexS 21.1 35.5 51.3 68.6 51.7
-w Pr. 20.1 32.6 50.8 68.1 50.6
-w Gl. 19.9 33.7 50.4 67.6 48.6
-w Sen. 20.7 34.9 50.9 68.2 50.6
-w Val. 18.8 31.7 47.8 64.9 46.6
Pr. 16.3 27.6 45.6 62.4 40.8
Gl. 12.4 19.5 40.5 55.0 32.7
Sen. 16.7 28.3 45.3 62.0 40.7
Val. 18.6 30.8 48.9 66.2 46.3

CoInCo
LexS 14.0 29.7 38.0 59.2 50.5
-w Pr. 12.9 26.5 37.6 58.5 47.8
-w Gl. 13.4 28.5 37.2 58.2 48.8
-w Sen. 13.6 29.9 37.2 58.3 49.2
-w Val. 12.7 27.0 35.9 57.4 46.6
Pr. 11.3 23.8 33.6 54.4 41.3
Gl. 8.4 16.7 29.6 47.2 33.6
Sen. 10.9 22.5 34.0 54.9 40.5
Val. 11.7 23.7 35.3 55.2 44.2

Table 2.2: Ablation study of LexSubCon: Pr. is the Proposal score using the mix-up
embedding strategy. Gl. is the Gloss similarity score. Sen. is the Sentence Similarity score
and Val. is the Validation score. -w/o indicates a LexSubCon framework without the
specific feature.

process of the gloss-similarity score as they may select non-optimal glosses.

2.5.3 Mix-Up Strategy Evaluation

In order to evaluate the mix-up strategy, we study the effect of different input embedding
policies. The results are shown in Table 2.3. Even the simpler strategy of injecting Gaussian
noise into the input embedding outperforms the standard policy of masking the input word.
These results indicate that a contextual model needs information from the embedding of
the target word to predict accurate candidates.

However, the model may over-rely on this information when provided with an intact
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Policy best best-m oot oot-m P@1
LS07

Mix. 16.3 27.6 45.6 62.4 40.8
Gaus. 15.4 25.1 44.3 61.4 38.9
Drop. 15.5 25.6 44.3 61.2 38.8
Mask 10.4 16.4 35.5 48.6 27.0
Keep 15.5 25.4 44.4 61.4 39.2

CoInCo
Mix. 11.3 23.8 33.6 54.4 41.3
Gaus. 10.8 22.6 33.0 54.4 39.7
Drop. 10.8 22.5 32.9 54.2 39.5
Mask 8.6 17.5 28.9 46.6 31.7
Keep 10.8 22.6 33.0 54.3 39.7

Table 2.3: Comparison of different strategies for modifying the input embedding. Mix. is
the mix-up strategy that we proposed, Gaus. is the Gaussian noise strategy, Drop. is the
dropout embedding strategy [127], Mask is the strategy of masking the target word and
Keep is the strategy of unmasking the target word. Best values are bolded.

input embedding. The mix-up strategy outperforms all the other policies, specifically the
dropout embedding strategy [127]. This is because the mix-up strategy re-positions the
target embedding around the neighborhood of the embedding of its synonyms, so it does
not erase a part of the embedding that the model can learn from.

2.5.4 Candidate Ranking Task

We also evaluate LexSubCon in the candidate ranking task for both the LS07 and CoInCo
datasets. As mentioned in Section 2.4.2, in this task the candidate substitution words are
provided. The main goal is to create the most appropriate ranking of the candidates for
each test instance.

Table 2.4 reports the evaluation results from the candidate ranking task of LexSubCon,
as well as the results from the previous state-of-the-art models. As it can be observed,
all the features positively affect the performance of LexSubCon, thus outperforming the
previous state-of-the-art methods. The results demonstrate the features’ positive effect on
accurately ranking a list of potential candidates since the LexSubCon outperforms all the
previous methods, even in the scenario where all the methods are provided with the same
substitution candidate list.
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Method LS07 CoInCo
LexSubCon 60.6 58.0
-w/o Pr. 58.8 56.3
-w/o Gl. 60.3 57.4
-w/o Sen. 59.8 57.1
-w/o Val. 56.8 53.8
Bertsp,su* 58.6 55.2
LexSubCon (trial+test) 60.3 58.0
Bertsp,su* (trial+test) 57.9 55.5
XLNet+embs 57.3 54.8
context2vec 56.0 47.9
Trans. learning 51.9 -
Sup. learning 55.0 -
PIC 52.4 48.3
Substitute vector 55.1 50.2
Addcos 52.9 48.3
Vect. space mod. 52.5 47.8

Table 2.4: Comparison of GAP scores (%) from previously published results in the candi-
date ranking task of our implementation of LexSubCon and Bertsp,su [127]. We also provide
the results on the entire dataset with (trial+test). Models: XLNet+embs [5], Context2vec
[70], Transfer learning [39], Supervised learning[102], PIC [90], Substitute vector [69], Ad-
dcos [71] and Vector space modeling [54].

2.5.5 Qualitative Substitution Comparison

Word Sentence Gold Ranking LexSubCon BERTbased

terrible ..have a terrible awful, very bad, horrible, negative,
effect on the appalling, negative, horrific, major,
economy formidable awful positive

return ..has been allowed to go back, revert, revert, recover,
return to its resume, retrovert, go,
wild state regress regress restore

Table 2.5: Examples of target words and their top lexical substitutes proposed by LexSub-
Con and BERTbased model.

Table 2.5 reports different examples of target words and their top lexical substitutes
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proposed by LexSubCon and the BERTbased model in order to demonstrate the effect of
external lexical resources on the performance of a contextual model. As it can be observed,
for the target word terrible, the BERTbased model proposes a candidate word (positive)
that may fit in the sentence but has the opposite meaning of the target word. However,
LexSubCon provides semantically similar candidates by using information from different
signals (e.g., comparison of the definition of each word). For the target word ‘return’, our
model identifies an appropriate candidate that is not in the vocabulary of the contextual
model (the word ‘regress ’) by introducing candidates from an external lexical database.
These examples show that a contextual model enriched with external lexical knowledge
can provide more accurate candidates.

2.5.6 Extrinsic Evaluation: Data Augmentation

Finally, we evaluate the performance of LexSubCon within the context of textual data aug-
mentation. We conduct experiments using a popular English benchmark text classification
task on a subjectivity/objectivity dataset (SUBJ) [79]8. The SUBJ dataset contains 5000
subjective and 5000 objective processed sentences (based on movie reviews). We train
the LSTM model (with the same hyperparameters) which was used in [116] to measure
the effect of different data augmentation techniques. We then compare our method with
two previous state-of-the-art lexical substitution models and other popular textual data
augmentation techniques. These are:

1. the back-translation technique (described in Section 2.3.3); and

2. the EDA framework [116] which utilizes four operations of Synonym Replacement
and Random Insertion/Swap/Deletion in order to create new text.

Following the data generation algorithm by Arefyev et al. [5], LexSubCon creates new
examples by sampling one word for each sentence, generating the appropriate substitute
list for this word, and sampling one substitute with probabilities corresponding to their
substitute scores (which are normalized by dividing them by their sum) to replace the
original word with the sampled substitute.

Figure 2.2 demonstrates how data augmentation affects the classification depending
on the size of the training set [5, 116]. It is shown that the data created with lexical
substitution has a more positive effect on the performance of the model compared to

8license: https://tinyurl.com/t-license
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Figure 2.2: Accuracy with different training sizes for different text augmentation techniques
on the SUBJ dataset.

other data augmentation techniques. This is likely because back-translation techniques
may provide text that does not follow the syntactic rules of the target language. The EDA
framework may also create examples that could confuse the model by changing the sentence
structure due to the random insertion and swapping of words. Since LexSubCon creates
more accurate substitution candidates than the standard BERT and the Bertsp,su* models,
the texts created by LexSubCon have a more positive effect on the model’s performance.

2.6 Conclusion

In this chapter we demonstrated that injecting external knowledge from a general lexical
database into a contextual model can aid the model in distinguishing semantically similar
words. Our model established a new mix-up embedding strategy that re-positioned the
target embedding around the neighborhood of the embedding of its synonyms. Our model
benefited from the combined usage of features from both the contextual embedding models
and external lexical knowledge bases, such as a new gloss (definition) similarity metric,
which could calculate the similarity of the sentence-definition embeddings of the target
word and its proposed candidates. We also generated a highly accurate fine-tuned sentence
similarity model by taking advantage of popular data augmentation techniques (such as
back translation) to calculate each candidate word’s effect on the semantics of the original
sentence.

Our experiments showed that all features can aid the model in making accurate predic-
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tions as LexSubCon achieved its best performance when it had access to all the features.
LexSubCon outperformed previous state-of-the-art models by at least 2% over all the offi-
cial lexical substitution metrics on LS07 and CoInCo benchmark datasets that are widely
used for lexical substitution tasks. Finally, our qualitative analysis demonstrated that
combining a contextual model with structured external knowledge can assist the model in
selecting more accurate candidates.

Having successfully proven that general lexical structured knowledge can aid a con-
textual model in distinguishing between semantically similar words, we will extend this
exploration in the following chapter to see if this approach can be adapted in the presence
of highly technical or specialized vocabularies such as that found in medical text.
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Chapter 3

Augmentation of Contextual Models
in the Biomedical Domain

3.1 Introduction

In the previous chapter, we discussed how structured general lexical knowledge could boost
the performance of a contextual model in the lexical substitution task by helping the model
to distinguish between semantically similar words.

In this chapter, we will narrow down the general lexical features to specific-domain
(medical) features, and we will investigate the effect of augmenting a transformer-based en-
coder model with structured knowledge from the medical domain (e.g., the UMLS metathe-
saurus [18]). Our proposed architecture will augment its input embedding layer with struc-
tured medical information, thus permitting it to consider the different semantic types of
the medical words in the input sentence. Our model will also be trained with an ‘updated’
pre-trained task, enabling it to learn the connection of the medical words associated with
the same concept in a medical metathesaurus.

While medical-focused contextual models already exist, we will demonstrate that our
model is more suited for different medical downstream tasks. By integrating structured
medical domain knowledge into a contextual model, we will show that the model can learn
more easily the associations between distinctive terminologies, which it otherwise would
not have the opportunity to learn due to the scarcity of medical datasets.

We chose to integrate medical information from the UMLS Metathesaurus as it is a
compendium of many biomedical terminologies (e.g., MeSH [24] and ICD [76]) with their
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associated information, such as synonyms and categorical grouping. It also allows for
the connection of words that represent the same or similar ‘concept’. For example, the
words ‘lungs’ and ‘pulmonary’ share a similar meaning and thus can be mapped to the
same concept unique identifier (CUI) CUI: C0024109. Additionally, UMLS allows the
grouping of concepts according to their semantic type [67]. For example, ‘skeleton’ and
‘skin’ have the same ‘Body System’ semantic type, and ‘inflammation’ and ‘bleed’ are in
the ‘Pathologic Function’ semantic type group.

The remainder of this chapter is organized into five parts. Section 3.2 provides an
overview of related work, which is followed by a detailed account of the characteristics of the
proposed UmlsBERT architecture for augmenting contextual embeddings with structured
clinical knowledge in Section 3.3. Section 3.4 describes the experimental setup along with
the data used to pre-train and test UmlsBERT. The results of the downstream tasks and
the qualitative analysis are reported in Section 3.5, followed by the chapter conclusion in
Section 3.6.

3.2 Related Work

3.2.1 BERT Model

The Bidirectional Encoder Representations from Transformers (BERT) [23] model achieved
the state-of-the-art for major NLP tasks including language inference [117] and text clas-
sification [115] by utilizing bidirectional Transformers [113] to create context-dependent
representations of the words in the input text. The pre-training of the BERT model was
done on massive corpora, and the context-sensitive embeddings could be further fine-tuned
for a downstream task by being integrated into a task-specific architecture.

The pre-training phase of the BERT model [23] consisted of two self-supervised tasks:
(i) Masked Language Modelling (LM), in which a percentage of the input was masked at
random and the model was forced to predict the masked tokens; and (ii) Next Sentence
Prediction, in which the model had to determine whether two segments appear consecu-
tively in the original text. Specifically, in the Next Sentence Prediction task, the model is
provided with pairs of sentences with a 50% chance that the second sentence was actually
the sentence that follows the first sentence [23].

In Masked LM, 15% of the tokens of each sentence were replaced by a [MASK] token.

For the jth input token in the sentence, an input embedding vector u
(j)
input was created by

the following equation (equation 3.1):
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u
(j)
input = p(j) + SEGseg

(j)
id + Ewj (3.1)

where p(j) ∈ Rd was the position embedding of the jth token in the sentence, and
d was the transformer’s hidden dimension. Additionally, SEG ∈ Rd×2 was called the
segment embedding, and segid ∈ R2, a 1-hot vector, was the segment id that indicates the
sentence to which the token belongs. In Masked LM, the model used only one sentence,
and therefore, the segment id indicated that all the tokens belong to the first sentence.
E ∈ Rd×D was the token embedding where D was the length of the model’s vocabulary
and wj ∈ RD was a 1-hot vector corresponding to the jth input token.

The input embedding vectors passed through multiple attention-based transformer lay-
ers where each layer produced a contextualized embedding of each token. For each masked
token w, the model output a score vector yw ∈ RD to minimize the cross-entropy loss
between the softmax of yw and the 1-hot vector corresponding to the masked token (hw)
(equation 3.2):

loss = −log(
exp(yw[w])∑
w′ exp(yw[w′])

) (3.2)

3.2.2 Biomedical Contextual Model

There have been multiple attempts to improve the performance of contextual models in
the biomedical domain.

Figure 3.1: Overview of the pre-training and fine-tuning of BioBERT [58].

BioBERT was a BERT-based model which was pre-trained on both general (BooksCor-
pus and English Wikipedia) and biomedical corpora (PubMed abstracts and PubMed Cen-
tral full-text articles) (Figure 3.1). BioBERT illustrated the positive effect of training a
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contextual model with medical data, as it outperformed the standard BERT in multiple
downstream tasks (e.g., named entity recognition and relation extraction). This was likely
because medical corpora contains terms that were not usually found in a general domain
corpus [34]. Bio ClinicalBERT [4] further pre-trained BioBERT on clinical text from the
MIMIC-III v1.4 database [47]. It was shown that further pre-training with clinical-specific
text can be beneficial for the performance of a model on different clinical NLP down-
stream tasks [4]. Finally, PubMedBERT [33] was pretrained from scratch using abstracts
from PubMed (which contains more than 34 million citations and abstracts of biomedi-
cal literature) and achieved state-of-the-art performance on several biomedical NLP tasks.
However, the models mentioned above failed to take into account the relations between
medical entities that exist in medical databases.

He et al. [37] infused disease knowledge into a BERT-based model by training the model
to predict disease names and aspects on Wikipedia passages. Hao et al. [35] also introduced
a new pre-trained task to enable a BERT-based model to infer the existence of a relation
between two medical concepts. These strategies have been shown to positively affect the
model’s performance on multiple medical downstream tasks, e.g., entity recognition and
natural language inference.

However, current biomedical applications of transformer-based Natural Language Pro-
cessing models did not incorporate expert structured (medical) domain knowledge from a
knowledge base (e.g., the UMLS [18] Metathesaurus) into their architecture. By integrating
structured medical domain knowledge, a model would more easily learn the associations
between distinctive terminologies.

To enhance the performance of previous approaches we developed UmlsBERT, which we
demonstrate can successfully integrate (medical) domain knowledge during its pre-training
process via a novel knowledge augmentation strategy.

3.3 Methods

In this section, we will present the proposed architecture for integrating UMLS-based
features in the UmlsBERT’s pre-training process and architecture. In particular, we will
analyze the methodology for enriching input embeddings with semantic type information
and present the new loss function, which is used to learn the connection of words through
their corresponding CUI’s.
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3.3.1 Semantic Type Embeddings

We introduce a new embedding matrix called ST ∈ RDs×d into the input embedding of the
BERT model, where d is BERT’s transformer hidden dimension and Ds = 44 is the number
of unique UMLS semantic types that can be identified in the vocabulary of our model. In
particular, in this matrix, each row represents the unique semantic type in UMLS that a
word can be identified with (for example, the word ‘heart’ is associated with the semantic
type T023:‘Body Part, Organ, or Organ Component’ in UMLS).

Figure 3.2: (a) Original input vector of the BERT model [23]. (b) Augmented input vector
of the UmlsBERT where the semantic type embeddings is available. For the words ‘lungs’
and ‘cavity’, their word embeddings are enhanced with the embedding of the semantic type
‘Body Part, Organ, or Organ Component’(ET023) and ‘Body Space or Junction’(ET030)
respectively. The rest of the words are not related to a medical term, so a zero-filled tensor
Enull is used.

To incorporate the ST embedding matrix into the input embedding of our model, all
words with a clinical meaning defined in UMLS are identified. The corresponding concept
unique identifier (CUI) and semantic type are extracted for each of these words. We use
sw ∈ RDs as a 1-hot vector corresponding to the semantic type of the medical word w. The
identification of the UMLS terms and their UMLS semantic type is accomplished using
the open-source Apache clinical Text Analysis and Knowledge Extraction System (cTakes)
[93]. It should be noted that we acknowledge that one limitation of our model is that relies
on the cTakes tools and thus it will not take advantage of any medical information that
the cTakes did not identify. Thus, by introducing the semantic type embedding, the input
vector (equation 3.1) for each word is updated to (equation 3.3):

u
(j)′
input = u

(j)
input + ST⊤sw (3.3)

where the semantic type vector ST⊤sw is set to a zero-filled vector for words not
identified in UMLS. We hypothesize that incorporating the clinical information of the
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semantic types into the input tensor could be beneficial for the performance of the model as
it can be used to enrich the input vector of words that are rare in the training corpus and the
model does not have the chance to learn meaningful information for their representation.
Figure 3.2 presents an example of inserting the semantic type embeddings into the standard
BERT architecture.

3.3.2 Updating the Loss Function of Masked LM Task

We update the loss function of the Masked LM pre-training task to take into consideration
the connection between words that share the same CUI. As described in subsection 3.2.1,
the loss function of the Masked LM pre-training task of a BERT model is a cross-entropy
loss between the softmax vector of the masked word and the 1-hot vector that indicates the
actual masked word. We choose to ‘soften’ the loss function and update it to a multi-label
scenario by using information from the CUIs.

Figure 3.3: An example of predicting the masked word ‘lungs’ (a) the BERT model tries
to predict only the word lungs, whereas (b) the UmlsBERT tries to identify all words that
are associated with the same CUI (e.g lungs, lung, pulmonary).

More specifically, instead of using a 1-hot vector (hw) that corresponds only to the
masked word w, we use a binary vector indicating the presence of all the words which
share the same CUI of the masked word (h′

w). In order for the model to properly function
in a multi-label scenario, the cross-entropy loss (equation 3.2) is updated to a binary cross-
entropy loss (equation 3.4):
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loss = −
D∑
i=0

(h
′

w[i]log(yw[i]) + (1− h
′

w[i])log(1− yw[i])) (3.4)

These changes force UmlsBERT to learn the underlying semantic relations between
words associated with the same CUI in a biomedical context.

An example of predicting the masked word ‘lungs’ with and without the clinical infor-
mation is presented in Figure 3.3. As seen in this figure, the UmlsBERT model tries to
identify the words ‘lung’, ‘lungs’, and ‘pulmonary’, because all three words are associated
with the same CUI: C0024109 in the UMLS Metathesaurus.

3.4 Experiments

3.4.1 Dataset

We use the Multiparameter Intelligent Monitoring in Intensive Care III (MIMIC-III) dataset
[47] to pre-train the UmlsBERT model. The MIMIC dataset consists of anonymized elec-
tronic medical records in English of over forty-thousand patients admitted to the intensive
care units of the Beth Israel Deaconess Medical Center (Boston, MA, USA) between 2001
and 2012. In particular, UmlsBERT is trained on the NOTEEVENTS table, which
contains 2,083,180 rows of clinical notes and test reports.

Dataset Train Dev Test C
MedNLi 11232 1395 14 22 3
i2b2 2006 44392 5547 18095 17
i2b2 2010 14504 1809 27624 7
i2b2 2012 6624 820 5664 13
i2b2 2014 45232 5648 32586 43

Table 3.1: Number of sentences for the train/dev/test set of each dataset. We also include
the number of classes (C) for each dataset. We use the same splits that are used in the
Bio ClinicalBERT model [4].

We evaluate the effects of the novel features of the UmlsBERT model on the English
MedNLI natural language inference task [91] and on four i2b2 NER tasks (in IOB format
[86]). More specifically, we experiment on the following English i2b2 tasks: the i2b2 2006
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de-identification challenge [110]; the i2b2 2010 concept extraction challenge [111]; the i2b2
2012 entity extraction challenge [99]; and the i2b2 2014 de-identification challenge [98].
These datasets are chosen because of their use in benchmarking prior biomedical BERT
models, thereby allowing for performance comparison. In addition, these publicly available
datasets enable the reproducibility of our results and allow for meaningful comparison with
future studies. Table 3.1 lists the statistics of all the datasets.

3.4.2 UmlsBERT Training

We initialize UmlsBERT with the pre-trained Bio ClinicalBERT model [4]. Since only
the Masked LM task is affected by our modifications (i.e., the updated loss function) we
omit the training of UmlsBERT on the NSP task as it will not meaningfully affect the
performance of our model. Afterward, to perform the downstream tasks, we add a single
linear layer on top of UmlsBERT and ‘fine-tune’ it to the task at hand, using either the
associated embedding for each token or the embedding of the [CLS] token. The same fine-
tuning method is applied to all other models used for comparison. To keep the experiment
controlled, we use the same vocabulary, and WordPiece tokenization [119] across all the
models.

In the pre-training phase, UmlsBERT is trained for 1, 000, 000 steps with a batch size
of 64, maximum sequence length of 128, and a learning rate of 5 · 10−5. All other hyper-
parameters are kept to their default values. UmlsBERT is trained by using 2 Nvidia V100
GPUs with 128 GB of system RAM running Ubuntu 18.04.3 LTS.

3.4.3 Hyperparameter Tuning

Our search strategy and the bound for each hyperparameter are: the batch size is set
between 32 and 64, and the learning rate is chosen among the values 2e-5, 3e-5 and 5e-5.
For the clinical NER tasks, we take a similar approach to the BioBert’s experiments [58]
and set the number of training epochs to 20 to allow for maximal performance (for the
MedNLI task, we train the models on 3 and 4 epochs).

For the i2b2 tasks the best values are chosen based on validation set F1 values using
the seqevals python framework for sequence labeling evaluation. This is due to the fact
that it can provide an evaluation of a NER task on entity-level1. For the MedNLI task
we choose the best values based on validation set accuracy, which is the standard metric

1https://github.com/chakki-works/seqeval
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Dataset BERTbased BioBERT Bio ClinicalBERT UmlsBERT

MedNLI
epochs 4 4 4 3

batch size 16 16 32 16
learning rate 5e-5 3e-5 3e-5 3e-5

i2b2 2006
epochs 20 20 20 20

batch size 32 16 16 32
learning rate 2e-5 2e-5 2e-5 5e-5

i2b2 2010
epochs 20 20 20 20

batch size 16 32 32 16
learning rate 3e-5 3e-5 5e-5 5e-5

i2b2 2012
epochs 20 20 20 20

batch size 16 32 16 16
learning rate 3e-5 3e-5 5e-5 5e-5

i2b2 2014
epochs 20 20 20 20

batch size 16 16 32 16
learning rate 2e-5 2e-5 5e-5 3e-5

Table 3.2: Hyperparameter selection of all the models for each dataset.

for this task 2. To provide a fair comparison, we also tune the hyperparameters of each
model to demonstrate its best performance. The final hyper-parameters selection of all the
models for each dataset can be found in Table 3.2. It should be noted that, since BERTbase,
BioBERT and Bio ClinicalBERT use the same BERT-based architecture, they have the
exact same number of parameters. However, because we introduce the semantic type
embeddings into the UmlsBERT model, our model has an additional 33792 [the number of
unique UMLS semantic types (44) × transformer’s hidden dimension(768)] parameters3.
Table 3.3 provides the number of parameters for each model where we also include the
linear layer on top of the BERT-based models for each task.

3.5 Results

In this section, we present the results of an empirical evaluation of the UmlBERT model.
In particular, we provide a comparison between different available BERT models to show

2https://tinyurl.com/transformers-metrics
3UmlsBert also contains an additional zero-filled vector, that we use, as the semantic type vector of the

non-medical words, which is not included in the calculation of the number of the parameters.
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the efficiency of our proposed model on different clinical NLP tasks. We also provide
the results of an ablation test to examine the effect of semantic type embeddings on the
model’s performance. We conduct a qualitative embedding analysis to illustrate that our
model can learn the association of different clinical terms with similar meaning in the
UMLS Metathesaurus. Finally, we provide a visualized comparison of the embeddings
of the words associated with semantic types between UmlsBERT and Bio ClinicalBert to
demonstrate the ability of our model to create more meaningful input embeddings.

3.5.1 Downstream Clinical NLP Tasks

BERT-based model comparison

In this section, we report the results of the comparison of our proposed UmlsBERT model
with the other BERT-based models in different downstream clinical NLP tasks described
in Section 3.4. All BERT-based models are implemented using the transformers library
[118] on PyTorch 0.4.1. All experiments are executed on a Tesla P100 with 32G GB of
system RAM on Ubuntu 18.04.3 LTS and we run our model on five different (random)
seeds (6809, 36275, 5317, 82958, 25368).

The mean and standard deviation (SD) of the scores for all the competing models on
different NLP tasks are reported in Table 3.3. UmlsBERT achieves the best results in four
out of the five tasks. It achieves the best F1 score in three i2b2 tasks (2006, 2010, and
2012 with F1 scores 93.6%, 88.6%, and 79.4% respectively) and the best accuracy in the
MedNLI task (83.0%).

As our model is initialized with the Bio ClinicalBERT model and pre-trained on the
MIMIC-III dataset, it is not surprising that it does not outperform the BERT model on
the i2b2 2014 task (The BERTbase model achieved a F1 score of 95.2% on i2b2 2014).
This is probably due to the nature of the de-ID challenges [4]. Specifically, protected
health information (PHI) is replaced with a sentinel ‘PHI’ marker in the MIMIC dataset.
However, in the de-ID challenge dataset (i2b2 2014), the PHI is replaced with different
synthetic masks, and thus, the sentence structure that appears in BERT’s training is not
present in the downstream task [4]. However, UmlsBERT achieves a better performance
than the other biomedical BERT models even on this task.

These results confirm our hypothesis that augmenting contextual embedding through
biomedical knowledge is beneficial for the model’s performance in various biomedical down-
stream tasks.
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Dataset BERTbased BioBERT Bio ClinicalBERT UmlsBERT

MedNLI
Test Ac. 77.9 ± 0.6 82.2 ±0.5 81.2 ± 0.8 83.0 ± 0.1
Val. Ac. 79.0 ± 0.5 83.2 ± 0.8 83.4 ± 0.9 84.5 ± 0.1
R.T.(sec) 308 307 269 305
#param. 108,312,579 108,312,579 108,312,579 108,346,371

i2b2 2006
Test F1 93.5 ± 1.4 93.3 ± 1.3 93.1 ± 1.3 93.6 ± 0.5
Val. F1 94.2 ± 0.6 93.8 ± 0.3 93.4 ± 0.2 94.4 ± 0.2
R.T.(sec) 12508 12807 12729 13167
#param. 108,322,576 108,322,576 108,322,576 108,356,368

i2b2 2010
Test F1 85.2 ± 0.2 87.3 ± 0.1 87.7 ± 0.2 88.6 ± 0.1
Val. F1 83.4 ± 0.3 85.2 ± 0.6 86.2 ± 0.2 87.7 ± 0.5
R.T.(sec) 5325 5244 5279 5219
#param. 108,315,655 108,315,655 108,315,655 108,349,447

i2b2 2012
Test F1 76.5 ± 0.2 77.8 ± 0.2 78.9 ± 0.1 79.4 ± 0.1
Val. F1 76.2 ± 0.7 78.1 ± 0.5 77.1 ± 0.4 78.3 ± 0.4
R.T.(sec) 2413 2387 2403 2432
#param. 108,320,269 108,320,269 108,320,269 108,354,061

i2b2 2014
Test F1 95.2 ± 0.1 94.6 ± 0.2 94.3 ± 0.2 94.9 ± 0.1
Val. F1 94.5 ± 0.4 93.9 ± 0.5 93.0 ± 0.3 94.3 ± 0.5
R.T.(sec) 16738 17079 16643 16554
#param. 108,343,339 108,343,339 108,343,339 108,377,131

Table 3.3: Results of mean ± standard deviation of five runs from each model on the test
and the validation test; we use the abbreviation Ac. for accuracy, R. T. for running time
and #param. for number of parameters; best values are bolded.

Effect of semantic type embeddings

In order to understand the effect that semantic type embeddings have on the model’s
performance, we conduct an ablation test comparing the performance of two variations
of the UmlsBERT model. In one model, the semantic type embeddings are available,
while in the other, they are not. The results of this comparison are listed in Table 3.4.
We observe that UmlsBert achieves its best performance for every dataset when semantic
type embeddings are available. This experiment further confirms the positive effect of the
semantic type embeddings on the performance of the UmlsBERT model.
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Dataset UmlsBERT−ST UmlsBERT
MedNLI Ac. 82.3 ± 0.2 83.0 ± 0.1
i2b2 2006 F1 93.3 ± 0.7 93.6 ± 0.5
i2b2 2010 F1 88.3 ± 0.3 88.6 ± 0.1
i2b2 2012 F1 79.1 ± 0.2 79.4 ± 0.1
i2b2 2014 F1 94.7 ± 0.1 94.9 ± 0.1

Table 3.4: Results of mean ± standard deviation of five runs for both variations of Umls-
BERT on the test sets of all the datasets; In UmlsBERT−ST , the semantic type embeddings
are not available.

3.5.2 Qualitative Embedding Comparisons

Table 3.5 shows the nearest neighbors for six words from three semantic categories using
UmlsBERT, Bio ClinicalBERT, BioBERT and BERT. The first two categories (‘ANATO-
MY’ and ‘DISORDER’) are chosen to demonstrate the ability of the models to identify
similar words in a clinical context and the third category (‘GENERIC’) is used to validate
that the medical-focus BERT models are able to find meaningful associations between
words in a general domain, even if they are trained on medical-domain text datasets.

ANATOMY DISORDER GENERIC
feet kidney mass bleeding school war

ft liver masses bleed college battle
BERTbased foot lung massive sweating university conflict

foot liver masses bleed college wartime
BioBERT wrists lung weight strokes schooling battle

foot liver masses bleed college warfare
Bio ClinicalBERT legs lung weight bloody university wartime

foot Ren lump bleed college warfare
UmlsBERT pedal liver masses hem students military

Table 3.5: The two nearest neighbors for six words in three semantic categories (two clinical
and one generic). Note that only UmlsBERT finds word associations based on the CUIs
of the UMLS Metathesaurus that have clinical meaning, whereas in the generic category
there are no discernible discrepancies between the models.

This analysis demonstrates that augmenting the contextual embedding of UmlsBERT

43



with medical information (from the UMLS Metathesaurus) is indeed beneficial for discov-
ering associations between words with similar meanings in a clinical context. For instance,
only UmlsBERT discoverers the connection between ‘kidney’ and ‘ren’ (from the Latin word
‘renes’, which means kidneys), between ‘mass’ and ‘lump’, between ‘bleeding’ and ‘hem’
(a commonly used prefix to refer to blood) and between ‘feet’ and ’pedal’ (an adjective
meaning ‘pertaining to the foot or feet’ in a medical context).

These associations result from changing the nature of the Masked LM training phase of
UmlsBERT to a multi-label scenario by connecting different words that share a common
CUI. In the previously mentioned examples, ‘kidney’ and ‘ren’ have CUI:C0022646 ; ‘mass’
and ‘lump’ have CUI:C0577559 ; ‘bleeding’ and ‘hem’ have CUI:C0019080 ; and ‘feet’ and
‘pedal’ have CUI:C0016504.

The generic list of words indicates that the medical-focused BERT models do not trade
off their ability to find meaningful associations in a general domain for more precision in a
clinical context. This is based on the fact that there is no meaningful difference observed
in the list of neighbor words that the four models identified.

3.5.3 Semantic Type Embedding Visualization

(a) (b)

Figure 3.4: UMAP visualization of the clustering (a) of the Bio ClinicalBert input em-
bedding (word embedding) (b) of the UmlsBert input embedding (word embedding +
semantic type embedding).

In order to demonstrate the effect of the semantic types on the creation of the model’s in-
put word embeddings, Figure 3.4 presents a UMAP dimensionality reduction [68] mapping
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comparison between Bio ClinicalBERT and UmlsBERT. We compare the input embed-
ding (word embedding) of Bio ClinicalBERT with the input embedding (word embedding
+ semantic type embedding) of UmlsBERT for all the clinical terms that UMLS identified
in the standard BERT vocabulary. In the graph, we group the medical terms by their
semantic groups, which are more general clusters consisting of different semantic types.
For example, the semantic types ‘Cell’ and ‘Body System’ belong in the semantic group
‘ANATOMY’ (a more detailed description of the semantic groups and the semantic types
is provided in appendix B).

Evidently, the clustering according to the semantic group that exists in the UmlsBERT
embeddings (Figure 3.4b) cannot be found in the Bio ClinicalBERT embeddings (Figure
3.4a). Thus, we can conclude that more meaningful input embeddings can be provided to
the model by augmenting the input layer of the BERT architecture with the semantic type
vectors. This is because they can force the embeddings of the words of the same semantic
type to become more similar to each other in the embedding space.

3.6 Conclusion

In this chapter, we presented a novel BERT-based architecture that could incorporate
domain (biomedical) knowledge in its pre-training process and had the ability to learn more
easily the associations between distinctive terminologies. In particular, we enhanced the
input layer of a contextual model with semantic type knowledge of the medical words in the
input sentence. We also updated the Masked Language Modelling pre-trained task to take
into consideration the connection between medical words that have the same underlying
‘concept’ in UMLS.

Our experiments, conducted in different clinical named entity recognition (NER) tasks
as well as in one clinical natural language inference task, indicated that the features de-
scribed above had a positive effect on the performance of a medical contextual model. Our
qualitative analysis also established that the model could learn more easily the association
of different clinical terms with similar meaning in the UMLS Metathesaurus. Finally, by
leveraging information from the semantic types of each (biomedical) word, our model could
create more meaningful input embeddings, as it forced the embeddings of the words of the
same semantic type to become more similar to each other in the embedding space.

In the following chapter, we will investigate whether extending the medical features
to a sequence-to-sequence contextual model can positively affect the model’s performance
in summarizing medical conversations by guiding the summarization process to include
relevant medical facts in the summarized output.
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Chapter 4

Augmenting Transformer-based
Sequence-to-Sequence Model for
Summarizing Medical Conversations

4.1 Introduction

In Chapter 3, we analyzed how the architecture of a contextual encoder model can be
augmented with structured knowledge from a medical database. We demonstrated that
this information could aid the model in learning the associations between distinctive ter-
minologies.

In this chapter, we will extend these medical features and demonstrate how medical
structured knowledge that is integrated into a summarization model can guide the summa-
rization process to include relevant medical facts in the summarized output. We will also
investigate whether integrating medical guidance signals into a summarization architecture
can boost the performance of a transformer-based sequence-to-sequence model in the task
of summarizing medical conversations.

In particular, we will explore the effect of a novel medical guidance signal, which consists
of all the medical words of the input sentence, on the model’s performance. We will also
illustrate that augmenting the input layer of a sequence-to-sequence model with medical
knowledge can be beneficial for the model’s performance. This is akin to how we showed
the positive effect of augmenting the input layer of an encoder transformer model with
medical information in Chapter 3. We will also provide a new loss function that provides
the model a stronger incentive to predict medical words.
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We will demonstrate that these features can facilitate the model to achieve state-of-the-
art results on multiple medical conversation summarization datasets. Also, our qualitative
analysis will validate that our model can provide summaries containing relevant medical
facts and thus can help with the omission of key information problem. This is especially
of concern in the medical domain because if key medical information is missing from the
output, future readers may be unable to make an accurate diagnosis.

The remainder of this chapter is organized into five parts. Section 4.2 presents related
work, followed by details of the characteristics of the proposed architecture (MedicalSum)
for integrating clinical knowledge into a summarization model in Section 4.3. The experi-
mental setup and data that are used to train and test the MedicalSum model are described
in Section 4.4. The results of the experiments and the qualitative analysis are reported in
Section 4.5, followed by the conclusion of this chapter in Section 4.6.

4.2 Related Work

There are two main approaches for summarization, namely: (i) extractive methods, where
the summary is created from passages that are copied from the source text [55]; and (ii)
abstractive methods, where phrases and words not in the source text can be used to create
the summary [21].

Neural Abstractive Summarization: For the task of abstractive summarization,
sequence-to-sequence (seq-to-seq) summarization models have achieved state-of-the-art re-
sults [101]. As mentioned in Chapter 1, the sequence-to-sequence models were a special
class of Recurrent Neural Network architectures that map the input sequence to the output
sequence [101]. These models were composed of an encoder and a decoder. The task of
an encoder network was to understand the input sequence and then generated a compact
representation. With such representation at hand, the decoder could then generate a target
sequence.

Different architectures have been proposed to improve the performance of a seq-to-seq
model. See et al. [94] used a pointing mechanism for copying words from the source
document (Figure 4.1). Enarvi et al. [27] incorporated a transformer-based [113] encoder-
decoder architecture with a pointing mechanism in order to produce highly-accurate sum-
maries. However, the main shortcoming of these approaches was that they did not take
advantage of any external structured information to produce more accurate summaries.
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Figure 4.1: The pointing architecture for copying words of See et al. [94].

Guided Summarization: Several studies have focused on including guidance signals
in the standard seq-to-seq architecture. Li et al. [60] included a set of keywords that were
incorporated into the generation process. Zhu et al. [128] proposed the usage of relational
triples (subject, relation, and object). Dou et al. [26] created a guided summarization
framework that can support different external guidance signals (e.g., keywords, highlighted
sentences, and relations). However, the models mentioned above did not take advantage
of structured medical information that exists in external databases.

Medical Summarization: Pivovarov et al. [84] introduced a summarization model
which was focused on creating accurate summaries for clinical data, and Zhang et al.
[124] employed a model with a pointing mechanism to generate summaries from radiology
reports. Enarvi et al. [27] utilized a pointer-generator transformer model to accurately
generate notes from doctor-patient conversations. Joshi et al. [49] relied a variation of the
pointer-generator model that leveraged shared medical terminology between source and
target to distinguish important words from unimportant ones.

However, these models have not taken advantage of structured medical information in
their decision process, which could help key information pass the model’s decision process
and appear in the summary. This is especially of concern in the medical domain, as
inaccuracies could significantly affect future patient health outcomes.
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4.3 Method

To enhance the performance of previous approaches we developed MedicalSum, which
we demonstrate can successfully integrate medical knowledge with a sequence-to-sequence
contextual model to guide the summarization process in various ways with a view to
increasing the likelihood of relevant medical facts being included in the summarized output.

4.3.1 MedicalSum: Medical Guided Transformer Pointer Gener-
ator Model

Figure 4.2: Illustration of MedicalSum a transformer sequence-to-sequence model with a
pointer-generator and guidance mechanism. MedicalSum also introduces a new semantic
type embedding and a novel weighted loss function.
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A simplified image of the MedicalSum model can be found in Figure 4.2. We adopt the
transformer self-attention model [113] in both the encoder and decoder to create context-
dependent representations of the inputs. Both the encoder and the decoder consist of six
self-attention layers with eight attention heads. Each decoder layer attends to the top
of the encoder stack after the self-attention. Each encoder and decoder layer contains a
feed-forward layer with a ReLU activation between two transformations. Following Enarvi
et al. [27], we apply layer normalization [9] before the feed-forward and the self-attention
sub-layers.

We improve the performance of our model by introducing the following additions into
the standard transformer encoder-decoder model for summarization:

1. a pointing mechanism for copying out-of-vocabulary (OOV) words from the source
document (part (a) in Figure 4.2);

2. a novel guided summarization signal which consists of all the medical words in the
input sentence in UMLS (part (b) in Figure 4.2);

3. a new semantic type embedding that enriches the input embeddings process (part
(c) in Figure 4.2); and

4. a novel weighted loss function which provides the model a stronger incentive to
correctly predict medical words (part (d) in Figure 4.2).

The details of each added component are discussed in the following sections.

4.3.2 Pointer-Generator

We implement the pointer generator network as described by both Enarvi et al. [27] and
See et al. [94]. Because the transformer model creates several encoder-decoder attention
distributions, we can choose any distribution over the source tokens for the copying mech-
anism. Following Enarvi et al. [27], we choose to train only the parameters of a single
head to attend to the tokens that are good candidates for copying. In contrast, the rest
of the attention heads are left to perform their usual function. In Garg et al. [30], it was
stated that the penultimate layer seems to learn alignments naturally, so we decide to use
its first attention head for pointing [27].
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4.3.3 Medical Guidance Signal

We include a medical guidance signal in the summarization process which comprises all
the medical terms in the input sequence that could be identified in UMLS using the Med-
CAT toolkit [52]. The inclusion of the medical signal is accomplished by introducing two
encoders (that share weights) to encode the input text and the guidance signal, respec-
tively [26]. Each encoder layer, for both the input and the guidance signal, consists of a
self-attention block and a feed-forward block (equation 4.1).

x = LN(x+ SelfAtnn(x))

x = LN(x+ FeedForward(x))

(4.1)

Each decoder layer consists of: (i) a self-attention block; (ii) a cross-attention block
with the medical guidance signal (mg) to inform the decoder which sections of the source
document are important; and (iii) a cross-attention block with the encoded input (xin),
where the decoder attends to the whole source document based on the guidance-aware
representations and a feed-forward block (equation 4.2).

y = LN(y + SelfAtnn(y))

y = LN(y + CrossAtnn(y,mg))

y = LN(y + CrossAtnn(y, xin))

y = LN(y + FeedForward(y))

(4.2)

As MedicalSum focuses on medical data summarization, we generate a medical guidance
signal with all the words with a medical meaning. We believe that this signal will be
beneficial for the performance of the model since a guidance signal which is created as a set
of individual keywords {w1, ..., wn} can help the model to focus on specific desired aspects
of the input [26]. As mentioned in Chapter 3, we choose to identify medical entities defined
in the UMLS Metathesaurus, which is a compendium of many biomedical (e.g. MeSH [24],
ICD-10 [76]) and thus includes all the major standardized clinical terminologies. In order
to exclude less relevant entities, we follow the strategy proposed by Adams et al. [1] and
we only keep the entities from specific semantic types in the UMLS 2020AA version that
are relevant to the domain of the dataset (i.e., Anatomy, Disorders, Chemicals & Drugs,
and Procedures).
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4.3.4 Semantic Type Embeddings

We also introduce a new embedding matrix called S ∈ RDs×d into the input embedding
layer where d is the transformer hidden dimension and Ds = 50 is the number of unique
UMLS semantic types that are relevant to the domain of the dataset. In the S matrix,
each row represents the unique semantic type in UMLS that a word can be identified with.

To incorporate the S embedding matrix into the input embedding layer, all the words
with a clinical meaning defined in UMLS are identified (using the MedCAT toolkit [52]),
and their corresponding semantic type is extracted. By introducing the semantic type
embedding, the input vector for each word wj is updated to (equation 4.3):

u
(j)′
input = p(j) + Ewj + S⊤swj (4.3)

where swj ∈ RDs is a 1-hot vector corresponding to the semantic type of the medical
word wj (the semantic type vector S⊤swj is set to a zero-filled vector for words that are
not identified in UMLS) and p(j) ∈ Rd is the position embedding of the jth token in the
sentence. Finally, E ∈ Rd×D is the token embedding, where D is the size of the model’s
vocabulary and wj ∈ RD is a 1-hot vector corresponding to the jth input token.

In Chapter 3, we demonstrated that the inclusion of semantic type vectors could en-
hance on the performance of an encoder transformer-based model in various downstream
tasks. The semantic type embeddings could provide more accurate input vectors for the
medical words that are rare in the training corpus and the model may not have the chance
to learn meaningful information for their representations.

In this chapter, we will investigate whether including semantic types information into
the input layer can enrich the input embeddings of a sequence-to-sequence model by forcing
the embeddings of words associated with the same semantic type to become closer to each
other in the embedding space. It should be noted that in our experiments, we enrich the
input embedding of both the input encoder and the guidance encoder.

4.3.5 Medical Weighted Loss Function

We update the loss function of the summarization task in order to provide a stronger
incentive to predict words with a medical meaning correctly. In our summarization model,
we use the cross-entropy loss of the Fairseq library [77] for the target word xt for each
timestep t. We modify the loss function to a weighted loss function where the weight for
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all medical words is higher. Specifically, the summarization loss is updated to (equation
4.4):

loss = −logP (xt) ∗ wt (4.4)

where wt = 1 for all the non-medical words and wt = 1+α for all the words with a medical
meaning, in which α is an additional weight value for these words.

4.4 Experiments

This section presents the results of an empirical evaluation of the MedicalSum model. To
demonstrate the efficiency of our proposed model, we will provide a comparison between
the MedicalSum and the pointer generator transformer model of Enarvi et al. [27] (which
has achieved state-of-the-art results in medical summarization). We will also present the
results of an ablation test to examine the effect of each medical signal on the performance
of the model. We will also provide a qualitative output comparison to illustrate how the
inclusion of medical knowledge can improve the quality of medical summaries.

4.4.1 Dataset

For the training of the MedicalSum model, we have to select a large enough dataset that
would provide the necessary data for the medical signals to meaningfully affect the model’s
performance. However, there are no publicly available large-scale datasets for medical sum-
marization, and thus, we use a proprietary one. We use English language data consisting of
encounters in a family medicine setting. The data are recorded at the time of the encounter
and they also include associated clinical note summaries. It should be noted that the con-
versation transcripts of the audio files are obtained using an automatic speech recognizer
[27].

The reports are organized under three sections corresponding to three broad areas of a
medical note as follows:

1. History of Present Illness (HPI), which captures the reason for the visit, and the
relevant clinical and social history.

2. Physical Examination (PE), which captures both normal and abnormal findings from
a physical examination.
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3. Assessment and Plan (AP), which captures the assessment by the doctor and the
treatment plan, e.g., medications and physical therapy.

We evaluate our summarization models on the creation of the summaries for each section.
The experimental results are based on a dataset that consists of around 40,000 encounters
for each section. The dataset is partitioned chronologically (date of collection) into training,
validation, and testing partitions. It should be noted that the doctors present in the testing
set are also present in the training set. Table 4.1 shows detailed statistics of our dataset
in terms of the number of training examples and source and target sequence lengths.

Train Valid Test A.W P.D (%)
AP 42106 648 2525 2586 99.2
HPI 43092 657 2551 2584 96.9
PE 39815 635 2442 2633 91.7
RAD 91544 2000 600 49 100

Table 4.1: Number of reports/encounters for the train/validation/test set of each section
of the family medicine reports and the MEDIQA third task; P.D is the percent distribution
of encounters which have the section in their report, and A.W is average word count in
those encounters.

As previously mentioned, there are no large-scale public datasets for medical conver-
sation summarization. For a more open comparison, we also experiment with a public
dataset. We tackle the third task of the MEDIQA 2021 challenge [16] of automatic sum-
marization of English radiology reports (RAD) of the MIMIC-CXR dataset [47] (license:
https://tinyurl.com/mimic-licence). From Table 4.1, it can be observed that the input
documents in the MEDIQA dataset are much smaller than the documents of the other
real-world datasets on which we experiment and thus contain less medical information.
However, we include this dataset in order to have an evaluation of the models and the
baseline on a publicly available dataset.

4.4.2 Experimental Setup

We report the results of the comparison of our proposed MedicalSum model with the base-
line pointer-generator model (Enarvi-PG) [27]. We also experiment with three variations
of our model that only contain (a) the guidance signal (MedicalSumguidance); (b) the se-
mantic type embedding (MedicalSumsemantic); and (c) the medical weighted loss function
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(MedicalSumloss), in order to measure how each signal individually affects the model’s per-
formance. These models are implemented using the Fairseq library [77] on PyTorch 1.5.0.
All experiments are executed on V100 GPU with 32G GB of system RAM on Ubuntu
18.04.3 LTS.

We use a vocabulary consisting of the 45k most frequent words. The same vocabulary
is shared between the source and the target tokens. We train the models for a maximum of
20k steps. It should be noted that Enarvi-PG, the MedicalSumguidance and MedicalSumloss

model have the exact same number of parameters (74,724,353), as the input and the ‘guid-
ance’ encoder share their weights. However, MedicalSum and the MedicalSumsemantic model
have an additional 25,600 parameters due to the inclusion of the semantic type embeddings.

Hyperparameter tuning

In order to address the reproducibility concerns of the NLP community [25], we provide
the search strategy and the bound for each hyperparameter: the batch size is set between
4 and 8, and the α parameter of the medical weight loss is tested with the values 0.01,
0.1 and 0.2. The best values are chosen based on the validation set micro ROUGE-1 F1
values. To make a fair comparison, we tune the hyperparameters of each model in order
to demonstrate its best performance. For the Enarvi-PG, MedicalSum, and the models
with each individual medical signal, the batch size is set to 4, and the medical weight loss
parameter is set to 0.01.

We run our models on three (random) seeds, and we provide the average scores and
standard deviation for the testing and the validation set. We compare the models on the
ROUGE-1 F1 score, which is based on the overlap of unigram, and the ROUGE-L F1
score, which is based on the lengths of the longest common subsequences between the
actual summary and the output of the model.

4.5 Results

4.5.1 Summarization Model Comparison

The mean and standard deviation of ROUGE-1 F1 and ROUGE-L F1 for all the competing
models are reported in Table 4.2.

MedicalSum outperforms the pointer generator (Enarvi-PG) baseline on all the datasets
since all the (three) previously mentioned medical signals have a positive contribution to
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TEST
Model Micro F1 HPI PE AP RAD

Enarvi-PG
Rouge-1 48.04 ± 0.4 66.11 ± 0.3 43.02 ± 0.4 27.01 ± 0.2
Rouge-L 34.21 ± 0.3 63.15 ± 0.2 36.19 ± 0.3 25.01 ± 0.3

Med.Sumloss
Rouge-1 48.64 ± 0.2 67.37 ± 0.2 43.85 ± 0.4 27.34 ± 0.2
Rouge-L 34.32 ± 0.3 63.77 ± 0.3 36.67 ± 0.5 25.37 ± 0.2

Med.Sumguid.
Rouge-1 48.79 ± 0.3 68.02 ± 0.2 43.72 ± 0.5 27.57 ± 0.2
Rouge-L 35.14 ± 0.3 64.17 ± 0.2 36.65 ± 0.3 25.66 ± 0.2

Med.Sumsem.
Rouge-1 48.90 ± 0.2 67.80 ± 0.3 43.64 ± 0.4 27.56 ± 0.3
Rouge-L 34.79 ± 0.2 63.93 ± 0.2 36.42 ± 0.2 25.39 ± 0.3

MedicalSum
Rouge-1 48.98 ± 0.3 68.22 ± 0.2 44.54 ± 0.3 27.77 ± 0.3
Rouge-L 35.22 ± 0.3 64.48 ± 0.3 37.34 ± 0.2 26.06 ± 0.2

VALIDATION

Enarvi-PG
Rouge-1 48.17 ± 0.3 67.44 ± 0.2 43.23 ± 0.4 29.91 ± 0.3
Rouge-L 34.88 ± 0.3 64.68 ± 0.2 36.39 ± 0.3 29.95 ± 0.3

Med.Sumloss
Rouge-1 49.29 ± 0.2 67.89 ± 0.2 44.02 ± 0.3 30.32 ± 0.3
Rouge-L 34.94 ± 0.3 64.33 ± 0.3 36.70 ± 0.2 30.14 ± 0.3

Med.Sumguid.
Rouge-1 49.55 ± 0.3 68.18 ± 0.3 44.32 ± 0.4 30.35 ± 0.2
Rouge-L 35.14 ± 0.3 64.66 ± 0.2 37.01 ± 0.3 30.81 ± 0.2

Med.Sumsem.
Rouge-1 49.39 ± 0.3 68.02 ± 0.2 44.16 ± 0.4 30.30 ± 0.2
Rouge-L 34.99 ± 0.4 64.41 ± 0.3 36.90 ± 0.5 30.50 ± 0.2

MedicalSum
Rouge-1 49.68 ± 0.2 68.37 ± 0.3 44.98 ± 0.3 30.63 ± 0.3
Rouge-L 35.43 ± 0.2 64.83 ± 0.2 37.90 ± 0.2 31.45 ± 0.3

Table 4.2: Results of mean ± standard deviation for each model on the test/validation set;
best values are bolded.

its performance (see ablation details in subsection 4.5.2) by encouraging MedicalSum to
take into consideration different medical information (subsection 4.5.3). It achieves an
improvement of between 0.8% (on the radiology dataset) and 2% (on the PE section). The
MedicalSumsemantic, the MedicalSumloss, and the Enarvi-PG model have similar running
times (117K seconds for the HPI, AP and PE sections and 64K seconds for the radiology
dataset). MedicalSum and the MedicalSumguidance are always slower (by 4%) due to the
introduction of the second ‘guidance’ encoder.
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4.5.2 Ablation Study

In order to understand the effect that each medical signal has on the model’s performance,
we conduct an ablation test, comparing the performance of three variations of the Medical-
Sum model, with each model being allowed to access only one of the medical signals. The
results of this comparison are listed in Table 4.2. We observe that for every dataset, Medi-
calSum achieves its best performance when all the medical signals are available. However,
as can be observed in Table 4.2, each model that has access to any of the medical signals
outperforms the baseline model.

The guidance signal (MedicalSumguidance) seems to have the most positive effect across
all the sections and the radiology dataset since it can more clearly guide the model to
the most important sections of the input. On the other hand, the medical weight loss
(MedicalSumloss) seems to have the least influence on the model’s performance. However,
as we will show in the qualitative analysis (subsection 4.5.3), it can aid the model in fo-
cusing on medical information. Enriching the input embedding with semantic information
(MedicalSumsemantic) seems to boost the performance of the model as it forces the embed-
dings of words that are associated with the same semantic type to become more similar
to each other in the embedding space. These experiments provide further evidence of the
positive effect of each of the medical signals on the performance of the MedicalSum model.
Finally, in subsection 4.5.3, we will provide a qualitative analysis to demonstrate how each
signal can ‘guide’ a summarization model to medical information that the baseline model
overlooked.

4.5.3 Qualitative Model Output Comparison

In the previous section, we showed how the MedicalSum model improves ROUGE scores
compared to a state-of-the-art baseline. In this section, we will qualitatively evaluate some
of the differences in summaries produced by each model variant and illustrate how each
feature contributes to the creation of accurate medical summaries.

To do this, we sample several generated outputs and illustrate the differences between
the different medical models. Table 4.3 shows a sample target summary and the com-
parison with the output of the Enarvi-PG transformer model and the medical signals of
MedicalSum. It should be noted that the only criterion for choosing these examples is that
they should contain medical entities. Some of the shorter input texts contain no medical
entities. Thus, we do not include those texts here as they would not show the differences
between the baseline and the guided medical summarization model. As it can be observed
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Model Output

Target-
summary

ASSESSMENT AND PLAN –lf1– Acute left hip pain . –lf1– The patient
has been experiencing acute left hip pain since . The pain is in her
sacroiliac joint on her left side . I have prescribed a short course of
prednisone to take in the morning after breakfast . I have instructed
her not to take ibuprofen, Advil , or Aleve . I have also instructed
her to apply heat to her back . we can get an x-ray of her lower back.

Enarvi-PG

ASSESSMENT AND PLAN –lf2– 1 . Left hip pain . –lf1– . I recom-
mend the patient take a short course of prednisone . I have advised her
to apply heat to the affected area . –lf2– 2 . Preventative care .–lf2–
Instructions –lf1–

Medical-
Sumsemantic

Assessment and Plan : –lf2– 1 . Acute left hip pain . –lf1– the left
hip pain is sciatic pain. I recommend the patient take a short course of
prednisone for 10 days . She can take it in the morning after breakfast
. I also recommend she take a shower going to the kitchen daily . I also
recommend she can also try applying heat to the affected area .

Medical-
Sumguidance

ASSESSMENT AND PLAN –lf2– 1 . Acute left hip pain . –lf1– I have
prescribed a short course of prednisone . I advised the patient to take
this in the morning after breakfast . I advised the patient to apply heat
to the affected area for 10 days .advised the patient to avoid NSAIDs
. I have ordered an x-ray of the lower back .

Medical-
Sumloss

ASSESSMENT AND PLAN –lf2– 1 . Acute left hip pain . –lf1– I have
prescribed her a short course of prednisone . If her symptoms do not
improve , I will refer her to physical therapy to strengthen the muscle
of her back . –lf2– 2 . Preventative care . –lf1– The patient is due for
a x-ray .

MedicalSum

ASSESSMENT AND PLAN –lf1– 1 . Acute left hip pain . –lf1– I
suspect the left hip pain is sciatic pain . I will order an x-ray of the
left hip . I have instructed the patient to apply heat to the lower back
and see unusual daily chores . I advised the patient to avoid NSAIDs
I recommended that she perform acute exercise when she is acutely
inflamed after 10 days.

Table 4.3: First example of distinct output from summarization models of different medical
signals. The medical entities are highlighted in red color.

in Table 4.3, the summary from the pointer generator (Enarvi-PG) baseline model does
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not include the following medical information:

1. the medicines: ibuprofen, Advil, or Aleve and

2. x-rays

. In contrast, the MedicalSumguidance model has included in its summary the medical
entities x-ray and NSAID (Non-steroidal anti-inflammatory drugs), which are identified
as medical entities and were part of the guidance signal. The MedicalSumloss model also
includes the x-ray token since it provides a stronger incentive for the model to predict
‘medical’ words by assigning a higher weight to the words that have a medical meaning.
The MedicalSum model includes all the previously mentioned medical words, as it has
taken advantage of all the medical signals.

Model Output

Target-
summary

The left eye swelling with burning and itching has been present for 2
weeks . I will prescribe olopatadine 0.2 percent ophthalmic drops .
If the symptoms do not improve , the patient will return and consider
bacterial cause .–lf2– Dyslipidemia .

Enarvi-PG
ASSESSMENT AND PLAN : The patient has allergic conjunctivitis of
left eye . –lf1– - Patient Education and Counseling : The patient was
advised to keep wiping green and thick mucus from the eye

Medical-
Sumsemantic

ASSESSMENT AND PLAN : –f1– 1 . Allergic conjunctivitis of left eye.
–f1– The patient was advised to continue using his eye drops .

Medical-
Sumguidance

ASSESSMENT/PLAN –f1– Allergic conjunctivitis . I recommended
that the patient continue daily loratadine .–lf2– Dyslipidemia

Medical-
Sumloss

ASSESSMENT/PLAN –lf1– Allergic conjunctivitis –lf1– –lf1– Medical
Treatment : The patient will continue to take loratadine –lf2– Dyslipi-
demia

MedicalSum
ASSESSMENT/PLAN –f1– Allergic conjunctivitis . –f1– - Medical
Treatment : The patient will continue daily loratadine and eye drops
.–lf2– Dyslipidemia

Table 4.4: Second example of distinct output from summarization models of different
medical signals. The medical entities are highlighted in red color.

Another example that showcases the strength of the medical signals can be found in
Table 4.4. The summary from the Enarvi-PG model lacks two important medical facts:
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1. ophthalmic drops; and

2. Dyslipidemia.

Both the MedicalSumguidance and the MedicalSumloss models include the word ‘Dyslipi-
demia’, as it is identified as a medical word. The MedicalSumsemantic model also includes
the medical concept ‘eye drops’ as a replacement for ‘ophthalmic drops’ since ‘eye’ and
‘ophthalmic’ have the same semantic type in UMLS. The MedicalSum model includes all
of the previously mentioned medical words. These examples demonstrate how, in addition
to improving ROUGE scores, the MedicalSum model also generates clinical summaries
that contain more relevant medical facts.

4.6 Conclusion

In this chapter we presented a novel approach for medical conversation summarization that
integrated medical knowledge into the summarization process of a contextual model. In
particular, our model could provide external medical guidance that helps key information
pass the model’s decision process and appear in the summary. We also introduced a novel
weighted loss function that provides a stronger incentive for the model to correctly predict
words with a medical meaning. The model also created more meaningful input embeddings
by forcing the embeddings of the words associated with the same semantic type to become
more similar to each other by incorporating information from the semantic type of each
medical word into the input embedding layer of the model.

Our analysis showed that these features allowed the model to produce more accurate
AI-generated medical documentation. MedicalSum outperformed the pointer-generator
(Enarvi-PG) baseline and achieves ROUGE score gains of 0.8 to 2 points. Our ablation
study demonstrated the positive effect of each of the medical signals on the performance
of the MedicalSum model, as the model achieved its best performance for every dataset
when all the medical signals were available. The qualitative analysis also showed that our
model did a more complete job by including medical entities that contain crucial medical
information in the output summary.

Thus far, we have shown novel techniques for augmenting the architecture of a contex-
tual model with external structured information. In the following chapter, we will examine
the effectiveness of a model that can integrate information from the relations of different la-
bels with a contextual model that can process large documents. We will focus the research
on a challenging clinical NLP multi-label classification task, namely, the ICD automatic
coding problem.
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Chapter 5

Knowledge Augmentation of
Contextual Models for Imbalanced
Multi-Label Classification Problems
in the Biomedical Domain

5.1 Introduction

In the previous chapters, we proposed several novel techniques for augmenting the stan-
dard transformer-based architecture with structured information from knowledge bases.
We showed how external general lexical knowledge could aid a model in distinguishing
which words are semantically similar and how structured medical knowledge can boost the
performance of transformer-based models in a variety of medical tasks. In this chapter,
we will investigate whether integrating a contextual model with information from the re-
lations of different labels with a novel attention mechanism can boost its performance in
a multi-label classification problem.

We will investigate the case of the International Classification of Diseases (ICD) coding
classification task. The ICD system is a widely used coding system, maintained by the
World Health Organization [8]. It contains a special set of alphanumeric codes [50] repre-
senting diagnosis and treatment procedures during a patient visit to a healthcare facility.
The ICD system is mainly used for billing and reporting purposes [43]. However, it can
also be used to codify related information such as symptoms, cause of injury and patient
complaints.
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ICD codes have improved the consistency across physicians in recording patient symp-
toms and diagnoses for the purposes of clinical research and payer claims. Assigning the
most appropriate codes is an important task in healthcare since erroneous ICD codes could
seriously affect the organization’s ability to measure the patient outcome accurately[46].

The ICD coding system organizes codes in a tree structure, with edges representing is-a
relationships between parents and children from the most general to the most specific codes
that are accompanied with non-essential modifiers (Figure 5.1). By treating the medical
coding of medical documents as a multi-label text classification task (i.e., assigning a
set of labels to each instance) we will investigate whether the relations between different
labels can be efficiently encoded in an attention mechanism. Specifically, we will consider
whether integrating information from a Graph Convolutional Network (GCN) which takes
advantage of the relations between different medical codes, with a BigBird contextual
model that can process large documents can boost the performance of a model on the
medical coding classification task.

Figure 5.1: Example of the hierarchical nature of the ICD codes [105].

This chapter is organized into five parts. Related work on ICD coding is presented in
Section 5.2. The characteristics of the proposed architecture for integrating clinical knowl-
edge into a contextual text classification model are detailed in Section 5.3. The dataset and
the experimental setup are described in Section 5.4. The results of the experiments and
our ablation study are reported in Section 5.5, followed by the conclusion of this chapter
in Section 5.6.
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5.2 Related Work

The ICD coding task is a crucial task for making accurate clinical, operational, and finan-
cial decisions in healthcare. Traditionally, medical coders review clinical documents and
manually assign the appropriate ICD codes by following specific coding guidelines.

Recent development in NLP has introduced deep learning models that achieved state-
of-the-art performance on the ICD classification task. Shi et al. [96] proposed a model
that used word/character embeddings and recurrent neural networks (LSTM) to generate
the representations of the ICD codes. Mullenbach et al. [74] introduced the CAML model,
which used an attention-based convolutional neural network (CNN) model with an atten-
tion mechanism in order to identify the most relevant segments to the ICD codes in each
medical note (Figure 5.2). However, the main disadvantage of these approaches was that
they did not consider the relations between the different codes.

Figure 5.2: The CAML architecture in [74].

Cao et al. [20] used the co-appearance values between the ICD codes for creating a
weighted adjacency matrix in order to exploit the co-appearance between the codes in the
medical notes. However, the main disadvantage of using this metric was that it cannot
accurately calculate the relation between two highly correlated but ‘unpopular’ codes.

63



Recent attempts at using contextual models (e.g., BERT [23]) on the ICD classification
task have failed to achieve state-of-the-art results [125] mainly due to their inability to
process long documents (i.e., medical notes). Fortunately, Zaheer et al. [122] introduced
the BigBird model, a contextual model that allows the processing of large documents. The
main advantage of this model is the use of a combination of three types of sparse attention
mechanisms as illustrated in Figure 5.3, namely, (a) Random attention since two tokens
that are in different positions may still share useful information; (b) Window attention
where a full spectrum of attention to n-nearest tokens for each token is guaranteed; and
(c) Global attention since global tokens can be used to represent the entire input sequence.
This combined sparse attention mechanism allows the model to address one of the main
limitations of contextual models like BERT [23], which is the quadratic dependency on the
sequence length due to their full attention mechanism.

Figure 5.3: The sparse attention mechanism of BigBird [122].

5.3 Proposed ICDBigBird Model

To enhance the performance of previous approaches, we developed ICDBigBird, which
we demonstrate can successfully integrate a Graph Convolutional Network (GCN), which
takes advantage of the relations between ICD codes, with a BigBird contextual model that
can process large documents.

A Graph Convolutional Network (GCN) [51] is a neural network architecture that can
capture the general knowledge about the connection between entities. Specifically, GCN
builds a symmetric adjacency matrix based on a predefined relationship graph, and the
representation of each node is calculated according to its neighbors [51].

In this section, we will describe the proposed ICDBigBird model. First, we will con-
struct the ICD Graph Convolutional Network, which creates an ‘enriched’ representation
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Figure 5.4: ICDBigBird model architecture. ICDBigBird has the ability to integrate a
Graph Convolutional Network that takes advantage of the relations between codes with
a BigBird contextual model which can process large documents for the ICD classification
task.

of the embeddings of ICD codes by taking into account the relation between the different
codes. Then, we will describe the BigBird model, which is used for creating the contextual
representation of each discharge summary and the label attention layer that showcases the
most relevant information to the ICD codes in the representation of each document. An
overview of the architecture of ICDBigBird is depicted in Figure 5.4.

5.3.1 ICD Graph Convolutional Network

We use a GCN to capture a more ‘enriched’ representation for each ICD code. In order
to use the ICD-GCN, we first construct an adjacency matrix A ∈ Rn×n (where n is the
number of unique ICD codes) to represent the connections of ICD codes by using the
normalized point-wise mutual information (NPMI) which is described in equation 5.1:

NPMI(i, j) = − 1

log p(i, j)
log

p(i, j)

p(i)p(j)
(5.1)

where i and j are different ICD codes and p(i, j) = N(i,j)
N

, p(j) = N(j)
N

where N(i, j) is
the number of documents that are labeled with both i and j codes, N(i) is the number
of documents that are labeled with i code and N is the total number of documents. We
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create an edge between two codes if their NPMI value is greater than a threshold. We
empirically set the threshold to 0.2 after experimenting with different threshold values.

We decide to create the adjacency matrix of the ICD-GCN by utilizing the NPMI values
instead of considering the hierarchical associations of the ICD codes. This is because we
mainly focus on the task of classifying the top 50 most frequent ICD codes (a popular
sub-problem of the ICD classification task) [96], where we find little to no hierarchical
connection between these codes.

We then construct a definition (sentence) embedding matrix for all the ICD codes
using their ICD-9 (sentence) definition from the MIMIC III dataset [47] and the pre-
trained sentence transformer embedding model of Reimers et al.[87], as it has been shown
to outperform other state-of-the-art sentence embedding methods.

An updated representation of all ICD codes from the ICD-GCN is calculated as follows
(equation 5.2) :

Û = Relu(ÂXW ) (5.2)

where X ∈ Rn×m is the definition embedding matrix, n is the number of ICD codes,
m is the size of the definition-sentence embedding of each ICD code, W ∈ Rm×h is the
weight matrix, h is the BigBird’s hidden dimension and Â = D− 1

2AD− 1
2 is the normalized

symmetric adjacency matrix where Dii =
∑

j Aij.

We concatenate the output of the ICD-GCN with the initial embedding of ICD codes
in order to get a richer representation of the codes [88] (equation 5.3):

U = Û ∥X,U ∈ Rn×(m+h) (5.3)

5.3.2 ICDBigBird Model

Assuming that a discharge summary has n words, the model’s tokenizer generates tokens
for each word in the document. Subsequently, the tokens are passed through the input
embedding layer of the BigBird model. The input embeddings in turn are passed through
multiple attention-based layers, where each layer produces a contextualized embedding of
each token. Then, the model produces the final contextual representation of the document
H ∈ Rt×h, where t = 4096 is the number of tokens and h is the BigBird’s hidden dimension.
We use a fully connected linear layer for creating the Ĥ which is the final representation
of the BigBird‘s embeddings (equation 5.4):

Ĥ = Relu(HW1) (5.4)
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where Ĥ ∈ Rt×(m+h) and W1 ∈ Rh×(m+h). Afterwards, we apply a per-label attention
mechanism, in order to incorporate the most relevant information to the ICD codes in the
contextual representation of each document. Formally, using the U ∈ Rn×(m+h) which is
the ‘updated’ ICD coding definition-sentence embeddings matrix, we can compute the dot
product attention as (equation 5.5):

A = SoftMax(UĤ⊤) (5.5)

where A ∈ Rn×t. After calculating the attention score, the output of the attention layer
can be calculated as (equation 5.6):

V = AĤ (5.6)

where V ∈ Rn×(m+h). Given the ‘updated’ representation V, we can compute a probability
for each label by using a sum-pooling operation and a sigmoid transformation over the
linear projection of V (equation 5.7) :

ŷ = σ(pooling(V ◦W )) (5.7)

where W ∈ Rn×(m+h).

As the ICD task is a multi-label scenario, the loss function that is typically used is a
multi-label binary cross entropy loss (equation 5.8):

LBCE(y, ŷ) = −
n∑

i=1

(yilog(ŷi) + (1− yi)log(1− ŷi)) (5.8)

where y is the ground truth label and ŷ is a score vector of the ICD codes that our
model predicts for each document. However, due to the extremely imbalanced nature of
ICD codes, we decide to adopt the Label-Distribution Aware Margin (LDAM) [19]. In the
LDAM loss function the output value is subtracted by a label-dependent margin ∆i before
the sigmoid function (equation 5.9):

ŷ′ = σ(pooling(V ◦W )− 1(yi = 1)∆i) (5.9)

where 1(.) outputs 1 if yi=1 and ∆i =
C

n
1/4
i

where ni is number of instances of the i ICD

code in the training data and C is a hyper-parameter that needs to be tuned. It should
be noted that the main goal of LDAM loss is to regularize more the minority classes
than the popular classes so that it can improve the generalization error of minority classes
without sacrificing the model’s ability to fit the popular classes [19]. Thus we use the
LLDAM = LBCE(y, ŷ

′).
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5.4 Experiments

5.4.1 Dataset

Following previous research work in the ICD classification task [74, 46, 61], we conduct
our experiments on the subset of the English Multiparameter Intelligent Monitoring in
Intensive Care III (MIMIC-III) dataset [47] using the top 50 most frequent ICD codes [96].
The MIMIC dataset consists of anonymized electronic medical records in English of over
forty-thousand patients admitted to the intensive care units of the Beth Israel Deaconess
Medical Center (Boston, MA, USA) between 2001 and 2012.

We extract the free-text discharge summaries and clinical notes from the MIMIC III
dataset containing the 50 most frequent ICD codes. We then concatenate the discharge
summaries and notes from the same hospitalization admission into one single document.
We use the training/validation/testing split from Mullenbach et al. [74] and Li et al.
[61] for a fair comparison. The document set size of our subset of MIMIC-III is 8066 for
training, 1574 for validation, and 1729 for testing, respectively. Following the preprocessing
procedures used in the experiments of the DCAN model [46], the documents are tokenized,
with each token converted to lowercase. Any token that does not contain alphabetic
characters is removed. Instead of truncating the documents to 2500 words, we set the
token size limit to 4096 for our ICDBigBird model. This allows the model to take full
advantage of the available information that could be extracted from each document in the
dataset. In total, there are 1345 documents comprising more than 2500 words (with a
maximum, minimum, and average lengths of 7567, 105 and 1609 words, respectively).

5.4.2 Experimental Setup

In order to address the reproducibility concerns of the NLP community [25], we provide
the search strategy and the bound for each hyperparameter: the batch size is set between
32 and 64, and the learning rate is chosen among the values 2e-5, 3e-5 and 5e-5. We set the
number of training epochs between 25 and 30 epochs to allow for maximal performance.
The best values are chosen based on micro-F1 scores1 in the validation set. The final
hyperparameters selection of our ICDBigBird model is as follows: batch size 32, learning
rate 2e-5, trained on 30 epochs, and we empirically set the C hyper-parameter of the LDAM
loss to 2. All the contextual embedding models are implemented using the transformers

1https://github.com/jamesmullenbach/caml-mimic
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library [118] on PyTorch 1.7.1. All experiments are executed on a Tesla K80 with 64GB
of system RAM on Ubuntu 18.04.5 LTS.

5.5 Results

5.5.1 Top-50 ICD Classification Task

AUC-ROC F1
Model Macro Micro Macro Micro P@5
Att. LSTM [96] - 90.0 - 53.2 -
BI-GRU [74] 82.8 86.8 48.4 54.9 -
CAML [74] 87.5 90.9 53.2 61.4 -
DRC.[74] 88.4 91.6 57.6 63.3 61.8
LEAM [114] 88.1 91.2 54.0 61.9 61.2
HyperCore [20] 89.5±0.3 92.9± 0.2 60.9 ± 0.1 66.3 ± 0.1 63.2 ± 0.2
Mult.CNN [61] 89.9± 0.4 92.8 ± 0.2 60.6±1.1 67.0±0.3 64.1±0.1
DCAN [46] 90.2±0.6 93.1±0.1 61.5±0.7 67.1±0.1 64.2±0.2
ICDBigBird 90.0±0.5 92.9 ±0.2 63.1±0.5 69.6±0.1 65.4±0.1
ICDBigB.(val.) 91.0±0.6 93.3 ±0.1 64.1±0.4 70.4±0.1 65.1±0.3

Ablation Study
BERT[23] 80.3±0.4 84.4 ±0.5 43.7±0.2 51.4±0.5 51.9±0.3
BioBERT[58] 81.3±0.5 85.5 ±0.4 46.3±0.3 54.6±0.3 54.2 ±0.4
C.B.[4] 81.7±0.4 85.8 ±0.5 46.4±0.3 54.3 ±0.4 53.2±0.4
No attention 86.7±0.5 90.4 ±0.3 55.2±0.4 64.8±0.2 62.5±0.3
L. Attention 88.4±0.5 91.2 ±0.2 60.2±0.2 67.8±0.3 63.6±0.5
R. embedding 89.2±0.4 91.8 ±0.5 60.8±0.2 67.8±0.2 63.2±0.1

Table 5.1: Results of mean ± standard deviation of three runs of the ICDBigBird model
on the test split of the MIMIC-III dataset with top 50 ICD codes; We also provide the
performance of previous state-of-the-art models using the same test set. C.B. is the
Bio ClinicalBert; DRC. is DR-CAML; L. Attention is Linear Attention; R. embedding
is the random embedding; we also include the results on the validation split of MIMIC III
(ICDBigB.(val.)); Best values on the test set are bolded.

We benchmark our ICDBigBird model against existing state-of-the-art models for the
top 50 ICD classification tasks. For all the models, we evaluate the micro and macro aver-
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aging F1 score, the receiver operating characteristic curve (AUC-ROC), and the precision
at k codes with k=5 (P@5). In Table 5.1, we can observe that our model outperforms all
other models in the micro and macro averaging F1 and in the P@5 score with compara-
ble performance on the other two metrics (with the DCAN model [46] achieving the best
AUC-ROC results).

5.5.2 Ablation Study

In order to evaluate the effect of each feature on the performance of ICDBigBird, we
conduct an ablation study. The results are presented in Table 5.1.

1. We investigate whether the ability of the BigBird model to process large documents
can boost the performance of our framework. It can be observed that contextual
model architectures that can process documents of at most 512 tokens (Bert [23],
Biobert [58], and Bio ClinicalBert [4]) cannot achieve the performance of a BigBird
architecture even if these models are pre-trained on medical documents (BioBert and
Bio ClinicalBert).

2. We examine the effect of the GCN model by testing the performance of contextual
embeddings without enriching them with information from the definitions of the
codes through an attention mechanism (BigBird without attention) and by substi-
tuting the GCN attention mechanism with the typical linear attention mechanism
(Linear Attention) [74]. It can be observed that our model benefits from the attention
mechanism, as it cannot achieve optimal performance without it. Also, the fact that
the GCN graph attention mechanism achieves a better performance than a typical
linear attention mechanism is a strong indication that the GCN can provide valuable
information about the connections between the ICD codes.

3. Previous research work [46] used a random initialization of the embeddings of the
ICD codes. However, in our experiments, a model with random initialization of the
embedding of the codes (R. embedding) results in sub-optimal performance. Thus
we can conclude that using information from the definitions of the codes to initialize
their embeddings has a positive effect on the model’s performance.
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5.6 Conclusion

In this chapter, we presented a novel contextual model that has the ability to integrate a
Graph Convolutional Network model that takes advantage of the relations between codes
with a BigBird contextual model which can process large documents for the ICD classifi-
cation task.

Our evaluation showed the model’s efficiency, as it outperformed previous state-of-the-
art models for this task by at least 1.5 F1 points. Our ablation study demonstrated that a
contextual model that could process large documents (e.g., BigBird) performed better than
those that are limited to processing documents with length of, at most, 512 tokens, even
if they were trained on medical datasets. We illustrated that using information from the
definitions of the codes to initialize the definition-embeddings of the labels had a positive
effect on the model’s performance. We also showed that the relational information from a
Graph Convolutional Network was beneficial for the model’s performance.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

The digital transformation of our society is creating a tremendous amount of data at
an unprecedented rate. A large portion of these data is in unstructured text format [11].
There is an increased interest in NLP tools that can assist us in navigating, understanding,
and summarizing useful information from these textual data. This thesis illustrates how
structured external knowledge can direct an NLP model to learn the associations between
distinctive terminologies, which it otherwise may not have the opportunity to learn, due to
the scarcity of domain-specific datasets. By injecting structured domain-specific knowledge
into a deep learning NLP architecture, we show that we can to tackle the low-resource NLP
challenge, particularly in the biomedical domain. We also demonstrate the effectiveness of
these strategies in improving the performance and generalization of contextual models.

Four distinct but complementary strategies are pursued (Figure 6.1). The first strategy
is to augment contextual models with structured, general lexical information to aid the
model in distinguishing between semantically similar words. In Chapter 2, we present
LexSubCon, an end-to-end lexical substitution framework based on contextual embedding
models. LexSubCon updates the input policy of a contextual model by introducing a new
mix-up embedding strategy for the input embedding of the target word. We also combine
features from contextual embedding models and external lexical knowledge bases. These
features allow the model to determine the most appropriate substitution words without
modifying the meaning of the original sentence, by introducing a new gloss (definition)
similarity metric, which calculates the similarity of the sentence-definition embeddings of
the target word and its proposed candidates. We confirm that these features can improve
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the model’s performance, causing it to outperform other state-of-the-art models on two
benchmark datasets in the lexical substitution task.

Figure 6.1: Four distinct strategies that are pursued in the thesis.

Having successfully proven that general lexical structured knowledge can aid a contex-
tual model in distinguishing between semantically similar words, we extend this exploration
by incorporating domain-specific knowledge in the pre-training process of a contextual
word embeddings model (BERT). In Chapter 3, we focus our investigation in the biomed-
ical field using a standardized domain knowledge base, namely UMLS, to demonstrate the
effectiveness of our strategy. Our model, UmlsBERT, introduces domain knowledge in the
pre-training process and architecture of a BERT model. We propose a new multi-label
loss function for the Masked Language Modelling (Masked LM) pre-training task that
takes into consideration the connection between words that share the same concept unique
identifier (CUI) attribute in UMLS. We also introduce a semantic type embedding that
enriches the input embedding process by leveraging information from the semantic type of
each biomedical word. We demonstrate that the augmented model, namely UmlsBERT,
can learn the association of different clinical terms with similar meaning in the UMLS
Metathesaurus and the association between words of the same semantic type. We confirm
that these strategies can improve the model’s performance, as UmlsBERT outperforms
other biomedical BERT models in various medical downstream tasks (e.g., named-entity
recognition (NER) and clinical natural language inference).

We further extend the usage of medical knowledge in UMLS and we illustrate that
structured medical knowledge can also boost the performance of a (medical) summarization
transformer-based sequence-to-sequence model. We demonstrate that injecting structured
medical knowledge into a sequence-to-sequence summarization model can aid the model
in including relevant medical facts in the summarized output. In Chapter 4, we propose
MedicalSum, an architecture that takes advantage of external medical knowledge to identify
key medical information in the input text. MedicalSum uses a novel weighted loss function
that incentivizes the model to predict words with a medical meaning. MedicalSum also
creates more meaningful input embeddings insofar as it can force the embedding of the
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words of the same semantic type to become more similar in the embedding space by
incorporating information from the semantic type of each biomedical word. Our model
outperforms the baseline model on four medical summarization datasets. Our qualitative
analysis also shows that these features can guide the summarization process to include
relevant medical facts in the summarized output.

We also tackle a challenging NLP downstream task in the biomedical field, the multi-
label classification problem of automatic code assignment. We demonstrate the benefit
of knowledge augmentation in the ICD coding task in Chapter 5. We propose ICDBig-
Bird, an architecture that integrates a Graph Convolutional Network (GCN), which takes
advantage of the relations between ICD codes, with a BigBird contextual model that can
process large documents. Experiments on the MIMIC III dataset confirm that ICDBigBird
outperforms the existing state-of-the-art models. Furthermore, the ablation study shows
that the information from a GCN (created by taking into consideration the normalized
point-wise mutual information of the ICD codes in the medical documents) is beneficial to
the model’s performance.

In summary, this thesis examined knowledge augmentation strategies in every com-
ponent of transformer-based NLP models and different downstream tasks such as lexical
substitution, entity recognition, medical summarization, and multi-label classification. We
proposed novel strategies for injecting structured domain knowledge (from general-purpose
lexical knowledge to biomedical domain-specific knowledge bases) into contextual models
to tackle the low-resource NLP challenge and demonstrated their positive impact on model
performance. With a focus on the biomedical domain, the models proposed in this thesis
have the potential to accelerate the adoption of NLP tools in clinical research and practice.

6.2 Future Work

The scarcity of domain-specific datasets poses significant challenges in utilizing high-
performing, optimized NLP models. This dissertation aspires to make a few steps towards
injecting domain-specific knowledge into contextual models to tackle the low-resource NLP
challenge, particularly in the biomedical domain. Our approach to this vision, which is re-
flected in a similar pattern underlying this thesis, starts with understanding the challenges
in each NLP task and then explores novel solutions to specific problems. We believe that
some natural extensions to this dissertation would be the following:

Augmenting Contextual Models with General Lexical Knowledge: Lexical
Substitution is the task of generating appropriate words which can replace a target word in
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a given sentence without changing the sentence’s meaning. The increased research interest
in Lexical Substitution is due to its utility in various NLP fields such as data augmentation
and paraphrase generation. The process of incorporating structured knowledge into the
architecture of a contextual model in order to aid the model in distinguishing which words
are semantically similar presents an exciting spectrum of research opportunities. We plan
to pursue the following directions: (i) investigating novel methods to encode the knowledge
on asymmetric relations such as meronymy [57]; (ii) exploring other features for ranking the
candidates (e.g. parser information [102]); and (iii) testing the strategies mentioned above
on datasets in other languages using multi-language lexical databases (e.g., MultiWordNet
[83] or BalkaNet [108]) to investigate whether these features could have the same effect on
different languages.

Augmentation of Contextual Models in the Biomedical Domain: Contex-
tual word embedding models have achieved state-of-the-art results in many (clinical) NLP
tasks such as entity recognition and biomedical question answering [23, 58]. Augmenting
a transformer-based encoder model with structured knowledge from a specific (medical)
domain can aid the model in learning more easily the associations between distinctive ter-
minologies. We want to expand the techniques that we designed for augmenting contextual
models with structured medical information in the following directions: i) analyzing how
the model’s performance can be affected by UMLS hierarchical associations between words
(e.g. from general to more specific concepts accompanied by non-essential modifiers) that
extend the concept connection investigated in this dissertation; (ii) examining the effect of
augmenting contextual embeddings with medical knowledge when more complicated layers
are used atop the output embedding of the medical knowledge-augmented contextual ar-
chitecture; (iii) testing the medical-augmented contextual models in other biomedical tasks
(e.g. relation extraction task [53]) to further investigate the effect of structured medical
knowledge on the performance of a contextual model.

Augmenting Transformer-based sequence-to-sequence model for Summariz-
ing Medical Conversations: Traditionally, clinical professionals review clinical docu-
ments and manually create the appropriate summaries by following specific guidelines.
Medical note generation by abstractive summarization can be used to automate clinical
documentation and reduce the workload associated with creating summaries of clinical
encounters. Providing external knowledge in the summarization decision process presents
a wide range of open challenges and opportunities. In particular, we plan to tackle three
critical aspects: (i) examining different guidance signals, such as the inclusion of relational
triples between medical entities (e.g. a relation between disease and its symptoms); (ii)
testing different evaluation metrics for summarization, as the ROUGE metric may not be
the most suitable for summarization evaluation, especially in summaries with high termi-
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nology variations [22]; (iii) investigating the effects of guiding the summarization process
with soft templates for the case of real-world hospital summarization where each hospital
has a specific note template.

Contextual models for Imbalanced Multi-Label Classification Problems in
the Biomedical Domain: The ICD coding task is crucial for making clinical, opera-
tional, and financial decisions in healthcare. Traditionally, medical coders review clinical
documents and manually assign the appropriate ICD codes by following specific coding
guidelines. Automatic coding classification could help save time and cost in data extrac-
tion and reporting. We plan to extend our studies of integrating relational information
with contextual models in the following directions: (i) investigating the effects of using the
hierarchical structure of ICD codes for strengthening the GCN embeddings (especially in
the case of the complete ICD code set); (ii) testing the generalizability of an ICD classifica-
tion model that is trained on the complete ICD code set when it is provided with datasets
from a specific medical subdomain (e.g. family medicine or cardiac) that only contain the
medical codes of their respective field.
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tives. a general overview. In: D. Tufiş (ed): Special Issue on BalkaNet. Romanian
Journal on Science and Technology of Information, pages 3–4, 2004.

[109] Understanding lstm networks. http://colah.github.io/posts/

2015-08-Understanding-LSTMs/, 2015. visited on 2022-05-21.

[110] Ozlem Uzuner, Yuan Luo, and Peter Szolovits. Evaluating the state-of-the-art in au-
tomatic de-identification. Journal of the American Medical Informatics Association
: JAMIA, 14:550–63, 06 2007.

[111] Ozlem Uzuner, Brett South, Shuying Shen, and Scott DuVall. 2010 i2b2/va challenge
on concepts, assertions, and relations in clinical text. Journal of the American Medical
Informatics Association : JAMIA, 18:552–6, 06 2011.

89

https://www.microsoft.com/en-us/research/lab/microsoft-research-asia/articles/next-10-years-natural-language-processing/
https://www.microsoft.com/en-us/research/lab/microsoft-research-asia/articles/next-10-years-natural-language-processing/
http://www.icd9data.com/2015/Volume1/320-389/320-327/320/default.htm
http://www.icd9data.com/2015/Volume1/320-389/320-327/320/default.htm
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/


[112] M. M. van Buchem, H. Boosman, M. P. Bauer, I. Kant, S. Cammel, and E. Steyer-
berg. The digital scribe in clinical practice: a scoping review and research agenda.
NPJ Digital Medicine, 4, 2021.

[113] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. ArXiv,
abs/1706.03762, 2017.

[114] Guoyin Wang, Chunyuan Li, Wenlin Wang, Yizhe Zhang, Dinghan Shen, Xinyuan
Zhang, Ricardo Henao, and Lawrence Carin. Joint embedding of words and labels for
text classification. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 2321–2331, Melbourne,
Australia, July 2018. Association for Computational Linguistics.

[115] Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. Neural network accept-
ability judgments. Transactions of the Association for Computational Linguistics,
7:625–641, 2019.

[116] Jason Wei and Kai Zou. EDA: Easy data augmentation techniques for boosting
performance on text classification tasks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), pages 6382–6388,
Hong Kong, China, November 2019. Association for Computational Linguistics.

[117] Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge
corpus for sentence understanding through inference. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 1112–
1122. Association for Computational Linguistics, 2018.

[118] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, R’emi Louf, Morgan Funtowicz, and Jamie
Brew. Huggingface’s transformers: State-of-the-art natural language processing.
ArXiv, abs/1910.03771, 2019.

[119] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff
Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian,
Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick,

90



Oriol Vinyals, Gregory S. Corrado, Macduff Hughes, and Jeffrey Dean. Google’s
neural machine translation system: Bridging the gap between human and machine
translation. ArXiv, abs/1609.08144, 2016.

[120] Jian Yang, Gang Xiao, Yulong Shen, Wei Jiang, Xinyu Hu, Ying Zhang, and Jinghui
Peng. A survey of knowledge enhanced pre-trained models. ArXiv, abs/2110.00269,
2021.

[121] Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. Recent trends
in deep learning based natural language processing [review article]. IEEE Computa-
tional Intelligence Magazine, 13:55–75, 08 2018.

[122] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris
Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang,
et al. Big bird: Transformers for longer sequences. Advances in Neural Information
Processing Systems, 33, 2020.
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Appendix A

IOB Format

The IOB format (short for Inside-Outside-Beginning) was defined for the CoNLL-2003
shared task on the named-entity recognition (NER) task. In the IOB format, every word
in each chunk can be categorized with one of the following three labels:

• I-: The I- prefix indicates that the word is inside a chunk.

• O-: The O- prefix indicates that the word is a token that belongs to no chunk (outside
of any chunk).

• B-: The B- prefix indicates that the word is at the beginning of a chunk.

For example, given the sentence:

His sister stated that the mother had a progressive mental decline.

with NER Label:

“NULL NULL EVIDENTIAL NULL NULL NULL PROBLEM PROBLEM PROB-
LEM’

its IOB format would be:

“O O B-EVIDENTIAL O O O B-PROBLEM I-PROBLEM I-PROBLEM’
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Appendix B

UMLS Metathesaurus

Table B.1 is a list of all semantic types and their semantic groups used in the UmlsBERT
architecture.

Semantic Group Semantic Type

Chemicals Amino Acid,
& Drugs Peptide, or Protein
Disorders Acquired Abnormality
Disorders Anatomical Abnormality
Chemicals Biologically Active
&Drugs Substance
Anatomy Body System

Anatomy
Body Location or

Region
Chemicals Biomedical or
&Drugs Dental Material

Anatomy
Body Part, Organ, or
Organ Component

Anatomy
Body Space or

Junction
Anatomy Cell Component
Physiology Cell Function
Anatomy Cell
Disorders Congenital Abnormality
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Disorders Cell or Molecular Dysfunction
Procedures Diagnostic Procedure
Activities Daily or
&Behaviors Recreational Activity
Disorders Disease or Syndrome
Chemical Element, Ion or
&Drugs Isotope
Chemicals&Drugs Enzyme
Disorders Finding
Chemicals Hazardous or
&Drugs Poisonous Substance
Physiology Genetic Function
Chemicals&Drugs Hormone
Chemicals&Drugs Immunologic Factor
Chemicals&Drugs Inorganic Chemical
Disorders Injury or Poisoning

Chemicals&Drugs
Indicator, Reagent, or

Diagnostic Aid
Procedures Laboratory Procedure
Physiology Mental Process

Disorders
Mental or

Behavioral Dysfunction
Physiology Molecular Function
Disorders Neoplastic Process
Activities&Behaviors Occupational Activity
Chemicals&Drugs Organic Chemical
Physiology Organism Function
Physiology Organ or Tissue Function
Disorders Pathologic Function
Chemicals&Drugs Pharmacologic Substance
Disorders Sign or Symptom
Anatomy Tissue
Chemical&Drugs Vitamin

Table B.1: Example of Semantic Types and Semantic Group names that are used in the
UmlsBERT architecture
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