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Abstract

Motivated by growing interest in optimization under uncertainty, we undertake a sys-
tematic study of designing approximation algorithms for a wide class of 1-stage stochastic-
optimization problems with norm-based objective functions. We introduce the model of
stochastic minimum norm combinatorial optimization, denoted StochNormOpt. We have
a combinatorial-optimization problem where the costs involved are random variables with
given distributions, and we are given a monotone, symmetric norm f . Each feasible solu-
tion induces a random multidimensional cost vector whose entries are independent random
variables, and the goal is to find an oblivious solution (i.e., one that does not depend on the
realizations of the costs) that minimizes the expected f -norm of the induced cost vector.

We consider two concrete problem settings. In stochastic load balancing, jobs with
random processing times need to be assigned to machines, and the induced cost vector is
the machine-load vector, where the load on a machine is given by the sum of job random
variables that are assigned to it. In stochastic spanning tree, we have a graph whose edges
have stochastic weights, and the induced cost vector consists of edge-weight variables of
edges that belong to the spanning tree.

The class of monotone, symmetric norms is broad: it includes frequently-used objectives
such as max-cost (`∞-norm) and sum-of-costs (`1-norm), and more generally all `p-norms
and Top`-norms (sum of ` largest coordinates in absolute value). Closure properties under
taking nonnegative linear combinations and pointwise maximums offer versatility to this
class of norms. In particular, the latter closure-property can be used to incorporate multiple
norm budget constraints f`(x) ≤ B`, ` = 1, . . . , k through a single norm-minimization
objective.

Our chief contribution is a framework for designing approximation algorithms for stoch-
astic minimum norm optimization, a significant generalization of the framework of Chakra-
barty and Swamy [5] for the deterministic version of StochNormOpt. Our framework has
two key components:

(i) A reduction from the minimization of expected f -norm to the simultaneous mini-
mization of a (small) collection of expected Top`-norms; and

(ii) Showing how to tackle the minimization of a single expected Top`-norm by leveraging
techniques used to deal with minimizing the expected maximum, circumventing the
difficulties posed by the non-separable nature of Top` norms.
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We apply our framework to obtain approximation algorithms for stochastic min-norm
versions of load balancing (StochNormLB) and spanning tree (StochNormTree) problems.
We highlight the following approximation guarantees.

• An O(1)-approximation for StochNormLB on unrelated machines with: (i) arbitrary
monotone symmetric norms and job sizes that are weighted Bernoulli random vari-
ables; and (ii) Top` norms and arbitrary job-size distributions.

• An O(log logm/ log log logm)-approximation for general StochNormLB, where m is
the number of machines.

• For identical machines, the above approximation guarantees are in fact simultaneous
approximations that hold with respect to every monotone, symmetric norm.

• An O(1)-approximation for StochNormTree with an arbitrary monotone, symmetric
norm and arbitrary edge-weight distributions; this guarantee extends to stochastic
minimum-norm matroid basis.

We also consider the special setting of StochNormOpt when the underlying random
variables follow Poisson distributions. Our main result here is a novel and powerful reduc-
tion showing that, in essence, the stochastic minimum-norm problem can be reduced to a
deterministic min-norm version of the same problem. Applying this reduction to (Poisson
versions of) spanning tree and load balancing problems yields: (i) an optimal algorithm
for StochNormTree; (ii) a (2 + ε)-approximation for StochNormLB when the machines are
unrelated, and (iii) a PTAS for StochNormLB when the machines are identical. Results
(ii) and (iii) utilize approximation algorithms for (deterministic) min-norm load balancing
from the work of Ibrahimpur and Swamy [19] in a black-box fashion.
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Chapter 1

Introduction

Uncertainty is ubiquitous in real-world optimization problems. Optimization under uncer-
tainty refers to the branch of mathematical optimization where a decision-maker is faced
with taking actions without complete knowledge of the underlying data or the model.
In this thesis, we focus on a well-studied optimization-under-uncertainty paradigm called
1-stage stochastic optimization, where the randomness follows a known probability distri-
bution and the decision-maker is only allowed to take oblivious actions; in other words,
the randomness is stochastic and the action is fixed before knowing the actual realizations
of the underlying random variables. Each action induces a multidimensional random cost
vector, and the decision maker wants to find an “optimal” action that minimizes (or max-
imizes) the expected objective value of the induced cost vector, for some given objective
function. Here, the expectation is over the known underlying distribution.

Stochastic load-balancing and scheduling problems, where jobs have uncertain sizes
(a.k.a processing times), constitute a prominent class of stochastic-optimization problems
(see, e.g., [33, 23, 9, 36, 22, 10, 12]). In stochastic load balancing, we have stochastic jobs
that need to be distributed among m machines. An assignment of jobs to machines induces
an m-dimensional random load vector on the machines, where the load on a machine is
given by the sum of processing-time random variables of the jobs that are assigned to
it. The most-popular objective in load balancing literature is minimizing the maximum
load-vector entry, often referred to as the makespan objective, and this gives rise to the
stochastic makespan minimization problem, where we want to find an assignment that
minimizes the expectation of the maximum load across all machines. Kleinberg, Rabani
and Tardos [23] were the first to devise approximation algorithms for this problem, and
they obtained an O(1)-approximation in the setting of identical machines. Gupta, Kumar,
Nagarajan and Shen [10] later generalized this result and obtained an O(1)-approximation
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in the unrelated-machines setting. More general objective functions, such as minimizing
the expected `p norm of the load vector, have been considered by [10, 34] as a means to
capture solutions that trade off the cost incurred by the worst off machine (i.e., adopting an
egalitarian view) and the total cost incurred across all machines (i.e., adopting a utilitarian
view); the latter work by Molinaro [34] gives an O(1)-approximation for stochastic load
balancing with any `p norm.

As another example in this setup, consider the stochastic spanning tree problem, which
is the following basic stochastic network-design problem: we have a graph with stochastic
edge-weights and we seek a spanning tree of low expected objective value, where the ob-
jective is applied to the cost vector that consists of edge-weight random variables that are
part of the tree. For the deterministic version of this problem, where edge e has a given
weight we ∈ R≥0, it is well-known that a minimum-weight spanning tree T simultaneously
minimizes the `p-norm of the induced cost vector (we)e∈T for every p ≥ 1; this is, however,
not true for the stochastic setting.

More often than not, in both deterministic and stochastic settings, the choice of an
objective function has a significant influence on the optimal solution with respect to that
objective function. Moreover, the algorithms designed for different objectives can be fairly
different. Since objective functions are usually a means to an end, it is desirable to build
algorithmic frameworks that allow one to choose an objective function from a wide class of
functions. Motivated by this consideration, Chakrabarty and Swamy [5] (see also [6]) in-
troduced a general model to unify various (deterministic) optimization problems, that they
call minimum-norm optimization: given an arbitrary monotone, symmetric norm f , find a
solution that minimizes the f -norm of the induced cost vector. They give an algorithmic
framework for minimum-norm optimization, and use it to obtain O(1)-approximation algo-
rithms for minimum-norm versions of load balancing and k-clustering problems. Inspired
by their success in the deterministic setting, we naturally ask:

“Is there a principled approach to design algorithms for stochastic-optimization
problems with objective functions given by monotone, symmetric norms?”

In this thesis, we introduce and study stochastic minimum norm combinatorial op-
timization, the stochastic generalization of minimum norm optimization. Before getting
into the details of our model, we briefly discuss the motivation for working at the level
of generality afforded by monotone symmetric norms. We need the following definition.
Recall that a function f : Rm → R≥0 is a norm if it satisfies: (i) f(x) = 0 iff x = 0; (ii)
f(x + y) ≤ f(x) + f(y) for all x, y ∈ Rm, and (iii) f(θx) = |θ|f(x) for all x ∈ Rm, θ ∈ R.
A monotone norm f satisfies f(x) ≥ f(y) for all x ≥ y ≥ 0, and f is said to be symmet-
ric if f(x) is invariant under permutations of the coordinates of x. We briefly highlight
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three benefits of working with the class of monotone symmetric norms. First, this class is
quite rich and broad. In particular, it contains all `p-norms, as also another fundamental
class of norms called Top`-norms: Top`(x) is the sum of the ` largest coordinates of x (in
absolute value). Notice that Top` norms provide another means of interpolating between
the min-max (Top1) and min-sum (Topm) problems (where m is dimension of the cost vec-
tor). Second, as noted in [5], from a theoretical viewpoint, an algorithmic framework for
min-norm optimization gives a unified set of techniques for handling various optimization
problems under one umbrella. Lastly, this class is closed under taking nonnegative linear
combinations and pointwise maximums. The latter closure property can be used to incorpo-
rate multiple norm budget constraints {f`(x) ≤ B`}`=1,...,k via a single norm-minimization
objective by considering the norm f(x) := max`∈[k] f`(x)/B`. The above benefits also ap-
ply in the stochastic setting, making stochastic minimum-norm optimization an appealing
model to study.

1.1 Stochastic Minimum Norm Combinatorial

Optimization

In an instance of stochastic minimum norm combinatorial optimization (StochNormOpt),
we have a combinatorial-optimization problem where the costs involved are nonnegative
random variables with given distributions. Each feasible solution s induces a random m-
dimensional cost vector Y s whose entries are obtained by aggregating the underlying cost
random variables in some fashion; we drop the superscript s if the solution is clear from
the context. The objective function is implicitly specified by a monotone, symmetric norm
f : Rm → R≥0. We assume access to a value oracle for f , that is, an oracle that given x,
returns f(x). The goal in StochNormOpt is to find a solution s that minimizes E[f(Y s)],
the expected f -norm of the cost vector induced by s. Here, the expectation is with respect
to the distributions of the underlying random variables.

We make a few remarks. The instances of StochNormOpt that we consider will have
a certain degree of independence in the underlying costs, so that the components of the
induced cost vector Y s are always independent nonnegative random variables. For brevity,
we say that a random vector Y follows a product distribution on Rm

≥0 if Y1, . . . , Ym are
independent nonnegative random variables. Second, our assumption that we only have a
value oracle for the norm f is weaker than the optimization-oracle and first-order-oracle
access required to f in [5] and [6] respectively. Lastly, we assume that the probability
distributions of the underlying cost variables are given to us in a succinct form.
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We consider two concrete settings of StochNormOpt arising from load balancing and
spanning tree applications.

1.1.1 Stochastic Minimum Norm Load Balancing

In an instance of stochastic minimum norm load balancing (denoted StochNormLB), we are
given n stochastic jobs that need to be processed on exactly one of m unrelated machines.
We use J and [m] to denote the set of jobs and machines respectively; we use j to index jobs,
and i to index machines. For each job j and machine i, we are given a nonnegative random
variable Xij that denotes the processing time of job j on machine i. Jobs are independent,
so Xij and Xi′j′ are independent whenever j 6= j′; however, Xij and Xi′j could be correlated.

Any assignment σ : J → [m] of jobs to machines induces a random load vector
−−→
loadσ on the

machines, where the load on machine i is given by
−−→
loadσ(i) :=

∑
j:σ(j)=iXij; note that

−−→
loadσ

follows a product distribution on Rm
≥0. The goal is to find an assignment σ that minimizes

E[f(
−−→
loadσ)] for a given monotone, symmetric norm f : Rm → R≥0. Here, the expectation

is over the randomness in {Xij}i,j.

There are three sources of generality in StochNormLB: the generality of monotone
symmetric norms, the generality of the unrelated-machines environment, and the generality
of job-size distributions. Limiting the level of generality in each of these leads to the
following important special cases. We use StochTop`LB to refer to StochNormLB when f is a
Top` norm. In the setting of identical machines, we haveXij = Xj for any job j and machine
i. We use MinNormLB to refer to the deterministic version of StochNormLB where Xij takes
value pij ∈ R≥0 with probability 1. In BerNormLB, each Xij is a weighted Bernoulli trial
that takes size sij ∈ R≥0 with probability qij ∈ [0, 1], and size 0 otherwise; note that
BerNormLB generalizes MinNormLB and is, in some sense, the simplest non-deterministic
version of StochNormLB. Lastly, we use PoisNormLB to refer to StochNormLB with Poisson
jobs. In this setting, the job-size random variable Xij follows a Poisson distribution with a
given mean λij ∈ R≥0. That is, for any nonnegative integer k, Pr[Xij = k] = e−λijλkij/k!.

1.1.2 Stochastic Minimum Norm Spanning Tree

In an instance of stochastic minimum norm spanning tree (denoted StochNormTree), we
are given an undirected graph G = (V,E) with stochastic edge-weights {Xe}e∈E. Edge
weights are independent. Any spanning tree T ⊆ E of G induces a random weight vector
Y T = (Xe)e∈T ; note that Y T follows a product distribution on Rn−1

≥0 where n := |V |. The
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goal in StochNormTree is to find a spanning tree T that minimizes E[f(Y T )] for a given
monotone, symmetric norm f : Rn−1

≥0 → R≥0.

We use StochTop`Tree to refer to StochNormTree when f is a Top` norm.

Notation and convention. For the rest of this chapter, Y,W denote random vectors
that follow a product distribution on Rm

≥0, and f to denote an arbitrary monotone, sym-
metric norm. In particular, we reserve W to refer to the cost vector induced by an optimal
solution to the given instance of StochNormOpt. For any x ∈ Rm

≥0, we use x↓ to denote x
with its coordinates sorted in nonincreasing order.

We will adopt the convention that whenever we talk about a stochastic min-norm prob-
lem without additional qualifiers, we mean the setting where we have arbitrary distributions
and an arbitrary monotone, symmetric norm.

1.1.3 Our Contributions

We now state the main contributions of this thesis along with a brief overview of our
techniques. Most of these results have appeared in the papers [17, 19, 20].

Our chief contribution is a framework that we develop for designing algorithms for
stochastic minimum-norm combinatorial optimization, using which we devise approxima-
tion algorithms for the stochastic minimum-norm versions of load balancing and spanning
tree problems.

Our framework has two key components that each address a distinct challenge that
arises in dealing with stochastic min-norm optimization. First, how do we reason about
the expectation of an arbitrary monotone, symmetric norm? In the deterministic setting,
the classical majorization inequality for monotone symmetric norms (see [13]) shows that
controlling all Top` norms yields a control on the f -norm. It is not clear whether the above
strategy generalizes to the stochastic setting: does controlling all expected Top` norms of
Y yield a control on its expected f -norm? One of our main insights, which forms the
foundation of our framework, is to show that this works in an approximate sense.

Theorem 1.1 (See Theorem 4.1). We have f(E[Y ↓]) ≤ E[f(Y )] ≤ O(f(E[Y ↓])).

The above result suggests that if we consider the (deterministic) nonincreasing vector
E[W ↓] ∈ Rm

≥0, consisting of the order statistics of the optimal solution’s cost vector, then
some of the ideas from Chakrabarty and Swamy’s framework for min-norm optimization
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can be useful for the stochastic setting. In particular, we obtain an approximate ma-
jorization inequality, which implies that minimizing the expected f -norm reduces to the
simultaneous minimization of a (small) collection of expected Top`-norms. This is the first
component of our framework.

Second, how do we deal with the problem of minimizing the expected Top` norm,
even for a single `? Although Top` norms are conceptually much simpler than arbitrary
monotone symmetric norms (see Theorem 2.6), their non-separable nature introduces con-
siderable difficulty in reasoning about E[Top`(Y )]. To the best of our knowledge, other
than the special case of ` = 1, there is no prior work on any stochastic Top`-norm min-
imization problem. Here, our approach is based on carefully identifying certain order
statistics of the random vector Y that provide a convenient handle on E[Top`(Y )] (see Sec-
tions 3.1 and 3.2); these statistics also play a role in establishing Theorem 1.1. The second
component of our framework involves developing mathematical and algorithmic tools for
controlling E[Top`(Y )]; these results can be found in Chapter 3.

The high-level idea of using our framework for specific applications, e.g., StochNormLB
and StochNormTree, involves formulating an LP that roughly encodes that the statistics
of our random cost vector match the corresponding statistics derived from the cost vector
of an optimal solution. Then the remaining technical challenge is to devise a rounding
algorithm that rounds the LP solution while losing only a small factor in these statistics.
To achieve this, we utilize certain iterative-rounding and randomized-rounding results from
prior work [30], [14].

The above approximation strategy works readily for StochNormTree, and yields the
following approximation.

Theorem 1.2 (See Theorems 10.1 and 10.2). There is a constant-factor approximation
algorithm for StochNormTree. Furthermore, for StochTop`Tree, we obtain improved ap-
proximation guarantees of (2 + ε) for general `, and

(
e/(e− 1) + ε

)
for ` = 1, where ε > 0

is a constant.

Theorem 1.2 extends quite seamlessly to the stochastic minimum norm matroid basis prob-
lem, which is the generalization of StochNormTree with spanning trees replaced by bases
of an arbitrary matroid.

There is an added challenge in applying our framework to obtain approximation algo-
rithms for StochNormLB. Our algorithmic tools from Chapters 3 and 4 are based on the
assumption that we have distributional information about the components of the random
vector Y . This is not true, in general, for stochastic load balancing (unlike StochNormTree)
because we do not have direct access to the distribution of the load on a machine: it is
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implicitly defined as the sum of job-size random variables that are assigned to it; note
that we do have direct access to the job-size distributions. In Chapter 5, we discuss a
sophisticated notion called effective size of a random variable, due to [16] (see also [23]),
that will be useful in mitigating some of the difficulties that arise in StochNormLB. Due to
the many technical challenges involved in approximating StochNormLB, our results in this
setting are the most-sophisticated, and they take up the bulk of this thesis.

Our strongest approximation guarantees are for StochTop`LB and BerNormLB, where
the latter problem is stochastic load balancing with Bernoulli job-size distributions.

Theorem 1.3 (See Theorems 6.1 and 6.4). There is a constant-factor approximation al-
gorithm for StochTop`LB.

The above result considerably generalizes the results of Kleinberg et al. [23] and Gupta
et al. [10], which obtained O(1)-approximation algorithms for identical and unrelated
machines respectively, for the special case of ` = 1, i.e., stochastic makespan minimization.

Theorem 1.4 (See Theorem 8.1). There is a constant-factor approximation algorithm for
BerNormLB.

Since MinNormLB is a trivial case of BerNormLB, modulo constant factors, Theorem 1.4
strictly generalizes the O(1)-approximation algorithm (for MinNormLB) in [5, 6].

We have a weaker approximation guarantee for general StochNormLB.

Theorem 1.5 (See Theorem 7.6). There is an O(log logm/ log log logm)-approximation
algorithm for StochNormLB.

When the machines are identical, i.e., Xij = Xj for all machines i, the descrip-
tion and analysis of our algorithms in Theorems 1.3, 1.4 and 1.5 become considerably
simpler. Moreover, in BerNormLB (and StochNormLB), our algorithm finds an assign-
ment σ that is simultaneously O(1)-approximate (respectively, O(log logm/ log log logm)-
approximate) for every monotone, symmetric norm. Our approximation guarantees have
an O(log logm/ log log logm) term because we approximate StochNormLB by relating it
to the d-dimensional vector scheduling problem with d = O(logm), and the current best
approximation algorithms for the latter problem have a O(log d/ log log d) dependence on
the dimension d.

Lastly, for PoisNormLB (i.e., stochastic load balancing with Poisson job-size distribu-
tions), we obtain quite strong approximation guarantees via an entirely different approach.

7



Our main result here is a novel, clean, and versatile black-box reduction from PoisNormLB
to MinNormLB that loses at most a (1 + ε)-factor in approximation, for some ε > 0. We
remark that the reduction preserves the machine environment, but the norm in the re-
duced MinNormLB instance may be different from the norm in the original PoisNormLB
instance. We also remark that this reduction is not limited to load-balancing but applies
to any stochastic min-norm combinatorial optimization problem, and shows that this can
be reduced to a deterministic min-norm version of the same combinatorial-optimization
problem. Using our results on MinNormLB from [19], we obtain the following concrete
approximations for PoisNormLB.

Theorem 1.6 (See Theorems 9.2 and 9.3). For any ε > 0, there is a randomized
(
2+O(ε)

)
-

approximation algorithm for PoisNormLB. Furthermore, if the machines are identical, we
have a randomized PTAS.

1.2 Related Work

Stochastic load balancing is a prominent combinatorial-optimization problem that has been
investigated in the stochastic setting under various `p norms. Kleinberg et al. [23] were
the first to investigate stochastic makespan minimization: they considered this problem
on identical machines and gave an O(1)-approximation algorithm. Almost two decades
later, Gupta et al. [10] (see [11] for a full version) generalized this result to the unrelated-
machines setting, and also gave an O(p/ log p)-approximation for `p norms. The latter
guarantee was improved to a constant by Molinaro [34] via a sophisticated tool called the
L-function method (see [25]). A common shortcoming of the above works (including our
results on StochNormLB) is that the approximation ratios are at least in the hundreds.
With an eye towards obtaining small approximation factors, Goel and Indyk [9] considered
stochastic makespan minimization (on identical machines) when job-sizes follow a struc-
tured distribution. Among other results, they obtained a simple 2-approximation when
jobs are Poisson-distributed. Very recently, De et al. [8] improved this approximation
guarantee to a PTAS.

Examples of other well-known combinatorial optimization problems that have been
investigated in the stochastic setting include stochastic knapsack and bin packing [23, 9,
26, 27], stochastic shortest paths [27]. The works of [27, 29, 28] consider expected-utility-
maximization versions of various combinatorial optimization problems. In a sense, this can
be viewed as a counterpart of stochastic min-norm optimization, where we have a concave
utility function, and we seek to maximize the expected utility of the underlying random
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value vector induced by our solution. Their results are obtained by a clever discretization
of the probability space; this does not seem to apply to stochastic minimization problems.

Top`- and ordered-norms, which are nonnegative linear combinations of Top` norms,
have been proposed in the location-theory literature, as a means of interpolating between
the k-center and k-median clustering problems, and have been studied in the Operations
Research literature [35, 24], but largely from a modeling perspective. There has been
some renewed interest in the algorithms and optimization communities—partly, because
Top` norms yield an alternative way of interpolating between the `∞- and `1- objectives—
and this work has led to strong algorithmic results for Top`-norm- and ordered-norm-
minimization in deterministic settings [2, 1, 3, 4, 5, 6].

Our approximation algorithms for (general) StochNormLB are obtained by relating it
to the d-dimensional vector scheduling problem with d = O(logm). We mention some
related work on this topic in the context of our work. The d-dimensional vector scheduling
problem was first considered by Chekuri and Khanna in [7] where they gave an O(log2 d)-
approximation algorithm and showed that the problem is NP-hard to approximate within
any constant factor. Meyerson, Roytman and Tagiku [32] gave an improved O(log d)-
approximation and the current best approximation factor of O(log d/ log log d) is due to
Harris and Srinivasan [14] and Im, Kell, Kulkarni and Panigrahi [21]. The result of [14]
works even in the unrelated-machines setting where the size-vector of a job j can depend on
the machine that it is processed on. Recently, Sai Sandeep [38] gave very strong inapprox-
imability results for vector scheduling indicating that the current best results are almost
optimal: under some complexity-theoretic assumptions, they rule out an O((log d)1−ε)-
approximation for any ε > 0.

1.3 Organization

In Chapter 2, we introduce the necessary preliminary concepts that will be used in this
thesis.

In Chapters 3 and 4, we develop the mathematical tools that will form the backbone
of our framework for StochNormOpt. In Chapter 3, we identify two order statistics of a
product distribution Y that provide a convenient handle on E[Top`(Y )]. In Chapter 4, we
prove our main theorem on the expectation of a (monotone, symmetric) norm of a product
distribution (Theorem 4.1).

Chapters 5–8 are dedicated for our results on StochTop`LB, StochNormLB and BerNormLB.
Chapter 5 is an introductory chapter where we develop some basic tools that are used in
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our load-balancing algorithms. Using our framework and the tools developed in Chap-
ter 5, we design an O(1)-approximation algorithm for StochTop`LB in Chapter 6, an
O(log logm/ log log logm)-approximation algorithm for StochNormLB in Chapter 7, and
an O(1)-approximation algorithm for BerNormLB in Chapter 8.

In Chapter 9, we consider PoisNormLB (i.e., StochNormLB with Poisson jobs). We give a
randomized reduction from PoisNormLB to MinNormLB which incurs at most a (1+ε)-factor
loss in approximation. This chapter can be read independently of all other chapters.

In Chapter 10, we use our framework to obtain an O(1)-approximation algorithm for
StochNormTree. Our results for StochNormTree are conceptually much simpler than the
corresponding results on StochNormLB. For a reader interested in getting a full picture of all
the ingredients that go into designing an algorithm for a concrete setting of StochNormOpt,
we suggest reading this chapter right after reading Chapters 3 and 4, and this Chapter can
be read independently of Chapters 5 – 9.

We conclude the thesis in Chapter 11 with a brief summary and discussion of future
directions.
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Chapter 2

Preliminaries

In this chapter, we discuss tools and techniques that are available from prior work.

Notation. The following notation will be frequently used in the rest of the thesis. For
an integer m ≥ 1, we use [m] to denote the set {1, 2, . . . ,m}. For z ∈ R, define z+ :=
max{z, 0}. For an event E we use the indicator random variable 1E to denote if the event
E happens. We use e ≈ 2.71828 to denote the base of the natural logarithm. For a vector
x ∈ Rm

≥0 we use x↓ to denote x with its coordinates sorted in nonincreasing order; i.e., we

have x↓i = xπ(i), where π is a permutation of [m] such that xπ(1) ≥ xπ(2) ≥ · · · ≥ xπ(m).
We say that x is nonincreasing if x = x↓. We use Pr[·] for the probability of an event,
and E[·] for the expectation of a random variable (possibly vector-valued). For vectors
x, y ∈ Rm

≥0, we use the relation x ≤ y if xi ≤ yi holds for all i ∈ [m]. For a vector
x ∈ Rm and θ ∈ R, we define N>θ(x) to be the number of coordinates of x that exceed
θ, i.e., N>θ(x) := |{i ∈ [m] : xi > θ}|. Similarly, we define N≥θ(x) to be the number of
coordinates of x that are at least θ. We reserve Y to denote a random vector that follows a
product distribution on Rm

≥0, i.e., {Yi}i∈[m] forms an independent collection of nonnegative
random variables.

2.1 Monotone Symmetric Norms

We give a primer on the class of monotone symmetric norms and some associated results.
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Definition 2.1 (Monotone Symmetric Norms).
A function f : Rm → R≥0 is said to be a norm if it satisfies the following:

(i) f(x) = 0 if and only if x = 0.

(ii) (Triangle Inequality) f(x+ y) ≤ f(x) + f(y) for all x, y ∈ Rm.

(iii) (Homogeneity) f(θx) = |θ|f(x) for all x ∈ Rm, θ ∈ R.

A norm f is said to be monotone if for every x ≥ y ≥ 0, we have f(x) ≥ f(y).

A norm f is said to be symmetric if f(x) is invariant over permutations of the coordi-
nates of x; in other words, f(x) = f(x↓).

The cost vectors that arise in our problems are nonnegative, so to keep the notation
simple, we restrict the domain of f to the nonnegative orthant Rdim(f)

≥0 for the rest of the
thesis. Without loss of generality, we also assume that the (monotone, symmetric) norms
that we consider in this work are normalized i.e., f(1, 0, . . . , 0) = 1 holds.

The following result yields simple upper and lower bounds on the norm of a vector.
The fact that the multiplicative gap between these bounds is at most m is used often in
our algorithms.

Lemma 2.2. Let f : Rm
≥0 → R≥0 be a normalized, monotone, symmetric norm, and

x ∈ Rm
≥0. We have:

max
i∈[m]

xi ≤ f(x) ≤
∑
i∈[m]

xi.

Proof. Since f is a normalized, monotone, symmetric norm, for any i ∈ [m] we get: f(x) ≥
f(0, . . . , 0, xi, 0, . . . , 0) = xi. The lower bound follows. We use triangle inequality for the
upper bound: f(x) ≤

∑
i∈[m] f(0, . . . , 0, xi, 0, . . . , 0) =

∑
i∈[m] xi.

2.1.1 Top` Norms and Ordered Norms

The class of monotone symmetric norms is broad and versatile. It contains all `p norms

(defined as ‖x‖p :=
(∑

i |xi|p
)1/p

for every p ≥ 1), and is closed under taking nonnegative
linear combinations and pointwise maximums. For a more elaborate discussion on the
versatility of monotone, symmetric norms see [5]. The following definitions and results
give a more concrete picture of this class. We start with the basic building blocks.
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Definition 2.3 (Top` Norms). For any ` ∈ [m], the Top` norm is defined as follows: for
x ∈ Rm

≥0, Top`(x) is the sum of the ` largest coordinates of x, i.e., Top`(x) =
∑`

i=1 x
↓
i .

For notational convenience, we define Top`(x) to be 0 if ` = 0, and Topm(x) if ` > m.

Observe that, like `p norms, Top` norms provide another way of interpolating between
the max- (Top1) and sum- (Topm) norms. However, there are a few key differences between
these two important sub-families of monotone symmetric norms. Since Top` norms are non-
separable, the contribution of an individual coordinate xi to Top`(x) is not as apparent.
More concretely, associating changes in a single coordinate xi to changes in Top`(x) requires
some knowledge about the rank of xi in the ordering given by x↓. On the bright side, the
norm-ball {x ∈ Rm : Top`(x) ≤ 1} of a Top` norm is polyhedral, so linear programming
based techniques are more easily applicable to optimization problems with Top` objectives.

In Lemma 2.4, we give alternative characterizations of Top` norms that give us a better
sense of the behavior of Top`(x). Recall that for a vector x ∈ Rm and θ ∈ R, we define
N>θ(x) := |{i ∈ [m] : xi > θ}|.

Lemma 2.4. The following holds for any x ∈ Rm
≥0 and any ` ∈ [m]:

Top`(x) = min
θ≥0

{
`θ +

∑
i∈[m]

(xi − θ)+
}

= `x↓` +
∑
i∈[m]

(xi − x↓`)
+ =

∫ ∞
0

min
(
`,N>θ(x)

)
dθ.

Lemma 2.4 motivates the order statistic τ`(x), which tracks the `th largest coordinate
of x ∈ Rm

≥0.

τ`(x) := x↓` = inf
{
θ ∈ R≥0 : N>θ(x) < `

}
(2.1)

We further define τ0(x) :=∞ and τ`(x) = 0 for ` > m. While the expression on the right
hand side of (2.1) seems excessively complex for describing y↓` , its utility will be clear in
Chapter 3 when we work with random vectors Y and need a notion of `th largest coordinate
of Y .

We now define ordered norms, which are simply nonnegative linear combinations of
Top` norms.

Definition 2.5 (w-Ordered Norms). Let w ∈ Rm
≥0 be a nonincreasing vector, and let

wm+1 := 0. The w-ordered norm is defined as follows: for x ∈ Rm
≥0,

‖x‖w := wTx↓ =
∑
`∈[m]

w`x
↓
` =

∑
`∈[m]

(w` − w`+1)Top`(x).
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The following structural result from Chakrabarty and Swamy [5] gives a characterization
of monotone symmetric norms in terms of ordered norms. This viewpoint is quite helpful
in understanding the complexity of controlling the expected f -norm of a random vector.

Theorem 2.6. For any monotone, symmetric norm f : Rm → R≥0, there exists a (possibly
uncountable) collection C ⊆ Rm

≥0 of nonincreasing vectors such that for any x ∈ Rm
≥0, we

have f(x) = maxw∈C w
Tx↓.

2.1.2 Majorization Inequality for Monotone Symmetric Norms

The following result is a specialization of the classical majorization inequality for Schur
convex functions (see [31] for relevant definitions). The original result is due to Hardy,
Littlewood and Pólya [13], and can also be derived from Theorem 2.6.

Theorem 2.7. Let x, y ∈ Rm
≥0 be such that Top`(x) ≤ Top`(y) holds for all ` ∈ [m]. Then

f(x) ≤ f(y) for any monotone, symmetric norm f : Rm
≥0 → R≥0.

Theorem 2.7 forms the backbone of Chakrabarty and Swamy’s framework in [5] for
(deterministic) minimum-norm optimization. The following result is a corollary of Theo-
rem 2.7, and gives a convenient way to compare norms of two vectors.

Lemma 2.8. Let x, y ∈ Rm
≥0 and α, β ∈ R≥0. Suppose that Top`(x) ≤ αTop`(y) + β holds

for all ` ∈ [m]. Then, f(x) ≤ αf(y) + β for any (normalized) monotone, symmetric norm
f : Rm

≥0 → R≥0.

Proof. Fix a monotone, symmetric norm f . By symmetry of f , we may assume that x = x↓

and y = y↓. Consider the vector y′ := αy + βe1, where e1 ∈ {0, 1}m has a single 1 at the
first coordinate. By our assumption Top`(x) ≤ Top`(y

′) for all ` ∈ [m]. By Theorem 2.7,
we have

f(x) ≤ f(y′) = f(αy + βe1) ≤ f(αy) + f(βe1) = αf(y) + β,

where we use triangle inequality and homogeneity of norms.

Our algorithms will “guess” (i.e., enumerate) the Top` norms (or certain associated
quantities) of the cost vector induced by an optimal solution, and will aim to obtain a
solution whose induced cost vector has comparable Top` norms. However, to make this
approach polynomial time, we will only be able to enumerate the Top` norms for a certain
sparse subset of indices in [m]. The next few definitions and results make this precise, and
show that the move to this sparse subset only leads to a small loss in approximation. To
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this end, we define POSm := {1, 2, 4, . . . , 2blog2mc} to be the set of powers of 2 that are at
most m; we drop the subscript in POSm when it is clear from the context.

Lemma 2.9. Let x, y ∈ Rm
≥0 be such that Top`(x) ≤ Top`(y) for all ` ∈ POS. Then we

have f(x) ≤ 2f(y) for every monotone, symmetric norm f : Rm
≥0 → R≥0.

Proof. Fix some ` ∈ [m], and define `′ := 2blog2 `c. Note ` ∈ POS and `′ ≤ ` ≤ 2`′. By
definition of Top` norms, we have Top`(x) ≤ 2Top`′(x) ≤ 2Top`′(y) ≤ 2Top`(y). The
desired conclusion follows from Theorem 2.8 by taking α = 2 and β = 0.

We generalize Lemma 2.9 by considering a generalization of POS that, roughly speaking,
consists of powers of 1 + δ for some δ > 0. Fix a parameter δ > 0. We define POSm,δ ⊆ [m]
iteratively as follows: include the index 1 in POSm,δ; as long as the largest index ` ∈ POSm,δ
is such that d(1 + δ)`e ≤ m, include d(1 + δ)`e (which is larger than `) in POSm,δ. We
remark that this definition is mathematically slightly more convenient to work with than
the one in [5], where POSm,δ is defined as

{
min{d(1 + δ)se,m} : s ∈ Z≥0

}
, but this change

is not crucial. Also note that POSm = POSm,1; we drop the subscript δ in POSm,δ if δ = 1.

Claim 2.10. We have |POSm,δ| ≤ 1 + log1+δm = O
(
(logm)/δ

)
.

Fix some m and δ > 0. For i ∈ [m], let next(i) be the smallest index in POS (strictly)
larger than i; if no such index exists, then we define next(i) := m + 1 for notational
convenience. Similarly, let prev(i) be the largest index in POS (strictly) smaller than i; set
prev(1) := 0. By definition, we trivially have next(`) − 1 ≤ (1 + δ)` for any ` ∈ POSm,δ.
The following claim is also immediate.

Claim 2.11. We have next(i)− 1 ≤ (1 + δ)i for all i ∈ [m].

Lemma 2.12 shows that focusing on only the indices in POSm,δ results in at most a
(1 + δ)-factor loss.

Lemma 2.12. Let x, y ∈ Rm
≥0 be such that Top`(x) ≤ Top`(y) for all ` ∈ POSm,δ. Then we

have f(x) ≤ (1 + δ)f(y) for every monotone, symmetric norm f : Rm
≥0 → R≥0.

Proof. Fix some index i ∈ [m] \ POSm,δ, and let ` := prev(i) ∈ POSm,δ. By Claim 2.11, we
have i ≤ (1 + δ)`. Therefore Topi(x) ≤ (1 + δ)Top`(x) ≤ (1 + δ)Top`(y) ≤ (1 + δ)Topi(y).
The desired conclusion follows from Lemma 2.8 by taking α = 1 + δ and β = 0.
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2.2 Tools to Control Monotone Symmetric Norms

For the rest of this chapter, we use the term norm to mean a monotone, symmetric norm.
In Section 2.1.2 we saw some basic results on comparing norms of vectors via controlling
their Top` norms. We will, however, need more versatile versions of Lemma 2.12 to compare
norms of vectors that are produced by our algorithms.

2.2.1 τ`-Based Majorization Inequality

In this section, we show that if the τ` statistic of x is comparable to the τ`/α statistic of y,
for some α ≥ 1, then f(x) is comparable to αf(y). The following results will be useful in
Chapters 4 and 10.

Lemma 2.13. Let x, y ∈ Rm
≥0, α ∈ R≥1 be a scalar, and f : Rm

≥0 → R≥0 be a monotone

symmetric norm. Suppose that x↓` ≤ y↓d`/αe for all ` ∈ [m]. Then, f(x) ≤ αf(y).

Proof. Without loss of generality, suppose x = x↓ and y = y↓. We start with some intuition
for the proof by considering the easy case when α is an integer. First, suppose α = 1.
Clearly, Top`(x) ≤ Top`(y) for all `, so f(x) ≤ f(y) follows. Next, suppose α > 1. Now
consider the vector y′ ∈ Rαm

≥0 obtained by concatenating α copies of y, and let y′′ ∈ Rm
≥0 be

the vector consisting of the m largest coordinates of y′. Since τ`(x) ≤ τ`(y
′′), the result for

the α = 1 case implies f(x) ≤ f(y′′). It is not hard to see that triangle inequality implies
f(y′′) ≤ αf(y), which yields the claimed bound. We now extend the above argument for
any scalar α ≥ 1.

Since f is monotone, we may assume that x` = yd`/αe for all ` ∈ [m]. We prove the
lemma by using Theorem 2.8: we show that for any ` ∈ [m], Top`(x) ≤ αTop`(y) holds.
In fact, we show something stronger: Top`(x) ≤ αTopd`/αe(y) for any ` ∈ [m].

Fix some k ∈ {1, . . . , dm/αe} and define ` := min(bαkc,m). It suffices to focus only
on this choice of ` because d`′/αe = k for all `′ ∈ {bα(k − 1)c+ 1, . . . ,min(bαkc,m)}. We
have:

Top`(x) =
{ k−1∑
k′=1

(bαk′c − bα(k′ − 1)c) · yk′
}

+ (min(bαkc,m)− bα(k − 1)c)yk

≤
k∑

k′=1

(bαk′c − bα(k′ − 1)c)yk′

16



=
k∑

k′=1

{
α +

(
α(k′ − 1)− bα(k′ − 1)c

)
−
(
αk′ − bαk′c

)}
· yk′

= αTopk(y) +
{ k−1∑
k′=1

(αk′ − bαk′c) · (yk′+1 − yk′)
}
− (αk − bαkc)yk

≤ αTopk(y).

The following lemma is the contrapositive of Lemma 2.13.

Lemma 2.14. Let x, y ∈ Rm
≥0, α ∈ R≥1 be a scalar, and f : Rm

≥0 → R≥0 be a monotone
symmetric norm. If f(x) > αf(y), then there exists an index k ∈ {1, 2, . . . , dm/αe} such
that x↓bα(k−1)c+1 > y↓k holds.

Proof. If f(x) > αf(y), then by Lemma 2.13 we have x↓` > y↓d`/αe for some ` ∈ [m]. Let

k := d`/αe ∈ {1, 2, . . . , dm/αe}. Observe that ` ∈ {bα(k − 1)c + 1, . . . , bαkc. Since x↓ is
nonincreasing, we have x↓bα(k−1)c+1 > y↓k.

2.2.2 Budgeted Version of Majorization Inequality

Suppose that we are given some (upper or lower) bounds B` on Top`(x) for every ` ∈ POS.
Our main result in this section, Theorem 2.15, is a budgeted version of the majorization
inequality: we prove that f(x) can be bounded in terms of the f -norm of a vector that
is induced by the B`’s. At a high level, our proof of Theorem 2.15 is based on a back-
calculation of the vector y whose Top` norms are comparable to the budgets B`, so that
Theorem 2.8 can yield bounds on f(x) in terms of f(y). We state Theorem 2.15 below,
but defer its proof to the end of the section. The definition of upper envelope curve will
be given shortly.

Theorem 2.15. Let f : Rm
≥0 → R≥0 be a monotone symmetric norm, and y ∈ Rm

≥0 be
a nonincreasing vector. Let (B`)`∈POSm be a nondecreasing, nonnegative sequence, and

b : [0,m]→ R≥0 denote its upper envelope curve. Define ~b := (b(i)− b(i− 1))i∈[m] ∈ Rm
≥0.

(a) If Top`(x) ≥ B` for all ` ∈ POS = {1, 2, . . . , 2blog2mc}, then f(x) ≥ f(~b).

(b) If Top`(x) ≤ B` for all ` ∈ POS, then f(x) ≤ 2f(~b).
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Definition 2.16 (Upper Envelope Curve). Let I ⊆ [m] be a subset of indices and (B`)`∈I be
a nondecreasing (over I), nonnegative sequence. The upper envelope curve b : [0,m]→ R≥0

of (B`)`∈I is defined as follows: for any k ∈ [0,m],

b(k) := max
{
θ ∈ R≥0 : (k, θ) ∈ conv(S)

}
,

where S = {(`, B`) : ` ∈ I} ∪ {(0, 0), (m,max`∈I B`)} and conv(S) denotes the convex hull
of S.

(0, 0)

b(1)

b(2)

b(4)

b(8)

1 2 4 8 16

×

×

×

×

× ×

Figure 2.1: The upper envelope curve for (B1 = 3, B2 = 4, B4 = 15
2
, B8 = 19

2
) is shown

in blue. We have b(`) = B` for ` = 1, 4, 8, and b(2) = 9
2
> B2. The induced ~b is(

3, 3
2
, 3

2
, 3

2
, 1

2
, 1

2
, 1

2
, 1

2
, 0, . . . , 0

)
Lemma 2.17. Let I ⊆ [m] be a subset of indices, (B`)`∈I be a nondecreasing, nonnegative
sequence, and b denote the corresponding upper envelope curve. The following are true:

18



(a) The function b is nondecreasing over [0,m] and satisfies b(`) ≥ B` for all ` ∈ I.

(b) The function b is concave over [0,m].

(c) Define ~b ∈ Rm as follows: ~bi := b(i) − b(i − 1) for any i ∈ [m]. The vector ~b is

nonincreasing and nonnegative. So, for any ` ∈ [m] we have Top`(~b) = b(`).

Proof. We first show that (c) follows from (a) and (b). The vector ~b is nonnegative because

b is nondecreasing. Next, ~b is nonincreasing because for any i ∈ [m− 1], b(i)− b(i− 1) ≥
b(i+ 1)− b(i) if and only if b(1

2
· (i− 1) + 1

2
· (i+ 1)) ≥ 1

2
· b(i− 1) + 1

2
· b(i+ 1). The latter

statement follows from concavity of b.

For notational convenience, let B0 := 0 and Bm := max`∈I B`. Since S (see Def-
inition 2.16) has finitely many points in R2

≥0, conv(S) is a polygon in the nonnegative
quadrant. By definition of the upper envelope curve, the function b is piecewise lin-
ear. Suppose that the upper envelope curve is composed of n lines L1, . . . , Ln, where
for j ∈ [n] the line Lj connects extreme points (`j−1, b(`j−1)) and (`j, b(`j)). Assume that
0 = `0 < `1 < · · · < `n = m holds. Also, observe that we have b(`j) = B`j for any
j ∈ {0, 1, . . . , n}.

We prove (a) and (b) using the above observations. The function b is nondecreasing
over [0,m] because the sequence (B`j)0≤j≤n is nondecreasing, and it is concave because it
is the upper envelope (a.k.a. upper hull) of a convex body. Lastly, for all ` ∈ I we have
b(`) ≥ B` because (`, B`) ∈ conv(S).

Lemma 2.18. Let y ∈ Rm
≥0 be a nonincreasing vector. Let b : [0,m] → R≥0 denote the

upper envelope curve for (Top`(y))`∈[m]. Then, b(`) = Top`(y) for all ` ∈ [m].

Proof. Suppose for the sake of contradiction that there exists ` ∈ [m] such that b(`) >
Top`(y). Consider the smallest such `, so that b(`′) = Top`′(y) for all 1 ≤ `′ < `. By
definition of the upper envelope curve, there exist `1, `2 ∈ [m] and α ∈ (0, 1) satisfying: (i)
`1 < `2; (ii) ` = α`1 + (1 − α)`2; and (iii) b(`) = αTop`1(y) + (1 − α)Top`2(y). In other
words, the point (`, b(`)) lies on the line L joining (`1,Top`1(y)) and (`2,Top`2(y)). By using
convexity of conv(S), we may take `1 = `− 1. This is because the point (`1 + 1, b(`1 + 1)),
which equals (`1 + 1,Top`1+1(y)) by our assumption on `, is either on or above the line L.
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In either case it can be used to obtain a convex combination for (`, b(`)). Observe that:

Top`(y) < b(`) = αTop`−1(y) + (1− α)Top`2(y)

= Top`−1(y) + (1− α) ·
`2∑
i=`

yi

≤ Top`−1(y) + (1− α) · (`2 − `+ 1) · y` (y is nonincreasing)

≤ Top`−1(y) + (1− α) ·
( α

1− α
+ 1
)
· y` (as ` = α(`− 1) + (1− α)`2)

= Top`(y),

which leads to a contradiction. Hence, the statement is true.

Lemma 2.19. Let I ⊆ I ′ ⊆ [m] be two index sets. Let (B`)`∈I and (B′`)`∈I′ be two non-
decreasing, nonnegative sequences, and let b and b′ denote their respective upper envelope
curves. If for every ` ∈ I we have B` ≤ B′`, then for any k ∈ [0,m] we have b(k) ≤ b′(k).

Proof. Follows from the definition.

We now prove Theorem 2.15 by combining the above lemmas.

Proof of Theorem 2.15. For the first part, let b′ denote the upper envelope curve for the
sequence (Top`(x))`∈[m]. By Lemma 2.18, b′(`) = Top`(x) for all ` ∈ [m]. Since the
hypothesis of Lemma 2.19 holds, we have b′(`) ≥ b(`) for every ` ∈ [m], and by definition

we have b(`) = Top`(~b). Therefore, Theorem 2.7 yields f(y) ≥ f(~b).

We prove part (b) by using Lemma 2.17. To show that f(y) ≤ 2f(~b), it suffices to

show that for all k ∈ [m], we have Topk(y) ≤ 2Topk(~b). By our assumption, this is true
for k ∈ POS because we have Topk(y) ≤ Bk ≤ b(k), where we use Lemma 2.17(i). For
k ∈ [m] \ POS, let ` := 2blog2 kc ∈ POS denote the largest index in POS that is at most
k. Note ` ≤ k < 2`. Now, Topk(y) ≤ 2Top`(y) ≤ 2b(`) ≤ 2b(k) holds because b is

nondecreasing. Therefore, f(y) ≤ 2f(~b) follows.

2.3 Enumeration Tools for Guessing a Sorted Vector

Our algorithms will often need to estimate a nonincreasing (or nondecreasing) vector x
whose coordinates are some statistics of the optimal cost vector. We show that if we have
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suitable bounds on the coordinates of x, then we can identify a (polynomially bounded) set
containing a vector close to x. The entries of the “guess vector” for x will usually consist
of powers of 2 (or powers of (1 + ε) for some ε > 0), so our enumeration of the guess vector
will involve enumerating over vectors with monotone integer coordinates. The following
result, lifted from [5], gives a convenient bound for this task and will be useful in the proof
of Lemma 2.21.

Claim 2.20. There are at most (2e)max(M,k) nonincreasing sequences of k integers chosen
from {0, . . . ,M}.

Proof. We reproduce the argument from [5]. A nondecreasing sequence a1 ≥ a2 ≥ · · · ≥ ak,
where ai ∈ {0} ∪ [M ] for all i ∈ [k], can be mapped bijectively to the set of k + 1 integers
M − a1, a1 − a2, . . . , ak−1 − ak, ak from {0} ∪ [M ] that add up to M . The number of such
sequences of k + 1 integers is equal to the coefficient of xM in the generating function
(1 + x + · · · + xM)k. This is equal to the coefficient of xM in (1− x)−k, which is

(
M+k−1
M

)
using the binomial expansion. Let U = max{M,k − 1}. We have(

M + k − 1

M

)
=

(
M + k − 1

U

)
≤
(e(M + k − 1)

U

)U
≤ (2e)U .

Lemma 2.21. Let I ⊆ [m] be an index-set. Let x ∈ RI≥0 be a nonincreasing vector, i.e.,
x` ≥ x`′ for indices `, `′ ∈ I, ` < `′. Let ub be such that x` ≤ ub for all ` ∈ I. Let ε, κ > 0,
and ε′ = min{1, ε}.

(a) We can construct a set T ⊆ RI≥0 with |T | ≤ N := (2e)|I| +
(
ub/κ

)O(1/ε′)
in O(N)

time, containing a nonincreasing vector y ∈ RI≥0, such that x` ≤ y` ≤ (1 + ε)x` + κ
for all ` ∈ I.

(b) Suppose that we also have x` ≥ lb for all ` ∈ I, where lb > 0. We can construct T ⊆
RI≥0 with |T | ≤ N := (2e)|I|+

(
ub/lb

)O(1/ε′)
in O(N) time, containing a nonincreasing

vector y ∈ RI≥0, such that x` ≤ y` ≤ (1 + ε)x` for all ` ∈ I.

Proof. For part (a), consider the set

T :=
{
~t ∈ RI≥0 : ~t is a nonincreasing vector,

∀` ∈ I, t` = ub/(1 + ε)k, where k ∈ Z≥0, t` ≥ κ/(1 + ε)
}
.
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Each ~t ∈ T is a nonincreasing vector, and there are

U := 1 + blog1+ε

(1 + ε)ub

κ
c = O

( log(ub/κ)

ε′

)
choices for log1+ε(ub/t`) for every ` ∈ I. (Recall that ε′ = min{ε, 1}.) So Claim 2.20

implies that |T | ≤ (2e)max{|I|,U}. We have (2e)U ≤
(
ub/κ

)O(1/ε′)
, so this yields the bound

on |T | and the time to construct T .

Consider the vector y ∈ RI≥0, where for every ` ∈ I, y` is the smallest number of the
form ub/(1 + ε)k, k ∈ Z≥0 that is at least max{κ/(1 + ε), x`}. Then, y is a nonincreasing
vector, y ∈ T , and x` ≤ y` ≤ (1 + ε)x` + κ for all ` ∈ I.

Part (b) is proved very similarly. We now take T to be the set of all nonincreasing
vectors ~t ∈ RI≥0 such that for all ` ∈ I, we have t` ≥ lb, t` = ub/(1 + ε)k where k ∈ Z≥0.
As before, one can infer that the size of T and the time taken to construct it are bounded

by (2e)|I| +
(
ub/lb

)O(1/ε′)
. Now if y ∈ RI≥0 is such that, for every ` ∈ I, y` is the smallest

number of the form ub/(1 + ε)k, k ∈ Z≥0 that is at least x`, then, y is a nonincreasing
vector, y ∈ T , and x` ≤ y` ≤ (1 + ε)x` for all ` ∈ I.

2.4 Probability Theory

In this section, we discuss some tools from probability theory that are useful in our proofs
and analyses. We first define some well-known probability distributions, and state associ-
ated facts that are extensively used in this thesis.

Definition 2.22 (Weighted Bernoulli trial). A discrete random variable B is said to be a
weighted Bernoulli trial of type (q, s) if B takes value s with probability q, and 0 otherwise.
If s = 1, then we call B as a Bernoulli trial with success probability q.

Definition 2.23 (Poisson random variable). A discrete random variable Z is said to have
a Poisson distribution with parameter λ ≥ 0, denoted Z ∼ Pois(λ), if for all k ∈ Z≥0 we
have Pr[Z = k] = e−λλk/k!

Fact 2.1. The mean and variance of Pois(λ) are both equal to λ.

Fact 2.2. Let {Zj}j be a collection of independent Poisson variables with parameters {λj}j.
Then, S =

∑
j Zj is distributed as Pois(

∑
j λj).
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Definition 2.24 (Binomial random variable). Let n ∈ Z>0 and p ∈ [0, 1]. The bino-
mial distribution with parameters n and p, denoted Bin(n, p), is the sum of n independent
Bernoulli trials each with success probability p. The probability distribution function of
Bin(n, p) is given by: for any k ∈ {0, 1, . . . , n},

Pr[Bin(n, p) = k] =

(
n

k

)
pk(1− p)n−k.

Fact 2.3. For any n ∈ Z>0 and p ∈ [0, 1], the median of Bin(n, p) lies in {bnpc, dnpe}.

The following result will be useful to us. We thank Daniel Perales Anaya for a proof of
this result.

Lemma 2.25. We have Pr[Bin(n, k/n) = k] ≤ 1/2 for integers n, k satisfying 1 ≤ k < n.

Proof. For any r ∈ {0, 1, . . . , n}, define pr := Pr[Bin(n, k/n) = r]. We prove the lemma by
showing that pk ≤ pk−1 + pk+1, which would then imply that 2pk ≤ pk−1 + pk + pk+1 ≤ 1.
We now show that pk ≤ pk−1 + pk+1 holds. We have:

pk−1 + pk+1

pk
=

(
n
k−1

)
·
(
k
n

)k−1 ·
(
1− k

n

)n−k+1
+
(
n
k+1

)
·
(
k
n

)k+1 ·
(
1− k

n

)n−k−1(
n
k

)
·
(
k
n

)k · (1− k
n

)n−k
=

k

n− k + 1
· n
k
· n− k

n
+
n− k
k + 1

· k
n
· n

n− k

=
(

1− 1

n− k + 1

)
+
(

1− 1

k + 1

)
≥ 1

2
+

1

2
= 1 (since n > k and k ≥ 1)

2.4.1 Concentration Inequalities

The following general-purpose concentration inequalities will be useful to us.

Lemma 2.26 (Markov’s inequality). Let Z be a nonnegative random variable, and α > 0
be a scalar. Then, Pr[Z ≥ α] ≤ E[Z]/α.

Lemma 2.27 (Chebyshev’s inequality). Let Z be a nonnegative random variable with finite
mean and variance. Then, for any α > 0, Pr[|Z − E[Z]| ≥ α] ≤ Var[Z]/α2.

23



The Chernoff tail bounds, due to Herman Rubin, will be useful to us in Chapter 4 to
prove a bound on the expected f -norm of a random vector, and in Chapter 7 to give a
simple randomized algorithm for vector scheduling on identical machines.

Lemma 2.28 (Chernoff tail bounds). Let Z1, . . . , Zk be independent [0, 1]-bounded random
variables, and S =

∑
j∈[k] Zj denote their sum. The following tail bounds hold:

(1) (Upper Tail) For any µ ≥ E[S] and δ ≥ 0, we have:

Pr
[
S ≥ (1 + δ)µ

]
≤
(

eδ

(1 + δ)1+δ

)µ
.

For δ ≥ 1, we have the following simpler bound: Pr[S ≥ (1 + δ)µ] ≤ e−δµ/3.

(2) (Lower Tail) For any µ ≤ E[S] and δ ∈ [0, 1], we have:

Pr[S ≤ (1− δ)µ] ≤ e−δ
2µ/2.

2.4.2 Hoeffding’s Lemma

To optimize constants that appear in some of our important results, such as Theorems 3.9
and 4.1, we have to obtain strong tail-probability bounds on sums of independent Bernoulli
trials. General-purpose concentration inequalities, like the ones in Section 2.4.1, are often
too wasteful. The following result due to Hoeffding will be useful for our purposes.

Lemma 2.29 (Corollary 2.1 in [15]). Let n be a positive integer, g : {0, 1, . . . , n} → R
be an arbitrary real-valued function, and µ ∈ [0, n] be a real number. Let B1, . . . , Bn be
n independent Bernoulli trials with

∑
j∈[n] Pr[Bj = 1] = µ such that E[g(B1 + · · · + Bn)]

is minimized (or maximized). Then, we may assume that there exists q ∈ (0, 1) such that
Pr[Bj = 1] ∈ {0, q, 1} for all j ∈ [n].

The following lemma can be obtained by a straightforward application of Lemma 2.29.

Lemma 2.30. Let {Bj}j∈[n] be a collection of n independent Bernoulli trials, and S :=∑
j∈[n] Bj denote their sum. Let µ := E[S] =

∑
j∈[n] Pr[Bj = 1]. The following are true:

(i) If µ ≤ 1, then Pr[S ≥ 1] ≥ 1− e−µ ≥ (1− 1/e)µ;

(ii) If µ ≥ 1, then Pr[S ≥ 1] ≥ 1− 1/e; and
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(iii) If µ ≥ 1, then Pr[S ≥ bµc] ≥ 1/2.

Proof. For convenience, for j ∈ [n] let qj := Pr[Bj = 1]. We start with the first claim.
Suppose that µ ∈ [0, 1]. Consider the function g : {0, 1, . . . , n} → {0, 1} that satisfies
g(r) = 0 if and only if r = 0. Since E[g(B1 + · · · + Bm)] is exactly Pr[S ≥ 1], our
problem reduces to arguing that E[g(B1 + · · ·+Bm)] is lower bounded by (1− 1/e)µ. By
Lemma 2.29, we may further assume that all qj’s take a uniform value µ/n. This is because
(i) we can drop variables with qj = 0, and (ii) if any qj = 1, then we must have n = µ = 1,
which implies Pr[S ≥ 1] = 1. Therefore, we get:

Pr[S ≥ 1] = 1−Pr[Bj = 0∀j] = 1− (1− µ/n)n ≥ 1− e−µ ≥ (1− 1/e)µ,

where the final inequality uses µ ∈ [0, 1].

Next, for the second claim, suppose that µ ≥ 1. We reuse the function g defined above.
As g is nondecreasing, we may assume that µ = 1. Then, by (i), we have Pr[S ≥ 1] ≥
1− 1/e.

Lastly, for the third claim, suppose that µ ≥ 1. Similar to what we did before, consider
the 0-1 function g that maps r to 0 if and only if 0 ≤ r < bµc. Again, E[g(B1 + · · · +
Bn)] = Pr[S ≥ bµc], which is the quantity that we want to lower bound. Since g is
nondecreasing, we may assume that µ = bµc: multiplying every qj with bµc/µ may only
lead to a decrease in Pr[S ≥ bµc]. By Lemma 2.29, we may assume that each qj is either
a common value q ∈ (0, 1) or 1. Note that we can drop variables with qj = 0. Suppose
that k ∈ {0, 1, . . . , µ} of the Bj’s have qj = 1, so that q = (µ − k)/(n − k). Then,
Pr[S ≥ µ] = Pr[Bin(n − k, (µ − k)/(n − k)) ≥ µ − k] ≥ 1/2, because the median of
Bin(n, p) is either bnpc or dnpe, both of which evaluate to µ− k in this case.

The following result is immediate.

Lemma 2.31. Let S =
∑

j∈[n] Bj be a sum of n independent Bernoulli trials, and ` be a

positive integer. If E[S] ≥ `, then E[min(`, S)] ≥ `/2.

Proof. We use Lemma 2.30(iii): E[min(`, S)] ≥ ` ·Pr[S ≥ `] ≥ `/2.

2.5 Iterative Rounding Framework

Our algorithms are based on rounding fractional solutions to LP-relaxations that we for-
mulate for the stochastic min-norm versions of load balancing and spanning trees. The
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rounding algorithm needs to ensure that the various budget constraints that we include in
our LP to control quantities associated with expected Top` norms (for multiple indices `)
are roughly preserved. The main technical tool for achieving this is iterative rounding, as
expressed by the following theorem, which follows from a result in Linhares et al. [30].

Theorem 2.32 (Follows from Corollary 11 in [30]).
Let M = (U , I) be a matroid with rank function r (specified via a value oracle), and
Q := {z ∈ RU≥0 : z(U) = r(U), z(F ) ≤ r(F ) ∀F ⊆ U} be its base polytope. Let z be a
feasible solution to the following multi-budgeted matroid LP:

min cT z s.t. Az ≤ b, z ∈ Q. (Budg-LP)

where A ∈ Rk×U
≥0 and c ∈ RU . Let ν ∈ R≥0 be a parameter such that for all e ∈ supp(z),∑

i∈[k] Ai,e ≤ ν holds. In polynomial time, we can round z to obtain a basis B of M
satisfying: (a) c(B) ≤ cT z; (b) AχB ≤ b+ ν1, where 1 is the vector of all 1’s; and (c)
B is contained in the support of z.

Proof. We first consider a new instance where we move to the support of z, which will
automatically take care of (c). More precisely, let J = supp(z). For a vector v ∈ RU , let
vJ := (ve)e∈J denote the restriction of v to the coordinates in J . Let MJ = (J, IJ) with
rank function rJ , be the restriction of the matroid M to J . Let AJ be A restricted to the
columns corresponding to J . Note that rJ(J) = r(J) ≥ z(J) = z(U) = r(U); so we have
r(J) = z(J) = r(U), and therefore a basis of MJ is also a basis of M. It is easy to see
now that zJ is a feasible solution to (Budg-LP) where we replace c and A by cJ and AJ
respectively, and replace Q by the base polytope of MJ . It suffices to show how to round
zJ to obtain a basis B of MJ satisfying properties (a) and (b) (i.e., cJ(B) ≤ cTJ zJ and
AJχ

B ≤ b + ν1), since, by construction, we have B ⊆ J . Note that each column of AJ
sums to at most ν.

We now describe how Corollary 11 in [30] yields the desired rounding of zJ . This result
pertains to a more general setting, where we have a fractional point in the the base polytope
of one matroid that satisfies matroid-independence constraints for some other matroids,
and some knapsack constraints. Translating Corollary 11 to our setting above, where we
have only one matroid, yields the following:

Corollary 11 in [30] in our setting: Let A′ be obtained from AJ by scaling
each row so that maxe∈J A

′
ie = 1 for all i ∈ [k]. Let p1, . . . , pk ≥ 0 be such that
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∑
i∈[k]

A′ie
pi
≤ 1 for all e ∈ J .1 Then, we can round zJ to obtain a basis B ofMJ such

that cJ(B) ≤ cTJ zJ , and
∑

e∈B Aie ≤ bi + pi maxe∈J Aie for all i ∈ [k].

Setting pi = ν
maxe∈J Aie

for all i ∈ [k] satisfies the conditions above, since
∑

i∈[k]
A′ie
pi

=∑
i∈[k] Aie/ν ≤ 1 for all e ∈ J , and yields the desired rounding of zJ .

1In [30], the pi’s are stated to be positive integers, but the proof of Corollary 11 shows that this is not
actually needed.
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Chapter 3

Order Statistics and Proxy Functions

In this chapter, we devise techniques for getting an approximate handle on E[Top`(Y )] by
only using distributional information about the coordinates of Y . We identify two order
statistics of Y that lead to two proxy functions that serve as constant-factor approximations
to E[Top`(Y )].

At a high level, a proxy function uses one or more parameters to map a vector-valued
random variable to a scalar in R≥0. The idea here is that for a suitable choice of parameters
the proxy function will serve as a constant-factor approximation to E[Top`(Y )]. An effective
proxy function has three desirable properties:

• Separability among coordinates of Y : We want the proxy function to have a
separable form so that the contribution of any individual coordinate Yi to E[Top`(Y )]
can be singled out. This is especially tricky to capture for Top` norms because of
their non-separable nature.

• Linear dependence on underlying cost random variables: We use two exam-
ples to illustrate the benefits of having a proxy function with a linear form. First, in
stochastic min-norm load balancing, Yi corresponds to the load on machine i which
is a sum of job random variables that are processed by this machine. Since the
optimization decision involves figuring out which jobs to process on machine i, we
do not readily have distributional information about Yi. Thus, it is useful to have
a proxy function that can capture the contribution of each Yi (to E[Top`(Y )]) as a
linear function of its constituent variables. Second, in stochastic min-norm spanning
tree, the entries of Y correspond to edge-weight random variables for edges that par-
ticipate in the tree. Assuming we are using a linear programming approach to solve
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the problem, we would be interested in rounding a fractional spanning tree that is
supported on more than |V | − 1 edges to an integral spanning tree that is supported
on exactly |V | − 1 edges. With linearity, the contribution of an edge variable (to
E[Top`(Y )]) can be captured easily.

• Simplicity: A proxy function with a simple form is more likely to be applicable to
a wider class of problem settings.

Our order statistics and proxy functions have all these desirable properties.

Throughout this chapter, we use Y to denote an arbitrary random vector that follows
a product distribution on Rm

≥0 (i.e., {Yi}i are independent nonnegative random variables),
and ` to denote a fixed integer in [m]. We recall some frequently-used notation from
Chapter 2. We use y↓ as a shorthand for the vector y ∈ Rm

≥0 with its coordinates sorted
in nonincreasing order. For an event E , we use 1E to denote its indicator random variable,
i.e., 1E = 1 if and only if event E happens. For any real number z, z+ := max(z, 0). The
following definition will be useful to us.

Definition 3.1 (Exceptional and Truncated Random Variables).
Let Z be a nonnegative random variable and θ ∈ R≥0 be a scalar. We decompose Z =
Z<θ +Z≥θ at the threshold θ to obtain the truncated random variable Z<θ := Z · 1Z<θ,
whose support lies in [0, θ), and the exceptional random variable Z≥θ := Z ·1Z≥θ, whose
support lies in {0} ∪ [θ,∞).

Our first order statistic and proxy function are based on exceptional variables arising
from the coordinates in Y . We define an order statistic ρ`(Y ) that is roughly E[Top`(Y )]/`
and show that the proxy function `θ+

∑
i∈[m] E[Y ≥θi ] is a constant-factor approximation to

E[Top`(Y )] when θ is roughly ρ`(Y ). The ρ` statistic and the corresponding `θ+
∑

i E[Y ≥θi ]
proxy are helpful in settings where each Yi is a sum of independent random variables, such
as stochastic load balancing (Chapters 5 – 8).

Our second order statistic and proxy function are based on the expected number of
“large” coordinates of Y . Consider the random variable N>θ(Y ) :=

∑
i∈[m] 1Yi>θ that

counts the number of coordinates of Y larger than a threshold θ. Note that E[N>θ(Y )] ∈
[0,m], and it is nonincreasing in θ. We define the order statistic τ`(Y ) to be the threshold
θ at which E[N>θ(Y )] is roughly `. We show that the proxy function `θ+

∑
i E[(Yi− θ)+]

is a constant-factor approximation to E[Top`(Y )] when θ is roughly τ`(Y ). The τ` statistic
and the `θ+

∑
i E[(Yi− θ)+] proxy are helpful in settings where Yi’s are “atomic” random

variable with known distributions, such as stochastic spanning tree (Chapter 10).
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3.1 Order Statistics and Proxy Function Based on

Exceptional Variables

Our main result in this section is that the expression `θ+
∑

i∈[m] E[Y ≥θi ] serves as a constant-

factor approximation to E[Top`(Y )] when θ is roughly E[Top`(Y )]/`. We define the ρ` order
statistic and show that `ρ`(Y ) is roughly E[Top`(Y )].

Definition 3.2 (ρ` Order Statistic).
For an m-dimensional random vector Y and a positive integer ` ∈ [m], we define:

ρ`(Y ) := inf
{
θ ∈ R≥0 :

∑
i∈[m]

E[Y ≥θi ] ≤ `θ
}

(3.1)

Theorem 3.3.
Let Y be a random vector that follows a product distribution on Rm

≥0, and ` ∈ [m] be a
positive integer. We have:

`ρ`(Y )

2
≤ E[Top`(Y )] ≤ 2 `ρ`(Y ).

3.1.1 Effectiveness of the ρ`-Based Proxy Function: Proof of
Theorem 3.3

Before delving into the details of Theorem 3.3, we explain the motivation for including
the term

∑
i E[Y ≥θi ] as part of our proxy function. Let y ∈ R≥0 be a deterministic vector

and θ ∈ R≥0 be a scalar. We call a scalar z large if z ≥ θ, and small otherwise. Suppose
that

∑
i∈[m] y

≥θ
i ≥ `θ holds, i.e., the sum of large coordinates of y is at least `θ. We claim

that Top`(y) is at least `θ. This is because y either has at least ` large coordinates, which
implies Top`(y) ≥ `θ, and if not, the (fewer than `) large coordinates that contribute to∑

i y
≥θ
i also contribute to Top`(y), which again implies Top`(y) ≥ `θ. On the other hand,

if
∑

i∈[m] y
≥θ
i ≤ `θ holds, then we claim that Top`(y) is at most 2`θ. This is because small

coordinates can contribute at most `θ to Top`(y) and the sum-total of large coordinates is
bounded by `θ. Interestingly, this line of reasoning extends to the stochastic setting with
only a small constant-factor loss in approximation.
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We now delve into the details. The proof of Theorem 3.3 follows from Lemmas 3.5 and
3.6 below. Lemma 3.5 proves an upper bound on E[Top`(Y )] by O(`θ), assuming a suit-
able upper bound on

∑
i E[Y ≥θi ], the total expected size of exceptional random variables.

Lemma 3.6 complements this and proves a partial converse: it lower bounds E[Top`(Y )] by
Ω(`θ) assuming a suitable lower bound on

∑
i E[Y ≥θi ]. We begin with the easy upper-bound

argument.

Lemma 3.4. For any scalar θ ≥ 0, we have E[Top`(Y )] ≤ `θ +
∑

i∈[m] E[Y ≥θi ].

Proof. By the definition of exceptional and truncated random variables (see Definition 3.1),
we have the identity Yi = Y <θ

i + Y ≥θi for any i ∈ [m]. Thus,

E[Top`(Y )] ≤ E
[
Top`(Y

<θ
1 , . . . , Y <θ

m )
]

+ E
[
Top`(Y

≥θ
1 , . . . , Y ≥θm )

]
(triangle inequality)

≤ E[`θ] + E
[
Topm(Y ≥θ1 , . . . , Y ≥θm )

]
(Y <θ

i ≤ θ holds, Top`(·) ≤ Topm(·))

= `θ +
∑
i∈[m]

E[Y ≥θi ]. (linearity of expectation)

Lemma 3.5. If
∑

i∈[m] E[Y ≥θi ] ≤ `θ for some scalar θ ∈ R≥0, then E[Top`(Y )] ≤ 2`θ.

Proof. Follows immediately from Lemma 3.4.

Next, we prove the harder lower-bound argument.

Lemma 3.6. If
∑

i∈[m] E[Y ≥θi ] > `θ for some scalar θ ∈ R≥0, then E[Top`(Y )] > `θ/2.

Proof. We prove the lemma via induction on ` + m. The base case is when ` = m = 1,
where clearly E[Top1(Y1)] = E[Y1] ≥ E[Y ≥θ1 ] > θ. Another base case that we consider is
when m ≤ `: here the Top`-norm is simply the sum of all the Yi’s and thus,

E[Top`(Y1, . . . , Ym)] = E[Y1 + · · ·+ Ym] ≥
∑
i∈[m]

E[Y ≥θi ] > `θ ≥ `θ/2.

Now consider the general case with m ≥ `+1. Our induction strategy will be the following.
If Ym is at least θ, then we include Ym’s contribution towards the Top`-norm and collect
the expected Top`−1-norm from the remaining coordinates. Otherwise, we simply collect
the expected Top`-norm from the remaining coordinates. We use Y−m to denote the vector
(Y1, . . . , Ym−1). Note that Y−m follows a product distribution on Rm−1

≥0 , so we can apply
induction to Y−m.
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We handle some easy cases separately. The case E[Y ≥θm ] > `θ causes a hindrance to
applying the induction hypothesis. But this case is quite easy: we have

E[Top`(Y1, . . . , Ym)] ≥ E[Ym] ≥ E[Y ≥θm ] > `θ ≥ `θ/2.

So we may assume that E[Y ≥θm ] ≤ `θ. Let q := Pr[Ym ≥ θ]. Another easy case that we
handle separately is when q = 0. In this case, we have

∑
i∈[m−1] E[Y ≥θi ] =

∑
i∈[m] E[Y ≥θi ],

and hence E[Top`(Y )] ≥ E[Top`(Y−m)] > `θ/2 follows from the induction hypothesis.

We are now left with the case where m ≥ `+ 1, E[Y ≥θm ] ≤ `θ and q = Pr[Ym ≥ θ] > 0.
Let s := E[Ym|Ym ≥ θ], which is well defined and is at least θ. Note that qs = E[Y ≥θm ].
We define two thresholds θ1, θ2 ∈ [0, θ] to apply the induction hypothesis to smaller cases.

θ1 :=
`θ − E[Y ≥θm ]

`
and θ2 := min

{
θ,
`θ − E[Y ≥θm ]

`− 1

}
Noting that E[Y ≥ti ] is a nonincreasing function in t, observe that:

(A1)
∑

i∈[m−1] E[Y ≥θ2i ] > (`− 1)θ2: since θ2 ≤ θ, we have∑
i∈[m−1]

E[Y ≥θ2i ] ≥
∑

i∈[m−1]

E[Y ≥θi ] > (`θ − E[Y ≥θm ]) ≥ (`− 1)θ2.

(A2)
∑

i∈[m−1] E[Y ≥θ1i ] > `θ1: since θ1 ≤ θ, we have∑
i∈[m−1]

E[Y ≥θ1i ] ≥
∑

i∈[m−1]

E[Y ≥θi ] > `θ − E[Y ≥θm ] = `θ1.

We now have the following chain of inequalities.

E[Top`(Y1, . . . , Ym)] ≥ q
(
s+ E[Top`−1(Y1, . . . , Ym−1)]

)
+ (1− q)E[Top`(Y1, . . . , Ym−1)]

> q
(
s+

(`− 1)θ2

2

)
+

(1− q)`θ1

2
induction hypothesis, using (A1) and (A2)

= qs+
q

2
·min{(`− 1)θ, `θ − E[Y ≥θm ]}+

(1− q)
2

·
(
`θ − E[Y ≥θm ]

)
=
`θ

2
+
qs

2
+
q

2
·min{qs− θ, 0} (since qs = E[Y ≥θm ])

≥ `θ

2
+
qs

2
− qθ

2
≥ `θ/2. (since s ≥ θ)
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We now prove Theorem 3.3 by combining Lemmas 3.5 and 3.6. We use ρ` to refer to
ρ`(Y ) (see Definition 3.2).

Proof of Theorem 3.3. For the lower bound argument, consider an arbitrary scalar θ ∈
[0, ρ`). By definition, we have

∑
i∈[m] E[Y ≥θi ] > `θ. By Lemma 3.6 we get E[Top`(Y )] >

`θ/2. Taking a supremum over all θ < ρ` gives the desired lower bound on E[Top`(Y )].

For the upper bound argument, consider an arbitrary scalar θ ∈ (ρ`,∞). Again, by
definition, we have

∑
i∈[m] E[Y ≥θi ] ≤ `θ. By Lemma 3.5 we get E[Top`(Y )] ≤ 2`θ. Taking

an infimum over all θ > ρ` gives the desired upper bound on E[Top`(Y )].

3.2 Order Statistics and Proxy Function Based on

E[N>θ(Y )]

We now present an alternate proxy function for E[Top`(Y )], based on the expected number
of “large” coordinates of Y . Our main result in this section is that the expression `θ +∑

i∈[m] E[(Yi−θ)+] serves as a constant-factor approximation to E[Top`(Y )] when θ is such

that E[N>θ(Y )] ≈ `. Recall that for a scalar z ∈ R, z+ := max(z, 0), and the random
variable N>θ(Y ) =

∑
i∈[m] 1Yi>θ counts the number of coordinates of Y that exceed θ. We

now define the τ` order statistic and the γ` proxy function (see Figure 3.1 for intuition).

Definition 3.7 (τ` Order Statistic).
For an m-dimensional random vector Y and a nonnegative integer `, we define:

τ`(Y ) := inf
{
θ ∈ R≥0 : E[N>θ(Y )] < `

}
(3.2)

Note that τ0(Y ) :=∞ and τ`(Y ) = 0 for ` > m.

We make two remarks on the τ`(Y ) order statistic. First, it is easy to see that τ` is
nonincreasing over `. Next, the infimum in the definition of τ` is actually attained, i.e.,
E[N>τ`(Y )] < `. This is because the function E[N>θ(Y )] is right-continuous over R (see
Lemma 3.10 for details).
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Definition 3.8 (γ` Proxy Function).
For an m-dimensional random vector Y and a positive integer `, we define:

γ`(Y ) := ` · τ`(Y ) +
∑
i∈[m]

E
[(
Yi − τ`(Y )

)+
]
. (3.3)

We define γ0(Y ) := 0, and note that γ`(Y ) =
∑

i∈[m] E[Yi] = E[Topm(Y )] for ` > m.

θ

E[N>θ(Y )]

(0, 0)

m
γ`

γ`−1∑
i E[(Yi − τ1)+]

τ1

1

τ`−1

`− 1

τ`

`

. . .

Figure 3.1: The expected histogram curve: E[N>θ(Y )] vs. θ.

Theorem 3.9.
Let Y be a random vector that follows a product distribution on Rm

≥0, and ` ∈ [m] be a
positive integer. We have:

E[Top`(Y )] ≤ γ`(Y ) ≤ 2 E[Top`(Y )].

Furthermore, when ` = 1, we have the improved bound γ1(Y ) ≤ e
e−1

E[Top1(Y )].

Note that for a deterministic vector y ∈ Rm
≥0, τ`(y) is simply the `th largest entry in y,

i.e., τ`(y) = y↓` , and γ`(y) = `y↓` +
∑

i(yi − y
↓
` )

+ is the Top`-norm of y. Our key insight is
that γ`(Y ) continues to remain a good proxy for E[Top`(Y )] in the stochastic setting.
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3.2.1 Effectiveness of the τ`-Based Proxy Function: Proof of
Theorem 3.9

We give some further motivation behind the definitions of τ` and γ`, which quite easily
yields the upper bound on E[Top`(Y )] in Theorem 3.9. Recall from Lemma 2.4 that for
any y ∈ Rm

≥0, we have the following two equivalent expressions for Top`(y):

Top`(y) = `y↓` +
∑
i∈[m]

(yi − y↓` ) · 1yi>y↓` =

∫ ∞
0

min
(
`,N>u(y)

)
du. (3.4)

Therefore, E[Top`(Y )] =
∫∞

0
E[min

(
`,N>u(y)

)
]du. (We formally justify why we can inter-

change the expectation and integral in the proof of Theorem 3.5.) Now, by the concavity
of the min function, for any u ∈ R≥0 we have

Ey∼Y [min
(
`,N>u(y)

)
] ≤ min

(
`,Ey∼Y [N>u(y)]

)
= min

(
`,E[N>u(Y )]

)
, (3.5)

and using the definition of τ`, one can show that
∫∞

0
min(`,E[N>u(Y )])du is precisely

γ`(Y ). Thus, the difference between E[Top`(Y )] and γ`(Y ) is that we have replaced the
expectation of the minimum by the minimum of an expectation, which leads to the upper
bound. The following lemma will be useful in formalizing the above upper-bound argument.

Lemma 3.10. Let τ` = τ`(Y ). We have: (i) E[N>τ`(Y )] < `; and (ii) E[N≥τ`(Y )] ≥ `.

Proof. Let τ` = τ`(Y ). The cumulative distribution function of any random variable is
right-continuous, so E[N>θ(Y )] =

∑
i∈[m]

(
1 − Pr[Yi ≤ θ]

)
is right-continuous as well.

Therefore, the infimum in the definition of τ` (see Definition 3.7) is attained, and (i) holds.
Furthermore, for any θ < τ` we have E[N>θ(Y )] ≥ `. Taking a limit supremum as θ → τ`
from below yields (ii):

E[N≥τ`(Y )] = lim sup
θ→τ−`

E[N>θ(Y )] ≥ `.

The following lemma is analogous to Lemmas 3.4 and 3.5.

Lemma 3.11. We have:

(i) γ`(Y ) =
∫∞

0
min(`,E[N>u(Y )]) du = min

θ≥0

{
`θ +

∑
i∈[m]

E[(Yi − θ)+]
}

.

(ii) E[Top`(Y )] ≤ γ`(Y ).
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Proof. For any θ ∈ R≥0, the inequality
∫∞

0
min(`,E[N>u(Y )])du ≤ `θ +

∫∞
θ

E[N>u(Y )]du
follows from splitting the integral at u = θ. The above inequality is tight for θ = τ`
because, by Lemma 3.10, E[N>u(Y )] < ` holds if and only if u ≥ τ` holds. Next, for any
nonnegative random variable Z and θ ∈ R≥0, we have∫ ∞

θ

Pr[Z > u]du =

∫ ∞
0

Pr[(Z − θ)+ > u]du = E[(Z − θ)+].

So
∫∞
θ

E[N>u(Y )]du =
∑

i∈[m]

∫∞
θ

Pr[Yi > u]du =
∑

i∈[m] E[(Yi − θ)+]. Claim (i) follows

from recalling Definition 3.8: γ`(Y ) = `τ` +
∑

i∈[m] E[(Yi − τ`)+].

For (ii), we start with (3.4):

E[Top`(Y )] = Ey∼Y

[∫ ∞
0

min
(
`,N>u(y)

)
du
]

(3.6a)

=

∫ ∞
0

Ey∼Y
[
min

(
`,N>u(y)

)]
du (3.6b)

≤
∫ ∞

0

min
(
`,E[N>u(Y )]

)
du = γ`(Y ) (3.6c)

We justify the above steps. The equality in (3.6b) follows from Fubini’s theorem by in-
terpreting the expectation operator as an integral: as E[|Top`(Y )|] ≤

∑
i E[Yi] is finite,

Fubini’s theorem allows the exchange of expectation and integration operators. The in-
equality in (3.6c) is due to concavity of the min function.

We first prove a weaker version of Theorem 3.9 to give a quick proof of the effectiveness
of the γ` proxy. The following notation and claim will be useful to us. For a nonnegative
random variable Z and a scalar θ ∈ R≥0, define Z>θ to be the random variable Z · 1Z>θ
whose support lies in {0} ∪ (θ,∞).

Claim 3.12. The function E[Z>θ] is right-continuous over θ and satisfies E[Z>θ] =
supu>θ E[Z≥u].

Proof. Since Pr[Z > θ] is right-continuous over θ, E[Z>θ] =
∫∞

0
Pr[Z>θ > u] du = θ ·

Pr[Z > θ] +
∫∞
θ

Pr[Z > u] du is right-continuous over θ. Next, by right-continuity of
E[Z>θ] and the fact that E[Z≥θ] is nonincreasing in θ, we get:

E[Z>θ] = sup
u>θ

E[Z>u] = sup
u>θ

E[Z≥u].

Lemma 3.13. We have γ`(Y ) ≤ 4 E[Top`(Y )].
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Proof. Let ρ` = ρ`(Y ). By definition of ρ` (see (3.1)),
∑

i∈[m] E[Y ≥θi ] ≤ `θ for any θ > ρ`.

Using Claim 3.12 and that
∑

i∈[m] E[Y ≥θi ] is nonincreasing in θ, we get:∑
i∈[m]

E[Y >ρ`
i ] = sup

θ>ρ`

∑
i∈[m]

E[Y ≥θi ] = lim sup
θ→ρ`

from right

{∑
i∈[m]

E[Y ≥θi ]
}
≤ `ρ`.

Since the event {(Yi − ρ`)+ ≤ Y >ρ`
i } always happens, Lemma 3.11(i) gives:

γ`(Y ) ≤ `ρ` +
∑
i∈[m]

E[(Yi − ρ`)+] ≤ `ρ` +
∑
i∈[m]

E[Y >ρ`
i ] ≤ 2`ρ` ≤ 4E[Top`(Y )],

where we use Theorem 3.3 in the final inequality.

We now delve into the proof of Theorem 3.9; note that we already showed E[Top`(Y )] ≤
γ`(Y ) in Lemma 3.11(ii). We remark that the proof is long and technical, but not essential
to understand the rest of the thesis. We split the proof into two parts. First, we prove the
easy ` = 1 case using just Lemma 2.30. We then give a proof sketch for the harder ` > 1
case before giving the full proof.

Proof of Theorem 3.9 for ` = 1. For any scalar θ ∈ R≥0, the event {Y ↓1 > θ} happens if
and only if the event {N>θ(Y ) ≥ 1} happens. A straightforward integration gives:

E[Y ↓1 ] =

∫ ∞
0

Pr[Y ↓1 > θ] dθ =

∫ ∞
0

Pr[N>θ(Y ) ≥ 1] dθ (3.7a)

=

∫ τ1

0

Pr[N>θ(Y ) ≥ 1] dθ +

∫ ∞
τ1

Pr[N>θ(Y ) ≥ 1] dθ (3.7b)

≥
∫ τ1

0

(1− 1/e) dθ +

∫ ∞
τ1

(1− 1/e) · E[N>θ(Y )] dθ (3.7c)

= (1− 1/e) ·
(
τ1 +

∑
i∈[m]

E[(Yi − τ1)+]
)

= (1− 1/e) γ1(Y ). (3.7d)

We justify the inequality in (3.7c) by using the definition of τ1 and applying Lemma 2.30
for Bernoulli random variables {1Yi>θ}i. For θ < τ1, E[N>θ(Y )] ≥ 1 holds, and hence
Pr[N>θ(Y ) ≥ 1] ≥ 1 − 1/e by Lemma 2.30(ii). Next, for θ > τ1, E[N>θ(Y )] < 1 holds,
and hence Pr[N>θ(Y ) ≥ 1] ≥ (1 − 1/e)E[N>θ(Y )] by Lemma 2.30(i). This finishes the
proof for the ` = 1 case.
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For the ` > 1 case we use Lemma 2.29 with a more careful choice of the g function. We
want to show the following lower bound:

E[Top`(Y )] ≥ 1

2
· `τ` +

∑
i∈[m]

1

2
· E[(Yi − τ`)+].

Call a coordinate Yi of Y large if Yi > τ`. Collecting the `τ`/2 term in the above expression
is easy. For any θ < τ`, we have E[N>θ(Y )] ≥ `, so by Lemma 2.30(ii), we get Pr[Y ↓` >
θ] ≥ 1/2, which implies that the expected Top`-norm has an `τ`/2 term. Arguing that
we can collect at least half of every large coordinate of Y in the E[Top`(Y )] calculation
requires careful bookkeeping. Roughly speaking, the argument boils down to showing that
we can pack 50% of all large coordinates of Y into ` slots. As the average number of large
coordinates of Y is at most `, a random sample drawn from the distribution of Y does not
have too many large coordinates, so we should be able to pick every large coordinate at
least 50% of the time. We now formalize the above argument.

Proof of Theorem 3.9 for ` > 1. Fix some ` > 1. Let τ` = τ`(Y ) and γ` = γ`(Y ). We
reserve i to denote an arbitrary index in [m]. Let Zi := 1Yi≥τ` , and S :=

∑
i Zi = N≥τ`(Y )

denote the (random) number of coordinates of Y that are at least τ`. By Lemma 3.10,
E[S] ≥ `. Without loss of generality, we may assume that the support of each Yi lies in
{0} ∪ [τ`,∞). We can achieve this by replacing each Yi by Y ≥τ`i = Yi · Zi. While this
operation may decrease E[Top`(Y )], it leaves τ` and hence γ` unchanged. τ` is unchanged
since Pr[Y ≥τ`i > θ] = Pr[Yi > θ] for all θ ∈ [τ`,∞); also, for θ ∈ [0, τ`), we have Pr[Y ≥τ`i >
θ] = Pr[Yi ≥ τ`], and so

∑
i Pr[Y ≥τ`i > θ] = E[N≥τ`(Y )] ≥ `. Next, we may also assume

that E[S] =
∑

i Pr[Yi ≥ τ`] = ` holds. We can achieve this by moving a suitable amount
of probability mass (from some of the Yi’s) located at the point τ` to the point 0. This
is possible since by Lemma 3.10 we have E[N≥τ`(Y )] ≥ ` > E[N>τ`(Y )]. Again, this
modification may decrease E[Top`(Y )], but τ` and γ` remain unchanged; in particular, the
term E[(Yi− τ`)+] remains unchanged because the probability mass that is located strictly
above τ` is not modified. So, to summarize, the above modifications yield that: the support
of each Yi lies in {0} ∪ [τ`,∞), and E[S] = `, where S = N≥τ`(Y ). That is, it suffices to
prove the lower bound on E[Top`(Y )] when the Yi’s satisfy the above properties.

Consider the real-valued function g` : {0, 1, . . . ,m} → R≥0 defined as follows: g(0) := 0
and g(r) = min(1, `/r) for 1 ≤ r ≤ m. The choice of g` has a very natural interpretation
for our purposes. Suppose that we have r > 0 items that we want to uniformly pack in `
slots. If r ≤ `, then we can pack each item fully. Otherwise, we can only pack each item
up to `/r portion. The following lemma is straightforward.
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Lemma 3.14. We have Top`(Y ) ≥ g`(S) ·
∑

i∈[m] Yi.

Proof. Observe that the event {Zi = 1} happens if and only if the event {Yi 6= 0} happens
(since we have that Yi 6= 0 implies that Yi ≥ τ`), and hence S counts the random number
of nonzero coordinates of Y . The claim is trivial when the event {S ≤ `} happens because
Top`(Y ) =

∑
i Yi and g` is bounded above by 1. On the other hand if the event {S > `}

happens, then Top`(Y ) is the sum of ` largest coordinates of Y , whereas g`(S)
∑

i Yi is a
weighted average of the coordinates of Y , where the weights are at most 1 and add up to
`. Therefore, Top`(Y ) ≥ g`(S)

∑
i Yi holds.

For any i ∈ [m], let S−i denote the random variable S − Zi, which is the sum of Zj’s
for j 6= i. Lemma 3.14 leads to the following lower bound on E[Top`(Y )].

Lemma 3.15. E[Top`(Y )] ≥ E[min(`, S)] · τ` +
∑

i∈[m] E[(Yi − τ`)+] · E[g`(1 + S−i)].

Proof. The proof is by an explicit calculation.

E[Top`(Y )] ≥ E
[
g`(S) ·

∑
i∈[m]

Yi

]
(by Lemma 3.14)

= E
[
g`(S) ·

∑
i∈[m]

(
min(Yi, τ`) + (Yi − τ`)+

)]
(z = min(z, θ) + (z − θ)+)

= E
[
g`(S) · S · τ`

]
+ E

[
g`(S) ·

∑
i∈[m]

(Yi − τ`)+
]

(min(Yi, τ`) = Zi · τ`)

= E[min(`, S)] · τ` +
∑
i∈[m]

E
[
g`(S) · (Yi − τ`)+

]
(definition of g`)

= E[min(`, S)] · τ` +
∑
i∈[m]

E[(Yi − τ`)+] · E[g`(1 + S−i)].

The last equality is due to the independence of the Yi random variables. For any i ∈ [m],
we can focus on the event {Yi > τ`}, which implies that the event {Zi = 1} happens. But
when the event {Zi = 1} happens, we have g`(S) = g`(1 + S−i). Now since Yi and S−i
are independent random variables, we can split the expectation of g`(S) · (Yi − τ`)+ into a
product of expectations. Formally,

E[g`(S) · (Yi − τ`)+] = Pr[Yi > τ`] · E[g`(S) · (Yi − τ`)+ | Yi > τ`]

= Pr[Yi > τ`] · E[g`(1 + S−i) · (Yi − τ`)+ | Yi > τ`]

= Pr[Yi > τ`] · E[g`(1 + S−i)] · E[(Yi − τ`)+ | Yi > τ`]

= E[g`(1 + S−i)] · E[(Yi − τ`)+]
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Recall our assumption that E[S] = `. By Lemma 2.31, we have E[min(`, S)] ≥ `/2.
This gives us the `τ`/2 term in the lower bound argument. It remains to show that
E[g`(1 + S−i)] ≥ 1/2 for every i ∈ [m]. Since S ≥ S−i and g`(1 + r) = min(1, `/(1 + r)) is
nonincreasing in r, we have E[g`(1 + S−i)] ≥ E[g`(1 + S)]. We now lower bound the latter
term.

Lemma 3.16. Let k and n be positive integers such that k ≤ n. Let B1, . . . , Bn be a
collection of n independent Bernoulli trials, and T =

∑
j∈[n] Bj denote their sum. Suppose

E[T ] = k holds. Then, E[gk(1 + T )] ≥ 1/2.

Proof. We prove the statement by induction on k + n. For the base cases with k = n, we
have E[gk(1+T )] = k/(1+k) ≥ 1/2. Consider k, n with k < n. Let qj := Pr[Bj = 1] for j ∈
[n]. By Lemma 2.29, we may assume without loss of generality that there exists q ∈ (0, 1)
such that qj ∈ {0, q, 1} for all j ∈ [n]. If any qj is 0, then we can ignore the corresponding
Bj and use induction hypothesis for the smaller case. Next, let k′ ∈ {0, 1, . . . , k−1} denote
the number of variables with qj = 1. Note that q = (k− k′)/(n− k′) holds. If k′ > 0, then
we can use the induction hypothesis:

E[gk(1 + T )] = E[gk(1 + k′ + Bin(n− k′, q))] (3.8a)

= E

[
min

(
1,

k

1 + k′ + Bin(n− k′, q)

)]
(3.8b)

≥ E

[
min

(
1,

k − k′

1 + Bin(n− k′, q)

)]
(3.8c)

= E[gk−k′(1 + Bin(n− k′, q))]. (3.8d)

We justify the inequality in (3.8c). Observe that if the event {1 + k′ + Bin(n− k′, q) ≤ k}
happens, then the minimums in (3.8b) and (3.8c) are both 1. Otherwise, the inequality
holds because for any scalars b ≥ a > θ, we have a/b ≥ (a− θ)/(b− θ).

Assuming k′ = 0, it remains to show that for any integers 1 ≤ k < n, the following
inequality holds:

E[gk(1 + Bin(n, k/n))] ≥ 1

2
(3.9)

The following notation will be useful to show that (3.9) holds. For any r ∈ {0, 1, . . . , n},
define pr := Pr[Bin(n, k/n) = r], p≥r :=

∑n
r′=r pr′ , and p≤r :=

∑r
r′=1 pr′ . We have:

E[gk(1 + Bin(n, k/n))] = E

[
min

(
1,

k

1 + Bin(n, k/n)

)]
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=
(k−1∑
r=0

pr · 1
)

+
( n∑
r=k

pr ·
k

1 + r

)
= p≤k−1 +

n∑
r=k

n!

r! (n− r)!
·
(
k

n

)r
·
(

1− k

n

)n−r
· k

1 + r

= p≤k−1 +
k

n+ 1
· n
k
·

n∑
r=k

(n+ 1)!

(r + 1)! (n− r)!
·
(
k

n

)r+1

·
(

1− k

n

)n−r
= p≤k−1 +

n

n+ 1
·Pr[Bin(n+ 1, k/n) ≥ k + 1]

= p≤k−1 +
n

n+ 1
·
{
k

n
· p≥k +

(
1− k

n

)
· p≥k+1

}
= p≤k−1 +

k

n+ 1
· p≥k +

n− k
n+ 1

· p≥k+1

= p≤k−1 +
k

n+ 1
· pk +

n

n+ 1
· p≥k+1

= 1− (n+ 1− k)pk + p≥k+1

n+ 1
≥ 1

2
.

It remains to justify the final inequality. Since the median of Bin(n, k/n) is k (see Fact 2.3),
we have p≥k+1 ≤ 1/2. Next, by Lemma 2.25, we have pk ≤ 1/2. Since n > k ≥ 1, we get
(n+ 1− k)pk + p≥k+1 ≤ n · 1

2
+ 1

2
≤ n+1

2
.

We finish the proof of Theorem 3.9 by using Lemmas 3.15, 2.31, and 3.16.

E[Top`(Y )] ≥ E[min(`, S)] · τ` +
∑
i∈[m]

E[(Yi − τ`)+] · E[g`(1 + S−i)]

≥ `

2
· τ` +

∑
i∈[m]

E[(Yi − τ`)+] · 1

2
=
γ`(Y )

2
.

3.3 Some Auxiliary Results

The following result will be useful in Chapter 4.

Lemma 3.17. For any ` ∈ {2, . . . ,m}, we have:

τ`(Y ) ≤ γ`(Y )− γ`−1(Y ) ≤ τ`−1(Y ).
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Proof. For convenience, we drop the argument Y from τ`(Y ) and γ`(Y ) notation. Both
inequalities are easily inferred from Fig. 3.1. Algebraically, we have

γ` − γ`−1 =

∫ ∞
0

{
min(`,E[N>θ(Y )])−min(`− 1,E[N>θ(Y )])

}
dθ.

For θ ≥ τ`−1, the integrand is 0 since E[N>θ(Y )] < ` − 1; for θ < τ`, the integrand is
1 since E[N>θ(Y )] ≥ `; and for τ` ≤ θ < τ`−1, the integrand is at most 1 since ` − 1 ≤
E[N>θ(Y )] < `. It follows that τ`−1 ≥ γ` − γ`−1 ≥ τ`.

Theorem 3.18. Let Y follow a product distribution on Rm
≥0. We have:

(i) E[Y ↓1 ] ≥ (1− 1/e)γ1(Y ) ≥ (1− 1/e)τ1(Y ); and

(ii) for any ` ∈ {2, 3, . . . ,m}, we have E[Y ↓` ] ≥ τ`(Y )/2.

Proof. The first claim follows from Theorem 3.9 for the ` = 1 case. For the second claim,
fix some ` ∈ {2, . . . ,m}. By definition of τ`, for any θ < τ` we have E[N>θ(Y )] ≥ `.
Observe that if the event {N>θ(Y ) ≥ `} happens, then the event {Y ↓` > θ} happens. A
simple calculation gives:

E[Y ↓` ] ≥
∫ τ`

0

Pr[Y ↓` > θ]dθ ≥
∫ τ`

0

Pr[N>θ(Y ) ≥ `]dθ ≥ τ`/2.

In the final inequality above we use Lemma 2.30(iii) with Bernoulli variables Bi := 1Y ↓` >θ

and S = N>θ(Y ).

We remark that the constants in Theorem 3.18 are essentially tight.

Remark 3.1. Consider a random vector Y that follows a product distribution on Rm
≥0 where

for each i ∈ [m], Yi is a Bernoulli random variable that takes size 1 with probability 1/m.
Observe that τ1(Y ) = 1 and E[Y ↓1 ] = 1− (1− 1/m)m. Thus, the bound in Theorem 3.18(i)
becomes tight as m→∞.

Remark 3.2. Fix some ` ∈ {2, 3, . . . ,m}. Consider a random vector Y that follows a
product distribution on Rm

≥0 where for each i ∈ [m], Yi is a Bernoulli random variable that
takes size 1 with probability `/m. Observe that τ`(Y ) = 1, and

E[Y ↓` ] = 1−Pr[Bin(m, `/m) ≤ `− 1] ≈ Pr[Pois(`) ≥ `] ≈ 1

2
+
``e−`

`!

By Stirling’s approximation, for a sufficiently large `, the last term is Θ(1/
√
`). Thus, the

constant 1/2 in Theorem 3.18(ii) becomes tight as `→∞.
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Chapter 4

Expected Norm of a Random Vector

In this chapter, we prove one of the central results of this thesis: for any random vec-
tor Y that follows a product distribution and any monotone symmetric norm f , we have
E[f(Y )] = Θ(f(E[Y ↓])). An immediate consequence of the above result is a stochastic
generalization of the majorization inequality, which we call approximate stochastic ma-
jorization: if E[Top`(Y )] ≤ E[Top`(W )] holds for all ` ∈ [m], then E[f(Y )] ≤ O(E[f(W )]),
where W is another random vector that follows a product distribution.

Our framework for stochastic min-norm optimization is based on two key ideas. First,
we use approximate stochastic majorization to reduce stochastic min-norm optimization to
simultaneous stochastic Top`-norm optimization over all ` ∈ [m] that are powers of 2. Then,
we use techniques from Chapter 3 for controlling E[Top`(Y )] to handle the optimization
problem for individual Top` norms.

We recall some frequently-used notation. We use Y to denote an arbitrary random
vector that follows a product distribution on Rm

≥0, and f to denote an arbitrary monotone,
symmetric norm. We further assume that f is normalized, i.e., f(1, 0, . . . , 0) = 1. For
any θ ∈ R≥0, the integer random variable N>θ(Y ) is defined to be |{i ∈ [m] : Yi > θ}|.
Similarly, N≥θ(Y ) := |{i ∈ [m] : Yi ≥ θ}|. We use y↓ as a shorthand for the vector y ∈ Rm

≥0

with its coordinates sorted in non-increasing order. For an event A, we use 1A to denote
its indicator random variable, i.e., 1A = 1 if and only if event A happens. For any real
number z, we define z+ := max(z, 0).
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4.1 Main Theorem: E[f(Y )] = Θ(f(E[Y ↓]))

Our main result in this section is the following.

Theorem 4.1.
Let Y follow a product distribution on Rm

≥0, and f : Rm
≥0 → R≥0 be a monotone,

symmetric norm. Then,

f(E[Y ↓]) ≤ E[f(Y )] ≤ 7.634 · f(E[Y ↓]).

The lower bound on E[f(Y )] in the above theorem trivially follows from symmetry and
convexity of f : E[f(Y )] = E[f(Y ↓)] ≥ f(E[Y ↓]). The upper bound, however, requires
some work and is based on an insightful application of Chernoff upper-tail bounds.

We make a few remarks on Theorem 4.1. Observe that the non-increasing vector
E[Y ↓] ∈ Rm

≥0 in the lower bound expression is arguably the most natural order statistic
of Y : for any i ∈ [m], the ith coordinate of E[Y ↓] is the expectation of the ith maximum
coordinate of Y . The significance of Theorem 4.1 is that the expectation and the norm
can be exchanged with at most an O(1)-loss in approximation as long as the Y -vector is
sorted before the exchange is performed; the constant that appears on the right hand side in
Theorem 4.1 must be at least 1.214 (see Remark 4.1). Next, note that E[f(Y )] = f(E[Y ↓])
holds for all Top` norms, and more generally, all ordered norms. This is because for any
non-increasing w ∈ Rm

≥0 we have:

E[wTY ↓] = E
[∑
i∈[m]

wiY
↓
i

]
=
∑
i∈[m]

wiE[Y ↓i ] = wTE[Y ↓].

Theorem 4.2. For any ordered norm f , we have E[f(Y )] = f(E[Y ↓]).

So, the substance of Theorem 4.1 is that the above relationship holds approximately even
when f is not an ordered norm. Recall the structural result of Chakrabarty and Swamy
(Theorem 2.6): any monotone symmetric norm can be expressed as a supremum of ordered
norms. Using this interpretation, Theorem 4.1 reads as follows: the expectation of a
supremum of ordered norms is within a constant factor of the supremum of the expectation
of ordered norms.
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Theorem 4.3.
Let C ⊆ Rm

≥0 denote an arbitrary (possibly uncountable) collection of ordered norms.
(Every w ∈ C is non-increasing). Then,

sup
w∈C

wTE[Y ↓] ≤ E

[
sup
w∈C

wTY ↓
]
≤ O(1) · sup

w∈C
wTE[Y ↓].

One consequence of our proof approach is that f(γ1(Y ), τ2(Y ), . . . , τm(Y )) serves as a
nice proxy for E[f(Y )]; see (3.2) and (3.3) for definitions.

Theorem 4.4.
Let Y follow a product distribution on Rm

≥0, and f : Rm
≥0 → R≥0 be a monotone,

symmetric norm. Let γ1 = γ1(Y ), and τ` = τ`(Y ) for all ` ∈ [m]. Then,

1

2
· f(γ1, τ2, τ3, . . . , τm) ≤ E[f(Y )] ≤ 4.026 · f(γ1, τ2, τ3, . . . , τm).

Theorem 4.4 is particularly useful in settings where the Yi’s are “atomic” random variables,
and we have direct access to their distributions.

We remark that in our prior work [17, 18], we prove Theorem 4.1 by working with a
slightly different lower bound on E[f(Y )], but the high-level proof strategy is essentially the
same as the one we describe in the following section. Let ∆γ(Y ) := (γ`(Y )−γ`−1(Y ))`∈[m] ∈
Rm
≥0. Note that ∆γ is nonincreasing (see Figure 3.1 and Lemma 3.17) and Top`(∆γ) =

γ`(Y ). We show that E[f(Y )] = Θ(f(∆γ)).

Theorem 4.5.
Let Y follow a product distribution on Rm

≥0, and f : Rm
≥0 → R≥0 be a monotone,

symmetric norm. For any ` ∈ {0, 1, . . . ,m}, let γ` = γ`(Y ); recall γ0 = 0. Define the
nonincreasing vector ∆γ ∈ Rm

≥0 as follows: for ` ∈ [m], (∆γ)` = γ` − γ`−1. Then,

1

2
· f(∆γ) ≤ E[f(Y )] ≤ 4.026 · f(∆γ)

Proof Sketch. Before delving into the proofs of Theorem 4.1 and (the upper bound
on E[f(Y )]) Theorem 4.4, we describe the main ideas in our proof by making some mild
assumptions about the probability distribution of the Y vector. Our assumptions are stated
below.
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(i) The τ`’s are distinct.

(ii) For each i ∈ [m], the support of Yi lies in {τ1, τ2, . . . , τm}.

(iii) For each ` ∈ [m], we have
∑

i∈[m] Pr[Yi = τ`] = 1. That is, exactly one unit of

probability mass (over all coordinates) resides at each τ`.

We remark that in the actual proof we group the `’s into buckets based on their τ`-value. So,
the first assumption is that each bucket is a singleton. The second and third assumptions
are used in the actual proof, and can be achieved by a simple rounding down strategy.
Note that rounding down the support of Yi’s may only lead to a decrease in E[f(Y )]. We
will argue that this decrease can be bounded by γ1(Y ) = O(E[Y ↓1 ]), a quantity that can
be charged to the lower bound f(E[Y ↓]).

Assuming the above, it remains to bound E[f(Y )] when the total probability mass
of Yi’s at each τ` is exactly 1. We work with the more amenable expression f(τ), where
τ = (τ1, . . . , τm) ∈ Rm

≥0, which we argue is O(f(E[Y ↓])) (see Theorem 4.6). (Note that
γ1(Y ) = τ1(Y ) under assumption (ii).) Consider a random sample y drawn from the
distribution of Y . How likely is it for f(y) to exceed αf(τ) for some scalar α? This
probability can be bounded by using Lemma 2.14: if f(y) > αf(τ), then there exists
a k ∈ {1, . . . , dm/αe} such that y↓α(k−1)+1 > τk. Since we assumed that the τ`’s are

distinct, we get that y↓α(k−1)+1 ≥ τk−1. In other words, if the event {f(Y ) > αf(τ)}
happens, then for some 1 ≤ k ≤ dm/αe, the event {N≥τk−1(Y ) > α(k−1)} happens, where
N≥θ(Y ) denotes the (random) number of coordinates of Y that are at least θ. Observe
that N≥τk−1(Y ) =

∑
i∈[m] 1Yi≥τk−1

is a sum of independent Bernoulli random variables, and

by the third assumption we have E[N≥τk−1(Y )] = k−1. So, by Chernoff bounds, the event
{N≥τk−1(Y ) > α(k − 1)} happens with probability at most exp(−Θ(αk)). A simple union
bound argument over all k shows that the event {f(Y ) > αf(τ)} happens with probability
at most exp(−Θ(α)). A straightforward integration calculation gives E[f(Y )] = O(f(τ)).
We formalize this strategy in Section 4.1.1.

We remark that [18] has a different proof of Theorem 4.1 that does not proceed via
these modifications, but at the core uses the same idea that using Chernoff bounds, one
can argue that N>τ`(Y ) is concentrated around its expectation.

4.1.1 Proof of Theorems 4.1 and 4.4

We now delve into the proof details. We already showed that E[f(Y )] = E[f(Y ↓)] ≥
f(E[Y ↓]) follows from symmetry and convexity of f . The remainder of this section is
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devoted to proving the upper bounds on E[f(Y )] in Theorems 4.1 and 4.4. The following
result is useful to us.

Theorem 4.6. Let Y follow a product distribution on Rm
≥0, and f : Rm

≥0 → R≥0 be a
monotone, symmetric norm. Let γ1 = γ1(Y ), and τ` = τ`(Y ) for ` ∈ [m]. We have:

1

2
· f(γ1, τ2, τ3, . . . , τm) ≤ f(E[Y ↓]).

Proof. By Theorem 3.18, we have E[Y ↓1 ] ≥ γ1/2, and for any ` ∈ {2, 3, . . . ,m} we have
E[Y ↓` ] ≥ τ`/2. Since f is homogeneous and monotone, we get the desired result.

As described in the proof sketch, we prove Theorems 4.1 and 4.4 in two parts. First,
we modify the distribution of Yi’s so that assumptions (i), (ii) and (iii) hold in a somewhat
weak form. Lemmas 4.7 and 4.9 show that the modification “costs” at most γ1(Y ). Then,
through Lemmas 4.12 and 4.13, we show that the f -norm of the modified Y -vector enjoys
strong concentration properties around f(τ). Overall, we get E[f(Y )] = O(γ1 + f(τ)) =
O(f(E[Y ↓])).

We introduce some notation to refer to distinct τ`(Y )’s. For notational convenience,
define τ0 := ∞ and `0 := 0. For any integer j ≥ 1, we iteratively define `j as follows: `j
is the largest index in [m] satisfying τ`j = τ`j−1+1. We only define `j’s as long as `j ≤ m,
and let m′ ≥ 1 denote the largest integer satisfying `m′ = m. By definition, the number
of distinct values in {τ1, . . . , τm} is m′, and for each j ∈ [m′], there are `j − `j−1 distinct
indices ` ∈ [m] such that τ` = τ`j . For instance, if τ = (5, 5, 4.5, 2, 2, 2, 0, 0) ∈ R8

≥0, then
`1 = 2, `2 = 3, `3 = 6, `4 = 8, and m′ = 4.

At a high level, our modifications involve moving a suitable amount of probability mass
(of the Yi’s) such that

∑
i∈[m] Pr[Yi = τ`j ] = `j − `j−1 holds for each j ∈ [m′]. Since∑

j∈[m′](`j− `j−1) = `m′− `0 = m, our modifications will ensure that the Yi’s are supported

on {τ`j}j∈[m′]. In other words, assumptions (i), (ii) and (iii) from the proof sketch that we
gave earlier hold in a weak form. We also remark that our modifications do not change any
of the τ` statistics, so with some abuse of notation we use τ` without explicitly stating the
argument. For notational convenience, we use Ỹ to denote the vector Y that is obtained
after the modifications are applied.

Our modifications happen over m′ iterations. In each iteration j ∈ [m′], we move at
most a single unit of probability mass of the Yi’s that lies in the interval [τ`j , τ`j−1

] down
to a single point τ`j . In iteration j = 1, this corresponds to bounding the Yi’s from above:

for i ∈ [m], define Ỹi := min(Yi, τ1). The following result is immediate.
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Lemma 4.7. At the end of the first modification step, we have:

E[f(Ỹ )] ≤ E[f(Y )] ≤ E[f(Ỹ )] +
∑
i∈[m]

E[(Yi − τ1)+].

Proof. The lower bound on E[f(Y )] is trivial because f is monotone. For the upper bound,

observe that Yi = Ỹi + (Yi− τ1)+. Therefore, by triangle inequality and Lemma 2.2 we get:

E[f(Y )] ≤ E[f(Ỹ )] + E[f
(
(Y1 − τ1)+, . . . , (Ym − τ1)+

)
] ≤ E[f(Ỹ )] +

∑
i∈[m]

E[(Yi − τ1)+].

The following claim will be useful in describing the rounding strategy for iterations 2
through m′.

Claim 4.8. Fix some k ∈ [m′ − 1]. Suppose that
∑

i∈[m] Pr[Ỹi = τ`j ] = `j − `j−1 and∑
i∈[m] Pr[Ỹi ∈ (τ`j+1

, τ`j)] = 0 hold for all j ∈ {1, . . . , k − 1}. The following are true at
the beginning of iteration k + 1:

(i)
∑

i∈[m] Pr
[
Ỹi ∈ (τ`k+1, τ`k ]

]
≤ `k − `k−1 + 1.

(ii)
∑

i∈[m] Pr[Ỹi = τ`k ] ≥ `k − `k−1.

Proof. First, note that τ`k+1
= τ`k+1 < τ`k . By Lemma 3.10, we get that

∑
i∈[m] Pr[Ỹi >

τ`k+1] < `k + 1 and
∑

i∈[m] Pr[Ỹi ≥ τ`k ] ≥ `k. Both conclusions of the claim easily follow

for the k = 1 case because `0 = 0 and the Ỹi’s are capped at τ`1 = τ1. Now suppose that
k > 1. By the assumptions in the claim, we have:

∑
i∈[m]

Pr[Ỹi > τ`k ] =
k−1∑
j=1

(∑
i∈[m]

Pr[Ỹi = τ`j ]
)

=
k−1∑
j=1

(`j − `j−1) = `k−1.

Both conclusions of this claim follow from a simple calculation:∑
i∈[m]

Pr
[
Ỹi ∈ (τ`k+1, τ`k ]

]
=
∑
i∈[m]

Pr[Ỹi > τ`k+1]−
∑
i∈[m]

Pr[Ỹi > τ`k ] < (`k + 1)− `k−1,

and ∑
i∈[m]

Pr[Ỹi = τ`k ] =
∑
i∈[m]

Pr[Ỹi ≥ τ`k ]−
∑
i∈[m]

Pr[Ỹi > τ`k ] ≥ `k − `k−1.
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We now formally describe the modifications that we make in iterations 2 through m′.
Fix some k ∈ [m′ − 1]. Suppose that we are at the beginning of iteration k + 1 and the

hypothesis of Claim 4.8 holds. We arbitrarily move a probability mass of
∑

i∈[m] Pr[Ỹi =

τ`k ]−(`k−`k−1) ∈ [0, 1) from τ`k down to τ`k+1
. We also move every point in the support of

Ỹi’s that lies in the interval (τ`k+1, τ`k) down to the point τ`k+1(= τ`k+1
). By Claim 4.8, the

above rounding procedure is well-defined and the total amount of probability mass that
is moved from (τ`k+1, τ`k

]
down to τ`k+1 is at most 1. It is easy to see that by the end of

iteration k + 1, we have ensured that the hypothesis of Claim 4.8 holds for the start of
iteration k + 2 (assuming k + 2 ≤ m′). Since the hypothesis of Claim 4.8 holds vacuously
for the k = 1 case, by the end of m′ iterations we have that

∑
i∈[m] Pr[Yi = τ`j ] = `j − `j−1

holds for all j ∈ [m′]. We again remark that our modifications do not alter the τ` statistics.

This is because for any j ∈ [m′],
∑

i∈[m] Pr[Ỹi ≥ τ`j ] = `j, so for any ` ∈ {`j−1 + 1, . . . , `j},
we have τ`(Ỹ ) = τ`j(Ỹ ) = τ`(Y ).

For notational clarity, let Ỹ (k) denote the Ỹ -vector after k iterations of modifications
have been applied.

Lemma 4.9. At the end of iteration k ∈ {2, 3, . . . ,m′}, we have:

E[f(Ỹ (k))] ≤ E[f(Ỹ (k−1))] ≤ E[f(Ỹ (k))] + (τ`k−1
− τ`k).

Proof. The lower bound on E[f(Ỹ (k−1))] is trivial because f is monotone. By the design

of our modification step for iteration k, the probability mass (of Ỹi’s) that is moved from
the interval (τ`k , τ`k−1

] to τ`k is at most 1. Thus, the difference in expected f -norm of the

Ỹ -vector before and after iteration k is bounded by τ`k−1
− τ`k . Formally,

E[f(Ỹ (k−1))] ≤ E[f(Ỹ (k))] +
∑
i∈[m]

E
[
Ỹ (k−1) − Ỹ (k)

]
≤ E[f(Ỹ (k))] + (τ`k−1

− τ`k).

Let Y = Ỹ (m′). Combining Lemmas 4.7 and 4.9 gives the following.

Lemma 4.10. The following are true:

(i) E[f(Y )] ≤ E[f(Y )] ≤ E[f(Y )] + γ1(Y ).

(ii) For each j ∈ [m′], we have E[N≥τ`j (Y )] = `j.

Proof. Follows from Lemmas 4.7, 4.9, and the description of our modification steps. We also
use

∑m′

k=2(τ`k−1
− τ`k) +

∑
i∈[m] E[(Yi− τ1)+] ≤ (τ1− τm) +

∑
i∈[m] E[(Yi− τ1)+] ≤ γ1(Y ).
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We now bound the expected f -norm of the well-structured Y -vector.

Theorem 4.11. We have E[f(Y )] ≤ 3.026 · f(τ).

The following lemmas will be useful in the proof of Theorem 4.11 and 4.1.

Lemma 4.12. Let α ∈ R≥0 be a scalar and j ∈ [m′] be a positive integer. Consider the
random variable N≥τ`j (Y ) =

∑
i∈[m] 1Y i≥τ`j

that counts the number of coordinates of Y

that are at least τ`j . The following tail bound holds:

Pr
[
N≥τ`j (Y ) > (1 + α)`j

]
≤
(

eα

(1 + α)1+α

)`j
.

Proof. By Lemma 4.10(ii), we have E[N≥τ`j (Y )] = `j, so the tail bound follows from a
direct application of Chernoff bounds (see Lemma 2.28).

Lemma 4.13. Let α ∈ R≥0 be a scalar. The following tail bound holds for the scalar
random variable f(Y ):

Pr
[
f(Y ) > (1 + α)f(τ)

]
≤ eα

(1 + α)1+α − eα
.

Proof. Suppose that the event {f(Y ) > (1 + α)f(τ)} happens. Then, by Lemma 2.14,

there exists k ∈ {1, . . . , dm/(1 + α)e} such that the event {Y ↓b(1+α)(k−1)c+1 > τk} happens.

The above implication can be simplified by using distributional assumptions of Y . Let
j ∈ [m′] denote the largest index such that τ`j > τk holds. Since τ is a non-increasing
vector, we clearly have `j ≤ k − 1. Next, recall that for any i ∈ [m] the support of

Y i lies in {τ`j}j∈[m′]. Thus, if the event {Y ↓b(1+α)(k−1)c+1 > τk} happens, then the event

{Y ↓b(1+α)`jc+1 ≥ τ`j} happens. Observe that the latter event is the same as the event

{N≥τ`j (Y ) > (1 + α)`j}.
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The tail bound on f(Y ) follows from a simple union bound argument over all j ∈ [m′]:

Pr[f(Y ) > (1 + α)f(τ)] ≤
∑
j∈[m′]

Pr[N≥τ`j (Y ) > (1 + α)`j]

≤
∑
j∈[m′]

(
eα

(1 + α)1+α

)`j
(by Lemma 4.12)

≤
∞∑
`=1

(
eα

(1 + α)1+α

)`
(1 ≤ `1 < `2 < · · · < `m′ = m)

=
eα

(1 + α)1+α − eα

We remark that the tail bound in Lemma 4.13 is nontrivial when (1+α)1+α > 2eα, which
is roughly α ≥ 1.391. We now prove Theorem 4.11, and subsequently Theorems 4.1 and 4.4.

Proof of Theorem 4.11. We use a simple integration calculation:

E[f(Y )] = f(τ) ·
∫ ∞

0

Pr
[
f(Y ) > αf(τ)

]
dα

≤ f(τ) ·
(

3 +

∫ ∞
3

Pr
[
f(Y ) > αf(τ)

]
dα
)

≤ f(τ) ·
(

3 +

∫ ∞
2

eα

(1 + α)1+α − eα
dα
)

(By Lemma 4.13)

≤ f(τ) ·
(

3 +
∞∑
n=2

en

(1 + n)1+n − en
)

(integrand is a decreasing function)

≤ f(τ) ·
(

3 +
∞∑
n=2

2−(n−1)
)

= 4 f(τ).

It remains to justify that (1 + n)1+n ≥ (2n−1 + 1)en holds for any integer n ≥ 2. The
inequality is true for n = 2, 3, 4 by an explicit calculation. For n ≥ 4, we have:

(2 + n)2+n ≥ (2 + n) · (1 + n)1+n ≥ (2e) · (2n−1 + 1) · en ≥ (2n + 1) · en+1,

so the desired inequality follows by induction.

We can obtain a tighter upper bound by a computer-assisted numerical computation
of the integral:

E[f(Y )] ≤ f(τ) ·
(

2.391 +

∫ ∞
1.391

eα

(1 + α)1+α − eα
dα
)
≤ (2.391 + 0.635)f(τ) = 3.026 · f(τ)
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Proof of Theorem 4.1. Recall that f is normalized so for any y ∈ Rm
≥0 we have Top1(y) ≤

f(y). By Lemma 4.10(i) and Theorem 4.11:

E[f(Y )] ≤ E[f(Y )] + γ1(Y ) ≤ 3.026 · f(τ) + γ1(Y ). (4.1)

Theorem 4.6 and monotonicity of f gives f(τ) ≤ f(γ1, τ2, . . . , τm) ≤ 2 f(E[Y ↓]), and
Theorem 3.18 gives γ1(Y ) ≤ e

e−1
· E[Y ↓1 ] ≤ e

e−1
· f(E[Y ↓]). Combining the above, we get

E[f(Y )] ≤ 7.634 · f(E[Y ↓]).

Proof of Theorem 4.4. We use Theorem 4.6 and monotone property of f to upper bound
the right hand side in (4.1):

1

2
· f(γ1, τ2, . . . , τm) ≤ E[f(Y )] ≤ 3.026 · f(τ) + γ1(Y ) ≤ 4.026 · f(γ1, τ2, . . . , τm).

Given Theorems 4.1 and 4.4, the proof of Theorem 4.5 is straightforward.

Proof of Theorem 4.5. Recall that the nonincreasing vector ∆γ ∈ Rm
≥0 is defined as follows:

for ` ∈ [m], ∆γ` = γ` − γ`−1, where γ` = γ`(Y ). By definition, Top`(∆γ) = γ`, so by
Theorem 3.9 we have that Top`(∆γ) ≤ 2Top`(E[Y ↓]) for all ` ∈ [m]. Therefore, by the
majorization inequality (Theorem 2.7) and Theorem 4.1, we get

E[f(Y )] ≥ f(E[Y ↓]) ≥ 1

2
· f(∆γ).

Next, we prove the upper bound on E[f(Y )]. In Theorem 4.4, we showed E[f(Y )] ≤
4.026 · f(γ1, τ2, . . . , τm). Observe that (∆γ)1 = γ1, and for any ` ∈ {2, 3, . . . ,m} we have
(∆γ)` ≥ τ` by Lemma 3.17. Since f is monotone, we get:

E[f(Y )] ≤ 4.026 · f(γ1, τ2, . . . , τm) ≤ 4.026 · f(∆γ).

We conclude this section by showing that the worst-case multiplicative gap between
E[f(Y )] and f(E[Y ↓]) is bounded away from 1.

Remark 4.1. Consider a random vector Y that follows a product distribution on Rm
≥0 where

for each i ∈ [m], Yi is a Bernoulli trial that takes value 1 with probability 1/m (and value 0
with remaining probability). Consider the monotone symmetric norm f : Rm → R≥0 that
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maps x ∈ Rm
≥0 to max

(
e
e−1
· Top1(x),Topm(x)

)
. Observe that E[Topm(Y )] = m · 1

m
= 1,

and E[Top1(Y )] = 1− (1− 1
m

)m ≈ 1− 1
e
. Assuming m→∞, we have:

f(E[Y ↓]) = max
( e

e− 1
· E[Top1(Y )],E[Topm(Y )]

)
→ 1.

and

E[f(Y )] = E[Topm(Y )] + E
[( e

e− 1
· Top1(Y )− Topm(Y )

)+]
= 1 +

1

e− 1
·Pr[Y ↓1 = 1 and Y ↓2 = 0]

= 1 +
1

e− 1
·
(
m

1

)
·
( 1

m

)
·
(

1− 1

m

)m−1

→ 1 +
1

e · (e− 1)

Therefore, the constant in the right hand side of Theorem 4.1 must be at least 1 + 1
e·(e−1)

≈
1.214.

4.2 Approximate Stochastic Majorization

In this section we show that the majorization inequality extends to the stochastic setting
in an approximate form. We call this result Approximate Stochastic Majorization and it is
a direct consequence of Theorems 2.7 and 4.1.

Theorem 4.14 (Approximate Stochastic Majorization).
Let Y,W follow product distributions on Rm

≥0, and f : Rm
≥0 → R≥0 be a monotone,

symmetric norm. Suppose that E[Top`(Y )] ≤ E[Top`(W )] holds for all ` ∈ [m]. Then,

E[f(Y )] ≤ 7.634 · E[f(W )].

Proof. Recall from Theorem 4.2 that E[Top`(Y )] = Top`(E[Y ↓]) for any ` ∈ [m]. We have:

E[f(Y )] ≤ 7.634 · f(E[Y ↓]) ≤ 7.634 · f(E[W ↓]) ≤ 7.634 · E[f(W )].

In the above, the first and third inequalities follow from Theorem 4.1, and the second
inequality follows from Theorem 2.7 applied to the vectors E[Y ↓] and E[W ↓].
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4.3 Other Stochastic Majorization Inequalities

In this section we give three versions of approximate stochastic majorization that are easier
to apply in other problem settings. Recall that POSm := {1, 2, 4, . . . , 2blog2mc}.

In the following theorem, we give a relative and budgeted version of approximate
stochastic majorization. In the relative version, we show that bounding E[Top`(Y )] in
terms of E[Top`(W )] for all ` ∈ POS implies a bound on E[f(Y )] in terms of E[f(W )].
In the budgeted version, the bounds on E[Top`(Y )] are given by some scalars B`, and we

infer a bound on E[f(Y )] in terms of f(~b), where ~b is such that Top`(~b) is roughly B`.

Theorem 4.15.
Let Y follow a product distribution on Rm

≥0, and f : Rm
≥0 → R≥0 be a monotone,

symmetric norm. The following are true:

(i) (Relative Version) Let W follow a product distribution on Rm
≥0, and α ∈ R>0

be a positive scalar. Suppose that E[Top`(Y )] ≤ αE[Top`(W )] holds for all ` ∈
POSm. Then we have:

E[f(Y )] ≤ 2α · 7.634 · E[f(W )] = O(α) · E[f(W )].

(ii) [Budgeted Version] Let (B`)`∈POSm denote a non-decreasing, nonnegative se-
quence, and b : [0,m] → R≥0 denote the corresponding upper envelope curve

(see Definition 2.16). Let ~b ∈ Rm
≥0 be defined as follows: for any i ∈ [m],

~bi := b(i)−b(i−1). Suppose that E[Top`(Y )] ≤ B` holds for all ` ∈ POSm. Then
we have:

E[f(Y )] ≤ 2 · 7.634 · f(~b) = O(f(~b))

Proof. The first part follows from Theorem 4.14 applied to product distributions Y and
W ′ := 2αW , where for any i ∈ [m], W ′

i is the random variable Wi scaled by 2α. The factor
2 is to account for Top` norms with ` /∈ POSm.

The second part follows from Theorems 2.15 and 4.1. We have E[f(Y )] ≤ 7.634 ·
f(E[Y ↓]) by Theorem 4.1. By our assumption Top`(E[Y ↓]) = E[Top`(Y )] ≤ B`, so by

Theorem 2.15 we have f(E[Y ↓]) ≤ 2 f(~b).

The following result is a stochastic generalization of the results that we saw in Sec-
tion 2.2.1. Roughly speaking, we show that if the τ` statistics of Y are comparable to the
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τ` statistics of W , then the expected f -norm of Y can be bounded in terms of the expected
f -norm of W .

Theorem 4.16.
Let Y,W follow product distributions on Rm

≥0, and f : Rm
≥0 → R≥0 be a monotone,

symmetric norm. Let λ,B1 ∈ R≥0 denote scalars such that
∑

i∈[m] E[(Yi−λτ1(W ))+] ≤
B1. Let α ∈ R≥1, β ∈ R>0 denote scalars such that for every ` ∈ POSm, α` ≤ m, the
condition τdα`e(Y ) ≤ βτ`(W ) holds. We have:

E[f(Y )] ≤ 4.026 ·
{
αλτ1(W ) +B1 + 2αβf(τ(W ))

}
.

By Theorem 4.4, we have E[f(Y )] ≤ O(1) · f(γ1(Y ), τ2(Y ), . . . , τm(Y )), so it remains
to prove a bound on f(γ1(Y ), τ2(Y ), . . . , τm(Y )). We do this by using triangle inequality:
Lemma 4.17 handles the contribution from the first max(1, dαe − 1) coordinates, and
Lemma 4.18 takes care of the remaining coordinates.

Lemma 4.17. f(γ1(Y ), τ2(Y ), . . . , τdαe−1(Y ), 0, . . . , 0) ≤ αλτ1(W ) +B1.

Proof. We consider two cases. Suppose that α ≤ 2 holds. Taking ` = 1 and θ = λτ1(W )
in Lemma 3.11(i) gives:

γ1(Y ) ≤ λτ1(W ) +
∑
i∈[m]

E
[(
Yi − λτ1(W )

)+] ≤ αλτ1(W ) +B1.

On the other hand, if α > 2 holds, we first use Lemma 3.17 to obtain γ1(Y )+ τ2(Y )+ · · ·+
τdαe−1(Y ) ≤ γdαe−1(Y ). Then, we again use Lemma 3.11 with θ = λτ1(W ) to obtain

γdαe−1(Y ) ≤ (dαe − 1) · λτ1(W ) +
∑
i∈[m]

E[
(
Yi − λτ1(W )

)+
] ≤ αλτ1(W ) +B1.

Lemma 4.18. f(τdαe(Y ), τdαe+1(Y ), . . . , τm(Y ), 0, . . . , 0) ≤ 2αβ · f(τ(W ))

Proof. We use the τ`-based majorization inequality from Lemma 2.13 for this proof. Con-
sider nonincreasing vectors x, y ∈ Rm

≥0 defined as follows: for any i ∈ [m], xi := βτ`(W ) and
yi := τdαe−1+i(Y ). Note that yi = 0 for indices i > m−dαe+1. We show that the condition
in Lemma 2.13 holds for the scaling parameter 2α, thereby implying f(y) ≤ 2αf(x).

By our assumption, for any ` ∈ POSm, α` ≤ m we have ydα`e−dαe+1 ≤ βτ`(W ). Fix one
such `. Observe that for any k ∈ {dα`e − dαe+ 1, . . . ,max(m, d2α`e − dαe)}, we have:

yk ≤ ydα`e−dαe+1 ≤ x` ≤ xd d2α`e−dαe
2α

e ≤ xd k
2α
e.

Proof of Theorem 4.16. Follows from Lemmas 4.17, 4.18 and triangle inequality.
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Chapter 5

Stochastic Minimum Norm Load
Balancing

We now apply our framework to devise approximation algorithms for stochastic minimum
norm load balancing. In this introductory chapter on stochastic min-norm load balancing,
we define the problem, state our main results, and develop some basic tools that will
be used in obtaining our results. In Section 5.1, we define the problem and list some
important special cases. We also describe our main results here; Chapters 6-9 are devoted
to deriving these results. In Section 5.2 we derive some results for handling the expectation
of exceptional random variables that arise in load balancing applications; These results will
be used in Chapters 6, 7 and 8.

5.1 Problem Statement

In an instance of stochastic min-norm load balancing (StochNormLB), we are given n
stochastic jobs that need to be processed on exactly one of m unrelated machines. Through-
out, we use J and [m] to denote the set of jobs and machines respectively; we use j to
index jobs, and i to index machines. For each job j ∈ J and machine i ∈ [m], we are given
a nonnegative random variable Xij that denotes the processing time of job j on machine
i. Jobs are independent, so Xij and Xi′j′ are independent whenever j 6= j′; however, Xij

and Xi′j could be correlated. A feasible solution is an assignment σ : J → [m] of jobs

to machines. This induces a random load vector
−−→
loadσ where

−−→
loadσ(i) :=

∑
j:σ(j)=iXij for

each i ∈ [m]; note that
−−→
loadσ follows a product distribution on Rm

≥0. The goal is to find an
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assignment σ that minimizes E[f(
−−→
loadσ)] for a given monotone, symmetric norm f . Here,

the expectation is over the randomness in {Xij}i,j.
We make a few remarks on how the input is given to us. While the most natural input

specification for the job-size distributions is that we are given the joint distribution of
(Xij)i∈[m], all our algorithms only need the marginal distribution of Xij for each i ∈ [m] and
job j (and in fact only require access to a certain statistic of these marginal distributions).
Our algorithms only require a value oracle for the norm f .

5.1.1 Important Special Cases

There are three sources of generality in StochNormLB: the generality of monotone sym-
metric norms, the generality of the unrelated-machines environment, and the generality of
job-size distributions. Limiting the level of generality in each of these leads to the following
important special cases:

1. Top` Norms: The norm f is a Top` norm for some ` ∈ [m]. So, the goal in this
problem is to find an assignment of jobs to machines that minimizes the expected
sum of the ` largest machine loads. We refer to this problem as stochastic Top`-norm
load balancing and abbreviate it to StochTop`LB.

2. Identical-Machines Environment: The machines are identical, so the processing
time of a job does not depend on the machine that it is assigned to. That is, Xij = Xj

for all machines i.

3. StochNormLB with Special Distributions: The following probability distribu-
tions are relevant to us:

• Deterministic Jobs: Job sizes are deterministic, i.e., Xij takes value pij with
probability 1. Chakrabarty and Swamy [5] call this problem minimum norm
load balancing. We abbreviate it to MinNormLB.

• Bernoulli Jobs: The job variable Xij is a weighted Bernoulli trial that takes
size sij ∈ R≥0 with probability qij ∈ [0, 1], and 0 otherwise. We call this problem
as stochastic min-norm load balancing with Bernoulli jobs, and abbreviate it to
BerNormLB.

• Poisson Jobs: The job variable Xij follows a Poisson distribution with a
given mean λij ∈ R≥0. That is, for any nonnegative integer k, Pr[Xij = k] =
e−λijλkij/k!. We call this problem as stochastic min-norm load balancing with
Poisson jobs, and abbreviate it to PoisNormLB. A key observation that makes
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PoisNormLB easier to approximate is that the load on any machine is also a
Poisson variable (see Fact 2.2).

5.1.2 Our Results

We state informal versions of our main results on stochastic min-norm load balancing. We
start with our strongest results on StochTop`LB and BerNormLB, followed by our result
for the general StochNormLB. Our results heavily exploit the machinery developed in
Chapters 3 and 4.

Theorem 5.1 (proved in Chapter 6). There is an O(1)-approximation algorithm for
StochTop`LB with arbitrary job-size distributions.
Furthermore, when the machines are identical, a simple list-scheduling based algorithm
yields an O(1)-approximate assignment.

Observe that the above result generalizes the O(1)-approximation algorithm for stochastic
makespan minimization (i.e., StochNormLB with f = Top1-norm) given by Kleinberg et
al. [23] for identical machines, and by Gupta et al. [10] for unrelated machines to all
Top` norms. The above result is incomparable to that of Molinaro [34], who obtains an
O(1)-approximation when f is an `p norm for some p ∈ [1,∞].

Theorem 5.2 (proved in Chapter 8). There is an O(1)-approximation algorithm for
BerNormLB with an arbitrary monotone, symmetric norm.
Furthermore, when the machines are identical, the approximation guarantee holds simulta-
neously for all monotone symmetric norms. That is, the algorithm returns an assignment
that is simultaneously an O(1)-approximation for every monotone, symmetric norm.

As MinNormLB can be viewed as a trivial case of BerNormLB, modulo constant factors, The-
orem 5.2 strictly generalizes the O(1)-approximation algorithm obtained by Chakrabarty
and Swamy [5, 6].

We next state our approximation guarantees for general StochNormLB, i.e., where we
have arbitrary job-size distributions, and an arbitrary monotone, symmetric norm.

Theorem 5.3 (proved in Chapter 7). There is an O(log logm/ log log logm)-approximation
algorithm for StochNormLB on unrelated machines.
Furthermore, when the machines are identical, the approximation guarantee holds simulta-
neously for all monotone symmetric norms.

58



In Chapter 7, we also give a very simple O(log logm)-approximation for StochNormLB on
identical machines via a reduction to vector scheduling.

Finally, we obtain quite strong guarantees for PoisNormLB via an entirely different
approach. We reduce PoisNormLB to MinNormLB with at most a (1 + ε)-factor loss in
approximation. This reduction yields the following guarantees.

Theorem 5.4 (proved in Chapter 9). For any ε > 0, there is a (2 + ε)-approximation
algorithm for PoisNormLB on unrelated machines with an arbitrary monotone, symmetric
norm.
Furthermore, when the machines are identical, there is a (1 + ε)-approximation algorithm.

The above reduction applies in fact more generally to stochastic combinatorial optimization
with Poisson distributions, and relies on a certain property, called Schur convexity of the
objective function that arises with Poisson distributions. We remark that the f -norm in
the reduced MinNormLB instance is different from the f -norm in the original PoisNormLB
instance. We give full details in Chapter 9, and this chapter can be read independently of
Chapters 6 – 8.

In the rest of this chapter, we build tools that will be useful in designing algorithms for
StochNormLB instances with no special assumptions on the distributions of machine-load
variables, unlike PoisNormLB.

5.2 Handling Sums of Independent Random Variables

In StochNormLB, an assignment σ : J → [m] induces a load of
−−→
loadσ(i) :=

∑
j∈J :σ(j)=iXij

on machine i ∈ [m]. We have two key challenges in working with these load variables.
First, the load variables depend on the actual assignment, which we are trying to compute
in the first place. Second, we do not have direct access to the probability distributions of
load variables because the input only consists of distributions of Xij’s. In the rest of this
section, we focus on the problem posed by the second challenge.

Consider a composite random variable S :=
∑

j∈[k] Zj that is a sum of k independent

nonnegative random variables {Zj}j. We only assume that the Zj’s have finite mean, which
is a reasonable assumption in load-balancing applications. We think of S as a placeholder

for
−−→
loadσ(i) for some machine i. For notational convenience, let Y :=

−−→
loadσ for some fixed

assignment σ. When f is the Top1 norm, the contribution of {Yi}i∈[m] to E[f(Y )] can be
captured by deriving probability bounds on the upper tail of Yi for each machine i (see
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[23, 10]). However, for Top` norms with ` > 1 (and more generally, arbitrary monotone
symmetric norms), it is unclear how to use upper-tail probability bounds to control the
expected norm. Nevertheless, in Chapter 3, we saw that controlling

∑
i∈[m] E[Y ≥θi ] for a

suitable θ gives an approximate handle on E[Top`(Y )], and in Chapter 4, we saw that
simultaneously controlling E[Top`(Y )] for all powers-of-2 ` gives an approximate handle
on E[f(Y )].

Our goal in the rest of this section is to derive lower bounds on E[S≥θ], for an arbitrary
scalar θ ∈ R≥0, by using distributional information about the Zj’s. We derive two separate
lower bounds: one arising from truncated random variables ({Z<θ

j }j and the other arising

from exceptional random variables ({Z≥θj }j). We start with the simpler bound.

5.2.1 Handling Exceptional Variables

Observe that for any j ∈ [k], if the event {Zj ≥ θ} happens, then the event {S ≥ θ}
happens. The following exceptional-items bound is straightforward.

Lemma 5.5. Let S =
∑

j∈[k] Zj, where the Zj’s are independent random variables whose

support lies in {0} ∪ [θ,∞). For any scalar θ ∈ R≥0, we have E[S≥θ] =
∑

j∈[k] E[Z≥θj ].

Proof. The support of S and Zj’s lies in {0} ∪ [θ,∞), so

E[S≥θ] = E[S] =
∑
j

E[Zj] =
∑
j

E[Z≥θj ].

The separable nature of the right hand side in Lemma 5.5 makes it a convenient lower
bound on E[S≥θ] even without any further assumptions on the Zj’s.

5.2.2 Handling Truncated Variables

Unlike the exceptional-items bound, the bound involving truncated items requires nuanced
ideas. First of all, since S ≥

∑
j Z

<θ
j with probability 1, we have:

E[S≥θ] ≥ E
[(∑

j

Z<θ
j

)≥θ]
.

The above bound is ineffective because of its non-separable dependence on Z<θ
j . The

following notion of effective size will be useful to us in obtaining separable bounds.
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Definition 5.6 (Effective Size). For a nonnegative random variable Z and a parameter
λ > 1, the λ-effective size βλ(Z) of Z is defined to be logλ E[λZ ]. We also define β1(Z) :=
E[Z].

Note that λβλ(Z) is simply the moment-generating function of Z evaluated at lnλ.

The notion of effective size originated in queuing theory [16] and Kleinberg et al. [23]
were the first to utilize this notion to obtain an O(1)-approximation algorithm for stochastic
makespan minimization on identical machines. We give some intuition on why effective
sizes are better than expected sizes in capturing the contribution of any one truncated
random variable Z<θ

j to E[S≥θ]. Observe that for any scalar θ′ ∈ [0, θ), the support of

Zj that lies in [θ′, θ) contributes to E[S≥θ] as long as the remaining independent random
variables {Z<θ

j′ }j′ 6=j in total contribute at least θ − θ′. Thus, larger values in the support

of Z<θ
j are represented more in E[S≥θ]. Note that the definition of λ-effective size inflates

larger values more than smaller values. Furthermore, the inflation in itself becomes more
aggressive as the parameter λ increases.

In the following we give quantitative upper and lower bounds on E[
(∑

j Z
<θ
j

)≥θ
] in

terms of effective sizes of truncated random variables related to the Zj variables. The
first lemma — a straightforward application of Markov’s inequality — shows that if the
λ-effective size of a random variable is small, then its upper tail obeys an inverse power
law in λ. The first part of Lemma 5.7 is lifted from [23].

Lemma 5.7. Let Z be a nonnegative random variable and λ ≥ 1 be a scalar. If βλ(Z) ≤ b
for some b ∈ R≥0, then for any c ≥ 0, we have:

Pr[Z ≥ b+ c] ≤ λ−c.

Furthermore, if λ ≥ 2, then

E[Z≥βλ(Z)+1] ≤ βλ(Z) + 3

λ
.

Proof. The first part trivially holds for λ = 1 so assume that λ > 1. By definition,
λβλ(Z) = E[λZ ], so Markov’s inequality gives:

Pr[Z ≥ b+ c] = Pr[λZ ≥ λb+c] ≤ E[λZ ]

λb+c
≤ λ−c
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For the second part, we have

E[Z≥βλ(Z)+1] = (βλ(Z) + 1) ·Pr[Z ≥ βλ(Z) + 1] +

∫ ∞
βλ(Z)+1

Pr[Z > u] du

≤ βλ(Z) + 1

λ
+

∫ ∞
1

λ−u du (by the first part)

=
βλ(Z) + 1

λ
+

1

lnλ
·
∫ ∞

lnλ

e−v dv (change of variable)

=
βλ(Z) + 1

λ
+

1

λ lnλ
≤ βλ(Z) + 3

λ

The last inequality above is because λ ≥ 2.

The following two results will be useful to us. First, we show that the λ-effective size
function is additive over sums of independent random variables. Second, we show that
λ-effective size grows sublinearly in λ for [0, 1]-bounded random variables.

Lemma 5.8. For any two independent random variables Z and Z ′, we have:

βλ(Z + Z ′) = βλ(Z) + βλ(Z
′).

Proof. We have βλ(Z + Z ′) = lnλ E[λZ+Z′ ] = lnλ
(
E[λZ ] ·E[λZ

′
]
)

= βλ(Z) + βλ(Z
′), where

the second equality follows from independence.

Lemma 5.9. For any [0, 1]-bounded random variable Z and a scalar λ ≥ 1, we have:

βλ(Z) ≤ λ · E[Z].

Proof. By definition, λβλ(Z) = E[λZ ] ≤ E[1 + (λ − 1)Z] = 1 + (λ − 1)E[Z], where we use
the inequality λz ≤ 1 + (λ− 1)z which holds for any λ ≥ 1 and z ∈ [0, 1]. Therefore:

βλ(Z) ≤ lnλ
(
1 + (λ− 1)E[Z]

)
≤ (λ− 1) · E[Z]

lnλ
≤ λ · E[Z].

In the above we use the elementary logarithmic inequality z
1+z
≤ ln(1 + z) ≤ z that holds

for any scalar z ≥ 0.

By Lemmas 5.7 and 5.8, we can infer that if
∑

j βλ(Z
<θ
j /θ) = O(1) holds, then

E[
(∑

j Z
<θ
j /θ

)≥Ω(1)
] ≤ O(1)/λ, or equivalently E[

(∑
j Z

<θ
j

)≥Ω(θ)
] ≤ O(θ)/λ. A key contri-

bution of Kleinberg et al. [23] is encapsulated by Lemma 5.10 below, which yields a lower
bound on E[S≥θ] in terms of the βλ(Zj)-effective sizes that complements the above upper
bound. This lemma is obtained by combining various results from [23].
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Lemma 5.10.
Let S =

∑
j∈[k] Zj, where the Zj’s are independent [0, θ]-bounded random variables.

The following are true:

(i) For any scalar λ ≥ 1, we have

E[S≥θ] ≥ θ ·
∑

j∈[k] βλ(Zj/4θ)− 6

4λ
.

(ii) For λ ∈ [1, 2], we have E[S≥θ] ≥ θ ·
(

1
2
·
∑

j βλ(Zj/θ)− 1
)
.

(iii) For λ = 1, we trivially have E[S≥θ] ≥ θ · (
∑

j∈[k] E[Zj/θ]− 1).

We devote the rest of this Chapter to the proof of Lemma 5.10. The proof is long and
technical, so we split it into multiple parts.

5.2.3 A Lower Bound Based on Effective Sizes: Proof of
Lemma 5.10

Without loss of generality, we may assume that θ = 1. This is because if we set Z ′j = Zj/θ
for all j ∈ [k] and define S ′ := S/θ, then the Z ′j variables are supported on [0, 1], and
E[S ′≥1] = E[S≥θ]/θ; so applying the result for θ = 1 yields the desired inequalities.

To keep notation simple, we always reserve j to index over the set [k]. We first prove
the second and third claims in the lemma. When λ = 1, we have E[S≥1] ≥ E[S] − 1 =∑

j E[Zj]− 1, so we are done. Next, if λ ≤ 2, then Lemma 5.9 gives:

E[S≥1] ≥
∑
j

E[Zj]− 1 ≥ 1

2
·
∑
j

βλ(Zj)− 1.

The lower bound in part (ii) is stronger than the lower bound in part (i), so for the rest
of the proof we assume that λ ≥ 2. We prove the lemma by showing that the following
“volume” inequality holds:∑

j

βλ(Zj/4) ≤ (3λ+ 2)E[S≥1] + 6 , (5.1)

holds for any scalar λ ≥ 2. As 3λ+ 2 ≤ 4λ for λ ≥ 2, (5.1) implies the lemma.
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At a high level, we combine and adapt the proofs of Lemmas 3.2 and 3.4 from [23]
to obtain our result. We say that a Bernoulli trial is of type (q, s) if it takes size s with
probability q, and size 0 with probability 1 − q. For a Bernoulli trial B of type (q, s),
Kleinberg et al. [23] define a modified notion of effective size: β′λ (B) := min(s, sqλs). The
following claim will be useful.

Claim 5.11 (Proposition 2.5 from [23]). βλ(B) ≤ β′λ (B).

Roughly speaking, inequality (5.1) states that each unit of λ-effective size contributes
“λ−1-units” towards E[S≥1]. This is indeed what we show, but we first reduce to the
setting of Bernoulli trials.

The proof will involve various transformations of the Zj random variables, and the
notion of stochastic dominance will be convenient to compare the various random variables
so obtained. A random variable B stochastically dominates another random variable R,
denoted R � sd B, if Pr[B ≥ t] ≥ Pr[R ≥ t] for all t ∈ R. We will use the following
well-known facts about stochastic dominance.

(F1) If B � sd R, then for any non-decreasing function u : R 7→ R, we have E[u(B)] ≤
E[u(R)].

(F2) If Bi � sd Ri for all i = 1, . . . , k, then
(∑k

i=1Bi

)
� sd

(∑k
i=1 Ri

)
.

All the random variables encountered in the proof will be nonnegative, and we will often
omit stating this explicitly.

Bernoulli Decomposition

We utilize a result of [23] that shows how to replace an arbitrary random variable R with
a sum of Bernoulli trials that is “close” to R in terms of stochastic dominance. This allows
us to reduce to the case where all random variables are Bernoulli trials (Lemma 5.14).

Following [23], we say that a random variable is geometric if its support is contained in
{2r : r ∈ Z}. We use supp(R) to denote the support of a random variable R.

Lemma 5.12 (Lemma 3.10 from [23]). Let R be a geometric random variable. Then there
exists a set of independent Bernoulli trials B1, . . . , Bp such that B = B1 + · · ·+Bp satisfies
Pr[R = t] = Pr[t ≤ B < 2t] for all t ∈ supp(R). Furthermore, the support of each Bi is
contained in the support of R.
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Corollary 5.13. Let R be a geometric random variable, and B be the corresponding sum
of Bernoulli trials given by Lemma 5.12. Then, we have B/2 � sd R � sd B.

Proof. To see that R � sd B, consider any t ≥ 0. We have

Pr[R ≥ t] =
∑

t′∈supp(R):t′≥t

Pr[R = t′] =
∑

t′∈supp(R):t′≥t

Pr[t′ ≤ B < 2t′] ≤ Pr[B ≥ t]

where the second equality is due to Lemma 5.12, and the last inequality follows since the
intervals [t′, 2t′) are disjoint for t′ ∈ supp(R), as R is a geometric random variable.

To show that B/2 � sd R, we argue that Pr[R < t] ≤ Pr[B < 2t] for all t ∈ R. This
follows from a very similar argument as above. We have

Pr[R < t] =
∑

t′∈supp(R):t′<t

Pr[R = t′] =
∑

t′∈supp(R):t′<t

Pr[t′ ≤ B < 2t′] ≤ Pr[B < 2t].

The last inequality again follows because the intervals [t′, 2t′) are disjoint for t′ ∈ supp(R),
as R is a geometric random variable.

We intend to apply Lemma 5.12 to the Zj’s to obtain a collection of Bernoulli trials, but
first we need to convert them to geometric random variables. For technical reasons that
will be clear soon, we first scale our random variables by a factor of 4; then, we convert
each scaled random variable to a geometric random variable by rounding up the values in
its support to the closest power of 2. Formally, for each j, let Zrd

j denote the geometric
random variable obtained by rounding up each value in the support of Zj/4 to the closest
power of 2. (So, for instance, 0.22 would get rounded up to 0.25, whereas 1/8 would stay
the same.) Note that Zrd

j is a geometric [0, 1/4]-bounded random variable.

We now apply Lemma 5.12 to each Zrd
j to obtain a collection {Zber

` }`∈Fj of independent
Bernoulli trials. Let F be the disjoint union of the Fj’s, so F is the collection of all
the Bernoulli variables so obtained. Define Sber :=

∑
`∈F Z

ber
` . For ` ∈ F , let Zber

` be
a Bernoulli trial of type (q`, s`); from Lemma 5.12, we have that s` ∈ [0, 1/4] and is a
(inverse) power of 2. We now argue that it suffices to prove (5.1) for the Bernoulli trials
{Zber

` }`∈F .

Lemma 5.14. Inequality (5.1) follows from the inequality:∑
`∈F

βλ(Z
ber
` ) ≤ (3λ+ 2)E[(Sber)≥1] + 6
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By Claim 5.11, this in turn is implied by the inequality∑
`∈F

β′λ
(
Zber
`

)
≤ (3λ+ 2)E[(Sber)≥1] + 6. (5.2)

Proof. Fix any j ∈ [k]. By Corollary 5.13, we have Zrd
j � sd

∑
`∈Fj Z

ber
` . We also have that

Zj/4 ≤ Zrd
j , and so Zj/4 � sd

∑
`∈Fj Z

ber
` . Therefore, since λx is an increasing function of

x, we have βλ(Zj/4) ≤ βλ(
∑

`∈Fj Z
ber
` ) =

∑
`∈Fj βλ(Z

ber
` ). Summing over all j, we obtain

that
∑

j∈[k] βλ(Zj/4) ≤
∑

`∈F βλ(Z
ber
` ).

Corollary 5.13 also yields that
∑

`∈Fj Z
ber
` � sd 2 · Zrd

j for all j. We also have Zrd
j ≤

2(Zj/4), and therefore, we have
∑

`∈Fj Z
ber
` � sd Zj for all j. Using Fact (F2), this implies

that Sber � sd S, and hence, by Fact (F1), we have E[(Sber)≥1] ≤ E[S≥1].

To summarize, we have shown that
∑

j∈[k] βλ(Zj/4) is at most
∑

`∈F βλ(Z
ber
` ), which is

at most the LHS of (5.2) (by Claim 5.11), and the RHS of (5.1) is at least the RHS of
(5.2).

Proof of Inequality (5.2)

We now focus on proving inequality (5.2). Let F sml := {` ∈ F : λs` ≤ 2} index the set of
small Bernoulli trials, and let F lg := F \ F sml index the remaining large Bernoulli trials.

It is easy to show that the total modified effective size of small Bernoulli trials is at
most 2 E[Sber] ≤ 2 E[(Sber)≥1]+2 (see Claim 5.15 and inequality (vol-small)). Bounding the
modified effective size of the large Bernoulli trials is more involved. Roughly speaking, we
first consolidate these random variables by replacing them with “simpler” Bernoulli trials,
and then show that each unit of total modified effective size of these simpler Bernoulli trials
makes a contribution of λ−1 towards E[(Sber)≥1]. The constant 6 in (5.2) arises due to two
reasons: (i) because we bound the modified effective size of the small Bernoulli trials by
O
(
E[Sber]

)
(as opposed to O

(
E[(Sber)≥1]

)
); and (ii) because we lose some modified effective

size in the consolidation of large Bernoulli trials. 1

Claim 5.15 (Shown in Lemma 3.4 in [23]). Let B be a Bernoulli trial of type (q, s) with
λs ≤ 2. Then, β′λ (B) ≤ 2 E[B].

1Note that some additive constant must unavoidably appear on the RHS of inequalities (5.1) and (5.2);
that is, we cannot bound the total effective size (or modified effective size) by a purely multiplicative factor
of E[S≥1], even for Bernoulli trials. This is because if λ = 1, and say we have only one (Bernoulli) random
variable Z that is strictly less than 1, then its effective size (as also its modified effective size) is simply
E[Z], whereas E[S≥1] = E[Z≥1] = 0.
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Proof. By definition, β′λ (B) = min(s, sqλs) ≤ 2qs = 2 E[B].

By the above claim we get the following volume inequality for the small Bernoulli trials.

∑
`∈F sml

β′λ
(
Zber
`

)
≤ 2

∑
`∈F sml

E[Zber
` ] ≤ 2 E[Sber] ≤ 2 E[(Sber)≥1] + 2. (vol-small)

We now handle the large Bernoulli trials. For each ` ∈ F lg, we set q′` = min(q`, λ
−s`).

Observe that this operation does not change the modified effective size, and we have that
β′λ ((q`, s`)) = β′λ ((q′`, s`)) = s`q

′
`λ
s` . The following claim from [23] is useful in consolidating

Bernoulli trials of the same size.

Claim 5.16 (Claim 3.1 from [23]). Let E1, . . . , Ep be independent events, with Pr[Ei] = pi.
Let E ′ be the event that at least one of these events occurs. Then Pr[E ′] ≥ 1

2
min(1,

∑
i pi).

Consolidation for a fixed size. For each s that is an inverse power of 2, we define
F s := {` ∈ F lg : s` = s}, so that

⋃
s F

s is a partition of F lg. Next, we further partition F s

into sets P s
1 , . . . , P

s
ns such that for all i = 1, . . . , ns − 1, we have 2λ−s ≤

∑
`∈P si

q′` < 3λ−s

and
∑

`∈P sns
q′` < 2λ−s. Such a partitioning always exists since for each ` ∈ F s we have

q′` ≤ λ−s by definition. We now apply Claim 5.16 to “consolidate” each P s
i : by this, we

mean that for i = 1, . . . , ns − 1, we think of representing P s
i by the “simpler” Bernoulli

trial Bs
i of type (λ−s, s) and using this to replace the individual random variables in P s

i .

By Claim 5.16, for any i = 1, . . . , ns − 1, we have

Pr
[∑
`∈P si

Zber
` ≥ s

]
≥ λ−s = Pr[Bs

i = s]

(note that this only works for large Bernoulli trials since 2λ−s ≤ 1); hence, it follows that
Bs
i � sd

∑
`∈P si

Zber
` .

Note that ∑
`∈P si

β′λ
(
Zber
`

)
= sλs

∑
`∈P si

q′` <

{
3s; if i ∈ {1, . . . , ns − 1}
2s; if i = ns.

Also, β′λ (Bs
i ) = min(s, sλ−sλs) = s. Putting everything together,

(ns − 1)s =
ns−1∑
i=1

β′λ (Bs
i ) ≥

∑
`∈F s β

′
λ

(
Zber
`

)
− 2s

3
.
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Consolidation across different sizes. Summing the above inequality for all s (note
that each s is an inverse power of 2 and at most 1/4), we obtain that∑

s

ns−1∑
i=1

β′λ (Bs
i ) ≥

∑
`∈F lg β′λ

(
Zber
`

)
− 1

3
. (5.3)

Let vol denote the RHS of (5.3), and let m := bvolc. (Note that m could be 0; but if m = 0,
then

∑
`∈F lg β′λ

(
Zber
`

)
< 4, which combined with (vol-small) yields (5.2).) Since each Bs

i is
a Bernoulli trial of type (λ−s, s), where s is an inverse power of 2, we can obtain m disjoint
subsets A1, . . . , Am of (s, i) pairs from the entire collection {Bs

i }s,i of Bernoulli trials, such
that

∑
(s,i)∈Au β

′
λ (Bs

i ) =
∑

(s,i)∈Au s = 1 for each u ∈ [m]. 2 For each subset Au,

Pr
[ ∑

(s,i)∈Au

Bs
i = 1

]
=

∏
(s,i)∈Au

Pr[Bs
i = s] =

∏
(s,i)∈Au

λ−s = λ−1 .

Finishing up the proof of inequality (5.2). For any nonnegative random variables
R1, R2, we have E[(R1 +R2)≥1] ≥ E[R≥1

1 ] + E[R≥1
2 ]. So,

E

[(∑
s

ns−1∑
i=1

Bs
i

)≥1
]
≥

m∑
u=1

E

( ∑
(s,i)∈Au

Bs
i

)≥1

 =
m

λ
≥
∑

`∈F lg β′λ
(
Zber
`

)
− 4

3λ
.

As noted earlier, we have that Bs
i � sd

∑
`∈P si

Zber
` for all s, and all i = 1, . . . , ns − 1. By

Fact (F2), it follows that
(∑

s

∑ns−1
i=1 Bs

i

)
� sd

(∑
s

∑ns−1
i=1

∑
`∈P si

Zber
`

)
. Also,

∑
s

ns−1∑
i=1

∑
`∈P si

Zber
` ≤

∑
`∈F lg

Zber
` ≤

∑
`∈F

Zber
` = Sber,

and combining the above with Fact (F1), we obtain that

E
[(∑

s

ns−1∑
i=1

Bs
i

)≥1
]
≤ E[(Sber)≥1].

2To justify this statement, it suffices to show the following. Suppose we have created some r sets
A1, . . . , Ar, where r < m, and let I be the set of (s, i) pairs indexing the Bernoulli trials that are not in
A1, . . . , Ar; then, we can find a subset I ′ ⊆ I such that

∑
(s,i)∈I′ s = 1. To see this, first since r < m, we

have
∑

(s,i)∈I s ≥ 1. We sort the (s, i) pairs in I in non-increasing order of s; to avoid excessive notation,
let I denote this sorted list. Now since each s is an inverse power of 2, it is easy to see by induction that if
J is a prefix of I such that

∑
(s,i)∈J s < 1, then 1−

∑
(s,i)∈J s is at least as large as the s-value of the pair

in I appearing immediately after J . Coupled with the fact that
∑

(s,i)∈I s ≥ 1, this implies that there is

a prefix I ′ such that
∑

(s,i)∈I′ s = 1.
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Thus, we have shown that ∑
`∈F lg

β′λ
(
Zber
`

)
≤ 3λE[(Sber)≥1] + 4. (vol-large)

We finish the proof of inequality (5.2), and hence the lemma by adding (vol-small) and
(vol-large): ∑

`∈F

β′λ
(
Zber
`

)
≤ (3λ+ 2)E[(Sber)≥1] + 6.
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Chapter 6

Stochastic Load Balancing with Top`
Norms

In this chapter, we design an O(1)-approximation algorithm for StochTop`LB. Recall that
the objective in this problem is to find an assignment σ : J → [m] of jobs to machines

that minimizes E[Top`(
−−→
loadσ)] for a specified ` ∈ [m]. For the rest of this chapter we

reserve ` to refer to the ` in the Top` objective. Let σ∗ denote an optimal solution and

OPT` := E[Top`(
−−→
loadσ

∗
)] denote the optimal solution value. We split this chapter into two

sections: first, we restrict ourselves to the simpler identical-machines setting and give a
combinatorial O(1)-approximation algorithm; and we then give a more involved LP-based
approximation algorithm for the unrelated-machines setting.

6.1 Identical Machines

In the identical-machines setting, the processing time of a job j (on any machine) is Xj.
We assume that a succinct representation of the distribution of Xj is given as part of the
input. The main result in this section is the following.

Theorem 6.1.
There is an O(1)-approximation algorithm for stochastic Top`-norm load balancing on
identical machines with arbitrary job-size distributions.

Our approximation strategy for StochTop`LB is similar to the one used in [23] for min-
imizing expected makespan, i.e., the Top1-norm case. Suppose that we guess t` such that
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`t` is roughly OPT`. Our algorithm in Theorem 6.1 is based on simultaneously approxi-
mating two sub-instances, exceptional and truncated, of the given StochTop`LB instance.
As indicated by their names, the size of a job j is X≥t`j in the exceptional sub-instance, and

X<t`
j in the truncated sub-instance. The exceptional sub-instance is easy to approximate

because the expected Top` norm of every assignment is Θ(OPT`). Up to an O(1)-loss in
approximation, we reduce the truncated sub-instance to (deterministic) makespan mini-
mization problem with job sizes given by pj := βm/`(X

<t`
j ). A simple greedy algorithm

applied to the latter problem yields the desired O(1)-approximate assignment for the orig-
inal StochTop`LB instance. We now formalize the above strategy.

6.1.1 The Exceptional Sub-Instance

Since we do not have explicit access to t` (that is roughly OPT`/`), we work with an
arbitrary guess θ of t`.

Lemma 6.2. Let θ be a positive scalar. Consider an instance of StochTop`LB where for
each job j, the support of Xj lies in {0} ∪ [θ,∞) (equivalently, Pr[0 < Xj < θ] = 0). Let
σ : J → [m] denote an arbitrary assignment. The following are true:

(i) If
∑

j∈J E[Xj] ≤ `θ, then E[Top`(
−−→
loadσ)] ≤ 2`θ.

(ii) If
∑

j∈J E[Xj] > `θ, then E[Top`(
−−→
loadσ)] > `θ/2.

Proof. Let Y :=
−−→
loadσ denote the load vector induced by σ. Observe that for any ma-

chine i, the support of its load variable Yi lies in {0} ∪ [θ,∞). Thus, E[Y ≥θi ] = E[Yi] =∑
j∈J :σ(j)=i E[Xj]. Summing this equation over all machines gives a term that is indepen-

dent of σ: ∑
i∈[m]

E[Y ≥θi ] =
∑
j∈J

E[Xj].

The first and second parts follow from Lemmas 3.5 and 3.6, respectively.

The above lemma implies that if we take θ ≥ 2OPT`/`, then any assignment induces
expected Top` load at most 2`θ for the exceptional sub-instance. In particular, for θ =
2OPT`/`, this shows that every assignment is a 4-approximation for the exceptional sub-
instance.
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6.1.2 The Truncated Sub-Instance

We use techniques from Chapter 5 to approximate the truncated sub-instance. Recall
that in the truncated sub-instance, the support of each Xj lies in [0, θ). Consider an

arbitrary assignment σ : J → [m], and let Y :=
−−→
loadσ denote the induced load vector.

By Lemma 5.10, for any machine i ∈ [m], effective-size parameter λi ≥ 1, and a scalar
θ ∈ R≥0, we have:

E[Y ≥θi ] ≥ θ ·
∑

j∈J :σ(j)=i βλi(Xj/4θ)− 6

4λi
(eff-size-lb-m/c)

Since the machines are identical, it is natural to set all λi to a common value λ ≥ 1 and sum
the above inequality over all machines i ∈ [m]. This yields a lower bound on

∑
i E[Y ≥θi ]

that is independent of the assignment σ.∑
i∈[m]

E[Y ≥θi ] ≥ θ ·
∑

j∈J βλ(Xj/4θ)− 6m

4λ
(eff-size-lb-all)

Recall from Lemma 3.6 that the lower bound on E[Top`(Y )] is strongest when θ is such
that

∑
i E[Y ≥θi ] is just above `θ. Now observe that if we fix λ = m/` and choose the largest

θ such that
∑

j βλ(Xj/4θ) ≈ 10m holds, then (eff-size-lb-all) yields
∑

i E[Y ≥θi ] ≈ `θ. This
motivates our choice of λ = m/` for the identical-machines setting.

The following technical lemma is the counterpart of Lemma 6.2.

Lemma 6.3. Fix λ = m/`. Let θ be a positive scalar. Consider an instance of StochTop`LB
where for each job j, the support of Xj lies in [0, θ) (equivalently, Pr[Xj ≥ θ] = 0). Let
σ : J → [m] denote an arbitrary assignment, and let α := maxi∈[m]

∑
j:σ(j)=i βλ(Xj/4θ) be

the “βλ-makespan” of this assignment. The following are true:

(i) Suppose that
∑

j∈J βλ(Xj/4θ) ≤ 10m holds. For ` ≤ m/2 we have E[Top`(
−−→
loadσ)] ≤

(8α + 16)`θ, and for ` > m/2 we have E[Top`(
−−→
loadσ)] ≤ 80 `θ.

(ii) Suppose that
∑

j∈J βλ(Xj/4θ) > 10m holds. Then we have E[Top`(
−−→
loadσ)] > `θ/2.

Proof. For notational convenience, let Y :=
−−→
loadσ/θ denote the load vector induced by σ

scaled down by a factor θ. Note E[Top`(
−−→
loadσ)] = θE[Top`(Y )]. We split the proof of the

first part into two cases. If λ < 2 (i.e., ` > m/2), we have:

E[Top`(Y )] ≤ E[Topm(Y )] =
∑
j∈J

E[Xj/θ] ≤ 4 ·
∑
j∈J

βλ(Xj/4θ) ≤ 40m ≤ 80 `,
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where the second inequality is because the effective size function is non-decreasing over the

parameter λ. Therefore, E[Top`(
−−→
loadσ)] ≤ 80 `θ.

Next, suppose that λ ≥ 2. Since Xj’s are independent random variables, for any ma-
chine i we have βλ(Yi/4) =

∑
j:σ(j)=i βλ(Xj/4θ) ≤ α, by the definition of α. By Lemma 5.7:

E

[(Yi
4

)≥α+1
]
≤ E

[(Yi
4

)≥βλ(Yi/4)+1
]
≤ βλ(Yi/4) + 3

λ
≤ α + 3

λ
.

Summing over all machines, we get∑
i∈[m]

E

[(Yi
4

)≥α+1
]
≤ (α + 3) · m

λ
= (α + 3)`.

Equivalently,
∑

i E[Y ≥4α+4
i ] ≤ 4(α + 3)`. Next, we use Lemma 3.4 with θ = 4α + 4 to get

E[Top`(Y )] ≤ (4α+ 4)`+ 4(α+ 3)` = (8α+ 16)`. Therefore, E[Top`(
−−→
loadσ)] ≤ (8α+ 16)`θ.

For the second part, suppose that
∑

j∈J βλ(Xj/4θ) > 10m holds. Observe that for any
i ∈ [m], Yi =

∑
j:σ(j)=i(Xj/θ) is a sum of independent [0, 1]-bounded random variables, so

Lemma 5.10 gives:∑
i∈[m]

E[Y ≥1
i ] ≥ 1

4λ
·
∑
i∈[m]

( ∑
j:σ(j)=i

βλ(Xj/4θ)− 6
)

=
`

4m
·
(∑
j∈J

βλ(Xj/4θ)− 6m
)
> `.

Now Lemma 3.6 implies that E[Top`(Y )] > `/2, which is equivalent to E[Top`(
−−→
loadσ)] >

`θ/2.

6.1.3 Our Algorithm

Lemmas 6.2 and 6.3 suggest the following natural approach to obtain a constant-factor
approximation for StochTop`LB on identical machines. For a given scalar θ > 0, “split” each
job j as Xj = X<θ

j +X≥θj . This yields the exceptional sub-instance with the exceptional job-

variables {X≥θj }j, and the truncated sub-instance with the truncated job-variables {X<θ
j }j.

Clearly, for any assignment σ, if Y and Ỹ denote the respective load vectors in these two

sub-instances, we have
−−→
loadσ = Y + Ỹ . Now, we can use binary search to find the right

threshold t`, such that for θ = t`, the conditions in part (i) of Lemmas 6.2 and 6.3 hold, and
for some θ ≥ t`/(1 + ε), the opposite is true. Note that the latter condition above implies
that OPT` = Ω(`t`). A simple list-scheduling algorithm for deterministic scheduling with
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job sizes pj := βm/`(X
<t`
j /4t`) gives us an assignment with objective value O(`t`) in the

original instance. We give full details now.

We first establish suitable upper and lower bounds for the right t` so that it can be
computed efficiently. Define κ := maxj∈J E[Xj] (which can be easily computed from the
input data). By the contrapositive of part (ii) of Lemmas 6.2 and 6.3, for any θ ≥ 2OPT`/`
the following inequalities hold:

∑
j∈J E[X≥θj ] ≤ `θ and

∑
j∈J βm/`(X

<θ
j /4θ) ≤ 8m. In

particular, since OPT` ≤ E[Topm(
−−→
loadσ

∗
)] =

∑
j∈J E[Xj] ≤ nκ, the above two inequalities

hold for θ = hi := 2nκ ≥ 2OPT`/`. Next, observe that for any job k and θ = E[Xk]/(m+2),
we have ∑

j

E[X≥θj ] ≥ E[X≥θk ] ≥ E[Xk]− θ = (m+ 1)θ > `θ.

Thus, for any θ ≤ low := κ/(m + 2), we have
∑

j E[X≥θj ] > `θ, so the condition in
Lemma 6.2(ii) holds.

Proof of Theorem 6.1. Let ε > 0 be a small constant (say, 1/1000). By enumerating over
scalars of the form (1 + ε)r with r ∈ Z, we can efficiently find a scalar t` ∈ R≥0 satisfying:

(i) low/(1 + ε) < t` < hi(1 + ε).

(ii)
∑

j∈J E[X≥t`j ] ≤ `t` and
∑

j∈J βm/`(X
<t`
j /4t`) ≤ 10m.

(iii)
∑

j∈J E[X
≥t′`
j ] > `t′` or

∑
j∈J βm/`(X

<t′`
j /4t′`) > 10m, where t′` := t`/(1 + ε).

We first establish a lower bound on OPT`. Depending on which condition in (iii) holds,
the optimum value of the exceptional or the truncated sub-instance (w.r.t. the scalar
θ = t′`) is larger than `t′`/2. So, OPT` ≥ `t`/2(1 + ε).

We now describe the algorithm for obtaining an assignment σ with E[Top`(
−−→
loadσ)] =

O(`t`). Consider an instance of deterministic (makespan-minimization) scheduling with
job sizes pj := βm/`(X

<t`
j /4t`) ∈ [0, 1]. By Property (ii) above, we have

∑
j∈J pj ≤ 10m.

Thus, a simple greedy algorithm gives an assignment σ : J → [m] that assigns total pj-load

at most
∑

j∈J pj/m + 1 ≤ 11 =: α on any machine. Let Y and Ỹ denote the load vector
induced by σ in the exceptional and truncated sub-instances w.r.t. the threshold θ = t`.
Lemma 6.2 (i) gives E[Top`(Y )] ≤ 2`t`, and Lemma 6.3 (i) gives

E[Top`(Ỹ )] ≤ max{(8α + 16), 80} · `t` ≤ 104 `t`.
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As
−−→
loadσ = Y + Ỹ , triangle inequality of norms gives:

E[Top`(
−−→
loadσ)] ≤ E[Top`(Y )] + E[Top`(Ỹ )] ≤ 106 `t`.

Therefore, σ is an O(1)-approximate solution to the given instance of StochTop`LB.

6.2 Unrelated Machines

In the unrelated-machines setting, the stochastic processing time of a job j on machine i
is denoted Xij.

1 Our main result here is the following.

Theorem 6.4.
There is an O(1)-approximation algorithm for stochastic Top`-norm load balancing on
unrelated machines with arbitrary job-size distributions.

Our approximation algorithm for the unrelated-machines setting is much more techni-
cal: we solve a linear program (LP) to obtain a fractional assignment, which is subsequently
rounded to an integral assignment that is within a constant-factor of the “cost” of the frac-
tional solution. In the following three sections, we state the LP-relaxation for StochTop`LB,
describe an LP-rounding strategy, and analyze the approximation quality of the rounded
solution.

6.2.1 LP-Relaxation

Recall that OPT` := E[Top`(
−−→
loadσ

∗
)] denotes the objective value of an optimal assignment

σ∗. For notational convenience, we use the shorthand j 7→ i to denote that job j is assigned
to machine i under some arbitrary but fixed assignment.

Similar to our approach for the identical-machines setting, we work with a guess
t` ∈ R≥0 for OPT`/`. Our feasibility LP, which we denote (LP(`, t`)), seeks a fractional
assignment with objective value O(`t`). The guess t` gives rise to exceptional and trun-
cated sub-instances consisting of job-size variables of the form X≥t`ij and X<t`

ij , respectively.

1Recall our assumption that the input consists of joint distributions of {Xij}i∈[m] for each job j. From
the description of our algorithms it will be clear that correlations between Xij and Xi′j can be ignored: it
suffices to assume that the input consists of marginal distributions {Xij}i,j that is often easier to represent
succinctly than the joint distributions {(Xij)i}j .
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By triangle inequality and Lemma 3.5, it suffices for our LP to model the constraints∑
i E[Y

≥t`
i ] = O(`t`) and

∑
i E[Ỹ ≥t`i ] = O(`t`), where Y and Ỹ are the “load vectors”

induced by the fractional assignment in the exceptional and truncated sub-instances. Be-
fore delving into the specifics of our LP, we remark that (LP(`, t`)) is feasible whenever
t` ≥ 2 · OPT`/` (see Claim 6.5). So, using binary search we can find a t` such that
(LP(`, t`)) is feasible and t` = O(OPT`/`). In Section 6.2.2, we describe a rounding
strategy that converts any fractional solution for (LP(`, t`)) to an assignment σ satisfy-

ing
∑

i E[
−−→
loadσ(i)≥t` ] = O(`t`), which implies that E[Top`(

−−→
loadσ)] = O(`t`). Overall, this

leads to an O(1)-approximation algorithm.

As is standard in load-balancing LPs, we introduce variables {zij}i,j indicating if job j
is assigned to machine i, so z belongs to the assignment polytope

Qasgn :=
{
z ∈ Rm×J

≥0 :
∑
i∈[m]

zij = 1 ∀i ∈ [m]
}

The constraint for the exceptional sub-instance is fairly straightforward: we simply lin-
earize the constraint

∑
j∈J E[X≥t`σ(j),j] = O(`t`) to get (6.1). Handling the truncated sub-

instance is more complicated. For each machine i, let Li :=
∑

j:j 7→iX
<t`
ij /t` denote the

scaled load on machine i due to truncated jobs assigned to it. We use the LP variable ξi to

model E[L≥1
i ], so that t`ξi models E[

(∑
j:j 7→iX

<t`
ij

)≥t` ]. Since Li is a sum of independent

[0, 1]-random variables, Lemma 5.10 yields various lower bounds on E[L≥1
i ] in terms of

effective sizes of truncated jobs assigned to i. For any parameter λi ≥ 1 we have:

E[L≥1
i ] ≥

∑
j:j 7→i βλi(X

<t`
ij /4t`)− 6

4λi

In Section 6.1.2, when the machines were identical, it made sense to set all λi’s to a uniform
value (= m/`). However, when machines are unrelated, it is apriori unclear what the right
choice of λi is. To circumvent this issue, we essentially include constraints of the above
form for all λi’s; once we solve the resulting LP, we will utilize the lower bounds arising
from a suitable λi value for each machine i. More precisely, we include constraints (see
(6.2) and (6.3)) of the above form for a sufficiently large collection of λi’s so that one of
them is close enough to the right choice. We remark that the idea of using different λ’s
is also present in Gupta et al. [10], albeit it is exploited in a much-more limited fashion
therein. Finally, we include the constraint (6.4) to model

∑
i E[L≥1

i ] ≤ `. In all, for any
positive parameter t`, our LP-relaxation (LP(`, t`)) is given by (6.1)–(6.5).
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(LP(`, t`))

∑
i∈[m],j∈J

E[X≥t`ij ]zij ≤ `t` (6.1)

∑
j∈J

E[X<t`
ij /t`]zij − 1 ≤ ξi ∀i ∈ [m] (6.2)∑

j∈J βλ(X
<t`
ij /4t`)zij − 6

4λ
≤ ξi ∀i ∈ [m],∀λ ∈ {2, . . . , 100m} (6.3)∑

i∈[m]

ξi ≤ ` (6.4)

ξ ≥ 0, z ∈Qasgn. (6.5)

Claim 6.5. (LP(`, t`)) is feasible for any t` ≥ 2 · OPT`/`.

Proof. We introduce some notation for convenience. Let Y :=
−−→
loadσ

∗
. Let Y and Ỹ denote

the exceptional and truncated load vectors induced by σ∗. That is, Y i =
∑

j:σ∗(j)=iX
≥t`
ij

and Ỹi =
∑

j:σ∗(j)=iX
<t`
ij for any i. Also, let Li := Ỹi/t` denote the truncated load on

machine i scaled down by t`. Consider the solution (z∗, ξ∗) induced by σ∗, where z∗

is the indicator vector of σ∗, and ξ∗i := E[L≥1
i ] for any i. By our assumption on t`,

the contrapositive of Lemma 3.6 implies that
∑

i E[Y ≥t`i ] ≤ `t`. Thus, we trivially have∑
i E[Y

≥t`
i ] ≤ `t` and

∑
i E[Ỹ ≥t`i ] ≤ `t`.

The exceptional-jobs constraint (6.1) holds because the support of any Y i lies in {0} ∪
[t`,∞), and hence∑

i,j

E[X≥t`ij ]z∗ij =
∑
j∈J

E[X≥t`σ∗(j),j] =
∑
i∈[m]

E[Y i] =
∑
i∈[m]

E[Y
≥t`
i ] ≤ `t`.

Next, Lemma 5.10 applied to the composite random variable Li, which is a sum of in-
dependent [0, 1]-bounded random variables, shows that constraints (6.2) and (6.3) hold.

Finally, t`ξ
∗
i = E[Ỹ ≥t` ] for each i, and the upper bound of `t` on

∑
i E[Ỹ ≥t` ] implies that∑

i ξ
∗
i ≤ `.

6.2.2 LP-Rounding Strategy

In this section we describe our rounding strategy that takes an arbitrary fractional solution
to (LP(`, t`)), for some t` > 0, and rounds it to an integral assignment with objective value
O(`t`). We fix some feasible fractional solution (z, ξ) to (LP(`, t`)).
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We start with some intuition on what properties are desirable in a rounded solution.
Ideally, we would like to round z while only violating budget constraints (6.1), (6.2) and
(6.3) up to O(1) factors; this would immediately yield the O(1)-approximation guarantee.
Unfortunately, this is prohibitive: Usually, LP-rounding algorithms are harder to design
and analyze as the number of constraints grow. However, as in Gupta et al. [10], it suffices
to work with only O(m) many budget constraints. For each machine i, we carefully choose
a single budget constraint from among its truncated jobs constraints (6.2) and (6.3), and
round the fractional assignment z to obtain an assignment σ such that: (i) these budget
constraints for the machines are satisfied approximately; and (ii) the total contribution
from the exceptional jobs (across all machines) remains at most `t`. The rounding step
amounts to rounding a fractional solution to an instance of the generalized assignment
problem (GAP), for which we can utilize the algorithm of [40], or use the iterative-rounding
result from Theorem 2.32.

The budget constraint that we include for a machine is tailored to ensure that the total
βλ(X

<t`
ij /4t`)-effective load on a machine under the assignment σ is not too large; due to

Lemma 5.7, this will imply a suitable bound on E[L
≥Ω(1)
i ], where Li =

∑
j:j 7→iX

<t`
ij /4t`.

Ideally, for each machine i we would like to choose constraint (6.3) for λi = 1/ξi. This
yields

∑
j βλi(X

<t`
ij /4t`)zij ≤ 4λiξi + 6 = 10. So if this budget constraint is approximately

satisfied in the rounded solution, say with RHS equal to some constant b, then Lemma 5.7
roughly gives us E[L≥b+1

i ] ≤ (b+ 3)/λi = (b+ 3)ξi. This in turn implies that

∑
i

E

[(∑
j:j 7→i

X<t`
ij

)≥4(b+1)t`

]
= 4t` ·

∑
i

E[L≥b+1
i ] ≤ 4t`(b+ 3) ·

∑
i

ξi ≤ 4(b+ 3)`t`,

where the last inequality follows due to (6.4). The upshot is that∑
i

E
[(∑

j:j 7→i

X<t`
ij

)≥Ω(t`)
]

= O(`t`);

coupled with the fact that
∑

j E[X≥t`σ(j),j] ≤ `t`, we obtain
∑

i E
[−−→
loadσ(i)≥Ω(t`)

]
= O(`t`),

and hence E[Top`(
−−→
loadσ)] = O(`t`).

A slight complication is that 1/ξi need not be an integer in [100m], so we modify the
choice of λi’s appropriately to deal with this.

We remark that whereas we work with a more general norm than `∞, our entire
approach—polynomial-size LP-relaxation, rounding algorithm, and analysis—is in fact
simpler and cleaner than the one used in [10] for the special case of Top1 norm. Our
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savings can be traced to the fact that we leverage the notion of effective size in a more pow-

erful way, by utilizing it at multiple scales to obtain lower bounds on E[
(∑

j 7→iX
<t`
ij /t`

)≥1
]

(Lemma 5.10). Our rounding algorithm is summarized below.

T1. Define Mlow := {i ∈ [m] : ξi < 1}, and let Mhi := [m] \ Mlow. For every i ∈ [m],
define λi := min(d1/ξie, 100m) ∈ {2, . . . , 100m} if i ∈Mlow, and λi := 1 otherwise.

T2. Consider the following LP that has one budget constraint for each machine i corre-
sponding to the truncated jobs budget constraint picked from either (6.2) or (6.3)
depending on the parameter λi. We rearrange the constraints for clarity.

min
∑

i∈[m],j∈J

E[X≥t`ij ]ηij (Aux-Top`-LP)

s.t.
∑
j∈J

βλi(X
<t`
ij /4t`)ηij ≤ 14 ∀ i ∈Mlow (6.6)∑

j∈J

E[X<t`
ij /t`]ηij ≤ ξi + 1 ∀ i ∈Mhi (6.7)

η ∈ Qasgn .

Clearly, z is a feasible solution to (Aux-Top`-LP) with objective value at most `t`.
Observe that Qasgn is the base polytope of the partition matroid encoding that each
job is assigned to at most one machine. We round z to obtain an integral assignment
σ, either by using GAP rounding, or by invoking Theorem 2.32.

6.2.3 Analysis

We now show that E[Top`(
−−→
loadσ)] = O(`t`). We first note that Theorem 2.32 directly

shows that σ satisfies constraints (6.6) and (6.7) with an additive violation of at most 1,
and the total contribution from exceptional jobs is at most `t`.

Claim 6.6. The assignment σ satisfies:

(a)
∑

j∈J E[X≥t`σ(j),j] ≤ `t`.

(b)
∑

j∈J :σ(j)=i βλi(X
<t`
ij /4t`) ≤ 15 for any machine i ∈Mlow.

(c)
∑

j∈J :σ(j)=i E[X<t`
ij /t`] ≤ ξi + 2 for any machine i ∈Mhi.
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Proof. This follows directly from Theorem 2.32 by noting that the parameter ν, denoting
an upper bound on the column sum of a variable, is at most 1, and since z is a feasible
solution to (Aux-Top`-LP) of objective value at most `t`.

Next, we bound E[Top`(
−−→
loadσ)] by bounding the expected Top`-norm of the load induced

by three different sources: exceptional jobs, truncated jobs inMlow, and truncated jobs in
Mhi. Let j : j 7→ i be a shorthand for {j ∈ J : σ(j) = i}. Observe that

−−→
loadσ = Y excep + Y low + Y hi,

where Y excep
i :=

∑
j:j 7→iX

≥t`
ij ,

Y low
i :=

{∑
j:j 7→iX

<t`
ij ; if i ∈Mlow

0; otherwise
and Y hi

i :=

{∑
j:j 7→iX

<t`
ij ; if i ∈Mhi

0; otherwise

All three random vectors follow a product distribution on Rm
≥0. By the triangle inequality,

it suffices to bound the expected Top` norm of each vector by O(`t`). It is easy to bound
even the expected Topm norms of Y hi and Y excep (Lemma 6.7); to bound E[Top`(Y

low)]
(Lemma 6.8), we utilize properties of effective sizes.

Lemma 6.7. We have (i) E[Top`(Y
excep)] ≤ `t`, and (ii) E[Top`(Y

hi)] ≤ 3`t`.

Proof. Part (i) follows immediately from Claim 6.6(a) since:

E[Top`(Y
excep)] ≤ E[Topm(Y excep)] =

∑
j∈J

E[X≥t`σ(j),j] ≤ `t`.

For part (ii), we utilize Claim 6.6(c) which gives E[Y hi
i ] =

∑
j:j 7→i E[X<t`

ij ] ≤ t`(ξi + 2)

for any machine i ∈ Mhi. Note that |Mhi| ≤ ` because ξi ≥ 1 for any i ∈ Mhi and∑
i∈[m] ξi ≤ ` by the LP constraint (6.4). Therefore,

E[Top`(Y
hi)] ≤ E[Topm(Y hi)] ≤ t` ·

∑
i∈Mhi

(ξi + 2) ≤ 3`t`.

Lemma 6.8. We have E[Top`(Y
low)] ≤ 140 `t`.

Proof. Let W := Y low/4t`. Observe that it suffices to show that∑
i∈[m]

E[W≥16
i ] =

∑
i∈Mlow

E[W≥16
i ] ≤ 19 `
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holds. Then by Lemma 3.4 we immediately get E[Top`(W )] ≤ 35 `, or equivalently,
E[Top`(Y

low)] ≤ 140 `t`. To this end, Claim 6.6(b) gives βλi(Wi) ≤ 15 for any machine
i ∈Mlow, where λi = min(100m, d1/ξie) ≥ 2. Using Lemma 5.7 we get:

E
[
W≥16
i

]
≤ 18/λi = 18 max

( 1

100m
,

1

d1/ξie

)
≤ 18 ξi +

18

100m
.

Summing over all machines in Mlow gives
∑

i∈Mlow
E[W≥16

i ] ≤ 19`.

Combining the two lemmas above yields the following result.

Theorem 6.9. The assignment σ satisfies E[Top`(
−−→
loadσ)] ≤ 144 `t`.

6.2.4 Our Algorithm

We now give a full description of our LP-based approximation algorithm for StochTop`LB
on unrelated machines.

Proof of Theorem 6.4. Given Theorem 6.9 and Claim 6.5, it is clear that if we work with
t` = O(OPT`/`) such that (LP(`, t`)) is feasible and run our LP-rounding algorithm, then
we obtain an O(1)-approximate assignment. As is standard, we can find such a t`, within
a (1 + ε)-factor, via binary search. To perform this binary search, we show that we can
come up with an upper bound UB such that UB/m ≤ OPT ≤ UB. We show this even in
the general setting where we have an arbitrary monotone, symmetric norm f .

Lemma 6.10. Let f be a normalized, monotone, symmetric norm, and OPTf denote the
optimal value for a given instance of the stochastic f -norm load balancing problem. Define
UB :=

∑
j∈J
(
mini∈[m] E[Xij]

)
, which can be easily computed from the input data. We have

UB/m ≤ OPTf ≤ UB.

Proof. Notice that UB is the optimal value of stochastic Topm-norm load-balancing, i.e., it
is the objective value of the assignment that minimizes the sum of the expected machine
loads. By our assumption that f is normalized, we have Top1(·) ≤ f(·) (see Lemma 2.2).
Therefore, for any assignment σ′ : J → [m] we have:

1

m
· E[Topm(

−−→
loadσ

′
)] ≤ E[Top1(

−−→
loadσ

′
)] ≤ E[f(

−−→
loadσ

′
)] ≤ E[Topm(

−−→
loadσ

′
)].

Taking the minimum over all assignments, and plugging in UB = minσ′ E[Topm(
−−→
loadσ

′
)],

as noted above, it follows that UB/m ≤ minσ′:J→[m] E[f(
−−→
loadσ

′
)] = OPTf ≤ UB.
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Thus, if we binary search in the interval [0, 2 · UB/`], for any ε > 0, we can find in
poly(log(m/ε)) iterations a scalar t` ≤ 2 ·OPT`/`+ ε · UB/m2 ≤ (2 + ε)OPT`/` such that
(LP(`, t`)) is feasible. By Theorem 6.9, we obtain an assignment whose expected Top` norm
is at most 144 `t` ≤ (288 +O(ε))OPT`.
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Chapter 7

Stochastic Load Balancing with
General Monotone Symmetric Norms

In this chapter we design approximation algorithms for stochastic min-norm load balancing
for general monotone symmetric norms. Recall that the goal in StochNormLB is to obtain

an assignment σ : J → [m] of jobs to machines that minimizes E[f(
−−→
loadσ)], for a given

monotone, symmetric norm f : Rm
≥0 → R≥0. We reserve σ∗ to denote an optimal solution

and OPTf := E[f(
−−→
loadσ

∗
)] to denote the optimal solution value. We drop the subscript f

in OPTf whenever the norm is clear from the context.

The starting point for our algorithms in this chapter is approximate stochastic ma-
jorization: to obtain an O(α)-approximate assignment σ, it suffices to ensure that for all

` ∈ POS := {1, 2, 4, . . . , 2blog2mc}, E[Top`(
−−→
loadσ)] ≤ α · E[Top`(

−−→
loadσ

∗
)] holds. We refer the

reader to Chapter 4 for a quick refresher on Theorems 4.1, 4.14 and 4.15. In Chapter 6
we designed approximation algorithms for StochTop`LB that were based on a reduction
to deterministic makespan-minimization load balancing. Thus, a natural approximation
strategy for StochNormLB involves a reduction to makespan-minimization load balancing
when jobs have multidimensional sizes, one size for every ` ∈ POS. This latter problem
is known as vector scheduling in Scheduling Theory literature, but we refer to it as vector
load balancing to stay consistent with our terminology.

We divide this chapter into two sections. In Section 7.1, we restrict ourselves to the
identical-machines setting and give a simple O(log logm)-approximation algorithm. This
algorithm is extremely easy to describe and the analysis only uses Chernoff upper tail
bounds. In fact, we show that the assignment produced by our algorithm is simultaneously
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an O(log logm)-approximate solution for every monotone symmetric norm. This simulta-
neous every-monotone-symmetric-norm approximation guarantee is a common feature of
our algorithms in Chapters 7 and 8 for the identical-machines setting.

In Section 7.2, we give an improved O(log logm/ log log logm)-approximation algo-
rithm which holds even in the unrelated-machines setting. At a high level, our algorithm
is based on applying a sophisticated randomized-rounding procedure to an LP solution
for StochNormLB. The LP that we use is a straightforward generalization of the LP for
StochTop`LB from Section 6.2: we essentially include constraints from (LP(`, t`)) for all
` ∈ POS. A useful property of our LP is that the column sums of the constraint matrix
are bounded by D := O(logm). The powerful randomized-rounding result of Harris and
Srinivasan [14] for column-sparse assignment problems with packing constraints gives the
desired O(logD/ log logD)-approximate assignment. While the O(log logm/ log log logm)-
approximation guarantee is both stronger, and holds in a more general machine envi-
ronment than the O(log logm)-approximation guarantee, the overall algorithm is rather
opaque and involved, since we use the result of [14] (which is a bit complicated) in a
black-box fashion.

7.1 Identical Machines

Recall that in the identical machines setting, the job-size distribution for job j (on any ma-
chine i ∈ [m]) is denoted Xj. Our main result in this section is a randomized O(log logm)-
approximation for StochNormLB when machines are identical.

Theorem 7.1.
We can compute (in polynomial time) an assignment σ : J → [m] such that, with prob-
ability at least 2/3, σ is an O(log logm)-approximate assignment to the given instance
of StochNormLB.

In Section 6.1, we saw anO(1)-approximation algorithm for StochTop`LB (for some fixed
` ∈ [m]) on identical machines via a reduction to deterministic makespan-minimization
load balancing. We recall the high-level approximation strategy. We used binary search to
compute a scalar t` such that: (i) t` = O(OPT`/`); Let OPT` be the optimal value when the
objective function is a Top` norm; (ii)

∑
j∈J E[X≥t`j ] ≤ `t`; and (iii)

∑
j∈J βm/`(X

<t`
j /4t`) ≤

10m. Since the load vector, induced by any assignment, in the exceptional sub-instance
has expected Top`-norm bounded by O(`t`) (see Lemma 6.2 (a)), we simply ignored the
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contribution from exceptional jobs. For the truncated sub-instance, obtaining an O(1)-
approximate assignment reduces to evenly distributing (up to O(1) additive factors) the
total βm/`-effective-size over all machines (see Lemma 6.3).

The above approximation strategy can be naturally extended to handle StochNormLB
via a reduction to vector load balancing. For each ` ∈ POS, we first obtain t` such that t` =
O(OPT`/`). Next, each ` ∈ POS gives rise to exceptional and truncated sub-instances w.r.t.
the threshold t`. Like before, for any assignment σ the objective value arising from excep-

tional jobs w.r.t. threshold t` can be charged to O(`t`) = O(OPT`) = O(E[Top`(
−−→
loadσ

∗
)]).

So it suffices to simultaneously handle the contribution from truncated jobs w.r.t. thresh-
olds t` for each ` ∈ POS. By our choice of t`’s, we have

∑
j∈J βm/`(X

<t`
j /4t`) ≤ 10m for

every ` ∈ POS. If we can obtain an assignment σ such that for all ` ∈ POS and machine
i ∈ [m],

∑
j:σ(j)=i βm/`(X

<t`
j /4t`) = O(α) holds for some α, then by Lemma 6.3 we get

E[Top`(
−−→
loadσ)] = O(α ·OPT`) = O(α ·E[Top`(

−−→
loadσ

∗
)]. Thus, by Theorem 4.15 (i), σ is an

O(α)-approximate solution to the given instance of StochNormLB.

Note that the quality of approximation, α, yielded by the above approach depends on
the approximation ratio that we can get for O(logm)-dimensional vector load balancing
instances with respect to a lower bound that, loosely speaking, measures the maximum av-
erage load in any dimension. We will shortly define the d-dimensional vector load balancing
problem and state this lower bound precisely, and give a simple O(log d)-approximation
algorithm for it relative to this lower bound. Thus, this approach gives an O(log logm)-
approximation for StochNormLB.

In the preceding discussion, observe that the choice of threshold t` is based only on the
optimal assignment for the Top` objective. Furthermore, the crude upper bound argument

on E[Top`(
−−→
loadσ)] that we described above is also w.r.t. OPT`. Thus, our approximation

guarantee holds simultaneously for all monotone symmetric norms. We formalize this in
Section 7.1.3.

Theorem 7.2.
Consider n stochastic jobs {Xj}j∈J and m identical machines. We can compute (in
polynomial time) an assignment σ : J → [m] such that, with probability at least 2/3,
σ is simultaneously an O(log logm)-approximation to all Stoch-h-LB instances where
h : Rm

≥0 → R≥0 is a monotone, symmetric norm.

The randomization above stems from our randomized guarantee for vector load balanc-
ing. We remark that the probability of success in Theorem 7.2 is of a detectable (polytime-
verifiable) event (see Remark 7.1). Therefore, we can lower the failure probability to δ, for
any δ > 0, by repeating the algorithm in Theorem 7.2 O(log(1/δ)) times.
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7.1.1 The Vector Load Balancing Problem

In the d-dimensional vector load balancing (a.k.a. vector scheduling) problem, we have a
set J of n jobs that are to be processed on exactly one of m identical machines. Each job
j ∈ J has a processing-time (or size) vector pj = (pj,1, . . . , pj,d) ∈ Rd

≥0, where pj,r denotes
the size of job j in dimension r ∈ [d]. For notational convenience, we overload some of
the notation used in stochastic min-norm load balancing. An assignment σ : J → [m] of

jobs to machines induces an (m×d)-dimensional load vector
−−→
loadσ (one entry per machine-

dimension pair): for machine i ∈ [m] and dimension r ∈ [d], the load in the rth dimension

of machine i is
−−→
loadσ(i, r) :=

∑
j∈J :σ(j)=i pj,r. The makespan objective of an assignment σ

is defined as maxi∈[m],r∈[d]

−−→
loadσ(i, r), i.e., the maximum load across all machines and all

dimensions. The goal in vector load balancing is to find an assignment σ that minimizes
the makespan.

Chekuri and Khanna [7] were the first to consider the vector scheduling problem, and
they gave an O(log2 d)-approximation algorithm. Meyerson, Roytman and Tagiku [32]
improved the approximation guarantee to a factor O(log d); in fact, they gave an O(log d)-
competitive algorithm for the online version of the problem where jobs arrive one at a
time and have to be assigned irrevocably to a machine on arrival. The current best ap-
proximation for the problem is an O(log d/ log log d)-competitive algorithm by Im, Kell,
Kulkarni and Panigrahi [21], and an offline O(log d/ log log d)-approximation algorithm by
Harris and Srinivasan [14] that also works for the more-general setting with unrelated ma-
chines. In terms of hardness, very recently, Sai Sandeep [38] (see [39] for a full version)
showed that, for any ε > 0, (offline) vector scheduling is hard to approximate to a factor
O((log d)1−ε) under some complexity theoretic assumptions.

A natural lower bound on the optimal makespan for vector load balancing is given by:

lb := max

 max
job j∈J

dimension r∈[d]

pj,r,
1

m
· max

dimension r∈[d]

∑
job j∈J

pj,r

 . (7.1)

The first term above arises because each job has to assigned to some machine, and the
second term arises because in each dimension r, a total load of

∑
j pj,r is distributed among

m machines. Note that the expression for lb is simply a maximum over all dimensions of
the classical lower bound on the optimal makespan for the 1-dimensional case.

Motivated by applications to stochastic min-norm load balancing, as alluded to earlier,
we want to design approximation algorithms for vector load balancing with respect to the
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natural lower bound lb. Our main result on vector load balancing is a simple lb-relative
O(log d)-approximation algorithm.

Theorem 7.3.
There is a randomized algorithm for the d-dimensional vector scheduling problem that
computes an assignment σ with makespan at most O(log d) · lb. The algorithm runs in
time polynomial in the input size, and succeeds in finding an approximate assignment
with probability at least 2/3.

Before proving Theorem 7.3, we make a few remarks comparing our result to prior
work. The O(log d) approximation guarantee of Meyerson et al. [32] is also with respect
to the lower bound lb, although it is not explicitly stated in this form. While their guar-
antee is deterministic and holds also in the online setting, our chief notable feature is the
simplicity of our algorithm and analysis.1 From a pure approximation-standpoint, the
O(log d/ log log d)-approximation of [21] is of course better, but from the description of
their algorithm it is unclear if their guarantee holds with respect to the lower bound lb;
also, their algorithm and analysis are significantly more involved. In Section 7.2, we state
an improved O(log d/ log log d)-approximation algorithm for vector load balancing that
works for the more-general setting of unrelated machines (the size of a job j on machine
i in dimension r is pi,j,r ∈ R≥0). This result is due to Harris and Srinivasan [14], and its
specialization to identical machines works with the lower bound lb. However, the overall
algorithm and its analysis are quite sophisticated. Finally, we note that the hardness re-
sult in [38] essentially shows that our approximation guarantee is tight up to poly(log log d)
factors.

7.1.2 Approximation Algorithm for Vector Load Balancing

In this section, we describe our lb-relative approximation algorithm for vector load balanc-
ing. To keep the notation simple, we reserve i ∈ [m] to index the machine-set, j ∈ J to
index the job-set, and r ∈ [d] to index the dimensions. By scaling, we may assume without
loss of generality that lb = 1; this implies pj,r ∈ [0, 1] for all j, r, and

∑
j pj,r ≤ m for all r.

We prove Theorem 7.3 by proving a slightly stronger result.

Theorem 7.4. Consider an instance of vector load balancing with pj,r ∈ [0, 1] for all
j ∈ J, r ∈ [d], and

∑
j∈J pj,r ≤ m log d for all r ∈ [d]. There is a randomized algorithm

1The algorithm of Meyerson et al. is also fairly simple—it assigns the recently-arrived job to the
machine that leads to the least increase in an exponential potential function—but the analysis is slightly
involved.
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that produces an assignment σ whose makespan is O(log d). The algorithm succeeds with
probability at least 2/3.

Our randomized algorithm in Theorem 7.4 is based on finding a subset of jobs S ⊆ J
that can all be processed on a single machine by incurring a load of at most O(log d) in
each dimension r ∈ [d], while ensuring that the residual problem is also a valid sub-instance
of the problem with m− 1 machines. We use Chernoff tail bounds to obtain this subset S.

Lemma 7.5. Suppose m ≥ 9 and d ≥ 2. Consider a random job-set S ⊆ J where job
j ∈ J is independently included in S with probability q := 9/m. With probability at least
1/2, for all r ∈ [d] we have

∑
j∈S pj,r ≤ 18 log d and

∑
j∈J\S pj,r ≤ (m− 1) log d.

Proof. The proof is based on a straightforward application of Chernoff bounds. By our
choice of q, for any dimension r we have E[

∑
j∈S pj,r] ≤ 9 log d. Using Lemma 2.28 with

δ = 1, for any dimension r we have:

Pr

[∑
j∈S

pj,r > 18 log d

]
≤ exp

(−9 log d

3

)
≤ 1

d3
.

Next, we use Chernoff bounds for the lower tail to prove the remaining size-bound on
jobs in J \ S. Let B := {r ∈ [d] :

∑
j∈J pj,r > (m − 1) log d}. Since m ≥ 9, for any

dimension r ∈ B we have E[
∑

j∈S pj,r] ≥ (1 − 1/m) · 9 log d ≥ 8 log d. Using Lemma 2.28
with δ = 7/8 we get:

Pr

[∑
j∈S

pj,r ≤ log d

]
≤ exp

(
−49

64
· 8 log d

2

)
≤ 1

d3
.

By union-bound, with probability at least 1/2, we have
∑

j∈S pj,r ≤ 18 log d for all
r ∈ [d], and

∑
j∈S pj,r ≥ log d for all r ∈ B. The desired bounds follow.

Proof of Theorem 7.4. We call an instance of vector scheduling as a valid instance with m
machines if pj,r ∈ [0, 1] for all j, r, and

∑
j pj,r ≤ m log d for all r. Note that in Theorem 7.4

we are given a valid instance with m machines. We will assume that d ≥ 2, since otherwise
a greedy list-scheduling algorithm gives an easy 2-approximate assignment.

Let N := dlog2(3m)e = O(logm). We now describe the randomized algorithm for
Theorem 7.4. The overall procedure has at most m iterations, and if the algorithm is
successful, it produces an assignment with makespan O(log d). Consider the start of an
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iteration t for some t ≥ 1. We have a valid instance with m − t + 1 identical machines.
If m − t + 1 = 8, then we simply assign all remaining jobs to a single machine; note
that

∑
j pj,r ≤ 8 log d for all dimensions r, so we are not assigning too much load to

this machine in any dimension. Otherwise, m − t + 1 ≥ 9. Consider random subsets
S1, . . . , SN where each S` ⊆ J, ` ∈ [N ] is obtained by independently including job j in S`
with probability q := 9/m. By Lemma 7.5, with probability at most 2−N ≤ 1

3m
, none of

the S` sets satisfy the conclusion of the lemma; in this case we terminate the algorithm
with a failure. Otherwise, for some ` ∈ [N ], we have for all r,

∑
j∈S` pj,r ≤ 18 log d and∑

j∈J\S` pj,r ≤ (m − t) log d. In this case, we assign all jobs in S` to one machine and

end the iteration with a valid instance with m − t machines and residual job-set J \ S`.
The probability that the algorithm terminates with a failure in any given iteration is at
most 1/3m, so the overall failure probability of the algorithm is at most 1/3. In other
words, with probability at least 2/3, we obtain an assignment whose makespan is at most
18 log d.

7.1.3 Reduction from StochNormLB to Vector Load Balancing

We prove Theorem 7.2 in this section, thereby also proving Theorem 7.1. We fix some job-
set J , m identical machines, and stochastic job-sizes {Xj}j∈J . Since we will be designing a
simultaneous approximation algorithm for all monotone symmetric norms, we reserve h to
denote an arbitrary norm from this family. Let σh denote an optimal assignment for the
Stoch-h-LB instance.

Let A be a γ(d)-approximation algorithm for the d-dimensional vector load balanc-
ing problem with respect to the natural lower bound lb. As we show below, we use
A in a black-box fashion, so if A is deterministic (respectively randomized), then our
simultaneous-approximation for StochNormLB is also deterministic (respectively random-
ized). Theorem 7.3 shows that we can take γ(d) = O(log d). We remark that our algorithm
crucially leverages the fact that the approximation guarantee for vector load balancing is
with respect to the natural lower bound lb.

Proof of Theorem 7.2. We first obtain the right thresholds t` for each ` ∈ POS satisfying
t` = O(OPT`/`), where OPT` is the optimal objective for the StochTop`LB instance. Let
ε > 0 be a small constant (say, 1/1000). For each ` ∈ POS, we repeat the binary search
procedure from Section 6.1.3 to obtain a scalar t` satisfying the following three conditions:

(i) OPT` > `t`/2(1 + ε), so that t` = O(OPT`/`).
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(ii)
∑

j∈J E[X≥t`j ] ≤ `t`.

(iii)
∑

j∈J βm/`(X
<t`
j /4t`) ≤ 10m.

Consider an instance of |POS|-dimensional vector load balancing on m identical ma-
chines where the dimensions are indexed by POS = {1, 2, 4, . . . , 2blog2mc}. In this in-
stance, the processing-time vector for job j ∈ J is pj = (pj,`)`∈POS, where we define
pj,` := βm/`(X

<t`
j /4t`). Note that |POS| = O(logm), pj,` ∈ [0, 1], and by our choice of t`

we have lb ≤ 10 for the vector load balancing instance.

Using algorithm A, we can obtain an assignment σ : J → [m] with makespan at most
O(γ(|POS|) · lb) = O(log logm) for the above vector-load-balancing instance. Fix some
` ∈ POS and consider the exceptional and truncated sub-instances of StochTop`LB w.r.t.

the threshold t`. Let Y and Ỹ denote the exceptional and truncated load vectors induced
by σ in these sub-instances. That is, Y (i) =

∑
j:σ(j)=iX

≥t`
j and Ỹ (i) =

∑
j:σ(j)=iX

<t`
j .

By Lemma 6.2 (i) and condition (ii) above, we get E[Top`(Y )] = O(`t`) = O(OPT`). By
Lemma 6.3 (i), condition (iii) above, and approximation guarantee of σ for vector load

balancing, we get E[Top`(Ỹ )] = O(log logm) · OPT`. Let
−−→
loadσ denote the load vector

induced by σ in any Stoch-h-LB instance, i.e.,
−−→
loadσ(i) =

∑
j:σ(j)=iXj for any machine i.

By definition
−−→
loadσ = Y + Ỹ , so triangle inequality gives:

E[Top`(
−−→
loadσ)] ≤ O(log logm) · OPT` ≤ O(log logm) · E[Top`(

−−→
loadσh)],

where σh is an optimal assignment for the Stoch-h-LB instance. By Theorem 4.15 (i), we

get that E[h(
−−→
loadσ)] = O(log logm)·E[h(

−−→
loadσh)], thereby showing that σ is a simultaneous

O(log logm)-approximate assignment for every monotone, symmetric norm.

Remark 7.1. If the algorithm A is randomized (as in Theorem 7.4), then we detect if
the assignment σ returned by A satisfies

∑
j:σ(j)=i pj,` ≤ O(log |POS|) for all dimensions

` ∈ POS and all machines i ∈ [m], i.e., is the approximation guaranteed by A, and if
not, return failure. Then, the success probability in the statement of Theorem 7.2 is the
probability of success of A (which lower bounds the probability of obtaining a simultaneous
O(log logm)-approximation).

7.2 Unrelated Machines

In this section we consider StochNormLB on unrelated machines. In this setting, the
processing time of a job j on machine i is a nonnegative random variable denoted by
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Xij, and we want to find an assignment σ : J → [m] that minimizes E[f(
−−→
loadσ)] for a given

monotone, symmetric norm f . Our main result here is an O(log logm/ log log logm)-
approximation algorithm.

Theorem 7.6.
There is an O(log logm/ log log logm)-approximation algorithm for stochastic min-
norm load balancing on unrelated machines with arbitrary job-size distributions. The
approximation guarantee is deterministic, and the expected running time of the algo-
rithm is polynomial in the size of the input.

As usual, our algorithm is guided by approximate stochastic majorization: we want

to find an assignment σ such that E[Top`(
−−→
loadσ)] ≤ α · E[Top`(

−−→
loadσ

∗
)] holds for all ` ∈

POS = {1, 2, 4, . . . , 2blog2mc}, where α is a small factor and σ∗ is an optimal solution to
the given instance of StochNormLB. It is therefore natural to leverage the insights gained
in Section 6.2 from the study of the Top`-norm problem. Since we need to simultaneously

work with all Top` norms, we now work with a guess t` of the quantity O(E[Top`(
−−→
loadσ

∗
)]/`)

for every ` ∈ POS. For each ~t = (t`)`∈POS vector, we write an LP-relaxation (LP(~t )) that
generalizes (LP(`, t`)), and if it is feasible, we round its feasible solution to obtain an
assignment of jobs to machines. We argue that one can limit the number of ~t vectors
to consider to a polynomial-size set, so this yields a polynomial number of candidate
solutions. We remark that, interestingly, (LP(~t )), the rounding algorithm, and the resulting
set of solutions generated, are independent of the norm f : they only depend only on the
underlying ~t vector. The norm f is used only in the final step to select one of the candidate
solutions as the desired near-optimal solution, utilizing the budgeted version of approximate
stochastic majorization (see Theorem 4.15 (ii)).

7.2.1 LP-Relaxation

The LP-relaxation we work with is an easy generalization of (LP(`, t`)). We have the
usual zij variables encoding a fractional assignment. For each ` ∈ POS, there is a different
definition of truncated variables X<t`

ij and exceptional variables X≥t`ij . Correspondingly, for
each index ` ∈ POS, we have a separate set of constraints (7.2)–(7.5) involving the zij’s, a
variable ξi,` (that represents ξi for the index `, i.e., E[(

∑
j:j 7→iX

<t`
ij /t`)

≥1]), and the guess
t`. For technical reasons that will become clear when we discuss the rounding algorithm
(see Claim 7.9), we include additional constraints (7.6), which enforce that a job j cannot
be assigned to a machine i if E[X≥t1ij ] > t1; observe that this is valid for the optimal integral

solution whenever t1 ≥ 2 E[Top1(
−−→
loadσ

∗
)]. This yields the following LP-relaxation.
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(LP(~t ))

∑
i∈[m],j∈J

E[X≥t`ij ]zij ≤ `t` ∀` ∈ POS (7.2)

∑
j∈J

E[X<t`
ij /t`]zij − 1 ≤ ξi,` ∀i ∈ [m], ` ∈ POS (7.3)∑

j∈J βλ(X
<t`
ij /4t`)zij − 6

4λ
≤ ξi,` ∀i ∈ [m], ` ∈ POS, λ ∈ {2, . . . , 100m}

(7.4)∑
i∈[m]

ξi,` ≤ ` ∀` ∈ POS (7.5)

zij = 0 ∀i ∈ [m], j ∈ J with E[X≥t1ij ] > t1 (7.6)

ξ ≥ 0, z ∈ Qasgn. (7.7)

Claim 6.5 easily generalizes to the following.

Claim 7.7. Let ~t be such that t` ≥ 2E[Top`(loadσ∗)]/` for all ` ∈ POS. Then, (LP(~t )) is
feasible.

7.2.2 Rounding Column-Sparse LPs for Assignment Problems
with Packing Constraints

Designing an LP-rounding algorithm is substantially more challenging now. In the Top`-
norm case, we set up an auxiliary LP (Aux-Top`-LP) by extracting a single budget con-
straint for each machine that served to bound the contribution from the truncated jobs
on that machine. This LP was quite easy to round (e.g., using Theorem 2.32) because
each zij variable participated in exactly one constraint (thereby trivially yielding an O(1)
bound on the column sum for each variable). Since we now have to simultaneously control
multiple Top`-norms, for each machine i, we will now need to include a budget constraint
for every index ` ∈ POS so as to bound the contribution from the truncated jobs for index

` (i.e., E[
(∑

j:j 7→iX
<t`
ij

)≥Ω(t`)]). Additionally, unlike (Aux-Top`-LP), wherein the contribu-
tion from the exceptional jobs was bounded by incorporating it in the objective function,
we will now need, for each ` ∈ POS, a separate constraint to bound the total contribution
from the exceptional jobs for index `.

Thus, while we can set up an auxiliary LP similar to (Aux-Top`-LP) containing these
various budget constraints (see (6.6) and (6.7)), rounding a fractional solution to this
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LP to obtain an assignment that approximately satisfies these various budget constraints
presents a significant technical hurdle. The column-sums of our auxiliary LP are bounded
by D := O(logm), so simply utilizing Theorem 2.32 leads to an O(D)-factor violation
in the budget constraints. Overall, this would lead to an O(logm)-approximation al-
gorithm, which is much worse than the O(log logm/ log log logm) guarantee claimed in
Theorem 7.6. To obtain the improved approximation guarantee, we use a very powerful
randomized-rounding result of Harris and Srinivasan for column-sparse assignment prob-
lems with packing constraints. We paraphrase a sub-case of Theorem 4.7 from [14] in a
form that is suitable for us, and consistent with our notation.

Theorem 7.8. Consider a feasibility LP for an assignment problem with finitely many
packing constraints:

(HS-LP)

∑
i∈[m],j∈J

ai,j,kzij ≤ ck ∀k ∈ [N ] (7.8)

∑
i∈[m]

zij = 1 ∀j ∈ J (7.9)

zij ≥ 0 ∀i ∈ [m], j ∈ J, (7.10)

where ck ∈ [1,∞) for all k ∈ [N ]. Let z denote a feasible fractional solution to this LP.
Further assume that for each i ∈ [m], j ∈ J with zij > 0, we have ai,j,k ∈ [0, 1] for all
k ∈ [N ] and

∑
k∈[N ] ai,j,k ≤ D for some parameter D ≥ 2. In expected time polynomial in

m, |J | and N , we can find an integral assignment ẑ ∈ {0, 1}[m]×J satisfying:

(i) if zij = 0 for some i ∈ [m], j ∈ J , then ẑij = 0 holds.

(ii)
∑

i∈[m],j∈J ai,j,kẑij ≤ O(logD/ log logD) · ck for all k ∈ [N ].

We make a few remarks on the above result before applying it to our setting. In [14],
the bounds on ai,j,k and

∑
k∈[N ] ai,j,j are stated for all i ∈ [m], j ∈ J (irrespective of whether

zij = 0 holds or not). This is simply a matter of style since we can always drop the ai,j,kzij
terms whenever zij = 0 holds. Next, the above rounding algorithm is based on a single
application of the Partial Resampling Algorithm (PRA), a powerful generalization of the
Moser-Tardos framework for designing constructive versions of the Lovász Local Lemma.
At a high level, PRA uses the fractional assignment z to integrally assign jobs to machines,
i.e., job j is assigned to machine i with probability zij). Whenever a packing constraint∑

i,j ai,j,kẑij ≤ O(1) is violated by an Ω(logD/ log logD) factor, a subset of jobs belonging
to the violated constraint are carefully selected and reassigned using {zij} probabilities. As
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mentioned before, the actual algorithm and its analysis are quite complicated, and we will
only be using it in a black-box fashion. Lastly, the expected running time of the algorithm
in Theorem 4.7 from [14] is stated to be independent of N , but this requires that one has
an efficient separation oracle for (HS-LP).

7.2.3 LP-Rounding Strategy

We now give full details about our procedure for rounding the stochastic load-balancing
LP (LP(~t )). Consider a nonincreasing sequence ~t = (t`)`∈POS such that `t` is nondecreasing

over ` ∈ POS; since `t` is supposed to model E[Top`(
−−→
loadσ

∗
)], this is a valid assumption.

Suppose that (LP(~t )) is feasible, and let ({zij}i,j, {ξi,`}i,`) be a feasible fractional solution
to this LP. We will show that z can be rounded to an integral assignment σ whose expected
Top` norms are bounded by O(log logm/ log log logm) · `t`.

G1. For each ` ∈ POS, define the following quantities. DefineM`
low := {i ∈ [m] : ξi,` < 1},

and let M`
hi := [m] \ M`

low. For every i ∈ [m], set λi,` := min(d1/ξi,`e, 100m) ∈
{2, . . . , 100m} if i ∈M`

low, and λi,` := 1 otherwise.

G2. The auxiliary LP will enforce constraints (7.2), and constraint (7.3) or (7.4) for every
machine i ∈ [m] and index ` ∈ POS, depending on the parameter λi,`. The auxiliary
LP is therefore as follows.

(Aux-Gen-LP)

∑
i∈[m],j∈J

(
E[X≥t`ij ]/(2`t`)

)
ηij ≤ 1 ∀` ∈ POS (7.11)

∑
j∈J

βλi,`(X
<t`
ij /4t`)ηij ≤ 14 ∀ ` ∈ POS, i ∈M`

low (7.12)∑
j∈J

E[X<t`
ij /t`]ηij ≤ ξi,` + 1 ∀ ` ∈ POS, i ∈M`

hi (7.13)

η ∈ Qasgn. (7.14)

We have scaled constraints (7.2) for the exceptional jobs to reflect the fact that we
can afford to incur an O(`t`) violation in the constraint for index `. Also, note that
the RHS of this constraint was increased from 1/2 to 1. This is done to ensure that
the hypothesis of Theorem 7.8 is met.

G3. The fractional assignment z is a feasible solution to (Aux-Gen-LP). We apply Theo-
rem 7.8 with the above system to round z and obtain an integral assignment σ.

94



7.2.4 Analysis

We first note that the fractional assignment z (to the assignment-LP (Aux-Gen-LP)) sat-
isfies the hypothesis of Theorem 7.8 with D = O(logm). Thus, the theorem directly
shows that σ satisfies constraints (7.11), (7.12), and (7.13) with an additive violation of

at most logD/ log logD. A straightforward calculation readily yields E[Top`(
−−→
loadσ)] =

O(logD/ log logD) · `t` for all ` ∈ POS.

Claim 7.9. Let D := 2 · |POS| = O(logm). For any ` ∈ POS, the assignment σ satisfies:

(a)
∑

j∈J E[X≥t`σ(j),j] ≤ O(logD/ log logD) · `t`.

(b)
∑

j∈J :σ(j)=i βλi,`(X
<t`
ij /4t`) ≤ O(logD/ log logD) for any machine i ∈M`

low.

(c)
∑

j∈J :σ(j)=i E[X<t`
ij /t`] ≤ O(logD/ log logD) · (ξi,` + 1) for any machine i ∈M`

hi.

Proof. Fix some i ∈ [m] and j ∈ J with zij > 0. Since z is feasible for (LP(~t )), con-
straint (7.6) gives E[X≥t1ij ] ≤ t1, which further implies E[X≥t`ij ] ≤ t1 + E[X≥t1ij ] ≤ 2t1. By

our assumption that `t` is non-decreasing over ` ∈ POS, we get E[X≥t`ij ]/(2`t`) ∈ [0, 1].

Next, we trivially have βλi,`(X
<t`
ij /4t`),E[X<t`

ij /t`] ∈ [0, 1]. For each ` ∈ POS, the variable
zij participates in constraint (7.6) and exactly one of constraint (7.12) or (7.13). There-
fore, z satisfies the hypothesis of Theorem 7.8 with D = 2 · |POS|, and all three conclusions
directly follow from this theorem.

The following result is similar to Lemmas 6.7 and 6.8. Let j : j 7→ i be a shorthand for
{j ∈ J : σ(j) = i}.

Lemma 7.10. Fix some ` ∈ POS. Define random vectors Y excep,`, Y low,`, Y hi,` following
product distributions on Rm

≥0 as follows: for any machine i ∈ [m], Y excep,`
i :=

∑
j:j 7→iX

≥t`
ij ,

Y low,`
i :=

{∑
j:j 7→iX

<t`
ij ; if i ∈M`

low

0; otherwise
and Y hi,`

i :=

{∑
j:j 7→iX

<t`
ij ; if i ∈M`

hi

0; otherwise.

For each Y ∈ {Y excep,`, Y hi,`, Y low,`}, we have E[Top`(Y )] ≤ O(log logm/ log log logm) · `t`.

Proof. Modulo O(log logm/ log log logm) multiplicative factors, the proof is essentially the
same as that of Lemmas 6.7 and 6.8.
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By definition, for any ` ∈ POS we have
−−→
loadσ = Y excep,` + Y low,` + Y hi,`. By triangle

inequality of norms, we get the following.

Theorem 7.11. For any index ` ∈ POS, the assignment σ satisfies:

E[Top`(
−−→
loadσ)] ≤ O

( log logm

log log logm

)
· `t`.

7.2.5 Our Algorithm

We now describe our entire algorithm for StochNormLB. We begin with a high-level descrip-

tion. Consider a nonincreasing sequence ~t∗ = (t∗`)`∈POS such that t∗` = Θ(E[Top`(
−−→
loadσ

∗
)]/`)

for all indices ` ∈ POS. Given Theorem 7.11 and Claim 7.7, it is clear that the assignment σ
obtained from rounding a fractional assignment to (LP(~t∗)) is an O(log logm/ log log logm)-
approximation to the given instance of StochNormLB. Since we do not have direct access
to ~t∗, we instead consider a poly(m)-size set T ⊆ RPOS

≥0 that contains ~t∗. While we cannot

necessarily identify ~t∗ in T , we use Theorem 4.15(ii) to infer that if (LP(~t )) is feasible,
then we can use ~t to come up with a good estimate of the expected f -norm of the solution
computed from rounding a solution for (LP(~t )). This will imply that the “best” vector
~t ∈ T yields the desired approximate solution. We formally state the algorithm below.

Proof of Theorem 7.6. For ` ∈ POS, let t∗` be the smallest number of the form 2r, where

r ∈ Z (and could be negative) such that t∗` ≥ 2 E[Top`(
−−→
loadσ

∗
)]/`. By Lemma 6.10, we

have a bound on OPT and t∗1:

UB

m
≤ E[Top1(

−−→
loadσ

∗
)] ≤ E[f(

−−→
loadσ

∗
)] ≤ UB,

where UB :=
∑

j∈J
(
mini∈[m] E[Xij]

)
can be computed explicitly from input data. Observe

that E[Top`(
−−→
loadσ

∗
)]/` does not increase as ` increases. It follows that

2 · UB
m2

≤ 2 · E[Top`(
−−→
loadσ

∗
)]

`
≤ 2 · UB,

holds for all ` ∈ POS. Define

T :=

{
~t ∈ RPOS

≥0 : ∀` ∈ POS,
2 · UB
m2

≤ t` < 4 · UB,

t` is a power of 2, and
t`
t2`
∈ {1, 2} whenever 2` ∈ POS

}
(7.15)
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Claim 7.12. The vector ~t∗ = (t∗`)`∈POS belongs to T , and |T | = O(m logm).

Proof. Note that each vector ~t ∈ T is completely defined by specifying t1, and the set of
“breakpoint” indices ` ∈ POS for which t`/t2` = 2. There are O(logm) choices for t1, and
at most 2|POS| ≤ m choices for the set of breakpoint indices; hence, |T | = O(m logm).
To see that ~t∗ ∈ T , by definition, each t∗` is a power of 2. The bounds shown above

on 2 E[Top`(
−−→
loadσ

∗
)]/` show that t∗` lies within the stated bounds. The only nontrivial

condition to check is t∗`/t
∗
2` ∈ {1, 2} whenever 2` ∈ POS. We have

(2`) t∗2`
2

≥ E[Top2`(
−−→
loadσ

∗
)] ≥ E[Top`(

−−→
loadσ

∗
)] >

`t∗`
4
,

which implies t∗` < 4 t∗2`. Next, since Top2`(·) ≤ 2Top`(·) holds, we have

`t∗`
2
≥ E[Top`(

−−→
loadσ

∗
)] ≥ 1

2
E[Top2`(

−−→
loadσ

∗
)] >

(2`)t∗2`
8

,

which implies t∗` >
1
2
t∗2`. As the t∗`s are powers of 2, we get that t∗`/t

∗
2` ∈ {1, 2}.

We enumerate over all guess vectors ~t ∈ T and check if (LP(~t )) is feasible. For each
~t ∈ T and ` ∈ POS, define B`(~t ) := `t`. For ease of notation, we drop the argument ~t when
it is clear from the context. Let b : [0,m] → R≥0 denote the upper envelope curve (see

Definition 2.16) for the sequence
(
B`(~t )

)
`∈POS

. Define ~b(~t ) ∈ Rm
≥0 as follows: for i ∈ [m],

~bi := b(i)− b(i−1). Among all feasible ~t vectors, let ~t′ be a vector that minimizes f
(
~b(~t′ )

)
.

Claim 7.13. We have f
(
~b(~t′ )

)
≤ 4 E[f(

−−→
loadσ

∗
)].

Proof. By definition, f
(
~b(~t′ )

)
≤ f

(
~b(~t∗ )

)
. Let y := E[(

−−→
loadσ

∗
)↓]. Since B`(~t∗ ) = `t∗` ≤

4Top`(y) for all ` ∈ POS, Theorem 2.15 gives f
(
~b(~t∗ )

)
≤ 4f(y) ≤ 4 E[f(

−−→
loadσ

∗
)], where

the last inequality follows from convexity of norms.

Now let σ be the assignment obtained by rounding a feasible solution to (LP(~t′)). By

Theorem 7.11 we have: E[Top`(
−−→
loadσ)] ≤ O(log logm/ log log logm)·B`(~t′ ) for all ` ∈ POS.

Therefore, by Theorem 4.15(ii), we get:

E[f(
−−→
loadσ)] ≤ O

( log logm

log log logm

)
· f(~b(~t′ )) ≤ O

( log logm

log log logm

)
· E[f(

−−→
loadσ

∗
)].
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Remark 7.2. When the machines are identical, the proof of Theorem 7.6 gives a simul-
taneous O(log logm/ log log logm)-approximation guarantee for all monotone symmetric
norms. To see this, observe that after obtaining the right thresholds (t`)`∈POS (see the dis-
cussion in Section 7.1.3), the auxiliary LP only consists of assignment constraints (7.14)
and budget constraints of the form (7.12) with λi,` = m/` for all machines i ∈ [m] and
indices ` ∈ POS. Note that the uniform assignment zij := 1/m for all i ∈ [m], j ∈ J
is feasible to the auxiliary LP. Let σ denote the assignment obtained from rounding z us-
ing Theorem 7.8. Using Claim 7.9(b) and (a suitable modification of) Lemma 6.3 we can

show that E[Top`(
−−→
loadσ)] = O(log logm/ log log logm) · `t` for all ` ∈ POS, which implies

that σ is simultaneously an O(log logm/ log log logm)-approximate assignment for every
monotone, symmetric norm.

Remark 7.3. The simultaneous every-monotone-symmetric-norm approximation guaran-
tee does not extend to the unrelated-machines setting. This is because there is no way of
guaranteeing feasibility of (Aux-Gen-LP) unless the t`’s come from a single assignment.
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Chapter 8

Stochastic Load Balancing with
Weighted Bernoulli Jobs

In this chapter we consider stochastic min-norm load balancing with weighted Bernoulli
jobs, which we abbreviate to BerNormLB. In this setting, the processing time of a job
j on machine i is distributed as a weighted Bernoulli variable of type (qij, sij) for some
qij ∈ [0, 1] and sij ∈ R≥0. Recall that a weighted Bernoulli trial of type (q, s) takes
size s with probability q, and 0 otherwise. Note that the job-size distributions can be
fully described in the input by explicitly specifying {(qij, sij)}i∈[m],j∈J ; our algorithms in
Chapters 6 and 7 did not use any information about the correlations among {Xij}i∈[m] for
any job j ∈ J , and the same will be true for the algorithms in this chapter.

Our main result in this chapter is an O(1)-approximation algorithm for BerNormLB
on unrelated machines, and a simultaneous O(1)-approximation when the machines are
identical.

Theorem 8.1.
There is an O(1)-approximation algorithm for stochastic min-norm load balancing on
unrelated machines when jobs are distributed as weighted Bernoulli trials.
Furthermore, when the machines are identical, the approximation guarantee holds si-
multaneously for all monotone symmetric norms.

Let σ∗ denote an optimal assignment for the given instance of BerNormLB, and OPTf :=

E[f(
−−→
loadσ

∗
)] denote the optimal objective value. In Chapter 7, we saw an LP-based

O(log logm/ log log logm)-approximation algorithm for StochNormLB (see Theorem 7.6).
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The main idea there was that the constraint matrix of the auxiliary LP (see (Aux-Gen-LP))
has column sums that are bounded by D := O(logm), so using the sophisticated rounding
algorithm in Theorem 7.8 we obtained an O(logD/ log logD)-approximate assignment.
Our approximation strategy for the Bernoulli case has an extra filtering step where we
remove redundant constraints from the auxiliary LP. This leads to O(1)-bounded column
sums in the auxiliary LP for the Bernoulli case, so the simpler iterative-rounding result in
Theorem 2.32 is sufficient to obtain an O(1)-approximate assignment.

We recall some notation and definitions from prior chapters. The quantity UB =∑
j∈J
(
mini∈[m] E[Xij]

)
=
∑

j∈J
(
mini∈[m] qijsij

)
serves as a useful bound on the Top` norms

of the optimal assignment (see Lemma 6.10). For ` ∈ POS, t∗` denotes the smallest power of

2 (possibly with a negative exponent) satisfying t∗` ≥ 2 E[Top`(
−−→
loadσ

∗
)]/`. The poly(m)-size

collection T containing the correct guess-vector ~t∗ = (t∗`)`∈POS is given by:

T =

{
~t ∈ RPOS

≥0 : ∀` ∈ POS,
2 · UB
m2

≤ t` < 4 · UB,

t` is a power of 2, and
t`
t2`
∈ {1, 2} whenever 2` ∈ POS

}
.

8.1 Filtering the Auxiliary LP

Fix some ~t = (t`)`∈POS ∈ T such that (LP(~t )) is feasible1. Let (z, ξ) be a feasible fractional
solution to this LP. In this section, we identify redundancies in LP constraints arising from
exceptional and truncated jobs w.r.t. thresholds {t`}`∈POS.

8.1.1 Redundant Constraints Arising from Truncated Jobs

Recall that for a machine i ∈ [m] and index ` ∈ POS, the LP-variable ξi,` models
E[(
∑

j:j 7→iX
<t`
ij /t`)

≥1]. Constraints (7.3) and (7.4) capture the contribution of truncated
jobs, w.r.t. threshold t`, that are assigned to machine i, and yield that:

ξi,` ≥ max

{∑
j∈J

E[X<t`
ij /t`]zij − 1, max

λ∈{2,3,...,100m}

(∑
j∈J βλ(X

<t`
ij /4t`)zij − 6

4λ

)}
.

1In Section 7.2.3, we only assumed that t` is non-increasing over ` ∈ POS and `t` is non-decreasing
over ` ∈ POS. The assumption that t`’s are powers of 2 and t`/t2` ∈ {1, 2} whenever `, 2` ∈ POS will be
useful to us in this chapter; the bounds on t` in terms of UB are not needed for the rounding step.
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Constraint (7.5), which reads as
∑

i∈[m] ξi,` ≤ `, imposes that the expected Top` norm of

the “t`-truncated” load vector is O(`t`).

Consider some ` ∈ POS such that 2` ∈ POS and t` = t2`. Observe that the constraints
arising from truncated jobs for the index 2` are implied by the corresponding constraints for
the index `: indeed, if the ξi,`’s satisfy the constraints for index `, then setting ξi,2` = ξi,` for
all machines i ∈ [m] satisfies all the constraints for index 2`. This motivates the following
definition:

POS< := {` ∈ POS : ` = 1 or t`/2 = 2t`}. (8.1)

By the above discussion, it suffices to only consider truncated-jobs constraints for indices
` ∈ POS<.

8.1.2 Redundant Constraints Arising from Exceptional Jobs

For any index ` ∈ POS, constraint (7.2), which reads as
∑

i∈[m],j∈J E[X≥t`ij ]zij ≤ `t`, imposes

that the expected Top` norm of the “t`-exceptional” load vector is O(`t`). Again, observe
that the constraint for index ` ∈ POS \ POS< is implied by the constraint for index `/2,
so it suffices to only focus on indices in POS<.

Now consider an index ` ∈ POS< such that 2` ∈ POS<, i.e., 2` ∈ POS and t` = 2t2`
holds. Since (2`)t2` = `t`, constraint (7.2) for the index 2` implies the corresponding
constraint for the index `. This motivates the following definition:

POS= := {` ∈ POS : 2` /∈ POS or t` = t2`}. (8.2)

By the above discussion, it suffices to only consider exceptional-jobs constraints for indices
` ∈ POS< ∩ POS=.

8.1.3 The Filtered Auxiliary LP

By the discussion in Section 8.1.1, we may assume that ξi,` = ξi,`/2 for any machine i ∈ [m]
and any index ` ∈ POS \ POS<. We recall some definitions from Chapter 7 that were
used to describe the auxiliary LP. For each ` ∈ POS we defined: M`

low := {i ∈ [m] :
ξi,` < 1} and M`

hi := [m] \ M`
low. For each machine i ∈ [m] and index ` ∈ POS, we

set λi,` := min(d1/ξi,`e, 100m) ∈ {2, . . . , 100m} if i ∈ M`
low, and λi,` := 1 otherwise. We

use the same definitions here, but we write down the auxiliary LP after filtering out all
redundant constraints due to indices not in POS< or POS=. In the following we state the
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auxiliary LP that remains after filtering out all redundant constraints. Like before, we
scale constraints (7.2) for the exceptional jobs to reflect the fact that we can afford to
incur an additive O(`t`) violation in the constraint for index `.

(Aux-Ber-LP)

∑
i∈[m],j∈J

(
E[X≥t`ij ]/(`t`)

)
ηij ≤ 1 ∀` ∈ POS< ∩ POS= (8.3)

∑
j∈J

βλi,`(X
<t`
ij /4t`)ηij ≤ 14 ∀ ` ∈ POS<, i ∈M`

low (8.4)∑
j∈J

E[X<t`
ij /t`]ηij ≤ ξi,` + 1 ∀ ` ∈ POS<, i ∈M`

hi (8.5)

η ∈ Qasgn. (8.6)

Since z is feasible to the above auxiliary LP, to obtain an O(1)-approximate assignment
it suffices to show that the column sums in the above LP are bounded by O(1) for elements
in the support of z. We start with the constraints arising from truncated jobs where we
use the fact that the job-size variables are weighted Bernoulli trials.

Claim 8.2. Fix some machine i ∈ [m] and a job j ∈ J . Let a`ij denote the coefficient of
ηij variable in constraints (8.4) and (8.5). We have

∑
`∈POS< a

`
ij ≤ 2.

Proof. For any [0, θ]-bounded random variable Z and a parameter λ ∈ R≥1, we have
βλ(Z) ≤ θ (see Definition 5.6). Let q := qij and s := sij. Since Xij takes value s with
probability q, and value 0 with probability 1 − q, for any ` ∈ POS<, we have a`ij ≤
(s/t`) · 1s<t` . 2 Here 1E ∈ {0, 1} is 1 if and only if the event E happens. By definition of
POS<, the t`’s decrease geometrically over ` ∈ POS<, so∑

`∈POS<

a`ij ≤
∑

`∈POS<

s

t`
· 1( s

t`
<1
) ≤ 1 +

1

2
+

1

4
+ · · · = 2.

Next, we prove a similar result for constraints arising from exceptional jobs. We remark
that this bound holds for any distribution.

Claim 8.3. Fix some machine i ∈ [m] and job j ∈ J such that zij > 0. We have∑
`∈POS< ∩POS=

(
E[X≥t`ij ]/`t`

)
≤ 4.

2If i ∈M`
low, then a`ij is in fact at most s/(4t`), but otherwise, we can only say that a`ij ≤ s/t`.
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Proof. We repeat the argument from Claim 7.9 where we showed that E[X≥t`ij ] ≤ 2t1 holds

for any index ` ∈ POS. Due to (7.6), we have E[X≥t1ij ] ≤ t1, so E[X≥t`ij ] ≤ E[X≥t1ij ] +

E[X<t1
ij ] ≤ 2t1 follows.

Observe that for any index ` ∈ POS< ∩ POS=, the index 2` is not in POS<. Also, t`
drops by a factor of exactly 2 as ` steps over the indices in POS<. So, `t` increases by a
factor of at least 2 as ` steps over the indices in POS< ∩ POS=. Therefore,

∑
`∈POS<∩POS=

E[X≥t`ij ]

`t`
≤ 2t1

(
1

t1
+

1

2t1
+

1

4t1
+ . . .

)
≤ 4.

8.2 LP-Rounding Strategy

The fractional assignment z is a feasible solution to the filtered auxiliary LP (Aux-Ber-LP).
We apply Theorem 2.32 for this linear system to round z and obtain an integral assignment
σ : J → [m].

Claim 8.4. The assignment σ satisfies:

(a)
∑

j∈J E[X≥t`σ(j),j] ≤ 7`t` for any index ` ∈ POS< ∩ POS=.

(b)
∑

j∈J :σ(j)=i βλi,`(X
<t`
ij /4t`) ≤ 20 for any index ` ∈ POS< and machine i ∈M`

low.

(c)
∑

j∈J :σ(j)=i E[X<t`
ij /t`] ≤ ξi,` + 7 for any index ` ∈ POS< and machine i ∈M`

hi.

Proof. By Claims 8.2 and 8.3, the hypothesis of Theorem 2.32 holds for the violation
parameter ν = 6. All claims follow directly from the theorem.

8.2.1 Analysis

The analysis follows the template from Section 6.2.3 for the Top` case, but we need to also
account for the redundant constraints that were dropped. For any index ` ∈ POS, we show

that E[Top`(
−−→
loadσ)] = O(`t`) by separately bounding the expected Top`-norm of the load

vector induced by exceptional jobs, truncated jobs in M`
low, and truncated jobs in M`

hi.
As usual, let j : j 7→ i be a shorthand for {j ∈ J : σ(j) = i}. We have

−−→
loadσ = Y excep,` + Y low,` + Y hi,`,
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where for any machine i ∈ [m], Y excep,`
i :=

∑
j:j 7→iX

≥t`
ij ,

Y low,`
i :=

{∑
j:j 7→iX

<t`
ij ; if i ∈M`

low

0; otherwise
and Y hi,`

i :=

{∑
j:j 7→iX

<t`
ij ; if i ∈M`

hi

0; otherwise.

We start with the easier bounds on Y hi,` and Y excep,`.

Lemma 8.5. We have E[Top`(Y
hi,`)] ≤ 8`t` for any index ` ∈ POS.

Proof. We first recall (8.1): POS< = {` ∈ POS : ` = 1 or t`/2 = 2t`}. We prove the lemma
by bounding the expected Topm norm of Y hi,`. Note that we only need to show this for
` ∈ POS<: if ` ∈ POS \ POS<, then if we consider the largest index `′ ∈ POS< that is at
most `, we have t`′ = t`, and so Y hi,`′ = Y hi,`; thus, the bound on E[Topm(Y hi,`)] follows
from that on E[Topm(Y hi,`′)]. So suppose ` ∈ POS<. By Claim 8.4(c), for any machine
i ∈M`

hi we have:

E[Y hi,`
i ] =

∑
j:j 7→i

E[X<t`
ij ] ≤ t`(ξi,` + 7)

Since |M`
hi| ≤ ` (because ξi,` ≥ 1 for any i ∈ M`

hi) and
∑

i∈[m] ξi,` ≤ ` by the LP con-

straint (7.5), we get:

E[Top`(Y
hi)] ≤ E[Topm(Y hi)] ≤ t` ·

∑
i∈Mhi

(ξi + 7) ≤ 8`t`.

Lemma 8.6. We have E[Top`(Y
excep,`)] ≤ 7`t` for any index ` ∈ POS.

Proof. We prove the lemma by bounding the expected Topm norm of Y excep,`. Recall that
POS= = {` ∈ POS : 2` /∈ POS or t` = t2`}. First, suppose that ` ∈ POS< ∩ POS=. By
Claim 8.4(a), we have E[Top`(Y

excep,`)] ≤ E[Topm(Y excep,`)] =
∑

j∈J E[X≥t`σ(j),j] ≤ 7`t`.

Next, suppose that ` ∈ POS \ POS<, so t` = t`/2. Let `′ be the largest index in POS<

that is at most `. Then, `′ ≤ `/2 and t` = t`′ . So Y excep,` = Y excep,`′ . Also, `′ ∈ POS=,
since t` ≤ t2`′ ≤ t`′ = t`. Therefore, E[Topm(Y excep,`)] = E[Topm(Y excep,`′)] ≤ 7`′t`′ ≤ 7`t`.

Finally, suppose ` ∈ POS\POS=, so t` = 2t2`. Now, let `′ be the smallest index in POS=

that is at least `. Then, `′ ≥ 2`, and t`′/2 > t`′ (since `′/2 /∈ POS=), so `′ ∈ POS<. We claim
that `′t`′ = `t`. This is because for every `′′ ∈ POS, ` ≤ `′′ < `′, we have t`′′ = 2t2`′′ , and so
`′′t`′′ = 2`′′t2`′′ . Hence, we have E[Topm(Y excep,`)] ≤ E[Topm(Y excep,`′)] ≤ 7`′t`′ = 7`t`.

Lastly, we prove the bound on Y low,`.
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Lemma 8.7. We have E[Top`(Y
low,`)] ≤ 180 `t` for any index ` ∈ POS.

Proof. As with Lemma 8.5, we only need to consider ` ∈ POS<. So fix ` ∈ POS<. Let
W := Y low,`/4t`. Observe that it suffices to show that∑

i∈[m]

E[W≥21
i ] =

∑
i∈M`

low

E[W≥21
i ] ≤ 24 `

holds. Then by Lemma 3.4 we immediately get E[Top`(W )] ≤ 45 `, or equivalently,
E[Top`(Y

low,`)] ≤ 180 `t`. To this end, Claim 8.4(b) gives βλi,`(Wi) ≤ 20 for any machine

i ∈M`
low, where λi,` = min(100m, d1/ξi,`e) ≥ 2. Using Lemma 5.7 we get:

E
[
W≥21
i

]
≤ 23/λi,` = 23 max

( 1

100m
,

1

d1/ξi,`e
)
≤ 23 ξi,` +

23

100m
.

Summing over all machines in M`
low gives

∑
i∈M`

low
E[W≥21

i ] ≤ 24`.

Combining the above three lemmas gives the following result.

Theorem 8.8. The assignment σ satisfies E[Top`(
−−→
loadσ)] ≤ 195 `t` for any index ` ∈ POS.

8.3 Our Algorithm

Our O(1)-approximation algorithm for BerNormLB is essentially the same as the algorithm
in Section 7.2.5 for the general StochNormLB problem. Recall UB :=

∑
j∈J
(
mini∈[m] E[Xij]

)
and

T :=

{
~t ∈ RPOS

≥0 : ∀` ∈ POS,
2 · UB
m2

≤ t` < 4 · UB,

t` is a power of 2, and
t`
t2`
∈ {1, 2} whenever 2` ∈ POS

}
.

Proof of Theorem 8.1. We enumerate over all guess vectors ~t ∈ T and check if (LP(~t )) is
feasible. For each ~t ∈ T and ` ∈ POS, define B`(~t ) := `t`. For ease of notation, we drop
the argument ~t when it is clear from the context. Let b : [0,m] → R≥0 denote the upper

envelope curve (see Definition 2.16) for the sequence
(
B`(~t )

)
`∈POS

. Define ~b(~t ) ∈ Rm
≥0 as
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follows: for i ∈ [m], ~bi := b(i) − b(i − 1). Among all feasible ~t vectors, let ~t′ be a vector

that minimizes f
(
~b(~t′ )

)
. From Claim 7.13, we already have f

(
~b(~t′ )

)
≤ 4 E[f(

−−→
loadσ

∗
)].

Consider a feasible fractional assignment z to (LP(~t′)). As shown in Section 8.2, we

can round z to an integral assignment σ that satisfies E[Top`(
−−→
loadσ)] ≤ O(B`(~t′ )) for all

` ∈ POS (Theorem 8.8). Therefore, by Theorem 4.15(ii), we get:

E[f(
−−→
loadσ)] ≤ O(1) · f(~b(~t′ )) ≤ O(1) · E[f(

−−→
loadσ

∗
)].

Now suppose that the machines are identical. We describe a simultaneous O(1)-
approximation algorithm for all monotone symmetric norms. The binary search from
Section 6.1.3 can essentially be repeated for each ` ∈ POS to obtain a non-increasing
vector ~t = (t`)`∈POS satisfying: (i) each t` is a power of 2; (ii) for all ` ∈ POS, t` =
O(OPT`/`), where OPT` denotes the optimal objective value when f is the Top` norm;
(iii)

∑
j∈J E[X≥t`j ] ≤ `t` for all indices ` ∈ POS; and (iv)

∑
j∈J βm/`(X

<t`
j /4t`) ≤ 10m for

all indices ` ∈ POS. As we have seen before in Section 7.1, for any assignment σ and any
index ` ∈ POS, the contribution of exceptional jobs (w.r.t. threshold t`) to the objective
function is O(`t`), so it suffices to focus only on truncated jobs.

Consider a feasibility assignment LP which has budget constraints of the form:∑
j∈J

βm/`(X
<t`
j /4t`) ηij ≤ 10

for all machines i ∈ [m] and indices ` ∈ POS<; note that we filtered redundant constraints
arising from indices not in POS<. Observe that the uniform assignment zij := 1/m for all
i ∈ [m], j ∈ J is feasible to this LP, and in Claim 8.2 we established that the column sums
are bounded by O(1). Using Theorem 2.32 we can round z to an integral assignment σ

satisfying E[Top`(
−−→
loadσ)] = O(`t`) = O(OPT`) for all ` ∈ POS<. By repeating the proof

strategy in Lemma 8.7, it is easy to see that the same bound on E[Top`(
−−→
loadσ)] holds for

all ` ∈ POS. Since the upper bound is w.r.t. OPT`, Theorem 4.15(i) implies that σ is
simultaneously an O(1)-approximate assignment for every monotone, symmetric norm.
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Chapter 9

Stochastic Load Balancing with
Poisson Jobs

In this chapter we consider stochastic minimum-norm load balancing with Poisson jobs,
which we denote PoisNormLB. In this setting, the processing time of a job j ∈ J on machine
i ∈ [m] is distributed as a Poisson variable with mean λij. Recall that the probability
distribution of a Poisson variable Pois(λ) with mean λ ∈ R≥0 is given by:

Pr
[
Pois(λ) = k

]
=
e−λλk

k!
for any nonnegative integer k ∈ Z≥0.

Our main result in this chapter is a novel, clean, and versatile black-box reduction from
PoisNormLB to the deterministic problem, MinNormLB, showing that, for any machine envi-
ronment (i.e., unrelated/identical machines), guarantees obtained for MinNormLB translate
to yield essentially the same guarantees for PoisNormLB.

Theorem 9.1.
Let IPois = (J, [m], {λij}, f) be an instance of PoisNormLB, and let ADet be a ρ-
approximation algorithm for MinNormLB-instances with job-set J , machine-set [m],
and {λij}i∈[m],j∈J job sizes. For any ε, η > 0, we can utilize ADet to obtain a ρ

(
1 +

O(ε)
)
-approximate solution to PoisNormLB with probability at least 1 − η, in time

poly
(
m1/ε, n, 1

η

)
. The run time also bounds the number of calls to ADet and the sample

size.

We emphasize that: (a) the above reduction preserves the machine environment: for
instance, if we have identical machines (λij = λj for all i, j), we only need ADet to work for
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identical machines; and (b) algorithm ADet is required to work for an arbitrary monotone,
symmetric norm (and not just the norm f): this generality is crucial for the above reduction
and brings to the fore a prime benefit of working at the level of generality of monotone,
symmetric norms.

We also remark that this reduction is not in fact limited to load-balancing but applies
to any stochastic min-norm combinatorial optimization problem, and shows that this can
be reduced to a deterministic min-norm version of the same combinatorial-optimization
problem.

In [19], Ibrahimpur and Swamy gave a (2+ε)-approximation algorithm for MinNormLB
on unrelated machines, and a PTAS when the machines are identical. We immediately get
the following approximation guarantees for PoisNormLB by combining Theorem 9.1 and
the results of [19]. We do not explicitly indicate the failure probability η below; the sample
size, for a fixed ε, is poly(m)/η.

Theorem 9.2.
For any constant ε > 0, there is a randomized

(
2 +O(ε)

)
-approximation algorithm for

PoisNormLB on unrelated machines.

Theorem 9.3.
There is a randomized PTAS for PoisNormLB on identical machines.

Outline of our reduction. Before delving into the technical details, we discuss the
chief ideas behind the reduction in Theorem 9.1. Since the sum of independent Poisson
random variables is another Poisson random variable (Fact 2.2), the objective value of
an assignment σ : J → [m] depends only the aggregate λ-vector Λσ = (Λσ

i )i∈[m], where
Λσ
i :=

∑
j:σ(j)=i λij for all i ∈ [m]. We drop σ in Λσ if the assignment σ is clear from the

context. Overloading notation, for a vector y ∈ Rm
≥0, we use Pois(y) to denote the random

vector
(
Pois(y1), . . . ,Pois(ym)

)
of independent Poisson random variables. Note that Pois(y)

follows a product distribution on Rm
≥0. We define the function g : Rm

≥0 → R≥0 as follows:
for any y ∈ Rm

≥0,

g(y) := E[f(Pois(y))] = E[f(Pois(y1), . . . ,Pois(ym))]. (9.1)

With the above definitions, the goal in PoisNormLB is to find an assignment σ that min-
imizes g(Λσ). The function g is not convex, but it satisfies a majorization inequality
(Theorem 9.6): if Top`(y) ≤ Top`(y

′) for all ` ∈ [m], then g(y) ≤ g(y′); this inequality
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is closely related to a property called Schur convexity that is satisfied by all symmetric
convex functions. Theorem 9.6 provides a means for controlling g(y) by bounding the
Top`-norms of y, and is key to our approach; we give a self-contained proof of this result
in Section 9.1.2.

Without loss of generality, we may assume that f is normalized so that f(1, 0, . . . , 0) = 1
holds. Let σ∗ be an optimal solution to the PoisNormLB-instance IPois, and let Λ∗ := Λσ∗ .
The idea underlying our reduction is strikingly simple. Given Theorem 9.6, we aim to
(ideally) find an assignment σ such that Top`(Λ

σ) ≤ Top`(Λ
∗) for all ` ∈ [m]. One of

our chief insights is that this amounts to solving a deterministic min-norm load balancing
problem with job sizes {λij}i,j and the monotone, symmetric norm h : Rm

≥0 → R≥0 given by
h(v) := max`∈[m] Top`(v)/Top`(Λ

∗). Now σ∗ yields a solution to this MinNormLB-instance
of cost 1, and so solving this MinNormLB problem optimally, and utilizing Theorem 9.6,
would yield the desired solution.

Additional ingredients are needed to make this idea work. We do not know the Top`(Λ
∗)

values, and cannot “guess” these values for all ` ∈ [m]; moreover, we cannot solve the
MinNormLB problem optimally. We use the sparsification tools from Chapter 2, and,
with a small loss in approximation, move to the sparse set POS = POSm,δ (for, say, δ =
min{0.5, ε}) and work with estimates B` of Top`(Λ

∗) for all ` ∈ POS; such that the norm
in the MinNormLB instance is now h(v) := max`∈POS Top`(v)/B`. Now, using the algorithm
ADet with the correct estimate-vector B∗ ∈ RPOS

≥0 (where each B∗` overestimates Top`(Λ
∗)

within a (1 + δ)-factor), we obtain an assignment σ such that Top`(Λ
σ) ≤ α′Top`(Λ

∗) for
all ` ∈ [m], where α′ = α

(
1 + O(ε)

)
. Theorem 9.6 then shows that g(Λσ) ≤ g(α′Λ∗), but

we need a bound in terms of g(Λ∗). To this end, we prove the important property that g
is subhomogeneous (Lemma 9.7): g(θy) ≤ θ · g(y) for any scalar θ ≥ 1. Finally, similar to
the issue that we encountered in Chapters 7 and 8, we cannot quite identify the correct
B∗, but we can isolate it in a polynomial-sized set. We show how to estimate g(y) using
polynomially many samples (Lemma 9.8), and use this estimator to find (loosely speaking)
the best solution among those computed for each candidate estimate-vector in this set.
Combining these various ingredients yields Theorem 9.1.

9.1 Expected Norm of a Poisson Product Distribution

In this section, we investigate the function g : y 7→ E[f(Pois(y))] without referencing our
load balancing or spanning tree applications. We prove several useful properties and results
involving this function. Proofs in this section are not necessary to follow the reduction in
Theorem 9.1, so the reader may choose to skip them. We note that these results are not
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new and most of them follow from elementary arguments. The most technical result in
this section is a proof of Schur convexity of g, which is originally due to Rinott [37].

9.1.1 Basic Properties of g(y)

The following lemma — similar in spirit to Lemma 2.2 — gives convenient upper and lower
bounds on g(y).

Lemma 9.4. Let y ∈ Rm
≥0. We have max{f(y), 1− exp(−Topm(y))} ≤ g(y) ≤ Topm(y).

Proof. The upper bound follows from Lemma 2.2 (recall that f is normalized) and Fact 2.1:

g(y) = E[f(Pois(y))] ≤ E[Topm(Pois(y))] = E
[∑
i∈[m]

Pois(yi)
]

= Topm(y).

By convexity of norms, we get: E[f(Pois(y))] ≥ f(E[Pois(y)]) = f(y). The other lower
bound uses Lemma 2.2:

E[f(Pois(y))] ≥ E[Top1(Pois(y))] ≥ Pr[Top1(Pois(y)) > 0]

= 1−
∏
i∈[m]

Pr[Pois(yi) = 0] = 1− exp(−Topm(y)).

The next result shows similarities between g and the monotone, symmetric norm f that
gives rise to it.

Lemma 9.5.
Let y, y′ ∈ Rm

≥0. The function g has the following properties:

(a) (monotonicity) g(y) ≥ g(y′) whenever y ≥ y′;

(b) (symmetry) g(y) = g(y↓);

(c) (subadditivity) g(y + y′) ≤ g(y) + g(y′); and

(d) (uniform continuity) g(y)− g(y′) ≤ ‖y − y′‖1.

Proof. First of all, observe that symmetry of g follows from symmetry of f . For scalars
λ ≥ λ′ ≥ 0, the random variable Pois(λ) stochastically dominates Pois(λ′): that is, we
have Pr[Pois(λ) ≥ θ] ≥ Pr[Pois(λ′) ≥ θ] for any θ ∈ R≥0. Consider vectors y, y′ ∈ Rm

≥0
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satisfying y ≥ y′. Since Pois(yi) stochastically dominates Pois(y′i) for all i ∈ [m], and f is
monotone, we get that E[f(Pois(y))] ≥ E[f(Pois(y′))].

The triangle inequality for f implies subadditivity (or triangle inequality) for g. For
scalars λ1, λ2 ∈ R≥0, Pois(λ1+λ2) has the same distribution as Pois(λ1)+Pois(λ2) (Fact 2.2).
Thus, for any y, y′ ∈ Rm

≥0, the distributions of Pois(y+y′) and Pois(y)+Pois(y′) are identical.
Therefore:

g(y + y′) = E[f(Pois(y) + Pois(y′))] ≤ E[f(Pois(y)) + f(Pois(y′))] = g(y) + g(y′).

Finally, to prove uniform continuity of g, consider y, y′ ∈ Rm
≥0. Let y′′ ∈ Rm

≥0 be the
pointwise minimum of y and y′, i.e., for each i ∈ [m], y′′i := min(yi, y

′
i). By construction,

‖y − y′′‖1 ≤ ‖y − y′‖1. Since g is monotone, g(y)− g(y′) ≤ g(y)− g(y′′) holds, and hence
it suffices to work with y and y′′. By subadditivity,

g(y) ≤ g(y′′) + g(y − y′′) ≤ g(y′′) + ‖y − y′′‖1 ,

where the second inequality follows from Lemma 9.4.

9.1.2 Schur Convexity of g(y)

We now prove the key technical result in this chapter: g is Schur-convex. This result
is originally due to Rinott [37], and its proof can also be found in [31] (see Chapter 11,
Proposition E.6). Since g is monotone, we state this result in a slightly stronger form.

Theorem 9.6.
Let y, y′ ∈ Rm

≥0. If Top`(y) ≤ Top`(y
′) for all ` ∈ [m], then g(y) ≤ g(y′).

Proof. The stated inequality is related to a property called Schur convexity of the function
g (see Chapter 3 in [31] for more details). Schur convexity is the property that the stated
inequality holds when y and y′ also satisfy Topm(y) = Topm(y′). However, since g is mono-
tone, it suffices to restrict our attention to this case.1 Furthermore, since g is symmetric,
we may assume that y = y↓ and y′ = y′↓. It is easy to show that there exists a finite
sequence of vectors y(0) = y, y(1), y(2), . . . , y(N) = y′ such that for all k ∈ [N ] we have (i)

y(k) = y(k)↓; (ii) for any ` ∈ [m], Top`(y
(k−1)) ≤ Top`(y

(k)), and the inequality is tight for

1If Topm(y) < Topm(y′), then we can increase coordinates of y, without violating the bounds on the
Top`-norms of y, until Topm(y) = Topm(y′).
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` = m; and (iii) y(k) and y(k−1) differ in exactly two coordinates. Hence, it suffices to prove
the lemma with the additional restriction that y and y′ differ in exactly two coordinates
(note that y and y′ are nonincreasing). Let 1 ≤ i < j ≤ m such that yk = y′k for all
k ∈ [m] \ {i, j}. Thus, yi < y′i, yj > y′j, and yi + yj = y′i + y′j.

Let θ3, . . . , θm ∈ R≥0 be m−2 scalars, and let ~θ := (θ3, . . . , θm). We define a symmetric
2-dimensional function q : R2

≥0 → R≥0 as follows:

q(a, b; θ3, . . . , θm) := E[f(Pois(a),Pois(b), θ3, . . . , θm)].

That is, q(a, b) is the expected f -norm of a vector whose first two coordinates are indepen-
dent Poisson variables with parameters a and b, and the rest of the coordinates are fixed.
To prove the lemma, it suffices to show that q is Schur-convex for any choice of (arbitrary
but fixed) parameters θ3, . . . , θm, i.e., for any a ≥ b ≥ 0, a′ ≥ b′ ≥ 0 satisfying a ≥ a′ and
a + b = a′ + b′, we have q(a, b) ≥ q(a′, b′). To see why this suffices, let Yk ∼ Pois(yk) be
independent Poisson random variables, for all k ∈ [m] \ {i, j}. Let Y−ij := (Yk)k∈[m]\{i,j}.
Then

g(y) = E[f(Pois(y1), . . . ,Pois(ym))]

= EY−ij [E[f(Pois(yi),Pois(yj), Y−ij)]] = EY−ij [q(yi, yj;Y−ij)],

In the double expectations above, the outer expectation is with respect to the distribu-
tion for Y−ij. Similarly, we have g(y′) = EY−ij [q(y

′
i, y
′
j;Y−ij)]. Therefore, proving Schur

convexity for q implies Schur convexity for g. Since q is symmetric, a necessary and suffi-
cient condition for q to be Schur-convex is given by the Schur-Ostrowski criterion (see [31],
Chapter 3, Theorem A.4):

∀ a, b ∈ R≥0, a ≥ b =⇒ ∂q

∂a
≥ ∂q

∂b
. (Schur-Ostrowski criterion)

Fix some parameters θ3, . . . , θm ≥ 0. By definition,

q(a, b; ~θ) = E
[
f(Pois(a),Pois(b), ~θ)

]
= e−(a+b) ·

∑
k,`≥0

ak

k!

b`

`!
f(k, `, ~θ)

Taking the partial derivative with respect to a gives:

∂q

∂a
= e−(a+b) ·

∑
k,`≥0

ak

k!

b`

`!

(
f(k + 1, `, ~θ)− f(k, `, ~θ)

)
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Similarly, taking the partial derivative with respect to b gives:

∂q

∂b
= e−(a+b) ·

∑
k,`≥0

ak

k!

b`

`!

(
f(k, `+ 1, ~θ)− f(k, `, ~θ)

)
So, Schur-Ostrowski criterion is equivalent to checking if the following expression is non-
negative for all a ≥ b ≥ 0:∑

k,`≥0

ak

k!

b`

`!

(
f(k + 1, `, ~θ)− f(k, `+ 1, ~θ)

) ?

≥ 0.

In the above series, terms corresponding to k = ` vanish because f is symmetric. The
residual series can be expressed as

∑
k>`≥0

(
Tk,`/k! `!

)
where

Tk,` := akb`
(
f(k + 1, `, ~θ)− f(k, `+ 1, ~θ)

)
+ a`bk

(
f(`+ 1, k, ~θ)− f(`, k + 1, ~θ)

)
.

By symmetry of f , for any k > ` ≥ 0,

Tk,` = a`b`(ak−` − bk−`)
(
f(k + 1, `, ~θ)− f(k, `+ 1, ~θ)

)
.

Nonnegativity of Tk,` easily follows because a ≥ b and k > `: f(k + 1, `, ~θ) ≥ f(k, `+ 1, ~θ)

since for any r ∈ [m], we have Topr((k + 1, `, ~θ)) ≥ Topr((k, `+ 1, ~θ)). This completes the
proof of Schur convexity of g.

9.1.3 Subhomogeneity of g(y)

The last property of g that will be useful to us is subhomogeneity. Note that norms are
homogeneous.

Lemma 9.7 (Subhomogeneity). For any y ∈ Rm
≥0 and scalar θ ≥ 1, we have g(θy) ≤

θ · g(y).

Proof. We prove the lemma for rational θ. The proof for general θ then follows from a
continuity argument. Let θ = a/b for integers a > b ≥ 1. (If a = b, there is nothing to
be shown.) Observe that g(θy) = g(az) and g(y) = g(bz), where z = y/b. Thus, for the
rational case, it suffices to prove that b · g(az) ≤ a · g(bz) holds for all z ∈ Rm

≥0 and integers
a > b ≥ 1.
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Fix some z ∈ Rm
≥0. Let Z(0), Z(1), . . . , Z(a−1) be a independent random vectors that are

identically distributed copies of Pois(z) (thus each Z
(j)
i is an independent Pois(zi) random

variable). For any i ∈ [m], the distribution of Pois(azi) is identical to that of
∑a−1

j=0 Z
(j)
i

(Fact 2.2), therefore

g(az) = E[f
(
Pois(az)

)
] = E

[
f
(a−1∑
j=0

Z(j)
)]
.

Also, for any subset S ⊆ {0, 1, . . . , a} with |S| = b, we have E[f
(∑

j∈S Z
(j)
)
] = g(bz).

Define size-b index sets Sk := {(k + j) mod a : j = 0, . . . , b − 1}, for k = 0, 1, . . . , a − 1.
Note that each j ∈ {0, . . . , a− 1} is contained in exactly b sets in {Sk}k. Therefore:

g(az) = E
[
f
(a−1∑
j=0

Z(j)
)]

= E
[
f
(

1
b
·
a−1∑
k=0

∑
j∈Sk

Z(j)
)]
≤ 1

b
·
a−1∑
k=0

E
[
f
(∑
j∈Sk

Z(j)
)]

=
a

b
· g(bz).

Now suppose that θ is irrational. Fix some y ∈ Rm
≥0 and consider an increasing sequence

of rationals {θr}r≥1 that converge to θ. From the rational case, the inequality g(θry) ≤
θrg(y) ≤ θg(y) holds for all r ∈ {1, 2, . . . }. Since g is continuous, we have g(θy) =
supr≥1 g(θry) ≤ θg(y).

9.1.4 Estimator for g(y)

In the proof of Theorem 9.1, we work with multiple guesses of {Top`(Λ∗)}`∈POS, and each
such guess gives rise to an assignment of jobs to machines. The output of our algorithm
(for PoisNormLB) is the assignment with the smallest g-objective. Since we are not aware
of any results that allow us to directly compare g(y) and g(y′) for arbitrary y, y′ ∈ R≥0, we
instead use a sampling-based estimator for our purposes. We remark that this estimator
is the reason why our reduction from PoisNormLB to MinNormLB leads to probabilistic
guarantees. For technical reasons that will be clear shortly, in the following result we
assume that the Top` norm of y is bounded away from 0.

Lemma 9.8. Let ε, η ∈ (0, 1/2] be some error parameters, and y ∈ Rm
≥0 be such that

Topm(y) ≥ ε. Define N := 2m2/ε3η. Using at most N independent samples from Pois(y),
we can compute an estimate γ satisfying:

Pr
[
(1− ε)g(y) ≤ γ ≤ (1 + ε)g(y)

]
≥ 1− η.
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Proof. Let x(1), . . . , x(N) be N independent samples from Pois(y), and let γ denote the
sample f -average

(∑N
j=1 f(x(j))

)
/N . We show that γ is the desired estimator by using

Chebyshev’s concentration inequality. To this end, we need a bound on the variance of the
real-valued random variable f(Pois(y)). We have:

Var
[
f(Pois(y))

]
≤ E[f 2(Pois(y))]

≤ E[Top2
m(Pois(y))] (By Lemma 2.2)

= Var
[
Topm(Pois(y))

]
+
(
E[Topm(Pois(y))]

)2

= Var
[
Pois(Topm(y))

]
+
(
E[Pois(Topm(y))]

)2
(By Fact 2.2)

= Topm(y)(1 + Topm(y)). (By Fact 2.1)

Since γ is an average of f(Pois(y)) over N independent samples, we get that Var[γ] =
Var
[
f(Pois(y))

]
/N . By Chebyshev’s inequality (Lemma 2.27):

Pr[|γ − g(y)| > εg(y)] ≤ Var[γ]

ε2g2(y)
=

1

Nε2
· Topm(y)

g(y)
· 1 + Topm(y)

g(y)
≤ 2m2

Nε3
= η.

We use Lemma 9.4 to justify the penultimate inequality used above. Since Topm(y)/g(y) ≤
m holds for any y ∈ Rm

≥0, the required inequality holds whenever Topm(y) ≥ 1. Now
suppose that Topm(y) ∈ [ε, 1] holds. Then we have 1 + Topm(y) ≤ 2 and g(y) ≥ f(y) ≥
Topm(y)/m ≥ ε/m, and hence the required inequality follows.

Estimating the value of g(y) when Topm(y) is close to zero is much simpler: we simply
use Topm(y) as an approximation for g(y).

Lemma 9.9. Let ε ∈ (0, 1/2] be an error parameter, and y ∈ Rm
≥0 be such that Topm(y) ≤ ε.

We have g(y) ≤ Topm(y) ≤ (1 + 2ε)g(y).

Proof. We have already proved the lower bound. For the upper bound, we use Lemma 9.4
and the assumption that Topm(y) ≤ ε ≤ 1/2 holds:

g(y) ≥ 1− exp(−Topm(y)) ≥ Topm(y)(1− Topm(y)) ≥ Topm(y)/(1 + 2ε).

In the penultimate inequality we use 1 − e−z ≥ z − z2, which holds for any z ∈ R≥0, and
in the last inequality we use (1− ε)(1 + 2ε) ≥ 1.
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9.2 Reduction from PoisNormLB to MinNormLB

Using the tools from Section 9.1, we give a proof of our main theorem in this chapter. Recall
that the PoisNormLB-instance is given by IPois = (J, [m], {λij}, f), and we have access to a
ρ-approximation algorithm ADet for MinNormLB-instances with job-set J , machine-set [m],
and {λij}i∈[m],j∈J job sizes. We are also given two error parameters ε, η > 0, and the goal
is to obtain a ρ

(
1 + O(ε)

)
-approximate solution for IPois with probability at least 1 − η.

Recall that Λ∗ = Λσ∗ denotes the aggregate λ-vector for the optimal assignment σ∗.

Proof of Theorem 9.1. Set ε′ = δ = min{0.5, ε}. Let σsum be the assignment that mini-
mizes the expected sum of machine loads, so σsum(j) = arg mini λij for all jobs j ∈ J . Let
Λsum := Λσsum

, and UB := Topm(Λsum) =
∑

j∈J
(
mini∈[m] λij

)
. Note Topm(Λ∗) ≥ UB.

If UB ≤ ε′, then we claim that σsum is a (1 + 2ε′)-approximate solution to IPois. This
follows from Lemma 9.4: (i) g(Λsum) ≤ Topm(Λsum) = UB; and (ii) noting that UB ≤ ε′ ≤
1/2:

g(Λ∗) ≥ 1− exp(−Topm(Λ∗)) ≥ 1− exp(−UB) ≥ UB(1− UB) ≥ UB/(1 + 2ε′).

Now suppose that UB ≥ ε′; note that Topm(Λσ) ≥ ε′ for every assignment σ. We
have Top1(Λ∗) ≥ Topm(Λ∗)/m ≥ UB/m. Also, Topm(Λ∗) ≤ mTop1(Λ∗), and we have
Top1(Λ∗) ≤ f(Λ∗) ≤ g(Λ∗) ≤ g(Λsum) ≤ UB; here, we have used Lemma 2.2, Lemma 9.4
(twice), and the optimality of σ∗. Thus we obtain Topm(Λ∗) ≤ m · UB.

We recall the iterative definition of POSm,δ ⊆ [m]: include the index 1 in POSm,δ; as
long as the largest index ` ∈ POSm,δ is such that d(1 + δ)`e ≤ m, include d(1 + δ)`e (which
is larger than `) in POSm,δ. For notational convenience, let POS := POSm,δ. Consider the
non-increasing vector u which is (Λ∗`)`∈POS with its coordinates listed in decreasing order of
`. We apply Lemma 2.21 (b) on u, taking L = POS, and upper and lower bounds m · UB
and UB/m respectively, to obtain a poly(m1/δ)-size set T ⊂ RPOS

≥0 containing a vector B∗

such that Top`(Λ
∗) ≤ B∗` ≤ (1 + δ)Top`(Λ

∗) for all ` ∈ POS.

For each B ∈ T , we do the following. Let hB : Rm
≥0 → R≥0 be the monotone, symmetric

norm defined as hB(v) := max`∈POS Top`(v)/B`. We run ADet on the MinNormLB instance
with {λij}i∈[m],j∈J job sizes and norm hB, to obtain an assignment σB. Let ΛB = ΛσB . We
use Lemma 9.8 to compute an estimate γB satisfying:

Pr[(1− ε′)g(ΛB) ≤ γB ≤ (1 + ε′)g(ΛB)] ≥ 1− η

|T |
.

We output the assignment σB
′

with the smallest estimator-value γB
′

among all B′ ∈ T .
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We argue that σB
′
is a ρ

(
1+O(ε)

)
-approximate assignment for IPois with probability at

least 1−η. By the union bound, with probability at least 1−η, the inequality (1−ε′)g(ΛB) ≤
γB ≤ (1 + ε′)g(ΛB) holds for all B ∈ T ; we assume that this event happens. Consider the
correct guess B∗ ∈ T . Since hB∗(Λ

∗) ≤ 1, the solution σB
∗

satisfies:

Top`(Λ
B∗) ≤ ρB∗` ≤ ρ(1 + δ)Top`(Λ

∗) for all ` ∈ POS.

Lemma 2.12 gives a slightly weaker bound for all Top` norms of ΛB∗ :

Top`(Λ
B∗) ≤ ρ(1 + δ)2Top`(Λ

∗) for all ` ∈ [m].

By majorization (Theorem 9.6) and subhomogeneity (Lemma 9.7):

g(ΛB∗) ≤ ρ(1 + δ)2g(Λ∗).

Accounting for the error due to the γB estimates, yields

E
[
f
(−−→
loadσ

B′
)]

= g(ΛB′) ≤ 1 + ε′

1− ε′
· g(ΛB∗) ≤ ρ(1 + 13ε′)g(Λ∗).
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Chapter 10

Stochastic Minimum Norm Spanning
Tree

We now apply our framework to devise approximation algorithms for stochastic minimum
norm spanning tree, which we abbreviate to StochNormTree. We state the problem and
mention our main results in Section 10.1. We design an O(1)-approximation algorithm
for StochNormTree with Top` norms in Section 10.2, and generalize this result to arbitrary
monotone symmetric norms in Section 10.3. Our results on StochNormTree easily carry-
over to three natural extensions: stochastic min-norm matroid basis, stochastic min-norm
degree-bounded spanning tree, and stochastic min-norm traveling salesperson problem; we
discuss these extensions in Section 10.4.

10.1 Problem Statement

In an instance of StochNormTree, we are given an undirected graph G = (V,E) with
stochastic edge-weights and we are interested in a low-weight solution that connects the
vertices of this graph to each other. More precisely, for each edge e ∈ E, we are given a
nonnegative random variable Xe that denotes its weight. Edge weights are independent.
A feasible solution to this problem is a spanning tree T ⊆ E of G. This induces a random
weight vector Y T = (Xe)e∈T ; note that Y T follows a product distribution on Rn−1

≥0 where
n := |V |. The objective in StochNormTree is to find a spanning tree T that minimizes
E[f(Y T )] for a given monotone, symmetric norm f : Rn−1

≥0 → R≥0.

As an aside, we note that the deterministic version of this problem, wherein each edge
e has a fixed weight we ≥ 0, can be solved optimally. This is because a minimum-weight
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spanning tree (MST) T ∗ simultaneously minimizes
∑

e∈T (we − θ)+ among all spanning
trees T of G, for all θ ≥ 0. Since Top`(x) = minθ∈R≥0

{`θ+
∑

i(xi− θ)+} (see Lemma 2.4),
it follows that T ∗ minimizes every Top` norm, and so by Theorem 2.7, it is simultaneously
optimal for every monotone, symmetric norm. Furthermore, due to Theorem 9.6 (also
see Theorem 9.1), T ∗ is also optimal for the stochastic setting when edge-weight variables
follow Poisson distributions. Also note that when f is the Topn−1 norm, StochNormTree
reduces to the minimum-weight spanning tree problem with (deterministic) edge-weights
given by we = E[Xe].

10.1.1 Our Results

Our main results in this chapter are the following.

Theorem 10.1.
There is an O(1)-approximation algorithm for stochastic minimum norm spanning tree
(i.e., with arbitrary edge-weight distributions and an arbitrary monotone, symmetric
norm).

We get improved approximation guarantees for the Top` case.

Theorem 10.2.
Let ε > 0 be a constant. For any ` ∈ [n − 1], there is a simple (2 + ε)-approximation
algorithm for stochastic Top`-norm spanning tree.
Furthermore, for the stochastic bottleneck spanning tree problem (i.e., the ` = 1 case),
the approximation guarantee can be improved to e/(e− 1) + ε.

10.1.2 Overview

We give a high-level overview of the main ideas used in our proofs. Let T ∗ denote an optimal
spanning tree. Let Y ∗ := Y T ∗ and OPT := E[f(Y ∗)] denote the induced cost vector and
the optimal objective value, respectively. We drop the superscript T in Y T when the tree
T is clear from the context. We use Ye to denote the coordinate in Y corresponding to edge
e; we will ensure that Ye is used only when e ∈ T . Also note that since f is symmetric, the
order in which the edge-variables Ye appear in Y is immaterial. We recall some notation
and definitions from Chapters 2 and 3 that are frequently used in this chapter. The domain
of f has dimension n− 1, so we reserve POS = {1, 2, 4, . . . , 2blog2(n−1)c} to refer to the set
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of powers of 2 that are at most n− 1. 1 The τ`(Y ) order statistic (see Definition 3.7) that
is a proxy for the `th largest coordinate of Y is given by:

τ`(Y ) := inf
{
θ ∈ R≥0 :

∑
e∈T

Pr[Ye > θ] < `
}

(10.1)

The γ`(Y ) proxy function (see Definition 3.8) that serves as a constant-factor approxi-
mation to E[Top`(Y )] is given by:

γ`(Y ) := `τ`(Y ) +
∑
e∈T

E
[(
Ye − τ`(Y )

)+]
(10.2)

The cost vector Y T is inherently less complex than the load vector in load balancing,
in that each coordinate Y T

e is an “atomic” random variable whose distribution we can
directly access. Thus, our approach is guided by Theorems 4.4 and 4.16, which show that
to obtain an approximation guarantee for stochastic f -norm spanning tree, it suffices to
find a spanning tree T such that: (i) the τ` statistics of Y T are “comparable” to those of
Y ∗; and (ii) the total mass of {Xe}e∈T that lies above the τ1(Y ∗) threshold is bounded by
the corresponding total mass for {Xe}e∈T ∗ .

Our approximation strategy is based on solving an LP-relaxation of StochNormTree to
obtain a fractional spanning tree whose “cost” is O(OPT), which we then round using the
iterative rounding framework (Theorem 2.32) to obtain an O(1)-approximate (integral)
spanning tree. More concretely, our LP consists of constraints that define the spanning-
tree polytope and a collection of side constraints that impose that the τ`-statistic of our
solution be bounded by t`, where t` is a guess for τ`(Y

∗); from the expression in (10.1), it
should be clear that the τ` constraints are easy to linearize. We control the contribution
from

∑
e∈T E[(Xe−τ1)+] by moving it to the objective function. For algorithmic purposes,

we include τ` constraints only for indices ` ∈ POS. This is done for two reasons: first,
we are not aware of any efficient procedure to simultaneously guess τ`(Y

∗) for all ` ∈ [m];
and second, the approximation-quality of the rounded solution depends on the maximum
column-sum in the LP-constraint matrix, so it makes sense to work with a sparse collec-
tion of indices that yield the desired approximation guarantee. We give all the details in
Section 10.3.

Our approximation algorithm for the Top` case is substantially simpler because we only
have to work with a single τ` statistic. We remark that the objective function now has a
term of the form

∑
e∈T E[(Xe − τ`)

+] since we are controlling E[Top`(Y )] by controlling
the γ`(Y ) proxy function. We start with the simpler Top` case.

1In other chapters, we used m to refer to the dimension, and defined POS to be the set of powers of 2
that are at most m.
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10.2 Stochastic Spanning Tree with Top` Norms

Fix an index ` ∈ [m] for the rest of this section, and let ε > 0 be a constant. We
now describe an LP-based algorithm that finds a spanning tree T satisfying γ`(Y

T ) ≤
(1 + O(ε))γ`(Y

∗). Since γ`(Y
∗) ≤ 2E[Top`(Y

∗)] (see Theorem 3.9), this would imply
that T is a (2 +O(ε))-approximate solution to the given instance of stochastic Top`-norm
spanning tree.

We use the following linear description of the spanning-tree polytope:

Qtree :=
{
z ∈ RE

≥0 : z(E) = |V | − 1, z(A) ≤ n− comp(A) ∀A ⊆ E
}
.

In the above, the ze variables indicate if an edge e belongs to the spanning tree, z(A) denotes∑
e∈A ze, and comp(A) denotes the number of connected components in the subgraph

(V,A). It is well-known that the above polytope is the spanning-tree polytope of G, i.e.,
it is the convex hull of indicator vectors of spanning trees of G. We use the matroid base-
polytope characterization for two reasons: (i) our arguments can be generalized verbatim
to the more general setting with an arbitrary matroid; and (ii) we can directly invoke
Theorem 2.32 to round fractional LP solutions to integral solutions.

LP Relaxation. Let t` ∈ R≥0 be a guess for τ`(Y
∗). The constraints of our LP encode

that z ∈ Qtree and that the τ`-statistic of the cost vector induced by z is bounded by t`.
The objective function captures the contribution from cost vector entries that lie above
the t` threshold.

(Tree-LP(`, t`))

Tree-OPT
(
`, t`
)

:= min
∑
e∈E

E[(Xe − t`)+]ze

s.t.
∑
e∈E

Pr[Xe > t`]ze ≤ ` (10.3)

z ∈ Qtree. (10.4)

The following results are straightforward.

Claim 10.3. For any scalar t` ≥ τ`(Y
∗), (Tree-LP(`, t`)) is feasible, and its optimal objec-

tive value Tree-OPT
(
`, t`
)

is at most
∑

e∈T ∗ E
[(
Xe − τ`(Y ∗)

)+]
.

Proof. Consider the solution z∗ induced by the optimal solution T ∗, i.e., z∗ is the indicator
vector of T ∗. Constraint (10.3) is satisfied because t` ≥ τ`(Y

∗). The objective value of z∗

is
∑

e∈T ∗ E
[(
Xe − t`

)+]
, which is at most the stated bound because t` ≥ τ`(Y

∗).
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Theorem 10.4. Let t` ∈ R≥0 be a scalar such that (Tree-LP(`, t`)) is feasible. Let T be a
minimum-weight spanning tree in the graph G = (V,E) with (deterministic) edge-weights
we := E[(Xe − t`)

+], and let Y = Y T denote the cost vector induced by T in the given
StochNormTree instance. Then, E[Top`(Y )] ≤ γ`(Y ) ≤ `t` + Tree-OPT

(
`, t`
)
.

Proof. By Lemma 3.11(i), we get γ`(Y ) ≤ `t`+
∑

e∈T E[(Xe−t`)+]. Since T is a min-weight
spanning tree, the second term in the above expression is bounded by Tree-OPT

(
`, t`
)
.

We remark that the above proof only uses the feasibility of (Tree-LP(`, t`)), and the
integrality of the spanning-tree polytope.

10.2.1 Our Algorithm and Analysis

Given Claim 10.3 and Theorem 10.4, it is clear that if we work with a guess t` that is
sufficiently close to τ`(Y

∗), then we obtain a solution with expected Top` cost close to
`τ`(Y

∗) + Tree-OPT
(
`, τ`(Y

∗)
)
≤ γ`(Y

∗), and thus a near-optimal solution to the given
instance of StochNormTree.

It is easy to obtain (polytime computable) lower and upper bounds on τ`(Y
∗), and

thereby find a polynomial-size set T containing a good guess t∗` of τ`(Y
∗) (Claim 10.7).

In order to select a suitable t` ∈ T , we need an estimator for γ`(Y ), where Y is the cost
vector induced by the spanning tree T mentioned in Theorem 10.4. We argue that, roughly
speaking, `t` +Tree-OPT

(
`, t`
)

can be used as such an estimator; in particular, for t` = t∗` ,
this quantity is quite close to γ`(Y

∗). Putting everything together yields the following
algorithm.

Description of our algorithm. Define UB to be the weight of a minimum-weight span-
ning tree in G with edge-weights given by (the deterministic quantity) we := E[Xe]. Define

T :=
{
t` ∈ R≥0 :

2εUB

(1 + ε)n2
≤ t` ≤ 2(1 + ε)UB, t` is a power of (1 + ε)

}
(10.5)

Let t′` ∈ T be such that (Tree-LP(`, t′`)) is feasible and the quantity `t′` + Tree-OPT
(
`, t′`
)

is minimized. Note here that (Tree-LP(`, t′`)) can be solved in polytime since one can
efficiently separate over Qtree. Return the minimum-weight spanning tree T in the graph
G = (V,E) with (deterministic) edge-weights given by we := E[(Xe − t′`)+].
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Analysis. We first argue that UB can be used to obtain both upper and lower bounds on
the optimum (Lemma 10.5), and hence that T contains a good guess of τ`(Y

∗) (Claim 10.7).

Lemma 10.5. Let UB denote the weight of a minimum-weight spanning tree in G with
edge-weights given by (the deterministic quantity) we := E[Xe]. The following inequality
holds for any monotone, symmetric norm f :

UB

n− 1
≤ E[f(Y ∗)] ≤ UB.

Proof. This follows from Lemma 2.2. For more details, see the proof of Lemma 6.10 which
was used in the load balancing setting.

Lemma 10.6. We have τ`(Y
∗) ≤ γ`(Y

∗) ≤ 2UB.

Proof. Follows from Theorem 3.9: τ`(Y
∗) ≤ γ`(Y

∗) ≤ 2 E[Top`(Y
∗)] ≤ 2UB.

Claim 10.7. We have: (i) |T | = poly(n, 1/ε); and (ii) there exists a scalar t∗` ∈ T that
satisfies τ`(Y

∗) ≤ t∗` ≤ max
{

(1 + ε)τ`(Y
∗), 2εUB/n2

}
.

Proof. The first claim is straightforward: |T | ≤ 1 + dlog1+ε

(
(1 + ε)2n2/ε

)
e = O(log n/ε2).

For the second claim, consider the smallest scalar t∗` that is a power of (1 + ε) and satisfies
t∗` ≥ τ`(Y

∗). Note t∗` ≤ 2(1 + ε)UB by Lemma 10.6. If t∗` ∈ T , then t∗` is the desired scalar.
Otherwise, the smallest scalar in T satisfies the claim.

Now, we show that if t∗` is a good estimate of τ`(Y
∗), then `t∗` + (Tree-LP(`, t∗`)) is a

good estimate of γ`(Y
∗).

Lemma 10.8. Let t∗` be such that τ`(Y
∗) ≤ t∗` ≤ max

{
(1 + ε)τ`(Y

∗), 2εUB/n2
}

. Then,
`t∗` + Tree-OPT

(
`, t∗`

)
≤ (1 +O(ε))γ`(Y

∗).

Proof. By the definition of γ` and the bounds in Claim 10.3 and Lemma 10.5, we get:

`t∗` + Tree-OPT
(
`, t∗`

)
≤ (1 + ε)`τ`(Y

∗) +
2ε · UB · `

n2
+
∑
e∈T ∗

E
[(
Xe − τ`(Y ∗)

)+]
≤ γ`(Y

∗) + ε`τ`(Y
∗) + 2εUB/n

≤ (1 + 3ε)γ`(Y
∗).
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We now finish the proof of Theorem 10.2.

Proof of Theorem 10.2. Let t′` ∈ T and T be as defined in our algorithm (see Algo-
rithm 10.2.1). Let Y = Y T denote the cost vector induced by the spanning tree T
in the given StochNormTree instance. By Theorem 10.4, we have E[Top`(Y )] ≤ `t′` +
Tree-OPT

(
`, t′`
)
. Since t′` minimizes `t′` + Tree-OPT

(
`, t′`
)

among all feasible guesses, by
Claim 10.7 and Lemma 10.8 we get:

E[Top`(Y )] ≤ (1 + 3ε)γ`(Y
∗) ≤

{
(2 +O(ε))E[Top`(Y

∗)] if ` > 1(
e
e−1

+O(ε)
)
E[Top1(Y ∗)] if ` = 1.

10.3 Stochastic Spanning Tree with Monotone

Symmetric Norms

We now consider general StochNormTree where f : Rn−1
≥0 → R≥0 is an arbitrary monotone,

symmetric norm. Our approximation algorithm for this setting is based on rounding a
fractional LP-solution whose cost vector has τ` statistics that are comparable to τ`(Y

∗) for
all ` ∈ POS = {1, 2, . . . , 2blog2(n−1)c}. Like in the Top` case, we use the LP-objective to
control the contribution from the coordinates larger than τ1 to the expected f -norm.

LP Relaxation. Let ~t ∈ RPOS
≥0 be a nonincreasing vector. We define the linear relaxation

(Tree-LP(~t )) as follows.

(Tree-LP(~t ))

Tree-OPT
(
~t
)

:= min
∑
e∈E

E[(Xe − t1)+]ze

s.t.
∑
e∈E

Pr[Xe > t`]ze ≤ ` ∀` ∈ POS (10.6)

z ∈ Qtree. (10.7)

Claim 10.3 applied to all ` ∈ POS gives the following.

Claim 10.9. Consider a nonincreasing vector ~t satisfying t` ≥ τ`(Y
∗) for all ` ∈ POS.

Then, (Tree-LP(~t )) is feasible, and its optimal objective value Tree-OPT
(
~t
)

is at most∑
e∈T ∗ E

[(
Xe − τ1(Y ∗)

)+]
.
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10.3.1 LP-Rounding Strategy

Let ~t ∈ RPOS
≥0 be a nonincreasing vector such that (Tree-LP(~t )) is feasible. Let z be an

optimal fractional spanning tree solution to (Tree-LP(~t )), and let Tree-OPT
(
~t
)

be the

optimal value of (Tree-LP(~t )). We remark that z can be computed in polynomial time by
using a separation oracle for the spanning-tree polytope (more generally, matroid base-
polytope); note that separating over constraints (10.6) is trivial.

The procedure for rounding z is more involved now, compared to that for a single
Top` norm, since we now need to ensure that the τ` statistics of the cost-vector Y , of the
induced tree, are comparable to the t`’s for all ` ∈ POS. This involves rounding while
roughly preserving constraints (10.6). A key property of the LP-constraint matrix that
we exploit in our rounding scheme is that the column-sums can be bounded by O(1) if
we scale constraint (10.6) by `; we perform the scaling because we can afford to incur an
additive O(`) violation in (10.6) for any index ` ∈ POS.

Define the parameter ν :=
∑

`∈POS
1
`
< 2. Using Theorem 2.32, with the parameter ν,

we can round z to an integral spanning tree T with the following guarantees.

Lemma 10.10. The cost vector Y = Y T satisfies the following: (i)
∑

e∈T E[(Ye − t1)+] ≤
Tree-OPT

(
~t
)
; and (ii) for any index ` ∈ POS, we have τ3`(Y ) ≤ t`.

Proof. We first show that the hypothesis of Theorem 2.32 holds with the violation param-
eter ν. For any edge e ∈ E and index ` ∈ POS, we trivially have Pr[Xe > t`] ∈ [0, 1].
Therefore,

∑
`∈POS Pr[Xe > t`]/` ≤

∑
`∈POS 1/` = ν.

The first claim follows directly from Theorem 2.32(a). For the second claim, we use
Theorem 2.32(b): we have that T satisfies

∑
e∈T Pr[Xe > t`] ≤ `(1 + ν) < 3` for every

index ` ∈ POS. By definition, τ3`(Y ) ≤ t`.

The above result combined with Theorem 4.16 yields a bound on E[f(Y )] involving
Tree-OPT

(
~t
)

and {t`}`∈POS. For notational convenience, define t` := 0 for indices ` > n−1.
We need the following notion of expansion of a vector in RPOS

≥0 .

Definition 10.11. For a nonincreasing vector ~t, its expansion ~t′ ∈ Rn−1
≥0 is given by: for

any index i ∈ [n− 1], t′i := t2dlog2 ie.

Theorem 10.12. Let ~t′ ∈ Rn−1
≥0 denote the expansion of ~t ∈ RPOS

≥0 . We have

E[f(Y )] ≤ 4.026 ·
(

3t1 + Tree-OPT
(
~t
)

+ 6f(~t′)
)
.
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Proof. We observe that the hypothesis of Theorem 4.16 holds if we take W = ~t′, λ = 1,
B1 = Tree-OPT

(
~t
)
, α = 3 and β = 1; here, we use that τ`(W ) = τ`(~t′) = t′` for all indices

` ∈ [m]. Therefore, Theorem 4.16 gives:

E[f(Y )] ≤ 4.026 · {3t1 + Tree-OPT
(
~t
)

+ 6f(~t′)}

10.3.2 Our Algorithm and Analysis

We repeat the approximation strategy that we used for the Top` case (see Section 10.2.1).
Suppose that we have a guess-vector ~t that is coordinate-wise close to (τ`(Y

∗))`∈POS. Then
by Claim 10.9, we can say that t1 + Tree-OPT

(
~t
)
≤ γ1(Y ∗). Theorem 10.12 then shows

that our cost is O(γ1(Y ∗) + f(~t′)), where ~t′ is the expansion of ~t (see Definition 10.11).
Now, recall that Theorem 4.4 gives f(γ1(Y ∗), τ2(Y ∗), . . . , τm(Y ∗)) = O(E[f(Y ∗)]), so we
will be done if we can bound γ1(Y ∗) + f(~t′) in terms of f(γ1(Y ∗), τ2(Y ∗), . . . , τm(Y ∗)).
This is not hard to do: since f is normalized, we have γ1(Y ∗) ≤ f(γ1(Y ∗), 0, . . . , 0),
and since f is monotone and t′1 ≤ γ1(Y ∗), we can say that f(γ1(Y ∗), 0, . . . , 0) + f(~t′) ≤
2 f(γ1(Y ∗), τ2(Y ∗), . . . , τm(Y ∗)).

As in the Top` setting, we can find a polynomial-size set T containing a suitable guess
vector ~t (see Claim 10.13). In the Top` setting, we used the expression `t`+Tree-OPT

(
`, t`
)

as a proxy for the expected Top`-norm of the tree obtained from an optimal LP solution;
now Theorem 4.4 suggests that we use the expression f(t′1 + Tree-OPT

(
~t
)
, t′2, t

′
3, . . . , t

′
n−1),

where ~t′ = (t′1, . . . , t
′
n−1) is the expansion of ~t, and we indeed use this to identify a suitable

guess vector from T (see Lemma 10.14). Combining these ingredients yields our algorithm,
which we now state and proceed to analyze.

Description of our algorithm. Define UB to be the weight of a minimum-weight span-
ning tree in G with edge-weights given by (the deterministic quantity) we := E[Xe]. Define

T :=
{
~t ∈ RPOS

≥0 : ~t = ~t↓,∀ ` ∈ POS,
2UB

n2
≤ t` ≤ 4UB, t` is a power of 2

}
(10.8)

Let ~t ∈ T be such that (Tree-LP(~t )) is feasible and f(t′1 + Tree-OPT
(
~t
)
, t′2, t

′
3, . . . , t

′
n−1) is

minimized, where ~t′ = (t′1, . . . , t
′
n−1) is the expansion of ~t (see Definition 10.11). Let z be an

optimal spanning tree solution to (Tree-LP(~t )), and Tree-OPT
(
~t
)

denote the corresponding

LP-objective value; again, note that (Tree-LP(~t )) can be solved in polytime. Round z to
obtain a spanning tree T as described in Section 10.3.1. Return T .
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Analysis. Claim 10.13 shows that T is a polynomial-size set containing a suitable guess
vector ~t, and (the proof of) Lemma 10.14 shows that for the expansion ~t′ = (t′1, t

′
2, . . . , t

′
n−1)

of ~t, f(t′1 + Tree-OPT
(
~t
)
, t′2, t

′
3, . . . , t

′
n−1) is O(OPT ). Combining this with Theorem 10.12

then yields Theorem 10.1.

Claim 10.13. We have: (i) |T | = poly(n); and (ii) there exists a nonincreasing vector
~t ∈ T satisfying the following inequality for all indices ` ∈ POS:

τ`(Y
∗) ≤ t` ≤ max

{
2τ`(Y

∗),
4UB

n2

}
.

Proof. Since there are O(log n) indices in POS and O(log n) unique powers of 2 in the
range [2UB/n2, 4UB], Claim 2.20 gives:

|T | ≤ (2e)max(O(log2 n),|POS|) = O(poly(n)).

For the second claim, consider the nonincreasing vector ~t ∈ RPOS
≥0 where for each ` ∈

POS, t` is the smallest power of 2 that is at least max{τ`(Y ∗), 2UB/n2}. By definition, for
every ` ∈ POS we have t` ≤ 2 · max{τ`(Y ∗), 2UB/n2}, so it remains to show that ~t ∈ T ,
and this follows from Lemma 10.6.

Lemma 10.14. Let ~t ∈ RPOS
≥0 be such that for all indices ` ∈ POS, we have τ`(Y

∗) ≤
t` ≤ max

{
2τ`(Y

∗), 4UB/n2
}

. Let ~t′ = (t′1, . . . , t
′
n−1) denote the expansion of ~t, i.e., for any

index i ∈ [n− 1], t′i := t2dlog2 ie. Then,

f(t′1 + Tree-OPT
(
~t
)
, t′2, t

′
3, . . . , t

′
n−1) ≤ 8 E[f(Y ∗)] = 8OPT.

Proof. We first establish some bounds on t′i for an arbitrary index i ∈ [n − 1]. Define
`i := 2dlog2 ie. Note that either `i > n− 1 or `i ∈ POS. We get:

t′i = t`i ≤ 2τ`i(Y
∗) +

4UB

n2
.

Next, by Claim 10.9, we have Tree-OPT
(
~t
)
≤
∑

e∈T ∗ E[(Xe − τ1(Y ∗))+]. Observe that the

non-increasing vector (t′1 + Tree-OPT
(
~t
)
, t′2, t

′
3, . . . , t

′
n−1) is coordinate-wise dominated by

the vector 2v + v′, where

v := (γ1(Y ∗), τ2(Y ∗), τ3(Y ∗), . . . , τm(Y ∗)) and v′ := (4UB/n2, . . . , 4UB/n2).
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Since f is a monotone norm, we obtain:

f(t′1 + Tree-OPT
(
~t
)
, t′2, t

′
3, . . . , t

′
n−1) ≤ 2f(v) + f(v′)

≤ 2f(γ1(Y ∗), τ2(Y ∗), . . . , τm(Y ∗)) + 4UB/n
(By Lemma 2.2)

≤ 8 E[f(Y ∗)] (By Theorem 4.4 and Lemma 10.5)

Proof of Theorem 10.1. Let ~t ∈ T , and T be the spanning tree that we define in Algo-
rithm 10.3.2. Let Y = Y T denote the cost vector induced by T in the given StochNormTree
instance. By Theorem 10.12, we have

E[f(Y )] ≤ 4.026 ·
(

3t1 + Tree-OPT
(
~t
)

+ 6f(~t′)
)
,

where ~t′ ∈ Rn−1
≥0 denotes the expansion of ~t. Since f is normalized, and also a monotone,

symmetric norm, we get:

E[f(Y )] ≤ 4.026 · 9 · f(t′1 + Tree-OPT
(
~t
)
, t′2, t

′
3, . . . , t

′
n−1) ≤ 290 · OPT.

In the final inequality, we use Claim 10.13, Lemma 10.14 and the fact that ~t minimizes
f(t′1 + Tree-OPT

(
~t
)
, t′2, t

′
3, . . . , t

′
n−1) among all feasible guess vectors.

10.4 Extensions

We discuss three natural extensions of StochNormTree.

10.4.1 Stochastic Min-Norm Matroid Basis

Our results extend quite seamlessly to the stochastic minimum norm matroid basis problem
(denoted StochNormMatBasis), which is the generalization of stochastic minimum-norm
spanning tree, where we replace spanning trees by bases of an arbitrary matroid. More
precisely, the setup is that we are given a matroid M = (U , I) specified via its rank
function r (equivalently, we have access to an independence oracle for the matroid), and

a monotone, symmetric norm f : Rr(M)
≥0 → R≥0. Each element e ∈ U has a stochastic
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weight Xe. The goal is to find a basis of M whose induced random weight vector has the
minimum expected f -norm.

Our algorithms and analyses from Sections 10.2 and 10.3 extend essentially as is here.
The only changes in the algorithm are that we replace the spanning-tree polytope Qtree in
(Tree-LP(~t )) by the base polytope ofM, and (i) for Top` norms, we now of course find the
min-weight basis of M; and (ii) for an arbitrary monotone, symmetric norm, we invoke
Theorem 2.32 with the base polytope of M.

Theorem 10.15.
There is an O(1)-approximation algorithm for stochastic minimum norm matroid basis
(i.e., with arbitrary edge-weight distributions and an arbitrary monotone, symmetric
norm).
Furthermore, for StochNormMatBasis with a Top` norm, we obtain approximation guar-
antees of (2 + ε) for general `, and

(
e/(e− 1) + ε

)
for ` = 1, where ε > 0 is a constant.

10.4.2 Stochastic Min-Norm Degree-Bounded Spanning Tree

In the stochastic minimum norm degree-bounded spanning tree problem, we are given an
instance of StochNormTree along with upper bounds {dv}v∈V on the vertex degrees. Feasible
solutions to this problem are given by spanning trees that respect the degree constraints,
i.e., T must satisfy |δ(v) ∩ T | ≤ d(v) for all vertices v ∈ V , where δ(v) denotes the set of
edges in G that are incident to v. The goal is to find a degree-bounded spanning tree T
that minimizes E[f(Y T )]. We call this problem StochNormDegBndTree.

The classical setting of (deterministic) minimum-weight degree-bounded spanning tree
problem, wherein each edge e has a fixed weight we ∈ R≥0 and f is Top|V |−1-norm, is already
NP-hard because it generalizes the path version of the traveling salesperson problem (TSP).
There is a tight approximation result for this setting: if the instance is feasible, we can
find a tree of total weight at most the optimum that violates the degree bounds by at most
an additive 1 [41].

Our approximation strategy for StochNormTree can be suitably modified to give a bi-
criteria approximation algorithm for StochNormDegBndTree where we violate the degree
bound at each vertex by at most an additive O(1) factor; a violation in the degree constraint
is unavoidable even in the deterministic setting with f = Top|V |−1-norm. Concretely, we

append (Tree-LP(~t )) by including degree-constraints of the form
∑

e∈δ(v) ze ≤ d(v) for all
vertices v. Note that the maximum column sum increases by at most 2 because each edge-
variable participates in at most two degree constraints. The main change in the analysis
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occurs at Lemma 10.10: the rounded (approximately degree-bounded) spanning tree sat-
isfies τ5`(Y ) ≤ t` for all indices ` ∈ POS. Rest of the proofs carryover with minor changes
in the constants.

Our main result on StochNormDegBndTree is the following.

Theorem 10.16.
In polynomial time, we can detect that the StochNormDegBndTree instance is infeasible,
or obtain a spanning tree T satisfying:

(i) E[f(Y T )] = O(E[f(Y ∗)]), where Y ∗ is an optimal degree-bounded spanning tree.

(ii) For any vertex v ∈ V , the violation in the degree constraint at v is at most 4,
i.e., |δ(v) ∩ T | ≤ d(v) + 4.

10.4.3 Stochastic Min-Norm Traveling Salesperson Problem

In this section, we describe a stochastic min-norm optimization problem that arises from
TSP. In an instance of the stochastic minimum norm traveling salesperson problem (de-
noted StochNormTSP), we are given an undirected graph G = (V,E), stochastic edge-

weights {Xe}e∈E, and a monotone, symmetric norm f : R|E|≥0 → R≥0; note that, unlike in
StochNormTree, the norm f is |E|-dimensional. A multiedge-set K (consisting of edges
in E) is said to be feasible if the multigraph H = (V,K) is connected and Eulerian (i.e.,
the degree of each vertex in H is even). We use χK = (χKe )e∈E ∈ ZE≥0 to denote the
characteristic vector of K, where χKe is the number of copies of edge e that appear in K.
Each solution K induces an |E|-dimensional cost vector Y K , where Y K

e := χKe · Xe. The
objective in StochNormTSP is to find a feasible solution K that minimizes E[f(Y K)]. Let
OPT denote the objective value of an optimal solution.

Consider the classical setting of TSP, where each edge e has a fixed weight we, and
f is the Top|E|-norm. There is a simple 2-approximation algorithm for this problem via
a connection to the min-weight spanning tree problem: Compute a minimum w-weight
spanning tree T in G, and take K := T t T to be two disjoint copies of T . (Any TSP
solution is spanning, so OPT ≥ w(T ) =

∑
e∈T we, and w(K) = 2w(T ) ≤ 2OPT.) Since the

dimension of f in StochNormTree and StochNormTSP instances are different, extending the
above approximation strategy to solve StochNormTSP requires a minor technical change.
Given some f : R|E|≥0 → R≥0 in a StochNormTSP instance, we use the same norm while
solving the StochNormTree instance that arises in the reduction. Since the Y T -vector that
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arises in StochNormTree is (|V | − 1)-dimensional, we pad it with sufficiently many 0’s
before evaluating the f -norm. Now consider deterministic min-norm TSP. Recall from
Section 10.1 that a min-weight spanning tree simultaneously minimizes all Top` norms (of
the induced weight vector), so using majorization inequality (Theorem 2.7) it is not hard to
see that the above 2-approximation strategy extends verbatim to the setting with arbitrary
monotone, symmetric norms. We can further extend this strategy to the stochastic setting
to obtain the following result.

Theorem 10.17.
Suppose that we are given black-box access to an α-approximation algorithm A for
StochNormTree. Then, there is a 2α-approximation algorithm for StochNormTSP that
uses a single application of A.
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Chapter 11

Conclusions and Future Work

In this thesis, we introduce the model of stochastic minimum-norm optimization, and
present a framework for designing approximation algorithms for problems in this model. A
key component of our framework is a structural result showing that if f is a monotone, sym-
metric norm, and Y follows a product distribution on Rm

≥0, then E[f(Y )] = Θ
(
f(E[Y ↓])

)
;

in particular, this shows that E[f(Y )] can be controlled by controlling E[Top`(Y )] for all
` ∈ [m] (or all ` ∈ {1, 2, 4, . . . , 2blog2mc}). Enroute to proving this result, we develop various
deterministic proxies to reason about expected Top`-norms, which also yield a determin-
istic proxy for E[f(Y )]. We utilize our framework to develop approximation algorithms
for stochastic min-norm load balancing (StochNormLB) and stochastic min-norm spanning
tree (StochNormTree). We obtain O(1)-approximation algorithms for StochNormTree, and
StochNormLB with (i) an arbitrary monotone, symmetric norm and Bernoulli job sizes
(BerNormLB), and (ii) Top` norms and arbitrary job-size distributions (StochTop`LB).

We also give strong approximation guarantees for StochNormLB with Poisson jobs via
a reduction to (deterministic) min-norm load balancing, where we only lose a (1+ε)-factor
in approximation. Here, our key observation is that the expected f -norm of a Poisson
product distribution (i.e., the function g(y) from Definition 9.1) is Schur convex.

The most pressing question left open by our work is developing a constant-factor ap-
proximation algorithm for the general case of StochNormLB, where both the monotone
symmetric norm and the job-size distributions are arbitrary; currently, we only have an
O(log logm/ log log logm)-approximation via a “reduction” to the O(logm)-dimensional
vector scheduling problem. We remark that unless we use any additional properties of the
vector-scheduling instance that we obtain in this reduction, the current approach is un-
likely to yield any meaningful improvements. Recall that, under some complexity theoretic
assumptions, [38] shows that d-dimensional vector scheduling (even on identical machines)
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is hard to approximate to a factor O((log d)1−ε). Another satisfactory outcome would be
to rule out O(1)-approximation for StochNormLB by leveraging hardness results for vector
scheduling.

In this work, we have sought to optimize approximation ratios of our algorithms while
keeping the exposition clean. Still, the O(1)-approximation guarantees that we obtain for
StochTop`LB, BerNormLB and the general version of StochNormTree are in the hundreds;
this is true even of prior work on minimizing expected makespan [23, 10]. We identify two
possible places where significant improvements might be possible. First, in Theorem 4.1,
we show that E[f(Y )] ≤ 7.634 · f(E[Y ↓]). We do not know if a much smaller constant
upper bound—say, even 2—is possible; recall that in Remark 4.1 we gave an example
showing that E[f(Y )] can be larger than 1.214 · f(E[Y ↓]). Of course, any improvement
in this upper bound would directly translate to improved approximation factors for all
stochastic min-norm optimization results that are based on our framework. Second, in
Lemma 5.10, we show that for any composite random variable S =

∑
j Zj that is a sum of

independent [0, 1]-bounded random variables, and an effective-size parameter λ ≥ 1, the
following volume inequality holds:

E[S≥1] ≥
(∑

j

βλ(Zj/4)− 6
)
/4λ.

We conjecture that the above inequality can be tightened to:

E[S≥1] ≥
(∑

j

βλ(Zj)− 1
)
/λ.

This would roughly lead to a factor 10 improvement in the approximation ratios for
StochTop`LB and BerNormLB. Observe that both Theorem 4.1 and Lemma 5.10 are fun-
damental mathematical questions bereft of any computational concerns.

Other Stochastic Min-Norm Optimization Problems

We describe two other stochastic min-norm optimization problems arising from Clustering
and Bipartite Perfect Matching applications. In both problems, we want to find a solution
that minimizes the expected f -norm of the induced cost vector for a given monotone,
symmetric norm f .

• In stochastic k-clustering, we have a point-set X , a distance function d : X × X →
R≥0, and stochastic demands {up}p∈X . Any clustering of points in X around k
cluster centers q1, . . . , qk induces a |X |-dimensional connection-cost vector, where the
connection cost of point p ∈ X is up ·mini∈[k] d(p, qi).
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• In stochastic bipartite perfect matching, we have a bipartite graph G = (V,E) whose
edges have stochastic weights. The random cost vector induced by a perfect matching
M consists of edge-weight variables that participate in the matching.

We remark that even the deterministic case of this problem is open.

Optimization Under Correlated Uncertainty

A crucial assumption in our stochastic min-norm optimization model is that the induced
cost vectors follow product distributions. Thus, a natural direction for future work is to
drop this assumption. To the best of our knowledge, prior work on this subject has focused
on determining the price of correlation, which measures the loss in approximation quality
incurred by ignoring correlations. We describe two concrete problems in this setting.

• Stochastic Load Balancing with Correlated Jobs: What is the best approxima-
tion guarantee that we can obtain for stochastic makespan minimization on identical
machines when the job-size variables {Xj}j∈J are allowed to have arbitrary correla-
tions? We remark that, assuming P 6= NP, an O(1)-approximation is already ruled
out. This is because d-dimensional vector scheduling can be cast as a special case
of this problem. Next, we give a lower bound example showing that the price of
correlation for this problem is a super-constant. Consider an instance with m2 jobs
and m (identical) machines. Suppose that the job-set can be partitioned into m in-
dependent groups, where each group has m negatively-associated Bernoulli jobs that
take size 1 with probability 1/m, and size 0 otherwise. We further assume that the
sum of all variables within each group is always 1. Processing each group of jobs
on a unique machine gives an assignment whose expected makespan is 1. If all jobs
were independent, then it is not hard to argue that any assignment has expected
makespan Ω(logm/ log logm).

• Stochastic Single-Sink Unsplittable Flow: In an instance of this problem, we
have an undirected capacitated graph G = (V,E, u : E → R>0), k source vertices
s1, . . . , sk with (independent) stochastic demands D1, . . . , Dk, respectively, and a sin-
gle sink vertex t. For each i ∈ [k], we want to route an unsplittable (si, t)-flow of value
Di along a fixed (si, t)-path Pi. Any feasible choice of P1, . . . , Pk induces a (random)

congestion vector Y on the edges of G, where Ye :=
(∑

i∈[k]:Pi3eDi

)
/ue. The goal is

to find a solution that minimizes the expected maximum congestion E[Top1(Y )] (or
more generally, E[f(Y )] for a monotone symmetric norm f). Observe that, unlike
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stochastic load balancing with correlated jobs, the demands in this problem are inde-
pendent random variables, but the correlations in the induced congestion vector are
due to edges in a flow-path Pi having positive correlations. We also remark that the
restricted assignment case (of load balancing), where each job can only be processed
on a specified subset of machines, can be cast as an instance of the min-congestion
single-sink unsplittable flow problem, so the stochastic version of the latter problem
is more complex than what we have studied so far.

Price of Uncertainty in Stochastic Min-Norm Optimization

In our stochastic min-norm optimization model, we require that the solution be computed
by only knowing distributional information about the underlying costs. This obliviousness
restriction can sometimes lead to poor-quality solutions, so we consider relaxations of this
notion. The goal here is to understand the trade-offs between making a decision before
and after seeing a random variable’s realization.

• Probing models: Suppose that for each variable j with cost random variable Xj,
we are given a price pj ∈ R≥0 to force a realization of Xj (according to its distribution
function). Given a budget B for probing, how much can we save in the objective
function by using (adaptive or non-adaptive) algorithms for stochastic min-norm
optimization? As B varies from 0 to ∞, we interpolate between fully oblivious and
fully aware models of stochastic min-norm optimization.

Another line of research comes from weaker notions of probing. A standard assump-
tion in probing models is that we learn the actual realization of a random variable by
paying the price for probing. Many optimization decisions often only require partial
information about the randomness: for example, whether or not a random variable
is less (or greater) than θ for some suitable θ. Can we work with weaker notions of
probing where we pay a smaller price to only partially collapse the random variable
onto its support?

• Two-stage models: Consider the standard model of two-stage stochastic optimiza-
tion where we have distributional information in the first stage and actual realizations
in the second stage. Suppose that we are required to partially fix a “super-solution”
in the first stage and fully fix a solution (consistent with the first-stage super-solution)
in the second stage.

We describe two flavors of problems in this model. In the two-stage stochastic load
balancing problem, we are given an additional integer parameter k. In the first stage,
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for each job j we must fix a subset Mj of k machines. After job-sizes are revealed
in the second stage, we must assign each job j to a machine in Mj. As k varies
from 1 through m, we interpolate between fully oblivious and fully aware models of
stochastic min-norm load balancing.

In the two-stage stochastic spanning tree problem we are given nonnegative prices
{pe}e∈E on the edges. In the first stage, we are allowed to buy any subgraph (V, F )
of G by paying a price of p(F ). In the second stage, edge-weights are realized and we
must pick a spanning tree from the subgraph (V, F ). The overall goal in this problem
is to minimize the sum of first-stage price p(F ) and the expected norm-objective in
the second stage.
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[33] Rolf H Möhring, Andreas S Schulz, and Marc Uetz. Approximation in Stochastic
Scheduling: The Power of LP-Based Priority Policies. Journal of the ACM, 46(6):924–
942, 1999.

[34] Marco Molinaro. Stochastic `p Load Balancing and Moment Problems via the L-
function Method. In Proceedings of the 30th Symposium on Discrete Algorithms,
pages 343–354, 2019.

[35] Stefan Nickel and Justo Puerto. Location Theory: A Unified Approach. Springer
Berlin Heidelberg, 2005.

[36] Michael Pinedo. Offline Deterministic Scheduling, Stochastic Scheduling, and Online
Deterministic Scheduling. In Handbook of Scheduling. Chapman and Hall/CRC, 2004.

[37] Yossef Rinott. Multivariate Majorization and Rearrangement Inequalities with Some
Applications to Probability and Statistics. Israel Journal of Mathematics, 15(1):60–77,
1973.

[38] Sai Sandeep. Almost Optimal Inapproximability of Multidimensional Packing Prob-
lems. In Proceedings of the 62nd Foundations of Computer Science, pages 245–256,
2021.

[39] Sai Sandeep. Almost Optimal Inapproximability of Multidimensional Packing Prob-
lems. CoRR, abs/2101.02854, 2021.
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