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Abstract

This thesis is a study of two graph properties that arise from quantum walks:
strong cospectrality of vertices and perfect state transfer. We prove various
results about these properties in Cayley graphs.

We consider how big a set of pairwise strongly cospectral vertices can be
in a graph. We prove an upper bound on the size of such a set in normal
Cayley graphs in terms of the multiplicities of the eigenvalues of the graph.
We then use this to prove an explicit bound in cubelike graphs and more
generally, Cayley graphs of Zd12 × Zd24 . We further provide an infinite family
of examples of cubelike graphs (Cayley graphs of Zd2) in which this set has
size at least four, covering all possible values of d.

We then look at perfect state transfer in Cayley graphs of abelian groups
having a cyclic Sylow-2-subgroup. Given such a group, G, we provide a
complete characterization of connection sets C such that the corresponding
Cayley graph for G admits perfect state transfer. This is a generalization of
a theorem of Bašić from 2013, where he proved a similar characterization for
Cayley graphs of cyclic groups.
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Chapter 1

Introduction

Having read the title of this thesis (if you have not, we strongly encourage
you to do so), you may already have some questions, including:

1. What is state transfer?

2. What is strong cospectrality?

3. What is a Cayley graph?

4. Why should I care about any of the above?

These are all good questions you have asked and we will attempt to answer
some of them in this introduction.

The first section attempts to provide some motivation and background.
In the second section we state our main results.

1.1 Background & motivation

Before we can define state transfer, we need to talk about quantum walks.
We will do this briefly in our first subsection. The next three subsections
explore state transfer, strong cospectrality and Cayley graphs respectively.
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1.1.1 Quantum walks

Quantum walks arise in quantum information theory and quantum physics.
They have for instance been used in quantum computation to implement
algorithms on graphs. These include Grover’s search [35], Ambainis’ element
distinctness [1] and Farhi and Gutmann’s algorithm on decision trees [25].
It turns out that these algorithms perform significantly better than their
classical analogues.

The first two of these algorithms come from discrete-time quantum walks.
Discrete-time quantum walks have received much attention because of their
algorithmic applications and are for instance the topic of Zhan’s PhD thesis
[47]. We are however interested in quantum walks happening in continuous
time, and this was first defined by Farhi and Gutmann in the aforementioned
paper.

You may already be thinking that the words quantum and algorithm have
appeared rather too often for a thesis in algebraic graph theory, but do not
worry. This will be the last use of the word algorithm, and one of the goals of
this thesis is to convince you that there is no need to fear the word quantum
as long as you are comfortable with linear algebra.

We will define continuous-time quantum walks properly in the next chap-
ter, but for now, let us think of them as quantum analogues of continuous-
time random walks: given a graph, a walker starts at a particular vertex,
then moves around the graph in some fashion. At each time t, there is a
certain probability that we will find the walker at a given vertex.

In the case of a quantum walk, we think of this system as the Hilbert
space, CV , where V is the vertex set of our graph. A quantum state in this
system is a 1-dimensional subspace of our Hilbert space, which we typically
represent by a unit vector in that subspace. So, for instance, our walker
being situated at vertex v of the graph means that the system is in the state
represented by the standard basis vector ev. A quantum walker however,
is not necessarily situated at one particular vertex at any given time, but
could be in a superposition of multiple vertices, since she can live in any
1-dimensional subspace of CV .
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1.1.2 State transfer

We can now return to your first question: what is state transfer? The concept
was first introduced by Bose in 2003 [10] and simply refers to a transfer of
our system from one state to another. For a graph with adjacency matrix
A, we define the matrix U(t) := eitA, with t ∈ R. If u and v are vertices of
the graph, the number |U(t)u,v|2 is the probability that the system has been
transferred from the state eu to ev at time t, and we are interested in the case
where this probability is equal to one. This is called perfect state transfer.

Perfect state transfer is a somewhat strange behaviour of a walk, and it
is in fact quite useful in quantum physics. By the No-Cloning Theorem [46],
a quantum state cannot be copied, and it is therefore significant when it can
be efficiently transferred.

Perfect state transfer has been widely studied, the main question being:
in which graphs does it occur? It was first proposed by Christandl et al. in
2004 [18], where they proved various results, including that the hypercubes
admit perfect state transfer. It turns out, however, that this phenomenon is
quite rare, and much of the work that has been done in this area consists of
negative results and restrictive necessary conditions.

In 2005 [17], Christandl et al. proved that the path on n vertices, Pn,
has perfect state transfer between its end vertices if and only if n ∈ {2, 3},
and Godsil later extended this result to show that the paths on at least
four vertices admit no perfect state transfer between any pair of vertices [30,
Section 14]. Kay wrote several papers on perfect state transfer [37, 38, 39],
in one of which he observes that perfect state transfer is a monogamous
relationship between two vertices [39, Section III.D]. In 2012, Godsil proved
that for any integer k, there are only finitely many connected graphs with
maximum degree k that admit perfect state transfer [31]. In another paper
from 2012, Godsil also showed that a necessary condition for perfect state
transfer to occur between two vertices in a graph is that they are strongly
cospectral [30].

1.1.3 Strong cospectrality

Vertices u and v in a graph X are cospectral if the adjacency matrices of
the graphs X \ u and X \ v have the same spectrum. As you might guess,
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strong cospectrality is a stronger condition, but for a definition of this, you
will have to wait until Chapter 5. The concept was first defined by Fan and
Godsil in 2012 [24], and the motivation came from quantum walks.

Strong cospectrality however is not a property of a quantum walk, but
rather a spectral property of the graph itself and it has some interesting
combinatorial implications. This is explored extensively in a paper by Godsil
and Smith [34]. They show for example that if vertices u and v are strongly
cospectral, then any graph automorphism that fixes u also fixes v. In the
same paper, they ask the question of whether there exist trees that have at
least three pairwise strongly cospectral vertices. Coutinho, Juliano and Spier
recently gave a negative answer to this question, showing that no such trees
exist [22]. More recent work has been done on strongly cospectral vertices
by Monterde [41] and by Sin [43].

Being a necessary condition for perfect state transfer to occur, strong
cospectrality is an important notion in the study of quantum walks. It is
however much weaker than perfect state transfer, which is shown for instance
by the fact that perfect state transfer occurs only between a pair of vertices,
whereas a set of pairwise strongly cospectral vertices (which we will call a
strongly cospectral set) can have size larger than two.

The smallest example we have of such a set is in the Cartesian product
of P2 and P3, where the four vertices of degree two are pairwise strongly
cospectral. In fact, by taking Cartesian products of paths, it is possible to
construct graphs with arbitrarily large strongly cospectral sets. These graphs
however become quite big, and so we can ask the question: in a graph on
n vertices, how large can a strongly cospectral set be, as a function of n?
Godsil and Smith show in their paper that if the graph is not K2, then this
set cannot contain all the vertices in the graph, but not much more progress
has been made on this question.

1.1.4 Cayley graphs

Finally, let us talk about Cayley graphs. A Cayley graph is defined by a
group G and a subset C of this group. It is defined in such a way that many
of the graph properties can be studied using group theory and vice versa.
These graphs also have a lot of symmetry, and it turns out that they are
particularly nice for studying perfect state transfer and strong cospectrality.
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In fact, many (if not most) of the known examples of graphs that admit
perfect state transfer are Cayley graphs. This includes the hypercubes, as
mentioned before, but more generally most cubelike graphs (Cayley graphs
for Zd2). This is the topic of various papers including [9, 15, 14]. There
are also examples of circulants (Cayley graphs of cyclic groups) that admit
perfect state transfer as explored by Bašić, Petković and Stevanović in 2009–
2010 [8, 6, 7]. In 2013 [5], Bašić gave a complete characterization of such
graphs.

Further work has been done on perfect state transfer on Cayley graphs,
for example by Tan, Feng and Cao on abelian groups [45], Cao and Feng on
dihedral groups [13], Arezoomand, Shafiei and Ghorbani on dicyclic groups
[2] and by Sin and Sorci on extraspecial groups [44].

In a Cayley graph, all the vertices are cospectral. They therefore seem
like good candidates to look for large strongly cospectral sets. It turns out
however that this might not be the case.

1.2 Main results

The thesis is organized as follows. In Chapter 2, we discuss quantum walks
in more detail and introduce some of the tools that we need to study them.
We further state some preliminary results about perfect state transfer. In
Chapter 3 we talk briefly about Cayley graphs and group actions.

Chapter 4 is on association schemes which play an important role in many
of our proofs. The results in this chapter are mostly known, but the topic of
association schemes is far less popular than it should be and there are some
gaps in the literature. In particular, not much has been written on translation
schemes and duality which we cover in the last two sections of this chapter.
Therefore, some theorems in those sections have not been explicitly stated
or proved before.

Chapters 5 and 6 contain our main results and in the last chapter we
summarize what we have done and discuss some questions that we have not
been able to answer.

5



1.2.1 Strongly cospectral vertices

In Chapter 5, we look at strongly cospectral vertices in Cayley graphs, trying
to answer the question of how big a strongly cospectral set in such a graph can
be. We want to thank Ada Chan for bringing this question to our attention.

We show that the vertices that are strongly cospectral to the group iden-
tity in the Cayley graph Cay(G, C) form a subgroup of G and that this sub-
group is a largest strongly cospectral set in the graph. Moreover, we show
that this subgroup is an elementary abelian 2-group and that if the graph is a
normal Cayley graph (C is conjugacy-closed) then the subgroup is contained
in the centre of G and is therefore a normal subgroup.

We then give an upper bound on the size of a strongly cospectral set in a
normal Cayley graph in terms of the multiplicities of the eigenvalues of the
graph with the following theorem.
Theorem (Theorem 5.5.3). Let X = Cay(G, C) be a normal Cayley graph,
let H be the strongly cospectral subgroup of G with respect to C and let m
be the multiplicity of some eigenvalue of X. Then

|H| ≤ |G|
m

=
|V (X)|
m

.

We deduce from this that in a normal Cayley graph of a non-abelian
group of order n, a strongly cospectral set has size at most n/4. We further
use the above theorem to show that in a cubelike graph on 2d vertices, the
size of a strongly cospectral set is less than

√
2d:

Theorem (Theorem 5.6.5). A strongly cospectral subgroup of Zd2, with d ≥
3, has order at most 2dd/2e−1.

We generalize this theorem to Cayley graphs of Zd12 ×Zd24 , and use this to
show that in a normal Cayley graph, a strongly cospectral set can at most
contain a third of the vertices.
Theorem (Theorem 5.7.2). A strongly cospectral subgroup of Zd12 ×Zd24 with
d := d1 + 2d2 ≥ 3 has order at most 2dd/2e−1.
Theorem (Theorem 5.7.4). In a normal Cayley graph, X = Cay(G, C) on
at least five vertices, a strongly cospectral set has size at most |V (X)|/3.

Finally, we construct an infinite family of cubelike graphs that contain a
strongly cospectral set of size at least four.
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1.2.2 Perfect state transfer

Bašić’s characterization of perfect state transfer in circulants [5] is an impor-
tant contribution to the study of perfect state transfer. As mentioned before,
finding graphs that admit perfect state transfer has proved hard but Bašić’s
results make it easy to construct circulants that do.

Moreover, the biggest source of examples we had before were cubelike
graphs, but for those, we only have a sufficient condition for perfect state
transfer to occur, not a characterization. So the fact that the sufficient
condition on the circulants is also necessary is quite significant.

In Chapter 6, we generalize Bašić’s characterization to Cayley graphs of
abelian groups that have a cyclic Sylow-2-subgroup, thus providing many
new examples of graphs admitting perfect state transfer. The main theorem
in this chapter is the following.

Theorem (Theorem 6.9.1). Let G be an abelian group of order 2dm where
m is odd and suppose it has a cyclic Sylow-2-subgroup. Let a be the unique
element of order two and b,−b the unique pair of elements of order four. For
a subset C of G let Ck denote the set of elements in C with order 2km′ where
m′ is odd. Then the Cayley graph Cay(G, C) has perfect state transfer if and
only if

(a) C is power-closed,

(b) either a or b is in C but not both,

(c) C0 = 4(C2 \{−b, b}), and

(d) C1 \{a} = 2(C2 \{−b, b}).

With these conditions, it is easy to construct a connection set C such that
Cay(G, C) has perfect state transfer. Further, given a subset, C of an abelian
group with a cyclic Sylow-2-subgroup, it can be checked in polynomial time
whether Cay(G, C) has perfect state transfer.

Whereas Bašić uses number theory to prove his characterization, we take
a group theoretic approach using tools from character theory and association
schemes. We therefore not only give a generalization of Bašić’s result, but
also provide new and different proofs of his theorems.
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Chapter 2

Quantum Walks

As we have mentioned earlier, quantum walks can be seen as quantum ana-
logues of random walks. However, quantum walks can exhibit behaviours
that random walks cannot, and some of these are of particular interest.

In this chapter we give formal definitions of continuous-time quantum
walks and of some of these interesting behaviours. We compare quantum
walks to random walks with the purpose of showing that they should in
fact not be compared. Then, we introduce an important tool called spectral
decomposition, and finally we talk about perfect state transfer and state
some preliminary results.

2.1 Preliminaries

Let us start with some linear algebra. Denote the conjugate transpose of a
complex-valued matrix M by M∗, that is

M∗ := M
T
.

We call a square matrix, M , normal if MM∗ = M∗M . We say that M is
hermitian if M = M∗, and we call it unitary if MM∗ = I. Note that both
hermitian matrices and unitary matrices are normal.

Let A be a hermitian matrix. The continuous-time quantum walk on A

9



at time t is specified by

UA(t) := eitA =
∑
n≥0

(it)n

n!
An.

Since we will only be concerned with walks happening in continuous time,
we will refer to those simply as quantum walks. We call UA(t) the transition
matrix of the walk at time t. It is a unitary matrix for all t ∈ R.

We will generally take A to be the adjacency matrix of a graph, X. Note
that our graphs will always be finite, so A will always be a finite dimensional
matrix. Throughout most of this work, our graphs are undirected and simple,
but in the last chapter we will need the notion of a weighted graph. In both
cases, the adjacency matrix is real and symmetric and therefore hermitian.
If A is the adjacency matrix of a graph, X, we talk about a quantum walk
on X and denote the transition matrix by UX(t) or simply by U(t). We
further refer to the eigenvalues and eigenvectors of A as the eigenvalues and
eigenvectors of the graph X.

Let X be a graph with adjacency matrix A(X) = A and let u and v be
vertices of X. We say that there is perfect state transfer from u to v at time
τ with phase factor λ if U(τ)ev = λeu, where ex denotes the standard basis
vector indexed by x. Since U(τ) is a unitary matrix, λ will have absolute
value one, and so there is perfect state transfer from u to v at time τ if and
only if |U(τ)u,v| = 1.

We say that the vertex u is periodic at time τ with phase factor λ if
U(τ)eu = λeu, equivalently, |U(τ)u,u| = 1. If every vertex is periodic at the
same time τ , we say that the graph X is periodic at time τ . The minimum
time at which a vertex or a graph is periodic is called the period of the vertex
or graph, respectively.

Example 2.1.1. Consider the complete graph on two vertices, K2. It has
adjacency matrix

A =

(
0 1
1 0

)
.

10



We have A2n = I and A2n+1 = A for all n, and so

UK2(t) =
∑
n≥0

(it)n

n!
An

= I + itA− t2

2
I − it3

6
A+

t4

24
I + · · ·

= cos(t)I + i sin(t)A.

In particular, we see that

UK2(π/2) = cos(π/2)I + i sin(π/2)A = iA

and
UK2(π) = cos(π)I + i sin(π) = −I.

Thus K2 has perfect state transfer between its two vertices at time π/2, with
phase factor i and both vertices are periodic (so the graph is periodic) at
time π with phase factor −1. We further see that π is the period of K2 and
that perfect state transfer occurs at all odd multiples of π/2, but no other
times.

2.2 Not random walks

We will do a brief comparison with random walks, but the conclusion of this
section will be that such a comparison is not very useful. For more on random
walks, we refer the reader to [42].

Let us define a random walk. Given a graph X, we call the diagonal
matrix with the degrees of the vertices of X on the diagonal the degree
matrix of X. Let X be a graph with adjacency matrix A and degree matrix
D. The Laplacian of X is the matrix L := D − A. Note that each row sum
and column sum of L is zero. Now define the continuous-time random walk
at time t by P (t) = etL. For each non-negative real number t, it can be shown
that P (t) is a doubly stochastic matrix, that is, its entries are non-negative
real numbers and the sum of each row and each column is one.

As one might guess, a continuous-time random walk is a random process
on a graph that happens in continuous time. We can imagine a walker
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standing on a vertex with n neighbours. After some time that follows an
exponential distribution, the walker jumps to a neighbouring vertex, where
the probability of choosing each of the neighbours is 1/n.

We can then describe what information is stored in the matrix P (t): the
uv entry of P (t) is the probability that the walker is standing on vertex v at
time t, given that she started at vertex u. It is not too hard to imagine what
the evolution of a random walk looks like on a connected graph. As t goes
to infinity, the walker will be equally likely to be situated at any vertex, thus
each row of P (t) tends to a uniform distribution on the vertices of X.

Now let us compare this to a quantum walk on X. The transition matrix,
U(t), is not stochastic but it is unitary and so U(t)U(t)∗ = U(t)U(−t) = I.
Further, since A is the adjacency matrix of a graph, it is symmetric, and so
U(t) is also symmetric. Let ◦ denote the entry-wise product of matrices and
define the mixing matrix of the walk by

M(t) := U(t) ◦ U(−t)

We see that the rows and columns of M(t) sum to one, and so M(t) is a
doubly stochastic matrix.

Let eu denote the standard basis vector indexed by the vertex u. Then
eTuM(t) is a probability density on the vertices of X and if we now measure
the system using the standard basis, eTuM(t)ev is the probability of the walker
being at vertex v at time t if the starting state was eu.

So we have these analogous matrices, P (t) and M(t) for random walks
and quantum walks, but what happens to M(t) when t goes to infinity?
This is a question we cannot answer in general. In particular, M(t) does not
converge to a uniform distribution, as P (t) does if the graph is connected.
In fact, M(t) doesn’t converge to any kind of steady state. These differences
in quantum and random walks have been looked at for example by Childs,
Farhi and Gutmann in 2002 [16] and by Gerhardt and Watrous in 2003 [26].

For quantum walks, we are not so much concerned with what happens
when t gets large, but whether there is a particular time at which something
interesting occurs.

There are several things that are considered “interesting” here, but in this
thesis, we are mostly concerned with one of those. In the previous section,
we defined perfect state transfer, from vertex u to vertex v, and we now see

12



that an equivalent definition is that

eTuM(τ)ev = 1.

In other words, if our system starts in state eu, then upon measurement at
time τ , we will find it in state ev with probability one. In this definition
however, we have lost the phase factor.

We see that even though there is some analogy in the definitions and
interpretations of random walks and quantum walks, they behave in very
different ways. Thus now we will forget about random walks and never think
of them again.

2.3 Spectral decomposition

An important tool we will use in our study of quantum walks is spectral
decomposition. Let A be a normal matrix (note that hermitian matrices are
normal). Then A is unitarily diagonalizable, that is, there exists a unitary
matrix, U and a diagonal matrix, D such that A = UDU∗. Furthermore, the
diagonal entries of D are the eigenvalues of A and the columns of U are the
eigenvectors of A.

Let θ0, . . . θn be the distinct eigenvalues of A. Then there are diagonal
01-matrices, D0, . . . , Dn satisfying

n∑
r=0

θrDr = D,
n∑
r=0

Dr = I.

We see that DrDs = 0 if r 6= s and D2
r = Dr. For each r = 0, . . . , n, define

Er = UDrU
∗. Then

A = UDU∗ = U

(
n∑
r=0

θrDr

)
U∗ =

n∑
r=0

θrUDrU
∗ =

n∑
r=0

θrEr.

It is easy to see that the matrices Er are idempotent and pairwise orthogonal
and that AEr = θrEr for all r. Further, we have E∗r = Er and

∑
r Er = I. It

follows that the matrix Er is the orthogonal projection onto the θr-eigenspace
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of A. We call the matrices E0, . . . , En the spectral idempotents of A and the
identity

A =
n∑
r=0

θrEr

is the spectral decomposition of A.

A useful application of the spectral decomposition is the fact that if f is
a univariate function defined on the spectrum of A, then

f(A) =
n∑
r=0

f(θr)Er. (2.1)

It follows from this that each Er is a polynomial in A: define

pr(x) =
∏
s 6=r

(x− θs)

for r = 0, . . . , n. Then pr(θs) = 0 if and only if s 6= r and so

1

pr(θr)
pr(A) =

1

pr(θr)

n∑
s=0

pr(θs)Es = Er.

It further follows from Equation 2.1, that if U(t) is the transition matrix
of a quantum walk on A, then

U(t) =
n∑
r=0

eitθrEr.

Observe that an immediate consequence of this is that if a graph has integer
eigenvalues, then U(2π) = I, and so every vertex is periodic at time τ = 2π,
that is, the graph is periodic at time 2π.

2.4 Perfect state transfer

In this section we will state some preliminary results about perfect state
transfer and periodicity which will come in handy later on.

Recall that the transition matrix of a walk on a graph is symmetric, since
the adjacency matrix is symmetric. Therefore, we have the following lemma.
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Lemma 2.4.1 ([30, Lemma 1.1]). Let u and v be vertices of a graph X. If
there is perfect state transfer from u to v at time τ, then there is perfect
state transfer from v to u at time τ and u and v are both periodic at time
2τ.

By Lemma 2.4.1, we can talk about perfect state transfer occurring be-
tween two vertices, rather than from one to another. Further, the lemma
implies that if there is perfect state transfer in a graph, then there is also
periodicity in the graph. The converse is however not true as we will see
in our next example, and in fact perfect state transfer is a much stronger
property than periodicity.

Example 2.4.2. Consider the complete graph on n vertices, Kn. Its adja-
cency matrix is J − I, where J denotes the all-ones matrix. This matrix has
eigenvalues n− 1 and −1 and the corresponding spectral idempotents are

E0 :=
1

n
J, E1 := I − 1

n
J,

respectively. Since both eigenvalues are integers, we immediately get that Kn

is periodic. We will show that if n ≥ 3, it cannot have perfect state transfer.
Using spectral decomposition, we see that the transition matrix of Kn is

U(t) = eit(n−1)E0 + e−itE1 = e−it
(
I +

eitn − 1

n
J

)
,

and so for any vertex u we have

U(t)u,u = e−it
(

1 +
eitn − 1

n

)
.

It follows that for any time t,

|U(t)u,u| ≥ 1− 2

n
,

which is strictly positive, given that n ≥ 3. So if v 6= u, then |U(t)u,v| < 1
for all t, implying that there is no perfect state transfer on Kn for n ≥ 3.

Perfect state transfer between vertices in a graph implies a special bond
between those vertices, in fact, this is a monogamous relationship. This was
first observed by Kay in 2011 [39, Section D]. A proof can also be found in
[30].
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Lemma 2.4.3 ([30, Corollary 3.2]). If there is perfect state transfer from u
to v in X and also from u to w, then v = w.

Recall that a graph with integer eigenvalues is periodic. It turns out
the the converse is almost true. In 2011, Godsil gave a characterization of
periodicity of graphs in terms of their eigenvalues.

Lemma 2.4.4 ([29, Corollary 3.3]). A graph X is periodic if and only if
either

(a) the eigenvalues of X are integers, or

(b) the eigenvalues ofX are rational multiples of
√

∆, for some fixed square-
free integer ∆.

Our focus in this thesis is on vertex-transitive graphs, i.e., graphs in
which a vertex can be mapped to any other vertex using an automorphism of
the graph. The above lemma has strong consequences for vertex-transitive
graphs.

Let X be a vertex-transitive graph. If there is perfect state transfer
between two vertices in X at time τ , then every vertex of X is involved in
perfect state transfer at time τ and the graph is periodic at time 2τ . This is
a result of the following theorem of Godsil.

Theorem 2.4.5 ([30, Theorem 6.1]). Let X be a vertex-transitive graph and
let u and v be vertices of X. If there is perfect state transfer from u to v
at time τ , then U(τ) is a scalar multiple of a permutation matrix with order
two and no fixed points.

The theorem implies that a vertex-transitive graph that admits perfect
state transfer has an even number of vertices. In particular, a Cayley graph
for a group of odd order has no perfect state transfer. In fact, Theorem 2.4.5
holds for integer-weighted vertex-transitive graphs, and so weighted Cayley
graphs for groups of odd order also do not have perfect state transfer.

Theorem 2.4.5 further implies that a vertex-transitive graph with perfect
state transfer is periodic, and now the next lemma follows from Lemma 2.4.4
and the fact that vertex-transitive graphs have an integer eigenvalue, namely
its degree.
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Lemma 2.4.6. Let X be a vertex-transitive graph. If X admits perfect state
transfer, then all its eigenvalues are integers.

We call a graph with integer eigenvalues integral.
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Chapter 3

Group Actions & Cayley Graphs

This is a thesis in combinatorics, but if there is anything that is possibly
even better than combinatorics, it is of course group theory.

There are several ways in which we can use group theory to study graphs.
Like most mathematical structures, a graph has an automorphism group.
The automorphism group acts on the graph and this action can tell us things
about the graph itself and vice versa.

Cayley graphs provide another fascinating link between group theory and
graph theory. The vertices of a Cayley graph are elements of a group and
the edges come from the group operation. Again, there are interesting con-
nections between properties of the group and properties of the graph. In
particular, we will see connections to other algebraic properties of the graph,
such as its spectrum.

In this chapter we introduce group actions and Cayley graphs and state
some preliminary results. We look at concepts from the theory of permuta-
tion groups, such as blocks of imprimitivity, and see what implications they
have when our group is acting on the vertex set of a graph. As before, all
graphs are finite, and so our groups are finite as well.

The results in this chapter are standard. For further reading on group
actions, we refer the reader to [23].
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3.1 Group actions on graphs

Let G be a group acting on a set, Ω. We denote the image of an element
α ∈ Ω under g ∈ G by αg. We call the action transitive if for all elements
α, β ∈ Ω, there is an element g ∈ G such that αg = β. We say that the
action is regular if it is transitive and the stabilizer, Gα = {g ∈ G : αg = α}
is trivial for all α ∈ Ω.

Suppose the action of G on Ω is transitive. A set B ⊆ Ω is called a block
(of imprimitivity) if for each g ∈ G, either B = Bg or B ∩ Bg = ∅. Clearly,
the empty set and the singleton sets are blocks and so is the set Ω. These
are called trivial blocks.

We will be focusing on group actions on the vertex set of a graph. Let X
be a graph on n vertices and denote by Aut(X) the group of automorphisms
of X. Each automorphism is a permutation on the vertices of X, so we can
think of it as an n× n permutation matrix. This matrix commutes with the
adjacency matrix of X, and in fact the converse is also true.

Lemma 3.1.1. Let A be the adjacency matrix of a graph X on n vertices
and let P be an n×n permutation matrix. Then P commutes with A if and
only if P is an automorphism of X.

Proof. Let ϕ : V (X) → V (X) be the map defined by P . Since P is a
permutation matrix, the map is bijective with inverse ϕ−1, represented by
the matrix P T . We want to show that P TAP = A if and only if ϕ is an
automorphism. For a vertex v of X, we look at the v-th column of P TAP :

(P TAP )ev = P TAeϕ(v) = P T
∑

x∈N(ϕ(v))

ex.

Now, P is an automorphism of X if and only if for all vertices v, we have
N(ϕ(v)) = ϕ(N(v)). This happens if and only if for all v ∈ V (X),

P T
∑

x∈N(ϕ(v))

ex = P T
∑

x∈ϕ(N(v))

ex =
∑

x∈ϕ(N(v))

P Tex =
∑

y∈N(v)

ey = Aev.

We have shown that (P TAP )ev = Aev for all v ∈ V (X) if and only if P is
an automorphism, and the result follows.
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Let X be a graph and denote by Aut(X) the group of automorphisms
of X. We say that X is vertex-transitive if Aut(X) acts transitively on the
vertices of X.

Example 3.1.2. The Petersen graph (shown in Figure 3.1) is vertex-transitive.

Figure 3.1: Petersen graph

We are particularly interested in a certain class of vertex-transitive graphs,
namely Cayley graphs.

3.2 Cayley graphs

Let G be a group and let C be a subset of G. Define a graph, X := Cay(G, C)
as having vertex set V (X) = G and with vertices g and h adjacent in X if
hg−1 ∈ C. We call this the Cayley graph for G with respect to C and refer to
C as the connection set of X.

Example 3.2.1.

(a) The cycles are Cayley graphs for the cyclic groups, Zn with respect to
C = {−1, 1}.

(b) The hypercubes are Cayley graphs for Zd2 with respect to the standard
basis.

21



Figure 3.2: Cycles

Figure 3.3: Hypercubes

We call a Cayley graph of an abelian group a translation graph. In
particular, Cayley graphs of cyclic groups are called circulants and Cayley
graphs of the elementary abelian 2-groups are called cubelike graphs. By the
example above, we see that the cycles are circulants and the hypercubes are
cubelike graphs.

In general, X will be a directed graph, possibly with loops. In fact, it
is easy to see that there is a loop on every vertex in X if and only if the
group identity, e, is an element of C (otherwise there are no loops), and that
X is undirected if and only if C is inverse-closed. Further, we see that X is
connected if and only if C generates the group. If this is not the case, then the
components of X are isomorphic Cayley graphs of the subgroup generated
by C.

Since we are mainly concerned with simple, undirected graphs, we will
usually assume that C is inverse closed and does not contain the identity, but
we do not assume in general that C generates G.

Now let X = Cay(G, C) be a simple, undirected Cayley graph. The
group G acts regularly on itself by right multiplication. We claim that for
each g ∈ G, this map is a graph automorphism. Indeed, if g ∈ G and
x, y ∈ V (X) = G, then

xg ∼ yg ⇐⇒ (yg)(xg)−1 ∈ C ⇐⇒ yx−1 ∈ C ⇐⇒ x ∼ y.
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So G acts as a group of automorphisms on X, implying that G ≤ Aut(X),
and since this action is regular, in particular transitive, it follows that X is
vertex-transitive. In fact, a graph is a Cayley graph if and only if there is a
subgroup of the automorphism group that acts regularly on it.

Lemma 3.2.2. The blocks of the regular action of a group G on a Cayley
graph X = Cay(G, C) are precisely the subgroups of G and their cosets.

Proof. If H is a subgroup of G, the image of H under g ∈ G is the right coset
Hg, which we know to be either equal to H or disjoint from it. Conversely, if
B′ ⊆ G is a block, since the action is transitive, some translate, B of B′ will
contain the group identity, e. Let x, y ∈ B. Then y = ey ∈ By, so By = B,
but this implies that xy = xy ∈ B. A similar argument shows that x−1 ∈ B
and so B is a subgroup of G.

Corollary 3.2.3. Let X = Cay(G, C) be a Cayley graph. Under the action
of Aut(X) onX, every block is a right coset of a subgroup of G. In particular,
every block that contains the identity is a subgroup of G.

Proof. If H1 and H2 are groups acting on a set with H1 ≤ H2, then clearly
any block under the action of H2 is also a block under the action of H1.
Therefore, since G ≤ Aut(X), the result follows from Lemma 3.2.2.

3.3 Normal Cayley graphs

We call a Cayley graph normal if the connection set is a union of conjugacy
classes. We will see later on that normal Cayley graphs have many convenient
properties as they lie in so-called association schemes.

Remark. There are two non-equivalent definitions of a normal Cayley graph
in the literature, the other being that the regular subgroup is a normal sub-
group of the automorphism group. We will not be concerned with this prop-
erty here. Our definition is consistent with a paper by Larose et al. from
1998 [40].

Example 3.3.1.
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(a) The graphs in Example 3.2.1 are normal, in fact all Cayley graphs of
abelian groups are normal Cayley graphs.

(b) Let G = S3 and define

C1 = {(123), (132)}, C2 = {(12), (13), (23)}, C3 = G\{e}.

The sets are all inverse-closed, and conjugacy-closed. Thus, the three
graphs shown in Figure 3.4 are all normal Cayley graphs of S3.

(a) Cay(S3, C1) (b) Cay(S3, C2) (c) Cay(S3, C3)

Figure 3.4: Cayley graphs of S3

Note that the three graphs in the figure above are also Cayley graphs for
the cyclic group, Z6. The last one is the complete graph on six vertices. It is
not too hard to see that the complete graph on n vertices is a normal Cayley
graph for every group of order n.

Let X = Cay(G, C) be a normal Cayley graph. As before, right multipli-
cation by an element g ∈ G is an automorphism of X. But now, let’s take a
look at left multiplication by g. We have for x, y ∈ G

gx ∼ gy ⇐⇒ (gy)(gx)−1 ∈ C
⇐⇒ gyx−1g−1 ∈ C
⇐⇒ yx−1 ∈ C (since g−1Cg = C)
⇐⇒ x ∼ y.

Then let g = (g1, g2) ∈ G×G and define an action on G by xg = g1xg
−1
2 . By

the above, we see that this is an automorphism of the normal Cayley graph
X, and so Aut(X) contains a subgroup isomorphic to G×G. We now get a
lemma analogous to Lemma 3.2.2 for normal Cayley graphs.
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Lemma 3.3.2. The blocks of the action of G × G described above on a
normal Cayley graph X = Cay(G, C) are precisely the normal subgroups of
G and their cosets.

Proof. Let B be a block under this action and assume e ∈ B. Since G × G
contains G as a subgroup, B is also a block under the regular action so by
Lemma 3.2.2, B is a subgroup of G. We claim that it is normal. Indeed,
if g ∈ G, then (g, g) ∈ G × G and since e ∈ B and B is a block we have
eg = e ∈ B, so Bg = B. But then gBg−1 = Bg = B, so B is a normal
subgroup.

Further we know that any block is of the form B′ = g1Bg
−1
2 where B

is a block containing e. But since B is a normal subgroup we get B′ =
g1(Bg

−1
2 ) = g1g

−1
2 B, so B′ is a coset of a normal subgroup.

Conversely, let xN be a coset of a normal subgroup N of G and let
g = (g1, g2) ∈ G×G. Then

(xN)g = g1xNg
−1
2 = g1xg

−1
2 N,

so (xN)g is also a coset of N . Since the cosets form a partition, it is clear
that N is a block.
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Chapter 4

Association Schemes

The goal of this chapter is to provide some important tools that we will need
later on. This includes theorems about the spectra of normal Cayley graphs
and translation graphs.

To do this, we will introduce the topic of association schemes. In partic-
ular, we discuss the conjugacy class scheme — the home of normal Cayley
graphs, and translation schemes — where translation graphs live. For this
discussion, we will need some help from the theory of representations and
characters of groups.

Association schemes are a fascinating topic and more on them can be
found for example in [12, 27, 28, 32]. The results in this chapter are not new,
but Sections 4.6 and 4.7 contain some theorems and proofs that have not
been explicitly stated or proved before.

4.1 Preliminaries

Let J denote the all-ones matrix. An association scheme (with d classes) is
a set of n× n matrices, A = {A0, . . . , Ad} with entries in {0, 1} such that

(i) A0 = I,

(ii)
∑d

r=0Ar = J ,

(iii) ATr ∈ A for all r,
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(iv) ArAs = AsAr for all r, s, and

(v) ArAs lies in the span of A for all r, s.

It is easy to see that the set {A0, . . . , Ad} is a basis for the vector space it
spans. Further, we can see from the conditions that this vector space is a
commutative algebra that is closed under the transpose map. This is called
the Bose-Mesner algebra of the scheme and denoted by C[A]. The scheme is
said to be symmetric if each Ar is a symmetric matrix.

For matrices M,N ∈ C[A] define their Schur product (sometimes called
the Hadamard product), M ◦N , by

(M ◦N)r,s = Mr,sNr,s.

Since the entries of Ar are 0 and 1, we have Ar◦Ar = Ar, in other words Ar is
Schur idempotent for r = 0, . . . d. Moreover, condition (ii) above implies that
for all r 6= s, we have Ar ◦ As = 0. It follows that C[A] is Schur-closed, and
it contains the Schur-identity, J . Every Schur idempotent in C[A] is a sum
of some elements of A, so A0, . . . , Ad are the minimal Schur idempotents of
the scheme. Since the Schur idempotents are 01-matrices, we may view them
as adjacency matrices for directed graphs. We refer to an undirected graph
whose adjacency matrix lies in C[A] as a graph in the association scheme A.

A matrix algebra (real or complex) that contains I and J and is closed
under Schur product, transpose and complex conjugation is called a coherent
algebra. Any commutative coherent algebra is the Bose-Mesner algebra of
an association scheme. In particular, if C[A] is the Bose-Mesner algebra of a
scheme A, then any coherent subalgebra of C[A] is the Bose-Mesner algebra
of some association scheme B. In this case, every minimal Schur idempotent
of B is a Schur idempotent of A and we say that B is a subscheme of A.

4.2 Matrix idempotents

Recall our definition of a spectral decomposition of a normal matrix in Section
2.3.

Let A = {A0, . . . , Ad} be an association scheme. It is clear by definition
that the matrices Ar are normal, so they have a spectral decomposition. Let
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E be the set of all possible products of the spectral idempotents of A0, . . . , Ad.
We define a partial ordering on the set E , by letting E ≤ F if EF = E for
E,F ∈ E . Since the spectral idempotents of a matrix A are polynomials in
A, we see that E ⊆ C[A]. In particular, the matrices in E commute, and
equivalently we have E ≤ F if FE = E.

We call E a minimal matrix idempotent of the association scheme if it is
a minimal non-zero element of E with respect to this partial ordering.

Lemma 4.2.1. The minimal matrix idempotents are a basis for C[A].

Proof. Let E0, . . . , Em be the minimal matrix idempotents of A. First, note
that they are pairwise orthogonal since ErEs ≤ Er, Es, so ErEs must be
zero. Then it is easy to see that they are linearly independent: suppose we
can write Er as a linear combination of the rest,

Er =
∑
s 6=r

αsEs.

Then, multiplying both sides by Er gives Er = 0, a contradiction. Therefore,
the minimal matrix idempotents are linearly independent.

Since E contains the spectral idempotents of each Ar ∈ A and A is a
basis for C[A], we see that E generates C[A]. If {E0, . . . , Em} is not a basis,
we can find Em+1, . . . , Ed ∈ E such that {E0, . . . , Ed} is an orthogonal basis
for C[A]. But since Ed is not minimal, there is some r = 0, . . . ,m such that
ErEd = Er, but this is impossible since we chose the basis to be orthogonal.

Therefore, m = d and the minimal matrix idempotents form a basis for
C[A].

Now consider these two bases of the Bose-Mesner algebra, {A0, . . . , Ad}
and {E0, . . . , Ed}. They both consist of idempotents, with respect to the
Schur product and matrix product, respectively. Moreover, we know that
the former has all sorts of properties, by the way it is defined. But it turns
out that the latter basis has similar properties. This is summarized in the
next lemma. We encourage the reader to compare (i)-(v) in the lemma to
(i)-(v) in the definition of an association scheme in the previous section,
interchanging Schur product and matrix multiplication.

Lemma 4.2.2. We have
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(i) 1
n
J ∈ {E0, . . . , Ed},

(ii)
∑d

r=0Er = I,

(iii) ET
r ∈ {E0, . . . , Ed}, for all r,

(iv) Er ◦ Es = Es ◦ Er for all r, s, and

(v) Er ◦ Es lies in the span of {E0, . . . , Ed}.

Proof. Since J ∈ C[A] and C[A] is commutative, each matrix in the algebra
has constant row and column sum. It follows that for any matrix M ∈ C[A],
we have JM = MJ = kJ where k is the row sum of M . In particular, if
E ∈ E we have that 1

n
JE = kJ for some k, but this matrix is idempotent,

so if E is non-zero we must have k = 1
n
implying that 1

n
J ≤ E, from which

part (i) follows.

Since I ∈ C[A], it can be written as a linear combination of the Er, so

I =
d∑
r=0

αrEr.

But then the αr are eigenvalues of I, so they are all one which implies (ii).
The last three parts are obvious.

By convention, we assume that E0 = 1
n
J.

4.3 Eigenvalues

Let A = {A0, . . . , Ad} be an association scheme and let E0, . . . , Ed be the
minimal matrix idempotents. Since these are both bases of the Bose-Mesner
algebra, we know that each Ar is a linear combination of the minimal matrix
idempotents and that each Er is a linear combination of the minimal Schur
idempotents.

Then for r, s = 0, . . . , d, there are scalars, pr(s) and qr(s) such that

Ar =
d∑
s=0

pr(s)Es and Er =
1

n

d∑
s=0

qr(s)As.
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Note that pr(s) is an eigenvalue of Ar and we call the scalars pr(s) the
eigenvalues of the scheme. Define the matrices P and Q by Psr := pr(s) and
Qsr := qr(s). We call P the matrix of eigenvalues of the scheme A and Q
the matrix of dual eigenvalues of A. It is not too hard to work out that
PQ = nI.

We see that ArEs = pr(s)Es for all r and s. Further, if A is any Schur
idempotent of the scheme, it is a sum of some minimal Schur idempotents,
say

A =
∑
r∈R

Ar,

with R ⊆ {0, . . . , d}. Then

AEs =
∑
r∈R

ArEs =
∑
r∈R

pr(s)Es

so the eigenvalues of A are
∑

r∈R pr(s) for s = 0, . . . , d. It follows that there
is a 01-vector, x (the characteristic vector of the set R) such that Px is a
vector consisting of the eigenvalues of A.

Recall that since J ∈ C[A], each Ar has constant row sum. Let vr be
the row sum of Ar and define the diagonal matrix ∆v by (∆v)rr := vr for
r = 0, . . . , d. We call this the matrix of valencies of A.

Further, let mr be the rank (equivalently the trace) of the matrix Er for
all r. Define ∆m as the diagonal matrix with mr in the r-th diagonal entry
and call this the matrix of multiplicities.

It can be shown that for all r, s = 0, . . . , d we have pr(s)ms = qs(r)vr.
Equivalently, ∆mP = Q∗∆v and using the fact that PQ = nI this implies
that P ∗∆mP = n∆v.

Example 4.3.1. Consider the line graph of the complete graph on n vertices,
L(Kn). Let A1 be its adjacency matrix and define A2 := J − I − A1 and
A0 := I. Then A = {A0, A1, A2} is a symmetric association scheme with
three classes. Such association schemes arise from strongly regular graphs
which we will not define here, but a definition and discussion can be found
in [33, Chapter 3].

We can use what is known about strongly regular graphs to calculate the
eigenvalues of A1 and A2. We find that A1 has eigenvalues

k := 2n− 4, θ := n− 4 and λ := −2
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with multiplicities one, n− 1 and n(n− 1)/2− n, respectively. Further, A2

has eigenvalues

n(n− 1)/2− 1− k, −θ − 1 and − λ− 1.

So the matrix of eigenvalues of A is

P =

1 2n− 4 n2−5n+6
2

1 n− 4 3− n
1 −2 1

.
We also find that the matrix of dual eigenvalues is

Q =


1 n− 1 (n−3)n

2

1 (n−4)(n−1)
2(n−2) − (n−3)n

2(n−2)

1 −2(n−1)
n−2

n
n−2

,
and

∆v =

1 0 0
0 2n− 4 0

0 0 n2−5n+6
2

, ∆m =

1 0 0
0 n− 1 0

0 0 n(n−3)
2


are the matrix of valencies and multiplicities, respectively.

4.4 Representations & characters

We now briefly discuss representations and characters of groups in the context
of association schemes. For definitions and preliminary results we refer the
reader to [36].

Let G be a group and let ρ be a representation of G. The character of
the representation ρ, is the map χ : G → C defined by χ(g) = Tr(ρ(g)).
The degree of χ is the dimension of the representation, ρ (equivalently χ(e)).
We refer to the characters of the representations of G simply as the charac-
ters of G. We say that a character of G is irreducible if the corresponding
representation is irreducible.

A complex-valued function on G that is constant on the conjugacy classes
of G is called a class function. The characters of G are class functions, and
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in fact, the irreducible characters, χ1, . . . , χn of G form a basis for all class
functions of G as a vector space over C.

We equip this vector space with an inner product: if ψ, ϕ : G → C are
class functions, define their inner product by

〈ψ, ϕ〉G :=
1

|G|
∑
x∈G

ψ(x)ϕ(x).

With respect to this inner product, the basis of irreducible characters is
orthonormal, that is

〈χr, χs〉 =

{
1 if r = s

0 otherwise.

Further, if ψ is an arbitrary character of G, then there are non-negative
integers, d1, . . . , dn such that ψ = d1χ1 + · · ·+ dnχn and 〈ψ, χr〉 = dr for all
r = 1, . . . , n.

Let g1, . . . , gn be representatives of the conjugacy classes of G. The char-
acter table of G is the n× n matrix, M with Mrs = χr(gs). By the orthogo-
nality relations we see that M is invertible.

Let ψ be a character of a group G and ϕ a character of a group H. Define
the product of the two characters by

ψϕ : G×H → C, (g, h) 7→ ψ(g)ϕ(h).

This is a character of the group G×H and in fact, the irreducible characters
of G × H are precisely the products of the irreducible characters of G and
H.

Let G be a group and H a subgroup of G. For a character ψ of G,
denote by ψ↓H its restriction to H, that is (ψ↓H)(h) = ψ(h) for all h ∈ H.
This is a character of H, but it is not necessarily irreducible even if ψ is an
irreducible character of G. For a character ϕ of H we define the induced
character ϕ↑G, of ϕ to G as follows. Let ϕ′ : G→ C be the map given by

ϕ′(g) :=

{
ϕ(g) if g ∈ H
0 otherwise.

Then we define
(ϕ↑G)(g) :=

1

|H|
∑
x∈G

ϕ′(x−1gx)
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for all g ∈ G. Again, this is a character of G, although not necessarily
irreducible even if ϕ is irreducible. There is an important relation between
the induced and the restricted characters demonstrated by the Frobenius
Reciprocity Theorem.
Theorem 4.4.1 ([36, Theorem 21.16], The Frobenius Reciprocity Theorem).
Assume that H ≤ G, let ψ be a character of G and let ϕ be a character of
H. Then

〈ψ, ϕ↑G〉G = 〈ψ↓H,ϕ〉H .

A character of a group G is called linear if it has degree one. In this case,
it is a group homomorphism from G to the multiplicative group of C. If G is
an abelian group, all its characters are linear and they form a group under
pointwise multiplication. We call this group the character group of G and
denote it by G∗. We have G∗ ∼= G.

Let ρ be a representation of a group G. The commutant of ρ is the
commutant of the image of ρ, that is, the set of matrices that commute with
ρ(g) for all g ∈ G. We state the following corollary of Schur’s Lemma. A
proof can be found for example in [32].
Theorem 4.4.2 ([32, Corollary 11.6.2]). The commutant of an irreducible
representation consists of scalar multiples of the identity.

4.5 Conjugacy class schemes

We are particularly interested in association schemes that have some connec-
tions to groups. More details of the following discussion can be found in [32,
Chapter 11].

Let G be a group of order n, with conjugacy classes C0, . . . , Cd, where
we assume C0 = {e}. Define Ar to be the n × n matrix indexed by the
group elements where the (g, h)-entry is one if hg−1 ∈ Cr and zero otherwise.
Equivalently, Ar is the adjacency matrix of the (possibly directed) normal
Cayley graph, Cay(G,Cr). The set A := {A0, . . . , Ad} is called the conjugacy
class scheme on G and it is an association scheme.

For an irreducible character χ of G, define a matrix Eχ by

(Eχ)gh :=
χ(e)

n
χ
(
hg−1

)
.
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If ψ and ϕ are irreducible characters, it can be shown using the orthogonality
relations of characters that∑

x∈G

ψ
(
xg−1

)
ϕ
(
hx−1

)
=

{
n/ψ(e) if ϕ = ψ

0 otherwise.

It follows that the matrices Eχ are idempotent and pairwise orthogonal. We
will show that they are matrix idempotents for the conjugacy class scheme
on G.

Lemma 4.5.1. Let A = {A0, . . . , Ad} be the conjugacy class scheme on a
group G with conjugacy classes C0, . . . , Cd. Let χ be an irreducible character
of G and let c ∈ Cr. Then

ArEχ =
|Cr|χ(c)

χ(e)
Eχ.

Proof. Let ρ be the irreducible representation corresponding to χ. Then

(ArEχ)gh =
χ(e)

|G|
∑

xg−1∈Cr

χ
(
hx−1

)
=
χ(e)

|G|
∑
y∈Cr

χ
(
hg−1y−1

)
=
χ(e)

|G|
∑
y∈Cr

Tr
(
ρ
(
hg−1y−1

))
=
χ(e)

|G|
Tr

(∑
y∈Cr

ρ
(
hg−1

)
ρ
(
y−1
))

=
χ(e)

|G|
Tr

(
ρ
(
hg−1

) ∑
y∈Cr

ρ
(
y−1
))

.

Since Cr is closed under conjugation, it is easy to see that the sum of ρ(y−1)
over Cr lies in the commutant of ρ. Therefore, by Theorem 4.4.2, it is a
scalar multiple of the identity matrix, say∑

y∈Cr

ρ
(
y−1
)

= λI.
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Then taking the trace on both sides we see that |Cr|χ(c−1) = λχ(e), so the
above gives

(ArEχ)gh =
χ(e)

|G|
Tr
(
ρ
(
hg−1

)
(λI)

)
=
|Cr|χ(c−1)

|G|
χ(hg−1)

=
|Cr|χ(c)

χ(e)
(Eχ)gh,

concluding the proof.

Corollary 4.5.2. The eigenvalues of the conjugacy class scheme are

pr(χ) =
|Cr|χ(c)

χ(e)

where c is some element in Cr.

We conclude this section with an extremely useful theorem about the
spectrum of a normal Cayley graph. Recall that a normal Cayley graph is a
Cayley graph whose connection set is conjugacy-closed. Equivalently, it is a
graph in the conjugacy class scheme of a group G.

Theorem 4.5.3 ([32, Theorem 11.12.3]). If X = Cay(G, C) is a normal
Cayley graph and χ is an irreducible character of G, then

θχ =
1

χ(e)

∑
c∈C

χ(c)

is an eigenvalue of X and every eigenvalue can be obtained in this way for
some χ. Moreover, if χ1, . . . , χk are all the irreducible characters such that
θχr = θ, then θ has multiplicity

k∑
r=1

χr(e)
2.
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Proof. Let A =
∑

r∈S Ar be the adjacency matrix of X and χ an irreducible
character of G. Then by Lemma 4.5.1,

AEχ =
∑
r∈S

ArEχ

=
∑
r∈S

|Cr|χ(cr)

χ(e)
Eχ, (cr ∈ Cr)

=
1

χ(e)

∑
c∈C

χ(c)Eχ

= θχEχ

and so θχ is an eigenvalue. Now, if χ1, . . . , χk are all the characters with
eigenvalue θ, then the spectral idempotent for θ is E := Eχ1 + · · ·+ Eχk , so
the multiplicity of θ is the rank of E, equivalently the trace of E. Each Er
has constant diagonal χr(e)2/n and now we see that the multiplicity of θ is

rk(E) = Tr(E) =
k∑
r=1

Tr(Eχr) =
k∑
r=1

χr(e)
2,

which concludes the proof.

Note that since we require graphs to be undirected, C will be inverse-
closed, and so we can drop the complex conjugate of the character in the
sum.

4.6 Translation schemes

Let G be an abelian group. Then its conjugacy classes are singletons, and we
call the conjugacy class scheme on G the abelian group scheme. A subscheme
of an abelian group scheme is called a translation scheme and a graph in
a translation scheme is a translation graph. Note that this definition is
equivalent to our earlier definition of a translation graph: a Cayley graph for
an abelian group.

Recall that the characters of an abelian group are homomorphisms. We
can therefore refine Theorem 4.5.3 for translation graphs.
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Lemma 4.6.1. Let X = Cay(G, C) be a translation graph. Then the ir-
reducible characters of G are eigenvectors of X and the eigenvalue for the
character χ is

χ(C) :=
∑
c∈C

χ(c).

Proof. If A is the adjacency matrix of X we have

(Aχ)g =
∑

xg−1∈C

χ(x)

=
∑
y∈C

χ(yg)

=
∑
y∈C

χ(y)χ(g)

= χ(g)
∑
y∈C

χ(y).

Therefore Aχ = χ(C)χ for all irreducible characters χ of G as required.

Let A = {A0, . . . , An−1} be the abelian group scheme for G. We will
describe a particular subscheme that we are interested in. Consider the
subspace of the Bose-Mesner algebra, C[A] that is spanned by the matrices
with rational entries and rational eigenvalues. This is a commutative algebra
and clearly, it contains J . Further, it is closed under transpose, complex
conjugation and Schur multiplication so it is a coherent algebra, and therefore
the Bose-Mesner algebra of a subscheme, B = {B0, . . . , Bd} of A.

It is clear that the integer matrices in C[B] have rational eigenvalues, but
the eigenvalues of an integer matrix are always algebraic integers. There-
fore, the integer matrices in C[B] (in particular the Schur idempotents) have
integer eigenvalues. We call B the integral translation scheme of G.

Let X = Cay(G, C) be a translation graph. Define a relation on the group
G as follows. We say that g and h are power-equivalent, and write g ≈ h, if
they generate the same cyclic subgroup of G. This is an equivalence relation
and we call its equivalence classes the power classes of G.

Denote the power class of g ∈ G by [g], and choose representatives,
g0, . . . , gd′ such that [gr] ∩ [gs] = ∅ if r 6= s and G = [g0] ∪ · · · ∪ [gd′ ]. It
turns out that the integral translation scheme described above is defined by
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these power classes, that is, we have d′ = d and by ordering things correctly,
Br is the adjacency matrix of Xr := Cay(G, [gr]). This is implied by the
following theorem of Bridges and Mena [11].

Theorem 4.6.2 ([11, Theorem 2.4]). Let A = {Ag : g ∈ G} be the abelian
group scheme for the group G and let B be the integral translation scheme
for G. Let τ(G) denote the number of cyclic subgroups of G. Then C[B] has
dimension τ(G) and we have ∑

g∈G

agAg ∈ C[B]

if and only if ag ∈ Q and ag = ah whenever g ≈ h.

Let Cay(G, C) be a translation graph, with adjacency matrix A. Then A
is a Schur idempotent in the abelian group scheme, {Ag : g ∈ G}, so we can
write

A =
∑
g∈G

agAg,

with ag ∈ {0, 1}. Therefore, we get the following lemma as a consequence of
Theorem 4.6.2.

Lemma 4.6.3 ([11, Corollary 2.5]). The translation graph X = Cay(G, C)
has integer eigenvalues if and only if C is a union of power classes.

It follows immediately that every translation graph of G with integer
eigenvalues lies in the integral translation scheme on G.

Recall that G∗ denotes the character group of G which is isomorphic to
G. We now show that power-equivalent characters have the same eigenvalue.

Lemma 4.6.4. There is an isomorphism, G→ G∗, g 7→ χg such that χg(h) =
χh(g) for all g, h ∈ G (i.e. the character table is symmetric) and if g ≈ h,
then the characters χg and χh have the same eigenvalue in Xr = Cay(G, [gr])
for all r.

Proof. First, we show that there exists an isomorphism g 7→ χg such that
for all g, h ∈ G we have χg(h) = χh(g). Since G is abelian, it is a product of
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cyclic groups, say G = Zn1 × · · · × Znm with generators x1, . . . , xm. Define
χxr on the generators of G by

χxr(xs) =

{
e2πi/nr , if s = r

1, otherwise,

and extend it as a homomorphism to G. Then χx1 , . . . , χxm generate G∗ and
we see that xr 7→ χxr extends to an isomorphism from G to G∗. Moreover,
χxr(xs) = χxs(xr) for all r, s ∈ {1, . . . ,m} and it follows since they are
homomorphisms that χg(h) = χh(g) for all g, h ∈ G.

Now let χ be a character of G and fix k ∈ {0, . . . , d}. Then χ has
eigenvalue

χ([gk]) =
∑
x∈[gk]

χ(x)

in Xk. Consider the subgroup, 〈gk〉. The power class of gk is the set of
generators for this subgroup and it follows that 〈hk〉 := 〈gk〉 \ [gk] is also a
subgroup.

We know that the sum of the values of a character over any subgroup is
zero, unless the subgroup is in the kernel of the character. Therefore,

χ([gk]) =
∑
x∈[gk]

χ(x)

=
∑
x∈〈gk〉

χ(x)−
∑
x∈〈hk〉

χ(x)

=


|〈gk〉| − |〈hk〉|, if gk ∈ ker(χ)

−|〈hk〉|, if gk 6∈ ker(χ), hk ∈ ker(χ)

0, otherwise.

We will show that if g ≈ h, then the kernels of χg and χh are equal. It
then follows from the above that χg([gk]) = χh([gk]). Suppose g ≈ h. Then
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there are integers, s and t such that g = hs and h = gt. Therefore,

χg(x) = 1 =⇒ χx(g) = 1

=⇒ χx(g)t = 1

=⇒ χx(g
t) = 1

=⇒ χx(h) = 1

=⇒ χh(x) = 1

so x ∈ ker(χg) implies x ∈ ker(χh). Similarly we see that χh(x) = 1 implies
that χx(g) = χx(h

s) = 1 which again implies that x ∈ ker(χg).

We conclude that whenever g ≈ h, we have χg([gk]) = χh([gk]).

4.7 Duality

Most of the contents of this section can be found in [28, Chapters 7,8]. The
proof of Theorem 4.7.3 is original, although the statement was probably
known.

Let A be an association scheme with matrix of eigenvalues P and matrix
of dual eigenvalues Q. We say that A is formally self-dual if Q = P .

Let A = {A0, . . . , Ad} be a formally self-dual association scheme with
matrix of eigenvalues P = (pr(s))sr. Define a map Θ : C[A] → C[A] by
letting

Θ(Ar) :=
∑
s

pr(s)As

and extending to C[A] by linearity. We call Θ the duality map of A and we
have the following theorem.

Lemma 4.7.1 ([28, Theorem 7.6.1]). Let A = {A0, . . . , Ad} be a formally
self-dual association scheme with minimal matrix idempotents E0, . . . , Ed
and duality map Θ. Then:

(a) Θ(Ar) = nEr for r = 0, . . . , d.

(b) Θ(I) = J and Θ(J) = nI.

(c) Θ(MN) = Θ(M) ◦Θ(N) for all M,N ∈ C[A].
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(d) Θ(M ◦N) = 1
n
Θ(M)Θ(N) for all M,N ∈ C[A].

(e) If B is a subscheme of A, then Θ(B) is also a subscheme.

We see that the matrix representing this linear map with respect to the
basis {A0, . . . , Ad} is P . This is an invertible matrix, so the map is bijective.

Notice that by part (e), we can restrict Θ to a subscheme B to get a map
Θ′ : C[B] → C[Θ(B)]. This restriction maps the Schur basis of B to the
idempotent basis of Θ(B) and so we have a map that has similar properties
as Θ, but is defined on an association scheme that is not necessarily formally
self-dual. This motivates the notion of duality of schemes.

Let A = {A0, . . . , Ad} be an association scheme with matrix of dual
eigenvalues QA. If there exists an association scheme B = {B0, . . . , Bd} with
matrix of eigenvalues PB = QA, then we call B the dual association scheme
of A. It is trivial to see that the dual of the dual of A is A. If A and B are
dual association schemes, then we can define the map, Θ : C[A]→ C[B] by

Θ(Ar) =
∑
s

pr(s)Bs,

and Lemma 4.7.1 still holds, except in part (a), we get Θ(Ar) = nE ′r where
E ′r is a minimal matrix idempotent of B.

Not all association schemes have duals; in fact we do not know of any
examples of pairs of dual association schemes that are not self-dual and are
not translation schemes. Translation schemes, however, always come in dual
pairs as we will now see. Sometimes they are self-dual but sometimes the
two dual schemes are distinct.

Let A be the abelian group scheme for a group G of order n and let
B = {B0, . . . , Bd} be an arbitrary translation scheme of G. The matrix of
eigenvalues, PA for A is the character table of G. By Lemma 4.6.4, we can
order the character table of an abelian group so that it is symmetric, and
now it follows from the orthogonality relations of characters that PAPA = nI.
Therefore, the abelian group scheme is formally self-dual.

Let π = C0, . . . , Cd be the partition of G such that Br is the adjacency
matrix of the Cayley graph Cay(G,Cr). Let S denote the n×d characteristic
matrix of π: the matrix in which the (g, Cr)-entry is one if g ∈ Cr and zero
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otherwise. We create a partition, π∗ = D0, . . . , Dd′ of the dual group, G∗ ofG,
using the matrix PAS. The rows of this matrix are indexed by the characters
of G and we let χ1 and χ2 be in the same cell of π∗ if their corresponding
rows of PAS are the same, and in different cells otherwise.

This defines a translation scheme on the dual group, G∗ and since G∗ and
G are isomorphic it also gives a translation scheme on G. It follows from [27,
Theorem 12.7.3] that d′ = d, so this scheme has the same number of classes
as B. In fact it is the dual scheme of B as we defined it above, and B is
formally self-dual if and only if this scheme is equal to B.

Example 4.7.2. Consider the cyclic group, G = 〈g : g6 = 1〉 ' Z6. Let
π = {C0, C1, C2, C3} be the following partition of G:

C0 = {1}, C1 = {g2}, C2 = {g4}, C3 = {g, g3, g5},

(so C−11 = C2 and C−13 = C3) and let B = {B0, B1, B2, B3} be the corre-
sponding translation scheme. Let ζ := e2πi/6 and note that ζ3 = −1. Denote
the character table of G by M and let S be the characteristic matrix for the
partition π, thus

M =


1 1 1 1 1 1
1 ζ ζ2 −1 −ζ −ζ2
1 ζ2 −ζ 1 ζ2 −ζ
1 −1 1 −1 1 −1
1 −ζ ζ2 1 −ζ ζ2

1 −ζ2 −ζ −1 ζ2 ζ

 and S =


1 0 0 0
0 0 0 1
0 1 0 0
0 0 0 1
0 0 1 0
0 0 0 1

.

Now since ζ − ζ2 = 1, we get

MS =


1 1 1 3
1 ζ2 −ζ 0
1 −ζ ζ2 0
1 1 1 −3
1 ζ2 −ζ 0
1 −ζ ζ2 0


The first four rows of MS are all distinct, row five is the same as row two,
and row six is the same as row three, thus, the dual partition, π∗ of G∗ is

D0 = {1G∗}, D1 = {χ1, χ4}, D2 = {χ2, χ5}, D3 = {χ3}.
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Note that D−11 = D2 and D−13 = D3. This partition defines a translation
scheme that is not isomorphic to B. Therefore B is not self-dual.

The following result may have been known, but as far as we know it has
not been stated explicitly, and the proof is original.

Theorem 4.7.3. The integral translation scheme is formally self-dual.

Proof. Let B = {B0, . . . , Bd} be the integral translation scheme for the
abelian group G. Since B is a subscheme of the abelian group scheme of G,
which is formally self-dual, Lemma 4.7.1 holds. Therefore, if Θ : C[A] →
C[A] is the duality map, then Θ(B) is an association scheme. We want to
show that Θ(B) is the same scheme as B.

The duality map is bijective and maps the Schur idempotents of B to the
matrix idempotents of Θ(B). In particular it is injective and so it suffices to
show that for each Br, we have Θ(Br) ∈ C[B].

Recall that the integral translation scheme comes from the partition of
G into its power classes. Let g0, g1, . . . , gd be representatives of the power
classes of G such that Br is the adjacency matrix of Cay(G, [gr]). Then, if
A = {Ax : x ∈ G} is the abelian group scheme of G, we have

Br =
∑
x∈[gr]

Ax.

According to Lemma 4.6.4, choose an isomorphism G → G∗, x 7→ χx such
that if x ≈ y, then χx and χy have the same eigenvalue in all Cayley graphs
Cay(G, [gr]). The eigenvalues of Ax are χg(x) for all g ∈ G. Then

Θ : Ag 7→
∑
x∈G

χx(g)Ax.
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By linearity, we have

Θ(Br) =
∑
g∈[gr]

Θ(Ag)

=
∑
g∈[gr]

∑
x∈G

χx(g)Ax

=
∑
x∈G

∑
g∈[gr]

χx(g)

Ax

=
∑
x∈G

χx([gr])Ax

By Lemma 4.6.4, we can write this as

Θ(Br) =
d∑
s=0

χgs([gr])

∑
x∈[gs]

Ax


=

d∑
s=0

χgs([gr])Bs

which is clearly in C[B] for all r, and this concludes the proof.

Theorem 4.7.3 implies that if P is the matrix of eigenvalues for the integral
translation scheme, then PP = nI. We can now prove a lemma that will
become an important tool later on. A proof can also be found in [21].

Lemma 4.7.4 ([21, Lemma 16.6.1]). If G is an abelian group of odd order,
n, then any non-empty, integral Cayley graph for G has an odd eigenvalue.

Proof. Let X be an integral Cayley graph for G. Then X is a graph in the
integral translation scheme, B = {B0, . . . , Bd}, for G. Let P be the matrix
of eigenvalues of B. Since B is self-dual we have PP = nI. Further, P is
real, so its determinant is real, and thus det(P ) = det(P ). Then

det(P )2 = det(P ) det(P ) = det(PP ) = det(nI) = nd+1.

Therefore, det(P ) is odd implying that P is invertible modulo 2.

45



Since X lies in the scheme B, there is a 01-vector, x of length d+ 1, such
that the entries of Px are the eigenvalues of X. If the entries of Px are even,
then Px ≡ 0 (mod 2), but P is invertible modulo 2 and therefore x is zero
modulo 2 implying that X is empty.

Remark. In Chapter 6 we will introduce integral signed Cayley graphs. We
note here that if we allow x to be a {0,±1}-vector, the proof of the Lemma
still works for such graphs.
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Chapter 5

Strongly Cospectral Vertices

Recall that two vertices in a graph are cospectral if the graphs obtained
by deleting each of them have the same spectrum. This seems like a very
natural property to study. Clearly, two vertices that are similar (there is
an automorphism mapping one to the other) are cospectral, but there are
certainly vertices that are cospectral but not similar.

In Chapter 2, we defined perfect state transfer. We saw that this is a
very strong property, which is shown by the fact that it is a monogamous
relationship between vertices. If perfect state transfer occurs between two
vertices in a graph, they must be cospectral but they do not have to be
similar. However, something stronger must hold and this is where strong
cospectrality comes into play.

Although the motivation for studying strongly cospectral vertices comes
from quantum walks, the property itself has nothing to do with quantum
walks. It is, much like cospectrality, a spectral property of the graph. Fur-
thermore, it has some interesting combinatorial implications, for example
that the vertex stabilizers of two vertices that are strongly cospectral are
equal. Consequently, strong cospectrality has in recent years been studied
outside the context of quantum walks. In particular, a question of interest
is whether there are graphs with large sets of pairwise strongly cospectral
vertices.

In this chapter, we prove various results concerning the size of a set of
pairwise strongly cospectral vertices in Cayley graphs. There are original
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proofs in Sections 5.2, 5.3 and 5.4, but our main results can be found in later
sections starting from 5.5. The results of this chapter can also be found in
our paper [4].

5.1 Preliminaries

Two graphs X and Y are called cospectral if they have the same spectrum.
Two vertices, u and v in a graph X are said to be cospectral if the graphs
X \u and X \v are cospectral.

Let X be a graph with adjacency matrix A having spectral decomposition

A =
d∑
r=0

θrEr.

Denote by eu the standard basis vector indexed by the vertex u. We say that
the vertices u and v are parallel if for each r = 0, 1, . . . , d, the projections
Ereu and Erev are parallel. We say that u and v are strongly cospectral
if they are both cospectral and parallel. Equivalently, u and v are strongly
cospectral if Ereu = ±Erev for all r = 0, 1, . . . , d.

We call a set of vertices that are all pairwise strongly cospectral a strongly
cospectral set and we say that it is non-trivial if it has size at least two.
Clearly, strong cospectrality is an equivalence relation on the vertices of X
and its equivalence classes are the maximal strongly cospectral sets of X.

Our main focus in this chapter will be to come up with upper bounds
on the size of strongly cospectral sets. One such bound is an immediate
consequence of the following lemma of Godsil and Smith [34].

Lemma 5.1.1 ([34, Lemma 10.1]). If all vertices in a graph X are strongly
cospectral, then X = K2.

So in a graph on n ≥ 3 vertices, a strongly cospectral set has size at most
n−1. Although perhaps not a very good bound in general, it is an extremely
important one.
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5.2 Strongly cospectral subgroups

In Chapter 3 we defined blocks of imprimitivity and discussed them in the
context of Cayley graphs. In particular we showed that a block in a Cayley
graph of a group G is a coset of a subgroup of G. We will now see that
maximal strongly cospectral sets are blocks and therefore also cosets. The
following lemma is an observation of Chris Godsil.

Lemma 5.2.1. Let X be a graph and G ≤ Aut(X) a group acting tran-
sitively on its vertices. Then, a maximal strongly cospectral set is a block
under this action.

Proof. Let A be the adjacency matrix of X and let E0, . . . , Ed denote its
spectral idempotents. Let B ⊆ V (X) be a maximal strongly cospectral set
and let g ∈ G. Since g is an automorphism of X, we may think of it as
a permutation matrix, Pg, mapping the standard basis vector ev to evg for
all v ∈ V (X). Recall Lemma 3.1.1, that a permutation matrix commutes
with A if and only if it is an automorphism of X. Further, since the spectral
idempotents are polynomials in A, this implies that Pg commutes with each
of them.

Suppose that there is some vertex u in B such that ug ∈ B, and let v ∈ B.
Then for all r ∈ {0, . . . , d} we have

Erevg = ErPgev = PgErev = ±PgEreu = ±ErPgeu = ±Ereug

and so vg is strongly cospectral to ug and therefore vg ∈ B. It follows that
B is a block of imprimitivity under the action of G.

The next corollary follows directly from Lemma 5.2.1 and Corollary 3.2.3.

Corollary 5.2.2. Every maximal strongly cospectral set in a Cayley graph
Cay(G, C) is a coset of a subgroup of G.

One consequence of this is that the size of a maximal strongly cospectral
set in a Cayley graph must divide the number of vertices. Since we know
by Lemma 5.1.1 that not all the vertices can be pairwise strongly cospectral
unless the graph is K2, we have our first bound.

Corollary 5.2.3. The size of a maximal strongly cospectral set in a Cayley
graph on n ≥ 3 vertices is at most n/2.
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Since a system of cosets is determined by the subgroup, we will focus on
the maximal strongly cospectral set containing the group identity, e. Given
a group G and a connection set C we call the maximal strongly cospectral
set of Cay(G, C) containing e, the strongly cospectral subgroup of G with
respect to C. Note that this subgroup is unique for a given C. Further, the
size of a maximal strongly cospectral set in Cay(G, C) is equal to the order
of the strongly cospectral subgroup of G with respect to C.

Now, instead of asking whether a Cayley graphX has any strongly cospec-
tral vertices, we can restrict ourselves to asking whether there are any non-
identity elements that are strongly cospectral to the identity in X.

5.3 Restrictions on the group

Can a Cayley graph of any group have strongly cospectral vertices? The
fact that a maximal strongly cospectral set in a Cayley graph is a subgroup
gives us a negative answer to this question: take a group of prime order at
least three, and recall Lemma 5.1.1, that the vertices cannot all be strongly
cospectral. In fact, we will now see that no group of odd order has non-trivial
strongly cospectral sets.

Lemma 5.3.1. Suppose that the vertex g ∈ G is strongly cospectral to e in
a Cayley graph X of G. Then g has order at most two in G.

Proof. We have seen that for each h ∈ G, the map x 7→ xh is an automor-
phism of X. Denote the corresponding permutation matrix by Ph. Then,
Phex = exh for all h, x ∈ G.

Let E0, . . . , Ed denote the spectral idempotents of the adjacency matrix
A of X. As before, Ph commutes with A and consequently with the matrices
Er. Since g is strongly cospectral to e, we have for all r that Ereg = εrEree,
where εr ∈ {±1}. This implies

Ereg2 = PgEreg

= Pg(εrEree)

= εrEreg

= ε2rEree

= Eree
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for each r. Then, since the idempotents sum to the identity, we get

ee =

(
d∑
r=0

Er

)
ee =

d∑
r=0

Eree =
d∑
r=0

Ereg2 = eg2 ,

and we have shown that g2 = e.

Since a group of odd order has no elements of order two, we have shown
that its Cayley graphs cannot have any non-trivial strongly cospectral sets.
Further, we immediately get the following corollary.

Corollary 5.3.2. The strongly cospectral subgroup of a group G with re-
spect to any set C is an elementary abelian 2-group.

Corollary 5.3.2 gives an upper bound on the size of the strongly cospectral
subgroup only in terms of the structure of the group, but there is not much
more we can say about Cayley graphs in general. We therefore turn to normal
Cayley graphs.

5.4 Normal Cayley graphs

Recall that a normal Cayley graph is a Cayley graph for which the connection
set is conjugacy-closed. Let X = Cay(G, C) be a normal Cayley graph. We
have seen that in this case, the group G acts on X by left multiplication. We
can use this to get further restrictions on the strongly cospectral subgroup.
Lemma 5.4.1 is an observation of Chris Godsil.

Lemma 5.4.1. Suppose that the vertex g ∈ G is strongly cospectral to e in
the normal Cayley graph X = Cay(G, C). Then g lies in the centre of G.

Proof. As in the proof of Lemma 5.3.1, let Ph denote the permutation matrix
corresponding to right multiplication by a group element h and now we denote
by P ′h the permutation matrix corresponding to left multiplication by h.
Then, Phex = exh and P ′hex = ehx for all h, x ∈ G.

Let E0, . . . , Ed denote the spectral idempotents of the adjacency matrix A
of X. Since g is strongly cospectral to e, we have for all r that Ereg = εrEree,
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where εr ∈ {±1}. As before, Ph and P ′h commute with the matrices Er. Now
let h ∈ G be an arbitrary element. Then PhEreg = Ph(εrEree) implying that

εrEreh = Eregh.

But similarly, we have P ′hEreg = P ′h(εrEree) and so

εrEreh = Erehg.

Thus Eregh = Erehg for all r. Then, since the idempotents sum to I,

egh =

(
d∑
r=0

Er

)
egh

=
d∑
r=0

Eregh

=
d∑
r=0

Erehg

= ehg.

Therefore, gh = hg for all h and so g lies in the centre of G.

And now, as we were all hoping, we have the following corollary.

Corollary 5.4.2. Suppose X = Cay(G, C) is a normal Cayley graph. Then
the strongly cospectral subgroup of X with respect to C is a normal subgroup
of G.

Proof. By Lemma 5.4.1 it is contained in the centre, thus it is normal.

Example 5.4.3 (Non-examples).

(a) A normal Cayley graph of the symmetric group on n elements has no
non-trivial strongly cospectral sets, since it has trivial centre.

(b) A normal Cayley graph of a simple group has no non-trivial strongly
cospectral sets.

(c) If a Cayley graph of a cyclic group Zn has non-trivial strongly cospectral
sets, then n is even and the sets have size two.
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(d) Similarly, if there is a non-trivial strongly cospectral set in a normal
Cayley graph of a dihedral group or an extraspecial group, it has size
two (an extraspecial group is a p-group, G, with centre Z of order p
such that G/Z is a non-trivial elementary abelian p-group).

Example 5.4.4. The Cayley graphs

Cay(Z6, {1, 2, 4, 5}) and Cay(S3, {(12), (13), (123), (132)})

are isomorphic and the vertex not in the connection set is strongly cospectral
to the identity. Note that the former is a normal Cayley graph, since Z6 is
abelian, but the latter cannot be normal by part (a) of Example 5.4.3. The
graph is depicted in Figure 5.1 with the vertices in the strongly cospectral
subgroup shown in white.

Figure 5.1: A Cayley graph for Z6 and S3

5.5 Spectra

The main goal of this whole chapter is to gain some perspective on how big
a strongly cospectral subgroup of a group can be. We have already seen
some important restrictions. We know that it cannot be the whole group, for
instance. We also know that the size of an elementary abelian 2-subgroup
is an upper bound and that in the normal case, the size of the centre of the
group is an upper bound.
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In fact, there is not much more that we can say about this in the general
case, and hereafter we will be focusing on normal Cayley graphs. You may
recall from earlier chapters that all sorts of magic happens when a Cayley
graph is normal. More specifically, a normal Cayley graph lives in an asso-
ciation scheme, and its eigenvalues and their multiplicities can be calculated
using the irreducible characters of the group (Theorem 4.5.3).

We want to use this connection to bound the size of a strongly cospectral
subgroup in terms of the spectrum of the graph. To do this, we need to
characterize strong cospectrality in terms of characters of the group.

Recall from before that given a normal Cayley graph X = Cay(G, C), we
define for each character χ of G,

θχ =
1

χ(e)

∑
c∈C

χ(c),

which will be an eigenvalue of X. The following theorem was proved by Sin
and Sorci in [44].

Theorem 5.5.1 ([44, Theorem 2.3]). LetX = Cay(G, C) be a normal Cayley
graph. A vertex g 6= e is strongly cospectral to e if and only if g is a central
involution in G and for all irreducible characters χ, ψ with θχ = θψ we have

χ(g)

χ(e)
=
ψ(g)

ψ(e)
.

The proof relies on the fact that an irreducible representation of a group
maps a central element to a scalar matrix cI. So if g is central and χ is
the character corresponding to the irreducible representation ρ, then for any
x ∈ G we have

χ(gx) = Tr(ρ(gx)) = Tr(ρ(g)ρ(x)) = Tr(cρ(x)) = cχ(x),

in particular, χ(g) = cχ(e). If g is also an involution, then cI has order at
most two, so c = ±1 and therefore

χ(g)

χ(e)
= ±1.

Corollary 5.5.2. Let X = Cay(G, C) be a connected, normal Cayley graph
and suppose that its complement, X = Cay(G,D) is also connected. Then
g ∈ G is strongly cospectral to e in X if and only if g is strongly cospectral
to e in X.
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Proof. Let g be a vertex strongly cospectral to e in X and let χ and ψ be
distinct characters of G with the same eigenvalue λ of X. Then

λ =
1

χ(e)

∑
g∈D

χ(g) =
1

ψ(e)

∑
g∈D

ψ(g).

Note that since X is connected, the degree is an eigenvalue with multiplicity
one, and the corresponding eigenvector is the trivial character. Therefore, χ
and ψ are non-trivial characters.

Since X is the complement of X, we have D = G\ (C ∪ {e}). As before,
let θχ denote the eigenvalue of X for the eigenvector χ. Then

θχ =
1

χ(e)

∑
g∈C

χ(g) =
1

χ(e)

(∑
g∈G

χ(g)−
∑
g∈D

χ(g)− χ(e)

)
= −λ− 1.

Note that the sum over G vanishes since χ is non-trivial. Similarly we get
θψ = −λ − 1, and now since g is strongly cospectral to e in X, we get by
Theorem 5.5.1 that χ(g)/χ(e) = ψ(g)/ψ(e), and so again by the theorem, g
is strongly cospectral to e in X.

We can now give an upper bound on the size of a strongly cospectral
subgroup in a normal Cayley graph in terms of the multiplicities of the eigen-
values of the graph.

Theorem 5.5.3. Let X = Cay(G, C) be a normal Cayley graph, let H be
the strongly cospectral subgroup of G with respect to C and let m be the
multiplicity of some eigenvalue of X. Then

|H| ≤ |G|
m

=
|V (X)|
m

.

Proof. Let θ be an eigenvalue of X and let ψ1, . . . , ψk be a complete set of
irreducible characters of G satisfying θψr = θ. Define dr to be the degree
of ψr, i.e. dr := ψr(e). Then by Theorem 4.5.3, the multiplicity of θ is
mθ := d21 + · · · + d2k. Let ` denote the index of H in G. We will show that
mθ ≤ `.

We further let ψk+1, . . . , ψn be such that {ψ1, . . . , ψn} is a complete set
of irreducible characters of G, and define dr accordingly for r = k+ 1, . . . , n.

55



By Theorem 5.5.1, we know that for all r = 1, . . . , k, we have

ch :=
ψr(h)

dr
=
ψ1(h)

d1
= ±1 for all h ∈ H.

Let ρr denote the irreducible representation corresponding to the char-
acter ψr, for r = 1, . . . , k. As in the discussion following Theorem 5.5.1, we
have that ρr(h) = chI for all h ∈ H. Further, since ρr is a homomorphism
we see that ch1ch2 = ch1h2 for all h1, h2 ∈ H.

Define a function χ : H → C by h 7→ ch. By the above, this is a
homomorphism from H to {±1}, and since H is an abelian group, it is an
irreducible character of H. Further, it is clear by the definition of χ that for
each r = 1, . . . , k, we have

(ψr ↓H) = drχ,

where (ψ↓H) denotes the restricted character of ψ to H, defined in Section
4.4. This implies that 〈(ψr ↓H), χ〉H = dr for r = 1, . . . , k. Recall that the
values of the induced character, χ̃ := χ↑G, are given by

χ̃(g) =
1

|H|
∑
x∈G

χ′(x−1gx), for all g ∈ G,

where χ′(x) = χ(x) if x ∈ H and χ′(x) = 0 otherwise. In particular, we see
that

χ̃(e) =
|G|
|H|

= `.

Since χ̃ is a character of G, and ψ1, . . . ψn are the irreducible characters
of G, we know that χ̃ can be written uniquely as

χ̃ = d′1ψ1 + · · ·+ d′nψn,

where d′r := 〈χ̃, ψr〉G are non-negative integers for all r = 1, . . . , n. By
Theorem 4.4.1 (the Frobenius Reciprocity Theorem), we have for r = 1, . . . , k

d′r = 〈χ̃, ψr〉G = 〈(ψr ↓H), χ〉H = dr,

and so

χ̃ = d1ψ1 + · · ·+ dkψk + d′k+1ψk+1 + · · ·+ d′nψn.
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Then, evaluating χ̃ at e, we get

` = χ̃(e)

= d1ψ1(e) + · · ·+ dkψk(e) + d′k+1ψk+1(e) + · · ·+ d′nψn(e)

= d21 + · · ·+ d2k + d′k+1dk+1 + · · ·+ d′ndn

= mθ +K

where K ≥ 0, since d′r, dr ≥ 0 for all r. It follows that ` ≥ mθ, as required.

Example 5.5.4. Let G := Z2 × Z2 × Z3 and take the connection set C :=
{(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 2)}. The Cayley graph X = Cay(G, C) is
normal since G is abelian and it has spectrum{

− 3(2), −1(4), 0(1), 1(2), 2(2), 4(1)
}

(where the superscript denotes the multiplicity). Notice that X has an eigen-
value with multiplicity four, and so by Theorem 5.5.3, the order of the
strongly cospectral subgroup is at most 12/4 = 3. Since it must also be
a power of two, it is at most two. Indeed, this graph has a strongly cospec-
tral subgroup of order two, H = 〈(1, 1, 0)〉. The graph is shown in Figure 5.2
with the vertices of H in white.

Figure 5.2: Normal Cayley graph of Z2 × Z2 × Z3

Now that we have related the size of a strongly cospectral subgroup to
the spectrum of the graph, the next question is what information do we
have about the spectrum? What can we say about the multiplicities of
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the eigenvalues of a normal Cayley graph? Or more specifically the largest
multiplicity?

These turn out to be tricky questions, so we will restrict ourselves to
certain classes of normal Cayley graphs. We will devote the next section to
one such class, namely cubelike graphs, but first, we conclude this section
with a slightly better bound than before in the non-abelian case.

Corollary 5.5.5. Let G be a non-abelian group of order n and let X =
Cay(G, C) be a normal Cayley graph. IfH is the strongly cospectral subgroup
of G with respect to C, then |H| ≤ n/4.

Proof. Since G is non-abelian, it has a non-linear character χ of degree d ≥ 2.
Then X has an eigenvalue, θχ with multiplicity at least d2 ≥ 4, and the result
follows from Theorem 5.5.3.

5.6 Cubelike graphs

In this section, we provide an upper bound on the order of a strongly cospec-
tral subgroup of an elementary abelian 2-group, Zd2, only in terms of d.

5.6.1 Why cubelike graphs?

Recall that a Cayley graph of an elementary abelian 2-group is called a
cubelike graph. Cubelike graphs are translation graphs, so in particular they
are normal Cayley graphs. For the elementary abelian 2-groups, we will use
additive notation, and thus we call the group identity zero.

We have seen that the strongly cospectral subgroup for a normal Cayley
graph must be an elementary abelian 2-subgroup, contained in the centre of
the group. The size of such a subgroup in G is therefore an upper bound on
the size of our strongly cospectral subgroup. So what can we say in the case
where this bound is completely useless?

This is the main motivation for looking at cubelike graphs in particular:
the restrictions that we knew previously do not give us any information in
the case where the group itself is an elementary abelian 2-group. Another
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good reason to look at these graphs is that most of them have at least pairs of
strongly cospectral vertices. This follows from a result of Bernasconi, Godsil
and Severini, [9] and the fact that perfect state transfer between vertices
implies that they are strongly cospectral.

Theorem 5.6.1 ([9, Theorem 1]). A cubelike graph Cay(Zd2, C) satisfying

σ :=
∑
c∈C

c 6= 0

has perfect state transfer from 0 to σ at time π/2.

It is therefore tempting to believe that cubelike graphs could have large
strongly cospectral subgroups, but we will show that this is not the case, in
fact, a strongly cospectral subgroup of Zd2 has dimension strictly less than
d/2 (as a vector space over Z2) and so it’s order will be less than 2d/2. Thus
a maximal strongly cospectral set in a cubelike graph on n vertices has size
less than

√
n.

5.6.2 Spectra

Recall that by Lemma 4.6.1, a translation graph X = Cay(G, C) has the
characters of G as its eigenvectors and the eigenvalue for the eigenvector χ
is given by

χ(C) :=
∑
g∈C

χ(g).

The characters of elementary abelian 2-groups take values in {±1} and
so it is clear from the above that every eigenvalue of X = Cay(Zd2, C) with
n := |C| is an integer with the same parity as n and lies on the interval [−n, n].
This means that we can write each eigenvalue as n−2r where r ∈ {0, . . . , n}.

Let X = Cay(Zd2, C) be a cubelike graph with degree n = |C|. For each
r = 0, . . . , n, denote by mr the multiplicity of the eigenvalue n−2r, with the
convention that mr = 0 if n− 2r is not an eigenvalue. Then

m0 + · · ·+mn = |V (X)| = 2d.

If A is the adjacency matrix of X, consider the matrix A2. Since X is a
regular graph of degree n, it is clear that A2 has constant diagonal, n. Since
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the dimension of A2 is 2d, we therefore see that the trace of A2 is 2dn. The
trace is also the sum of the eigenvalues, and now we have proved the following
identity.

Lemma 5.6.2. Let X be a cubelike graph on 2d vertices, with degree n and
let mr be the multiplicity of the eigenvalue n− 2r of X. Then

n∑
r=0

(n− 2r)2mr = 2dn.

It turns out that in a cubelike graph, the eigenvalues that are close to n
and −n have small multiplicities, whereas some eigenvalues close to zero will
have large multiplicities. We will quantify this in the next section, but first
we need one more lemma about the spectrum of graph complements.

Lemma 5.6.3. Let X be a connected, regular graph and denote by X its
complement. If θ is an eigenvalue of X different from the degree of X, with
multiplicity m, then X has an eigenvalue with multiplicity m.

This follows for example from [33, Lemma 8.5.1]. The idea of the proof
is that a real, symmetric matrix has an orthogonal basis of eigenvectors and
a regular graph and its complement have the same eigenvectors. Then, if x
is an eigenvector of X with eigenvalue θ different from the degree of X, then
x is an eigenvector for X with eigenvalue −1− θ.

5.6.3 A large multiplicity

We will now show that a cubelike graph has an eigenvalue with a large
multiplicity. The content of this section is quite technical, and perhaps not
very fun to read.

Theorem 5.6.4. Let X = Cay(Zd2, C) be a cubelike graph, with d ≥ 3 and
let q = d

2
. Then X has an eigenvalue with multiplicity larger than 2q.

Note that the theorem does not hold for d = 2; a 4-cycle does not have
an eigenvalue with multiplicity larger than two.

Proof. Suppose first that X is not connected. Then each connected com-
ponent of X is a cubelike graph on fewer than 2d vertices and they are all
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isomorphic. Suppose X has c components, let Y be one of them and let
2d
′ be its number of vertices. Then 2d

′
c = 2d, so c = 2d−d

′ . Further, each
eigenvalue of Y with multiplicity m is an eigenvalue of X with multiplicity
cm.

If d′ ≥ 3, we may assume inductively, that Y has an eigenvalue with
multiplicity m > 2d

′/2, and so X has an eigenvalue with multiplicity

cm > 2d−d
′ · 2d′/2 = 2d−d

′/2 > 2d−d/2 = 2q.

If d′ ∈ {0, 1}, an eigenvalue of Y with multiplicity one gives an eigenvalue
of X with multiplicity c = 2d−d

′
> 2q. Finally if d′ = 2, then Y ∈ {C4, K4}

thus it has an eigenvalue with multiplicity at least two, and so X has an
eigenvalue with multiplicity at least

2c = 2 · 2d−2 = 2d−1 > 2q.

Then suppose X is connected. As before, let n := |C| and let mr denote
the multiplicity of the eigenvalue n− 2r. Then

n∑
r=0

mr = 2d

and since X is a connected, n-regular graph, n is an eigenvalue with mul-
tiplicity one and −n has multiplicity at most one. Therefore, m0 = 1 and
mn ∈ {0, 1}. We will assume by way of contradiction that mr ≤ 2q for all r.
Then the above gives

22q =
n∑
r=0

mr ≤ 2 + 2q(n− 1),

which implies n ≥ 2q − 2/2q + 1 > 2q, (since q > 1).

Assume first that both d and n are even, so q is an integer and let k := n
2
.

Recall the identity from Lemma 5.6.2,

2dn =
n∑
r=0

(n− 2r)2mr.
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We will see that under the assumption that mr ≤ 2q for all r, we can use this
to derive a quadratic inequality, n2 + an+ b ≤ 0, with negative discriminant,
yielding a contradiction since n is an integer. Notice that

n∑
r=0

(n− 2r)2mr = n2(1 +mn) +
k−1∑
r=1

(n− 2r)2(mr +mn−r).

We will split the sum into two parts. Define t := k − 2q−1. We see that
0 < t < k − 1, and now Lemma 5.6.2 gives

2dn− n2 = n2mn +
k−1∑
r=1

(n− 2r)2(mr +mn−r)

= n2mn +
t∑

r=1

(n− 2r)2(mr +mn−r)

+
k−1∑
r=t+1

(n− 2r)2(mr +mn−r)

≥ (n− 2t)2

(
mn +

t∑
r=1

(mr +mn−r)

)
(5.1)

+
k−1∑
r=t+1

(n− 2r)2(mr +mn−r). (5.2)

We can rewrite (5.2) as

k−1∑
r=t+1

(n− 2r)2(mr +mn−r) =
2q−1−1∑
r=1

(2r)2(mk−r +mk+r),

and using the fact that m1 + · · ·+mn = 2d − 1, we see that (5.1) is equal to

(n− (n− 2q))2

(
2d − 1−mk −

k−1∑
r=t+1

(mr +mn−r)

)

= 2d(2d − 1−mk)−
2q−1−1∑
r=1

2d(mk−r +mk+r).
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Putting these together, and assuming that mr ≤ 2q for all r, we get

2dn− n2

≥ 2d(2d − 1−mk)−
2q−1−1∑
r=1

(
2d − (2r)2

)
(mk−r +mk+r)

≥ 22d − 2d − 2d+q − 2q+1

2q−1−1∑
r=1

(
22q − (2r)2

)
= 22d − 2d − 2d+q − 2q+1 · 2q−1 (22q+1 − 3 · 2q − 2)

3

= 22d − 2d +
2d+1 − 22d+1

3

and so

n2 − 2dn+ 22d − 2d +
2d+1 − 22d+1

3
≤ 0. (5.3)

This is a quadratic inequality in n with discriminant

22d − 4

(
22d − 2d +

2d+1 − 22d+1

3

)
= −3 · 22d + 4 · 2d −

8
(
2d − 22d

)
3

=
1

3

(
22d(8− 9) + 2d+2(3− 2)

)
=

1

3
(2d+2 − 22d)

< 0,

since d > 2. Therefore, (5.3) never holds when d ≥ 3, and we have reached
the required contradiction.

Next we consider the case where n is even and d is odd. Here, q is no
longer an integer so we need to split our sum differently. We let q0 := (d−1)/2
and define t = k − 2q0−1. We use the same technique as before to get

n2 − 2dn+ 22d−1 − 2d−1 +
2q+q0+1 − 2d+q+q0

3
≤ 0,
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which has discriminant

22d − 4

(
22d−1 − 2d−1 +

2q+q0+1 − 2d+q+q0

3

)
=

1

3

(
−3 · 22d + 3 · 2d+1 + 4 · 22d− 1

2 − 4 · 2d+
1
2

)
=

1

3

(
22d(2

√
2− 3) + 2d+1(3− 2

√
2)
)

=
3− 2

√
2

3

(
2d+1 − 22d

)
< 0,

since d > 2, so again we have a contradiction. Note that if d = 3 then
t = k − 1, so the sum in (5.2) is empty, but the same argument still holds.

Now assume that n is odd. Then the complement, X, of X is a cubelike
graph on 2d vertices with even degree, so by the above it has an eigenvalue
with multiplicity m > 2q. If this eigenvalue is different from the degree of X
then by Lemma 5.6.3, X also has an eigenvalue with multiplicity m.

So suppose that the degree k of X is an eigenvalue with multiplicity m.
The components of X are isomorphic, connected cubelike graphs of degree
k. If Y is one such component and θ is an eigenvalue of Y with multiplicity
m′ then θ is an eigenvalue of X with multiplicity cm′ where c is the number
of components. But k is an eigenvalue of Y with multiplicity one, and so
we must have c = m. Further, if Y is not the one-vertex graph, then it has
another eigenvalue, θ 6= k and this is an eigenvalue of X with multiplicity
m′ ≥ m. As before, this gives an eigenvalue of X with multiplicity m′ > 2q

by Lemma 5.6.3.

We are left with the case where X is edgeless, but then X is complete
and has eigenvalue −1 with multiplicity 2d − 1 > 2q and this concludes the
proof.

5.6.4 The strongly cospectral subgroup

We can now combine Theorems 5.5.3 and 5.6.4 to get an explicit upper bound
on the size of a strongly cospectral subgroup of an elementary abelian 2-group
in terms of the size of the group.
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Theorem 5.6.5. A strongly cospectral subgroup of Zd2, with d ≥ 3, has
order at most 2dd/2e−1.

Proof. Let X = Cay(Zd2, C) and let H be the strongly cospectral subgroup
of Zd2 with respect to C. By Theorem 5.6.4, X has an eigenvalue with multi-
plicity m > 2d/2 and so Theorem 5.5.3 gives

|H| ≤ 2d

m
< 2d/2.

But by Corollary 5.3.2, |H| is a power of two, so we get |H| ≤ 2dd/2e−1.

Corollary 5.6.6. In a cubelike graph on 2d vertices, with d ≥ 3, a strongly
cospectral set has size at most 2dd/2e−1.

To put this in perspective, let us look at some small values of d. Table
5.1 shows our bound on the strongly cospectral subgroup for cubelike graphs
on at most 29 = 512 vertices. The column on the right indicates whether
there are examples of the bound being tight.

d # of vertices bound tight?

3 8 2 yes

4 16 2 yes

5 32 4 yes

6 64 4 yes

7 128 8 ?

8 256 8 ?

9 512 16 ?

Table 5.1: Bound on the size of strongly cospectral sets in cubelike graphs

Unfortunately, as shown in the table, we do not know whether our bound
is tight in all dimensions. We do, however, have some examples in small
dimensions. A few of those can be found below, but we will talk about them
in more detail later on.
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Example 5.6.7.

(a) For d ∈ {3, 4}, we get 2dd/2e−1 = 2. In every hypercube, antipodal ver-
tices are strongly cospectral, so the 3-cube and the 4-cube are examples
of the bound in Corollary 5.6.6 being tight.

Figure 5.3: Hypercubes in dimensions 3 and 4

(b) Let d = 5, then 2dd/2e−1 = 4. There are exactly twelve cubelike graphs
(in six complementary pairs) on 25 = 32 vertices that have strongly
cospectral sets of size four. Two of them are shown in Figure 5.4, with
the vertices in the subgroup H shown in white. We will return to these
examples in Section 5.8.1.

Figure 5.4: Cubelike graphs on 32 vertices with degrees 10 and 14 and a
strongly cospectral subgroup of order four.
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(c) For d = 6, a strongly cospectral set can again have size at most four.
There are many such examples, one of which is shown in Figure 5.5

Figure 5.5: Cubelike graph on 64 vertices with degree 16 and a strongly
cospectral subgroup of order four.

Note that Figures 5.4 and 5.5, are mainly meant to be aesthetically pleas-
ing rather than informative. The same is true for most of the pictures to
follow.

5.7 From Zd2 to Zd4
We will extend our results on the cubelike graphs to Cayley graphs for groups
of the form Zd12 × Zd24 .

Let G := Zd4 and X = Cay(G, C). The elements in G have order at most
four, and so its characters take values in {±1,±i}. Let χ be a character of
G and consider the corresponding eigenvalue,

χ(C) =
∑
g∈C

χ(g).

If g ∈ C is an element of order four, then g−1 6= g and since C is inverse-
closed, we have g−1 ∈ C. Now, if χ(g) ∈ {±i}, then χ(g−1) = −χ(g), and so
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in this case, they cancel each other out in the sum χ(C). Therefore, much as
in the case of the cubelike graphs, χ(C) is a sum of ones and negative ones,
and the eigenvalues of X are of the form |C| − 2r where r ∈ {0, . . . , |C|}.

Clearly, the same holds for groups of the form Zd12 ×Zd24 , and now we get
analogous bounds to the ones for the cubelike graphs. The proof is identical
to the proof of Theorem 5.6.4, so we will omit it.

Theorem 5.7.1. Let X := Cay(Zd12 × Zd24 , C), define d := d1 + 2d2 ≥ 3 and
let q := d

2
. Then X has an eigenvalue with multiplicity larger than 2q.

Theorem 5.7.2. Let d1, d2 ≥ 0 be integers and suppose d := d1 + 2d2 ≥ 3.
Then a strongly cospectral subgroup of Zd12 ×Zd24 has order at most 2dd/2e−1.

Proof. Let X := Cay(Zd12 × Zd24 , C) and let H be the strongly cospectral
subgroup with respect to C. By Theorem 5.7.1, X has an eigenvalue with
multiplicity m > 2d/2 and so by Theorem 5.5.3 we get

|H| ≤ 2d

m
< 2d/2.

By Corollary 5.3.2, |H| is a power of two and the result follows.

Corollary 5.7.3. A strongly cospectral subgroup of Zd4, where d ≥ 2, has
order at most 2d−1.

We can now prove a general bound on the size of a strongly cospectral set
in normal Cayley graphs, which is slightly better than what we had before.

Theorem 5.7.4. In a normal Cayley graph, X = Cay(G, C) on at least five
vertices, a strongly cospectral set has size at most |V (X)|/3.

Proof. Let H be the strongly cospectral subgroup of G with respect to C. If
H = G, all the vertices are pairwise strongly cospectral, but this is impossible
by Lemma 5.1.1.

Then, if |H| > |G|/3, we are left with the case |G : H| = 2. By Corollary
5.5.5, G must be abelian and it contains an elementary abelian 2-subgroup H
with index two. Clearly, it follows that G = Zd12 ×Zd24 , where d2 ∈ {0, 1}, but
by Theorem 5.7.2, such a group does not have a strongly cospectral subgroup
of index two.
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5.8 Examples

It is easy to find examples of Cayley graphs with pairs of strongly cospectral
vertices. In fact, as we have mentioned before, most cubelike graphs have a
strongly cospectral subgroup of order at least two. We did not know however
whether there were Cayley graphs with more than two pairwise strongly
cospectral vertices.

In this section we will look at examples of cubelike graphs with a strongly
cospectral subgroup of order at least four. Some of these examples were dis-
covered through search, and using those examples we were able to construct
some infinite families of such graphs. In particular, we will see that for every
d ≥ 5, there exists a cubelike graph of dimension d with a strongly cospectral
subgroup of order at least four.

We note here that in a recent paper, Peter Sin has constructed cubelike
graphs with arbitrarily large strongly cospectral subgroups [43].

5.8.1 Dimension five

By Theorem 5.6.5, we know that a cubelike graph with a strongly cospectral
subgroup of order four has dimension at least five, so this is where we start.
Thanks to Gordon Royle, we had access to complete lists of non-isomorphic
cubelike graphs on 32 and 64 vertices. There are 1372 non-isomorphic cube-
like graphs on 32 vertices and exactly twelve of them, in six complementary
pairs, have a strongly cospectral subgroup of order four.

Let G = Z5
2 and let e1, . . . , e5 denote the standard basis vectors of G,

thinking of G as a vector space over F2.

Example 5.8.1. Let

C :=
{
e1, e2, e3, e4, e5,

e1 + e2, e1 + e3, e1 + e4, e1 + e5,

e2 + e3 + e4 + e5
}
.

and let X = Cay(G, C). Here, C has ten elements, and so X is a regular
graph with degree ten. The strongly cospectral subgroup is

H = 〈e1, e2 + e3 + e4 + e5〉.
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The spectrum of X is{
−6(1), −4(4), −2(8), 0(8), 2(6), 4(4), 10(1)

}
.

The graph is depicted in Figure 5.6, with the vertices in the subgroup H
shown in white (and you also saw it in Figure 5.4).

Example 5.8.2. Let

C :=
{
e1, e2, e3, e4, e5,

e1 + e2, e1 + e3, e2 + e3, e4 + e5,

e1 + e2 + e3 + e4, e1 + e2 + e3 + e5
}
.

Here, |C| = 11 and so X = Cay(G, C) has degree 11. The strongly cospectral
subgroup is H = 〈e1 + e2 + e3, e4 + e5〉, and the spectrum of X is{

−5(3), −3(6), −1(8), 1(8), 3(4), 5(2), 11(1)
}
.

The graph is depicted in Figure 5.6.

(a) Example 5.8.1 (b) Example 5.8.2

Figure 5.6: Cubelike graphs on 32 vertices with degrees 10 and 11 and a
strongly cospectral subgroup of order four.
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Example 5.8.3. Let

C :=
{
e1, e2, e3, e4, e5,

e1 + e2, e1 + e3, e1 + e4, e1 + e5, e2 + e3,

e2 + e3 + e4 + e5,

e1 + e2 + e3 + e4 + e5
}
.

We have |C| = 12 and the strongly cospectral subgroup is H = 〈e1, e2 + e3〉.
The spectrum of X = Cay(G, C) is{

−6(2), −4(3), −2(8), 0(8), 2(6), 4(4), 12(1)
}
.

The graph is show in Figure 5.7.

Example 5.8.4. Let

C :=
{
e1, e2, e3, e4, e5,

e1 + e2, e1 + e3, e1 + e4, e2 + e3,

e1 + e4 + e5, e2 + e3 + e4,

e1 + e2 + e3 + e5, e2 + e3 + e4 + e5
}
.

Here, |C| = 13 and the strongly cospectral subgroup is H = 〈e4, e1+e2+e3〉.
The spectrum of X = Cay(G, C) is{

−5(4), −3(5), −1(8), 1(8), 3(4), 5(2), 13(1)
}
.

The graph is shown in Figure 5.7.

Example 5.8.5. Let

C :=
{
e1, e2, e3, e4, e5,

e1 + e2, e1 + e3, e1 + e4, e2 + e5, e3 + e5, e4 + e5

e1 + e2 + e3 + e5, e1 + e2 + e4 + e5, e1 + e3 + e4 + e5
}
.

We have |C| = 14 and the strongly cospectral subgroup is

H = 〈e1 + e5, e2 + e3 + e4〉.

The spectrum of X = Cay(G, C) is{
−6(2), −4(4), −2(7), 0(8), 2(6), 4(4), 14(1)

}
.

The graph is shown in Figure 5.8 (and you also saw it in Figure 5.4).

71



(a) Example 5.8.3 (b) Example 5.8.4

Figure 5.7: Cubelike graphs on 32 vertices with degrees 12 and 13 and a
strongly cospectral subgroup of order four.

Example 5.8.6. Let

C :=
{
e1, e2, e3, e4, e5,

e1 + e2, e1 + e3, e1 + e4, e1 + e5,

e2 + e3, e2 + e4, e2 + e5, e3 + e4, e3 + e5,

e1 + e2 + e3 + e4 + e5
}
.

Here, |C| = 15 and the strongly cospectral subgroup is

H = 〈e1 + e2 + e3, e4 + e5〉.

The spectrum of X = Cay(G, C) is{
−5(4), −3(6), −1(7), 1(8), 3(4), 5(2), 15(1)

}
.

The graph can be found in Figure 5.8.

These six graphs and their complements are the only cubelike graphs on
32 vertices with a strongly cospectral subgroup of order four.
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(a) Example 5.8.5 (b) Example 5.8.6

Figure 5.8: Cubelike graphs on 32 vertices with degrees 14 and 15 and a
strongly cospectral subgroup of order four.

5.8.2 Dimension six

There are many cubelike graphs on 64 vertices with a strongly cospectral
subgroup of order four. We will take a look at a few. Let G = Z6

2 and again
we let e1, . . . , e6 denote the standard basis vectors.

Example 5.8.7. Define

C :=
{
e1, e2, e3, e4, e5, e6,

e1 + e2 + e3, e1 + e2 + e4, e1 + e2 + e5, e1 + e2 + e6,

e1 + e3 + e4 + e5 + e6
}
.

The degree of X = Cay(G, C) is 11, and the strongly cospectral subgroup is
H = 〈e1 + e2, e1 + e3 + e4 + e5 + e6〉. The spectrum of X is{

−11(1), −5(5), −3(10), −1(16), 1(16), 3(10), 5(5), 11(1)
}
.

Observe that the spectrum is symmetric about the origin implying that the
graph is bipartite. The graph is shown in Figure 5.9.
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Figure 5.9: Cubelike graph on 64 vertices with degree 11 and a strongly
cospectral subgroup of order four.

Example 5.8.8. Define X = Cay(G, C) with

C :=
{
e1, e2, e3, e4, e5, e6,

e1 + e2, e1 + e3, e1 + e4, e1 + e5

e2 + e3 + e4 + e5,

e1 + e2 + e3 + e4 + e5
}
.

Here, X has degree 12 and the strongly cospectral subgroup is H = 〈e1, e6〉.
The spectrum of X is{

−6(5), −4(5), −2(16), 0(16), 2(10), 4(10), 10(1), 12(1)
}
.

This graph is shown in Figure 5.10.

5.8.3 All dimensions

We will now show through construction that for all d ≥ 5, there exists a
cubelike graph on 2d vertices with a strongly cospectral subgroup of order at
least four. The constructions differ depending on the parity of d.
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Figure 5.10: Cubelike graph on 64 vertices with degree 12 and a strongly
cospectral subgroup of order four.

We start by restating Theorem 5.5.1 for abelian groups.

Theorem 5.8.9 ([21, Lemma 16.2.1]). Let G be an abelian group. The
vertices 0 and c are strongly cospectral in Cay(G, C) if and only if 2c = 0
and for any two characters ϕ and ψ, if ϕ(C) = ψ(C) then ϕ(c) = ψ(c).

Construction 5.8.10. Let d be an odd integer with d ≥ 5. Denote by
e1, . . . , ed the standard basis vectors of G := Zd2. Define the sets

C1 := {e1, e2, . . . , ed},
C2 := {e1 + e2, e1 + e3, e2 + e3},
C3 := {ei + ej : 4 ≤ i < j ≤ d},
C4 := {e1 + e2 + e3 + ei : 4 ≤ i ≤ d},

let C := C1 ∪ C2 ∪ C3 ∪ C4 and define X = Cay(G, C). We have

|C| = d+ 3 +

(
d− 3

2

)
+ d− 3 = 2d+

(
d− 3

2

)
.

Note that when d = 5, this is the graph from Example 5.8.2.
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Theorem 5.8.11. Let X be defined as in Construction 5.8.10 and let H be
the strongly cospectral subgroup of G with respect to C. Then |H| ≥ 4.

Proof. Since d is odd, we see that the sum of C is σ := e1 + e2 + · · · + ed.
By Theorem 5.6.1, there is perfect state transfer between 0 and σ, thus they
are strongly cospectral. We will use Theorem 5.8.9 to show that the vertex
g := e1 + e2 + e3 is strongly cospectral to 0. Note that since d ≥ 5, we have
g 6= σ and so this implies that 〈g, σ〉 has order four.

Since every element of G has order two, it suffices to show that if ψ, ϕ
are characters of G with

ψ(C) =
∑
c∈C

ψ(c) =
∑
c∈C

ϕ(c) = ϕ(C),

then ψ(e1 + e2 + e3) = ϕ(e1 + e2 + e3). Consider an arbitrary character χ of
G. We have

χ(C) = χ(C1) + χ(C2) + χ(C3) + χ(C4) (5.4)

=
d∑
i=1

χ(ei) + χ(e1 + e2) + χ(e1 + e3) + χ(e2 + e3)

+
∑

4≤i<j≤d

χ(ei + ej) +
d∑
i=4

χ(e1 + e2 + e3 + ei)

=
d∑
i=1

χ(ei) + χ(e1)χ(e2) + χ(e1)χ(e3) + χ(e2)χ(e3)

+
∑

4≤i<j≤d

χ(ei)χ(ej) + χ(e1)χ(e2)χ(e3)
d∑
i=4

χ(ei).

Since every element of G has order two, we know that χ(g) = ±1 for all
g ∈ G. For convenience, let d′ := d− 3 and consider the set

C ′1 := {e4, . . . , ed}.

Let pχ denote the number of elements c ∈ C ′1 such that χ(c) = 1 and nχ the
number of elements c ∈ C ′1 such that χ(c) = −1, i.e.

pχ = |χ−1(1) ∩ C ′1| and nχ = |χ−1(−1) ∩ C ′1|.
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Then pχ + nχ = d′ and we have

d∑
i=4

χ(ei) = pχ − nχ = 2pχ − d′.

Furthermore,∑
4≤i<j≤d

χ(ei)χ(ej) =

(
pχ
2

)
+

(
nχ
2

)
− pχnχ

=
1

2

(
pχ(pχ − 1) + (d′ − pχ)(d′ − 1− pχ)− 2pχ(d′ − pχ)

)
=

1

2

(
4p2χ − 4d′pχ + d′(d′ − 1)

)
= 2p2χ − 2d′pχ +

d′(d′ − 1)

2
.

Putting this together with Equation 5.4, we obtain

χ(C) = χ(e1) + χ(e2) + χ(e3) + 2pχ − d′ (5.5)

+ χ(e1)χ(e2) + χ(e1)χ(e3) + χ(e2)χ(e3)

+ 2p2χ − 2d′pχ +
d′(d′ − 1)

2
± (2pχ − d′)

where the ± depends on the value of χ(e1 + e2 + e3). Now let ψ, ϕ be
characters of G such that ψ(C) = ϕ(C) and suppose by way of contradiction
that ψ(e1 + e2 + e3) 6= ϕ(e1 + e2 + e3). We may assume without loss of
generality that ψ(e1 + e2 + e3) = 1 and ϕ(e1 + e2 + e3) = −1. Define pψ and
pϕ as before. Since

ϕ(e1)ϕ(e2)ϕ(e3) = ϕ(e1 + e2 + e3) = −1,

we have two possibilities: either ϕ(e1) = ϕ(e2) = ϕ(e3) = −1 or exactly one
out of the two is −1 and the other two are 1. We can see that in both cases,
we have

ϕ(e1) + ϕ(e2) + ϕ(e3) + ϕ(e1)ϕ(e2) + ϕ(e1)ϕ(e3) + ϕ(e2)ϕ(e3) = 0.

Similarly, we have two cases for ψ(e1), ψ(e2), ψ(e3): either they are all one,
or exactly two of them are −1. It follows that

ψ(e1) + ψ(e2) + ψ(e3) + ψ(e1)ψ(e2) + ψ(e1)ψ(e3) + ψ(e2)ψ(e3) ∈ {−2, 6}.
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Combining this with Equation 5.5 we get

ϕ(C) = 2p2ϕ − 2d′pϕ +
d′(d′ − 1)

2

and

ψ(C) =

2p2ψ − 2d′pψ + d′(d′−1)
2

+ 2(2pψ − d′)− 2, or

2p2ψ − 2d′pψ + d′(d′−1)
2

+ 2(2pψ − d′) + 6.

Now ψ(C) = ϕ(C) implies

2p2ϕ − 2d′pϕ − (2p2ψ − 2d′pψ + 2(2pψ − d′)) ∈ {−2, 6}

and so
p2ϕ − d′pϕ − 2pψ + d′ − p2ψ + d′pψ ∈ {−1, 3}.

Recall that d is odd, so d′ = d − 3 is even; let d′ = 2z with z ∈ Z. Further,
since σ is strongly cospectral with 0, we know that ϕ(σ) = ψ(σ) and it follows
that pψ and pϕ have different parity. Suppose first pψ = 2x and pϕ = 2y+ 1,
with x, y ∈ Z. Then

(2y + 1)2 − 2z(2y + 1)− 4x+ 2z − 4x2 + 4zx

= 4y2 + 4y + 1− 4zy − 4x+ 4x2 + 4zx ∈ {−1, 3}

but this implies

4(y2 + y − zy − x+ x2 + zx) ∈ {−2, 2}

which is impossible. Then suppose pψ = 2x+ 1 and pϕ = 2y. In this case,

4y2 − 4zy − 2(2x+ 1) + 2z − (2x+ 1)2 + 2z(2x+ 1)

= 4y2 − 4zy − 4x− 2 + 2z − 4x2 − 4x− 1 + 4zx+ 2z

= 4y2 − 4zy − 8x+ 4z − 3 ∈ {−1, 3}

which implies
4(y2 − zy − 2x+ z) ∈ {2, 6},

again impossible.

We conclude that whenever d is odd and ϕ and ψ are characters of G such
that ϕ(C) = ψ(C), then ϕ(e1 + e2 + e3) = ψ(e1 + e2 + e3) and so e1 + e2 + e3
is strongly cospectral to zero in X. Therefore, 〈g, σ〉 ≤ H and so |H| ≥ 4.
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Next we will look at the even dimensions.

Construction 5.8.12. We still let d ≥ 5 be odd, and we will consider a
Cayley graph for G := Zd+1

2 . Let C be defined as in Construction 5.8.10 and
let X = Cay(G, C ′) where

C ′ := C ∪ {ed+1, e1 + · · ·+ ed}.

Observe that e1 + · · ·+ ed 6∈ C because d ≥ 5. Figure 5.11 shows this graph
in dimension d+ 1 = 6.

Figure 5.11: Cubelike graph on 64 vertices with degree 13 and a strongly
cospectral subgroup of order four.

Recall that the sum of the elements of C is e1 + · · ·+ ed and so the sum
of the elements of C ′ is ed+1. Therefore, there is perfect state transfer from 0
to ed+1 in X. For an arbitrary character, χ of G, define as before

pχ := |χ−1(1) ∩ C ′1| and nχ = |χ−1(−1) ∩ C ′1|

where C ′1 := {e4, . . . , ed}. We also let d′ := d− 3 and notice that d′ ≡ d+ 1
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(mod 4). Then we can modify equation 5.5 to get

χ(C ′) = χ(e1) + χ(e2) + χ(e3) + 2pχ − d′ (5.6)

+ χ(e1)χ(e2) + χ(e1)χ(e3) + χ(e2)χ(e3)

+ 2p2χ − 2d′pχ +
d′(d′ − 1)

2
± (2pχ − d′)

+ χ(ed+1) +
d∏
i=1

χ(ei).

We need to consider two cases separately, based on the parity of (d+ 1)/2.

Lemma 5.8.13. Let X be as in Construction 5.8.12. If d+ 1 ≡ 2 (mod 4),
then e1 + e2 + e3 is strongly cospectral to zero in X.

Proof. Let ψ and ϕ be distinct characters of G such that ψ(C ′) = ϕ(C ′) and
suppose that ψ(e1 + e2 + e3) = 1 and ϕ(e1 + e2 + e3) = −1. Then

ϕ(C ′) = 2p2ϕ − 2d′pϕ +
d′(d′ − 1)

2
+ ϕ(ed+1) +

d∏
i=1

ϕ(ei)

and

ψ(C ′) = 2p2ψ − 2d′pψ +
d′(d′ − 1)

2
+ 2(2pψ − d′) + ψ(ed+1) +

d∏
i=1

ψ(ei) + α

where α ∈ {−2, 6}. Since ed+1 is strongly cospectral to 0, we know that
ψ(ed+1) = ϕ(ed+1) and so we get

2p2ϕ − 2d′pϕ +
d∏
i=1

ϕ(ei)

−

(
2p2ψ − 2d′pψ + 2(2pψ − d′) +

d∏
i=1

ψ(ei)

)
∈ {−2, 6}.

Therefore

p2ϕ − d′pϕ − p2ψ + d′pψ − (2pψ − d′)

+
1

2

(
d∏
i=1

ϕ(ei)−
d∏
i=1

ψ(ei)

)
∈ {−1, 3}. (5.7)

80



Recall that d′ is even and note that since
d∏
i=1

ϕ(ei),
d∏
i=1

ψ(ei) ∈ {±1}

we have
d∏
i=1

ϕ(ei)−
d∏
i=1

ψ(ei) ∈ {−2, 0, 2}.

We consider three cases.

Case 1: pψ and pϕ have different parities.

Then, since ψ(e1 + e2 + e3) 6= ϕ(e1 + e2 + e3), this implies
d∏
i=1

ϕ(ei) =
d∏
i=1

ψ(ei).

Suppose first that pψ is even and write pψ = 2x and pϕ = 2y+1 with x, y ∈ Z.
Then Equation 5.7 gives

(2y + 1)2 − d′(2y + 1)− (2x)2 + d′(2x)− (2(2x)− d′)
= 4y2 + 4y + 1− 2d′y − d′ − 4x2 + 2d′x− 4x+ d′

= 4(y2 + y − x2 − x) + 2d′(x− y) + 1

∈ {−1, 3}

and so

2(y2 + y − x2 − x) + d′(x− y) ∈ {±1}

which is impossible since d′ is even. Then suppose pψ is odd and write
pψ = 2x+ 1 and pϕ = 2y. Then Equation 5.7 yields

(2y)2 − d′(2y)− (2x+ 1)2 + d′(2x+ 1)− (2(2x+ 1)− d′)
= 4y2 − 2d′y − 4x2 − 4x− 1 + 2d′x+ d′ − 4x− 2 + d′

= 4(y2 − x2 − 2x) + 2d′(x− y) + 2d′ − 3

∈ {−1, 3}

which again implies

2(y2 − x2 − 2x) + d′(x− y) + d′ ∈ {1, 3}.

This is impossible since d′ is even.
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Case 2: pψ and pϕ are both even.

Write pψ = 2x and pϕ = 2y. Note that in this case,

d∏
i=1

ϕ(ei) = ϕ(e1 + e2 + e3)
d∏
i=4

ϕ(ei) = −1(−1)d
′−pϕ = −1

and
d∏
i=1

ψ(ei) = ψ(e1 + e2 + e3)
d∏
i=4

ψ(ei) = (−1)d
′−pψ = 1

and so
1

2

(
d∏
i=1

ϕ(ei)−
d∏
i=1

ψ(ei)

)
= −1.

Therefore, Equation 5.7 gives

(2y)2 − 2d′y − (2x)2 + 2d′x− 4x+ d′

= 4(y2 − x2 − x) + 2d′(x− y) + d′

∈ {0, 4}.

It follows that d′ ≡ 0 (mod 4).

Case 3: pψ and pϕ are both odd.

Let pψ = 2x+ 1 and pϕ = 2y + 1. Here we have

1

2

(
d∏
i=1

ϕ(ei)−
d∏
i=1

ψ(ei)

)
= 1.

So Equation 5.7 gives

(2y + 1)2 − d′(2y + 1)− (2x+ 1)2 + d′(2x+ 1)− (2(2x+ 1)− d′)
= 4y2 + 4y + 1− 2d′y − d′ − 4x2 − 4x− 1 + 2d′x+ d′ − 4x− 2 + d′

= 4(y2 + y − 2x− x2) + 2d′(x− y) + d′ − 2

∈ {−2, 2}

and again we see that d′ ≡ 0 (mod 4).

We have shown that if e1 +e2 +e3 is not strongly cospectral to zero, then
d+ 1 ≡ d′ ≡ 0 (mod 4), thus proving the lemma.
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Lemma 5.8.14. Let X be as in Construction 5.8.12. If d+ 1 ≡ 0 (mod 4),
then e4 + · · ·+ ed is strongly cospectral to zero in X.

Proof. Let ψ and ϕ be distinct characters such that ψ(C ′) = ϕ(C ′) and
suppose that ψ(e4 + · · ·+ ed) = 1 and ϕ(e4 + · · ·+ ed) = −1. It follows that
pψ is even and pϕ is odd; write pψ = 2x and pϕ = 2y + 1 with x, y ∈ Z. As
before, ψ(ed+1) = ϕ(ed+1). For χ ∈ {ψ, ϕ} we define

εχ := χ(e1 + e2 + e3).

Again we have three cases.

Case 1: εψ 6= εϕ

First assume εψ = 1 and εϕ = −1. Then, as before we have

ψ(e1) + ψ(e2) + ψ(e3) + ψ(e1)ψ(e2) + ψ(e1)ψ(e3) + ψ(e2)ψ(e3) ∈ {−2, 6}

and

ϕ(e1) + ϕ(e2) + ϕ(e3) + ϕ(e1)ϕ(e2) + ϕ(e1)ϕ(e3) + ϕ(e2)ϕ(e3) = 0.

Further,

d∏
i=0

ψ(ei) = εψ · ψ(e4 + · · ·+ ed) = 1,

d∏
i=0

ϕ(ei) = εϕ · ϕ(e4 + · · ·+ ed) = 1.

It follows that

ϕ(C ′) = 2p2ϕ − 2d′pϕ +
d′(d′ − 1)

2
+ ϕ(ed+1) + 1, and

ψ(C ′) = 2p2ψ − 2d′pψ +
d′(d′ − 1)

2
+ 2(2pψ − d′) + ψ(ed+1) + 1 + α

with α ∈ {−2, 6}, and so

2p2ϕ − 2d′pϕ − 2p2ψ + 2d′pψ − 4pψ + 2d′ ∈ {−2, 6}.
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This implies

(2y + 1)2 − d′(2y + 1)− (2x)2 + d′(2x)− 2(2x) + d′

= 4y2 + 4y + 1− 2d′y − d′ − 4x2 + 2d′x− 4x+ d′

= 4(y2 + y − x2 − x) + 2d′(x− y) + 1

∈ {−1, 3}.

But then

2(y2 + y − x2 − x) + d′(x− y) ∈ {±1},

which is impossible since d′ is even. The case where εψ = −1 and εϕ = 1
leads to a similar contradiction.

Case 2: εψ = εϕ = −1.

In this case, we have

χ(e1) + χ(e2) + χ(e3) + χ(e1)χ(e2) + χ(e1)χ(e3) + χ(e2)χ(e3) = 0

for χ ∈ {ψ, ϕ}, and so

ψ(C ′) = 2pψ − d′ + 2p2ψ − 2d′pψ +
d′(d′ − 1)

2

− (2pψ − d′) + ψ(ed+1) +
d∏
i=0

ψ(ei),

= 2p2ψ − 2d′pψ +
d′(d′ − 1)

2
+ ψ(ed+1)− 1

= 2(2x)2 − 2d′(2x) +
d′(d′ − 1)

2
+ ψ(ed+1)− 1

= 8x2 − 4d′x+
d′(d′ − 1)

2
+ ψ(ed+1)− 1,
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and

ϕ(C ′) = 2pϕ − d′ + 2p2ϕ − 2d′pϕ +
d′(d′ − 1)

2

− (2pϕ − d′) + ϕ(ed+1) +
d∏
i=0

ϕ(ei)

= 2p2ϕ − 2d′pϕ +
d′(d′ − 1)

2
+ ϕ(ed+1) + 1

= 2(2y + 1)2 − 2d′(2y + 1) +
d′(d′ − 1)

2
+ ϕ(ed+1) + 1

= 8y2 + 8y + 2− 4d′y − 2d′ +
d′(d′ − 1)

2
+ ϕ(ed+1) + 1.

It follows that

0 = ϕ(C ′)− ψ(C ′) (5.8)
= 8y2 + 8y + 2− 4d′y + 2d′ − 8x2 + 4d′x+ 2

= 4(2y2 + 2y − d′y − 2x2 + d′x+ 1) + 2d′.

Since d′ is even we can write d′ = 2z. Then Equation 5.8 yields

0 = 2y2 + 2y − 2zy − 2x2 + 2zx+ 1 + z

which implies
z = 2(x2 − y + zy − y2 − zx)− 1.

Therefore, z is odd, and equivalently, d+ 1 ≡ d′ ≡ 2 (mod 4).

Case 3: εψ = εϕ = 1

Then for χ ∈ {ψ, ϕ}, we get

χ(C ′) = 2p2χ − 2d′pχ +
d′(d′ − 1)

2
+ 2(2pχ − d′) + χ(ed+1) +

d∏
i=1

χ(ei) + α

with α ∈ {−2, 6}, and so

2p2ϕ − 2d′pϕ + 4pϕ − 2d′ − 1− 2p2ψ + 2d′pψ − 4pψ + 2d′ − 1

= 2(p2ϕ − d′pϕ + 2pϕ − p2ψ + d′pψ − 2pψ − 1)

∈ {−8, 0, 8}.
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We again write d′ = 2z with z ∈ Z. Then, this implies

(2y + 1)2 − (2z)(2y + 1) + 2(2y + 1)− (2x)2 + (2z)(2x)− 2(2x)− 1

= 4y2 + 4y + 1− 4zy − 2z + 4y + 2− 4x2 + 4zx− 4x− 1

= 4(y2 + 2y − zy − x2 + zx− x)− 2z + 2

∈ {0,±4}.

Therefore

2(y2 + 2y − zy − x2 + zx− x)− z ∈ {−3,−1, 1},

implying that z is odd and so again, d+ 1 ≡ d′ ≡ 2 (mod 4).

We have now shown that if d+ 1 ≡ 0 (mod 4), the vertex e4 + · · ·+ ed is
strongly cospectral to zero in X.

Theorem 5.8.15. If X is the cubelike graph described in Construction
5.8.12, and H is the strongly cospectral subgroup, then |H| ≥ 4.

Proof. Let g := e1 + e2 + e3 and h := e4 + · · ·+ ed. By our two lemmas, we
have either 〈ed+1, g〉 ≤ H or 〈ed+1, h〉 ≤ H. In both cases, |H| ≥ 4.

The following theorem now follows immediately from Theorems 5.8.11
and 5.8.15.

Theorem 5.8.16. If d ≥ 5, there exists a cubelike graph on 2d vertices with
a strongly cospectral subgroup of order four.

5.8.4 Other Cayley graphs

We can use our cubelike examples to construct other Cayley graphs with a
strongly cospectral subgroup of order four.

The Cartesian product of graphs X and Y with vertex sets V (X) and
V (Y ), respectively is the graph with vertex set V (X)×V (Y ) in which (x1, y1)
and (x2, y2) are adjacent if and only if either x1 = x2 and y1 ∼ y2 or x1 ∼ x2
and y1 = y2. We denote this graph by X�Y .
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Lemma 5.8.17. Let X := Cay(Zd2, C) be a cubelike graph, let m be an
odd number and denote by Cm the cycle graph with vertices {0, . . . ,m− 1}.
If the vertices 0 and g are strongly cospectral in X then (0, 0) and (g, 0)
are strongly cospectral in the Cartesian product Y := X�Cm, and this is a
Cayley graph for the group Zd2 × Zm.

Proof. Denote the vertices of Y by (g, h) where g ∈ V (X) = Zd2 and h ∈
V (Cm) = Zm. Note that V (Y ) = Zd2×Zm =: G. Define C0 := {(c, 0) : c ∈ C}
and let C ′ := C0 ∪ {(0, 1), (0,−1)}. It is easy to verify that Y = Cay(G, C ′).

Recall that if χ1 and χ2 are characters of Zd2 and Zm, respectively, then
their product is a character of G, and because 2d and m are coprime, distinct
pairs (χ1, χ2) give distinct characters χ of G, and so every character of G can
be decomposed uniquely in this way.

Suppose g ∈ Zd2 is strongly cospectral to 0 in X. Let ψ, ϕ be characters
of G such that ψ(C ′) = ϕ(C ′). By the above, we can write ϕ = ϕ1ϕ2 and
ψ = ψ1ψ2 where ϕ1, ψ1 are characters of Zd2 and ϕ2, ψ2 are characters of Zm.
Then we have

ψ(C ′) =
∑
c′∈C′

ψ(c′) =
∑
c∈C

ψ1(c) + ψ2(1) + ψ2(−1) = ψ1(C) + ζkm + ζ−km ,

for some k < m, where ζm is a primitive m-th root of unity. Similarly, there
is some ` < m such that ϕ(C ′) = ϕ1(C) + ζ`m + ζ−`m . Since ψ(C ′) = ϕ(C ′), this
implies that

(ζkm + ζ−km )− (ζ`m + ζ−`m ) = ψ1(C)− ϕ1(C) ∈ Z,

but since m is odd, the only possibility is zero. Therefore, ψ1(C) = ϕ1(C)
and so by Theorem 5.8.9, ψ1(g) = ϕ1(g). This implies that ψ(g, 0) = ϕ(g, 0)
which again implies that (g, 0) is strongly cospectral to (0, 0) in Y .

Theorem 5.8.18. If n is a positive integer divisible by 32 then there exists a
Cayley graph on n vertices with strongly cospectral sets of size at least four.

Proof. We can write n = 2dm where d ≥ 5 and m is odd. By Theorem
5.8.16, there is a cubelike graph on 2d vertices with strongly cospectral sets
of size four. Then, by Lemma 5.8.17, we can build a Cayley graph of Zd2×Zm
preserving the strongly cospectral sets of size four.
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Chapter 6

Perfect State Transfer

In the years 2009–2013, Bašić, Petković and Stevanović wrote four papers
proving various results on perfect state transfer in circulants [8, 6, 7, 5]. In
the last one of these, Bašić completely characterized the connection sets of
circulants having perfect state transfer [5].

In this chapter, we will show that Bašić’s characterization generalizes
to Cayley graphs for abelian groups with a cyclic Sylow-2-subgroup. Such
graphs will be called 2-circulants. Rather than using Bašić’s methods, which
are largely based in number theory, we take a group theoretic approach,
making use of the theory we have developed in previous chapters, including
characters and association schemes.

The results of this chapter can also be found in our paper, [3].

6.1 Preliminaries

In this chapter we will need the concepts of weighted and signed Cayley
graphs.

A weighted Cayley graph is a Cayley graph Cay(G, C) together with a
function, ω : C → Z, with the property that the fibre of each element in Z is
inverse-closed. The weighted adjacency matrix of this graph is given by∑

n∈ω(C)

nA(Cay(G,ω−1(n))).
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Note that we require our graphs to have integer weights. This is because
many results that have been proved for unweighted Cayley graphs still hold
if the graph has integer (or rational) weights, but break if a graph has real
or complex weights.

A signed Cayley graph is a weighted Cayley graph for which the image
of ω is {±1}. We will denote by C+ the subset of elements of C with positive
sign and C− the subset with negative sign. Then we see that the signed
adjacency matrix of Cay(G, C) is A(Cay(G, C+))− A(Cay(G, C−)).

We call Cay(G, C) an integral signed Cayley graph if both Cay(G, C+)
and Cay(G, C−) are integral. In this case, both the signed and unsigned
adjacency matrices have integer eigenvalues.

Recall that the Cartesian product, X�Y , of the graphs X and Y is the
graph with vertex set V (X)×V (Y ) in which (x1, y1) and (x2, y2) are adjacent
if and only if either x1 = x2 and y1 ∼ y2 or x1 ∼ x2 and y1 = y2.

Equivalently, if X and Y have adjacency matrices A(X) and A(Y ), re-
spectively, thenX�Y is the graph with adjacency matrix A(X)⊗I+I⊗A(Y ),
where ⊗ denotes the Kronecker product of matrices. The matrices A(X)⊗ I
and I ⊗ A(Y ) commute, and so it is not too hard to see that

UX�Y (t) = UX(t)⊗ UY (t).

We define the direct product of graphs X and Y , denoted by X × Y ,
as the graph with adjacency matrix A(X) ⊗ A(Y ). This is the graph with
vertex set V (X) × V (Y ) and (x1, y1) ∼ (x2, y2) if and only if both x1 ∼ x2
and y1 ∼ y2.

Throughout this chapter, our groups will be abelian, and we therefore use
additive notation.

6.2 Integral translation graphs

In this section, we will give some general results on perfect state transfer
in integral translation graphs. In particular, we give a characterization of
perfect state transfer in translation graphs in terms of the characters of the
underlying group.
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Recall that if a vertex-transitive graph admits perfect state transfer, it
must have integer eigenvalues (Lemma 2.4.6). The next lemma follows di-
rectly from a theorem of Coutinho [19].

Lemma 6.2.1 ([19, Theorem 2.4.4]). Let X be an integral translation graph
with distinct eigenvalues θ0 > · · · > θd. Define

δ := gcd{θ0 − θr : r = 1, . . . , d}.

Then, if X admits perfect state transfer, it occurs at time π/δ.

In fact, Coutinho’s theorem holds for integer-weighted graphs. In partic-
ular our lemma holds for integral signed Cayley graphs.

Let G be an abelian group. Recall from Section 4.6 that the characters
of G are eigenvectors for any Cayley graph of G and that the eigenvalue of
Cay(G, C) for the character χ is given by

χ(C) =
∑
c∈C

χ(c).

We can now prove the following.

Lemma 6.2.2 ([21, Lemma 16.3.2]). Let X = Cay(G, C) be an integral
translation graph and let δ be the greatest common divisor of its eigenvalue
differences. Then, there is perfect state transfer from 0 to a in X at time
π/δ if and only if for each character, χ of G we have

χ(a) = (−1)(|C|−χ(C))/δ.

Proof. For each character, χ of G, define the |G| × |G| matrix Eχ by

(Eχ)gh :=
1

|G|
χ(h− g) =

1

|G|
χ(h)χ(g),

for all g, h ∈ G (these are the matrix idempotents defined in Section 4.5).
The columns of Eχ are eigenvectors of A := A(X) with eigenvalue χ(C) and
we have

A =
∑
χ∈G∗

χ(C)Eχ.
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Let U(t) be the transition matrix at time t. Then

U(t) =
∑
χ∈G∗

eitχ(C)Eχ.

In particular,

U(t)0,a =
∑
χ∈G∗

eitχ(C)(Eχ)0,a

=
1

|G|
∑
χ∈G∗

eitχ(C)χ(a)χ(0)

=
1

|G|
∑
χ∈G∗

eitχ(C)χ(a).

Since each term in the sum has absolute value one, we see that |U(t)0,a| = 1
if and only if the terms are all equal. This is equivalent to

eit|C| = eitχ(C)χ(a)

for all characters χ of G. By Lemma 6.2.1, perfect state transfer must occur
at time π/δ, and now the result follows.

It follows from this lemma that perfect state transfer must occur between
zero and an element of order two, but we also knew this from Theorem 5.8.9.
Since a group with a cyclic Sylow-2-subgroup has a unique element of order
two, we see that in a 2-circulant, there is only one possible vertex that could
have perfect state transfer with the identity.

6.3 Groups with a cyclic Sylow-2-subgroup

Let G be an abelian group of order 2dm where m is odd, and assume G has
a cyclic Sylow-2-subgroup. Then G ∼= Z2d ×H, where H ≤ G is an abelian
group of order m. This is a simple but extremely important fact. We will
use this to decompose a Cayley graph of such a group into smaller graphs.

Let X = Cay(G, C) be an integral 2-circulant. We partition C in the
following way. Let Cr denote the subset of C consisting of elements that
have order 2rm′ for some odd number m′. It is clear that C0, . . . , Cd is
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a partition of C and so X is an edge-disjoint union of the Cayley graphs
Cay(G, C0), . . . ,Cay(G, Cd).

Furthermore, since X is integral, C is power-closed by Lemma 4.6.3, and
this clearly implies that Cr is power-closed (in particular inverse-closed) for
all r. We will show that the Cayley graph Xr := Cay(G, Cr) is a direct
product of two Cayley graphs, one of which has complete bipartite graphs
as its components. First, we need two lemmas. Recall that we denote by [g]
the power class of g.

Lemma 6.3.1 ([21, Lemma 16.5.2]). The Cayley graph Cay(Z2d , [1]) is iso-
morphic to the complete bipartite graph K2d−1,2d−1 , for all d ≥ 1.

Proof. We see that [1] consists of all the odd numbers, so the even and odd
numbers form a bipartition of Cay(Z2d , [1]) and the rest is clear.

Note that in a cyclic group, [1] is the set of elements that generate the
whole group.

Lemma 6.3.2. Let X = Cay(G, C) be a Cayley graph. If G ∼= H1×H2 and
C = D1 × D2, with Dr ⊆ Hr, then X is a direct product of Cayley graphs
Y1 = Cay(H1,D1) and Y2 = Cay(H2,D2).

Proof. Since G ∼= H1×H2, the vertices of X can be written g = (g1, g2) with
gr ∈ Hr for r = 1, 2. Further, vertices g = (g1, g2) and h = (h1, h2) ∈ G are
adjacent in X if and only if (h1g

−1
1 , h2g

−1
2 ) ∈ C, if and only if h1g−11 ∈ D1

and h2g−12 ∈ D2. This is equivalent to g and h being adjacent in the direct
product Y1 × Y2 from which the result follows.

We can now prove the following theorem.

Theorem 6.3.3. Let X = Cay(G, C) be an integral signed 2-circulant. Sup-
pose the order of G is 2dm wherem is odd and d ≥ 1, and let H be the unique
subgroup of G of order m. For r ≥ 0, let Cr ⊆ C be the set of elements in
C of order 2rm′ for some odd number m′ and let Xr := Cay(G, Cr). Further,
let K(d, r) denote the graph on 2d vertices whose components are isomorphic
to the complete bipartite graph K2r−1,2r−1 , with the convention that K(d, 0)
is the graph with adjacency matrix I. Then

Xr
∼= K(d, r)× Yr

where Yr is an integral signed Cayley graph of H.
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Proof. First, since G ∼= Z2d ×H, we can write every element of G as (x, h)
with x ∈ Z2d and h ∈ H. Fix r ∈ {0, . . . , d} and let C+r := Cr ∩ C+ and
C−r := Cr ∩ C−. Since X is an integral signed Cayley graph, C+ and C−
are power-closed, thus C+r and C−r are power-closed. We want to show that
there are subsets D1 ⊆ Z2d and D+

2 ,D−2 ⊆ H such that C+r = D1 × D+
2 and

C−r = D1 × D−2 . We will show that if (x1, h1), (x2, h2) ∈ Cr (respectively
C+r , C−r ) then (x1, h2), (x2, h1) ∈ Cr (respectively C+r , C−r ).

Note that if 〈(x1, h1)〉 = 〈(x2, h2)〉 ≤ G, then 〈x1〉 = 〈x2〉 ≤ Z2d and
〈h1〉 = 〈h2〉 ≤ H. Let (x1, h1), (x2, h2) ∈ Cr. Then x1 and x2 have the same
order, 2r, and since they are contained in the cyclic group Z2d , we have
〈x1〉 = 〈x2〉. But then we have (x1, h2) ∈ [(x2, h2)] ⊆ Cr and (x2, h1) ∈
[(x1, h1)] ⊆ Cr, implying that Cr = D1 ×D2 for some D1,D2.

Similarly we get C+r = D′1 ×D′2 and C−r = D′′1 ×D′′2 . Since Cr is a disjoint
union of C+r and C−r , and the elements of D1 all generate the same subgroup,
we must have D′1 = D′′1 = D1 and D′2 ∪ D′′2 = D2 with D′2 and D′′2 disjoint.
Thus we have found sets D1 ⊆ Z2d and D+

2 ,D−2 ⊆ H such that C+r = D1×D+
2

and C−r = D1 ×D−2 .
Then by Lemma 6.3.2, we have

Cay(G, Cr) ∼= Cay(Z2d ,D1)× Cay(H,D2),

Cay(G, C+r ) ∼= Cay(Z2d ,D1)× Cay(H,D+
2 ),

Cay(G, C−r ) ∼= Cay(Z2d ,D1)× Cay(H,D−2 ).

Clearly, D+
2 and D−2 are power closed, so Yr := Cay(H,D2) is an integral

signed Cayley graph of H. The signed adjacency matrix of Cay(G, Cr) is

A(Cay(Z2d ,D1))⊗ (A(Cay(H,D+
2 ))− A(Cay(H,D−2 ))).

Further, we see that D1 consists of all the elements in Z2d of order 2r. This
implies that the components of Cay(Z2d ,D1) are isomorphic to Cay(Z2r , [1]),
unless r = 0 in which case it is the graph with a loop on each vertex and no
other edges. Now the result follows from Lemma 6.3.1.

Note that we have defined a Cayley graph in terms of a connection set
that does not contain the identity, since if this were the case, the graph
would have a loop on every vertex. However, for the graphs Yr, we extend
the definition to include graphs with loops, since this can indeed happen
here, if r ≥ 1.
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Corollary 6.3.4. For r ≥ 3, the integral signed graphs Xr = Cay(G, Cr) are
periodic at time π/2.

Proof. The eigenvalues of Xr are θλ where θ and λ are eigenvalues of K(d, r)
and the signed adjacency matrix of Yr, respectively. The eigenvalues of
K(d, r) are ±2k−1 and 0 and so it follows that all the eigenvalues of Xr

are divisible by 2r−1. In particular, if r ≥ 3 they are divisible by four. Then,
using the spectral decomposition of the adjacency matrix of Xr, it is clear
that U(π/2) = I, so Xr is periodic at time π/2 for r ≥ 3.

6.4 Semidirect products

Let X = Cay(G, C) be an integral signed 2-circulant where G has order
2dm with m odd, and define Yr as in Theorem 6.3.3 for r = 0, . . . , d. Let
Ar denote the signed adjacency matrix of Yr. We want to construct the
adjacency matrix of X using the matrices A0, . . . , Ad.

Define the matrixM(A0, . . . , Ad) recursively by

M(A0, A1) :=

(
A0 A1

A1 A0

)
,

and for r ≥ 2,

M(A0, . . . , Ar) := I2 ⊗M(A0, . . . , Ar−1) +

(
0 1
1 0

)
⊗ (J2r−1 ⊗ Ar)

=M(M(A0, . . . , Ar−1), J2r−1 ⊗ Ar).

Lemma 6.4.1. The matrix M(A0, . . . , Ad) is the signed adjacency matrix
of X.

Proof. We proceed by induction. Recall that the adjacency matrix of the
direct product of two graphs is the Kronecker product of their adjacency
matrices. If d = 1, then X is the disjoint union of Cay(G, C0) = K(d, 0)× Y0
and Cay(G, C1) = K(d, 1)× Y1, so its adjacency matrix is given by

A(X) = I2 ⊗ A0 + A(K2)⊗ A1 =M(A0, A1).
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(Here, A(X) is the signed adjacency matrix of X.)

Then let d ≥ 2 and suppose the claim holds for all integral signed 2-
circulants on at most 2d−1m vertices. Consider the unique subgroup G′ of G
of index two (which exists since G has a cyclic Sylow-2-subgroup). It is clear
that C ′ := C0 ∪ · · · ∪ Cd−1 ⊆ G′ and that 〈G′ ∪ Cd〉 = G.

Then X has a subgraph isomorphic to X ′ := Cay(G′, C ′) which by our
inductive hypothesis has adjacency matrix A(X ′) :=M(A0, . . . , Ad−1).

Further, we know that X is an edge disjoint union of Cay(G, C ′) and
Xd = Cay(G, Cd), and we see that the former consists of two disjoint copies
of X ′. Therefore we get

A(X) = I ⊗ A(X ′) + A(Xd).

Finally, since Xd = K(d, d)×Yd = K2d−1,2d−1×Yd by Theorem 6.3.3, we have

A(Xd) =

(
0 J2d−1

J2d−1 0

)
⊗ Ad

and putting all this together we get

A(X) = I ⊗M(A0, . . . , Ad−1) +

(
0 1
1 0

)
⊗ (J2d−1 ⊗ Ad) =M(A0, . . . , Ad)

as required.

If X and Y are graphs on the same vertex set with adjacency matrices A
and B, respectively, we define their semidirect product, X nY , as the graph
with adjacency matrixM(A,B). This graph product is explored in a paper
by Coutinho and Godsil [20], where they prove the following theorem.

Theorem 6.4.2 ([20, Theorem 5.2]). Given graphs X and Y on the same
vertex set V , with A = A(X) and B = A(Y ), the graph X n Y on vertex
set {0, 1}×V admits perfect state transfer if and only if one of the following
holds.

(i) For some τ ∈ R+, λ ∈ C and u ∈ V , the matrices A+B and A−B are
periodic at u at time τ with respective phase factors λ and −λ. In this
case, perfect state transfer is between (0, u) and (1, u).
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(ii) For some τ ∈ R+, λ ∈ C and u ∈ V , the matrices A + B and A − B
admit uv-perfect state transfer at time τ with the same phase factor
λ. In this case, perfect state transfer is between (0, u) and (0, v), and
between (1, u) and (1, v).

(iii) For some τ ∈ R+, λ ∈ C and u ∈ V , the matrices A + B and A − B
admit uv-perfect state transfer at time τ with respective phase factors
λ and −λ. In this case, perfect state transfer is between (0, u) and
(1, v), and between (1, u) and (0, v).

Theorem 6.4.2 is stated only for simple graphs in the original paper, but
the proof also works if X and Y are signed graphs.

6.5 Time of perfect state transfer

In this section we will show that if perfect state transfer occurs in a 2-
circulant, it must have minimal time π/2. We will use the decomposition
into a semidirect product of Cayley graphs from the previous section. First
we need to consider the case where d = 1.

Theorem 6.5.1 ([21, Theorem 16.6.2]). Let X = Cay(G, C) be a signed
Cayley graph for an abelian group G of order 2m, where m is odd. If X
admits perfect state transfer, then X ∼= mK2 and the minimal time at which
perfect state transfer occurs is π/2.

Proof. Suppose that the signed adjacency matrix of X admits perfect state
transfer at time τ . Let H be the unique subgroup of G of order m, define
C0, C1, Y0 and Y1 as in Theorem 6.3.3, and let A0, A1 be the signed adjacency
matrices for Y0, Y1, respectively. Then X ∼= Y0 n Y1 and so we can apply
Theorem 6.4.2.

Recall that Y0 and Y1 are Cayley graphs for H, so A0 + A1 and A0 − A1

are weighted adjacency matrices of Cayley graphs for a group of odd order.
Then, by Theorem 2.4.5, they do not admit perfect state transfer and so,
(ii) and (iii) in Theorem 6.4.2 cannot hold. Therefore, A0 +A1 and A0 −A1

are periodic at time τ , with phase factors, say, λ and −λ, respectively. Then
UA0+A1(τ) = λI and UA0−A1(τ) = −λI, thus we get

U2A1(τ) = UA0+A1(τ)UA1−A0(τ) = UA0+A1(τ)UA0−A1(τ) = −I.
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This implies that if θ0, . . . , θn are the eigenvalues of A1, then e2iτθr = −1 for
all r = 0, . . . , n. So, there are odd integers mr such that 2τθr = mrπ and it
follows that for all r, s = 0, . . . n we have θr/θs = mr/ms with mr and ms

both odd.

Recall that a non-empty integral signed translation graph for a group of
odd order has an odd eigenvalue, by Lemma 4.7.4 and the remark following
it. Furthermore, a regular graph on an odd number of vertices must have
an even degree, which is then an even eigenvalue of the graph and it can be
easily verified that this also holds in the signed case.

Now, our graph Y1 is either a (possibly signed) integral translation graph
without loops, or its adjacency matrix may be written as A1 = A′1 ± I
where A′1 is the (possibly signed) adjacency matrix of an integral translation
graph without loops, and so in both cases, unless it is empty, Y1 contains
eigenvalues, θ, θ′ of different parities. But then, either the denominator or
the enumerator of the reduced fraction θ/θ′ has to be even, so we conclude
that Y1 must be empty with loops, i.e., A1 = ±I. The possible signing will
not affect the rest of the proof, so we will drop it.

We now have two possibilities: either Y0 is empty in which case X ∼= mK2

as required, or X is a Cartesian product, K2�Y0 and A(X) = A(K2) ⊗ I +
I ⊗ A0. Assume for contradiction the latter. Then

UK2�Y0(τ) = UK2(τ)⊗ UY0(τ) = λP,

where P is a permutation matrix with zero diagonal and λ is some scalar.
Then, both UK2(τ) and UY0(τ) must be scalar multiples of permutation ma-
trices, but since Y0 is a Cayley graph for a group of odd order it does not
have perfect state transfer and so we must have UY0(τ) = λ′I for some λ′.

We have seen that K2 has perfect state transfer with minimal time π/2
and so τ = (2k + 1)π/2 for some integer k. Let θ′0, . . . , θ′n be the eigenvalues
of Y0. Then the eigenvalues of UY0(τ) are eiπ(2k+1)θ′r/2. Since Y0 has both
even and odd eigenvalues, UY0(τ) will have eigenvalues in both {±1} and
{±i} and can therefore not be a scalar multiple of I.

We have reached a contradiction and conclude that X ∼= mK2, having
perfect state transfer with minimal time π/2.

We can now prove that the time of perfect state transfer in the case where
d ≥ 2 has to be π/2.
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Theorem 6.5.2 ([21, Theorem 16.7.1]). Let X = Cay(G, C) be a 2-circulant.
If perfect state transfer occurs on X, it occurs at time π/2.

Proof. Let G have order 2dm where m is odd and suppose perfect state
transfer occurs on X at time τ . We have seen what happens for d = 0, 1, so
we assume that d ≥ 2.

Let C0, . . . , Cd be as before, define the graphs Yr as in Theorem 6.3.3 and
let Ar be their adjacency matrices. Recall that

A(X) =M(A0, . . . , Ad) =M(M(A0, . . . , Ad−1), J2d−1 ⊗ Ad).

We will use Theorem 6.4.2 on the matricesM(A0, . . . , Ad−1) and J2d−1 ⊗Ad.
We know that perfect state transfer must occur between 0 and the unique
element of order two in G. This element is contained in the subgroup of G
generated by C0 ∪ C1. Therefore, part (ii) of Theorem 6.4.2 must apply and
we have perfect state transfer at time τ on the matrix

M(A0, . . . , Ad−1)− J2d−1 ⊗ Ad =M(A0 − Ad, . . . , Ad−1 − Ad).

Now, applying the theorem repeatedly, we get that perfect state transfer
occurs on the matrixM(A0−A2, A1−A2) at time τ. This is a signed adjacency
matrix of a Cayley graph for a group of order 2m and so by Theorem 6.5.1,
we have τ = π/2 as required.

6.6 Reducing to a simpler case

In this section we will see how we can reduce the question of perfect state
transfer on a graph X = Cay(G, C) where G ∼= Z2d × H to the case where
d = 2. We start with a lemma.

Lemma 6.6.1. Let C be an inverse-closed subset of the abelian group G
with a partition into inverse-closed subsets D1 and D2. Suppose Cay(G,D2)
is periodic with period τ . Then X := Cay(G, C) admits perfect state transfer
at time τ if and only if Cay(G,D1) admits perfect state transfer at time τ .

Proof. Let A,A1 and A2 be the adjacency matrices of X,Cay(G,D1) and
Cay(G,D2), respectively. Then A = A1 +A2 and since G is abelian, A1 and
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A2 commute. Therefore,

UA(t) = exp(itA)

= exp(it(A1 + A2))

= exp(itA1) exp(itA2)

= UA1(t)UA2(t),

for t ∈ R. Since Cay(G,D2) is periodic at time τ , this implies UA2(τ) = λI,
for some λ and so UA(τ) = λUA1(τ). The result follows.

Theorem 6.6.2. Suppose G is abelian of order 2dm where m is odd and
d ≥ 2, and assume that the Sylow-2-subgroup of G is cyclic. Let G′ denote
the unique subgroup of G with order 4m. Then the integral Cayley graph
Cay(G, C) admits perfect state transfer if and only if Cay(G′, G′ ∩ C) admits
perfect state transfer.

Proof. Note first that Cay(G′, G′ ∩ C) admits perfect state transfer if and
only if Cay(G,G′ ∩ C) admits perfect state transfer, since the components
of Cay(G,G′ ∩ C) are isomorphic to Cay(G′, G′ ∩ C). Further, by Theorem
6.5.2, if perfect state transfer occurs on any Cayley graph of G, it occurs at
time π/2.

Now define Cr for r = 0, . . . , d as before. We see that G′∩C = C0∪C1∪C2
and that the Cr are power-closed since X is integral. Recall that by Corollary
6.3.4, the graphs Xr = Cay(G, Cr) are periodic at time π/2, for r ≥ 3. Since
X is an edge-disjoint union of Cay(G,G′ ∩ C) and Xr for r ≥ 3, the result
follows from Lemma 6.6.1.

Theorem 6.6.2 shows that whether or not a 2-circulant has perfect state
transfer is determined by the sets C0, C1 and C2 (as long as the whole con-
nection set is power-closed). We conclude this section with a lemma about
the parities of these sets. Note that a group with a cyclic Sylow-2 subgroup
has a unique element of order two, and a unique pair of inverse elements of
order four.

Lemma 6.6.3. Let G be an abelian group with a Sylow-2-subgroup that is
cyclic and has order at least four. Let C be a power-closed subset such that
0 6∈ C and define Cr as before, for r = 0, 1, 2. Let a be the unique element of
order two and b,−b the unique pair of elements of order four. Then
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(a) |C0| and |C2| are even,

(b) |C1| is odd if and only if a ∈ C, and

(c) |C2| is divisible by four if and only if b 6∈ C.

Proof. Since C0, C1 and C2 are power-closed, they are also inverse-closed.
The only element in G that is its own inverse is a, and if a ∈ C, it is in
C1. Therefore, the elements of C0, C1 and C2 come in pairs, with the possible
exception of a, from which (a) and (b) follow.

For (c), write G = Z2d×H where H has odd order and observe that every
element in C2 can be written of the form c+ h where c ∈ {b,−b} and h ∈ H.
Further, the elements c + h,−c + h, c− h and −c− h all generate the same
subgroup, and provided that h 6= 0, they are all distinct. Therefore, with the
exception of b,−b, we can partition C2 into subsets of size four in this way,
and now (c) follows.

6.7 The necessary conditions

We have shown that perfect state transfer on 2-circulants can be reduced to
the case where the underlying group is isomorphic to Z4 × H where H is
abelian of odd order. We therefore investigate this case now. In this section
we will give some necessary conditions for a Cayley graph of such a group to
have perfect state transfer, and in the next section, we will show that these
conditions are also sufficient.

Let G ∼= Z4×H where H has odd order m. If C is a power-closed subset
of G, we have C = C0 ∪ C1 ∪ C2, where Cr is defined as before. Let a be the
unique element of order two and b,−b the unique pair of elements of order
four.

Lemma 6.7.1. Let G = Z4 × H where H has odd order m and let C be
an inverse-closed subset such that the Cayley graph X = Cay(G, C) admits
perfect state transfer. Then either a or b is in C, but not both.

Proof. Since X has perfect state transfer, it is integral and so C is power-
closed. Further, since a is the unique element of order two in G, perfect state
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transfer must occur between 0 and a and by Theorem 6.5.2 it occurs at time
π/2. Then, by Lemma 6.2.2 we have for each character χ of G,

χ(a) = (−1)(|C|−χ(C))/2. (6.1)

Let ϕ be the character of G with ϕ(b) = i and ϕ(h) = 1 for all h ∈ H.
Then ϕ(a) = −1, so by Equation (6.1) we know that (|C| − ϕ(C))/2 is odd.
Further, we have ϕ(−b) = −i, and now we see that

ϕ(C0) = |C0|, ϕ(C1) = −|C1| and ϕ(C2) = 0,

and therefore

|C| − ϕ(C) = |C| − (|C0| − |C1|) = 2|C1|+ |C2|.

Now, combining this with Lemma 6.6.3, we see that if a and b are both in
C, or if neither of them is in C, then 2|C1| + |C2| = |C| − ϕ(C) is divisible by
four, contradicting that (|C| −ϕ(C))/2 is odd. Therefore, we must have that
a ∈ C or b ∈ C, but not both.

Now, think of the elements of G as pairs (c, h) with c ∈ Z4 and h ∈ H.
The set C0 consists only of elements (0, h), and so we can view it as a subset
of H. The set C1 has elements of the form (a, h) for h ∈ H, and so there is a
power-closed subset, C∗1 of H such that C1 = {a} × C∗1 , and moreover 0 ∈ C∗1
if and only if a ∈ C.

Finally, the elements of C2 have the form (±b, h) with h ∈ H and since
C2 is inverse-closed, (b, h) ∈ C2 if and only if (−b, h) ∈ C2. Therefore there is
a power-closed subset C∗2 of H such that C2 = {−b, b} × C∗2 and 0 ∈ C∗2 if and
only if b ∈ C.

We can now prove another necessary condition for perfect state transfer
to occur. We will later see that these two conditions along with integrality
are also sufficient.

Lemma 6.7.2. Let G = Z4 ×H where H is an abelian group of odd order
m and let C be an inverse-closed subset such that the Cayley graph X =
Cay(G, C) admits perfect state transfer. Then C0 = C∗1 \{0} = C∗2 \{0}.

Proof. If X admits perfect state transfer, it must be integral, so C is power-
closed. Further, by Lemma 6.7.1, either a is in C or b is in C but not both.
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Let ϕ0, ϕ1, ϕ2 be characters of Z4 with ϕ0(b) = 1, ϕ1(b) = −1 and ϕ2(b) =
i. Let ψ be an arbitrary character of H and let χj = ϕjψ : G → C∗ be the
character product (as defined in Section 4.4) for j = 0, 1, 2. Then

χj(C) = χj(C0) + χj(C1) + χj(C2)
= ψ(C0) + ϕj(a)ψ(C∗1) + (ϕj(b) + ϕj(−b))ψ(C∗2).

Therefore

ϕ0ψ(C) = ψ(C0) + ψ(C∗1) + 2ψ(C∗2),

ϕ1ψ(C) = ψ(C0) + ψ(C∗1)− 2ψ(C∗2),

ϕ2ψ(C) = ψ(C0)− ψ(C∗1).

Since X has perfect state transfer, we have

χ(a) = (−1)(|C|−χ(C))/2

for every character χ = ϕψ of G. This means that whenever ϕ(b) = ±i, we
have that (|C|−χ(C))/2 is odd and otherwise, it is even. In other words, the
following holds for all characters, ψ of H:

|C| − (ψ(C0) + ψ(C∗1) + 2ψ(C∗2))

2
is even, (6.2)

|C| − (ψ(C0) + ψ(C∗1)− 2ψ(C∗2))

2
is even, (6.3)

|C| − (ψ(C0)− ψ(C∗1))

2
is odd. (6.4)

By adding (6.2) and (6.3) together, we find that |C| − ψ(C0)− ψ(C∗1) is even
and by adding (6.3) and (6.4) we see that |C| − ψ(C0) + ψ(C∗2) is odd.

If a 6∈ C, then |C| is even, 0 6∈ C∗1 and 0 ∈ C∗2 , so this implies that
ψ(C0) + ψ(C∗1) and ψ(C0) + ψ(C∗2 \{0}) are even for all characters, ψ of H. If
a ∈ C, then we similarly get that ψ(C0) + ψ(C∗1 \{0}) and ψ(C0) + ψ(C∗2) are
even for all ψ.

Taking D := C∗1 \{0}, we will consider the set S = (C0\D)∪ (D\C0). Our
aim is to show that this set is empty, implying that C0 = C∗1 \{0}.
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Note that since C0 and D are both power-closed, their intersection is as
well and then also their difference. Therefore S is a disjoint union of two
power closed sets and so it is itself power closed. Further, we have

ψ(S) = ψ(C0 \D) + ψ(D\C0) = ψ(C0) + ψ(D)− 2ψ(C0 ∩ D)

which by the above is even for all characters, ψ of H.

It follows that the Cayley graph Y := Cay(H,S) has only even eigenval-
ues, but Y is an integral Cayley graph for a group of odd order, so by Lemma
4.7.4, we conclude that Y must be empty, implying that C0 = C∗1 \{0}.

By taking D to be C∗2 \{0}, we similarly get C0 = C∗2 \{0}, as desired.

These necessary conditions imply some significant restrictions on the spec-
trum of a 2-circulant with perfect state transfer. In particular, it will have
eigenvalues with multiplicity half the size of the group, as shown in the next
corollary.

Corollary 6.7.3. Let G ∼= Z4 ×H where H is abelian with odd order and
suppose that the Cayley graph X = Cay(G, C) admits perfect state transfer.
If a ∈ C, then the eigenvalues of X are all odd, and −1 is an eigenvalue
with multiplicity |G|/2. If a 6∈ C, all eigenvalues of X are even and 0 is an
eigenvalue with multiplicity |G|/2.

Proof. Since X admits perfect state transfer, we have C0 = C∗1\{0} = C∗2\{0}.
Let ϕ0, ϕ1, ϕ2, ϕ3 be the four characters of Z4 defined uniquely by

ϕ0(b) = 1, ϕ1(b) = −1, ϕ2(b) = i, ϕ3(b) = −i.

From the proof of Lemma 6.7.2, the eigenvalues of X are given by

ϕ0ψ(C) = ψ(C0) + ψ(C∗1) + 2ψ(C∗2) =

{
4ψ(C0) + 1 if a ∈ C
4ψ(C0) + 2 otherwise

ϕ1ψ(C) = ψ(C0) + ψ(C∗1)− 2ψ(C∗2) =

{
1 if a ∈ C
−2 otherwise

ϕ2ψ(C) = ϕ3ψ(C) = ψ(C0)− ψ(C∗1) =

{
−1 if a ∈ C
0 otherwise
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for characters ψ of H. We see that all eigenvalues are odd if a ∈ C and even
otherwise. Further, since there are |H| = |G|/4 characters of H, and each of
them gives two characters of G with eigenvalue 0 or −1, the result follows.

6.8 Are also sufficient

We now show that given the necessary conditions from last section, along
with integrality, our graphs admit perfect state transfer.

Theorem 6.8.1. Let G ∼= Z4 × H where H is abelian of odd order. Then
the Cayley graph Cay(G, C) admits perfect state transfer if and only if the
following conditions hold:

(a) C is power-closed,

(b) exactly one of a and b is in C, and

(c) C0 = C∗1 \{0} = C∗2 \{0}.

Proof. We have seen that a graph must be integral to have perfect state
transfer, and that a translation graph is integral if and only if C is power-
closed, thus perfect state transfer implies (a) and by Lemmas 6.7.1 and 6.7.2,
it also implies (b) and (c).

Suppose that conditions (a)-(c) of the theorem hold. By (a), X is integral
so by Lemma 6.2.2, it suffices show that for every character χ of G we have

χ(a) = (−1)(|C|−χ(C))/2. (6.5)

Recall that every character χ of G can be written uniquely as a product
of two characters, χ = ϕψ with ϕ a character of Z4 and ψ a character of H,
where χ(c, h) = ϕ(c)ψ(h). Moreover, χ(a) = −1 if and only if ϕ(a) = −1,
which holds if and only if ϕ(b) = ±i.

Let χ = ϕψ and assume first that a ∈ C. Then 0 ∈ C∗1 and 0 6∈ C∗2 , so by
condition (c) we have C0 = C∗1\{0} = C∗2 . Therefore,

|C| = |C0|+ |C1|+ |C2|
= |C0|+ |C∗1\{0}|+ 1 + 2|C∗2 |
= 4|C0|+ 1.
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Further, we have

χ(C) = χ(C0) + χ(C1) + χ(C2)
= ψ(C0) + ϕ(a)ψ (C∗1\{0}) + ϕ(a) + (ϕ(b) + ϕ(−b))ψ(C∗2)

= ψ(C0) + ϕ(a)ψ (C0) + ϕ(a) + (ϕ(b) + ϕ(−b))ψ(C0)
= ψ(C0)

(
1 + ϕ(a) + ϕ(b) + ϕ(−b)

)
+ ϕ(a). (∗)

Now if ϕ(b) = ±i, then ϕ(−b) = −ϕ(b) and ϕ(a) = −1. We see that in this
case, (∗) becomes χ(C) = ϕ(a) = −1 and so

|C| − χ(C)
2

=
4|C0|+ 1− (−1)

2
= 2|C0|+ 1

which is odd and therefore, Equation (6.5) holds. If ϕ(b) = −1 then ϕ(−b) =
−1 and ϕ(a) = 1 and so (∗) becomes χ(C) = ϕ(a) = 1 and

|C| − χ(C)
2

=
4|C0|

2
= 2|C0|,

which is even, so again Equation (6.5) holds in this case. Finally if ϕ(b) = 1,
then (∗) = 4ψ(C0) + ϕ(a), so

|C| − χ(C)
2

=
4|C0| − 4ψ(C0)

2
= 2
(
|C0| − ψ(C0)

)
,

which is even, as required.

Then suppose b ∈ C, and therefore a 6∈ C. Then condition (c) gives
C0 = C∗1 = C∗2\{0}, and so

|C| = |C0|+ |C1|+ |C2|
= |C0|+ |C∗1 |+ 2|C∗2\{0}|+ 2

= 4|C0|+ 2.

Moreover,

χ(C) = χ(C0) + χ(C1) + χ(C2)
= ψ(C0) + ϕ(a)ψ (C∗1) + (ϕ(b) + ϕ(−b))ψ(C∗2\{0}) + ϕ(b) + ϕ(−b)
= ψ(C0) + ϕ(a)ψ (C0) + (ϕ(b) + ϕ(−b))ψ(C0) + ϕ(b) + ϕ(−b)
= ψ(C0)

(
1 + ϕ(a) + ϕ(b) + ϕ(−b)

)
+ ϕ(b) + ϕ(−b). (∗∗)
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If ϕ(b) = ±i, then (∗∗) = 0, so

|C| − ψ(C)
2

=
4|C0|+ 2

2
= 2|C0|+ 1,

which is odd. If ϕ(b) = −1 then (∗∗) = −2 and so

|C| − ψ(C)
2

=
4|C0|+ 2− 2

2
= 2|C0|,

which is even. Finally if ϕ(b) = 1 then (∗∗) = 4ψ(C0) + 2 so

|C| − ψ(C)
2

=
4|C0|+ 2− (4ψ(C0) + 2)

2

=
4(|C0| − ψ(C0))

2
= 2(|C0| − ψ(C0)),

again even. In each case, Equation (6.5) holds, and we have shown that X
admits perfect state transfer.

6.9 The characterization

It now remains to combine Theorems 6.6.2 and 6.8.1 to prove our character-
ization of connection sets that yield perfect state transfer. We will modify
our conditions slightly here. Let k ∈ N and let S be a subset of an abelian
group G written additively. Then, we define the set kS := {k · g : g ∈ S}.

Theorem 6.9.1. Let G be an abelian group of order 2dm where m is odd
and suppose it has a a cyclic Sylow-2-subgroup. Let a be the unique element
of order two and b,−b the unique pair of elements of order four. For a subset
C of G let Ck denote the set of elements in C with order 2km′ where m′ is
odd. Then the Cayley graph Cay(G, C) has perfect state transfer if and only
if

(a) C is power-closed,

(b) either a or b is in C but not both,
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(c) C0 = 4(C2 \{−b, b}), and

(d) C1 \{a} = 2(C2 \{−b, b}).

Proof. Let G′ be the unique subgroup of order 4m. Then G′ ∼= Z4×H where
H has odd order and by Theorem 6.6.2, X admits perfect state transfer if
and only if Y := Cay(G′, G′ ∩ C) does. Note that G′ ∩ C = C0 ∪ C1 ∪ C2.
Further, a, b ∈ G′ and a is the unique element of G′ of order two and b,−b
the unique pair of elements of G′ of order four.

Define C∗1 , C∗2 as before, so C1 = {a} × C∗1 and C2 = {−b, b} × C∗2 . By
Theorem 6.8.1, Y has perfect state transfer if and only if conditions (a) and
(b) hold and C0 = C∗1 \{0} = C∗2 \{0}.

Recall that H has odd order. Then, for any h ∈ H, the elements h, 2h
and 4h all generate the same cyclic subgroup because 2 and 4 are coprime to
the order of 〈h〉. Thus, if h ∈ C0, we also have 2h, 4h ∈ C0 and same holds
for C∗1 and C∗2 . Therefore,

4(C2 \{−b, b}) = {−4b, 4b} × {4h : h ∈ C∗2 \{0}}
= {0} × (C∗2 \{0}),

and

2(C2 \{−b, b}) = {−2b, 2b} × {2h : h ∈ C∗2 \{0}}
= {a} × (C∗2 \{0}).

We have shown that condition (c) is equivalent to C0 = C∗2 \ {0} and that
condition (d) is equivalent to C∗1 \{0} = C∗2 \{0} and the result follows.

Now we can state Bašić’s characterization as a corollary.

Corollary 6.9.2 ([5, Theorem 22]). An integral circulant, Cay(Zn, C) has
perfect state transfer if and only if n ∈ 4N,

C1 \{n/2} = 2(C2 \{±(n/4)}),
C0 = 4(C2 \{±(n/4)}),

and either n/4 ∈ C or n/2 ∈ C.
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Example 6.9.3. Let G = Z4 × Z3 × Z3 with generators b, g1 and g2 and
a = 2b. Let

C0 = {g1, 2g1, g2, 2g2}
C1 = {a+ g1, a+ 2g1, a+ g2, a+ 2g2}
C2 = {g1 ± b, 2g1 ± b, g2 ± b, 2g2 ± b}

and define C := C0∪C1∪C2∪{a} and C ′ := C0∪C1∪C2∪{−b, b}. We see that
4C2 = 2C1 = C0 and so the graphs X = Cay(G, C) and X ′ = Cay(G, C ′) have
perfect state transfer from 0 to a. Further, it can be shown by looking at
the automorphism groups of these graphs that they are not circulants, and
so they do not arise from Basić’s theorem.

The graph X is shown in Figure 6.1 with the vertices 0 and a in white.

Figure 6.1: Cayley graph of Z4 × Z3 × Z3 with perfect state transfer
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Chapter 7

Summary & Open Problems

In this chapter we give a brief summary of the main results of this thesis and
discuss some open questions and directions we could take for further work.

7.1 Strong cospectrality

In Chapter 5, we considered how big a strongly cospectral set in a Cayley
graph can be. We gave an upper bound on the size of such a set for normal
Cayley graphs in terms of the spectrum of the graph and used this to give
an upper bound in Cayley graphs of Zd12 × Zd24 only in terms of the number
of vertices. We further provided some examples of cubelike graphs in which
this set has size at least four.

Our results bring up two main questions:

1. Can we get an explicit upper bound in other normal Cayley graphs on
the order of the strongly cospectral subgroup in terms of the order of
the group?

2. Is our bound for the cubelike graphs tight in all dimensions?

Let us look at the first question. Theorem 5.5.3, gives an upper bound on
the size of a strongly cospectral set in terms of the eigenvalue multiplicities
for all normal Cayley graphs. So far, we have only been able to apply this
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to Cayley graphs of groups of the form Zd12 ×Zd24 , to get a bound in terms of
the size of the graph.

This is because the eigenvalues of these graphs have very simple form,
n−2r, where n is the degree and r ∈ {0, . . . , n}, which doesn’t hold for other
normal Cayley graphs. However, as we have seen, the spectrum of a normal
Cayley graph, Cay(G, C) has this nice description, where each eigenvalue is
given by

1

χ(e)

∑
c∈C

χ(c),

for a character χ. It seems like we could use this to derive some lower bound
on the maximum multiplicity of an eigenvalue.

In practice, it seems as though Cayley graphs tend to have some eigenval-
ues with high multiplicities. In particular, since they are vertex transitive,
they cannot have all simple eigenvalues. This is encouraging, and we are
hopeful that better bounds can be found.

The second question is slightly more frustrating. We have spent quite a
bit of time trying to find examples of cubelike graphs on 27 and 28 vertices
with a strongly cospectral subgroup of order eight, both through search and
through construction. This has not proved fruitful, but the search has shown
that we cannot improve our lower bound on the largest multiplicity (Theorem
5.6.4) in a way that will be useful for this. That is, there are cubelike graphs
on 27 vertices with largest multiplicity at most 16, so the best bound we can
get from Theorem 5.5.3 is 27/24 = 8. Therefore, if our bound is not tight,
this would have to be shown using different methods.

7.2 State transfer

In Chapter 6, we characterized the connection sets of 2-circulants having
perfect state transfer. This is a generalization of Bašić’s characterization
of circulants and provides many examples of graphs admitting perfect state
transfer that were previously unknown. The obvious question here is: can
we generalize this further, and how far can we go?

One of the key ingredients in our proofs is that if a 2-circulant admits
perfect state transfer, then the minimum time at which it occurs is π/2.
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This is consequence of the Sylow-2-subgroup being cyclic, and does not hold
otherwise. In fact, Chan has proved that there are cubelike graphs with
arbitrarily fast perfect state transfer [14].

It is therefore unlikely that we can use similar techniques to give a char-
acterization for Cayley graphs with a Sylow-2-subgroup that is not cyclic.
However, if we take a group G ∼= Z2d ×H, with |H| odd, do we really need
H to be abelian?

We conjecture that if perfect state transfer occurs in a normal Cayley
graph of a group with a cyclic Sylow-2-subgroup, then the minimum time is
π/2. Moreover, we conjecture that a version of Theorem 6.9.1 still holds for
such graphs.
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