
Multimodal spoofing and adversarial
examples countermeasure for speaker

verification

by

Karthik Ramesh

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2022

c© Karthik Ramesh 2022

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Authentication mechanisms have always been prevalent in our society — even as far
back as Ancient Mesopotamia in the form of seals. Since the advent of the digital age, the
need for a good digital authentication technique has soared stemming from the widespread
adoption of online platforms and digitized content.

Audio-based authentication like speaker verification has been explored as another mech-
anism for achieving this goal. Specifically, an audio template belonging to the authorized
user is stored with the authentication system. This template is later compared with the
current input voice to authenticate the current user.

Audio spoofing refers to attacks used to fool the authentication system to gain access
to restricted resources. This has been proven to effectively degrade the performance of
a variety of audio-authentication methods. In response to this, spoofing countermeasures
for the task of anti-spoofing have been developed that can detect and successfully thwart
these types of attacks.

The advent of deep learning techniques and their usage in real-life applications has led
to the research and development of various techniques for purposes ranging from exploiting
weaknesses in the deep learning model to stealing confidential information. One of the ways
in which the deep learning-based audio authentication model can be evaded is the usage
of a set of attacks that are known as adversarial attacks. These adversarial attacks consist
of adding a carefully crafted perturbation to the input to elicit a wrong inference from the
model.

We first explore the performance that multimodality brings to the anti-spoofing task.
We aim to augment a unimodal spoofing countermeasure with visual information to identify
whether it can improve performance. Since visuals can serve as an additional domain of
information, we experiment with whether the existing paradigm of using unimodal spoofing
countermeasures for anti-spoofing can benefit from this new information. Our results
indicate that augmenting an existing unimodal countermeasure with visual information
does not provide any performance benefits. Future work can explore more tightly coupled
multimodal models that use objectives like contrastive loss.

We then study the vulnerability of deep learning-based multimodal speaker verification
to adversarial attacks. In multimodal speaker verification, the vulnerability has not been
established and we aim to accomplish this. We find that the multimodal models are heavily
reliant on the visual modality and that attacking both modalities lead to a higher attack
success rate. Future work can move on to stronger attacks by applying adversarial attacks
to bypass the spoofing countermeasure and speaker verification.

iii

Finally, we investigate the feasibility of a generic evasion detector that can block both
adversarial and spoofing attacks. Since both the spoofing and adversarial attacks target
speaker verification models, we aim to add an adversarial attack detection mechanism —
feature squeezing — onto the spoofing countermeasure to achieve this. We find that such
a detector is feasible but involves a significant reduction in the identification of genuine
samples. Future work can explore combining adversarial training as a defense for attacks
that target the complete spoofing countermeasure and speaker verification pipeline.

iv

Acknowledgements

I would like to thank Professor Asokan whose guidance and support made this possible.
I would like to thank Compute Canada (Digital Research Alliance of Canada as of April
1, 2022) for providing the compute resources required for the experiments.

v

Dedication

To my family, whose never-ending love and support made this possible.

To Nivetha, whose patience knows no bounds.

vi

Table of Contents

List of Figures x

List of Tables xiv

List of Abbreviations xvi

1 Introduction 1

2 Background 4

2.1 Speaker Verification . 4

2.2 Deep Learning . 6

2.2.1 Feed-Forward Neural Networks . 7

2.2.2 Convolutional Neural Networks . 8

2.2.3 Recurrent Neural Networks . 10

2.3 Adversarial Examples . 13

2.3.1 Adversarial Example Generation Algorithms 14

2.3.2 Defense Mechanisms . 17

2.4 Spoofing . 18

2.5 Metrics . 19

vii

3 Problem Statement 21

3.1 System Model . 21

3.2 Adversary Model . 21

3.2.1 Spoofing Attacks . 22

3.2.2 Adversarial Attacks . 23

3.3 Research Questions & Metrics . 24

4 Multimodal Spoofing Countermeasure 26

4.1 Dataset . 27

4.2 Video Macro Alignment . 29

4.3 Methodology . 30

4.4 Model Architecture . 31

4.4.1 Audio Model . 31

4.4.2 Video Model . 32

4.4.3 Fusion Model . 33

4.4.4 Classification Model . 34

4.5 Results & Discussion . 34

5 Adversarial Attack on Multimodal Speaker Verification 37

5.1 Dataset . 37

5.2 Automatic Speaker Verification models . 38

5.3 Attack Methodology . 39

5.4 Results & Discussion . 41

5.4.1 Results for adversary model Read-Only-Template-Access 42

5.4.2 Results for adversary model No-Template-Access 43

6 Malicious Sample Detector 49

6.1 Dataset . 50

6.2 Methodology . 50

6.3 Results & Discussion . 51

viii

7 Related Work 56

8 Conclusion & Future Work 59

References 61

APPENDICES 69

A Additional results for Chapter 5 70

ix

List of Figures

2.1 Speaker verification pipeline (top) and speaker identification (bottom) pipeline. 5

2.2 Four layer feed-forward neural network . 8

2.3 Max pooling operation using a stride of 2 and filter size of 2x2 9

2.4 Inner Workings of an RNN. The input xt combined with the hidden repre-
sentation ht−1 is used to produce the output ht. 11

2.5 Inner Workings of an LSTM [38]. There are four gates that control the flow
of information, namely, the forget, input, candidate, and output gates. The
gates use the previous hidden state ht−1 and the current input xt to control
information flow. 12

2.6 Basic pipeline for any model to use the feature squeezing technique. D() is
a distance metric. predf is the predictions of the squeezed input. 17

3.1 System model depicting the complete flow of data from the capture of input
utterance to the spoofing countermeasure and speaker verification models.
It also shows the connections the physical access and logical access spoofs
target. 22

4.1 Architecture of the proposed multimodal spoofing CounterMeasure (CM).
There are four components in the multimodal CM, namely the Audio, Video,
Fusion, and Classification models . 32

5.1 Depiction of how adversary models compute the perturbation using a multi-
modal ASV model. For Read-Only-Template-Access, we use (Ac, Vc) and
(At, Vt) to compute the perturbations. For No-Template-Access, we use
(Ac, Vc) and (Ar, Vr) to compute the perturbations. 40

x

5.2 Depiction of how the robustness of ASV models is tested. A′′c and V ′′c are
the perturbed audio and visual inputs. At and Vt are the templates of the
victim y. 41

5.3 Figure showing the white-box attack targeting the audio-visual modality on
MV for Read-Only-Template-Access . 41

5.4 White-box attack on OPV for Read-Only-Template-Access 45

5.5 Black-box attack targeting OPV where source models are unimodal for Read-
Only-Template-Access . 46

5.6 Black-box attack targeting OPV where source models are multimodal for
Read-Only-Template-Access . 47

5.7 Figure showing the white-box attack targeting the audio-visual modality on
OPV for No-Template-Access . 48

5.8 Figure showing the black-box attack targeting the audio-visual modality by
transfer from MV to OPV for No-Template-Access 48

6.1 Feature squeezing pipeline when combined with spoofing countermeasures. 51

A.1 Figure showing the black-box attack targeting the audio modality by transfer
from 1D-CNN to MV for Read-Only-Template-Access 70

A.2 Figure showing the black-box attack targeting the audio modality by transfer
from 1D-CNN to OPV for Read-Only-Template-Access 71

A.3 Figure showing the white-box attack targeting the audio modality on MV
for Read-Only-Template-Access . 71

A.4 Figure showing the white-box attack targeting the audio-visual modality on
MV for Read-Only-Template-Access . 72

A.5 Figure showing the white-box attack targeting the visual modality on MV
for Read-Only-Template-Access . 72

A.6 Figure showing the black-box attack targeting the audio modality by transfer
from MV to OPV for Read-Only-Template-Access 73

A.7 Figure showing the black-box attack targeting the audio-visual modality by
transfer from MV to OPV for Read-Only-Template-Access 73

A.8 Figure showing the black-box attack targeting the visual modality by trans-
fer from MV to OPV for Read-Only-Template-Access 74

xi

A.9 Figure showing the black-box attack targeting the audio modality by transfer
from OPV to MV for Read-Only-Template-Access 74

A.10 Figure showing the black-box attack targeting the audio-visual modality by
transfer from OPV to MV for Read-Only-Template-Access 75

A.11 Figure showing the black-box attack targeting the visual modality by trans-
fer from OPV to MV for Read-Only-Template-Access 75

A.12 Figure showing the white-box attack targeting the audio modality on OPV
for Read-Only-Template-Access . 76

A.13 Figure showing the white-box attack targeting the audio-visual modality on
OPV for Read-Only-Template-Access . 76

A.14 Figure showing the white-box attack targeting the visual modality on OPV
for Read-Only-Template-Access . 77

A.15 Figure showing the black-box attack targeting the audio modality by transfer
from X-Vec to MV for Read-Only-Template-Access 77

A.16 Figure showing the black-box attack targeting the audio modality by transfer
from X-Vec to OPV for Read-Only-Template-Access 78

A.17 Figure showing the black-box attack targeting the audio modality by transfer
from 1D-CNN to MV for No-Template-Access 78

A.18 Figure showing the black-box attack targeting the audio modality by transfer
from 1D-CNN to OPV for No-Template-Access 79

A.19 Figure showing the white-box attack targeting the audio modality on MV
for No-Template-Access . 79

A.20 Figure showing the white-box attack targeting the audio-visual modality on
MV for No-Template-Access . 80

A.21 Figure showing the white-box attack targeting the visual modality on MV
for No-Template-Access . 80

A.22 Figure showing the black-box attack targeting the audio modality by transfer
from MV to OPV for No-Template-Access 81

A.23 Figure showing the black-box attack targeting the audio-visual modality by
transfer from MV to OPV for No-Template-Access 81

A.24 Figure showing the black-box attack targeting the visual modality by trans-
fer from MV to OPV for No-Template-Access 82

xii

A.25 Figure showing the black-box attack targeting the audio modality by transfer
from OPV to MV for No-Template-Access 82

A.26 Figure showing the black-box attack targeting the audio-visual modality by
transfer from OPV to MV for No-Template-Access 83

A.27 Figure showing the black-box attack targeting the visual modality by trans-
fer from OPV to MV for No-Template-Access 83

A.28 Figure showing the white-box attack targeting the audio modality on OPV
for No-Template-Access . 84

A.29 Figure showing the white-box attack targeting the audio-visual modality on
OPV for No-Template-Access . 84

A.30 Figure showing the white-box attack targeting the visual modality on OPV
for No-Template-Access . 85

A.31 Figure showing the black-box attack targeting the audio modality by transfer
from X-Vec to MV for No-Template-Access 85

A.32 Figure showing the black-box attack targeting the audio modality by transfer
from X-Vec to OPV for No-Template-Access 86

xiii

List of Tables

4.1 Description of the attacks in BTAS. Following the process mentioned in the
“Description” column of the Table, the audio is captured by the microphone
of the Automatic Speaker Verification (ASV) system. 28

4.2 Architecture of the Video Model . 33

4.3 Results of the spoofing countermeasure models on the test set of BTAS.
The models above the first horizontal dividing line are unimodal while the
rest are multimodal. Each model is trained three times. The Equal Error
Rate (EER) results here are the mean±standard-deviation of the EERs of
three different models. 34

4.4 Run-Time of the CMs in milliseconds (ms). 36

5.1 Evaluation of the 4 ASV models on the test set of Voxceleb1. The models
above the horizontal dividing line are unimodal while the rest are multimodal. 39

6.1 Adversarial attack success rate (%) on the spoofing CounterMeasure-Automatic
Speaker Verification (CM-ASV) pipeline. The success rate is presented as
the mean±standard-deviation across the success rates of the four runs. Each
attack has a source ASV from which it is generated and a Modality it is
perturbing. Each defense mechanism consists of a target CM and the attack
success rates presented here are the percentage of examples that bypass the
target CM and target ASV out of the examples that bypass the target ASV.
For this scenario the target ASV is the OPV. We use different colors to indi-
cate the best (lowest) and worst (highest) metrics (based on mean) for each
epsilon value. We indicate all models without defense using underline. . . 53

xiv

6.2 Adversarial attack success rate (%) on the CM-ASV pipeline. The success
rate is presented as the mean±standard-deviation across the success rates
of the four runs. Each attack has a source ASV from which it is generated
and a Modality it is perturbing. Each defense mechanism consists of a
target CM and the attack success rates presented here are the percentage of
examples that bypass the target CM and target ASV out of the examples
that bypass the target ASV. For this scenario the target ASV is the MV. We
use different colors to indicate the best (lowest) and worst (highest) metrics
(based on mean) for each epsilon value. We indicate all models without
defense using underline. 54

6.3 Table showing the True Positive Rate (TPR) (%) of the CMs from Tables
6.1 and 6.2 on the test set of BTAS and Voxceleb1. We use different
colors to indicate the best (highest) and worst (lowest) metrics (based on
mean) for each epsilon value. We indicate all models without defense using
underline. 55

xv

List of Abbreviations

ASV Automatic Speaker Verification xiv, xv, 1, 2, 14, 15, 18, 19, 21–25, 27, 28, 37–40,
44, 49–54, 57–59

CM spoofing CounterMeasure x, xiv, xv, 1, 18, 19, 21, 22, 24, 26, 27, 30–32, 35, 36, 49–55,
57–60

CM-ASV spoofing CounterMeasure-Automatic Speaker Verification xiv, xv, 21, 30, 51–
54, 59

CNN Convolutional Neural Network 8, 10, 56

DNN Deep Neural Network 56

EER Equal Error Rate xiv, 19, 24, 26, 34, 38, 39, 50, 53

FAR False Acceptance Rate 19, 54

FFN Feed-Forward Neural Network 7–9, 34

FGSM Fast Gradient Sign Method 15, 42, 43

FN False Negative 19, 20

FNR False Negative Rate 19

FP False Positive 19, 20

FPR False Positive Rate 19

FRR False Rejection Rate 19, 54

xvi

GMM Gaussian Mixture Model 56

LPS Log Power Spectrum 31

LSTM Long Short-Term Memory 11, 31, 33, 34

MIFGSM Momentum Iterative Fast Gradient Sign Method 16, 42

NLP Natural Language Processing 2

PGD Projected Gradient Descent 16, 42

RNN Recurrent Neural Network 10, 11

TN True Negative 19, 20

TP True Positive 19, 20

TPR True Positive Rate xv, 25, 49, 50, 53–55

UBM Universal Background Model 56

xvii

Chapter 1

Introduction

The sound produced by each individual is unique due to varying physical differences in
their vocal organs. In addition, each individual has their unique characteristics of speak-
ing such as accent and vocabulary thereby leading to more varieties in their sound [24].
These differences make it feasible to identify a person given a sample of their speech. Au-
tomatic speaker recognition refers to tasks associated with identifying the speaker given
a voice sample belonging to that speaker [24]. The task of Automatic Speaker Verifica-
tion (ASV) [4] is to determine if two input speech samples belong to the same speaker.
ASV is one of the ways by which automatic speaker recognition can be accomplished —
it is sometimes colloquially known by the name of its superset, that is, automatic speaker
recognition. This has a wide variety of use-cases ranging from controlling access to se-
cure vaults, bank accounts, and personal smart devices to aiding forensic investigators in
suspect recognition.

The research community has found that current ASV mechanisms are susceptible to
malicious actors/adversaries through a set of attacks called spoofing attacks [60]. The
spoofing attacks are used by adversaries seeking to bypass the protection that ASV offers
by creating spoofs. These spoofs are generated to mimic an input that the system recognizes
as an authorized user’s input. But in actuality, it is an input that the adversary has crafted
using spoofing attacks to bypass the ASV system. These spoofs are typically generated
using replayed audio, voice conversion, and speech synthesis mechanisms. The mechanisms
that were proposed to defend against these spoofs are known as spoofing CounterMeasures
(CMs) and the task of identifying and blocking these spoofs is called anti-spoofing [60].
A CM typically consists of another system separate from the ASV whose purpose is to
detect and block the inputs that are spoofs. The AVspoof [15] dataset was one of the first
standardized datasets available in the domain to research CMs in a generalized manner.

1

Challenges such as the BTAS [26] and ASVspoof [60] soon became available that helped
promote interest in the research.

Deep learning models have shown significant performance in the computer vision do-
main for unimodal tasks such as face recognition [46], object detection [42], and for mul-
timodality tasks like image captioning [57]. The Natural Language Processing (NLP)
research community has also developed a significant number of models and breakthroughs
that showcase improvements in tasks like machine translation [56], language modeling [40],
and representation learning [35]. Naturally, deep learning models have also been adopted
for usage in the audio domain for a variety of tasks such as speech separation [14], speech
synthesis [61], speech recognition [2], and speaker recognition [50].

With the evolution of deep learning technologies, the research community has also
become invested in investigating the vulnerability of these new technologies to malicious
actors. One of the ways in which the deep learning models, in general, are vulnerable is
to a set of attacks known as adversarial attacks [51]. Adversarial attacks involve crafting
an example specifically to mislead the deep learning models, that is, these examples are
crafted by adding a small perturbation to it which results in the example being incorrectly
classified (in the case of a classification model) by the models. Adversarial examples have
also been shown to transfer well [19] between models and datasets, thereby becoming
an avenue of threat that needs to be addressed. Various defense mechanisms have also
been developed by the research community to thwart these malicious actors ranging from
adversarial training [19] to input defense [70] mechanisms.

This thesis will focus on the intersection of these three aspects in the deep learning
domain: speaker verification, spoofing countermeasures, and adversarial attacks.

We investigate the performance that multimodality brings to the table in the anti-
spoofing task. We investigate the vulnerability of the audio-visual speaker verification
systems to adversarial attacks. We wrap up this work with the investigation of the fea-
sibility of a malicious sample detector by having it detect both adversarial examples and
spoofs that target ASVs.

The contributions of this thesis are listed below:

• We evaluate the effectiveness of adding visual information to an audio-only spoofing
countermeasure. This countermeasure jointly uses visual information along with
spoofed audio information to decide on whether the given audio input is a spoof. This
is compared with a state-of-the-art unimodal spoofing countermeasure to identify the
performance that multimodality offers — Section 4. We show that when directly
augmenting an existing unimodal spoofing countermeasure with visual information,
the multimodal model does not produce any performance improvements.

2

• We reproduce two unimodal and two multimodal speaker verification systems. We
study the damage that adversarial attacks can cause to multimodal systems. We
attack the systems using three different adversarial attacks. We also consider two
attack scenarios and demonstrate their vulnerability under them — Section 5. We
show that under the more difficult adversary model, attacks succeed in less than 10%
of the cases.

• We study the robustness of spoofing countermeasures to the adversarial examples gen-
erated for speaker verification systems. We propose a mechanism to defend against
spoofs and adversarial examples simultaneously using a unified detector — Section 6.
This mechanism is feasible but comes at a significant reduction in legitimate examples
detection rates.

3

Chapter 2

Background

2.1 Speaker Verification

The task of speaker verification is often misinterpreted as speaker identification while they
are two different concepts. Given two input utterances, the goal of speaker verification is
to declare whether they both have been uttered by the same speaker or not. The task
of speaker identification on the other hand is to determine the speaker of a given input
utterance.

When we talk of speaker identification in this thesis, we are referring to the version of
the problem where the speakers are limited to a specific set and it does not support the
enrollment of new speakers at a later stage without a new model [4]. On the other hand,
the speaker verification system does not have any restrictions regarding the identity of the
speakers, that is, the speakers need not be known in advance. The formulations for the
speaker verification and identification are depicted below:

verified = Fverification(uttX , uttY ,Wverification) ≥ τverification (2.1)

identity = arg max
u∈U

Fidentification(uttX ,Widentification)[u] ≥ τidentification (2.2)

Equation 2.1 depicts the formulation of the speaker verification model while Equation
2.2 depicts the formulation of the speaker identification model. Figure 2.1 visualizes the
differences between the two tasks. F corresponds to the speaker verification/identification
model and W is the set of parameters associated with the verification/identification model.
uttX and uttY are the input utterances. U corresponds to the global set of speakers that the
speaker identification model is trained to identify. τverification is the threshold used by the

4

Figure 2.1: Speaker verification pipeline (top) and speaker identification (bottom) pipeline.

speaker verification model to distinguish whether the input utterance pair have come from
the same speaker or not. τidentification is the threshold used by the speaker identification
model to determine whether the given input utterance is sufficiently distinguishable as
belonging to a speaker.

The task of speaker verification can be accomplished with either embedding-similarity
based models [50] or end-to-end based models [48]. The embedding-similarity models can
be separated into a front-end feature (embedding) extractor and a back-end similarity score
computation. The front-end works on the input utterance and outputs a high-dimensional
feature vector. This front-end is typically directly trained on some objective with just
a single input utterance rather than a pair of utterances. The back-end takes a pair of
these high-dimensional inputs and outputs a similarity score. This similarity score, if
above a threshold, leads to the conclusion that these inputs are similar and belong to
the same speaker. On the other hand, end-to-end models directly generate the similarity
score between two given input utterances during training and are trained to optimize their
parameters on that score. During inference, a threshold function similar to embedding-
similarity models is used to determine speaker similarity.

5

2.2 Deep Learning

First, we explain certain notations and terms used in the remainder of the thesis. Then
we go on to explain certain deep learning mechanisms that will be used in the remainder
of the thesis.

A supervised deep learning model can be characterized as a function Fθ() where θ
corresponds to the parameters of the model. The dataset used by the model can be depicted
as the set {(x1, y1), (x2, y2), ..., (xN , yN)} where xi is an input data, yi is the corresponding
output, and N is the number of samples in the dataset. Hyperparameters of a model are
parameters that control the learning process and are set prior to the learning process.

For audio-based classification tasks like anti-spoofing and speaker identification, the
input xi ∈ Rt×d where t is the number of timesteps and d is the dimensionality of the input
— the input is typically an utterance or a feature derived from that utterance. The output
yi takes a value from the set {1, 2, ...C} where C is the number of classes that the input
can belong to in the given problem. The output y can be called as the class/label and the
function F as the classifier/model.

A dataset is typically split into training and testing sets which are used for training
and testing the model respectively. Additionally there can be a validation (development)
set used to tune the hyperparameters of the model.

Models consist of different behaviors depending on whether they are in the process of
training/testing. The training phase is where the model is taught to perform a certain
task with the help of a loss function. The loss function acts as a proxy for estimating the
performance of the model (with its current set of parameters) for a given task. Combining
this with an optimization function (optimizer), the model’s parameters are updated to
perform better on the same task. During the testing phase, the model is evaluated on a
separate split of the dataset to indicate the performance of the model.

The training process of a model consists of a forward pass and a backward pass. The
forward pass takes a given input and passes it through the layers of a model thereby
generating the output and loss — loss is generated using the loss function. On the other
hand, the backward pass consists of computing the gradients of the loss with respect to
the various parameters of a model — like weights and biases — using the backpropagation
algorithm and passing it backward — going from the last parameter to the first — through
a model. These gradients are used by an optimizer to update the parameters of a model.

Equation 2.3 shows the formulation of a loss function for a model and Equation 2.4
shows the update process for the parameters. J is the loss function, p ∈ [1, P] where P is

6

the number of parameters to be updated, and α is the learning-rate.

J(x, θ, y) =

{
−log(Fθ(x)) y = 1

−log(1− Fθ(x)) y = 0
(2.3)

θp = θp − α.
∂

∂θp
J(x, θ, y) (2.4)

2.2.1 Feed-Forward Neural Networks

The Feed-Forward Neural Network (FFN) [17] is one of the most widely used deep-learning
architectures in the current state-of-the-art models. It is also one of the basic building
blocks for solving complex problems using neural network architectures.

FFNs can be thought of as a more complex version of the standard logistic regression
model [17]. The basic binary logistic regression model has parameters θ, takes in an input x
and predicts the probability P(pred = 1|x, θ) and its loss function is described in Equation
2.3. The architecture of the logistic regression model can be described as follows:

h(x) = wTx+ b (2.5)

F (x) = σ(h(x)) (2.6)

Equation 2.5 shows how the intermediate values of the model are computed. w ∈ Rd×1

is the weight parameter of the model, b ∈ R1 is the bias parameter of the model and
x ∈ Rd is the input feature vector to the model. After computation of the intermediate
values, a sigmoid/logistic activation function (σ) is used to bound the values (Equation
2.6) following which the loss is computed and parameters of the model are updated. This
results in logistic regression modeling a linear boundary between classes and is unable to
effectively model non-linearity.

FFNs can model non-linear boundaries using a non-linear activation function at their
hidden layer. Each layer of the FFN has a set of neurons and we can consider a single layer
FFN as a non-linear form of the logistic regression model. In FFNs, each layer consists of
a set of neurons and the network consists of a set of layers. Figure 2.2 visually represents
a four layer FFN — three hidden layers and one output layer — where each hidden layer
has a non-linear activation (An) function.

7

Figure 2.2: Four layer feed-forward neural network

2.2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [29] are one of the foundational building blocks of
modern computer vision. They have been used in various tasks like object detection [42]
and face recognition [46]. Here, we will discuss the 2D CNNs for classification.

A CNN can be designed to take input consisting of raw pixel values of images of shape
Rw×h×c where w, h, and c are the width, height, and number of channels of the image
respectively. To use it for a sequence of images like in a video there are multiple techniques
to process them including using 2D CNNs with grayscale images [44] where the channel
dimension represents timesteps or using 3-D CNNs [54].

A neural network based on CNN is mainly composed of three components: convolution
layers, pooling layers, and classifiers.

A convolution layer consists of an affine transformation followed by an activation func-
tion similar to the FFN. The convolution operation is carried out by a set of filters of
shape Rx×y×c where x, y, and c are the width, height, and channel dimensions of the filter
respectively. Each of these filters is passed over the feature map from the output of the
previous layer or the input. These filters perform an element-wise multiplication followed
by a bias summation.

8

It can be represented by Equations 2.7 and 2.8 where i, j refer to the spatial coordinates
on the input feature map and i′, j′ refer to the spatial coordinates on the output feature
map. k is the current filter number, I is the input feature map from the previous layer, F
is the filter containing weights, and φ is the activation function.

hki′,j′ =
x−1∑
x′=0

y−1∑
y′=0

c−1∑
c′=0

Ii+x′, j+y′, c′ · F k
x′, y′, c′ + bk (2.7)

Ck
i′,j′ = φ(hki′,j′) (2.8)

The pooling layers are used to aggregate the information into a more compact form. Max
pooling is depicted in Figure 2.3 which is one of the most widely used types of pooling.
Here, a window is moved over the input feature map similar to the way it is done in
convolution. The difference is that from within each window, the maximum value is taken
as output. The output feature map is typically smaller than the input due to a high stride
value during the pooling operation.

Figure 2.3: Max pooling operation using a stride of 2 and filter size of 2x2

The classifier typically consists of an FFN whose input is the feature map of the con-
volution and pooling layers that is flattened into a vector. This is then combined with a
loss function and optimizer to train the model.

Depthwise Separable Convolutions: Depthwise separable convolutions were intro-
duced in [21] to provide a light-weight alternative to the standard convolution operation.
The idea behind separable convolutions is to replace the standard convolution operation
with two new operations, namely, depthwise convolution and pointwise convolution. Depth-
wise convolution consists of using a new filter for every channel in the input feature map.
Depthwise convolution results in parameter size (ignoring bias) of Rx×y×1×f where x, y,
and f are the width, height, and number of filters respectively. Pointwise convolution

9

consists of one standard convolution but with a filter whose spatial dimensions are 1x1.
Pointwise convolution results in parameter size (ignoring bias) of R1×1×c×f where c and f
are the number of channels and filters respectively.

Light CNN: The Light CNN [28] is one of the architectures proposed for the anti-spoofing
task and has become a baseline model for evaluating the current spoofing attacks. A key
characteristic of this model is the Max-Feature-Map (MFM) activation. This activation is
based upon the usage of a maxout function which they’ve identified as being useful for the
anti-spoofing task.

Attention: While there is no one concrete definition for attention, it can be broadly
thought of as a mechanism that is used by a neural network to weigh features based on
their importance to a task. This allows the network to select the most important features
corresponding to a task for a given input and facilitates in achieving higher performing
and interpretable models. The architecture by [69] is one such example where an attention
mechanism is used to improve the performance of the image captioning model. Image
captioning models typically use an encoder-decoder architecture where the encoder com-
presses information from the visual input into a single vector and the decoder uses this
compressed information as context to generate the output captions. Xu et al. [69] pro-
posed to let the encoder produce a set of vectors and they add an attention component to
the decoder thereby letting the decoder choose the important information from the output
of the encoder at every timestep.

2.2.3 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a set of networks that are highly effective at dealing
with sequential data. They have been used heavily in the text and audio domains for tasks
such as language modeling [34; 40], machine translation [3], speech enhancement [37] and
automatic speech recognition [20].

A standard RNN can be seen in Figure 2.4 and is formulated as Equations 2.9 and 2.10.
The trainable weight parameters Whh and Wxh transform the hidden state of the previous
timestep and the input of the current timestep respectively — they are transformed into the
hidden representation of the current timestep. Who transforms the current hidden state to
output class probabilities — for tasks like language modeling. bh and bo are trainable bias
parameters. They work on an input sequence of features x1, x2, ..., xt to produce an output

10

sequence of class probabilities o1, o2, ..., ot from an intermediate sequence of representations
h1, h2, ..., ht.

ht = tanh(Whhht−1 +Wxhxt + bh) (2.9)

ot = softmax(Whoht + bo) (2.10)

One drawback of the standard RNN is their poor performance in long input sequences —

Figure 2.4: Inner Workings of an RNN. The input xt combined with the hidden represen-
tation ht−1 is used to produce the output ht.

they have difficulty capturing long-term dependencies due to exploding/vanishing gradients
[39]. The Long Short-Term Memory (LSTM) (Figure Figure 2.5) is one of the variants of
the RNN proposed to tackle that difficulty. It can be formulated as follows:

ft = σ(Whfht−1 +Wxfxt + bf) (2.11)

it = σ(Whiht−1 +Wxixt + bi) (2.12)

o′t = σ(Who′ht−1 +Wxo′xt + bo′) (2.13)

c′t = tanh(Whc′ht−1 +Wxc′xt + bc′) (2.14)

ct = ft · ct−1 + it · c′t (2.15)

ht = o′t ∗ tanh(ct) (2.16)

ot = ht (2.17)

The LSTM’s inner workings can be seen in Figure 2.5. The LSTM has a cell state which
is used to pass information from one timestep to the next while also allowing the gradients
to flow back without vanishing/exploding. It uses gates to control the flow of information
through the cell state thereby allowing it to keep useful information for future timesteps to
access. It has a forget gate (ft), input gate (it), and candidate gate (c′t) to control changes

11

Figure 2.5: Inner Workings of an LSTM [38]. There are four gates that control the flow
of information, namely, the forget, input, candidate, and output gates. The gates use the
previous hidden state ht−1 and the current input xt to control information flow.

to cell state and output gate (o′t) to prepare data for the next timestep. The forget gate is
used to retire old information. The input and candidate gates are used to control what is
newly added from the current timestep to the cell state. The output gate is used to control
the output of the current timestep as well as the hidden state passed to the next timestep.

12

2.3 Adversarial Examples

Although adversarial examples exist for mechanisms other than deep learning models [5],
this thesis’s focus is on deep learning models and therefore we talk about them in this
section.

Adversarial examples are data instances created by adding a carefully selected small
perturbation which forces the deep learning model to misclassify (in the case of a classifi-
cation model) the data instance. One key motivation as to why these data instances are
worthy of being investigated is that they are not distinguishable by the human eye (in the
case of images) — they appear visibly the same as the non-perturbed (clean) data instance.

The perturbation can be crafted to attack the model in an untargeted or targeted
manner. An untargeted attack aims to get the model to misclassify a data instance as any
class other than the true class. More formally, in the case of a classification scenario, given
a model F (), a data instance x, classes {1, 2, ...C}, perturbation ε, an untargeted attack
can be formulated as follows:

maxL(F (x+ ε), c) s.t. F (x+ ε) 6= c, d(x, x+ ε) ≤ η (2.18)

min d(x, x+ ε) s.t. F (x+ ε) 6= c (2.19)

In the above equations, L() refers to the loss function used as a metric to optimize the
model for the associated task, d() is the metric used to measure the distance between
the perturbed and unperturbed data instances and c is the class of the unperturbed data
instance. η is the constraint on the distance between perturbed and clean data instances.
Equation 2.18 optimizes a loss function to achieve for an incorrect classification while
Equation 2.19 optimizes a distance function to obtain a minimally perturbed data instance
that is misclassified. Either of them can be used to achieve an untargeted attack.

The aim of a targeted attack is to get the model to misclassify the data instance as an
instance of a specific class which can be formulated as:

minL(F (x+ ε), c′) s.t. F (x+ ε) = c′, d(x, x+ ε) ≤ η (2.20)

min d(x, x+ ε) s.t. F (x+ ε) = c′ (2.21)

In the above equations, c′ is the class that we want the perturbed data instance to be
classified as. Similar to Equations 2.18 and 2.19, Equations 2.20 and 2.21 optimize for the
loss and distance function respectively.

13

The Lp metric is usually used as the distance metric and is formulated as follows:

Lp(x, x̄) = (
N∑
i=1

|xi − x̄i|p)1/p

x and x̄ are the clean and perturbed data instances respectively. N is the number of
dimensions. The Lp metrics used in attacks are typically L0, L2, and L∞. The L0 metric
ensures that the number of points perturbed in a data instance is within a limit. The L2

metric is the Euclidean distance and ensures that x and x̄ are within a given Euclidean
distance from each other. The L∞ ensures that the maximum perturbation on any data
point within a data instance is bounded.

Attacks can be conducted in two ways: single-step or multi-step. In single-step, the
perturbed data instance has to be generated in one pass, that is. the attacker cannot
do multiple forward and backward passes to generate the perturbation to be added. In
multi-step, there can be multiple iterations of forward and backward passes to achieve the
best-perturbed data instance.

There are multiple conditions under which the robustness of a target model can be
tested, but the most commonly used ones are the white-box and black-box scenarios. In
the white-box scenario, it is assumed that the attacker has access to everything about
the target model like weights, hyperparameters, training datasets, and outputs. This
represents the worst-case scenario for the model/defender. The black-box scenario is where
the attacker does not have access to the interior workings of the target model but has access
to the model’s inference. One way this is adopted for the adversarial attack scenario is by
assuming the attacker has access to a system similar to the target model — an adversarial
example is generated for this new model which is then used to attack the target model.
This portrays a more real-world attack — this is also known as transfer attacks — that
can be conducted by the attacker.

2.3.1 Adversarial Example Generation Algorithms

Here, we aim to elaborate on the adversarial example generation algorithms that we use
in the remainder of the thesis. The algorithms are described for multimodal Automatic

14

Speaker Verification (ASV) models, but the unimodal version can be directly extrapolated.

Algorithm 1: FGSM Algorithm

Input: First speaker data Ax, Vx, Second speaker data Ay, Vy,
Adversarial perturbation ε,
Feature Extractor F for the ASV , Model ASV

Output: Perturbed data A′′x, V
′′
x

1 Featsx = F (Ax, Vx)
2 Featsy = F (Ay, Vy)
3 Grads = ∇Ax,VxASV (Featsx, Featsy)
4 A′′x = Ax + ε× sign(GradsAx)
5 V ′′x = Vx + ε× sign(GradsVx)
6 return A′′x, V

′′
x

Fast Gradient Sign Method (FGSM): FGSM [19] (Algorithm 1) is one of the first
algorithms developed for generating adversarial examples efficiently. In Algorithm 1, ∇x

corresponds to the partial differentiation operator used to find the gradients with respect
to x. ASV outputs the similarity of utterances from two speakers — we use cosine distance
as the similarity metric in the ASV models. sign(x) is a function used to extract the sign
of the real number x. ε is the parameter that controls how much the data is perturbed.

Algorithm 2: PGD Algorithm

Input: First speaker data Ax, Vx, Second speaker data Ay, Vy,
Maximum adversarial perturbation ε, Step size α, Steps T ,
Feature Extractor F for the ASV , Model ASV

Output: Perturbed data A′′x, V
′′
x

1 Initialize:
2 A′′x = Ax + U(−ε, ε)
3 V ′′x = Vx + U(−ε, ε)
4 for step← 1 to T do
5 Featsx = F (A′′x, V

′′
x)

6 Featsy = F (Ay, Vy)
7 Grads = ∇A′′

x,V
′′
x
ASV (Featsx, Featsy)

8 A′′x = ClipAx,ε(A
′′
x + α× sign(GradsA′′

x
))

9 V ′′x = ClipVx,ε(V
′′
x + α× sign(GradsV ′′

x
))

10 return A′′x, V
′′
x

15

Projected Gradient Descent (PGD): PGD [33] is an algorithm (Algorithm 2) that
takes a multi-step approach to generating the perturbed data by iteratively perturbing
the input to maximize the loss. In Algorithm 2, Clipx,ε(x

′′) refers to the function used to
bound the iteratively perturbed data x′′ within an ε region of unperturbed data x using
the L∞ metric. The relationship between steps T , step size α, and maximum perturbation
ε can be written as ε = T · α. The “Initialize” section is used to give a uniform random
(U) perturbation to the data. The rest of the notations are similar to Algorithm 1.

Algorithm 3: MIFGSM Algorithm

Input: First Speaker data Ax, Vx, Second Speaker data Ay, Vy,
Adversarial Perturbation ε, Step size α, Steps T , Decay decay,
Feature Extractor F for the ASV , Model ASV

Output: Perturbed data A′′x, V
′′
x

1 Initialize:
2 A′′x = Ax
3 V ′′x = Vx
4 MomentumA′′

x
= zeros like(A′′x)

5 MomentumV ′′
x

= zeros like(V ′′x)

6 for step← 1 to T do
7 Featsx = F (A′′x, V

′′
x)

8 Featsy = F (Ay, Vy)
9 Grads = ∇A′′

x,V
′′
x
ASV (Featsx, Featsy)

10 GradsA′′
x

= MomentumA′′
x

= MomentumA′′
x
× decay + normalize(GradsA′′

x
)

11 GradsV ′′
x

= MomentumV ′′
x

= MomentumV ′′
x
× decay + normalize(GradsV ′′

x
)

12 A′′x = ClipAx,ε(A
′′
x + α× sign(GradsA′′

x
))

13 V ′′x = ClipVx,ε(V
′′
x + α× sign(GradsV ′′

x
))

14 return A′′x, V
′′
x

Momentum Iterative Fast Gradient Sign Method (MIFGSM): MIFGSM [13] is an
algorithm (Algorithm 3) that adds a momentum factor which accumulates the gradients
across multiple iterations to obtain a stable perturbation update in successive iterations.
In Algorithm 3, decay is the parameter used to accumulate the gradients from the prior
iterations. normalize() function uses the L1 distance to normalize the gradient informa-
tion. The “Initialize” uses the zeros like(x) function to create an array of zeros of shape
of x to initialize the momentum data. The rest of the notations are similar to Algorithms
1 and 2.

16

2.3.2 Defense Mechanisms

Adversarial Training: One of the most frequently used and widely effective techniques
to make a model robust to adversarial attacks is adversarial training [19]. This involves
generating adversarial examples and augmenting the training process of the model with
this data. This enables the model to be intrinsically robust without any changes in the
architecture or pipeline. But, the model does have to be re-trained/finetuned on the
augmented data.

Feature Squeezing: Feature squeezing [70] is another method that does not require
any change to the model architecture, but, requires a change in the pipeline. It serves
as an adversarial example detection method rather than an intrinsic defense method like
adversarial training. Here, they “squeeze” the input using a squeezing method and compare
the difference in model predictions between the squeezed and un-squeezed inputs to detect
whether the input is an adversarial example. Figure 2.6 depicts how this is accomplished.

Figure 2.6: Basic pipeline for any model to use the feature squeezing technique. D() is a
distance metric. predf is the predictions of the squeezed input.

A filter function is used to squeeze the input and the prediction difference between the
original input and this new filtered input is compared using a distance metric D(). We
follow the original work’s metric by using the L1 norm on the probability vector. We use
a local smoothing filter as described in [70]. The filter uses runs a sliding window (filter)
over the input and applies a blur function like median across the values inside the window.

17

2.4 Spoofing

Spoofing has been proven to work as a technique to bypass the protection that the ASV
offers [60]. The spoofing techniques mainly fall into the following categories: imperson-
ation, replay, speech synthesis, and voice conversion. The impersonation spoof consists
of one speaker altering their voice to sound like the target speaker — the voice charac-
teristics modified are typically high-level information like prosody whose effects on the
performance of the ASV models are often ineffective [15; 11]. As a result, modern spoofing
CounterMeasures (CMs) often are not evaluated for this technique.

Replay spoofs consist of recording the audio of a target speaker and playing it back
using a set of speakers into ASV system. Speech synthesis uses advanced algorithms and
machine learning models to generate an audio recording in the voice of the target speaker.
Voice conversion techniques are used to convert the voice of a speaker in a given audio to
the voice of the target speaker.

The development of CMs has been prompted due to these techniques. One of the first
public datasets that consist of all the three techniques used above is the AVspoof dataset
[15]. Challenges such as the ASVspoof series [68; 25; 60] have further been introduced
that improved the state-of-the-art of the spoofing CMs along with better spoofs. The
ASVspoof 2015 challenge tackles the speech synthesis and voice conversion spoof techniques
and focuses on CMs for them. The ASVspoof 2017 challenge focuses on studying CMs for
replay attacks detection. The ASVspoof 2019 combines both of the above scenarios and
focuses on CMs for all three major spoofing techniques.

In addition, there are two scenarios under which the spoofing attack can be conducted:
physical access and logical access. The physical access scenario is where a given spoof
is played through a replay device (speaker) and obtained by the capture device (micro-
phone/sensor) of the ASV system before being passed to the ASV — the spoof is subject
to the capture device which introduces variability in terms of the environment such as dis-
tance from replay device to capture device, the room’s acoustic properties, and the replay
and capturing devices’ properties. The logical access scenario is where the spoof is directly
passed to the ASV thereby bypassing the sensor and directly introducing it to the channel
between the capture device and ASV.

18

2.5 Metrics

Here, we will elaborate on the metrics used in the remainder of the thesis. The metrics
below are mentioned from the perspective of a binary classification scenario — the two
classes are positive and negative. For ASV models, the positive class corresponds to the
inputs originating from the same speaker. For CM models, the positive class corresponds
to the inputs that are not spoofs.

True Positive (TP): The number of samples that are correctly classified as belonging to
the positive class.

True Negative (TN): The number of samples that are correctly classified as belonging
to the negative class.

False Positive (FP): The number of samples that are incorrectly classified as belonging
to the positive class. The instances of this error (false positives are an error type) are also
known as false acceptance.

False Negative (FN): The number of samples that are incorrectly classified as belonging
to the negative class. The instances of this error (false negatives are an error type) are also
known as false rejection.

Equal Error Rate (EER): The is the error when the False Acceptance Rate (FAR) and
the False Rejection Rate (FRR) are equal.

FalsePositiveRate(FPR) = FAR =
FP

FP + TN
(2.22)

FalseNegativeRate(FNR) = FRR =
FN

FN + TP
(2.23)

Precision: Out of the samples classified as belonging to the positive class, the fraction
that were correctly classified.

Precision =
TP

TP + FP
(2.24)

Recall: The fraction of positive samples that have been correctly classified.

Recall =
TP

TP + FN
(2.25)

F1-Score: The commonly used F1-Score is the harmonic mean of the precision and recall.

F1-Score = 2× Precision ·Recall
Precision+Recall

(2.26)

19

Attack Success Rate: It measures the percentage of samples that are incorrectly classi-
fied by an adversarial attack. The below equation assumes that all the inputs are adver-
sarial inputs.

AttackSuccessRate =
FP + FN

TP + TN + FP + FN
× 100 (2.27)

20

Chapter 3

Problem Statement

3.1 System Model

In real-world deployments, a spoofing CounterMeasure (CM) and an Automatic Speaker
Verification (ASV) model are deployed simultaneously and they work in tandem. Figure 3.1
depicts the spoofing CounterMeasure-Automatic Speaker Verification (CM-ASV) pipeline.
The critical components required for the functioning of the pipeline are an ASV and CM
model. An ASV determines whether a given pair of inputs correspond to the same speaker
or not, whereas a CM determines whether a given input is a spoof or not. So any input to
the ASV in the CM-ASV first has to pass the validation by the CM model that the input
is not a spoof.

3.2 Adversary Model

We now define the adversary models when targeting an ASV by identifying the capabilities
of the adversary for different types of attacks. We consider two types of attacks, namely,
spoofing attacks and adversarial attacks.

Figure 3.1 depicts a control boundary (green box in the Figure) indicating the parts of
CM-ASV that are not accessible by the adversary in the adversary model. There are three
different scenarios corresponding to the control boundary:

• With the control boundary as shown in the Figure, the adversary has physical access
to the capture device and logical access to the channel between the capture device

21

Figure 3.1: System model depicting the complete flow of data from the capture of input
utterance to the spoofing countermeasure and speaker verification models. It also shows
the connections the physical access and logical access spoofs target.

and the backend (CM/ASV). The adversary can choose to conduct either a physical
access attack at the capture device or a logical access attack at the channel.
• The control boundary can extend to include the capture device as well. In this case,

the adversary is limited to conducting a physical access attack at the capture device.
• The adversary may have knowledge of select parts inside the control boundary

thereby making adversarial attacks feasible. This will further explained in Section
3.2.2.

3.2.1 Spoofing Attacks

We now elucidate the types of spoofing scenarios and spoofing attacks the adversary can
use against an ASV model. The adversary can craft spoofs under the physical access and
logical access scenarios. Figure 3.1 depicts the connections that the physical access spoof
and logical access spoof target to create successful spoofing attacks.

The goal of the adversary in spoofing attacks is to gain access to the resource being
protected by an ASV model. The CM exists as a mechanism to block this illegal access.
So, the spoofs are created with an ASV model as the target of the attack.

Spoofs can be crafted through replay, speech synthesis, and voice conversion techniques.
For the replay spoofs, the adversary needs access to a sample from the voice of the target
speaker (the person whose voice the spoof is meant to mimic and thereby use that voice to

22

bypass the ASV). The speech synthesis techniques require multiple audio samples of the
target speaker to be able to train a model capable of synthesizing audio in the voice of the
target speaker. The voice conversion techniques require multiple samples of source-target
audio pairs to train a model to perform the voice conversion from the source to the target
speaker.

Physical Spoofing Attacks: The physical attack (physical access attack) scenario is
where a speaker’s voiceprint first has to go through a capture device (like a microphone)
before being passed to the backend. This scenario will involve acoustic environment variabil-
ity along with capture device variability. A real-world example of a physical attack is when
a user (or adversary) accesses a physical vault — that can contain items like high-value
jewelry or artwork — that is secured by an ASV-based authentication. The user in this
example will have to provide a voice sample at the location of the physical vault. This
means that the capture device of the authentication system and the environment around
the vault is chosen by the builders of the vault — whose primary goal is to ensure the
security of the vault.

Logical Spoofing Attacks: The logical attack (logical access attack) scenario is in con-
trast to the aforementioned scenario, wherein the speaker’s voice sample can bypass the
capture device of the ASV model. An example of this is a scenario where the capture de-
vice is under the control of the user (or adversary). For example, when accessing a bank
account — that is protected by an ASV-based authentication — remotely, certain banks
require the user to provide a custom voice sample. This voice sample is spoken by the
user and passes through the capture device — most likely a mobile phone — in the user’s
possession if the user is not an adversary. If the user is an adversary, they can directly
pass the voice data to the communication channel, thereby bypassing the microphone.

3.2.2 Adversarial Attacks

We now elucidate the capabilities of the adversary when attacking an ASV model using
adversarial attacks. To begin, the adversary requires an algorithm to generate adversarial
examples to perform the attack. Then, there are two factors of variability to consider when
conducting an attack.

Firstly, the type of access the adversary has to the ASV model, that is, does the
adversary have black-box or white-box access? If the adversary has white-box access, they
can directly backpropagate gradients through the model to generate adversarial examples.
If the adversary has black-box access, they will need to generate adversarial examples from
another ASV model that they have white-box access to. This is used to conduct an attack

23

on the target ASV model using the transferable property of adversarial examples between
models.

Secondly, the type of access the adversary has to the target speaker’s stored audio
template. There are two different ways in which the adversary can target the ASV model
— depending on whether the adversary has access to the speaker’s audio template stored
by the ASV model or not. The different adversary models based on template access are
mentioned below:

Read-Only-Template-Access The adversary has read access to the template used by the
ASV model.

No-Template-Access The adversary does not have access to the template used by the
ASV model. But, they have access to a voice sample of the speaker that is distinct from
the template.

There is another scenario where the adversary has read&write access to the template.
We do not consider this because it falls under poisoning attacks and is out of the scope of
this thesis.

3.3 Research Questions & Metrics

We will now annotate the objectives of this thesis in the following three research questions:

Research Question I : Can a unimodal CM be augmented with visual information to
improve spoofing detection rate? To answer this question, we construct a multimodal CM
by augmenting a unimodal CM with a video model that processes visual information in
parallel. This approach of augmenting an existing unimodal CM is interesting because for
the past few years, there have been numerous work on unimodal CM due to challenges like
ASVspoof 2019 [60]. If we are able to successfully augment these types of models, then
it can serve as a very simple mechanism to create multimodal models. This multimodal
CM is compared with a unimodal CM to showcase its performance. The metrics used for
evaluation are mentioned below:

M1.1 Equal Error Rate (EER) on test set
M1.2 Run-time of the models

24

Research Question II : How do adversarial attacks affect multimodal ASV models? To
answer this, we find the best way to attack a multimodal ASV model using adversarial
attacks. The metrics used for evaluation are mentioned below:

M2.1 Success rate of the adversarial attacks

Research Question III : Can a malicious sample detector be created that can iden-
tify both spoofing and adversarial attacks against ASV models? To answer this question,
we create a novel malicious sample detector to defend against spoofing attacks from Re-
search Question I and adversarial attacks from Research Question II. The metrics used for
evaluation are mentioned below:

M3.1 Adversarial attack success rate
M3.2 True Positive Rate (TPR) on the anti-spoofing task

25

Chapter 4

Multimodal Spoofing
Countermeasure

In Chapters 1 and 2, we have discussed about spoofing attacks and how they are defended
against using a spoofing CounterMeasure (CM). But existing CMs work by using only the
audio information to determine whether the given input is spoofed. Here, we research the
addition of an unspoofed visual modality and identify whether any performance gains can
be obtained when combining the audio and visual information to solve the task.

Here we address Research Question I from Chapter 3 which is as follows: Can a uni-
modal CM be augmented with visual information to improve spoofing detection rate? To
answer this question, we construct a multimodal CM by augmenting a unimodal CM with
a video model that processes visual information in parallel. This approach of augmenting
an existing unimodal CM is interesting because for the past few years, there have been nu-
merous work on unimodal CM due to challenges like ASVspoof 2019 [60]. If we are able to
successfully augment these types of models, then it can serve as a very simple mechanism
to create multimodal models. This multimodal CM is compared with a unimodal CM to
showcase its performance. Recall that the metrics used for evaluation are:

M1.1 Equal Error Rate (EER) on test set
M1.2 Run-time of the models

To tackle this task, we replicate a unimodal CM and compare it to a novel multimodal
CM. We start by explaining the dataset (Section 4.1) used to conduct the experiments
followed by the preprocessing (Section 4.2) used on the dataset. Following this, we explain
the methodology (Section 4.3) used to conduct the experiments. This is succeeded by the

26

architecture (Section 4.4) of our multimodal CM and the experimental results (Section
4.5).

4.1 Dataset

We use the AVspoof [15] dataset for both training and evaluating the CM models — we will
hereafter refer to the dataset as AVspoof. AVspoof is an audio-visual dataset consisting
of recorded videos spanning 44 speakers with a variety of different capturing devices and
environmental conditions. Spoofing attacks of replay, speech synthesis, and voice conver-
sion are carried out on the recorded audio information while the visual information is left
untouched.

More specifically, we use the BTAS [26] challenge dataset which is based upon AVspoof
— we will hereafter refer to the dataset as BTAS. They focused on the physical attack
scenario while also introducing new attacks that were not a part of the training set to
evaluate the effect of unknown attacks on the CM models. The new attacks focus on the
scenario where the verification system is on a new device and the scenario where a voice
recording is stolen or secretly captured. The training, development, and testing splits have
38580/4973, 38580/4995, and 44920/5576 spoofs/genuine data, respectively.

In Table 4.1, the various attacks from BTAS have been described. There are 4 differ-
ent capturing devices (microphones) that the dataset uses, namely, the laptop microphone
(AT2020USB+), phone1 (Samsung Galaxy S4), phone2 (iPhone 3GS), and phone3 (iPhone
6S). One key point to note is that following the process mentioned in the “Description”
column of Table 4.1, the audio is captured by the microphone of the Automatic Speaker
Verification (ASV) system. Except two attacks — replay laptopphone2 phone3 and re-
play phone2 phone3 — all of the other attacks have the ASV system placed on the laptop.
In those two attacks, the ASV system is placed on phone3.

27

Table 4.1: Description of the attacks in BTAS. Following the process mentioned in the
“Description” column of the Table, the audio is captured by the microphone of the ASV
system.

Attacks Description
genuine Data that is not spoofed and emitted

directly from an individual
replay laptop Data that is captured by the laptop’s

microphone and replayed by the lap-
top’s speaker

replay laptop HQ speaker Data that is captured by the laptop’s
microphone and replayed by a high-
quality speaker

replay laptopphone2 phone3 Data that is captured by the lap-
top’s microphone and replayed using
the speakers of phone2

replay phone1 Data that is captured by the micro-
phone of phone1 and replayed using the
speakers of phone1

replay phone2 Data that is captured by the micro-
phone of phone2 and replayed using the
speakers of phone2

replay phone2 phone3 Data that is captured by the micro-
phone of phone2 and replayed using the
speakers of phone2

speech synthesis physical access Data from the speech synthesis mecha-
nism is played through the speakers of
the laptop

speech synthesis physical access HQ speaker Data from the speech synthesis mech-
anism is played through a high-quality
speaker

voice conversion physical access Data from the voice conversion mecha-
nism is played through the speakers of
the laptop

voice conversion physical access HQ speaker Data from the voice conversion mech-
anism is played through a high-quality
speaker

28

4.2 Video Macro Alignment

With AVspoof being an audio-visual dataset, the audio has been curated to the level of
individual utterances. But, the visuals corresponding to those utterances have not been
provided. Instead, we are provided the video recordings of the complete session, that
is, multiple utterances are present in a single video. So, we implement a voice activity
detection-based algorithm to generate the visual input for individual utterances.

Algorithm 4: Video Alignment Algorithm for Individual Utterances

Input: Complete video vid,
Utterances utts belonging to video vid,
Voice Activity Detection model V AD,
Number of possible alignments range

Output: Visual Alignment Mapping map
1 Load pre-trained parameters of the V AD model
2 voice activity = V AD(vid)
3 foreach utt in the list utts do
4 create empty list possibilities
5 foreach start in the set voice activity do

/* start contains the beginning of a continuous utterance as

detected by the V AD */

6 foreach shift in -range,...,range do
/* shift is used to pin-point specific start of utt in vid */

7 add sum(|utt− video[start− shift : start− shift+ len(utt)]|) to
possibilities

8 map[utt] = argmin(possibilities)

9 return map

Algorithm 4 details how we extract the visuals corresponding to the audio of the utter-
ances. A voice activity detector1 is used to detect the start of a sequence of uninterrupted
(not blank) audio. Then we compare the waveforms of each of the uninterrupted audios
detected by the voice activity detector with each of the utterances that belong to the same
video. In addition, we allow for a shift to take place on the voice activity detector’s start
that accounts for the detector generating too strict/lenient of a start. To ensure that the

1https://github.com/snakers4/silero-vad

29

aligment is correct, we use an automatic speech recognition module to compare the tran-
scription of the individual audio utterance to the transcription of the utterance from the
video (with the newly identified alignment).

4.3 Methodology

In the multimodal scenario, there are two inputs, namely, the audio and visual inputs.
Therefore, to adapt the spoofing CounterMeasure-Automatic Speaker Verification (CM-
ASV) pipeline in Figure 3.1 to the multimodal scenario, there needs to be two capture
devices that are used to obtain the inputs.

As mentioned in Section 3.2.1, for physical spoofing attacks, it is assumed that the
adversary can only control the input to the capture device. But, due to the lack of a
realistic dataset that contains paired spoofs of visuals along with audio — recent anti-
spoofing datasets only contain the audio and do not have the corresponding visuals — we
use BTAS. Recall that BTAS models such an adversary for the audio input, that is, the
dataset includes various types of audio spoofs. But the visuals corresponding to the audio
are not spoofed. So when we conduct experiments with it, it will be under the case where
the adversary can conduct a perfect replay of the visual information.

Furthermore, when adding the visual information as input to test the feasibility of a
multimodal CM, the following question arises: what visual information should be paired with
the audio information? The visual information can be broadly thought of as falling under
a spectrum with two extremities. On one end of this spectrum, we have an adversary that
can spoof the video to match the audio spoof — this represents the more difficult scenario
to defend against (ADVdifficult). On the other end of the spectrum, we have an adversary
that produces visuals irrelevant to the utterance — this represents the easier scenario
to defend against (ADVeasy) since the visuals are not matching the audio. A realistic
dataset would contain visuals falling somewhere in this spectrum. But due to a lack of this
realistic dataset (as mentioned in the previous paragraph), we test on both the difficult
and easier end of the spectrum so that we can establish a lower-bound and upper-bound
respectively with regards to the performance of a multimodal CM. A functional multimodal
model will work well against the ADVeasy setting and should not drop performance on the
ADVdifficult.

30

4.4 Model Architecture

Tasks such as speech enhancement [41; 58] and speech separation [14] have deep learning
architectures that take advantage of multimodal input data to enhance performance in their
tasks compared to the unimodal models. Inspired by these works, we create a multimodal
model for the task of anti-spoofing that uses unspoofed visual information to jointly solve
the task.

To fuse the audio and visual information, the typically used mechanism is to directly
concatenate the information on a per-timestep basis. But, this is not completely cor-
rect since the information alignment between audio and video is not direct. The work
by Schwartz and Savariaux [47] shows that there exists a small but clear asynchrony be-
tween the auditory events and visual events. In addition, prior to this work, the work
by Chandrasekaran et al. [7] also showcased the asynchronies. We propose a multimodal
model that uses attention to align the audio and visual information and solve the anti-
spoofing task. Figure 4.1 gives an overview of the architecture of the multimodal CM. Each
of the components — audio model, video model, fusion model, and classification model —
are explained in the following sections. The input for the model is one second in length.

4.4.1 Audio Model

We use a similar audio model as Wang et al. [58]. We reduce the hidden dimension size to
256 to save on computation time. We use the Long Short-Term Memory (LSTM) so that
we can conduct a local level attention in the fusion model — the reason for this will be
explained in Section 4.4.3.

The input to the audio modality consists of Log Power Spectrum (LPS) computed with
an input audio waveform re-sampled to 16000 samples/sec, window length of 400, hop
length of 160, and FFT size of 512. We consider FeatureExtractor() to perform the LPS
extraction and normalization. After extraction, we have T timesteps of LPS. The audio
model consists of 2 layers of LSTM that work as follows:

a1,2,....,T = FeatureExtractor(waveform) (4.1)

h1,2,....,T = LSTM1(a1,2,....,T) (4.2)

featsa1,a2,....,aT = LSTM2(h1,2,....,T) (4.3)

The input waveform is first converted to LPS. The output of the first LSTM layer is denoted
by ht where t is the current timestep and the input LPS is denoted by at. This is again
fed into another later of LSTM that outputs audio features featsat.

31

Figure 4.1: Architecture of the proposed multimodal CM. There are four components in
the multimodal CM, namely the Audio, Video, Fusion, and Classification models

We also create another multimodal CM based on the unimodal LCNN-trim-pad from
Wang and Yamagishi [59] which obtained state-of-the-art performance in the ASVspoof
2019 challenge [28].

4.4.2 Video Model

We use a similar video model as proposed in Ramesh et al. [41].

The input to the video model consists of crops of the mouth images of the speaker of
size 160x160 at every timestep. The model uses a depthwise separable convolution [21]
based feature extractor. The architecture for it is described on Table 4.2.

32

Table 4.2: Architecture of the Video Model

Component Filters Kernel size Stride
SeparableConv 64 3x3 2x2
SeparableConv 64 3x3 2x2
SeparableConv 128 3x3 2x2
SeparableConv 128 3x3 2x2
SeparableConv 256 3x3 2x2
SeparableConv 256 3x3 2x2

FC-256 - - -

4.4.3 Fusion Model

The fusion model is responsible for combining the information from the audio and video
models — the input from them are sequences of embeddings. Due to the presence of a small
asynchrony between the auditory event and visual event, direct concatenation methods like
Wang et al. [58] will not be the most optimal way to solve the task. We propose to use a
local attention [3] mechanism to accomplish this fusion task. The attention mechanism can
selectively choose the appropriate visual timesteps to attend to in a dynamic input-specific
manner. Attention maps the local information into a context vector which serves as visual
information that is concatenated with the audio information to pass to the audio-visual
LSTM. It can be formulated as follows:

αt,s = σ(f(vs, avt−1)) (4.4)

ct =
i=centre+k∑
i=centre−k

αt,ivi (4.5)

avt = LSTM([at ⊕ ct]) (4.6)

The above set of equations refers to the audio-visual LSTM used to fuse the two modalities.
αt,s is the scores used to weigh the visual output vs and compute the context vector ct at
timesteps (t, s) of the audio and visual respectively. σ refers to the softmax function used
across the local attention window. f is the scoring function used to compute relative
importance scores (we use the model from Bahdanau et al. [3]), at is the output from the
audio model, and avt is the multimodal output. The multimodal LSTM takes as input the
concatenation of audio at and context vector ct. Here we use the local attention with a
window size of k due to the asynchrony being local in nature. The centre refers to the visual
frame corresponding to an audio frame if the audio-visual input were not asynchronous.

33

We set it to be equal to t/4 given that we sample the visual frames at 25 frames/sec. We
also set the window size to 2.

4.4.4 Classification Model

At the end of the audio-visual LSTM, we have a sequence of features of size T. We use
a Feed-Forward Neural Network (FFN) on the flattened features from the audio-visual
LSTM to compute the final classification score. We use cross-entropy loss combined with
adam optimizer to train the model.

4.5 Results & Discussion

Table 4.3: Results of the spoofing countermeasure models on the test set of BTAS. The
models above the first horizontal dividing line are unimodal while the rest are multimodal.
Each model is trained three times. The EER results here are the mean±standard-deviation
of the EERs of three different models.

Model EER Modality Training Adv Testing Adv
LCNN 2.16±0.02 A - -
LSTM 0.93±0 A - -

LCNN–CNN–Fusion 2.15±0.03 AV ADVdifficult ADVdifficult

LSTM–CNN–Fusion(A) 1.14±0.18 AV ADVdifficult ADVdifficult

LCNN–CNN–Fusion 2.15±0.03 AV ADVdifficult ADVeasy

LSTM–CNN–Fusion(A) 1.14±0.18 AV ADVdifficult ADVeasy

Table 4.3 shows the EER metric of the anti-spoofing models. Each of the models are
trained on the ADVdifficult set. Each of the results in Table 4.3 is obtained from training
three separate models and presenting the mean and standard deviation of the EER. This
is done to showcase the result of randomness in the training process. The LCNN model is
the unimodal LCNN-trim-pad model. For multimodal models, the naming scheme follows
“Audio Model–Video Model–Fusion Model”. LSTM refers to the audio model described
in Section 4.4.1. CNN refers to the video model described in Section 4.4.2. Fusion(A)
refers to the fusion mechanism from Section 4.4.3. So, LCNN–CNN–Fusion refers to the
LCNN being used for audio processing and CNN from Section 4.4.2 for video processing
and the direct concatenation of audio and visual outputs for fusing the audio and visual
information.

34

From the results in Table 4.3, the LCNN is worse off compared to the LSTM model even
though the LCNN model is made specifically for the purpose of anti-spoofing. But, this is
because we use an audio duration of only 1-second as the input to both of the models. 2

This is hindering the performance of both the models and using the complete audio input
will reduce this gap significantly.

Moving onto the multimodal models, first we talk about the results obtained when
testing the multimodal models on the difficult end of the spectrum from Section 4.3. The
key point to note is that when the visual information is added, the multimodal models
either do not offer any performance improvements compared to the unimodal models in —
comparing LCNN and LCNN–CNN–Fusion — or the performance drops — comparing LSTM
and LSTM–CNN–Fusion(A). We can observe a huge standard deviation in the LSTM–CNN–
Fusion(A) — this is because this model is influenced by randomness in training 3 thereby
causing the model to converge to different points. We are uncertain on the exact cause as
to why the random initialization affects LSTM–CNN–Fusion(A) model severely compared
to the other ones.

Finally, when pairing the visuals obtained from the easier end of the spectrum in Section
4.3 for testing, there is no improvement in the performance of the multimodal model. In
fact, when comparing the results, we can see that they are the same — the cause for
this is because the gradient of the output with respect to the visual input contributes less
than 1% towards the final scores. All of the above observations combined suggest that
the visual information is unable to provide any performance gains in the task with the
current multimodal paradigm. We believe that this is due to the nature in which the visual
information has been added. We have experimented with adding visual information directly
to solve the anti-spoofing task. Therefore, due to the lack of sufficient grounded supervision
for the task, we believe that the visual information is unable to provide any help. For
example, other approaches to including the visual information can be like Chugh et al. [8]
or using explicit synchronization scores as features [9] or using adding a separate active
speaker detection module in front of the CM (this would handle the scenarios where the
lip is not synched with the audio).

Table 4.4 contains the runtime of the unimodal and multimodal CMs per query that
has been averaged over the entire testing split. The run-time of the LSTM–CNN–Fusion(A)
model is 4ms per query which is the longest run-time out of all the models. Compared
to the LCNN’s 0.5ms per query this is a significant overhead but not an unreasonable one

2Since our results indicated that the method of adding visual information is not helpful, increasing this
will not cause our multimodal models to improve.

3Randomness originates due to weight initialization and data sampling.

35

Table 4.4: Run-Time of the CMs in milliseconds (ms).

Model Run-Time
LCNN 0.5
LSTM 2.0

LCNN-CNN-Fusion 0.6
LSTM-CNN-Fusion(A) 4.0

considering that we use LSTMs for the audio model. If we were to use the LCNN for
the audio model as in LCNN–CNN–Fusion, the runtime is 0.6ms per query. This is an
acceptable overhead due to the addition of a new fusion component and the processing of
a new modality. When comparing LSTM–CNN–Fusion(A) with its unimodal model LSTM,
the runtime is within the acceptable range as well.

To summarize, we have answered Research Question I by showing that a multimodal
CM cannot improve performance over a unimodal CM in this paradigm. We approach
the construction of a multimodal CM using the augmentation approach due to existing
works on unimodal CMs, that is, if successful, this can provide an easy mechanism to
integrate visual information into unimodal models. But, the results indicate that the
direct integration of visual information does not provide suitable information for the task.
If the input from both modalities were to be integrated using a different method like [8] this
conclusion may not hold but we leave it to future work to explore these kinds of methods.

36

Chapter 5

Adversarial Attack on Multimodal
Speaker Verification

In Chapters 1 and 2, we have discussed adversarial attacks and how they present an attack
vector different from spoofing attacks. But existing works on the effects of adversarial
attacks on Automatic Speaker Verifications (ASVs) have not considered multimodal ASVs.

Here we address Research Question II from Chapter 3 which is as follows: How do
adversarial attacks affect multimodal ASV models? To answer this, we find the best way
to attack a multimodal ASV model using adversarial attacks. Recall that the metric used
for evaluation is:

M2.1 Success rate of the adversarial attacks

To answer this question, we replicate two unimodal ASV models, two multimodal ASV
models and conduct adversarial attacks on the multimodal models using the unimodal and
multimodal models. We start by explaining the dataset (Section 5.1) used to conduct the
experiments followed by the ASV models (Section 5.2) used. This is succeeded by the
methodology (Section 5.3) of how we conduct our experiments and their results (Section
5.4).

5.1 Dataset

We create the ASV models by training them on the VoxCeleb1 [36] dataset — we will
hereafter refer to the dataset as Voxceleb1. Voxceleb1 is an audio-visual dataset

37

consisting of videos curated from YouTube following a pipeline consisting of face tracking,
active speaker verification, and face verification. The curated videos are gender-balanced,
and consists of speakers from a variety of ethnicities, ages, and accents but are unilingual —
the language spoken is English-only. The audio tracks from the videos consist of a variety
of acoustic environments along with various degrading factors like noise. Voxceleb1 has
two separate splits — the first one consists of 1211 speakers and ∼145,000 utterances while
the second consists of 40 speakers and ∼4,800 utterances.

But, some videos are not available on YouTube at the time of this thesis thereby leading
to a reduction in the number of utterances. The reduced version of the first set consists of
1211 speakers and ∼122,000 utterances while the reduced second set consists of 40 speakers
and ∼4,100 utterances.

It is curated such that there is no overlap between the speakers from the first and
second sets. The first set is used for training while the second is used for testing. We
curate a custom set for validation from the existing first set by creating 12 positive and
negative pairs for each speaker in the first set. These pairs are used as the validation set.
The remaining data from the first set is used as the training set.

5.2 Automatic Speaker Verification models

We replicate four ASV models to assess robustness against adversarial attacks — x-
vector [50]1, 1D-CNN from Shon et al. [49], online person verification [48], and multiview
[45]. From here on, they will be referred to as X-Vec, 1D-CNN, OPV, and MV respectively.
X-Vec and 1D-CNN are unimodal models while OPV and MV are multimodal models.

Table 5.1 contains our evaluation of the ASV models on the testing split of Voxceleb1
dataset — Equal Error Rate (EER), F1-Score, Precision and Recall. We can observe
that the multimodal models perform significantly better than the unimodal ones as previous
works have shown.

For comparison, Table 5.1 also shows the EER scores (EERcmp) taken from the cor-
responding papers as cited in the table. We’ve added them so that the readers can get a
sense for reference but at the same time they should be mindful that the scores cannot be
compared directly due to a variety of reasons as mentioned below.

Due to missing videos in Voxceleb1’s test set as mentioned previously, the scores are
bound to be different across all of the models. 1D-CNN’s comparison score is obtained from

1https://github.com/cvqluu/TDNN

38

Table 5.1: Evaluation of the 4 ASV models on the test set of Voxceleb1. The models
above the horizontal dividing line are unimodal while the rest are multimodal.

Model EER EERcmp F1-Score Precision Recall Modality
X-Vec 12.30 11.3 [49] 0.88 0.89 0.86 A

1D-CNN 13.20 8.4 [49] 0.86 0.89 0.84 A
OPV 7.55 5.29 [48] 0.92 0.91 0.94 AV
MV 8.42 1.4 [45] 0.92 0.93 0.91 AV

a model trained with data augmentation which is known to boost performance [50]. OPV’s
comparison score is obtained from a model trained with utterances from the VoxCeleb2 [10]
dataset — which is multiple times larger than Voxceleb1. The score is obtained from
testing on the test set of VoxCeleb2 as well. MV’s comparison score is obtained from a
model trained on VoxCeleb2 and tested on Voxceleb1.

5.3 Attack Methodology

Figure 5.1 showcases the pathways for the forward and backward passes of multimodal ASV
models — pathways for unimodal ASV models can be directly extrapolated by removing
one of the modalities. The blue lines show the forward pathway (used to compute output)
while the orange lines show the backward pathway (used to compute gradients).

We attack the ASV models with adversarial examples generated using the various algo-
rithms mentioned in Section 2.3.1. These generation algorithms rely on computing gradi-
ents GradsAx , GradsVx corresponding to the inputs Ax, Vx respectively. They use a source
model to obtain gradients. The attacks are conducted under the white-box and black-box
settings — the attack is white-box when the target model is the same as the source model
while the attack is black-box when the target model is different from the source model.
The black-box attacks are also referred to transfer attacks since the adversarial examples
generated for a source model are transferred to a target model different from the source.

We conduct the attacks for adversary models Read-Only-Template-Access and No-

Template-Access as defined in Section 3.2.2. Recall that the adversary can only change
the inputs corresponding to one of the input pairs of speaker data (Figure 5.2) in both
adversary models. According to those algorithms, we consider the inputs from the attacker
x as candidate inputs (Ac, Vc) and aim to perturb these. For Read-Only-Template-Access,
we denote inputs from the victim y as template inputs (At, Vt) since they originate from the

39

Figure 5.1: Depiction of how adversary models compute the perturbation using a multi-
modal ASV model. For Read-Only-Template-Access, we use (Ac, Vc) and (At, Vt) to
compute the perturbations. For No-Template-Access, we use (Ac, Vc) and (Ar, Vr) to
compute the perturbations.

template that has been obtained by the adversary. On the other hand, for No-Template-

Access, we denote the inputs from the victim y as reference inputs (Ar, Vr) since they
originate from the same identity as the template but a different utterance. This has been
depicted in Figure 5.1. In both adversary models, the perturbed version of the candidate
input is compared with the template input to compute robustness of the ASV. This has
been depicted in Figure 5.2.

The resulting robustness of the models is evaluated using the attack success rate metric
which corresponds to the percentage of adversarial examples that are wrongly classified.

We create adversarial examples for Read-Only-Template-Access using ∼1000 pairs of
negative — therefore, in this case, the attack success rate will be equivalent to the false
positive rate — testing data from the Voxceleb1 dataset. The pairs are chosen randomly
from a subset of testing data that all of the four ASV models correctly classify. The testing
pairs for No-Template-Access is obtained from the test set following the same criterion.
We run this experiment four times — each time with a different set of input pairs from
the test set. Each of the utterances from the test set act as a candidate input once across

40

Figure 5.2: Depiction of how the robustness of ASV models is tested. A′′c and V ′′c are the
perturbed audio and visual inputs. At and Vt are the templates of the victim y.

the four sets with the utterances being evenly divided across the four sets.

5.4 Results & Discussion

Figure 5.3: Figure showing the white-box attack targeting the audio-visual modality on
MV for Read-Only-Template-Access

Here, we will present the distribution of attack success rates (y-axis) across different

41

perturbation degrees (x-axis — epsilons) in different graphs. Each graph will correspond
to a specific permutation of (source model, target model, and modality attacked) which
will be mentioned at the top of the graph. Also, the graphs will have bars with different
colors corresponding to different attacks. We use different y-axis ranges for each graph.
We will refer to attacks that target both the audio & visual modalities as targeting the
audio-visual modality.

Figure 5.3 is used to show the effectiveness of different types of adversarial example
generation algorithms. We were only able to test for a few variants but given additional
time and resources an exhaustive search of the attacks’ hyper-parameters can be conducted.
We can generally observe from Figure 5.3 that the adversarial examples generated using
Fast Gradient Sign Method (FGSM) have success rates that are below those of multi-
step algorithms like Projected Gradient Descent (PGD) and Momentum Iterative Fast
Gradient Sign Method (MIFGSM). Also, among the variations of the PGD algorithm, we
can observe that the one with 20 steps is the best. Similarly, among the variations of the
MIFGSM algorithm, we can observe that the one with a decay of 0.6 is the best. Although
Figure 5.3 is for a specific case, we either observed the same general trend in other settings
or observed that there is not a significant difference in attack success rates between the
different versions of the attacks. Under certain scenarios this can change for which we will
point them out directly in the discussion. For the sake of clarity, we only present the most
relevant graphs to illustrate the discussion in this chapter, but all results are presented in
Appendix A.

5.4.1 Results for adversary model Read-Only-Template-Access

Here, we will discuss the results for adversary model Read-Only-Template-Access.

White-box Attacks: The white-box attacks on the multimodal OPV are presented in
Figure 5.4. We can directly see that attacking the audio-visual modality provides the
highest success rate at a lower perturbation. Interestingly, the white-box attack on the
visual modality (Figure 5.4b) has a success rate closer to that of the white-box attack on
the audio-visual modality (Figure 5.4c), that is, attacking the visual modality can provide
an attack which is very close to the best attack. The attack on the audio modality (Figure
5.4a) on the other hand has a much lower success rate. This indicates that the model
has a significant reliance on the visual modality compared to the audio modality. This
over-reliance on the visual modality is more highly pronounced for MV whose results are
in the Appendix A. Another interesting point is that attacking the audio modality alone is
unable to achieve complete success (100%) as opposed to attacking the visual modality. In

42

attacking the visual modality with FGSM, we can see that the success rate increases upto a
certain epsilon and then starts decreasing with higher epsilons. This happens because the
direction of the gradients change more drastically as the perturbation size grows [13]. On
the other hand, attacking the audio modality with FGSM shows that a significantly lower
perturbation is required when observing that the lowest perturbation gives the highest
success rate. When attacking the audio modality on OPV, a decay of 1.0 is better than
0.6 and so we refer the readers to that results in the Appendix A. Also, the success rates
increase with the number of steps as it should be under this scenario. Similar patterns can
be observed across the white-box attacks on the MV presented in the Appendix A.

Black-box Attacks: In black-box attacks where the unimodal models serve as the source
model to attack multimodal models, — Figure 5.5 shows the attacks targeting OPV —
the attack success rate are generally less than 10% which is significantly lower compared
to the white-box attacks. When 1D-CNN attacks the OPV, the success rates are higher
(compared to when X-Vec attacks OPV) due to them sharing a similar architecture. This
tells us that when attacking multimodal models, a transfer attack from a unimodal model
is not sufficient to gain high success rates.

In black-box attacks where the multimodal models are the source models — Figure 5.6
shows the attacks targeting OPV — the attack success rate are lower compared to the
white-box attacks. When only the audio modality is perturbed (Figure 5.6a), the attack
success rates are comparable to the attacks generated from the unimodal models. But when
the visual modality is perturbed (Figure 5.6b), the attack success rates are significantly
higher. Similarly, when the audio-visual modality is perturbed (Figure 5.6c), the success
rates (which are as high as 40%) are higher than just perturbing the audio modality (Figure
5.6a). Another point to note is that when the target of the black box attack is MV (results
in Appendix A), the highest attack success rates is less than 10%. This indicates that the
transferability is lower from OPV to MV. This is due to MV requiring 2 visual frames for
each second of input but OPV requires only 1 visual frame for each second of the input.
We conducted a black-box attack by padding zeros when transferring from OPV to MV.

5.4.2 Results for adversary model No-Template-Access

We will now discuss the results for adversary model No-Template-Access which is a more
difficult scenario to succeed in attacking.

White-box Attacks: There is a severe reduction in white-box attack success rates under
this adversary model as compared to Read-Only-Template-Access. Figure 5.7 shows the

43

results when targeting the audio-visual modality. The maximum success rate is around
90% whereas in Read-Only-Template-Access it was 100%.

Black-box Attacks: Similar to the white-box scenario, there is a severe reduction in
success rates. In fact, in this hard adversary model, the attack success rates are less than
10% when targeting the audio-visual modality as depicted in Figure 5.8.

To summarize, we have answered Research Question II by showing adversarial attacks
do affect multimodal ASVs by targeting the audio-visual modality — they are always the
best performing attack compared to unimodal attacks across the board. But under the
harder No-Template-Access, the attacks are not highly successful.

44

(a) Targeting the audio modality.

(b) Targeting the visual modality.

(c) Targeting the audio-visual modality.

Figure 5.4: White-box attack on OPV for Read-Only-Template-Access

45

(a) Targeting the audio modality by transfer from X-Vec.

(b) Targeting the audio modality by transfer from 1D-CNN.

Figure 5.5: Black-box attack targeting OPV where source models are unimodal for Read-

Only-Template-Access

46

(a) Targeting the audio modality by transfer from MV.

(b) Targeting the visual modality by transfer from MV.

(c) Targeting the audio-visual modality by transfer from MV.

Figure 5.6: Black-box attack targeting OPV where source models are multimodal for Read-
Only-Template-Access

47

Figure 5.7: Figure showing the white-box attack targeting the audio-visual modality on
OPV for No-Template-Access

Figure 5.8: Figure showing the black-box attack targeting the audio-visual modality by
transfer from MV to OPV for No-Template-Access

48

Chapter 6

Malicious Sample Detector

In Chapter 4, we showed that multimodal spoofing CounterMeasures (CMs) created by
augmenting a unimodal CM does not give any performance improvements. In Chapter 5,
we demonstrated that multimodal models are heavily reliant on the visual modality and
by targeting this the attacker can get adversarial attack success rates that are close to
attacking both the modalities (which gives the highest success rates). In this chapter, we
propose to combine the functionality of adversarial example detection into the CM. This
will allow the CM to become a multi-purpose defense mechanism by defending against both
spoofs and adversarial examples that target the Automatic Speaker Verification (ASV).

Here, we address Research Question III from Chapter 3 which is as follows: Can a
malicious sample detector be created that can identify both spoofing and adversarial attacks
against ASV models? To answer this question, we create a novel malicious sample detector
to defend against spoofing attacks from Research Question I and adversarial attacks from
Research Question II. Recall that the metrics used for evaluation are:

M3.1 Adversarial attack success rate
M3.2 True Positive Rate (TPR) on the anti-spoofing task

To answer this question, we first explain the dataset used for the experiments (Section
6.1). Then we explain the methodology (Section 6.2) of how we structure our experiments
followed by the results (Section 6.3) of the experimentation.

49

6.1 Dataset

There are two datasets used in this Chapter. First is the BTAS used to train the CM
models. This dataset has been introduced in Section 4.1. The other dataset used is the
Voxceleb1 used to train the ASV models. This dataset has been introduced in Section
5.1.

We generate adversarial examples using the same methodology as in Chapter 5. The
generated examples originate from ∼1000 pairs of negative testing data from Voxceleb1
(same as in Chapter 5). The pairs are chosen randomly from a subset of testing data that
all of the four ASV models correctly classify.

6.2 Methodology

One of the mechanisms used to make a model robust to adversarial attacks is adversarial
training. But, the task that we are trying to achieve is to have the CM detect and stop the
adversarial attacks targeting the ASV models. If we were to implement adversarial training
on the CM models, they will gain robustness to adversarial attacks that target the CMs —
which is not what our goal is. Whether this model will be resistant to adversarial examples
targeting ASVs is not determined. So, we do not use adversarial training to achieve our
goal.

Instead, we propose to use feature squeezing (explained in Section 2.3.2) to detect the
adversarial examples. This technique does not intrinsically make the model robust, but
rather detects the adversarial examples — it uses the difference in predictions between
the “squeezed” and original inputs to detect the adversarial example. When an input is
detected as adversarial, it is blocked without being passed to the CM — this counts as
an instance of a successful detection. If an adversarial example manages to bypass this
defense, but the CM classifies the input as a spoof, we consider this also as an instance
of successful detection since the end result is a blocking of the input without any changes
to the pipeline. As for measuring TPR on the anti-spoofing task, it is measured from the
probability vector that passes the feature squeezing defense, that is, if the defense blocks
a legitimate example, it counts as a false classification.

Figure 6.1 depicts how the feature squeezing mechanism is added onto the CMs. The
threshold required for the feature squeezing mechanism to detect whether a given input
is adversarial or not is obtained as explained in the remainder of the paragraph. The
threshold is set as the Equal Error Rate (EER) between adversarial examples and legitimate

50

examples. In order to generate adversarial examples for the identification of the threshold,
we assume that the defender has access to some ASV models — we call these seen models
since the defender and thereby the feature squeezing mechanism will know the adversarial
examples generated by these models. We set X-Vec and MV as the seen models. The
adversarial example generation algorithm for the determination of the threshold is the
PGD algorithm with steps of 10 and an epsilon of 0.025. We use 1000 pairs of negative data
(we aim to make false acceptances by using adversarial perturbations) from Voxceleb1’s
dev set for the aforementioned purpose. The legitimate examples come from the dev set
of BTAS and Voxceleb1.

During testing, the adversarial examples are generated from ASVs using the MIFGSM
(decay of 0.6) algorithm with different epsilons. They are generated from Voxceleb1’s
test set.

Figure 6.1: Feature squeezing pipeline when combined with spoofing countermeasures.

6.3 Results & Discussion

Tables 6.1 and 6.2 show the adversarial attack success rate of the spoofing CounterMeasure-
Automatic Speaker Verifications (CM-ASVs) pipeline with and without any defense. The
defense consists of a CMs which is augmented with median feature squeezing defense (ex-
plained in Section 2.3.2). The models used for generating the adversarial examples are the

51

ASVs OPV and MV introduced in Chapter 5 — hereafter they will be collectively referred
to as source ASVs. The CMs used to detect the adversarial examples are LCNN, LSTM,
LCNN–CNN–Fusion and LSTM–CNN–Fusion(A) — hereafter they will be collectively re-
ferred to as target CMs. LCNN and LSTM are unimodal models while LCNN–CNN–Fusion
and LSTM–CNN–Fusion(A) are multimodal models.

Each of the cells in Tables 6.1 and 6.2 correspond to an adversarial attack success rate
obtained from a source ASV which generates the adversarial examples and a target CM
(with or without defense). In addition, for computing the attack success rates, the target
CM will be combined with an ASV (target ASV), and so, the adversarial attack success
rate being depicted here is “out of the adversarial examples that have already bypassed the
ASV what percentage of them are able to bypass the CM?”. The adversarial scenario is
multimodal black-box attacks under Read-Only-Template-Access. So, for example, Table
6.1 corresponds to the success rates of attacking a CM-ASV pipeline where the target CM
is depicted in the column ‘Target Model’, the target ASV is the OPV (since we stated that
the scenario will be multimodal black-box attacks) and the source ASV generating the
adversarial attacks is MV. The results from each cell come from running the experiment
four times — each time with a different set (a set consists of 1000 examples the same as
Chapter 5) of adversarial examples — and presenting the mean and standard deviation of
the adversarial attack success rates. Keep in mind that out of the examples in each set,
the number of examples that are successful against an ASV will be less than or equal to
the set size and the percentages being depicted in the Tables are from these examples that
are successful against an ASV — so a value of 100% refers to the examples completely
bypassing the target CM and ASV.

Without any defense, in smaller perturbations, none of the target CMs have any signif-
icant capability to block adversarial attacks. This indicates that the CMs themselves are
unable to block adversarial attacks targeting the ASVs. But, under larger perturbations,
the CMs show some capability to block — for example, the success rate is lowered to 75.3
in Table 6.1, 51.0 in Table 6.1. This is surprising because they have not been exposed to
the adversarial examples at this point at all (more on perturbation size in the penultimate
paragraph of the Chapter). Recall that attack on the target CMs pose a cross-task and
cross-dataset black-box attack scenario. So, under these conditions, the transferability
seems to be low with increasing epsilon for the unimodal models (a similar observation was
made in Li et al. [31] for black-box attacks that with increasing perturbations, the success
rate decreases). On the other hand, when a defense is integrated into any of the CMs,
the success rate is significantly lowered. This indicates that the CM models can provide
effective information for feature squeezing even though the target of the attack is the ASV.
Even in this scenario, the larger the perturbation, the better the ability of the CM to detect

52

Table 6.1: Adversarial attack success rate (%) on the CM-ASV pipeline. The success rate
is presented as the mean±standard-deviation across the success rates of the four runs.
Each attack has a source ASV from which it is generated and a Modality it is perturbing.
Each defense mechanism consists of a target CM and the attack success rates presented
here are the percentage of examples that bypass the target CM and target ASV out of
the examples that bypass the target ASV. For this scenario the target ASV is the OPV.
We use different colors to indicate the best (lowest) and worst (highest) metrics (based on
mean) for each epsilon value. We indicate all models without defense using underline.

Source Model MV
Perturbed Modality AV

Epsilon 0.1 0.025 0.005
Target Model Input Defense

LSTM
no 75.33±1.96 94.43±2.46 98.15±0.94
yes 2.02±0.49 25.11±3.27 54.24±4.15

LCNN
no 51.0±1.79 76.07±2.01 91.75±1.21
yes 2.97±0.5 20.28±2.33 67.85±1.65

LSTM–CNN–Fusion(A)
no 78.77±1.04 96.09±1.95 97.67±0.8
yes 0.39±0.21 16.04±2.04 42.93±5.12

LCNN–CNN–Fusion
no 99.27±0.48 97.58±1.27 97.04±0.71
yes 18.45±1.12 19.98±2.04 66.57±4.14

the adversarial examples. This is interesting because the larger the perturbation, the more
effective the black-box attack is in Chapter 5. The likely cause of this is because at higher
perturbations when targeting the ASV, the squeezed representation’s output used by the
CM diverges vastly as compared to lower perturbations and since we chose a squeezing
threshold using a perturbation of 0.025, higher perturbations than this are easier to detect
while lower perturbations are comparatively difficult.

But, this adversarial attack detection comes at the cost of an reduction in TPR as
depicted in Table 6.3. So the attack success rates must be compared in tandem with the
corresponding results from Table 6.3. So even if a model gives a lower success rate, if the
TPR is also reduced proportionally, then we cannot conclude that such a model is better
— as is the case with LSTM–CNN–Fusion(A). The results from Table 6.3 correspond to the
TPR of the target models when the input is from the legitimate samples from BTAS and
Voxceleb1 test set. We can see from Table 6.3 that there is as much as a 40% reduction
in the TPR of legitimate samples which is significant. This is due to the threshold selection
criteria we have outlined in Section 6.2. We have chosen the threshold based on the EER

53

Table 6.2: Adversarial attack success rate (%) on the CM-ASV pipeline. The success rate
is presented as the mean±standard-deviation across the success rates of the four runs.
Each attack has a source ASV from which it is generated and a Modality it is perturbing.
Each defense mechanism consists of a target CM and the attack success rates presented
here are the percentage of examples that bypass the target CM and target ASV out of the
examples that bypass the target ASV. For this scenario the target ASV is the MV. We use
different colors to indicate the best (lowest) and worst (highest) metrics (based on mean)
for each epsilon value. We indicate all models without defense using underline.

Source Model OPV
Perturbed Modality AV

Epsilon 0.1 0.025 0.005
Target Model Input Defense

LSTM
no 68.84±4.27 95.18±3.27 100.0±0.0
yes 3.57±1.89 30.97±6.05 60.87±2.71

LCNN
no 68.39±5.36 88.38±1.26 96.22±1.26
yes 4.17±1.48 35.95±4.48 71.74±3.78

LSTM–CNN–Fusion(A)
no 71.62±4.81 95.31±1.13 100.0±0.0
yes 0.76±0.76 20.58±4.17 47.01±4.74

LCNN–CNN–Fusion
no 100.0±0.0 99.63±0.65 98.7±1.43
yes 50.93±4.17 35.56±6.76 72.42±3.11

between two classes of data — since we don’t prioritize (keeping low) False Acceptance
Rate (FAR) or False Rejection Rate (FRR). If we had chosen a threshold based on a
prioritizing FRR, then the success rates in Tables 6.1 and 6.2 will be higher and vice-versa
if we prioritize FAR.

Now, we proceed to talk about the effectiveness of such a detector. Recall that the
CMs in this chapter are not significantly reliant on the visual information to detect the
spoof. Also, a high perturbation such as 0.1 is not required to succeed in attacking audio
modality of the ASV as can be observed in the white-box attacks in Figure 5.4a [23]. And
such a high perturbation makes it easy for the audio CM to detect them. So, this defense
can be significantly evaded if the attacker only perturbed the visual modality since the CM
used is not reliant on the visual information. On the other hand, this defense is effective
if the attacker uses a very high audio perturbation.

To summarize, we have answered Research Question III by showing that while CMs
can block adversarial and spoofing attacks targeting the ASVs, this detection rate come
at a significant cost in the form of a reduction in TPRs.

54

Table 6.3: Table showing the TPR (%) of the CMs from Tables 6.1 and 6.2 on the test
set of BTAS and Voxceleb1. We use different colors to indicate the best (highest) and
worst (lowest) metrics (based on mean) for each epsilon value. We indicate all models
without defense using underline.

Target Model Defense BTAS Voxceleb1

LSTM
no 99.5 98.5
yes 61.2 75.1

LCNN
no 98.1 90
yes 84.4 63.2

LSTM–CNN–Fusion(A)
no 99.4 98.5
yes 65 67.8

LCNN–CNN–Fusion
no 99.3 97.1
yes 78 61

55

Chapter 7

Related Work

In this chapter, we describe prior research related to some of the topics in this thesis or
topics that are closely linked with the work we have done in this thesis.

Speaker recognition: The Gaussian Mixture Model (GMM) when combined with a Uni-
versal Background Model (UBM) is called “GMM-UBM”. It is one of the seminal works
that propelled the speaker recognition field forward [43] with it being highly effective.
Beyond that, the i-vector model [12] reduces the embeddings received from the GMM-
UBM model through factor analysis and models the channel and speaker variability in a
combined manner. Following this came the introduction of the neural networks into the
GMM-UBM models leading to Deep Neural Network (DNN) i-vector models [73]. Follow-
ing this came the introduction of DNN embedding-based models like x-vector [50] where
a form of the hidden layer of the DNN was used as the embedding vector for verification
models. Finally, end-to-end models like online person verification systems [48] which do
not require a separate backend score computation mechanism were introduced. They use
an attention mechanism to fuse multimodal information. Sarı et al. [45] proposes a novel
approach to handle the scenario of missing information from modalities in speaker verifica-
tion by cross-modal testing. Shon et al. [49] proposes a 1D Convolutional Neural Network
(CNN) to obtain speaker embeddings and modifies it to produce frame-level speaker em-
beddings for analysis. We implement Snyder et al. [50], Shon et al. [49], Shon et al. [48],
and Sarı et al. [45] in Chapter 5 to conduct adversarial attacks against these models.

Other multimodal biometric tasks: The work by Wen et al. [62] proposes a new ap-
proach to solve the cross-modal matching of faces and voices by using multi-task supervision
to obtain embeddings. They supervise the training of the model through the use of multiple
goals such as gender, nationality, and identity. Tao et al. [52] augmented the performance

56

on the speaker recognition task using a cross-modal network that matches voices to faces.
They use cosine similarity to train the network to recognize associated voices and faces.
Both of these networks use the embeddings obtained after training to perform the final
task. Our work is based on the task of Automatic Speaker Verification (ASV).

Adversarial attacks on speaker verification: Kreuk et al. [27] conducted adversar-
ial attacks to evaluate their effectiveness in an end-to-end ASV system. They also con-
ducted cross-dataset and cross-feature attacks using a waveform reconstruction algorithm.
Li et al. [31] evaluated adversarial attacks on the GMM i-vector and x-vector models. They
also conducted cross-model attacks and showcased their transferability from i-vector to
x-vector models. Li et al. [30] developed an independent network to detect adversarial ex-
amples as a defense mechanism. Wu et al. [66] investigated a self-supervised pre-trained
model to defend against adversarial attacks. Their defense is similar to Wu et al. [63]
except that they are used under different scenarios and their approach does not require
modification of the system to be defended. Wu et al. [65] uses a neural vocoder to detect
the presence of an adversarial example. Wu et al. [67] uses a “voting” mechanism to detect
the presence of an adversarial example. Our work considers a wider variety of ASV models
to generate the adversarial attacks while focusing on the susceptibility of multimodal ASV
models to adversarial attacks — other works have not considered the multimodal scenario.

Adversarial attacks on spoofing countermeasures: The work by Liu et al. [32] eval-
uated the effect of adversarial attacks on spoofing spoofing CounterMeasures (CMs). They
show that the CMs are vulnerable to adversarial attacks in black-box and white-box scenar-
ios. Wu et al. [64] explored defenses against the adversarial attacks that have been shown
to work in Liu et al. [32]. They used adversarial training and spatial smoothing as defense
mechanisms and show that they can defend against adversarial examples. Wu et al. [63]
proposed using a self-supervised pre-trained feature extractor as a defense mechanism.
They posited that the pre-trained model would be able to effectively extract the relevant
information from the input adversarial example thereby removing the adversarial pertur-
bations. Our work does not explicitly target CMs with adversarial attacks.

Adversarial attacks on multimodal models for tasks other than ASV: The work
by Yu et al. [72] study the effect of FGSM and PGD adversarial attacks on multimodal
data fusion. They fused information from RGB and thermal infrared images to perform a
segmentation task. They found that an attack on either or both of the modalities is a cause
for concern due to their vulnerability — they posit that the cause behind the vulnerability
is due to the features being non-robust and a lack of proper usage of complementary infor-
mation from multimodal inputs. Tian and Xu [53] conducted a more in-depth evaluation
of adversarial attack on multimodal models in the audio-visual event recognition task and
propose a defense mechanism. Their findings are similar to Yu et al. [72] in that the mul-

57

timodal models are also vulnerable to adversarial attacks. They also find that multimodal
adversarial attacks against the models can be more effective than attacks against unimodal
models. Evtimov et al. [16] study adversarial attacks against text-image multimodal mod-
els under various levels of gray-box assumptions. Compared to the white-box adversary
models in Yu et al. [72] and Tian and Xu [53], the work by Evtimov et al. [16] showcases
that even under an adversary model with limited information, attacks can be mounted
against the multimodal models. Compared to previous works, we conduct adversarial
attacks on ASV models.

Adversarial Spoofing Attacks: Gomez-Alanis et al. [18] proposes a network to convert
a spoofing sample to an adversarial spoofing sample. They use this to create samples
capable of bypassing the CM and ASV mechanisms. Kassis and Hengartner [23] propose a
novel attack to generate a spoofing sample capable of bypassing a complete authentication
pipeline. Our work does not investigate the concept of bypassing both CM and ASV
mechanisms explicitly. While this will be a natural next step, we first have to understand
the vulnerability of multimodal ASVs to adversarial attacks since they’ve not been studied
before. In addition, our end goal is to test the feasibility of using the CM as a defense for
both adversarial attacks and spoofs against ASVs.

Other audio-based attacks: Vaidya et al. [55] showcased the vulnerability of speech
recognition models to a very simple attack mechanism — the perturbed speech can achieve
the desired output from the model without alerting the user to the presence of such an
attack. Carlini et al. [6] improves Vaidya et al. [55] by generating a more stronger attack
and evaluating under stricter conditions. Alzantot et al. [1] used a genetic algorithm com-
bined with a black-box oracle to generate attacks that sound benign to humans but not
the speech recognition system. They aimed to create a more stealthy attack compared
to Carlini et al. [6]. Hussain et al. [22] used input transformation functions to detect the
presence of adversarial examples in speech recognition. Our work does not target the
speech recognition pipeline. Chugh et al. [8] proposes a model for detecting multimodal
deepfakes using contrastive loss. They work on a dataset that is mainly for video deepfakes
but includes an audio voice conversion mechanism of creating audio deepfakes (spoof).

58

Chapter 8

Conclusion & Future Work

Although we were able to show that augmenting a unimodal spoofing CounterMeasure
(CM) with visual information did not introduce a significant run-time overhead, the re-
sults in Chapter 4 indicate that this paradigm of augmenting a unimodal CM with visual
information did not improve the multimodal CM’s EER. A possible future work based on
this is through taking a different approach to creating multimodal CMs. For example, a
multimodal CM can be created through the use of a contrastive loss like [8].

In Chapter 5, we explored the effect of adversarial attacks on multimodal Automatic
Speaker Verifications (ASVs). We identified the high reliance of the multimodal models on
the visual modality and showed that this can lead to significantly high attack success rates.
We explored two different adversary models and showed that under a more restrictive
adversary model, the adversary can mount successful attacks in less than 10% of the
examples. Possible future work for this can be by generating stronger attacks that combine
adversarial attacks onto spoofs to bypass the spoofing CounterMeasure-Automatic Speaker
Verification (CM-ASV) pipeline or attacks targeting the CM alone.

In Chapter 6, we showed that the CM can be extended to detect adversarial attacks
targeting ASVs but at a significant cost to the legitimate examples detection rate. We
can extend this work by trying additional defense mechanisms like temporal dependency,
quantization, downsampling [71] and identifying the number of attacks that the CM can
detect but not the defense. A possible future work can be to combine adversarial training
as a defense for attacks that target the complete CM-ASV pipeline.

Another promising future avenue that can be explored is as follows: The newer datasets
available for CMs development do not provide visual information and therefore experiments

59

of multimodal CMs cannot be conducted on them. The creation of datasets with newer
spoofing attacks along with the visual information is a crucial domain yet to be explored.

60

References

[1] Moustafa Alzantot, Bharathan Balaji, and Mani Srivastava. Did you hear that? Ad-
versarial Examples Against Automatic Speech Recognition, 2018. arXiv:1801.00554.

[2] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, et al. Deep Speech 2:
End-to-End Speech Recognition in English and Mandarin. In Proceedings of the 33rd
International Conference on International Conference on Machine Learning - Volume
48, ICML’16, page 173–182, 2016.

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate, 2014. arXiv:1409.0473.

[4] Zhongxin Bai and Xiao-Lei Zhang. Speaker recognition based on deep learning: An
overview. Neural networks : the official journal of the International Neural Network
Society, 140:65–99, 2021.

[5] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support
vector machines, 2012. arXiv:1206.6389.

[6] Nicholas Carlini, Pratyush Mishra, Tavish Vaidya, et al. Hidden Voice Commands. In
Proceedings of the 25th USENIX Conference on Security Symposium, SEC’16, page
513–530, USA, 2016. USENIX Association. ISBN 9781931971324.

[7] Chandramouli Chandrasekaran, Andrea Trubanova, Sébastien Stillittano, et al. The
Natural Statistics of Audiovisual Speech. PLOS Computational Biology, 5(7):1–18, 07
2009. doi: 10.1371/journal.pcbi.1000436. URL https://doi.org/10.1371/journal.

pcbi.1000436.

[8] Komal Chugh, Parul Gupta, Abhinav Dhall, and Ramanathan Subramanian. Not
made for each other- Audio-Visual Dissonance-based Deepfake Detection and Local-
ization, 2021. arXiv:2005.14405.

61

https://doi.org/10.1371/journal.pcbi.1000436
https://doi.org/10.1371/journal.pcbi.1000436

[9] Joon Son Chung and Andrew Zisserman. Out of time: Automated lip sync in the
wild. In ACCV Workshops, 2016.

[10] Joon Son Chung, Arsha Nagrani, and Andrew Zisserman. VoxCeleb2: Deep Speaker
Recognition. In Proc. Interspeech 2018, pages 1086–1090, 2018. doi: 10.21437/
Interspeech.2018-1929.

[11] Rohan Kumar Das, Xiaohai Tian, Tomi Kinnunen, and Haizhou Li. The Attacker’s
Perspective on Automatic Speaker Verification: An Overview. In Proc. Interspeech
2020, pages 4213–4217, 2020. doi: 10.21437/Interspeech.2020-1052.

[12] Najim Dehak, Patrick J. Kenny, Réda Dehak, et al. Front-End Factor Analysis for
Speaker Verification. IEEE Transactions on Audio, Speech, and Language Processing,
19(4):788–798, 2011. doi: 10.1109/TASL.2010.2064307.

[13] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, et al. Boosting Adversarial Attacks
with Momentum, 2018. arXiv:1710.06081.

[14] Ariel Ephrat, Inbar Mosseri, Oran Lang, et al. Looking to listen at the cocktail
party. ACM Transactions on Graphics, 37(4):1–11, Aug 2018. ISSN 1557-7368. doi:
10.1145/3197517.3201357. URL http://dx.doi.org/10.1145/3197517.3201357.

[15] Serife Kucur Ergünay, Elie Khoury, Alexandros Lazaridis, and Sébastien Marcel. On
the vulnerability of speaker verification to realistic voice spoofing. In 2015 IEEE 7th
International Conference on Biometrics Theory, Applications and Systems (BTAS),
pages 1–6, 2015. doi: 10.1109/BTAS.2015.7358783.

[16] Ivan Evtimov, Russel Howes, Brian Dolhansky, et al. Adversarial Evaluation of Mul-
timodal Models under Realistic Gray Box Assumption, 2021. arXiv:2011.12902.

[17] Jianqing Fan, Cong Ma, and Yiqiao Zhong. A selective overview of deep learning.
Statistical science : a review journal of the Institute of Mathematical Statistics, 36 2:
264–290, 2021.

[18] Alejandro Gomez-Alanis, Jose A. Gonzalez-Lopez, and Antonio M. Peinado. Adversar-
ial Transformation of Spoofing Attacks for Voice Biometrics, 2022. arXiv:2201.01226.

[19] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Harness-
ing Adversarial Examples, 2014. arXiv:1412.6572.

62

http://dx.doi.org/10.1145/3197517.3201357

[20] Alex Graves and Navdeep Jaitly. Towards End-to-End Speech Recognition with Recur-
rent Neural Networks. In Proceedings of the 31st International Conference on Interna-
tional Conference on Machine Learning - Volume 32, ICML’14, page II–1764–II–1772.
JMLR.org, 2014.

[21] Andrew G. Howard, Menglong Zhu, Bo Chen, et al. MobileNets: Efficient Convolu-
tional Neural Networks for Mobile Vision Applications, 2017. arXiv:1704.04861.

[22] Shehzeen Hussain, Paarth Neekhara, Shlomo Dubnov, et al. WaveGuard: Under-
standing and Mitigating Audio Adversarial Examples, 2021. arXiv:2103.03344.

[23] Andre Kassis and Urs Hengartner. Practical Attacks on Voice Spoofing Countermea-
sures, 2021. arXiv:2107.14642.

[24] Tomi Kinnunen and Haizhou Li. An Overview of Text-Independent Speaker Recog-
nition: From Features to Supervectors. Speech Commun., 52(1):12–40, January 2010.
ISSN 0167-6393. doi: 10.1016/j.specom.2009.08.009. URL https://doi.org/10.

1016/j.specom.2009.08.009.

[25] Tomi Kinnunen, Md. Sahidullah, Héctor Delgado, et al. The ASVspoof 2017 Chal-
lenge: Assessing the Limits of Replay Spoofing Attack Detection. In Proc. Interspeech
2017, pages 2–6, 2017. doi: 10.21437/Interspeech.2017-1111.

[26] P. Korshunov, S. Marcel, H. Muckenhirn, et al. Overview of BTAS 2016 speaker
anti-spoofing competition. In 2016 IEEE 8th International Conference on Biometrics
Theory, Applications and Systems (BTAS), pages 1–6, 2016. doi: 10.1109/BTAS.
2016.7791200.

[27] Felix Kreuk, Yossi Adi, Moustapha Cisse, and Joseph Keshet. Fooling End-to-end
Speaker Verification by Adversarial Examples, 2018. arXiv:1801.03339.

[28] Galina Lavrentyeva, Sergey Novoselov, Andzhukaev Tseren, et al. STC Antispoofing
Systems for the ASVspoof2019 Challenge. In Proc. Interspeech 2019, pages 1033–1037,
2019. doi: 10.21437/Interspeech.2019-1768.

[29] Y. LeCun, B. Boser, J. S. Denker, et al. Backpropagation Applied to Handwritten
Zip Code Recognition. Neural Computation, 1(4):541–551, 1989. doi: 10.1162/neco.
1989.1.4.541.

[30] Xu Li, Na Li, Jinghua Zhong, et al. Investigating Robustness of Adversarial Samples
Detection for Automatic Speaker Verification, 2020. arXiv:2006.06186.

63

https://doi.org/10.1016/j.specom.2009.08.009
https://doi.org/10.1016/j.specom.2009.08.009

[31] Xu Li, Jinghua Zhong, Xixin Wu, et al. Adversarial Attacks on GMM i-vector based
Speaker Verification Systems, 2020. arXiv:1911.03078.

[32] Songxiang Liu, Haibin Wu, Hung yi Lee, and Helen Meng. Adversarial Attacks on
Spoofing Countermeasures of automatic speaker verification, 2019. arXiv:1910.08716.

[33] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, et al. Towards Deep Learn-
ing Models Resistant to Adversarial Attacks, 2019. arXiv:1706.06083.

[34] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and opti-
mizing lstm language models, 2017. arXiv:1708.02182.

[35] Tomas Mikolov, Ilya Sutskever, Kai Chen, et al. Distributed Representations of Words
and Phrases and Their Compositionality. In Proceedings of the 26th International
Conference on Neural Information Processing Systems - Volume 2, NIPS’13, page
3111–3119, Red Hook, NY, USA, 2013. Curran Associates Inc.

[36] Arsha Nagrani, Joon Son Chung, and Andrew Zisserman. VoxCeleb: A Large-Scale
Speaker Identification Dataset. In Proc. Interspeech 2017, pages 2616–2620, 2017. doi:
10.21437/Interspeech.2017-950.

[37] Arun Narayanan and DeLiang Wang. Ideal ratio mask estimation using deep neu-
ral networks for robust speech recognition. In 2013 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, pages 7092–7096, 2013. doi:
10.1109/ICASSP.2013.6639038.

[38] Christopher Olah. Understanding LSTM Networks. https://colah.github.io/

posts/2015-08-Understanding-LSTMs/.

[39] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training
Recurrent Neural Networks, 2013. arXiv:1211.5063.

[40] Alec Radford, Jeff Wu, Rewon Child, et al. Language Models are Unsuper-
vised Multitask Learners. 2019. URL https://d4mucfpksywv.cloudfront.net/

better-language-models/language-models.pdf.

[41] Karthik Ramesh, Chao Xing, Wupeng Wang, et al. Vset: A Multimodal Transformer
for Visual Speech Enhancement. In ICASSP 2021 - 2021 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), pages 6658–6662, 2021.
doi: 10.1109/ICASSP39728.2021.9414053.

64

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf

[42] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN: Towards
Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 39:1137–1149, 2015.

[43] Douglas A. Reynolds, Thomas F. Quatieri, and Robert B. Dunn. Speaker Verification
Using Adapted Gaussian Mixture Models. Digit. Signal Process., 10:19–41, 2000.

[44] Joseph Roth, Sourish Chaudhuri, Ondrej Klejch, et al. Ava Active Speaker: An
Audio-Visual Dataset for Active Speaker Detection. In ICASSP 2020 - 2020 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
4492–4496, 2020. doi: 10.1109/ICASSP40776.2020.9053900.

[45] Leda Sarı, Kritika Singh, Jiatong Zhou, et al. A Multi-View Approach To Audio-
Visual Speaker Verification, 2021. arXiv:2102.06291.

[46] Florian Schroff, Dmitry Kalenichenko, and James Philbin. FaceNet: A unified em-
bedding for face recognition and clustering. In 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 815–823, 2015. doi: 10.1109/CVPR.
2015.7298682.

[47] Jean-Luc Schwartz and Christophe Savariaux. No, There Is No 150 ms Lead of Visual
Speech on Auditory Speech, but a Range of Audiovisual Asynchronies Varying from
Small Audio Lead to Large Audio Lag. PLOS Computational Biology, 10(7):1–10, 07
2014. doi: 10.1371/journal.pcbi.1003743. URL https://doi.org/10.1371/journal.

pcbi.1003743.

[48] Suwon Shon, Tae-Hyun Oh, and James Glass. Noise-tolerant Audio-visual On-
line Person Verification using an Attention-based Neural Network Fusion, 2018.
arXiv:1811.10813.

[49] Suwon Shon, Hao Tang, and James Glass. Frame-level speaker embeddings
for text-independent speaker recognition and analysis of end-to-end model, 2018.
arXiv:1809.04437.

[50] David Snyder, Daniel Garcia-Romero, Gregory Sell, et al. X-Vectors: Robust DNN
Embeddings for Speaker Recognition. In 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 5329–5333, 2018. doi: 10.
1109/ICASSP.2018.8461375.

[51] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, et al. Intriguing properties of
neural networks, 2013. arXiv:1312.6199.

65

https://doi.org/10.1371/journal.pcbi.1003743
https://doi.org/10.1371/journal.pcbi.1003743

[52] Ruijie Tao, Rohan Kumar Das, and Haizhou Li. Audio-visual Speaker Recognition
with a Cross-modal Discriminative Network, 2020. arXiv:2008.03894.

[53] Yapeng Tian and Chenliang Xu. Can audio-visual integration strengthen robustness
under multimodal attacks?, 2021. arXiv:2104.02000.

[54] Du Tran, Lubomir D. Bourdev, Rob Fergus, et al. C3D: Generic Features for Video
Analysis. ArXiv, arXiv:1412.0767, 2014.

[55] Tavish Vaidya, Yuankai Zhang, Micah Sherr, and Clay Shields. Cocaine Noodles:
Exploiting the Gap between Human and Machine Speech Recognition. In Proceedings
of the 9th USENIX Conference on Offensive Technologies, WOOT’15, page 16, USA,
2015. USENIX Association.

[56] Ashish Vaswani, Noam Shazeer, Niki Parmar, et al. Attention is All You Need. In
Proceedings of the 31st International Conference on Neural Information Processing
Systems, NIPS’17, page 6000–6010, Red Hook, NY, USA, 2017. Curran Associates
Inc. ISBN 9781510860964.

[57] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell:
A neural image caption generator. In 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 3156–3164, 2015. doi: 10.1109/CVPR.2015.
7298935.

[58] Wupeng Wang, Chao Xing, Dong Wang, et al. A Robust Audio-Visual Speech
Enhancement Model. In ICASSP 2020 - 2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 7529–7533, 2020. doi:
10.1109/ICASSP40776.2020.9053033.

[59] Xin Wang and Junichi Yamagishi. A Comparative Study on Recent Neural Spoofing
Countermeasures for Synthetic Speech Detection. In Proc. Interspeech 2021, pages
4259–4263, 2021. doi: 10.21437/Interspeech.2021-702.

[60] Xin Wang, Junichi Yamagishi, Massimiliano Todisco, et al. ASVspoof 2019: A
large-scale public database of synthesized, converted and replayed speech. Computer
Speech & Language, 64:101114, 2020. ISSN 0885-2308. doi: https://doi.org/10.1016/
j.csl.2020.101114. URL https://www.sciencedirect.com/science/article/pii/

S0885230820300474.

66

https://www.sciencedirect.com/science/article/pii/S0885230820300474
https://www.sciencedirect.com/science/article/pii/S0885230820300474

[61] Yuxuan Wang, R.J. Skerry-Ryan, Daisy Stanton, et al. Tacotron: Towards End-
to-End Speech Synthesis. In Proc. Interspeech 2017, pages 4006–4010, 2017. doi:
10.21437/Interspeech.2017-1452.

[62] Yandong Wen, Mahmoud Al Ismail, Weiyang Liu, et al. Disjoint Mapping Network
for Cross-modal Matching of Voices and Faces, 2018. arXiv:1807.04836.

[63] Haibin Wu, Andy T. Liu, and Hung yi Lee. Defense for Black-box Attacks on Anti-
spoofing Models by Self-Supervised Learning, 2020. arXiv:2006.03214.

[64] Haibin Wu, Songxiang Liu, Helen Meng, and Hung yi Lee. Defense against adversarial
attacks on spoofing countermeasures of ASV, 2020. arXiv:2003.03065.

[65] Haibin Wu, Po chun Hsu, Ji Gao, et al. Spotting adversarial samples for speaker
verification by neural vocoders, 2021. arXiv:2107.00309.

[66] Haibin Wu, Xu Li, Andy T. Liu, et al. Adversarial defense for automatic speaker
verification by cascaded self-supervised learning models, 2021. arXiv:2102.07047.

[67] Haibin Wu, Yang Zhang, Zhiyong Wu, et al. Voting for the right answer: Adversarial
defense for speaker verification, 2021. arXiv:2106.07868.

[68] Zhizheng Wu, Tomi Kinnunen, Nicholas Evans, et al. ASVspoof 2015: the first au-
tomatic speaker verification spoofing and countermeasures challenge. In Proc. Inter-
speech 2015, pages 2037–2041, 2015. doi: 10.21437/Interspeech.2015-462.

[69] Kelvin Xu, Jimmy Ba, Ryan Kiros, et al. Show, Attend and Tell: Neural Image
Caption Generation with Visual Attention, 2016. arXiv:1502.03044.

[70] Weilin Xu, David Evans, and Yanjun Qi. Feature Squeezing: Detecting Adversarial
Examples in Deep Neural Networks, 2017. arXiv:1704.01155.

[71] Zhuolin Yang, Bo Li, Pin-Yu Chen, and Dawn Song. Characterizing audio adversar-
ial examples using temporal dependency. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=r1g4E3C9t7.

[72] Youngjoon Yu, Hong Joo Lee, Byeong Cheon Kim, et al. Investigating Vulnerabil-
ity to Adversarial Examples on Multimodal Data Fusion in Deep Learning, 2020.
arXiv:2005.10987.

67

https://openreview.net/forum?id=r1g4E3C9t7

[73] Hossein Zeinali, Lukas Burget, Hossein Sameti, et al. Deep Neural Networks and
Hidden Markov Models in i-vector-based Text-Dependent Speaker Verification. In
Proc. The Speaker and Language Recognition Workshop (Odyssey 2016), pages 24–30,
2016. doi: 10.21437/Odyssey.2016-4.

68

APPENDICES

69

Appendix A

Additional results for Chapter 5

Figure A.1: Figure showing the black-box attack targeting the audio modality by transfer
from 1D-CNN to MV for Read-Only-Template-Access

70

Figure A.2: Figure showing the black-box attack targeting the audio modality by transfer
from 1D-CNN to OPV for Read-Only-Template-Access

Figure A.3: Figure showing the white-box attack targeting the audio modality on MV for
Read-Only-Template-Access

71

Figure A.4: Figure showing the white-box attack targeting the audio-visual modality on
MV for Read-Only-Template-Access

Figure A.5: Figure showing the white-box attack targeting the visual modality on MV for
Read-Only-Template-Access

72

Figure A.6: Figure showing the black-box attack targeting the audio modality by transfer
from MV to OPV for Read-Only-Template-Access

Figure A.7: Figure showing the black-box attack targeting the audio-visual modality by
transfer from MV to OPV for Read-Only-Template-Access

73

Figure A.8: Figure showing the black-box attack targeting the visual modality by transfer
from MV to OPV for Read-Only-Template-Access

Figure A.9: Figure showing the black-box attack targeting the audio modality by transfer
from OPV to MV for Read-Only-Template-Access

74

Figure A.10: Figure showing the black-box attack targeting the audio-visual modality by
transfer from OPV to MV for Read-Only-Template-Access

Figure A.11: Figure showing the black-box attack targeting the visual modality by transfer
from OPV to MV for Read-Only-Template-Access

75

Figure A.12: Figure showing the white-box attack targeting the audio modality on OPV
for Read-Only-Template-Access

Figure A.13: Figure showing the white-box attack targeting the audio-visual modality on
OPV for Read-Only-Template-Access

76

Figure A.14: Figure showing the white-box attack targeting the visual modality on OPV
for Read-Only-Template-Access

Figure A.15: Figure showing the black-box attack targeting the audio modality by transfer
from X-Vec to MV for Read-Only-Template-Access

77

Figure A.16: Figure showing the black-box attack targeting the audio modality by transfer
from X-Vec to OPV for Read-Only-Template-Access

Figure A.17: Figure showing the black-box attack targeting the audio modality by transfer
from 1D-CNN to MV for No-Template-Access

78

Figure A.18: Figure showing the black-box attack targeting the audio modality by transfer
from 1D-CNN to OPV for No-Template-Access

Figure A.19: Figure showing the white-box attack targeting the audio modality on MV for
No-Template-Access

79

Figure A.20: Figure showing the white-box attack targeting the audio-visual modality on
MV for No-Template-Access

Figure A.21: Figure showing the white-box attack targeting the visual modality on MV for
No-Template-Access

80

Figure A.22: Figure showing the black-box attack targeting the audio modality by transfer
from MV to OPV for No-Template-Access

Figure A.23: Figure showing the black-box attack targeting the audio-visual modality by
transfer from MV to OPV for No-Template-Access

81

Figure A.24: Figure showing the black-box attack targeting the visual modality by transfer
from MV to OPV for No-Template-Access

Figure A.25: Figure showing the black-box attack targeting the audio modality by transfer
from OPV to MV for No-Template-Access

82

Figure A.26: Figure showing the black-box attack targeting the audio-visual modality by
transfer from OPV to MV for No-Template-Access

Figure A.27: Figure showing the black-box attack targeting the visual modality by transfer
from OPV to MV for No-Template-Access

83

Figure A.28: Figure showing the white-box attack targeting the audio modality on OPV
for No-Template-Access

Figure A.29: Figure showing the white-box attack targeting the audio-visual modality on
OPV for No-Template-Access

84

Figure A.30: Figure showing the white-box attack targeting the visual modality on OPV
for No-Template-Access

Figure A.31: Figure showing the black-box attack targeting the audio modality by transfer
from X-Vec to MV for No-Template-Access

85

Figure A.32: Figure showing the black-box attack targeting the audio modality by transfer
from X-Vec to OPV for No-Template-Access

86

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background
	Speaker Verification
	Deep Learning
	Feed-Forward Neural Networks
	Convolutional Neural Networks
	Recurrent Neural Networks

	Adversarial Examples
	Adversarial Example Generation Algorithms
	Defense Mechanisms

	Spoofing
	Metrics

	Problem Statement
	System Model
	Adversary Model
	Spoofing Attacks
	Adversarial Attacks

	Research Questions & Metrics

	Multimodal Spoofing Countermeasure
	Dataset
	Video Macro Alignment
	Methodology
	Model Architecture
	Audio Model
	Video Model
	Fusion Model
	Classification Model

	Results & Discussion

	Adversarial Attack on Multimodal Speaker Verification
	Dataset
	Automatic Speaker Verification models
	Attack Methodology
	Results & Discussion
	Results for adversary model =` =10000 =-50 Read-Only-Template-Access=-1
	Results for adversary model =` =10000 =-50 No-Template-Access=-1

	Malicious Sample Detector
	Dataset
	Methodology
	Results & Discussion

	Related Work
	Conclusion & Future Work
	References
	APPENDICES
	Additional results for Chapter 5

