
Security and Ownership Verification
in Deep Reinforcement Learning

by

Shelly Wang

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Masters of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2022

c© Shelly Wang 2022

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contribution

Shelly Wang is the sole author of Chapter 1, 2, 7, 8, 9 which were written under the
supervision of Dr. N. Asokan, Dr. Samuel Marchal, and Atli Tekgul Buse.

For the first security topic on adversarial perturbation attacks on deep rein-
forcement learning policies:

This topic is covered in Section 3.1, 3.2, 4.1, 4.2, 5.1, 5.3, 5.4, 6.1,and 6.2.

This topic consists of materials and figures from the Arxiv paper ”Real-time Adversarial
Perturbations against Deep Reinforcement Learning Policies: Attacks and Defenses”1. Atli
Tekgul Buse, a doctoral candidate in the Secure Systems Group, is the first author of this
paper. Shelly Wang, Dr. N. Asokan, and Dr. Samuel Marchal are the co-authors of
this paper. Both Buse and Shelly drafted the manuscript. Asokan and Samuel provided
intellectual input on manuscript drafts. The figures and tables from this Arxiv paper are
presented in this thesis.

Buse came up with the idea of using adversarial perturbations for real-time attacks
against deep reinforcement learning policies. Buse designed the experiments and the code
for the attacks (Section 4.1). Both Buse and Shelly ran the experiments and analyzed the
results (Section 6.1). Shelly designed, implemented, and evaluated the defenses against
these attacks (Section 4.1.4, Section 4.2, Section 6.1.3, and Section 6.2.1).

Citation: Tekgul, B. G., Wang, S., Marchal, S., and Asokan, N. (2021). Real-time Adver-
sarial Perturbations against Deep Reinforcement Learning Policies: Attacks and Defenses.
arXiv preprint arXiv:2106.08746.

For the second topic on ownership verification for deep reinforcement learning
policies:

This topic is covered in Section 3.3, 4.3, 5.5, and 6.3.

Shelly is the sole author on this topic and the sections were written under the supervision
of Asokan, Buse, and Samuel and were not written for publication. Buse and Shelly came
up with the idea together. Shelly designed and ran the experiments and analyzed the
results (Section 4.3 and Section 6.3).

1https://arxiv.org/abs/2106.08746

iii

https://arxiv.org/abs/2106.08746

Abstract

Deep reinforcement learning (DRL) has seen many successes in complex tasks such
as robot manipulation, autonomous driving, and competitive games. However, there are
few studies on the security threats against DRL systems. In this thesis, we focus on two
security concerns in DRL.

The first security concern is adversarial perturbation attacks against DRL agents. Ad-
versarial perturbation attacks mislead DRL agents into taking sub-optimal actions. These
attacks apply small imperceptible perturbations to the agent’s observations of the envi-
ronment. Prior work shows that DRL agents are vulnerable to adversarial perturbation
attacks. However, prior attacks are difficult to deploy in real-time settings. We show that
universal adversarial perturbations (UAPs) are effective in reducing a DRL agent’s perfor-
mance in their tasks and are fast enough to be mounted in real-time. We propose three
variants of UAPs. We evaluate the effectiveness of UAPs against different DRL agents
(DQN, A2C, and PPO) in three different Atari 2600 games (Pong, Freeway, and Break-
out). We show that UAPs can degrade agent performance by 100%, in some cases even
for a perturbation bound as small as l∞ = 0.01. We also propose a technique for detecting
adversarial perturbation attacks. An effective detection technique can be used in DRL
tasks with potentially negative outcomes (such as the agents failing in a task or accumu-
lating negative rewards) by suspending the task before the negative result manifests due
to adversarial perturbation attacks. Our experiments found that this detection method
works best for Pong with perfect precision and recall against all adversarial perturbation
attacks but is less robust for Breakout and Freeway.

The second security concern is theft and unauthorized distribution of DRL agents. As
DRL agents gain success in complex tasks, there is a growing interest to monetize them.
However, the possibility of theft could jeopardize the profitability of deploying these agents.
Robust ownership verification techniques can deter malicious parties from stealing these
agents, and in the event where theft cannot be prevented, ownership verification techniques
can be used to track down and prosecute perpetrators. There are two prior works on
ownership verification of DRL agents using watermarks. However, these two techniques
require the verifier to deploy the suspected stolen agent in an environment where the verifier
has complete control over the environment states. We propose a new fingerprint technique
where the verifier compares the percentage of action agreement between the suspect agent
and the owner’s agent in environments where UAPs are applied. Our experimental results
show that there is a significant difference in the percentage of action agreement (up to
50% in some cases) when the suspect agent is a copy of the owner’s agent versus when the
suspect agent is an independently trained agent.

iv

Acknowledgements

I would like to express my sincere gratitude and appreciation to Prof. N. Asokan,
Samuel Marchal, and Buse Atli Tekgul for their guidance and feedback throughout the
writing of this thesis. I would like to especially thank Buse for working and collaborating
on the projects covered in this thesis. I would also like to thank my committee members
Prof. Urs Hengartner and Prof. Vijay Ganesh for all of their feedback on this thesis. I
would like to thank my friends and family for their support and encouragement. Finally,
I would like to thank Eric and Julie for proofreading many parts of this thesis.

v

Table of Contents

List of Figures x

List of Tables xii

List of Abbreviations xiv

List of Symbols xv

1 Introduction 1

2 Background 4

2.1 Machine Learning . 4

2.2 Deep Neural Network (DNN) . 5

2.3 Deep Reinforcement Learning (DRL) . 5

2.4 DRL Testing Environments . 7

2.4.1 Atari 2600 Game Environment . 7

2.4.2 MuJoCo Environment for Robotic Controls 8

2.5 Adversarial Examples . 9

2.6 Untargeted Adversarial Perturbation Attack in DRL 11

2.7 Ownership Verification of DNNs . 12

vi

3 Problem Statement 15

3.1 Real-time Adversarial Perturbation Attack 15

3.1.1 Problem Statement . 15

3.1.2 Adversary Model . 16

3.1.3 Attack Requirements . 17

3.2 Detecting Adversarial Perturbation Attacks 17

3.2.1 Problem Statement . 17

3.2.2 Adversary Model . 17

3.2.3 Detection Requirements . 17

3.3 Ownership Verification Using Fingerprinting 18

3.3.1 Problem Statement . 18

3.3.2 Adversary Model . 18

3.3.3 Verifier Model . 18

3.3.4 Verifier Requirements . 19

4 Methodology 21

4.1 Real-time Adversarial Perturbation Attack 21

4.1.1 Attack Design . 21

4.1.2 Attack Implementation . 22

4.1.3 Extending Attack to the Continuous Control Setting 25

4.1.4 Existing Defenses in DRL . 26

4.2 Detecting Adversarial Perturbation Attacks 27

4.2.1 Detector Design . 27

4.2.2 AD3 Implementation . 28

4.3 Ownership Verification using Fingerprinting 30

4.3.1 Fingerprinting Design . 30

4.3.2 Fingerprinting Implementation . 32

vii

5 Experimental Setup 37

5.1 Software and Hardware Setup . 37

5.2 Atari Environment . 38

5.3 Real-Time Adversarial Perturbation Attacks 38

5.3.1 Setup for Evaluating Adversarial Perturbation Attacks 38

5.3.2 Setup for Prior Defense Techniques 39

5.3.3 Setup for Adversarial Perturbation Attack in Continuous Control . 39

5.4 Detecting Adversarial Perturbation Attacks 40

5.4.1 Setup of Atari 2600 Breakout Games 40

5.4.2 Setup for AD3 . 40

5.5 Ownership Verification Using Fingerprinting 41

5.5.1 Model Training . 41

5.5.2 Parameters for ReLF . 41

6 Evaluation 43

6.1 Real-time Adversarial Perturbation Attacks 43

6.1.1 Effectiveness of Adversarial Perturbation Attacks 43

6.1.2 Computational Costs of Adversarial Perturbation Attacks 46

6.1.3 Prior Defense in DRL . 47

6.1.4 Adversarial Perturbation Attacks in the Continuous Control Setting 49

6.1.5 Summary of Attack Methods . 50

6.2 Detecting Adversarial Perturbation Attacks 51

6.2.1 Evaluating the Effectiveness of AD3 51

6.2.2 Effectiveness of Combining AD3 with Recovery Methods 53

6.3 Ownership Verification using Fingerprinting 54

viii

7 Related Work 56

7.1 Other Adversarial Perturbation Attacks in DRL 56

7.1.1 Targeted Attacks . 56

7.1.2 Black-box Attacks . 57

7.1.3 Multi-agent Setting . 58

7.2 Ownership Verification in DRL . 59

7.2.1 Stealing DRL Policies . 59

7.2.2 Watermarking in DRL . 59

8 Discussion 61

8.1 Real-time Adversarial Perturbation Attack and Defense in DRL 61

8.1.1 Future Work for Adversarial Perturbation Attacks 61

8.1.2 Limitations of using lp Norms in Adversarial Perturbation Attacks . 62

8.1.3 Improvements for AD3 . 63

8.1.4 Capabilities of Defense Mechanisms 63

8.2 Ownership Verification using Fingerprinting 64

8.2.1 Robustness of Fingerprinting . 64

8.2.2 Fingerprinting in the Multi-Agent Setting 65

9 Conclusion 67

References 69

Glossary 78

ix

List of Figures

2.1 Screenshots of Atari 2600 games taken from the Arcade Learning Environ-
ment (ALE) using the Python Gym package. 9

2.2 Images from OpenAI (https://gym.openai.com/envs/#mujoco) of two Robotic
environments from MuJoCo. The goal is for the robot agent to move forward
as fast as possible. 10

3.1 Interactions between the victim/suspect agent, the environment, and the
verifier/adversary. The adversary/verifier adds a perturbation mask to vic-
tim/suspect agent’s observations of the environment. 20

4.1 The Kullback-Leibler (KL) divergence between the learned conditional ac-
tion probability distribution (CAPD) and the CAPD of two different episodes
of a DQN agent playing Pong. One episode is a normal episode (in green)
and the other is an episode under FGSM attack (in red). AD3 is deployed
in both episodes and the time step where an alarm is raised is labeled with
a blue X marker. 29

6.1 Comparison of attacks against three different agents (DQN, PPO, A2C)
trained for three different Atari games (Pong, Breakout, Freeway). The
graph shows how the returns, averaged over 10 episodes, changes at different
ε values for six different attacks. The variance of the returns are the shaded
region above and below the average values. 45

6.2 Comparison of attacks against PPO agents for Humanoid and Walker-2d
tasks. The graph shows how the returns averaged over 50 games at different
ε values for five different attacks. The variance of the returns are the shaded
region above and below the average values. 50

x

https://gym.openai.com/envs/#mujoco

6.3 The false positive rate and true negative rate of the fingerprint algorithm
for each Pong source policies over different numbers of masks in Fπo . The
masks in Fπo are applied individually to single Pong episodes for each of the
15 individually trained policies. 55

xi

List of Tables

5.1 Optimal parameters of AD3 to detect five different attacks. 41

5.2 Parameters of ReLF and its two algorithms Generate and Verify. 42

6.1 Offline and online computation costs of attacks and the maximum upper
bound on the time to generate and mount adversarial perturbation attacks
during deployment averaged over 10 episodes. Victim agents are DQN, PPO,
and A2C trained for Pong. Attacks are deployed with ε = 0.01. Attacks
that cannot be implemented in real-time are highlighted in red. 47

6.2 Average returns over 10 episodes with different adversarial perturbation at-
tacks and with victim agents equipped with different types of defenses. In
each row, the best attack (lowest return) is in bold font. In each cell, i.e., for
a given attack and a given ε, the defense that can fully recover the victim
agent’s returns is shaded green. A cell is shaded blue for the most robust
(highest return) defense for that particular attack if it cannot fully recover
the victim agent’s returns. 48

6.3 Offline and online computation cost of attacks and the maximum upper
bound for the perturbation generation and mounting the attack during de-
ployment averaged over 10 episodes. Victim agents are PPO agents for
Walker2d and Humanoid at ε = 0.02. Attacks that cannot be implemented
in real-time are highlighted in red. 49

6.4 Summary of five attacks based on the characteristics of the attack. We also
summarize which requirements outlined in Section 3.1.3 are met by each
attack. 51

xii

6.5 False positive rate and true positive rate of AD3 against different adversarial
perturbation attacks at ε = 0.01 over 10 episodes. In each row, attacks with
the lowest true positive rate for each victim agent are shaded red. Agents
with a none-zero false positive rate are shaded yellow. 52

6.6 Losing rate of DQN agents playing Pong with or without additional defense
or detection method for 10 episodes. The losing rate is calculated by count-
ing the number of games where the computer arrives at the maximum score
in an episode. If AD3 raises an alarm before an episode ends, then v does
not lose the game. In each row, the best attack with the highest losing rate
is in bold font. For a given ε value of each attack, the defense with the
highest losing rate for that particular attack is shaded red. 53

6.7 The SAA between each Pong source policy πo and its copy where the masks
of Fπo are applied individually to an episode, for a total of five episodes.
Masks are also applied to the 15 independently trained policies πs, for a total
of five episodes per πs. For the five episodes testing each πs, the number of
masks rejecting each πs is recorded. The minimum and the average number
of masks of Fπo rejecting πs are reported. 55

xiii

List of Abbreviations

ALE Arcade Learning Environment x, 7, 9

ANN artificial neural network 5

ATN Adversarial Transformer Network 11, 57

CAPD conditional action probability distribution x, 27–29, 40, 51, 52

DNN deep neural network 1, 2, 4–6, 9, 10, 12, 13, 38, 41, 58, 64

DRL deep reinforcement learning xv, 1–3, 6–8, 11, 13–18, 21, 25–27, 30, 38, 40, 56–61,
63–65, 67, 68

FD finite-difference 58

GAIL Generative Adversarial Imitation Learning 59

JSMA Jacobian Saliency Map Algorithm 10, 57

KL Kullback-Leibler x, 28, 29

PGD projected gradient descent 10, 11, 57

RL reinforcement learning 1, 4–6

UAP universal adversarial perturbation 3, 11, 21, 22, 30, 62

xiv

List of Symbols

A The action space of an environment. 5

Adv The adversary that is actively mounting an attack against a victim that owns a deep
reinforcement learning (DRL) agent. 15–19, 22, 23, 25–27, 43, 46, 49, 51–53, 56–59,
62, 64, 65

γ The discount factor of an environment. 5

ε The constraint on the size of adversarial perturbation under the l∞. x, xii, xiii, 16, 32,
38–40, 42–45, 47–53, 61, 63, 65, 67

Fπo A set of fingerprints of a source policy πv. xi, xiii, 32, 34–36, 41, 54, 55

R The reward function of DRL an environment. 5, 6

πo The neural network(s) that a DRL agent utilizes to make decisions based on a given
state. It is the action-value function Qv for DQN policies or the policy function πv
and the value function Vv for A2C and PPO policies. xiii, 18, 19, 32–36, 42, 54, 55

S The state space of an environment. 5

πAdv A surrogate policy that is a copy of πv. 18

πs An unidentified policy. xiii, 18, 19, 32, 35, 36, 54, 55

sp A suspect DRL agent that has an unknown policy that the verifier seeks to verify. 18,
19, 32, 35, 36, 54

P The transition kernel of DRL an environment. 5, 6

Ver The verifier that is mounts adversarial perturbation attack against a suspect agent to
verify its identity. 18, 19

xv

πv The neural network(s) that the victim agent utilizes to make decisions based on a given
state. It is the action-value function Qv for DQN policies or the policy function πv
and the value function Vv for A2C and PPO policies. xv, 16, 23, 57–59, 62

v The victim agent. It consists of the agent that is observing and interacting with the
environment and of the policy that governs its actions. 15–17, 22, 23, 25–28, 32, 33,
43, 44, 46–53, 56–59, 62–66

xvi

Chapter 1

Introduction

Reinforcement learning (RL) is a popular area of machine learning that finds a decision-
making policy for an agent to interact with an environment. Deep neural network (DNN)
is a popular technique in machine learning for approximating complex functions. Deep
reinforcement learning (DRL) combines these two techniques by learning using RL tech-
niques and approximates the decision-making policy using DNNs. DRL agents have shown
many successes in multiple complex tasks such as competitive video games [85, 63], robotic
manipulation [36], and autonomous driving [52, 61].

As industries are racing to deploy state-of-the-art DRL agents for commercial use, it is
crucial to study the security challenges facing them. Many security concerns were explored
extensively in the image classification domain against DNN classifiers, but there has been
less security research in DRL. In this thesis, we focus on two security concerns for DRL
agents. The first is on adversarial perturbation attacks against DRL agents, and the second
is on model theft and ownership verification in DRL.

Adversarial Perturbation Attacks Adversarial perturbation attacks seek to change
the behaviour of a victim DRL agent by adding an imperceptible perturbation to the
agent’s observations of the environment. As DRL agents are gaining success in tasks
such as autonomous driving, there is a real potential for deploying these agents in safety-
critical systems. Therefore, the threat of an adversary maliciously manipulating these
agents’ actions must be studied, as errors in safety-critical systems can have devastating
consequences.

Behzadan and Munir [4], and Huang et al. [25] are the first to study the vulnerabilities
of DRL agents to adversarial perturbation attacks. Since then, others have studied the

1

vulnerability of DRL agents under different settings. However, prior attack methods suffer
from two major flaws. First, many proposed adversarial perturbation attacks [24, 54, 77]
are very slow (they take longer than the time for the environment to move to the next
observation), and require the adversary to pause the environment to send multiple versions
of the current environment observation as inputs to the victim agent. These techniques
require a powerful adversary that can control the environment of the DRL agent. Second,
some attacks [25, 31] require the adversary to modify past observations stored in the victim
agent’s memory. This would assume a powerful adversary that has control over the victim
agent’s internal states. As these prior attacks against DRL agents require the adversary
to have control of either or both the environment and the victim agent, it is unrealistic to
deploy these attacks in real-time environments.

In this thesis, we propose new adversarial perturbation attacks and a new detection
technique in real-time environments. We propose a more realistic adversary model where
the adversary’s capabilities are limited in the following two ways: 1) the adversary is
constrained to apply adversarial perturbation to the current observation and cannot mod-
ify past observations stored in the victim’s memory, and 2) the adversarial perturbation
can only be computed and applied in a limited time before the victim collects the next
observation in the environment.

Ownership Verification Model theft and unauthorized distribution of machine learning
models are serious threats to model owners because training machine learning models is
costly and resource-intensive. Ownership verification techniques such as watermarking and
fingerprinting can effectively deter adversaries from stealing a model and they can be used
to discover and prosecute adversaries for unauthorized use of stolen models.

There is extensive prior work on ownership verification of DNN classifier models through
watermarking and fingerprinting. However, at the time that this thesis is written, there
are only two techniques for ownership verification of DRL agents using watermarks [11, 3].
These two watermarking techniques for DRL agents require the verifier to either artificially
generate environment observations or to passively wait for the suspect agent to interact
with the environment until the watermarks are triggered. Both methods require the verifier
to control the states generated by the environment. Additionally, watermarking require the
watermarks to be embedded into the DRL agent’s decision-making policy and require spe-
cialized training or retraining of the agent. Watermarking techniques are also susceptible
to watermark removal techniques [13, 60].

In contrast to watermarking, fingerprinting utilize the intrinsic characteristic of an
DRL agent and it works on any existing agents. We propose a novel fingerprinting method

2

that can verify the ownership of a suspect agent’s policy, and the fingerprints are applied
independently of the current observations of the environment.

Contributions In this thesis, we claim the following contributions:

• propose three new universal adversarial perturbations (UAPs): UAP-S, UAP-O, and
OSFW(U), a modified version of Xiao et al.’s [77] attack (Section 4.1);

• provide an extensive evaluation of UAP attacks against three different DRL agents:
DQN, A2C, and PPO. Using three different Atari 2600 games: Pong, Freeway, and
Breakout (Section 6.1);

• propose a detection technique AD3 that effectively detect UAP attacks (Section 4.2);

• provide an evaluation of AD3 with respect to five different attacks: UAP-S, UAP-O,
OSFW, OSFW(U), and FGSM (Section 6.2);

• propose a novel fingerprinting technique ReLF for ownership verification of DRL
policies (Section 4.3);

• provide an evaluation of ReLF using three different DRL agents in Pong games
(Section 6.3).

Thesis Structure The remainder of this thesis is organized into eight chapters. Chap-
ter 2 contains background information required for understanding the materials presented
in this thesis. Chapter 3 outlines the adversary models and requirements for each security
topic. Chapter 4 presents designs of the proposed adversarial perturbation attacks, detec-
tion technique for adversarial perturbation attacks, and our proposed fingerprint technique
for DRL policies. Chapter 5 details the environment, algorithm, and model architecture
used for our experiments. Chapter 6 presents evaluations of the effectiveness of the pro-
posed adversarial perturbation attacks and detection method, as well as a preliminary
evaluation of the proposed fingerprint technique for DRL policies. Chapter 7 contains re-
lated work for both topics. Chapter 8 provides discussions on our proposed techniques and
future works. Finally, Chapter 9 concludes this thesis with a summary.

3

Chapter 2

Background

This chapter presents background information that is vital to the understanding of this
thesis. Section 2.1-2.3 focus on machine learning algorithms. Section 2.4 details the en-
vironments and the frameworks used in our experiments. Section 2.5 and 2.6 focus on
prior adversarial perturbation attack techniques. Section 2.7 outlines existing solutions for
ownership verification for deep neural network (DNN) classifier models.

2.1 Machine Learning

Machine learning is a discipline of computer science that studies algorithms that learn
automatically through data [29]. There are three categories of machine learning techniques:

• Supervised learning: supervised learning methods use labeled training data of the
form (x, y) where x is the feature vector, and y is the target class. The goal of
supervised learning methods is to find associations between the input feature vector
and the output class using the training data.

• Unsupervised learning: unsupervised learning methods use unlabeled training data.
Unsupervised learning methods learn hidden patterns and relationships using unla-
beled data.

• Reinforcement learning (RL): RL methods learn through an agent’s interactions with
the environment. The environment also consists of a reward signal that encourages
reinforcement learning agents to learn desirable behaviours. RL methods find optimal
decision-making policies of the agent by maximizing this reward.

4

2.2 Deep Neural Network (DNN)

Artificial neural networks (ANNs) are widely used in many machine learning applications
and are inspired by human brains, mimicking the connections and signals between biological
neurons. They are composed of hierarchical layers of interconnected neurons, consisting of
an input layer, an output layer, and one or more hidden layers. A neuron is a processing
unit that computes non-linear input-output mappings. Each neuron is connected to the
neurons in the next layer and each connection has a weight and a threshold associated with
it.

DNNs are ANNs with many hidden layers and can be described as parameterized func-
tions f(x, θ). This parameter θ describes the weights of the neuron connections in the
network. During training, different gradient-based optimization methods are used to find
optimal values for θ.

For each input x ∈ Rn of n features, the function f(x, θ) outputs a vector y ∈ Rm.
The parameter vector θ is optimized by using a labeled training set Dtrain. For clas-
sification tasks, one can take a sample input x ∈ Rn and predict its label by taking
f̂ = argmaxi fi(x, θ) where each i ∈ [1, ...,m] is the confidence score of x belonging to class
i computed by f .

2.3 Deep Reinforcement Learning (DRL)

In RL, an agent interacts with the environment sequentially to learn a policy that maxi-
mizes an agent’s returns : the accumulative rewards that the agent collects in a task. This
problem can be formalized as a 5-tuple Markov Decision Process 〈 S, A, P , R, γ 〉. Where
S is the state space that consists of multi-dimensional tensors; A is the action space con-
sisting of possible actions that an agent can take, depending on the environment, an action
is a vector of a fixed size and the values can be continuous or discrete; P is the transi-
tion kernel defining the dynamics of the environment that takes a state and an action and
outputs the next state; R is the reward function that outputs a scalar value; γ ∈ [0, 1] is
the discount factor. This discount factor is used to balance the long-term and short-term
impact of the agent’s actions on the overall accumulative rewards.

RL tasks are sequential, the environment at each time-step t is characterized by a state
st ∈ S. For many environments, st does not consist of a single raw observation o. Instead,
each raw observation o is preprocessed by a function fpre, and often times, st consists of
N past observations stored in memory; specifically, st = {fpre(ot−N+1), ..., f(ot)}. Given a

5

state st at time t, an agent outputs an action at. With the agent performing action at, the
environment transitions to the next time-step t+ 1 with a new state st+1, and R outputs
a reward rt+1 based on the new state.

An agent has a policy π that is parameterized by θ and π maps states to action distri-
butions π(·|s, θ). This policy is used by the agent to decide on what actions to take at each
state to maximize returns. RL techniques searches for a θ that maximizes the expected
discounted returns : Gt =

∑
k≥t+1 γ

k−trk, which is the discounted accumulated rewards of
an agent following π starting at time step t.

A value function outputs the expected discounted returns on a state for an agent fol-
lowing π. There are two types of value functions. The action-value function Qπ(s, a; θ) =
E[Gt|st = s, a] is the expected discounted returns of action a in state s for an agent fol-
lowing π with parameter θ. Similarly, the value function of a state V π(s; θ) = E[Gt|st = s]
is the expected discounted return by an agent following π starting from state s.

There are different algorithms to approximate an agent’s policy π. DRL algorithms
utilize DNNs to approximate the policy π, the value function V , and/or the action-value
function Q because DNNs are powerful function approximators.

There are two types of RL techniques, model-based and model-free techniques. Model-
based techniques model both the environment dynamic P and the agent policy during
training. This type of learning algorithm relies on expert knowledge of the environment
and is beyond the scope of this thesis. Model-free techniques, on the other hand, estimate
the optimal policy without modeling the environment dynamics and are used for this thesis.

Value-based Methods Instead of optimizing the policy directly, value-based methods
optimize the value function. The policy is obtained by choosing the action that maxi-
mizes the expected returns at each state as defined by the value function. One example
of such algorithm is Q-learning[45] that utilizes the Markov property of the RL formal-
ization to define the action-value function through the Bellman equation: Q(st, at) =
Gt + γmaxa′∈AQ(st+1, a

′). Then the action-value function is computed by minimizing the
Bellman loss.

Policy-based Methods Policy based-methods directly parameterize the policy π and
optimize its parameter θ to obtain an optimal policy. Typically, these methods optimize an
objective function such as the expected discounted returns E[Gt] through stochastic gra-
dient ascent with respect to θ. An example of policy based-method is the REINFORCE
algorithm[75] that updates the policy parameter θ using ∇ log π(at|st|θ)Gt that is an esti-
mator of ∇E[Gt].

6

Actor-critic Methods Actor-critic methods combine the approaches from both policy-
based methods and value-based methods. The agent policy is split into two parts: an actor
and a critic. The actor estimates the policy network and the critic estimates the value
function of the current policy. The estimated value function is then used to assist gradient
updates to the policy by reducing the gradient variance. An example of this method is
A2C[43], which updates the policy parameter θ using ∇ log π(at|st|θ)(Gt − V π(st)) that
lowers the variance of the gradient.

Prior work on adversarial perturbation attack against DRL agents often use the follow-
ing DRL algorithms to test their methods: Deep Q Network (DQN) [45], Trusted Region
Optimization (TRPO) [58], Proximal Policy Optimization (PPO) [59], and Advantage
Actor-Critic (A2C) [43].

2.4 DRL Testing Environments

While DRL agents have shown successes in complex tasks such as autonomous driving [52,
61] and robotic control [36], these complex tasks are not suitable for this thesis because
1) it is difficult to interface with the environments of these tasks and 2) DRL policies for
complex tasks are difficult and time-consuming to train.

For testing our proposed methods, we use two environments from OpenoAI Gym1.
OpenAI Gym provides a standardized interface for interacting with different environments
commonly used for DRL research. This thesis utilizes the following two environments for
evaluating our proposed methods. The first is the Atari 2600 Game Environment, where
each task is an Atari game with varying complexity and the agent only has a small number
of action choices. The second is MuJoCo Environment for Robotic Controls, where each
task involves controlling a robot agent with varying numbers of limbs where the DRL
agent’s actions are in continuous spaces. We call these tasks continuous control tasks
because the agent’s actions are in continuous spaces.

2.4.1 Atari 2600 Game Environment

The Atari 2600 games are a collection of games that were released on the Atari 2600
gaming console. Bellemare et al. [6] developed the Arcade Learning Environment (ALE),
a software framework that provides an interface to emulate the Atari 2600 games. A single

1https://gym.openai.com/

7

Atari game screen is composed of 160× 210 pixels with a 128-colour palette and the frame
rate of the Atari game emulator is 60 Hz. All possible video frames of an Atari game makes
up the state space of the environment. Atari games are used for testing proof of concepts
and provide a simple baseline for DRL algorithms, as the state space of Atari games is
non-trivial (because it cannot be searched exhaustively), and the complexity of the games
is limited due to the limitations of the hardware.

Pong (Figure 2.1a) Pong is a table tennis-like two-player game. The two players pass
the ball back and forth by moving their paddles vertically up and down. A player scores
a point if the opponent failed to pass the ball to the other side. In the Gym environment,
the opponent (left peddle) is controlled by a black-box opponent with a fixed policy and
the player controls the green paddle. An episode terminates when either the player or the
opponent achieves 21 points in the game. The environment returns a reward when the
player scores a point. The player is limited to six different actions: { up, down, noop, fire,
shoot up, shoot down}.

Freeway (Figure 2.1b) Freeway is a game where the player controls a yellow chicken
that starts at the bottom of the screen. The goal is to move the chicken across the screen
to the other side of the freeway without getting hit by a car. The environment returns
a reward when the player-controlled chicken crossed the road. An episode ends when the
player reaches 34 points. The player is limited to three actions: {up, down, noop}.

Breakout (Figure 2.1c) In Breakout, there is a wall of bricks at the top of the screen.
The player’s goal is to control a paddle to hit the ball to break the bricks on the screen.
The player begins the game with five balls, and a ball is lost when it hit the bottom of the
screen. The game terminates when all balls are lost or when all bricks are removed. The
environment returns a reward every time a brick is broken. The player is limited to six
different actions: { left, right, noop, fire, shoot left, shoot right}.

2.4.2 MuJoCo Environment for Robotic Controls

MuJoCo2 [69] which stands for Multi Joint dynamics with Contact is a physics engine used
for robotics research. OpenAI Gym provides different robotic agents using the MuJoCo
physics engine for basic tasks such as Cart-Pole balancing, and locomotive tasks such as

2https://mujoco.org/

8

(a) Pong (b) Freeway (c) Breakout

Figure 2.1: Screenshots of Atari 2600 games taken from the Arcade Learning Environment
(ALE) using the Python Gym package.

moving different robots (with a different number of limbs and center of mass) forward as
fast as possible. The locomotive tasks are very challenging as the robotic agents have high
degrees of freedom and only have a partial observation of the environment. Duan et al. [16]
provide detailed descriptions and benchmarks for different RL policies on these locomotive
tasks. Robotic control tasks are useful for evaluating DRL agents in tasks that are more
challenging and complex than the Atari 2600 games.

2.5 Adversarial Examples

Szegedy et al. [67] were the first to discuss DNNs’ vulnerability to adversarial examples.
Given a valid input x and its corresponding class y, it is possible to find an adversarial
example x∗ that is close to x by some distance measure, but the class of x∗ is not classified
as y. When an adversary exploits this vulnerability by adding a perturbation to an input
sample to fool a classifier, we call this an adversarial perturbation attack 3.

Given a classification model f and an input x, the problem of finding adversarial exam-
ples can be formulated as an optimization problem of adding an adversarial perturbation
δ to x such that x∗ = x+ δ:

3This is sometimes referred to in the literature as adversarial attack.

9

(a) Walker (b) Humanoid

Figure 2.2: Images from OpenAI (https://gym.openai.com/envs/#mujoco) of two
Robotic environments from MuJoCo. The goal is for the robot agent to move forward
as fast as possible.

argmin
δ
‖δ‖p s.t. argmax

i
fi(x+ δ) = t. (2.1)

Where t 6= argmaxi fi(x) for untargeted attacks and a single fixed t for targeted attacks.
The size of the adversarial perturbation δ is constrained by an ε such that ‖δ‖p ≤ ε using
the lp norm. Solving this optimization problem is non-trivial because DNNs are highly
non-linear and non-convex [34].

Goodfellow et al. [20] proposed the Fast Gradient Sign Method (FGSM) for generating
untargeted adversarial examples. They theorize that although DNNs are non-linear, it
is susceptible to linear adversarial perturbations. Therefore, they approximate a linear
solution to Equation 2.1 by taking the sign of the gradient of the loss function l under the
l∞ norm:

δ = ε · sign(∇x`(f(x, θ), y)). (2.2)

Adversarial examples can be computed very quickly using this method. However,
FGSM does not return minimum adversarial perturbations. Kurakin et al. [33] built
their idea based on FGSM and proposed an iterative version of FGSM that updates the
adversarial perturbation δ using projected gradient descent (PGD) multiple times using
Equation 2.2 with a learning rate. While this method is slower than FGSM, it solves the op-
timization problem more reliably and with a better solution. Papernot et al. [53] proposed
a targeted adversarial example generation technique using the Jacobian Saliency Map Al-
gorithm (JSMA). They utilize the gradient of the loss function to compute a saliency map,

10

https://gym.openai.com/envs/#mujoco

which maps individual features in the input vector to its ability to direct the classification
result to a specific class. The adversary picks several pixels of the input to modify until the
class of the input vector changes. Carlini and Wagner [10] proposed three different targeted
adversarial example generation techniques each targeting a different lp norm. Baluja and
Fischer [2] proposed a method that uses the Adversarial Transformer Network (ATN) to
generate adversarial examples against targeted networks.

Moosavi-Dezfooli et al. [46] show the existence of universal adversarial perturbations
(UAPs) that can be applied to different images and cause these images to be misclassified
with high probability. They utilize the DeepFool algorithm [47] for finding UAPs.

2.6 Untargeted Adversarial Perturbation Attack in

DRL

Prior work shows that DRL agents are also vulnerable to adversarial perturbation attacks.
Untargeted adversarial perturbations apply adversarial perturbations to the victim’s ob-
servations of the environment to mislead victim policies into taking sub-optimal actions.

Huang et al. [25] and Kos and Song [31] are the first to demonstrate that adversarial
perturbation attacks are effective against DRL agents using FGSM attacks. Pattanik et
al. [54] and Huai et al. [24] utilize PGD to find adversarial perturbations for different
objective functions.

Xiao et al. [77] propose a technique (“obs-fgsm-wb”, OSFW) that generates a single
adversarial perturbation in the middle of an episode. The adversary collects the first k
observations in the episode and calculates an adversarial perturbation using the average
of the gradients over the k observations collected. This adversarial perturbation is then
applied to all the subsequent observations of the episode.

While these untargeted attacks are effective in decreasing a victim agent’s return in
different tasks, they are difficult to deploy in practice. Many attacks [54, 24] are very slow
because they require back-propagation to solve optimization problems. This is computa-
tionally intensive and requires sending the victim agent multiple versions of the current
observation. Similarly, Xiao et al.’s [77] method requires pausing the environment mid-
episode to compute an adversarial perturbation. These attacks require the adversary to
have full control over the environment, which is unrealistic in complex real-time environ-
ments such as autonomous driving.

Other methods [25, 31] utilize FGSM in their attacks. FGSM requires collecting all
observations in a state before computing the adversarial perturbation, which leads to the

11

adversary modifying past observations that are stored in the victim agent’s memory. In
this case, the adversary needs to have control over the victim agent’s internal states, which
is a strong assumption of the capability of the adversary.

The aforementioned attack techniques have an adversary with white-box knowledge of
the victim agent such that the adversary has access to the weights of the policy’s model(s) to
generate adversarial perturbations. In some cases, it may not be possible for the adversary
to gain white-box access to the victim’s agent. Other prior attack methods construct their
adversarial perturbations where the adversary only has black-box access to the victim
agent. In this case, the adversary is often restricted to only having access to the action
and the environment. We discuss black-box attacks in Section 7.1.2.

For this thesis, we focus on targeted attacks where the adversary has the singular goal
of destroying the victim agent’s performance. An adversary can have a more sophisticated
goal of changing the specifics of the victim agent’s behaviour and in this case, the adversary
deploys an untargeted attack. However, as discussed in Section 7.1.1, these attacks are
often very computationally heavy and are difficult to deploy in real-time.

2.7 Ownership Verification of DNNs

Machine learning models are increasingly deployed as a part of commercial applications.
These models are valuable assets, as training machine learning models often requires a large
number of computational resources and data. As a result, an adversary can gain profits
by stealing the functionalities of a model and derive surrogate models to redistribute and
monetize as their own.

A surrogate model is a copy of the source model that exhibits the same functionalities.
Depending on the adversary model, there are different ways that this surrogate model is
created. An adversary with white-box knowledge of the source model can simply copy the
weights to the surrogate model. On the other hand, an adversary with black-box knowledge
of the model needs to mount a model extraction attack using a set of unlabelled data and
the source model’s interface to train a surrogate model that emulates the functionalities of
the source model.

In the case where theft cannot be prevented, model owners can claim ownership of a
stolen model using ownership verification techniques. There are two major techniques that
are discussed in the machine learning literature: watermarking and fingerprinting. For a
comprehensive view of ownership verification techniques for DNNs, Franziska Boenisch [7]
has a survey and analysis on this topic.

12

Watermarking Watermarking is commonly used in digital media where the owner’s
identification is infused with the media content such that its ownership can be verified
after the content is distributed. A survey of watermarking techniques in digital media
space can be found in Saini et al.’s survey [57].

This concept of watermarking the distributed contents can also be applied to machine
learning models. The first watermarking technique for DNN models embeds a watermark to
the model parameters. Song et al. [64] propose different methods to encode information into
the least significant bit of the model parameters. Uchida et al. [72] embed the watermark to
the convolutional layers of the DNN. This watermark is a t-bit binary vector. Their method
modifies the original loss function used in training and adds an embedding regularizer that
imposes a statistical bias on certain model parameters to embed this t-bit binary vector as
watermark.

Other watermarking techniques utilize a set of special inputs to identify watermarked
models instead of embedding the watermark to the model’s parameters. This special set
of inputs is often called the trigger dataset or carriers. As DNNs are known to be over-
parameterized and are capable of memorizing random noisy inputs, it is possible to define
a trigger dataset with limited harm to the utility of the model. Model owners would train
the model to output specific target classes for the trigger set. During the verification stage,
the model owner can verify the ownership of a suspect model by comparing the class agree-
ment between the suspect model and the owner’s model on the trigger dataset. Multiple
works [1, 28, 35, 50] propose watermarking using trigger datasets that are generated from
a distribution that is different from the training dataset. Another body of work [21, 37, 82]
builds the trigger dataset by embedding information onto the data that is in the training
set.

Notably, the same watermarking techniques cannot be directly applied to DRL policies.
Watermarking techniques require modifications to the training of the models, however,
the training algorithms and training environments of DRL policies are different from the
training of DNN classifiers. Thus, the watermarking techniques used in DNN cannot
directly transfer to the DRL case.

Fingerprinting Instead of embedding watermarks into DNNs, another approach is to
find existing features of the model to uniquely identify stolen models. We call these unique
identifiers fingerprints. There are two works [40, 83] on utilizing adversarial examples as
fingerprints for ownership verification of DNNs models.

Lukas et al. [40] defined a new class of adversarial examples: conferrable adversarial
examples, which is a type of adversarial example that is highly transferable to surrogate

13

models of a source model but not transferable to independently trained models. The
verification algorithm can distinguish between independently trained models and surro-
gate models by testing the transferability of the conferrable adversarial examples. They
proposed an ensemble method of generating conferrable adversarial examples by first gen-
erating a set of surrogate models and a set of independently trained models, then they
utilize gradient optimization methods to optimize the conferrability score of a sample.
This method is very costly for the defender because the defender has to generate many
independent models to find these conferrable adversarial examples.

Zhao et al. [83] utilize a similar type of adversarial example that they defined as “ad-
versarial marks”. This type of adversarial example shows high transferability for similar
models and not others. They utilize the targeted adversarial example generation technique
proposed by Carlini and Wagner [10] with modified objective function and constraints.
The authors argue that adversarial marks are difficult to remove as the number of possible
adversarial examples is infinite.

These two fingerprinting techniques cannot be directly applied to DRL policies. They
use a set of inputs to generate these adversarial examples and during verification, the
same inputs are used to fingerprint a model. However, in DRL, the environments are not
necessarily fixed and the verifier needs a strategy for applying adversarial perturbations to
the appropriate states of the environment to fingerprint the model.

14

Chapter 3

Problem Statement

This chapter outlines the problem statement, adversary model, and design requirements for
real-time adversarial perturbation attacks (Section 3.1), detecting adversarial perturbation
attacks (Section 3.2), and ownership verification using fingerprinting (Section 3.3).

3.1 Real-time Adversarial Perturbation Attack

In adversarial perturbation attacks, we have deployed a deep reinforcement learning (DRL)
victim agent v that interacts with the environment. As shown in Figure 3.1, the adver-
sary Adv , sits between v and the environment and is able to add a bounded adversarial
perturbation to v ’s observations of the environment.

3.1.1 Problem Statement

In this setting, we have a deployed DRL victim agent v that interacts with the environment
and an adversary Adv that seeks to reduce v ’s returns in a task. We focus on the scenario
where Adv compromises v ’s sensors and injects noise to v ’s observations of the environment.
As shown in Figure 3.1, Adv sits between v and the environment and can add a bounded
adversarial perturbation to v ’s observations of the environment. While prior work [25,
31, 54, 24, 77] demonstrated that DRL agents are vulnerable to adversarial perturbation
attacks, these attack methods cannot be realized in real-time.

In this thesis, we study effective untargeted white-box adversarial perturbation attacks
against DRL agents that can be realized in real-time.

15

3.1.2 Adversary Model

Adversary Goals In this setting, Adv mounts an adversarial perturbation attack against
v in real-time where during attack deployment, Adv cannot pause or slow down the en-
vironment. This attack is an untargeted attack, where the goal is to lead v into taking
sub-optimal actions and fail at its task during deployment. While Adv is mounting the
attack against v , Adv also aims to be stealthy to evade detection and mitigation strategies
deployed by the victim.

Adversary Capabilities Adv has the following capabilities:

1. has white-box access to v and its policy πv, including the algorithm and model
weights. Depending on the DRL algorithm, πv is either the action-value function Qv

or the policy function πv and the value function Vv;

2. can observe v for a small number of episodes and collect environment states and v ’s
actions in these episodes;

3. can intercept v ’s observations of the environment by adding adversarial perturbations
that are bounded by ε;

4. can only modify the observations sequentially and they cannot modify past observa-
tions when it is stored in v ’s internal memory.

In this setting, Adv does not have the ability to modify the environment or v . Instead,
Adv intercepts the communication between the environment and v , i.e., v ’s observations
of the environment. Capability #4 is defined with respect to this setting because the Adv
cannot modify v ’s internal setup.

While Adv can modify v ’s observations of the environment, it cannot make drastic
changes to these observations. If Adv makes drastic changes to v ’s observations of the
environment, e.g., changing each observation to a blank screen, it would be easily detectable
by v . It is also possible for v to deploy anomaly detection mechanisms to detect these
changes to each observation to detect the presence of Adv . We define capability #3 to
bound the size of the adversarial perturbation to avoid detection.

16

3.1.3 Attack Requirements

A successful real-time attack should satisfy the following requirements:

AR-1 can reduce v ’s returns on a task significantly and ideally by 100%;

AR-2 be mountable in real-time, where the time to compute and apply the adversarial
perturbation combined with the agent response time is faster than the speed that
the environment moves on to the next observation;

AR-3 can evade known detection and mitigation mechanisms such that the attack still
retains the same effect on v .

We restrict the evaluation of requirement AR-2 to only the within episode computation
cost, where the attack should not interrupt and slow down the episode of the environment
that is under attack.

3.2 Detecting Adversarial Perturbation Attacks

3.2.1 Problem Statement

As adversarial perturbation attacks can cause seriously failure to DRL agents, it is im-
portant to study techniques that can mitigate such attacks. Effective detection techniques
can deter adversarial perturbation attack against the victim agent v . The detection mech-
anism is deployed as part of v and it alerts v when it senses the presence of Adv in the
environment.

3.2.2 Adversary Model

The adversary model is identical to the adversary model in Section 3.1.2.

3.2.3 Detection Requirements

The requirements for a effective detection technique is outlined as follows:

17

DR-1 should minimize false positives and maximize true positives, i.e., can effectively raise
an alarm in episodes where attacks are applied;

DR-2 should raise an alarm as early as possible when an attack is detected in an episode.

3.3 Ownership Verification Using Fingerprinting

3.3.1 Problem Statement

In this setting, there is a source policy πo that is owned by a legitimate party. The
adversary Adv gains access to πo and creates a surrogate policy that is a copy of πo. Then,
Adv deploys an agent in an environment that has this surrogate policy. DRL agents that
have πo and its surrogate policies exhibit similar if not identical behaviours on a task.

The verifier Ver takes a suspect agent sp and seeks to verify whether or not it has
a surrogate policy of πo. As shown in Figure 3.1, during the verification stage, Ver sits
between the environment and sp and adds a bounded adversarial perturbation to sp’s
observation of the environment.

3.3.2 Adversary Model

Adversary Goals In this setting, Adv first creates a surrogate policy πAdv that is a copy
of πo. Adv then deploy their own agent with πAdv. Adv seeks to deploy their agent such
that it has comparable performance to an agent with πo. Adv also seeks to evade ownership
verification that identifies πAdv as a copy of πo.

Adversary Capabilities Adv knows the fingerprinting techniques deployed and can
modify the behaviour of the deployed policy to thwart any ownership verification attempts.

3.3.3 Verifier Model

Verifier Goals Given a source policy πo and a suspect agent sp with policy πs, Ver seeks
to identify πs to determine with high confidence whether or not πs is a copy of πo.

18

Verifier’s Capabilities Ver has white-box access to πo. Additionally, Ver has the
following capabilities when interacting with sp:

1. has black-box access to sp, i.e., Ver does not know the algorithm and the policy
weights of πs;

2. can intercept sp’s observations of the environment by adding adversarial perturba-
tions to them.

3.3.4 Verifier Requirements

To accomplish Ver ’s goals, the fingerprint method needs to satisfy the following two re-
quirements:

VR-1 should minimize false positives and maximize true positives, i.e., to not falsely verify
the ownership of independently trained policies and to effectively verify ownership of
policies that are copies of πo;

VR-2 cannot be evaded by Adv .

19

State
Policy (𝜋) / (𝜋)

Victim Agent (𝒗) / Suspect Agent (𝒔𝒑)
Environment

Adversarial Perturbation

Calculate Reward

Calculate and decide action

Adversary (𝑨𝒅𝒗)/ Verifier (𝑽𝒆𝒓)
Insert adversarial perturbation to
each observation of the environment

Observations

Figure 3.1: Interactions between the victim/suspect agent, the environment, and the veri-
fier/adversary. The adversary/verifier adds a perturbation mask to victim/suspect agent’s
observations of the environment.

20

Chapter 4

Methodology

In this chapter, we present our proposed methods with respect to the problems outlined
in Chapter 3. Section 4.1 presents three new real-time adversarial perturbations attacks
(UAP-S, UAP-O, and OSFW(U)) against deep reinforcement learning (DRL) agents. Sec-
tion 4.2 presents a new detection techniques for DRL agents against adversarial perturba-
tions. Finally, Section 4.3 presents a novel fingerprint method to verify the ownership of
stolen policies

4.1 Real-time Adversarial Perturbation Attack

In this section we discuss our attack designs to fulfill the requirements outlined in Sec-
tion 3.1.3. We formally define three different universal adversarial perturbations (UAPs)
against DRL agents. Our attacks are extended to the continuous control setting where
agent actions are in continuous spaces. Finally, we discuss existing defense methods in
DRL.

The methodologies detailed in this section of the thesis are also part of our Arxiv
paper [68].

4.1.1 Attack Design

As discussed in Section 3.1.3, there is a set of requirements that the attacks should fulfill.
We will address our design decisions in relation to each requirement.

21

To satisfy AR-1, we design attacks that lead the victim agent v into taking sub-
optimal actions consistently because it can lead to a significant reduction to v ’s returns
in a task. Moosavi et al. [46] propose UAP that generates a single perturbation that
can be applied to any input data to a classifier and consistently mislead a classifier into
predicting the wrong class for many of the given inputs. UAP is ideal for our purpose
of consistently misleading v ’s actions. Based on their work, we propose two variants of
UAP, state-agnostic UAP (UAP-S) and observation-agnostic UAP (UAP-O). A state s
may consists of N processed observations {o1, ..., oN}. UAP-S generates an adversarial
perturbation that is applied uniformly across different states but the perturbation is not
uniform within the observations within a state. On the other hand, UAP-O generates an
adversarial perturbation that is applied uniformly across all observations.

As discussed in Section 2.6, prior attacks are either too slow to satisfy requirement AR-
2 or require the adversary Adv to modify past observations in v ’s memory. To satisfy
requirement AR-2, our attack methods pre-compute adversarial perturbations offline such
that during deployment Adv only spends a minuscule amount of time to apply adversarial
perturbations to v ’s observations of the environment. These adversarial perturbations
are applied independently of the current state so that it does not require modifying past
observations in v memory and only modify the most current observation. Xiao et al. [77]
propose a similar technique OSFW that generates a single adversarial perturbation to
reduce v ’s returns in a task. However, their method requires generating a new adversarial
perturbation for each episode of a task and pausing in the middle of the task to compute this
adversarial perturbation. This violates requirement AR-2. To facilitate fair comparison
with this work, we design OSFW(U), that is a modified version of OSFW where a single
adversarial perturbation is generated offline and can be applied in real-time.

4.1.2 Attack Implementation

The three attack methods UAP-S, UAP-O, and OSFW(U) pre-compute the adversarial
perturbation using a training set Dtrain. This Dtrain goes through two phases, the first
is the data collection phase and the second is the data sanitization phase. The quality
of training data influences the effectiveness of the attack, as such, we sanitize Dtrain to
improve the quality of Dtrain.

Attack Training Data Collection First, Adv copies the weights of the victim v ’s
policy networks to a proxy network adv. Specifically, for value-based methods (e.g., DQN),
weights of Qv is copied into Qadv, and for policy-based methods (e.g., A2C and PPO) both

22

the policy function πv and the value function Vv are copied to πadv and Vadv, respectively.
We will refer to these networks as v ’s policy πv. In addition, Qadv(s, a) can be computed
from Vadv(s) for each a ∈ A. To simplify the notation used, we will use Q̂(s) to represent
the action decision of a policy at state s.

Finally, while Adv is copying the network weights, Adv also observes and collects a set
of states Dtrain by observing v ’s actions in an environment for one episode and collects all
the states s in the episode.

Data Sanitization To better satisfy requirement AR-1, we improve Dtrain so that the
adversarial perturbation r can be more effective in reducing the v ’s returns in a task. To
improve Dtrain, Adv sanitizes Dtrain to contain only critical states. Following the definition
from [38], critical states are the states in an episode where v ’s actions can heavily impact
the returns in that episode. As a result of this, we want r to be the most effective in
these states. In these states, v heavily prefers optimal actions over any other actions. We
identify these critical states s ∈ Dtrain using the action-preference function:

Vara∈A [Softmax(Qadv(s, a))] ≥ β

β =
1

|Dtrain|
∑
s∈Dtrain

Vara∈A [Softmax(Qadv(s, a))], (4.1)

modified from Lin et. al. ’s work [38]. Where Var is the normalized variance of Q(s, a)
for each a ∈ A.

Generating UAP-S and UAP-O To generate UAP-S and UAP-O, Adv utilizes the
states s ∈ Dtrain, by finding a perturbation r that satisfies Equation 2.1 for a fooling rate
of δ on Dtrain. This fooling rate refers to the percentage of states s in Dtrain that r can
successfully lead v into taking sub-optimal actions.

The implementation of UAP-S and UAP-O are modified versions of universal adversar-
ial perturbations by Moosavi et al. [46] and relies on the Deepfool algorithm [47] to find
minimal r that solves Equation 2.1 for s ∈ Dtrain. Both UAP-S and UAP-O seek to find
a perturbation r such that Q̂v(s+ r) 6= Q̂v(s) for most state s that lead to v choosing the
sub-optimal actions while performing a task. UAP-S finds r that is not uniform across all
observations in a state. In contrast, UAP-O finds r such that the perturbation is uniform
across all observations.

Algorithm 1 summarizes the method to generate UAP-S and UAP-O. To find minimal
∆r in lines 5-6 of Algorithm 1, we utilize Deepfool to iteratively update perturbed state

23

s∗i = s+ r+ ∆ri at each iteration i until Q̂adv(s
∗
i) 6= Q̂adv(s). At each iteration i, DeepFool

finds the closest hyperplane l̂(s∗i) and ∆ri that projects s∗i on the hyperplane. To find ∆ri,
first, let am = Q̂adv(s+ r), for each al̂ ∈ A and al̂ 6= am, we compute ∆ri:

Q
′
(s∗i , al̂)← Qadv(s

∗
i , al̂)−Qadv(s

∗
i , am),

w
′

l̂
← ∇Qadv(s

∗
i , al̂)−∇Qadv(s

∗
i , am),

∆r′i ←
|Q′

(s∗i , al̂)|
‖w′

l̂
‖2

2

w
′

l̂
(4.2)

Where ∇ is the gradient of Qadv w.r.t. si. Then we take ∆ri to be the smallest ∆r′i
computed.

For UAP-S, the perturbation r is not uniform across the observations in a state st =
{ot−N+1, ..., ot}. This means that r = {r1, ..., rN}, ri 6= rj,∀i 6= j, and each ri is applied to
the corresponding observation ot−N−i+1 within s when an attack is launched.

In contrast, for UAP-O, the perturbation is uniform across the observations in st. To
construct UAP-O, we seeks to find a modified version r̂ of perturbation r such that:

min(‖r − r̂‖2
2) (4.3)

s.t.: r̂j = r̂k, ∀j, k ∈ {1, · · · , N} and ‖r̂‖∞ ≤ ε.

The closest r̂ to r can be found by modifying line 5 and 6 of Algorithm 1 that searches
for ∆r. The modified version searches for the closest ∆r̂i to ∆ri by averaging w′

l̂
over

observations:

∆r′ij ←
|Q′

(s∗i , al̂)|
N‖w′

l̂
‖2

2

t∑
k=1

w
′

l̂k
, (4.4)

In UAP-O, DeepFool algorithm returns ∆r̂i = ∆r̂ij as the optimal perturbation. UAP-
O adds the same perturbation r̂ to every observation. In the environment where there is
only a single observation in a state, i.e., N = 1, UAP-S is equivalent to UAP-O.

24

Algorithm 1: Computation of UAP-S and UAP-O

input : sanitized Dtrain, Qadv, desired fooling rate δth,
max. number of iterations itmax, pert. constraint ε

output: universal perturbation r
1 Initialize r ←− 0, it←− 0;
2 while δ < δmax and it < itmax do
3 for s ∈ Dtrain do

4 if Q̂(s+ r) = Q̂(s) then
5 Find minimal ∆r:

6 ∆r ←− argmin∆r‖∆r‖2 s.t. Q̂(s+ r + ∆r) 6= Q̂(s);
r ←− sign(min(abs(r + ∆r), ε));

7 Calculate δ with the updated r on Dtrain;
8 it←− it+ 1;

Generating OSFW(U) As discussed in Section 2.5, OSFW requires pausing after col-
lecting the first k states. It computes an adversarial perturbation r by averaging the
gradient of Qv, and applying it to the subsequent states in the episode. This method
requires, 1) generating different r for each episode and 2) pausing in the middle of an
episode to compute r. As calculating r in the middle of an episode requires Adv to pause
the episode and thus conflict with requirement AR-2, we adapted OSFW and create a uni-
versal version OSFW(U) where we generate r offline. We utilize the proxy policy network
Qadv and take the first k states from Dtrain that were collected. The formula to calculate
the adversarial perturbation r for OSFW(U) is:

r = ε · sign
(1

k

k∑
i=0

∇si(− log(Qadv(si, âi)))
)

; (4.5)

Where âi = Q̂adv(si) is the chosen action at state si ∈ Dtrain.

4.1.3 Extending Attack to the Continuous Control Setting

In continuous control environments, v ’s selected action is an array of real values. The
DRL agent in this setting controls physical systems such as humanoid and other multi-
joints robots in this environment [69]. There is no action-value function Q(s, a) in this

25

Algorithm 2: Computation of UAP-S and UAP-O in the continuous control
setting

input : sanitized Dtrain, Vadv, hyper-parameter α,
max. number of iterations itmax, pert. constraint ε

output: universal perturbation r
1 Initialize r ←− 0, it←− 0;
2 while δ < δmax and it < itmax do
3 for s ∈ Dtrain do
4 if Vadv(s+ r) + α ≥ Vadv(s) then
5 Find the minimal ∆r:
6 ∆r ←− argmin∆r‖∆r‖2 s.t. Vadv(s+ r + ∆r) + α < Vadv(s);

r ←− sign(min(abs(r + ∆r), ε));

7 Calculate δ with the updated r on Dtrain;
8 it←− it+ 1;

setting because the action space is continuous. Nonetheless, Adv still has access to the
value function V (s). This function is an approximation of the expected discounted return
of a state s by an agent with policy π. Adv can find an adversarial perturbation r that
lowers the value of a state s. Because V (s+r) is lower than V (s), it can lead v into choosing
a less optimal action. For FGSM, OSFW, and OSFW(U), Adv can use the gradient of Vadv
instead of Qadv. For UAP-S and UAP-O, lines 4 - 6 of Algorithm 1 is modified to only use
Vadv. Algorithm 2 is corrected for generating UAP-S and UAP-O for continuous control
environments.

4.1.4 Existing Defenses in DRL

To evaluate our attacks with respect to requirement AR-3, we present existing mitigation
methods for DRL agents against adversarial perturbation attacks.

Adversarial retraining [5, 31] has shown to be a promising defense against adversarial
perturbation attacks in DRL. However, adversarial retraining often leads to unstable train-
ing and performance degradation. Moreover, Moosavi et al. [46] show that while UAP-Ss
have lower fooling rate on the test set compared to the training set, Adv can generate un-
limited number of UAP-S in which adversarial retraining cannot defend against. Therefore,
adversarial retraining techniques cannot be applied in this setting directly.

26

Zhang et al. [81] propose state-adversarial Markov decision process (SA-MDP), a method
for adversarial retraining of DRL policies that also maintains v ’s performance. This method
aims to find optimal policy π by training against Adv through policy regularization and
maintaining the top-1 action of the policy.

Another defense technique is Visual Foresight. Lin et al. [39] propose Visual Foresight
as a detection and recovery technique that utilizes an action-conditioned frame prediction
module. The architecture of this prediction module is based on the architecture proposed
by Oh et al. [51]. At every time-step t, the action-conditioned frame prediction module take
the first k previous observations ot−k : ot−1 and k previous actions at−k : at−1 to predict the
observation ôt at time t. Utilizing the partially predicted state spred = {ot−N+1, ..., ôt} and
the actual current state st, we can compare the distance between the action distribution of
Q(st) and Q(spred). In this work, they utilize l1 as the distance metric D(·, ·) to compare the
action distribution. In detection mode, if D(Q(st), Q(spred)) exceeds a predefined threshold
H, then an attack is detected; to recover policy performance, Q(spred) can be used when
an attack is detected at each state. However, they did not propose a method for selecting
this threshold H.

4.2 Detecting Adversarial Perturbation Attacks

This section presents our detection technique AD3. Section 4.2.1 outlines the design choices
for AD3 and Section 4.2.2 details the implementation of AD3.

4.2.1 Detector Design

While mitigation methods can be used for recovering the performance of v in many tasks,
a detection technique can be more effectively deployed in tasks with a clear negative result
from an episode (such as losing a game), or the possibility of negative returns. A reasonable
response for v is to suspend the episode when Adv is detected to prevent the negative result.
We propose a detection method, Action Distribution Divergence Detector (AD3), for v to
detect the presence of Adv .

In an episode of an DRL agent acting on a task, the sequence of actions exhibits some
degree of temporal coherence, i.e, the likelihood of the agent choosing a specific action given
a specific prior action is similar across different episodes. We observed that this temporal
coherence is disturbed when the episode is under attack. We utilize this information to
design AD3 by calculating the statistical distance between the conditional action probability

27

distribution (CAPD) of the current episode to the learned CAPD of past episodes to detect
attacks. To satisfy requirement DR-1, we compare the learned CAPD against episodes
with no attack to find a suitable threshold where CAPD of normal episodes usually falls
under and CAPD of episodes under attack would usually exceed.

Unlike prior work on detecting adversarial examples in the image domain [42, 56, 79],
AD3 does not analyze the input image nor try to detect adversarial examples. Instead, it
observes the distribution of the actions triggered by the inputs and detects unusual action
sequences.

4.2.2 AD3 Implementation

To train AD3, we first run k1 episodes of v in a controlled environment before deploying
AD3. All actions taken during these episodes are recorded. These are actions used to
approximate the conditional probability of the next action given a prior action using the
bi-gram model. The conditional probability of actions approximated in these episodes isa
called the learned CAPD.

To fulfill requirement DR-1, AD3 needs to reliably differentiate between CAPD of a
normal episode versus an episode that is under attack. To achieve this, AD3 models the
CAPD between normal episodes and the learned CAPD by running another k2 episodes of
v in a controlled environment. AD3 calculates the statistical differences between the CAPD
of the normal episodes and the learned CAPD at each time-step using Kullback-Leibler
(KL) divergence [32]. A threshold value th is chosen such that the KL divergence between
the two CAPDs can mostly fall under.

For each episode in the second run of k2 episodes, the KL divergence between the
learned CAPD and the CAPD of the current episode is removed for the first t1 steps
because the CAPD of the current episode is unstable and KL divergence is naturally high
in the beginning. We set the threshold th as the pth percentile of all KL divergence values
calculated in this k2 episodes.

During deployment, AD3 continuously updates the CAPD of the current episode, and
after t1 time-steps, it calculates the KL divergence between the CAPD of the current
episode and the learned CAPD. If the KL divergence exceeds the threshold th by r% or
more during a time window t2, in accordance with requirement DR-2, AD3 immediately
raises an alarm that the policy is under attack.

To illustrate how AD3 works, we look at an example of a DQN agent playing Pong
(from optimal parameters for AD3 for the Pong DQN agent in Table 5.1), we use k1 = 12,

28

k2 = 24, and p = 100 to calculate threshold th = 0.19. We set t1 = 200, t2 = 100, and
r = 90. In Figure 4.1, we show the KL divergence between the learned CAPD and the
CAPD of a normal episode and an episode under FGSM attack. As shown in this figure,
AD3 does not raise an alarm during the first 200 steps, as the KL divergence for an episode
under attack and a normal episode is high (and above th) for the first 200 steps. After 200
steps, AD3 does not raise an alarm for a normal episode because the KL divergence at each
time-step afterwards is consistently below th. In contrast, for the episode that is under
attack, an alarm is raised at step 300 because 100% of the the KL divergence exceeds th
for t2 steps after t1.

Figure 4.1: The KL divergence between the learned CAPD and the CAPD of two different
episodes of a DQN agent playing Pong. One episode is a normal episode (in green) and
the other is an episode under FGSM attack (in red). AD3 is deployed in both episodes and
the time step where an alarm is raised is labeled with a blue X marker.

29

4.3 Ownership Verification using Fingerprinting

We propose a novel fingerprinting method Reinforcement Learning Fingerprinting ReLF for
ownership verification of DRL policies. Section 4.3.1 discusses the design choices of ReLF.
Section 4.3.2 details the algorithm and the implementation of fingerprint generation and
how it is used to verify the ownership of a suspect agent’s policy.

4.3.1 Fingerprinting Design

The effectiveness of UAPs is directly dependent on the source policy’s randomization during
training and the source policy’s actions collected in the training set. This constrains the
transferability of UAPs across policies. As a result, two agents that have two independently
trained policies would act differently in an episode where UAPs are applied because the
effectiveness of UAPs differs between policies.

We measure the difference in actions between two policies by calculating sample action
agreement (SAA) between the sequences of actions between two agents in a task. If the
SAA between two agents is low in a task where UAPs are applied, then we can conclude
that these two agents have two independently trained policies. We take random samples
from an episode’s action sequences to make it difficult for an adversary to change the
actions in an episode that are used to verify the ownership of their agent.

We define SAA as the sampled average percentage of actions that are the same between
two sequences of actions. The sample action agreement function SAA(A1, A2,m, n) take
a m random samples of n indices from A1 and A2 without replacement and compares the
action agreement between the two sequences at the sampled indices. Algorithm 3 details
the algorithm to calculate SAA.

The indicator function I used in Algorithm 3 is defined as:

I(x, y) =

{
1 if x = y

0 otherwise
(4.6)

From our preliminary experiments using Pong games, we found that in a normal episode
with no adversarial perturbation attack, the SAA can be low between agents with the same
policy. In a normal episode with no attacks, the SAA between the same A2C policy is
around 0.2, and for PPO policies, the SAA between the same policy is around 0.6. Notably,
the SAA between independently trained policies for A2C and PPO is 0.2 in normal episodes.

30

Algorithm 3: Calculate sample action agreement SAA

input : Action sequence A1 = (a11, ..., a1k), second action sequence
A2 = (a21 , ..., a2k), number of samples m, sample population size n

output: sample action agreement (SAA) p
1 Initialize pArr −→ []
2 for j ← 1 to m do
3 I ←− a random sample of of n elements from [1, 2, ..., k] without replacement
4 pArr[j] −→ 1

n

∑
i∈I I(a1i , a2i)

5 p −→ Average(pArr)
6 return p

Thus, the SAA is indistinguishable between independently trained policies and the same
policy for A2C. While the SAA between the agents with the same PPO policy is more
distinguishable between the same policy and independently trained policies, the difference
in SAA can be even more prominent in an environment where the states are adversarially
perturbed.

When we generate OSFW(U) against a source policy and apply it to an episode, the
SAA between agents with the source policy and its copies can go up to as high as 0.9.
Following this observation, high SAA between two agents in an episode where OSFW(U)
is applied is an indication that the two agents have the same policies.

We also found that compared to UAP-S and UAP-O, OSFW(U) is the most effective
in leading agents with independently trained policies to have low SAA (as low as 0.1
in some cases) between the agents. However, there are some instances where applying
OSFW(U) in an episode leads to a high SAA (higher than 0.8) between two agents that
follow two independently trained policies. To minimize false positives, we generate multiple
adversarial perturbations using OSFW(U) and apply each of them to different episodes of
a task. A policy is only identified as a copy of the source policy if the SAA is high
for all episodes. Therefore, to satisfy requirement VR-1, we use OSFW(U) adversarial
perturbations to reliably identify copies of the source policy, and we use multiple OSFW(U)
adversarial perturbations to minimize false negatives of ReLF and increase the confidence
of detecting stolen policies.

31

4.3.2 Fingerprinting Implementation

Given a source policy πo and a suspect agent sp with a policy πs, our fingerprinting method,
ReLF seeks to identify ownership of πs. ReLF consists of two algorithms. The first is
Generate, that generates a set of secret fingerprints Fπo of πo; the second is Verify, that
confirms or rejects πs to be a copy of πo using Fπo .

• Generate(πo): Generates a set of fingerprints Fπo of size numf for πo.

• Verify(sp, Fπo): Confirms or rejects πs to be a copy of πo using Fπo . The algorithm
returns 1 if πs’s ownership is proven by Fπo , i.e., πs is a copy of πo; otherwise, the
algorithm returns 0 and fails to prove the ownership of πs, i.e., πs is not a copy of πo.

Fingerprint Generation Given a source policy πo, a set of fingerprints Fπo is a tuple
of size numf such that Fπo = {(r1, p1), ..., (rnumf

, pnumf
)}. Each (ri, pi) ∈ Fπo consist of

two parts: ri is a OSFW(U) perturbation mask; and pi is the SAA between two action
sequences, one from πo and the other from a copy of πo in an episode where ri is applied.
The parameters m and n are used to calculate SAA are predefined values.

We utilize a modified version of OSFW(U) to compute perturbation mask ri. Instead
of taking the first k states from Dtrain as in Section 4.1.1, we sample random k states from
Dtrain to generate each OSFW(U) mask. This enables us to generate different OSFW(U)
masks from the same training set.

Generate first collects a set of training data Dtrain by observing πo acting in an envi-
ronment for one episode and collects all states in the episode.

The steps to generate Fπo is summarized in Algorithm 4. To generate each tuple
(ri, pi) ∈ Fπo Generate does as follows:

1. Generate an adversarial perturbation r̃i using the modified OSFW(U) on Dtrain that
is constraint by ε.

2. Initialize an agent v with πo and a policy π̂v that is a copy of πo.

3. Deploy v in an environment where r̃i is applied for one episode. The episode ends
at time-step tmax. At each time-step t, v takes s̃t = st + r̃i as input and outputs an
action at to the environment. We record the entire action sequence in the episode
as Av = (a1, ..., atmax). For cross-checking, the same state s̃t is feed into π̂v at each

32

time-step t and its action output ât is recorded and stored into an action sequence
Âv = (â1, ..., âtmax). Notably, only v with πo is interacting with the environment.
The action outputs of π̂v are recorded but not acted upon by an agent.

4. Calculate p̃i = SAA(Av, Âv,m, n). While π̂v is a copy of πo with the same weights and
algorithm, the output actions between the two policies can still differ for stochastic
policies.

5. If p̃i > τ1 for a predefined threshold τ1, then we set pi = p̃i and ri = r̃i. Otherwise,
go back to step 1.

33

Algorithm 4: ReLF algorithm - Generate

input : source policy πo, training dataset Dtrain, number of fingerprints to
generate numf , environment env, decision threshold τ1, sample size m,
sample population size n

output: A set of fingerprints Fπo
1 Initialize policy π̂v that copies the weights and algorithm of πo
2 Initialize Fπo ←− {}
3 while size of Fπo 6= numf do
4 adv ←− generate modified OSFW(U) adversarial perturbation using Dtrain

5 Av ←− []

6 Âv ←− []
7 s←− env.reset()
8 t←− 0
9 while current env episode not finished do

10 ŝ←− s+ adv
11 a←− πo.select(ŝ)
12 â←− π̂v.select(ŝ)
13 Av[t]←− a

14 Âv[t]←− â
15 s←− env.step(a)
16 t←− t+ 1

17 p̃←− SAA(Av, Âv,m, n)
18 if p̃ > τ1 then
19 Fπo ←− Fπo ∪ (adv, p̃)

20 return Fπo

34

Fingerprint Verification Given a suspect agent sp with policy πs and a set of finger-
prints Fπo of πo. To verify the ownership of πs, Verify adds each adversarial perturbation
ri in Fπo to sp’s observations of the environment.

If sp shows high SAA with πo for the majority (over 50%) of the episodes where each
of the adversarial perturbation ri ∈ Fπo is applied, then πs is confirmed to be a copy of πo.
Verify is summarized in Algorithm 5.

More formally, Verify verifies πs through the following steps. For each tuple (ri, pi) ∈
Fπo , Verify does as follows:

1. Deploy sp in an environment where ri is applied in an episode that ends at time tmax.
At each time-step t, sp observes ŝt = st + ri as input and outputs an action at to
the environment. The sequence of actions by sp is recorded as As = (a1, ..., atmax).
Simultaneously, inject the same state ŝt to πo and record the action ât selected by
πo. We record this action sequence as Ao = (â1, ..., âtmax). Only sp with πs interacts
with the environment. The action outputs of πo are recorded and not acted upon by
an agent.

2. Calculate p̃ = SAA(As, Ao,m, n).

3. If pi − p̃ ≤ τ2, confirm the ownership of πs using (ri, pi). Else (ri, pi) rejects πs to be
a copy of πo.

If the ownership of πs is confirmed by the majority (over 50%) of the tuples (ri, pi) ∈
Fπo , then Verify returns 1 to confirm the ownership of πs. Otherwise, Verify return 0
and fails to prove the ownership of πs.

35

Algorithm 5: ReLF algorithm - Verify

input : source policy πo, fingerprints Fπo , suspect agent sp with policy πs,
environment env, verify decision threshold τ2, sample size m, sample
population size n

output: 1 to confirm the ownership of πs and 0 to reject and fails to prove the
ownership of πs

1 foreach (r, p) ∈ Fπo do
2 Av ←− []
3 As ←− []
4 decision←− []
5 t←− 0
6 s←− env.reset()
7 while current env episode not finished do
8 ŝ←− s+ r
9 a←− πo.select(ŝ)

10 â←− sp.select(ŝ)
11 Av[t]←− a
12 As[t]←− â
13 s←− env.step(â)
14 t←− t+ 1

15 p̃←− SAA(Av, As,m, n)
16 if p− p̃ ≤ τ2 then
17 decision.append(1)

18 else
19 decision.append(0)

20 if Average(decision) > 0.5 then
21 return 1

22 else
23 return 0

36

Chapter 5

Experimental Setup

In this chapter, we outline the hardware and software used for all of our experiments.
Section 5.1 outlines the hardware and software setup used. Section 5.2 outlines the setup
for the Atari Environment. Section 5.3 outlines the parameters and environment setup
for evaluating both the attack methods and prior defense methods against adversarial
perturbation attacks. Section 5.4 outlines the parameters used for our detection technique
AD3. Finally, Section 5.5 outlines the environment setup and parameters of our fingerprint
method ReLF for ownership verification experiments.

5.1 Software and Hardware Setup

For consistency, we utilize the same hardware and software setup for all of our experiments.
All implementation and experiments are done using Python version 3.7, using packages:
PyTorch (version 1.2.0), NumPy (version 1.19.1), Gym (version 0.15.7), and MuJoCo 1.5
libraries. The experiments were done on the following two machines:

• A computer with 16 core Intel(R) Core i9 Processors with 64 GB RAM, and with
NVIDIA GeForce RTX 2080 Ti with 11 GB.

• A computer with 2×12 cores Intel(R) Xeon(R) CPUs with 32 GB RAM and NVIDIA
Quadro P5000 with 16GB memory.

37

5.2 Atari Environment

All training and testing are done using OpenAI Gym through the Gym package in Python.
We use three Atari 2600 games, Pong, Freeway, and Breakout games to evaluate our
methods. The Atari 2600 games run at 60 Hz where the time interval between each frame
is 1/60 = 0.017 seconds. Each frame in the game is composed of 210× 160 RGB pixels.

Each frame from the Atari environment is pre-processed such that each RGB frame is
converted to gray-scale, the size of the original frames of 210 × 160 pixel are resized to
84 × 84, and each pixel value is normalized from [0, 255] to [0, 1]. To include temporal
information to the input of DRL policy, we stack N pre-processed frames together. The
state s input to the DRL policy is composed of N pre-processed frames that we refer to
as observations o in this thesis. A new action is selected for every state and this action is
repeated until the next state. We choose N = 4 such that the resulting s is a vector of size
4× 84× 84.

We utilize the same DNN architecture as in Mnih et al.’s work [45] for the action-value
function Qv in DQN and the value function Vv for A2C and PPO. The DNN consists of
three convolutional layers. The first hidden layer consists of 32 convolutional kernels of
the size of 8 × 8 with a stride of 2. The second hidden layer consists of 64 convolutional
kernels of size 3 × 3 with a stride of 1. The third hidden layer is a fully-connected layer
with the output of size 512. Finally, the output layer is a fully-connected layer that maps
the 512 output to output for each valid action. For the games used for this thesis, the
number of possible actions is either 3 (for Freeway) or 6 (for Pong and Breakout). Our
implementation of DRL algorithms is based on OpenAI baselines1, and our DRL agents
achieve similar average returns.

5.3 Real-Time Adversarial Perturbation Attacks

5.3.1 Setup for Evaluating Adversarial Perturbation Attacks

For UAP-S and UAP-O we set the desire fooling rate δmax to 95% so that the algorithm
stops searching for adversarial perturbation r when δ ≥ 95%. For OSFW(U), we utilize
the first 60 states of Dtrain to generate r. As a baseline comparison, we implemented
FGSM, and OSFW, and fixed random noise. We measure the attack efficiency for ε =

1https://github.com/DLR-RM/rl-baselines3-zoo

38

{0.01, 0.02, ..., 0.1} and report the average return over 10 episodes with a different seed
between testing and training.

5.3.2 Setup for Prior Defense Techniques

To evaluate adversarial perturbation’s robustness against existing defense methods, we
evaluate the attacks against two prior defense methods SA-MDP and Visual Foresight.

For SA-MDP, we downloaded the trained state adversarial policy for DQN (SA-DQN) 2.
The SA-DQN policy is trained with adversarial noise constraints by l∞ = 1/255. Notably,
when we try to train SA-DQN with adversarial noise constraint by l∞ = 0.01 and the policy
cannot retain its performance. Their SA-DQN policy is trained using one observation per
state. Therefore, UAP-S reduces to UAP-O when evaluating this method.

We implemented and trained Visual Foresight for DQN agents following their original
experiment setup and setting k = 3 to predict every 4th observation. As we are unable
to train a good prediction module for Breakout, we exclude Breakout for our defense
experiments.

5.3.3 Setup for Adversarial Perturbation Attack in Continuous
Control

The only policy-based algorithm can be used in a continuous control environment as the
action-value function Q is only applicable for discrete action space. Between PPO and
A2C, we chose to evaluate our attack using PPO because it is more recent compared to
A2C and it is considered to be the state-of-the-art in reinforcement learning. We utilize
pre-trained PPO agents for two different MuJoCo tasks: Humanoid and Walker2d. The
PPO agents are downloaded from the GitHub repository3 by Zhang et al. [81]. Notably,
each state in this training environment contains only a single observation. Therefore, UAP-
S reduces to UAP-O against these two agents. For UAP-S(O), OSFW , and OSFW, we
copied the weights of Vv to Vadv and utilize Vadv instead of the action value function Qadv.
Additionally, we generated UAP-S(O) using δmax = 95%. We evaluate the effectiveness of
the attacks for ε from 0.0 to 0.2.

2https://github.com/chenhongge/SA DQN
3https://github.com/huanzhang12/SA PPO

39

5.4 Detecting Adversarial Perturbation Attacks

5.4.1 Setup of Atari 2600 Breakout Games

Many episodes of DRL agent playing Breakout took a long time to run (until the environ-
ment reaches the default maximum time-step). As discussed in Section 2.4.1, an episode
of Breakout game terminates only when all balls are lost or when all bricks are removed.
This creates an issue where, if an agent can always catch the ball before it falls through
the screen but the agent cannot clear all the bricks, the agent is stuck in an infinite loop
that continues until the default maximum time-step is reached.

This infinite loop results into two issues: 1) the experiments takes a long time to run,
and 2) the action sequences in the infinite loop take over the distribution of the trained
conditional action probability distribution (CAPD) in AD3. The second issue makes AD3

ineffective in Breakout because CAPD is skewed heavily to model the action sequences in
the infinite loop. To resolve the above issues, we modify the environment of Breakout and
change the maximum time-step of the environment from 99999 to 3000. At time-step 3000,
a DRL agent has already cleared as many bricks as it can and cannot increase its returns
anymore.

5.4.2 Setup for AD3

As there are many parameters in AD3, we first perform a grid search to find optimal
parameters for AD3 in Breakout, Pong, and Freeway using three different agents (DQN,
A2C, and PPO) and choose the parameters with the best F1-score against five different
attacks at ε = 0.01. The optimal parameter values can be found in Table 5.1.

We then measure the false positive rate and false negative rate of AD3. To calculate
the false positive rate of AD3, we report the fraction of episodes with alarms raised over
10 episodes. Similarly, to calculate the true positive rate of AD3, we mount each attack at
ε = 0.01 and report the fraction of episodes with alarms raised over 10 episodes. We use
different seeds for training AD3, finding optimal parameters for AD3, and for testing AD3.

40

Game DQN Parameters A2C Parameters PPO Parameters

Pong

k1 = 12 k1 = 12 k1 = 12
k2 = 24 k2 = 24 k2 = 24
p = 100 p = 95 p = 100
r = 90 r = 90 r = 90
t1 = 400 t1 = 400 t1 = 400
t2 = 200 t2 = 100 t2 = 200

Freeway

k1 = 12 k1 = 12 k1 = 12
k2 = 24 k2 = 24 k2 = 24
p = 90 p = 100 p = 90
r = 80 r = 100 r = 80
t1 = 300 t1 = 400 t1 = 200
t2 = 200 t2 = 200 t2 = 200

Breakout

k1 = 12 k1 = 12 k1 = 12
k2 = 24 k2 = 24 k2 = 24
p = 100 p = 100 p = 98
r = 100 r = 100 r = 80
t1 = 100 t1 = 100 t1 = 50
t2 = 10 t2 = 10 t2 = 10

Table 5.1: Optimal parameters of AD3 to detect five different attacks.

5.5 Ownership Verification Using Fingerprinting

5.5.1 Model Training

We utilize the same Atari environment, configuration, and DNN architecture as the pre-
vious section. We trained six Pong agents for each of the three algorithms DQN, PPO,
and A2C for a total of 18 agents. Agents that are trained using the same algorithm use
the same hyper-parameters, and the environments are seeded with different random seeds.
PPO and A2C agents are trained to follow stochastic policies, and these agents also behave
stochastically during test time.

5.5.2 Parameters for ReLF

For Generate, we set the size of fingerprint Fπo to numf = 5. Fπo contains five pairs of
tuples (ri, pi), where ri is a OSFW(U) perturbation mask and the corresponding SAA pi.

41

We generate OSFW(U) adversarial perturbations using randomly selected k = 60 states
from Dtrain and for ε = {0.01, 0.03, 0.05, 0.1}. We chose the smallest ε for each source
policy that can generate fingerprints where SAA is larger than 0.8 when the source policy
πo play against itself. We set ε = 0.01 for DQN and PPO agents and ε = 0.05 for A2C
agent. For Verify we set the threshold τ2 = 0.5 as the threshold value for difference in
SAA. To calculate SAA for Generate and Verify, we use the same parameter values.
We use m = 10 and n = 100 for the number of samples and the sample size and set the
threshold value to τ1 = 0.8. Table 5.2 summarizes all the parameters used for evaluating
ReLF.

πo ε τ1 τ2 m n
DQN 0.01 0.8 0.5 10 100
A2C 0.05 0.8 0.5 10 100
PPO 0.01 0.8 0.5 10 100

Table 5.2: Parameters of ReLF and its two algorithms Generate and Verify.

42

Chapter 6

Evaluation

In this chapter, we evaluate our proposed methods against the various requirements out-
lined in Chapter 3. In Section 6.1, we evaluate our attacks against the requirements
outlined in Section 3.1.3 and argue that prior attack methods do not meet both of these
requirements. Next, in Section 6.2 we evaluate our detection method AD3 against the
requirements outlined in Section 3.2.3 and discusses how it can be combined with prior
mitigation methods in Section 6.2.2. Finally, Section 6.3 provides an evaluation of our
fingerprint method ReLF for ownership verification against the requirements outlined in
Section 3.3.4. All of the figures and tables presented in Section 6.1 and Section 6.2 are
results that were published as part of our Arxiv paper [68].

6.1 Real-time Adversarial Perturbation Attacks

In this section, we evaluate different adversarial perturbation attacks and discuss how
requirements outlined in Section 3.1.3 are fulfilled.

6.1.1 Effectiveness of Adversarial Perturbation Attacks

First, we look at how our attack methods UAP-S, UAP-O, and OSFW(U) satisfy require-
ment AR-1 on the adversary Adv ’s ability to reduce the victim agent v ’s performance in
a task. We compare the effectiveness of our proposed attacks against two baseline attacks
FGSM and OSFW, and random noise addition at different ε values.

43

The results are shown in Figure 6.1. Random noise addition has little to no effect on
v ’s average returns except at ε = 0.01 for the Breakout PPO agent. FGSM is the most
effective attack with 100% performance degradation for all agents in all games at very
small ε values. UAP-S is the second most effective attack in most settings as it reduces v ’s
returns by 100% at ε ≥ 0.002 for all Pong agents and at ε ≥ 0.004 for all Breakout agents.
In Freeway, UAP-S reduces v ’s returns by more than 50% at ε ≥ 0.003 for all agents.

The attack effectiveness is comparable between OSFW, OSFW(U), and UAP-O. No-
tably, all attacks can effectively reduce v ’s returns by 100% at ε = 0.01 except against
the Freeway PPO agent. In addition, OSFW shows high variability, especially against the
Breakout A2C agent and the Freeway PPO agent. While OSFW(U) shows less variability
compared to OSFW, both attacks do not satisfy requirement AR-1 because both attacks
cannot fully degrade v ’s returns in an episode at the largest ε = 0.01 against the PPO agent
in Freeway. Our proposed attacks UAP-O, UAP-S, and one baseline attack FGSM satisfy
requirement AR-1 because these attacks can reduce v ’s returns by 100% at ε = 0.01.

44

Figure 6.1: Comparison of attacks against three different agents (DQN, PPO, A2C) trained
for three different Atari games (Pong, Breakout, Freeway). The graph shows how the
returns, averaged over 10 episodes, changes at different ε values for six different attacks.
The variance of the returns are the shaded region above and below the average values.

45

6.1.2 Computational Costs of Adversarial Perturbation Attacks

In this section, we discuss whether or not different attacks satisfy requirement AR-2,
where Adv ’s online computation cost should be bounded. For Adv to mount their attack
in real-time, the online computational cost of applying adversarial perturbation r at each
time-step is limited by the speed of the environment to move to the next observation plus
v ’s response time.

The maximum upper bound on the online computational time is

Tmax =
1

frame rate
− agent response time. (6.1)

If the online computational cost is higher than Tmax, then Adv has to stop or delay the
environment, which is difficult to do in practice.

Our proposed attacks UAP-S, UAP-O, and OSFW(U) offload computational cost offline
by pre-computing r. This offline computation time does not interfere with the real-time
requirement of the attack because this offline computation can be carried out before adding
r to v ’s observations of the environment. Therefore, the online computational cost of our
proposed attacks only consists of the time to add r to each observation o in the environment.
In contrast, FGSM’s computational cost is online and it requires computing r based on
the current state s of the environment. Similarly, OSFW also computes r online after
collecting a number of states from the current episode.

The different computational costs of each attack and the maximum upper bound Tmax
on the online computation time are shown in Table 6.1. The online cost of OSFW is higher
than Tmax, which makes it infeasible to implement in real-time, as mounting this attack
requires pausing the environment for more than 5 seconds in the middle of an episode.
The online cost of FGSM is lower than Tmax. However, FGSM requires all observations
in a states to arrive before computing r. Therefore, FGSM has to retroactively modify
past observations in v ’s memory. This is beyond the adversary capabilities defined in
Section 3.1.2, where Adv can only modify observations sequentially and they cannot modify
past observations. Therefore, FGSM, while has a acceptable online computational cost,
cannot be deployed in real-time.

All of our proposed attacks UAP-S, UAP-O, and OSFW(U), have online computation
cost less than Tmax. This means that all three attacks can be deployed in real-time and
satisfy requirement AR-2.

46

Experiment Attack Modify past Offline cost± std Online cost ± std
method observations? (seconds) (seconds)

Pong, DQN,
Tmax = 0.0163± 10−6

seconds

FGSM Yes - 13× 10−4 ± 10−5

OSFW No - 5.3± 0.1
UAP-S No 36.4± 21.1 2.7× 10−5 ± 10−6

UAP-O No 138.3± 25.1 2.7× 10−5 ± 10−6

OSFW(U) No 5.3± 0.1 2.7× 10−5 ± 10−6

Pong, PPO,
Tmax = 0.0157± 10−5

seconds

FGSM Yes - 21× 10−4 ± 10−5

OSFW No - 7.02± 0.6
UAP-S No 41.9± 16.7 2.7× 10−5 ± 10−6

UAP-O No 138.3± 25.1 2.7× 10−5 ± 10−6

OSFW(U) No 7.02± 0.6 2.7× 10−5 ± 10−6

Pong, A2C,
Tmax = 0.0157± 10−5

seconds

FGSM Yes - 21× 10−4 ± 10−5

OSFW No - 7.2± 1.1
UAP-S No 11.4± 4.3 2.7× 10−5 ± 10−6

UAP-O No 55.5± 29.3 2.7× 10−5 ± 10−6

OSFW(U) No 7.2± 1.1 2.7× 10−5 ± 10−6

Table 6.1: Offline and online computation costs of attacks and the maximum upper bound
on the time to generate and mount adversarial perturbation attacks during deployment
averaged over 10 episodes. Victim agents are DQN, PPO, and A2C trained for Pong.
Attacks are deployed with ε = 0.01. Attacks that cannot be implemented in real-time are
highlighted in red.

6.1.3 Prior Defense in DRL

We evaluate different attacks with respect to requirement AR-3 by evaluating the effec-
tiveness of the attacks against two defense mechanisms, Visual Foresight and SA-MDP.

As established in Section 6.1.1, except for the case of the Freeways PPO agent, all at-
tacks can reduce v ’s returns by 100%. To further evaluate the robustness of prior defenses,
we evaluate these defense methods at ε = 0.01 along with higher ε values of 0.02 and 0.05,
the results are shown in Table 6.2.

Visual Foresight can recover v ’s returns for FGSM and UAP-O in both Pong and
Freeway for all ε. However, it is less effective against OSFW, OSFW(U), and UAP-O. SA-
MDP is effective in recovering v ’s returns at ε = 0.01 in both Pong and Freeway. However,
SA-MDP’s ability to recover v ’s returns reduces for ε > 0.01 and SA-MDP cannot recover
v ’s returns in Pong at ε = 0.05. Additionally, SA-MDP lowers v ’s returns in normal games
of Freeway.

47

Both mitigation techniques cannot fully mitigate the effect of OSFW, UAP-S, UAP-O,
and OSFW(U) across all environments at every ε. Therefore, we conclude that requirement
AR-3 is partially satisfied for these four attacks. In contrast, FGSM does not satisfy
requirement AR-3 because Visual Foresight can fully recover v ’s returns in all scenarios.

Average return ± std in the presence of adversarial perturbation attacks
ε Defense No attack FGSM OSFW UAP-S UAP-O OSFW(U)

0.01

No defense 21.0± 0.0 −21.0 ± 0.0 −20.0± 3.0 −21.0 ± 0.0 −19.8± 0.4 −21.0 ± 0.0

Visual Foresight [39] 21.0± 0.0 21.0± 0.0 −19.7± 0.5 0.7± 1.7 0.4± 2.7 −21.0 ± 0.0

SA-MDP [81] 21.0± 0.0 21.0± 0.0 21.0± 0.0 21.0± 0.0 21.0± 0.0 21.0± 0.0

0.02

No defense 21.0± 0.0 −19.9± 1.3 −21.0 ± 0.0 −20.8± 0.6 −20.0± 0.0 −21.0 ± 0.0

Visual Foresight [39] 21.0± 0.0 21± 0.0 −19.7± 0.6 9.4± 0.8 5.3± 3.9 −20.5± 0.5

SA-MDP [81] 21.0± 0.0 −14.6± 8.8 −20.5± 0.5 −20.6± 0.5 −20.6± 0.5 −21.0 ± 0.0

0.05

No defense 21.0± 0.0 −20.5± 0.7 −21.0 ± 0.0 −20.6± 0.8 −20.0± 0.0 −21.0 ± 0.0

Visual Foresight [39] 21.0± 0.0 21.0± 0.0 −20.0± 0.0 7.6± 4.7 −14.1± 1.1 −21.0 ± 0.0

SA-MDP [81] 21.0± 0.0 −21.0 ± 0.0 −21.0 ± 0.0 −20.6± 0.5 −20.6± 0.5 −21.0 ± 0.0

(a) DQN agent playing Pong
Average return ± std in the presence of adversarial perturbation attacks

ε Defense No attack FGSM OSFW UAP-S UAP-O OSFW(U)

0.01

No defense 34.0± 0.0 0.0 ± 0.0 2.0± 1.1 2.1± 0.8 4.0± 0.6 0.5± 0.5

Visual Foresight [39] 32.0± 1.5 32.6± 1.7 24.1± 1.0 22.9± 0.9 25.8± 1.1 20.9 ± 1.2

SA-MDP [81] 30.0± 0.0 30.0± 0.0 30.0± 0.0 30.0± 0.0 30.0± 0.0 30.0± 0.0

0.02

No defense 34.0± 0.0 0.0 ± 0.0 1.0± 0.0 0.1± 0.3 0.8± 0.6 0.0 ± 0.0

Visual Foresight [39] 32.0± 1.5 32.6± 1.7 1.1 ± 0.3 24.0± 2.0 25.6± 1.0 4.4± 1.1

SA-MDP [81] 30.0± 0.0 29.8± 0.6 29.9± 0.3 29.4 ± 1.2 29.4 ± 1.2 30.0± 0.0

0.05

No defense 34.0± 0.0 0.0 ± 0.0 1.2± 0.0 2.2± 1.7 2.2± 1.4 0.0 ± 0.0

Visual Foresight [39] 32.0± 1.4 32.6± 1.6 1.0± 0.0 29.0± 1.1 23.9± 0.3 0.0 ± 0.0

SA-MDP [81] 30.0± 0.0 21.1± 1.3 20.9 ± 0.8 21.1± 1.7 21.1± 1.7 21.1± 1.7

(b) DQN agent playing Freeway

Table 6.2: Average returns over 10 episodes with different adversarial perturbation attacks
and with victim agents equipped with different types of defenses. In each row, the best
attack (lowest return) is in bold font. In each cell, i.e., for a given attack and a given ε, the
defense that can fully recover the victim agent’s returns is shaded green. A cell is shaded
blue for the most robust (highest return) defense for that particular attack if it cannot
fully recover the victim agent’s returns.

48

6.1.4 Adversarial Perturbation Attacks in the Continuous Con-
trol Setting

We show the effectiveness of each attack against PPO agents in Humanoid and Wallker2d
environment at different ε values in Figure 6.2. FGSM is the most effective attack against
the PPO agent in Humanoid environment and is the most effective attack for ε < 0.12.
UAP-S is able to drastically reduce agent performance for Walker2d and is more effective
than FGSM for ε > 0.12. Overall, all attacks are effective in reducing v returns. These
results demonstrate that all proposed attacks can be generalized to continuous control
environments.

Notably, Adv optimizes their adversarial perturbation r using the value function Vv.
The value function itself can only approximate the value of a state s and lowering the
value of a state does not necessarily leads to v choosing less optimal actions. Therefore,
Adv requires higher ε values to reduce v ’s returns. Table 6.3 shows similar results as
Table 6.1. FGSM, UAP-S(O) , and OSFW(U) have online computational time that is less
than Tmax and OSFW is too slow to be mounted in real-time. However, different from
Table 6.1, the PPO agents that we downloaded for Walker2d and Humanoid tasks are
trained in an environment where each state contains only a single observation. Therefore,
FGSM does satisfy requirement AR-2 in this case because FGSM modifies each observation
sequentially. Therefore, the attacks in the continuous control setting still satisfy the same
attack requirements as in the discrete environment.

Experiment
Attack Offline cost± std Online cost ± std
method (seconds) (seconds)

Walker2d, PPO,
Tmax = 0.0079± 10−5 seconds

FGSM - 31× 10−5 ± 10−5

OSFW - 0.02± 0.001
UAP-S(O) 8.75± 0.024 2.9× 10−5 ± 10−6

OSFW(U) 0.02± 0.001 2.9× 10−5 ± 10−6

Humanoid PPO,
Tmax = 0.0079± 10−6 seconds

FGSM - 35× 10−5 ± 10−5

OSFW - 0.02± 0.001
UAP-S(O) 35.86± 0.466 2.4× 10−5 ± 10−6

OSFW(U) 0.02± 0.001 2.4× 10−5 ± 10−6

Table 6.3: Offline and online computation cost of attacks and the maximum upper bound
for the perturbation generation and mounting the attack during deployment averaged over
10 episodes. Victim agents are PPO agents for Walker2d and Humanoid at ε = 0.02.
Attacks that cannot be implemented in real-time are highlighted in red.

49

Figure 6.2: Comparison of attacks against PPO agents for Humanoid and Walker-2d tasks.
The graph shows how the returns averaged over 50 games at different ε values for five
different attacks. The variance of the returns are the shaded region above and below the
average values.

6.1.5 Summary of Attack Methods

In summary, out of the three proposed attacks, UAP-S and UAP-O are effective in reducing
v ’s returns at ε = 0.01 and thus satisfy requirement AR-1. Only our three proposed attacks
UAP-S, UAP-O, and OSFW(U) can be mounted in real-time (requirement AR-2) because
the online computation time of the attacks are within the time limit and the attacks does
not require modifying v ’s memory of past observations. None of the attacks can completely
evade existing defense mechanisms while some attacks can partially retain its damage to v ’s
returns. FGSM does not satisfy requirement AR-3 because it can be completely thwarted
by Visual Foresight. Other attack, UAP-S, UAP-O, OSFW, and OSFW(U) only partially
satisfy AR-3 because the two prior defense mechanisms cannot fully recover v ’s returns
in all scenarios.

As mentioned in Section 5.2, in our setup for all three Atari games, a single state s
is composed of four consecutive observations o of the environment. The baseline attacks
FGSM, OSFW, and two of our proposed attacks UAP-S, and OSFW(U) generates four
different masks for each of the observations in a single state. On the other hand, UAP-O
generates a single perturbation mask for all four observations in a state. The properties of
attacks and whether they satisfy the requirements are summarized in Table 6.4.

In Section 6.1.4, we evaluate the effectiveness of all attacks in the continuous control
setting. Our experiments show that all attacks require higher ε values to be effective.

50

However, our proposed attacks are still effective and can be mounted in real-time.

Attack Online State Observation
AR-1 AR-2 AR-3

Method cost dependency dependency
FGSM [25] Low Dependent Dependent Yes No∗ No
OSFW [77] High Independent Dependent No No Partial
UAP-S Low Independent Dependent Yes Yes Partial
UAP-O Low Independent Independent Yes Yes Partial
OSFW(U) Low Independent Dependent No Yes Partial

∗ When deployed in an environment where each state contains more than one observation.

Table 6.4: Summary of five attacks based on the characteristics of the attack. We also
summarize which requirements outlined in Section 3.1.3 are met by each attack.

6.2 Detecting Adversarial Perturbation Attacks

In this section, we evaluate our proposed detection technique AD3 against the detection
requirements outlined in Section 3.1.3. We also discuss how AD3 can be combined with
other mitigation methods to improve v ’s defense in Section 6.2.2.

6.2.1 Evaluating the Effectiveness of AD3

We evaluate AD3 with respect to requirement DR-1 by evaluating the false positive rate
and true positive rate of AD3 in three Atari games, Pong, Freeway, and Breakout against
all attacks. Table 6.5 outlines the true positive rate of different attacks at ε = 0.01 together
with the false positive rate of AD3 for each configuration. AD3 can perfectly detect the
presence of Adv with true positive rate of 1.0 and false positive rate of 0.0 in Pong. However,
there are some combinations of environment and agents, where AD3 is less effective.

As shown in Figure 3.1, OSFW and OSFW(U) are not very effective against the Freeway
PPO agent. Additionally, the action change rate, i.e., the percentage of v actions changed
by an attack, is low for both UAP-S and UAP-O in Freeway. The action change rate can
be as low as 20%−30% in some Freeway episodes. Because AD3 models the distribution of
v ’s conditional action probability distribution (CAPD) during normal episodes, it cannot

51

detect Adv if there are not enough actions changed by the attack in an episode. Attacks
with a low action rate result in a less effective attack but are also less detectable by AD3.

AD3 has high false positive rates in Breakout compared to other environments. Episodes
in Breakout terminate very quickly (as fast as in 112 time-steps) when v is under attack.
As a result, AD3 has to detect the presence of Adv early in a Breakout episode. To detect
Adv , AD3 cannot skip too many actions at the beginning of an episode. However, AD3

relies on modeling the CAPD of the current episode, and it takes time to converge. Before
CAPD converges, the anomaly score is high for any episode, including episodes with no
attack. This leads to a high false positive rate in Breakout. When an episode terminates
too quickly in Breakout, AD3 cannot store enough actions for CAPD to converge and AD3

did not have time to raise an alarm during the episode.

For episodes where an alarm is raised, the detection mechanism raises the alarm as
soon as CAPD of the episode exceeds the threshold th. Therefore, AD3 satisfies DR-2.

In conclusion, AD3 has varying effectiveness in different environments against different
attacks. AD3 satisfies requirement DR-1 for all Pong agents. It satisfies requirement
DR-1 for Freeway agents but is less robust when the attacks are not effective. However,
requirement DR-1 is not satisfied for Breakout agents because the false positive rate is
high and AD3 cannot effectively detect some adversarial perturbation attacks.

FPR
TPR of adversarial perturbation attacks

Game Agent FGSM OSFW UAP-S UAP-O OSFW(U)

Pong
DQN 0.0 1.0 1.0 1.0 1.0 1.0
A2C 0.0 1.0 1.0 1.0 1.0 1.0
PPO 0.0 1.0 1.0 1.0 1.0 1.0

Freeway
DQN 0.0 0.8 1.0 1.0 1.0 0.8
A2C 0.0 1.0 1.0 1.0 1.0 1.0

PPO 0.0 1.0 0.4 1.0 1.0 0.6

Breakout
DQN 0.6 1.0 0.6 1.0 1.0 1.0

A2C 0.0 1.0 0.6 1.0 0.8 1.0

PPO 0.4 1.0 0.4 1.0 0.6 1.0

Table 6.5: False positive rate and true positive rate of AD3 against different adversarial
perturbation attacks at ε = 0.01 over 10 episodes. In each row, attacks with the lowest true
positive rate for each victim agent are shaded red. Agents with a none-zero false positive
rate are shaded yellow.

52

6.2.2 Effectiveness of Combining AD3 with Recovery Methods

In some situations, combining a detection mechanism with a mitigation mechanism can
make the defense more effective in preventing Adv from achieving requirement AR-1. For
example, in an environment where v can arrive at a negative outcome as a result of an
attack, a detection mechanism can be used to detect the presence of Adv early and prevent
this negative outcome.

To illustrate this idea, we designed an experiment using a Pong DQN agent because
Pong has a clearly defined negative outcome, i.e., when v lose the game. In this setting,
an episode ends with a loss if 1) the computer reaches the final score of 21 first, or 2) AD3

did not raise an alarm before the episode ends.

Table 6.6 presents the losing rate of each attack, i.e., the fraction of episodes where v
loses the game. As shown in this table, AD3 can detect the presence of Adv for all attacks.
In contrast, Visual Foresight cannot recover v ’s losing rate for OSFW and OSFW(U) at
all, and can only recover the losing rate for some episodes of UAP-O. SA-MDP is effective
in reducing the losing rate at ε = 0.01; however, it fail against all attacks at ε = 0.02.

Although detection and recovery are two different aspects of defense, our evaluation
shows that utilizing both in combination with tasks with negative outcomes can further
thwart Adv ’s attack effectiveness.

Losing rate of adversarial attacks
ε Method No attack FGSM OSFW UAP-S UAP-O OSFW(U)

0.01
No defense 0.0 1.0 1.0 1.0 1.0 1.0

Visual Foresight [39] 0.0 0.0 1.0 0.0 0.2 1.0
SA-MDP [81] 0.0 0.0 0.0 0.0 0.0 0.0

AD3 0.0 0.0 0.0 0.0 0.0 0.0

0.02
No defense 0.0 1.0 1.0 1.0 1.0 1.0

Visual Foresight [39] 0.0 0.0 1.0 0.0 0.3 1.0

SA-MDP [81] 0.0 0.9 1.0 1.0 1.0 1.0
AD3 0.0 0.0 0.0 0.0 0.0 0.0

Table 6.6: Losing rate of DQN agents playing Pong with or without additional defense or
detection method for 10 episodes. The losing rate is calculated by counting the number of
games where the computer arrives at the maximum score in an episode. If AD3 raises an
alarm before an episode ends, then v does not lose the game. In each row, the best attack
with the highest losing rate is in bold font. For a given ε value of each attack, the defense
with the highest losing rate for that particular attack is shaded red.

53

6.3 Ownership Verification using Fingerprinting

In this section, we evaluate our fingerprint method ReLF against the requirements outlined
in Section 3.3.4. Specifically, we focus on requirement VR-1 on maximizing true positives
and minimizing false negatives.

We have three source policies using three algorithms (DQN, A2C, PPO), and we eval-
uate ReLF for each source policy πo against 15 independently trained policies to calculate
the false positive rate of the method. Due to time constraints, we are not yet reporting
the evaluation of ReLF with respect to the robustness requirement VR-2. We will return
to it in Section 8.2.1.

ReLF first uses Generate to generate a set of fingerprints Fπo from πo. Next, given a
suspect agent sp with policy πs, Verify confirms or rejects πs to be a copy of πo.

The OSFW(U) masks in Fπo are specifically chosen such that mounting each mask in
an episode leads to a high SAA (above 0.8) between πo and its copies. The SAA of each
mask for each πo can be found in Table 6.7. As the SAA of πo and itself is high, the
algorithm can verify the ownership of all copies of πo.

Figure 6.3 shows the false positive rate and true negative rate of using different number
of OSFW(U) masks in Fπo . The false positive rate is 0.0 for Fπo of size numf ≥ 4 for all
three source policies.

The results suggest that we need more than one OSFW(U) mask in Fπo because
OSFW(U) masks occasionally transfer between policies that lead to an independently
trained policy to have a high SAA with πo. As shown in Table 6.7, in the worse case,
two out of five OSFW(U) masks would falsely confirm an independently trained policy as
a copy og πo. However, this worse case rarely occurs, as shown in Figure 6.3, the true neg-
ative rate of ReLF is higher than 90% for all source policies by using only two OSFW(U)
masks in Fπo .

Therefore, ReLF satisfies requirement VR-1 because it can effectively confirm copies
of πo and it can also reject all independently trained policies when we use more than four
OSFW(U) masks in Fπo .

54

Figure 6.3: The false positive rate and true negative rate of the fingerprint algorithm for
each Pong source policies over different numbers of masks in Fπo . The masks in Fπo are
applied individually to single Pong episodes for each of the 15 individually trained policies.

πo SAA between πo for episodes Min. # masks Avg. # masks
with each mask in Fπo applied rejecting πs rejecting πs

DQN {1.0, 1.0, 1.0, 1.0, 1.0} 4 4.93
PPO {0.91, 0.83, 0.91, 0.86, 0.82} 3 4.8
A2C {0.81, 0.81, 0.92, 0.89, 0.91} 3 4.67

Table 6.7: The SAA between each Pong source policy πo and its copy where the masks
of Fπo are applied individually to an episode, for a total of five episodes. Masks are also
applied to the 15 independently trained policies πs, for a total of five episodes per πs. For
the five episodes testing each πs, the number of masks rejecting each πs is recorded. The
minimum and the average number of masks of Fπo rejecting πs are reported.

55

Chapter 7

Related Work

In this chapter, we discuss related work in adversarial perturbation attacks and ownership
verification in deep reinforcement learning (DRL). Section 7.1 discusses adversarial per-
turbation attacks in different adversary settings. Section 7.2 discusses a model stealing
technique and other ownership verification techniques in DRL.

7.1 Other Adversarial Perturbation Attacks in DRL

There are other adversarial perturbation attacks against DRL agents with different config-
urations and setups. We focus on untargeted white-box adversarial perturbation attacks
in this thesis. In this section, we discuss other adversarial perturbation attacks settings.
Section 7.1.1 focuses on targeted attacks. Section 7.1.2 discusses attacks where the adver-
sary Adv has black-box knowledge of the victim agent v . Finally, Section 7.1.3 presents
adversarial perturbation attacks in multi-agent settings.

7.1.1 Targeted Attacks

In this thesis, we focus on untargeted attacks, where Adv ’s goal is to degrade v performance
in a task by misleading v into taking any sub-optimal actions during the task. In contrast,
targeted attacks lure v into taking specific actions on specific states and not just any sub-
optimal actions. In this case Adv ’s goal is to either lure v into Adv ’s desired states or
luring v into following an Adv defined policy.

56

Lin et al. [38] propose an enhanced attack where Adv lures v into the desired state after
a number of steps. Adv first trains a future state prediction model based on the work by
Oh et al. [51]. Utilizing this prediction model and an action planning method, Adv creates
a series of adversarial perturbations to lure v into Adv ’s desired state.

On the other hand, some targeted attack methods [4, 71, 26] focus on utilizing targeted
adversarial perturbations to lead v into following an adversarial policy defined by Adv . Be-
hzadan and Munir [4] utilize JSMA, and Tretschk et al. [71] utilize Adversarial Transformer
Network (ATN) [2] to craft these targeted adversarial perturbations. Hussenot et al. [26]
propose CopyCAT. In CopyCAT, multiple adversarial perturbations are pre-computed to
manipulate v into taking specific actions.

While targeted attacks can also achieve the goal of lowering v ’s return in a task, they
can also be used to achieve more sophisticated goals such as luring an autonomous vehicle
to crash into a specific target on the road. However, some attacks [38, 4] cannot be deployed
in real-time because they require pausing the environment, and calculate the adversarial
perturbations by sending v with multiple versions of the same state during deployment.

7.1.2 Black-box Attacks

Adv with white-box access to v has knowledge of the weights and the algorithm of v ’s
policy πv. In contrast, Adv with black-box access to v does not have prior knowledge nor
access to v ’s internal states.

Many black-box attacks exploit the transferability of adversarial perturbations between
DRL policies where Adv first trains a surrogate policy and searches for transferable adver-
sarial perturbations. Huang et al. [25] are the first to study the transferability of FGSM
across different DRL algorithms and policies. Their results show that transferability across
different DRL algorithms is the least effective in their experiment; however, for most Atari
games, adversarial perturbations that transfer across algorithms are still able to decrease
v ’s overall returns. Zhao et al. [84] assume that Adv can only observe environment states.
They utilize a seq2seq model to approximate πv and adversarial perturbations are generated
from this seq2seq model using FGSM and PGD.

Some black-box attacks also assume that Adv has limited knowledge of the environment.
In all DRL tasks, the agent and the environment exchange three different types of signals:
states, actions, and rewards. In practice, these signals can come from different sources, and
Adv may only have access to a subset of these sources. Let’s consider a real-world example
of a DRL agent that controls an autonomous vehicle. The state information is collected
through a set of sensors in the vehicle. There is also a remote server running a DRL policy

57

that takes sensor inputs and outputs action signals back to the vehicle. The reward signals
are calculated separately by other sources based on the states. Because these signals are
collected through different sources, it is possible that Adv ’s capability is limited and only
has access to a subset of these sources. Inkawhich et al. [27] propose different adversarial
perturbation attacks where Adv has black-box access to πv and Adv ’s knowledge of the
environment is a subset of state, action, and reward. Their methods train proxy policies
using the same DNN architecture as in Wang et al.’s work [73] on tasks that are similar to
v ’s task and find transferable adversarial perturbations between them.

There are also other black-box attacks where the computation is not based on surro-
gate policies. Xiao et al. [77] propose different black-box attacks by assuming that Adv can
perform an unlimited number of queries on the victim network. Their attack utilizes the
finite-difference (FD) method to estimate the gradient used to compute adversarial pertur-
bations. Qu et al. [55] estimate the discrepancy of πv’s output action distribution between
the original input state versus the perturbed state. They utilize the genetic algorithm
to optimize this discrepancy measure to find adversarial perturbations. Notably, both of
these black-box attacks cannot be mounted in real-time because they require pausing the
environment and querying v multiple times.

The attack methods proposed in this thesis require a powerful adversary with white-box
access to v , this may not be realistic in some settings as weights and training algorithms
of a DRL agent are often protected and kept secret. In contrast, environment states and
action outputs of a DRL agent are more difficult to obscure. Therefore, an adversary with
black-box access to v is a more realistic adversary model.

7.1.3 Multi-agent Setting

In multi-agent settings, Adv can induce adversarial perturbations as another agent in the
environment.

Gleave et al. [19] propose an attack method in this setting by training an adversarial
agent that v interacts with within the environment. Adv trains the adversarial agent to
follow an adversarial policy, where it utilizes the same DRL training algorithm as the
victim but with a modified reward function. This reward function rewards the policy that
minimizes v ’s returns. Their experiments show that adversarial policies trained against πv
can effectively defeat v in a task by inducing adversarial observations into the environment
using the adversarial agent’s body.

Similarly, Wu et al. [76] also propose a method for training adversarial agents in multi-
agent environments. They modify the reward function of the adversarial agent to maximize

58

the deviation of v ’s output action distributions. They utilize an explainable AI technique to
find time-frames during training where v pays the most attention to the opponent agent and
utilize these time-frames to maximize divergence in v ’s output action distribution. Their
evaluations show that their attack significantly outperforms Gleave et al.’s attack [19].

Contrasting with our attack setting where Adv has to partially control v ’s observation
of the environment, in multi-agent settings, Adv only needs to deploy their agent in the
environment. Therefore, these attacks in multi-agent settings are more realistic and easier
to deploy. However, training DRL agents in multi-agent environments is difficult and
time-consuming so we leave expanding our attacks to this setting as future work.

7.2 Ownership Verification in DRL

There are few prior works in DRL on model theft and ownership verification. We first
discuss the only work on stealing DRL policies in Section 7.2.1. Then in Section 7.2.2, we
discuss two watermark methods.

7.2.1 Stealing DRL Policies

At the writing of this thesis, there is only a single work on stealing DRL policies by Chen
et al. [12]. Their technique is split into two parts. The first part is to identify the algorithm
used to train πv, and the second part is on stealing πv itself. For the first part of their
attack, Adv trains multiple policies using different algorithms in their own environment.
The classifier is then trained to classify a policy to an algorithm based on a sequence of
states and action pairs. Once the algorithm of πv is defined, Adv then collects sequences
of state and action pairs from v and utilizes Generative Adversarial Imitation Learning
(GAIL) [23] to learn πv. Notably, this technique is resource-intensive where Adv has to
train many shadow policies for each DRL algorithm to train the algorithm classifier.

7.2.2 Watermarking in DRL

There are only two works on ownership verification in DRL using watermarking techniques.

Behzadan and Hsu [3] utilize states that are disjoint from the training and the deploy-
ment environment as the watermarked states. They defined a new reward function and a
new state transition function for the watermarked states such that a DRL trained using

59

these states would act in a specific sequence. During training, the agent alternates between
the training environment and watermarked states. During verification, the verifier deploys
the suspect agent in an environment that consists of watermarked states and the state
transitions are recorded to verify the identity of suspect agent’s policy.

Chen et al. [11] argue that it may be impossible in some settings to find watermarked
states that are disjoint from the training and deployed environment. Instead, they utilize
states that naturally occur in the training and deployment environment as the watermarked
states. First, the verifier identifies a set of non-critical states. These states are such that an
agent can still achieve optimal returns in their task even if non-optimal actions are selected
in these states. They take these non-critical states and map them to specific actions that
are used to identify a suspect agent’s policy during verification.

For both works, watermarking a DRL policy requires modifications to the training of
the source policy, whereas fingerprint methods can be applied to any existing DRL policies
directly. Additionally, the verifier needs to inject watermarked states into the environment
to verify a suspect agent. This requires pausing and modifying environment states to
watermarked states. This is difficult in real-time because it is infeasible to change the
entire environment state every time-steps. While Chen et al.’s [11] method could be used
by deploying the suspect agent in a normal environment and only recording the action
when watermarking states naturally occur in the environment, it is not guaranteed that
the watermarked states will occur. In contrast, our proposed fingerprint method injects
adversarial perturbations to the observations of the environment instead of modifying the
environment states completely and can be applied to existing DRL agents.

60

Chapter 8

Discussion

In this chapter, we discuss future work and improvements for our proposed methods. In
Section 8.1 we discuss future work and improvements for our proposed attacks and detection
technique. In Section 8.2 we discuss the robustness of our proposed fingerprinting method
and future work.

8.1 Real-time Adversarial Perturbation Attack and

Defense in DRL

In Section 8.1.1, we discuss future work and improvements for our proposed adversarial
perturbation attacks. In Section 8.1.2, we discuss the limitations in using lp norms for
adversarial perturbation attacks. In Section 8.1.3, we discuss the robustness of our de-
tection technique AD3 and possible improvements to AD3. Finally, in Section 8.1.4, we
discuss how combining different defense methods can better improve the security of deep
reinforcement learning (DRL) agents.

8.1.1 Future Work for Adversarial Perturbation Attacks

In Section 6.1.1, we demonstrated that our proposed attacks (UAP-S, UAP-O, and OSFW(U))
are effective in discrete Atari game environments at small ε bounds. while our attacks are
also effective in continuous control settings, they require significantly higher ε bounds for
these attacks to be effective. We modified our proposed attacks for continuous control to

61

use the victim agent v ’s value function Vv to find a perturbation r that lowers the value
of a state s. As r is optimized to lower the value of s, it does not change the output
action distribution of v ’s policy πv directly. One way to improve these attack methods is
to optimize for the divergence in πv’s output action distribution, such that v is more likely
to select sub-optimal actions.

The two testing environments that we use are relatively simple compared to environ-
ments such as autonomous driving [52, 61] and robotic manipulation [36]. Further com-
plications may arise due to the difference in frame rate and the increase in the dimensions
of the input and output to the policy. However, because UAP attacks only require adding
a fixed noise mask to the input stream, UAP attacks are fast and can be applied to en-
vironments with frame rate that is higher than our testing environment. We leave the
evaluation of the generalizability of our attacks to other complex tasks as future work.

We can further expand our attack methods to the black-box setting, i.e., the adversary
Adv does not have access to weights and the training algorithm of πv, by first mounting
a model extraction attack and finding transferable adversarial perturbations using our
techniques.

8.1.2 Limitations of using lp Norms in Adversarial Perturbation
Attacks

It is a standard practice for adversarial perturbation attacks in the image domain to use
lp norms and a threshold value ε to constrain the size of the perturbation. In practice,
we assume that an adversarial perturbation is undetectable by the human eyes if the
size of the perturbation is smaller than ε in a lp norm. However, it is difficult to measure
human perceptual similarity, and similarity in the lp norms is not a necessary and sufficient
condition for perceptual similarity.

In particular, prior work [17, 30, 78] shows that two inputs that are very different as
measured by a lp norm does not imply perceptual dissimilarity. For example, an adversarial
example constructed through spatial transformations [17], e.g., rotation and translation,
and the original input are measured by lp norms to be very different from each other.
However, the two inputs are still perceptually indistinguishable to humans. Furthermore,
Sharif et al. [62] show through an online study that adversarial examples constructed
though commonly used lp norm thresholds can still be perceptually dissimilar to the original
inputs.

Additionally, lp norms have limited scope and are not applicable to many of the problem
outside of the image processing domain. As an example, we take a look at malware

62

detection. In malware detection, the inputs are features of discrete values, e.g., the binary
of a file. To fool a malware classifier using adversarial examples, it is more important
for the adversary to preserve the functionalities of a malware file than to preserve the lp
similarity between the binary of the adversarial example and the binary of the original
file. Therefore, to create effective adversarial examples in this domain, an adversary has
to define a different similarity measure to achieve their goal successfully.

8.1.3 Improvements for AD3

As discussed in Section 6.2.1, AD3 can detect adversarial perturbation attacks that are
applied uniformly throughout the episode by AD3 requires collecting several consecutive
anomalous actions before raising an alarm.

A possible evasion technique against AD3 is to apply adversarial perturbations in short
alternating intervals. However, this would create between-observations anomalies, where
some observations are clean and others have adversarial perturbations. Visual Foresight
is designed to detect and mitigate these between-observation anomalies because the frame
prediction module can utilize the clean observations to predict the correct next observation
in the environment. As a result, attacks that are not applied uniformly throughout the
episode can be mitigated by Visual Foresight. Therefore, combining Visual Foresight and
AD3 can detect short intervals of adversarial perturbations, which AD3 cannot do alone.

At present, AD3 is only applicable to environments with discrete action spaces. As
shown in Section 6.1.4, DRL agents are also vulnerable to adversarial perturbation attacks
in continuous control settings. As future work, we will expand AD3 to continuous control
environments.

8.1.4 Capabilities of Defense Mechanisms

When a defense mechanism is not sufficient on its own, it may be useful to deploy other
complementary defense mechanisms at the same time to maximize defense coverage.

As discussed in Section 6.1.3, both prior defense methods, Visual Foresight and SA-
MDP, cannot successfully recover v ’s returns against all attacks across all environments.
It may be possible to further improve the recovery of v ’s returns by deploying both defense
mechanisms at the same time. However, as presented in Table 6.2, in the case of a Pong
agent against attacks bounded by ε = 0.05, only FGSM can be mitigated completely by
Visual Foresight and SA-MDP and v ’s returns still drop significantly against all other

63

attacks. Therefore, it is still unclear whether adversarial perturbation attacks can be
completely mitigated by combining these two methods.

Additionally, in Section 6.2.2 we consider a scenario where Adv causes v to arrive at a
negative outcome in the environment, e.g., losing a game in Pong. In this case, combining
mitigation with detection mechanisms can be useful. As shown in Table 6.6, AD3 can
completely prevent v from losing in Pong games.

In conclusion, while combining different mitigation and detection methods can provide
better protection for DRL agents, there are still attacks that cannot be thwarted com-
pletely by existing defense mechanisms. Similar to deep neural network (DNN) clssifiers,
adversarial perturbations are features of the neural network and are difficult to mitigate
without sacrificing accuracy or returns.

8.2 Ownership Verification using Fingerprinting

In Section 8.2.1, we first discuss how Adv can evade our fingerprint method ReLF. In Sec-
tion 8.2.2, we discuss how fingerprint verification can be deployed in multi-agent settings.

8.2.1 Robustness of Fingerprinting

Due to time constraints, we did not report robustness in the evaluation of ReLF (Sec-
tion 6.3). Our robustness experiments are currently in progress. Instead, in this thesis, we
offer discussions on how Adv can evade verification.

We evaluate ReLF against suspect agents with stolen policies that are exact copies of
the source policy. As mentioned in Section 7.2.1, there is only one work [12] on stealing
DRL policies. Unfortunately we cannot find public repository for their work. Stolen
policies obtained from model extraction attacks are not exact copies of the source policy.
As a result, the effectiveness of adversarial perturbation attacks could be reduced. Because
ReLF relies adversarial perturbations’ effectiveness on the source policy, ReLF’s ability to
identify stolen policies could be reduced. We leave implementation and evaluation of ReLF
against model extraction attack as future work.

One way for Adv to evade verification is to deploy their stolen agent such that it selects
random actions for some states. These states can be randomly chosen or they can be non-
critical states as described in Section 4.1.2 to limit the effects on returns of the stolen agent.
Notably, selecting random actions instead of optimal actions would negatively impact the

64

stolen agent’s returns in a task. As a result of selecting random actions in some states, SAA
between the stolen policy and the source policy diverges because the number of actions
agreed between the two policies decreases. Adv needs to balance this strategy with the
loss of utility of the stolen policies because the more random actions taken, the more it
negatively impacts the agent’s returns in a task.

Additionally, Adv can transform their stolen policies to remove fingerprints. Fine-
tuning/retraining is a technique that takes the parameters of a source model as a starting
point and continues to train the model on a set of data. In DRL, Adv can fine-tune a
stolen policy in the same training environment as the source policy but with a different
seed. Another approach is to do adversarial retraining on the stolen policy. However,
adversarial retraining can lead to unstable training and reduced performance.

Finally, another way to evade verification is to deploy the two defense methods discussed
in Section 4.1.4. However, as shown in Table 6.2, both Visual Foresight and SA-MDP have
limited effectiveness against OSFW(U) attacks. Visual Foresight cannot recover v ’s returns
in Pong at ε ≥ 0.01 and SA-MDP only barely recovers v ’s returns at ε ≥ 0.2. These results
suggest that both defense mechanisms cannot mitigate the effect of OSFW(U) attack on
a stolen policy and that the stolen policy would still be misled into selecting the same
sub-optimal action as the source policy. Therefore, it is unclear as to whether or not Adv
can evade verification using these two defense methods.

8.2.2 Fingerprinting in the Multi-Agent Setting

Both ReLF and prior work on watermark methods require the verifier to have control over
the environment or the suspect agent’s observations of the environment, whether it is to
control the states of the environment or to inject adversarial perturbations to the suspect
agent’s observations of the environment.

In multi-agent environments, a deployed DRL agent necessarily interacts with other
agents in the environment. In this setting, the verifier can deploy an agent in the environ-
ment to interact with the suspect agent to verify fingerprints. In contrast to the previous
setting, the verifier does not need to control the environment state or inject noise into
the suspect agent’s observations; the fingerprints are triggered as a natural part of the
suspect agent’s observation of the environment. Therefore, multi-agent environments are
more realistic settings for ownership verification using fingerprints.

As mentioned in Section 7.1.3, Gleave et al. [19] propose a technique for training adver-
sarial policy against v . Through their experiments, they found that an adversarial agent
with this adversarial policy often does not find better strategies in a task; instead, the

65

adversarial agent manipulates its body to create adversarial perturbations to v ’s observa-
tions of the environment. How v ’s actions change as a result of the adversarial agent in
the environment can be used to fingerprint v ’s policy because v would behave in a novel
way in this scenario. We leave the design of this fingerprinting method for future work.

66

Chapter 9

Conclusion

In this thesis, we focus on two security concerns in deep reinforcement learning (DRL).
The first is on adversarial perturbation attacks against DRL agents. As DRL agents show
many successes in safety-critical tasks such as robotic control and autonomous driving, it is
crucial to study these vulnerabilities before deploying these agents in practice. The second
topic is on ownership demonstration for DRL policies. Model theft and unauthorized
distribution of DRL policies constitute a serious threat to policy owners because they can
negatively impact policy owners’ revenue. We show the seriousness of these two concerns,
discuss the limitations of current techniques, and propose our own solutions.

First, we show that prior work on untargeted attacks does not satisfy the requirements
for real-time perturbation attacks against DRL policies because they are either too slow
to be real-time or they require modifying the victim policy’s internal memory of past
observations. We propose three different universal perturbation attacks, UAP-S, UAP-
O, and OSFW(U) that can be deployed in real-time and in a white-box setting. Our
results show that our attacks are effective against three different DRL policies (DQN,
A2C, and PPO). We also evaluate our attacks against two prior defense methods, Visual
Foresight and SA-MDP. These defense methods can recover victim performance in different
environments with varying results. While in some environments these defense methods are
effective, for other environments such as a DQN agent playing Pong, three of the attacks,
OSFW, UAP-S, and UAP-O can fully reduce victim’s returns by 100% at higher ε values.
We further expand our attacks to the continuous control settings utilizing the victim’s value
function. We found that our attacks are still effective in continuous control tasks; however,
the attacks require higher ε bounds. For future work, we will improve the effectiveness
of our attack methods to generalize to different continuous control settings and make the
attacks more realistic and easier to deploy for the adversary.

67

We also propose a new detection technique AD3 to detect the presence of an attack in
discrete settings. We evaluate AD3 in three environments (Pong, Freeway, and Breakout).
AD3 can perfectly detect all attacks in Pong but is less robust in Freeway and is ineffective
in Breakout. We argue that in environments that have a negative outcome, AD3 can be
used to detect the attack during an episode and prevent the negative outcome. For future
work, we will generalize this defense technique to different continuous control settings.

To address the second security concern in DRL, we propose a fingerprint method ReLF
for ownership verification. We argue that prior watermark methods in DRL require a strong
assumption that the verifier has complete control over the environment used to verify the
suspect policy. ReLF only requires the verifier to inject adversarial perturbations to the
suspect policy’s observations of the environment. Additionally, our fingerprint method
does not require modifying the source policy and can be applied to existing DRL policies.

Our experimental results show that ReLF can reliably identify a stolen policy with a low
false positive rate and a high true positive rate by using only a small number of fingerprints.
We leave the evaluation of the robustness of the fingerprint method as future work. The
adversary can thwart ownership verification attempts on their policies by deploying defense
methods against adversarial perturbation attacks or by adding random actions to their
deployed policies. For future work, we will expand ReLF into the multi-agent settings
where the verifier controls one of the agents in the environment.

In conclusion, we demonstrate that adversarial perturbation attacks can be mounted in
real-time and can significantly impact a DRL agent’s performance in a task. While existing
defenses can mitigate some effects of the attacks, it is still insufficient in recovering the
original performance of the agent. Further studies are also needed in more complex control
settings. We also show that ReLF is a promising method for ownership verification of DRL
policies and is easier to deploy compared to watermark methods. Ownership verification
techniques are useful for DRL policy owners to deter and prosecute the unauthorized
distribution of their policies.

68

References

[1] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet. Turn-
ing your weakness into a strength: Watermarking deep neural networks by backdoor-
ing. In 27th USENIX Security Symposium (USENIX Security 18), pages 1615–1631,
2018.

[2] Shumeet Baluja and Ian Fischer. Adversarial transformation networks: Learning to
generate adversarial examples. arXiv preprint arXiv:1703.09387, 2017.

[3] Vahid Behzadan and William Hsu. Sequential triggers for watermarking of deep rein-
forcement learning policies. arXiv preprint arXiv:1906.01126, 2019.

[4] Vahid Behzadan and Arslan Munir. Vulnerability of deep reinforcement learning to
policy induction attacks. In International Conference on Machine Learning and Data
Mining in Pattern Recognition, pages 262–275. Springer, 2017.

[5] Vahid Behzadan and Arslan Munir. Whatever does not kill deep reinforcement learn-
ing, makes it stronger. arXiv preprint arXiv:1712.09344, 2017.

[6] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade
learning environment: An evaluation platform for general agents. Journal of Artificial
Intelligence Research, 47:253–279, 2013.

[7] Franziska Boenisch. A survey on model watermarking neural networks. arXiv preprint
arXiv:2009.12153, 2020.

[8] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat
Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang,
et al. End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316, 2016.

69

[9] Nicholas Carlini and David Wagner. Adversarial examples are not easily detected:
Bypassing ten detection methods. In Proceedings of the 10th ACM Workshop on
Artificial Intelligence and Security, pages 3–14, 2017.

[10] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural
networks. In 2017 IEEE Symposium on Security and Privacy (S&P), pages 39–57.
IEEE, 2017.

[11] Kangjie Chen, Shangwei Guo, Tianwei Zhang, Shuxin Li, and Yang Liu. Temporal
watermarks for deep reinforcement learning models. In Proceedings of the 20th Inter-
national Conference on Autonomous Agents and Multiagent Systems, pages 314–322,
2021.

[12] Kangjie Chen, Shangwei Guo, Tianwei Zhang, Xiaofei Xie, and Yang Liu. Stealing
deep reinforcement learning models for fun and profit. In Proceedings of the 2021
ACM Asia Conference on Computer and Communications Security, pages 307–319,
2021.

[13] Xinyun Chen, Wenxiao Wang, Chris Bender, Yiming Ding, Ruoxi Jia, Bo Li, and
Dawn Song. Refit: a unified watermark removal framework for deep learning systems
with limited data. In Proceedings of the 2021 ACM Asia Conference on Computer
and Communications Security, pages 321–335, 2021.

[14] Kenneth T Co, Luis Muñoz-González, Sixte de Maupeou, and Emil C Lupu. Procedu-
ral noise adversarial examples for black-box attacks on deep convolutional networks. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, pages 275–289, 2019.

[15] Xiaohui Dai, Chi-Kwong Li, and Ahmad B Rad. An approach to tune fuzzy controllers
based on reinforcement learning for autonomous vehicle control. IEEE Transactions
on Intelligent Transportation Systems, 6(3):285–293, 2005.

[16] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmark-
ing deep reinforcement learning for continuous control. In International Conference
on Machine Learning, pages 1329–1338. PMLR, 2016.

[17] Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig Schmidt, and Aleksander
Madry. A rotation and a translation suffice: Fooling cnns with simple transformations.
In 7th International Conference on Learning Representations. OpenReview.net, 2019.

70

[18] Lixin Fan, Kam Woh Ng, and Chee Seng Chan. Rethinking deep neural network
ownership verification: Embedding passports to defeat ambiguity attacks. Advances
in Neural Information Processing Systems, 32, 2019.

[19] Adam Gleave, Michael Dennis, Cody Wild, Neel Kant, Sergey Levine, and Stuart
Russell. Adversarial policies: Attacking deep reinforcement learning. In International
Conference on Learning Representations, 2019.

[20] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. In International Conference on Learning Representations, 2015.

[21] Jia Guo and Miodrag Potkonjak. Watermarking deep neural networks for embedded
systems. In 2018 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pages 1–8. IEEE, 2018.

[22] Jamie Hayes and George Danezis. Learning universal adversarial perturbations with
generative models. In 2018 IEEE Security and Privacy Workshops (SPW), pages
43–49. IEEE, 2018.

[23] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances
in Neural Information Processing Systems, 29:4565–4573, 2016.

[24] Mengdi Huai, Jianhui Sun, Renqin Cai, Liuyi Yao, and Aidong Zhang. Malicious
attacks against deep reinforcement learning interpretations. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pages 472–482, 2020.

[25] Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter Abbeel. Ad-
versarial attacks on neural network policies. arXiv preprint arXiv:1702.02284, 2017.

[26] Léonard Hussenot, Matthieu Geist, and Olivier Pietquin. Copycat: Taking control
of neural policies with constant attacks. In Proceedings of the 19th International
Conference on Autonomous Agents and MultiAgent Systems, 2020.

[27] Matthew Inkawhich, Yiran Chen, and Hai Li. Snooping attacks on deep reinforcement
learning. In Proceedings of the 19th International Conference on Autonomous Agents
and Multiagent Systems, pages 557–565, 2020.

[28] Hengrui Jia, Christopher A Choquette-Choo, Varun Chandrasekaran, and Nicolas
Papernot. Entangled watermarks as a defense against model extraction. In 30th
USENIX Security Symposium (USENIX Security 21), pages 1937–1954, 2021.

71

[29] Michael I Jordan and Tom M Mitchell. Machine learning: Trends, perspectives, and
prospects. Science, 349(6245):255–260, 2015.

[30] Can Kanbak, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. Geometric ro-
bustness of deep networks: analysis and improvement. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 4441–4449, 2018.

[31] Jernej Kos and Dawn Song. Delving into adversarial attacks on deep policies. In 5th
International Conference on Learning Representations. OpenReview.net, 2017.

[32] Solomon Kullback and Richard A Leibler. On information and sufficiency. The Anuals
of Mathematical Statistics, 22(1):79–86, 1951.

[33] Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. Adversarial examples in the
physical world. In Artificial Intelligence Safety and Security, pages 99–112. Chapman
and Hall/CRC, 2018.

[34] Hugo Larochelle, Yoshua Bengio, Jérôme Louradour, and Pascal Lamblin. Explor-
ing strategies for training deep neural networks. The Journal of Machine Learning
Research, 10(1), 2009.

[35] Erwan Le Merrer, Patrick Perez, and Gilles Trédan. Adversarial frontier stitch-
ing for remote neural network watermarking. Neural Computing and Applications,
32(13):9233–9244, 2020.

[36] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training
of deep visuomotor policies. The Journal of Machine Learning Research, 17(1):1334–
1373, 2016.

[37] Zheng Li, Chengyu Hu, Yang Zhang, and Shanqing Guo. How to prove your model
belongs to you: A blind-watermark based framework to protect intellectual property
of dnn. In Proceedings of the 35th Annual Computer Security Applications Conference,
pages 126–137, 2019.

[38] Yen-Chen Lin, Zhang-Wei Hong, Yuan-Hong Liao, Meng-Li Shih, Ming-Yu Liu, and
Min Sun. Tactics of adversarial attack on deep reinforcement learning agents. In
Proceedings of the 26th International Joint Conference on Artificial Intelligence, pages
3756–3762. ijcai.org, 2017.

[39] Yen-Chen Lin, Ming-Yu Liu, Min Sun, and Jia-Bin Huang. Detecting adver-
sarial attacks on neural network policies with visual foresight. arXiv preprint
arXiv:1710.00814, 2017.

72

[40] Nils Lukas, Yuxuan Zhang, and Florian Kerschbaum. Deep neural network finger-
printing by conferrable adversarial examples. In International Conference on Learning
Representations, 2020.

[41] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks. arXiv
preprint arXiv:1706.06083, 2017.

[42] Dongyu Meng and Hao Chen. Magnet: a two-pronged defense against adversarial
examples. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 135–147, 2017.

[43] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods
for deep reinforcement learning. In International Conference on Machine Learning,
pages 1928–1937, 2016.

[44] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

[45] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning. Nature,
518(7540):529, 2015.

[46] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard.
Universal adversarial perturbations. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 1765–1773, 2017.

[47] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a
simple and accurate method to fool deep neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2574–2582, 2016.

[48] Konda Reddy Mopuri, Utsav Garg, and R Venkatesh Babu. Fast feature fool: A
data independent approach to universal adversarial perturbations. arXiv preprint
arXiv:1707.05572, 2017.

[49] Konda Reddy Mopuri, Utkarsh Ojha, Utsav Garg, and R Venkatesh Babu. Nag: Net-
work for adversary generation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 742–751, 2018.

73

[50] Ryota Namba and Jun Sakuma. Robust watermarking of neural network with expo-
nential weighting. In Proceedings of the 2019 ACM Asia Conference on Computer and
Communications Security, pages 228–240, 2019.

[51] Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L Lewis, and Satinder Singh.
Action-conditional video prediction using deep networks in atari games. In Advances
in Neural Information Processing Systems, pages 2863–2871, 2015.

[52] Eshed Ohn-Bar and Mohan Manubhai Trivedi. Looking at humans in the age of self-
driving and highly automated vehicles. IEEE Transactions on Intelligent Vehicles,
1(1):90–104, 2016.

[53] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik,
and Ananthram Swami. The limitations of deep learning in adversarial settings. In
2016 IEEE European Symposium on Security and Privacy (EuroS&P), pages 372–387.
IEEE, 2016.

[54] Anay Pattanaik, Zhenyi Tang, Shuijing Liu, Gautham Bommannan, and Girish
Chowdhary. Robust deep reinforcement learning with adversarial attacks. arXiv
preprint arXiv:1712.03632, 2017.

[55] Xinghua Qu, Zhu Sun, Yew-Soon Ong, Abhishek Gupta, and Pengfei Wei. Minimal-
istic attacks: How little it takes to fool deep reinforcement learning policies. IEEE
Transactions on Cognitive and Developmental Systems, 13(4):806–817, 2020.

[56] Bita Darvish Rouhani, Mohammad Samragh, Mojan Javaheripi, Tara Javidi, and
Farinaz Koushanfar. Deepfense: Online accelerated defense against adversarial deep
learning. In 2018 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pages 1–8. IEEE, 2018.

[57] Lalit Kumar Saini and Vishal Shrivastava. A survey of digital watermarking techniques
and its applications. arXiv preprint arXiv:1407.4735, 2014.

[58] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
Trust region policy optimization. In International Conference on Machine Learning,
pages 1889–1897, 2015.

[59] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

74

[60] Masoumeh Shafieinejad, Nils Lukas, Jiaqi Wang, Xinda Li, and Florian Kerschbaum.
On the robustness of backdoor-based watermarking in deep neural networks. In Pro-
ceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security,
pages 177–188, 2021.

[61] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. Safe, multi-agent, re-
inforcement learning for autonomous driving. arXiv preprint arXiv:1610.03295, 2016.

[62] Mahmood Sharif, Lujo Bauer, and Michael K Reiter. On the suitability of lp-norms for
creating and preventing adversarial examples. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops, pages 1605–1613, 2018.

[63] Ruimin Shen, Yan Zheng, Jianye Hao, Zhaopeng Meng, Yingfeng Chen, Changjie
Fan, and Yang Liu. Generating behavior-diverse game ais with evolutionary multi-
objective deep reinforcement learning. In Proceedings of the 29th International Joint
Conference on Artificial Intelligence, pages 3371–3377, 2020.

[64] Congzheng Song, Thomas Ristenpart, and Vitaly Shmatikov. Machine learning models
that remember too much. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 587–601, 2017.

[65] Jianwen Sun, Tianwei Zhang, Xiaofei Xie, Lei Ma, Yan Zheng, Kangjie Chen, and
Yang Liu. Stealthy and efficient adversarial attacks against deep reinforcement learn-
ing. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pages 5883–5891, 2020.

[66] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
The MIT Press, second edition, 2018.

[67] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv
preprint arXiv:1312.6199, 2013.

[68] Buse GA Tekgul, Shelly Wang, Samuel Marchal, and N Asokan. Real-time attacks
against deep reinforcement learning policies. arXiv preprint arXiv:2106.08746, 2021.

[69] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-
based control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 5026–5033. IEEE, 2012.

75

[70] Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. On adap-
tive attacks to adversarial example defenses. In H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Sys-
tems, volume 33, pages 1633–1645. Curran Associates, Inc., 2020.

[71] Edgar Tretschk, Seong Joon Oh, and Mario Fritz. Sequential attacks on agents for
long-term adversarial goals. arXiv preprint arXiv:1805.12487, 2018.

[72] Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh. Embedding wa-
termarks into deep neural networks. In Proceedings of the 2017 ACM on International
Conference on Multimedia Retrieval, pages 269–277, 2017.

[73] Elias Wang, Atli Kosson, and Tong Mu. Deep action conditional neural network for
frame prediction in atari games. Technical report, Stanford University, 2017.

[74] Jiangfeng Wang, Hanzhou Wu, Xinpeng Zhang, and Yuwei Yao. Watermarking in deep
neural networks via error back-propagation. Electronic Imaging, Media Watermarking,
Security, and Forensics, 2020(4):22–1, 2020.

[75] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning, 8(3-4):229–256, 1992.

[76] Xian Wu, Wenbo Guo, Hua Wei, and Xinyu Xing. Adversarial policy training against
deep reinforcement learning. In 30th USENIX Security Symposium (USENIX Security
21), pages 1883–1900, 2021.

[77] Chaowei Xiao, Xinlei Pan, Warren He, Jian Peng, Mingjie Sun, Jinfeng Yi, Bo Li, and
Dawn Song. Characterizing attacks on deep reinforcement learning. arXiv preprint
arXiv:1907.09470, 2019.

[78] Chaowei Xiao, Jun-Yan Zhu, Bo Li, Warren He, Mingyan Liu, and Dawn Song. Spa-
tially transformed adversarial examples. arXiv preprint arXiv:1801.02612, 2018.

[79] Weilin Xu, David Evans, and Yanjun Qi. Feature squeezing: Detecting adversarial
examples in deep neural networks. In 25th Annual Network and Distributed System
Security Symposium, NDSS. The Internet Society, 2018.

[80] Valentina Zantedeschi, Maria-Irina Nicolae, and Ambrish Rawat. Efficient defenses
against adversarial attacks. In Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security, pages 39–49, 2017.

76

[81] Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Mingyan Liu, Duane Boning, and
Cho-Jui Hsieh. Robust deep reinforcement learning against adversarial perturbations
on state observations. Advances in Neural Information Processing Systems, 33:21024–
21037, 2020.

[82] Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph Stoecklin, Heqing
Huang, and Ian Molloy. Protecting intellectual property of deep neural networks
with watermarking. In Proceedings of the 2018 on Asia Conference on Computer and
Communications Security, pages 159–172, 2018.

[83] Jingjing Zhao, Qingyue Hu, Gaoyang Liu, Xiaoqiang Ma, Fei Chen, and Moham-
mad Mehedi Hassan. Afa: Adversarial fingerprinting authentication for deep neural
networks. Computer Communications, 150:488–497, 2020.

[84] Yiren Zhao, Ilia Shumailov, Han Cui, Xitong Gao, Robert Mullins, and Ross Ander-
son. Blackbox attacks on reinforcement learning agents using approximated temporal
information. In 2020 50th Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks Workshops (DSN-W), pages 16–24. IEEE, 2020.

[85] Yan Zheng, Xiaofei Xie, Ting Su, Lei Ma, Jianye Hao, Zhaopeng Meng, Yang Liu,
Ruimin Shen, Yingfeng Chen, and Changjie Fan. Wuji: Automatic online combat
game testing using evolutionary deep reinforcement learning. In 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pages 772–784.
IEEE, 2019.

77

Glossary

A2C Advantage Actor-critic. A DRL algorithm by Mnih et al. [43] x, xii, xv, xvi, 3, 7,
22, 30, 31, 38–42, 44, 45, 47, 52, 54, 55, 67

AD3 Action Distribution Divergence Detector. This is our proposed detection method for
detection adversarial perturbation attacks. x, xii, xiii, 3, 27–29, 37, 40, 41, 43, 51–53,
61, 63, 64, 68

DQN Deep Q Network. A DRL algorithm by Mnih et al. [44]. x, xii, xiii, xv, xvi, 3, 7,
22, 28, 29, 38–42, 45, 47, 48, 52–55, 67

FGSM Fast Gradient Sign Method. An untargeted adversarial perturbation generation
method by Goodfellow et al. [20]. x, 3, 10, 11, 26, 29, 38, 43, 44, 46–53, 57, 63

OSFW One of Xiao et al. [77]’s propose attack. They named it obs-fgsm-wb in their
work. 3, 11, 22, 25, 26, 38, 39, 43, 44, 46–53, 67

OSFW(U) Our modification of Xiao et al.’s [77] attack. 3, 21, 22, 25, 26, 31, 32, 38,
41–44, 46–54, 61, 65, 67

PPO Proximal Policy Optimization. A DRL algorithm by Schulman et al. [58] x, xii, xv,
xvi, 3, 7, 22, 30, 31, 38–42, 44, 45, 47, 49, 50, 52, 54, 55, 67

ReLF Reinforcement Learning Fingerprints. This is our proposed fingerprint method.
xii, 3, 30–32, 34, 36, 37, 42, 43, 54, 64, 65, 68

SA-MDP A adversarial retraining method for DRL policies by Zhang et al. [81]. 27, 39,
47, 48, 53, 63, 65, 67

78

SAA Sample Action Agreement. A Measure of the sample action agreement between two
action sequences of the same length. xiii, 30–32, 35, 41, 42, 54, 55, 65

UAP-O Observation-agnostic universal adversarial perturbation. One of our propose at-
tack. 3, 21–23, 25, 26, 31, 38, 39, 43, 44, 46–48, 50–53, 61, 67

UAP-S State-agnostic universal adversarial perturbation. One of our propose attack. 3,
21–23, 25, 26, 31, 38, 39, 43, 44, 46–53, 61, 67

Visual Foresight A mitigation and detection technique by Lin et al. [39]. 27, 39, 47, 48,
50, 53, 63, 65, 67

79

	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Introduction
	Background
	Machine Learning
	Deep Neural Network (DNN)
	Deep Reinforcement Learning (DRL)
	DRL Testing Environments
	Atari 2600 Game Environment
	MuJoCo Environment for Robotic Controls

	Adversarial Examples
	Untargeted Adversarial Perturbation Attack in DRL
	Ownership Verification of DNNs

	Problem Statement
	Real-time Adversarial Perturbation Attack
	Problem Statement
	Adversary Model
	Attack Requirements

	Detecting Adversarial Perturbation Attacks
	Problem Statement
	Adversary Model
	Detection Requirements

	Ownership Verification Using Fingerprinting
	Problem Statement
	Adversary Model
	Verifier Model
	Verifier Requirements

	Methodology
	Real-time Adversarial Perturbation Attack
	Attack Design
	Attack Implementation
	Extending Attack to the Continuous Control Setting
	Existing Defenses in DRL

	Detecting Adversarial Perturbation Attacks
	Detector Design
	 Implementation

	Ownership Verification using Fingerprinting
	Fingerprinting Design
	Fingerprinting Implementation

	Experimental Setup
	Software and Hardware Setup
	Atari Environment
	Real-Time Adversarial Perturbation Attacks
	Setup for Evaluating Adversarial Perturbation Attacks
	Setup for Prior Defense Techniques
	Setup for Adversarial Perturbation Attack in Continuous Control

	Detecting Adversarial Perturbation Attacks
	Setup of Atari 2600 Breakout Games
	Setup for

	Ownership Verification Using Fingerprinting
	Model Training
	Parameters for ReLF

	Evaluation
	Real-time Adversarial Perturbation Attacks
	Effectiveness of Adversarial Perturbation Attacks
	Computational Costs of Adversarial Perturbation Attacks
	Prior Defense in DRL
	Adversarial Perturbation Attacks in the Continuous Control Setting
	Summary of Attack Methods

	Detecting Adversarial Perturbation Attacks
	Evaluating the Effectiveness of
	Effectiveness of Combining with Recovery Methods

	Ownership Verification using Fingerprinting

	Related Work
	Other Adversarial Perturbation Attacks in DRL
	Targeted Attacks
	Black-box Attacks
	Multi-agent Setting

	Ownership Verification in DRL
	Stealing DRL Policies
	Watermarking in DRL

	Discussion
	Real-time Adversarial Perturbation Attack and Defense in DRL
	Future Work for Adversarial Perturbation Attacks
	Limitations of using lp Norms in Adversarial Perturbation Attacks
	Improvements for
	Capabilities of Defense Mechanisms

	Ownership Verification using Fingerprinting
	Robustness of Fingerprinting
	Fingerprinting in the Multi-Agent Setting

	Conclusion
	References
	Glossary

