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Abstract

Ape is the state-of-the-art Android GUI testing tool, which implements a dynamic
model internally to guide the testing process. At the time of writing, Ape was one of the
most effective Android testing tools. Ape’s interactions with Android devices partially rely
on private APIs, which made it difficult to support newer Android versions. Aiming to
solve this problem, we adopted Appium as the interaction layer. However, the introduction
of Appium distorted Ape into a server-client structure, which brought a huge overhead and
severely affected the efficiency. Besides, Ape naturally tries to test all widgets. Neverthe-
less, in scenarios where an application only needs to be partially tested, such strategy limits
the effectiveness due to the inability to prioritize activities of interest.

In this study, we introduce Ape+, which boosts the efficiency of Ape but avoids using
private Android APIs. We reconstruct Ape as a monolithic on-device testing tool by re-
placing Appium, the communication layer between Ape and the device, with UiAutomator.
We solved technical challenges, such as supporting drag function and fetching current ac-
tivity names, and experiments show that efficiency improvements among the applications
are between 10% to 40% compare to Ape with Appium.

We also analyze different static analyses tools to find the one whose static model is
informative enough to bring extra knowledge to Ape for activity prioritization. Using in-
strumentation, we improve the accuracy of widget matching, which is an essential step to
bridge the gap between the dynamic model and the static one and combine both synergis-
tically. We also introduce a priority decay strategy to mitigate false information produced
by static analysis, and a path finding algorithm to help Ape+ navigate between activities
using both models. Our experiments show, for two selected applications with informative
models, Ape+ is able to cover every activity 37% and 57% faster.

We believe that Ape+ is a decent testbed with maintainability and extensibility for
conducting research on automated Android GUI testing in the future.
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Chapter 1

Introduction

Android applications have been increasingly popular over the decade. As the demands of
developing Android applications soar, the technology to automatically test these applica-
tions also evolve rapidly [12][28][26][9][27][23][24][30]. One of the main aspects of Android
testing focuses on testing the Graphic User Interface (GUI), because Android applications
are essentially a collection of interfaces which users interact with directly. Any bug in the
GUI would be directly exposed to users and exert negative influence upon the applications.
Before automatic testing tools, testers used to either manually interact with the GUI or
developing scripts to automate the process. This is extremely inefficient, due to the drasti-
cally varying application features and structures. Testers often have to upgrade the scripts
after each version release. Outdated scripts cannot be trusted toward providing strong
guarantees on the applications, as they may not be able to interact with the target appli-
cations correctly after updates. Requiring manual testing on applications is even worse.
Due to the repetitiveness and strenuousness of this work, humans are prone to mistakes.
It is exhausting and nearly-impossible work to develop scripts that resist updates and also
provide strong bug-free guarantees. Eventually, this problem was eased with the birth of
automatic testing tools as a complement to human interactions and testing scripts. The
automatic testing tools analyze the GUI on display and automatically generate actions to
interact with it. These tools lift the heavy burden from testers, as no predefined action
scripts are required Also, they can potentially cover every aspect of an application given
enough time and resources.

Ape [12] is a state-of-art automated Android testing tool focusing on GUI testing.
Similar to other Android GUI testing tools [26][28][19][7][22], Ape is model-based. It im-
plements a dynamic model internally, which supervises its interactions with the application
in testing. The model is a collection of algorithms that accept and analyze UI hierarchy on

1



screen, and then output a sequence of actions. According to the paper, Ape was thoroughly
tested with 1,316 applications from Google Play Store, and ended up finding 537 unique
crashes in 42 error types from 281 of them [12]. In spite of the strong performance on
bug-finding, Ape has a limited support for newer Android versions, because of its reliance
on private APIs to interact with Android devices. Internally, these private APIs are called
using reflections. However, Android is disabling the use of reflection since Android 11 [8].
This disabled Ape from supporting any Android OS above version 11. In order to solve
this issue, we introduced Appium [5] as the communication layer, which does not use any
private APIs. Appium is an open sourced mobile testing framework, and equips a series of
functions to interact with an Android device. It provides functions, such as click, to deliver
user interaction events to the device. Using Appium as a bridge, Ape and the device form
a server-client structure, where Ape is the server that handles the logic computation and
the Android device is the client who loyally acts with the server’s instruction. However,
this change brought in efficiency and maintainability problems to Ape. The sever-client
structure is unnecessary, with heavy overhead due to the communication over the network.
Given testing is almost always conducted with a limited time and resources, it is necessary
to reduce the time wasted on communication. Also, it is more difficult to maintain and
debug potential bugs in Ape, because of the server-client structure. The current strategy
completely relies on logs, which is clearly ineffective.

Besides the drawbacks above, Ape can also suffer from effectiveness problems in sce-
narios, where an application only needs to be partially tested. Ape was initially designed
to interact with every possible activities and widgets, and it does not have the ability to
prioritize testing on specific activities. Consequentially, such design becomes less effective
when a subset of all widgets is interesting. For example, when a new activity is introduced
to some well-tested application, the preferred testing strategy would be focusing on the
newly added activity, instead of testing every activity all over again. Especially under the
limited time and resources, it would be a huge advantage if Ape could interact with the
devices faster and be able to focus on a subset of activities of interest.

In this study, we aim to address the aforementioned drawbacks to upgrade Ape in terms
of maintainability, efficiency, and effectiveness. More specifically, we replace Appium with
UiAutomator [32], which runs completely on the device and provides APIs to interact with
the device with faster speed. In addition, UiAutomator, as a first-party library, enables
debuggers to be executed directly from the IDEs. We attempt to introduce a static model to
Ape as prior knowledge about the target application, so that Ape can prioritize its testing
based on the information from the static model. We chose Frontmatter, after examining
multiple static analyses tools, including Frontmatter [18], Gator [29], ICCBot [37], and
GoalExplorer [19], because it is the most stable and includes all the necessary features.
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With the static model introduced, we implement a path finding algorithm that enables
Ape to quickly navigate towards a specified activity. This algorithm gains knowledge
about widgets from both dynamic model and static model, which assists Ape to rearrange
the testing resources to a subset of activities of interest, and eventually enhance the testing
effectiveness. We name the upgraded version Ape+, as it shares the benefits of Ape, but also
addresses its drawbacks with faster speed and static-model-guided exploration strategy.

There were a few challenges in making the enhancements. First and foremost, moving
away from Appium means losing all the convenient tool functions provided by Appium.
Interacting with an Android device through UiAutomator requires more cautions, as its
APIs are more general and lower-level in comparison to Appium’s. For example, scroll
action is not provided by UiAutomator, and grantRuntimePermission function would
fail silently if OS version is under 28. Moreover, introducing a static model as a guidance
sounds simple, but it actually requires some efforts. Widget matching between the static
model and the dynamic model is indispensable and can be problematic due to lack of
shared information. There can also be information omission and false information spread
across components in static models, which need to be properly handled. We will share
the detailed information about these challenges, and how we crafted our solution to either
solve or alleviate them.

Overall, this thesis answers the following research questions:

• RQ1: How much efficiency improvement UiAutomator has brought to Appium-based
Ape?

• RQ2: Does informative static models enhance the efficiency of Ape+?

• RQ3: Does false information in static models diminish the efficiency of Ape+?

• RQ4: How static models changed the behaviours of Ape+?

Our experiment results show promising outcome for the enhancements applied. The
UiAutomator version of Ape has brought a roughly 10% to 30% speed bump compare
to the Appium version. By conducting several experiments, we have also proven that an
informative static model is a good aid to guide the exploration, and the false information
contained in the static model is harmful to the testing.

We make the following major contributions:

1. We improved the efficiency of Ape by migrating from Appium to UiAutomator.
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2. We analyzed multiple static analyses tools and discussed their advantages and dis-
advantages.

3. We introduced a novel strategy to enhance widget-matching between dynamic models
and static models.

4. We designed a path finding algorithm using both dynamic model and static model
to reach a specified destination.

In the following chapters, this thesis will start from introducing some background knowl-
edge in §2. After that, we describe our approaches to address Ape’s existing problems in
§3. Specifically designed experiments were conducted to evaluate Ape+ and answer the
research questions, which will be detailed in §4. Following the evaluation, we introduce
some related work in §5, and discuss the threats to validity and potential future work in
§6. Finally, we have a conclusion for this thesis in §7.
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Chapter 2

Background

2.1 Android Testing

Android applications are GUI-based applications. Each application consists of one or
multiple activities [17] that serve different functionalities. One activity approximately
equals to a single page. For example, a general weather application probably has a “city
weather” activity to display weather information in a selected city, and a “forecast” activity
that presents weather forecasts in the coming days. Each activity contains a number of
interactive UI elements, called widgets [4], such as buttons, text fields, and switches. As
the popularity of Android apps rises, it makes testing these GUI interfaces indispensable.
However, due to the complex nature of GUIs, it is not an easy task to develop tests
that cover every essential aspect. Testers often manually write testing scripts to generate
interactions to hopefully capture bugs. Nevertheless, this is strenuous and ineffective in
covering multiple different scenarios. To lift the burden, researchers came up with the
idea of automatic testing tools, which explores and tests the GUI hierarchy automatically.
The goal for an automatic testing tool is inherently the same, which is interacting with
as many widgets as possible, hoping to trigger bugs. Without the predefined interaction
sequences, automatic testing tools generate actions based on the current GUI hierarchy on
display. Consequentially, even the application changes significantly in the future, it would
not affect the functionality of such tools.

The state-of-the-art automatic testing tools are generally model-based [12][19][26][28][36].
A model is an encapsulation of the exploration algorithms. It digests the information about
the current GUI hierarchy on screen, and outputs actions to interact with the widgets. The
output actions are often sorted in a manner that maximizes the possibility of triggering
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bugs. A model can be generated either statically or dynamically. As generated from two
different paths, they thereby offer unique advantages and also carry different drawbacks.

2.2 Event Listeners

Event listeners [15] are callback methods associated to widgets. When interacting with
a widget, e.g. touch or drag, it will trigger the related listener method, such as onClick
or onTouch. The widget invoking a listener method would be passed in to the listener
method as a parameter. Inside the listener method, it knows who the invoker is. Devel-
opers often program the logic of activity transitions in these listener methods, so that the
transitions can be triggered by interacting with the widgets. For each type of interaction,
a widget can have at most one listener method. However, each event listener can be poten-
tially associated with multiple widgets. In that scenario, the listener method implements
conditional statements, e.g. switch-statements, to distinguish each widget, and performs
different functions when invoked by different widgets.

2.3 Static Models

Static models are constructed through applying static analyses on layout resource files [20]
and source code. Because widgets and GUI hierarchy are either programmed into the
source code, or defined in the XML layout files. Through the analyses on them, the static
analyses tool can obtain a general knowledge about the GUI of the application, including
activities, connectivity of activities, and triggers that cause transitions between activities.

If we pack up such knowledge as a model, it provides testing tools a brief overview
of how to test the target application. The most obvious benefit of this is the ability to
predict possible transitions triggered by interactions. Because the static model includes
the information about the trigger widgets, the testing tool can purposefully interact with
them or avoid them. As a direct result, the testing tools would be able to stay at an
activity longer if they want, or leave an activity more quickly. Since the static model also
introduces such information about beyond the current activity, the testing tools’ testing
strategy can be adapted to target for gains in the long run. Based on the feature, the
transition-aware functionality can be extended as a navigation for the testing tools to
travel between activities. Eventually, it should enable testing tools to quickly reach any
activity.
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However, there are disadvantages lie in the nature of static models. One of the most
significant problems is the omissions of information. As static models are generated based
on the resource layout files and source code, they are essentially static representations of
the applications. They cannot normally represent the complex behaviours of applications
at runtime, therefore they are naturally over-abstracted. The direct reflection of the over-
abstraction is missing of information, because during the static analyses, some runtime
information cannot be discovered. For instance, the coordinate location for a widget is
assigned at runtime, which cannot be detected by static analyses. Moreover, static analyses
can introduce plenteous false information. Intrinsically, static analyses are based on certain
assumptions to generate a result that closely represents an application. These assumptions
can be biased under certain scenarios that lead to false information. For example, Gator [29]
detects listeners based on certain keywords in the method names. Thus, it cannot detect
some listeners using newer keywords introduced in newer Android versions. Overall, if
some information is false or missing in the static model, it may misguide the testing tools
into wrong paths.

2.4 Dynamic Models

Dynamic models are generated at runtime through constantly refining after collecting GUI
information on the fly [12][7][26][36]. It starts with an empty model, and after each in-
teraction, it refines the model with the newest GUI hierarchy information, along with a
record of the previously triggered action and its outcome. As the testing process moves
on, the dynamic models cover new widgets and transitions, and eventually become more
robust and accurate. Intrinsically, a dynamic model is an accurate documentation of the
GUI hierarchy, widgets, and transitions at runtime.

As a loyal recorder of application information, a dynamic model can give testing tools
the most trustworthy information about actions and their expected outcomes. Using a
dynamic model, a testing tool can have a clear vision over the history. For any visited
activity, it can find the shortest path to it with ease. Moreover, building a dynamic model
is much simpler and time-saving than building static models. For every received GUI
information, dynamic models can be refined by capturing the key information and update
related components. As the models are built gradually, it is much faster in comparison
to building static models, where numerous of the layout resource files and source code is
analyzed.

Nevertheless, dynamic models are not impeccable. One inevitable drawback is the
tremendous memory consumption. As a type of fine-grained model, dynamic models ab-
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stract each activity into multiple states to provide more accurate representations of the
applications. For example, one activity with a hidden menu drawer may have a “menu
opened” state and a “menu closed” state. As long as the available widgets differ, the same
activity can be essentially stored as multiple different states. Therefore, saving all the dif-
ferent GUI and widget information for each different state inevitably drives up the memory
consumption. In addition, a dynamic model does not provide information about unvisited
activities. The direct outcome of such limitation is testing tools using dynamic models is
unable to dive into the unknown and jump between activities easily. Due to the lack of
overview, the testing tools can only make short-sighted strategies, while lack the ability to
plan for long term gains. Hence, despite the precise information on the visited activities,
dynamic models are not adept at guiding the test process to unvisited destinations.

2.5 Ape

Ape [12] is a state-of-art dynamic mode based Android testing tool. Inside of Ape, it
implements a testing cycle to test applications. Such cycle is repeated multiple times to
cover as many behaviors of the applications under test as possible.

Figure 2.1: Ape Testing Cycle

As Figure 2.1 shows, at the beginning of every cycle, Ape retrieves the GUI information
on display from the Android device. Upon receiving such information, Ape digests it and
refines the dynamic model. After the refinement, the dynamic model generates a list
of actions targeting on widgets that are showing on screen. To maximize the possible
outcomes, these actions will be sorted based on multiple properties, such as the action
type and the number of executions of such action. Ape prefers types like CLICK and
SCROLL, and the less executed actions are also preferred. Among the most preferred
actions, Ape randomly chose one and send it to the Android device. After the action
being executed by the device, Ape would again request GUI hierarchy information from
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Figure 2.2: Example GUI and its XML

the device to prepare for the next cycle. This process keeps repeating until a pre-specified
goal, such as timeout, is reached.

Ape implements a dynamic model internally to instruct the exploration process. Ini-
tially, Ape starts with an empty model. After every testing cycle, Ape refines the model
with the updated GUI hierarchy information. GUI hierarchy information is collected
through UiAutomator [32]. UiAutomator is an official tool to write GUI test cases for
Android application. It provides the functionality to interact with visible widgets on the de-
vice, and also the ability to search a certain widget. Ape is using the dumpWindowHierarchy
function [33] provided by UiAutomator to dump the GUI hierarchy on screen into text in
XML formatted text. Then, Ape analyzes the XML to obtain the GUI information.

There is an example GUI along with its XML in Figure 2.2. From the sample XML,
it is easy to identify all the widgets: a FrameLayout, a ViewGroup, a TextView, and a
Button. Each widget has some properties associated, such as resource ids, class names,
text content, the bounds, their coordinates on screen, and interactions they each support.
Moreover, the XML file also provides hierarchical information. For instance, the Button,
with the resource id next btn, is a child widget of the ViewGroup, and the ViewGroup is
a child of the FrameLayout. Based on the above-mentioned information, Ape is able to
create class instances for all widgets along with their properties. Each instance is linked
with its parent instance and children instances. Therefore, all the widgets in an activity
are effectively connected as a tree, which is later referred to as a GUI tree.

Each GUI tree is strictly associated with one activity, and one activity can potentially
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have more than one GUI trees. Different GUI trees belonging to the same activity represent
different states of that activity. Between these GUI trees, there are also direct or indirect
connections by actions, transitions from one state to another are triggered by actions.
These transitions can either be inter-activity or interstates within the same activity. Thus,
the connected states and the transitions form a graph, which enables the exploration from
one state to any other state.

During testing, Ape generates and arranges actions to maximize the opportunity of
discovering bugs (e.g., crashes and not-respondings). Based on the property information
in GUI trees, Ape is able to identify all the supported actions, and thereby assembles a
series of actions targeting these widgets. Randomly executing these widgets is not effective
enough, so Ape also ranks the actions with reference to the action types and execution
counts. Finally, Ape picks the most preferred action to execute, and puts the rest of them
into a queue for the next round.
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Chapter 3

Approach

Our approach improves Ape in two different aspects. After the initial attempt to introduce
Appium as the communication layer to eliminate Ape’s dependency on private APIs, we
detected a noticeable performance decrease. Aiming to solve the performance issue, we first
introduce UiAutomator [32] as the new communication layer and transform Ape back into
the monolithic structure. With UiAutomator, Ape runs completely on the device, which
removes the overhead of messaging over the network. Also, because of UiAutomator, Ape
does not rely on any private APIs, so that it provides better supports to newer Android
versions. Most importantly, the monolithic structure enhances Ape’s maintainability by
supporting debuggers. Secondly, we introduce a static model obtained from running a
static analysis over on an Android app to aid the exploration of the activities inside the
Android app. This static model should be informative enough to provide activity transi-
tional information with their triggers. Based on the information, Ape should be able to find
a path to quickly reach a specified destination activity and conduct testing there. We name
our solution Ape+. In this chapter, we are going to present the design and implementation
details about the enhancements.

3.1 Enhancing Testing Efficiency

To understand the reasoning behind replacing Appium, we need to first understand how
Appium works as part of Ape. As mentioned before, Ape runs testing cycles which inter-
actively exchange information with the device. The exchange happens through Appium,
which serves as a bridge connecting the Android device and Ape. As the Figure 3.1 shows,
Appium is installed on the Android device. All the actions generated by Ape are sent to
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Appium first. Appium then interprets the actions and executes related functions to trigger
UI interactions on the Android device. When Ape tries to fetch the UI information, it
sends a request to Appium, and Appium activates related functions on the Android device
and returns the result back.

Figure 3.1: Ape Workflow with Appium

This essentially forms a server-client structure, where Ape, with the model and logic,
is on the server side processing the GUI information and generating next actions; the
Android device is the client that accepts and executes instructions from the server side.
The communication between server and client is made possible through Appium, which
uses Json-RPC calls under the hood. Each interaction happening between the server and
client needs to go through Appium, which adds up a huge overhead. Appium was designed
in a way to maximize the compatibility, as it supports both Android devices and iOS
devices. However, the performance sacrifice for such compatibility is a waste for Ape,
which only supports testing Android applications. In addition, because of the server-client
structure, debugging Ape has been difficult, as the only viable way to debug Ape is through
collecting and analyzing logs.

Consequentially, one straightforward answer to address these issues is to eliminate
Appium and the server-client structure. Ape should obtain the ability to run completely
on the device and to interact with the device directly without Appium in the middle. Since
the elimination of the communication-over-network, the overhead is essentially minimized
and the efficiency should be enhanced. Moreover, Ape should also support more efficient
debugging tools, such as debuggers, which enables developers to easily pause the execution
and inspect the ongoing process. Aiming to satisfy the requirements listed, we adopted
UiAutomator.

UiAutomator [32] is an Android UI testing framework that supports interactions be-
tween widgets. It is a first-party library from Google, and it runs completely on the device.
Ape using UiAutomator is a monolithic application runs on the device, as a result debug-
gers from Android Studio [3] or IntelliJ [16] can be used to inspect it. UiAutomator also
provides APIs to trigger interactive actions on the device, including but not limited to
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click, pinch, and swipe. There are also APIs that captures the current UI hierarchy on
screen and dumps the information into XML files. We replaced Appium with UiAutomator
to allow Ape to be debugged with a debugger and be executed on-device after rebuilding
Ape as a monolithic application. In the following subsections, we discuss a few challenges
we have faced in the process of replacing Appium with UiAutomator, and also provide our
solutions to each of them.

3.1.1 Supporting Scrolling

To replace Appium, UiAutomator should take care of all the user interactions with the
Android device that were previously handled by Appium. UiAutomator provides a class
named UiDevice, which wraps multiple functions to generate user interactive events. Using
a singleton instance of UiDevice, we could achieve click, swipe, rotate, and more. However,
scroll is not provided by default in UiDevice. A scroll function should accept a list of
coordinate points, then simulates the behaviour where the user puts their finger at the
first point, then moves it from one point to the next, and eventually lifts that finger at the
last point. It is an indispensable interaction users often do with any scroll-able views. For
example, there are table views displaying a list of items, and users have to scroll to see all
the items.

This important function is not provided, but we must have it. We first thought about
finding a similar function, then make modifications based on it. There is a swipe function,
which sounds similar, as scroll can be considered a variation of long swipe. However,
this function is significantly different, as it simulates the event where the user touches a
point with their finger, then move to a direction with their finger quickly lifting from the
screen. Using swipe to replace scroll makes Ape unable to pause the scroll in the moving
process or control the scrolling speed. As this approach does not solve the problem, we
decided to build our own scroll function. We discovered a class called MotionEvent [25].
It can simulate user events such as touch down, move, and touch up. Hence, the scroll
action can be broken down into multiple steps, and simulate each respective step using
a MotionEvent. The first step would be touching down MotionEvent at the start point.
Then we use multiple moving MotionEvent to move from one point to the next point.
Finally, after reaching the last point, we send a touching up MotionEvent to lift the finger.
Using the combination of MotionEvents, we successfully simulate the scrolling behaviour.
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3.1.2 Detecting Current Activity

GUI trees form the foundation for Ape’s dynamic model. For each GUI tree, it is required
to be associated with an activity. Therefore, it is important for Ape to correctly identify
the current activity name. However, it is not an easy task for the current UiAutomator to
detect the active activity on screen, since the getCurrentActivityName in UiDevice has
been deprecated. Any function calls to this function will simply end up with an incorrect
value. Besides this one function, we have also examined other proposed solutions found
on a stack overflow post,1 such as using ActivityManager and ActivityThread. But
unfortunately, none of them worked.

Ultimately, we solved this challenge by dumping the system information through ADB [2],
from which we capture the focused activity name using a regex. However, this brought in
another problem. If Ape sends a request to fetch the activity name right before an activity
transition, the activity name fetched could be the name of the source activity. Then Ape
would associate the name of the source activity with the GUI tree from the target activity,
which leads to inaccuracy. This is because ADB is a separate process, which does not
pause the transition when fetching the activity name. It is not aware that there is an
activity transition going on either. When ADB receives the request before the transition
finishes, it would include the activity name of the source activity in the response. But
when Ape receives the response, the transition is likely finished, which causes a mismatch
of the activity names. We contemplated the problem and proposed two potential solutions.
We firstly tried to subscribe to a callback service from AccessibilityService [1]. As the
AccessibilityService is able to notify Ape about a window change, so that we can con-
servatively use the same activity name until a window is changed. We expect this call
back to be the correct timing to refresh the activity name. Whenever a call back arrives
about window changing, Ape would try to update the current activity name. However,
this service was proven to be not precise enough. It does not always trigger the call back
in time, and sometimes even not trigger the call back at all. This made the problem worse
as the call back are unpredictable. As the first solution providing no sign of easing the
problem, we decided to send a fetch request with a delay of 25 milliseconds after executing
each action. The choice of 25 milliseconds was based on an experiment. We used a binary
search strategy to narrow down the possible durations to complete an activity transition
after executing an action. Eventually, we found that 25 milliseconds is the shortest time
that is long enough to guarantee the end of a transition. Adding the delay ensures all the
requests are sent after a transition, thus Ape is able to obtain the correct activity name
on screen.

1Stack Overflow:https://stackoverflow.com/questions/11411395
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3.2 Enhancing Testing Effectiveness

We have extended the Ape with UiAutomator to support static-model-guided exploration,
so that it can rearrange the time and resources to test the activities of interest. We
provide Ape+ an informative static model, which is generated using a static analyses tool
called Frontmatter [18]. Using this static model, Ape+ prioritizes actions that lead the
exploration closer to a specified target activity.

3.2.1 Overall Workflow

Figure 3.2: Ape+ Workflow

This subsection talks about the general workflow of Ape+. From Figure 3.2, the first
step is to instrument the APK file for widget matching. This is our proposed optimization
to the collaborations between static models and dynamic models. The instrumentation
generates an instrumented APK, which will then be analyzed by Frontmatter [18] and also
be installed on the Android device. Frontmatter generates a static model after performing
static analyses on the instrumented APK. This static model will be uploaded to the device.
Lastly, Ape+ will be installed on that device, and the testing process starts.

3.2.2 Why Frontmatter

This subsection explains why we chose Frontmatter over other options, before diving into
the implementation details. Frontmatter by far generates the model that best suits our
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needs. It satisfied all the requirements we had: GUI hierarchy analysis, transition detection,
and precise trigger identification. We have also experimented other static analyses tools,
such as Gator [29], ICC-Bot [37], and GoalExplorer [19]. After experimenting, we have
found that each candidate has their unique features and shortcomings.

Table 3.1: Feature Comparisons between Static Analyses Tools

Frontmatter Gator GoalExplorer ICC-Bot

GUI Hierarchy Analysis ✓ ✓ ✓

Transition Identification ✓ ✓ ✓ ✓

Trigger Listener Detection ✓ ✓ ✓ ✓

Trigger Widget Detection ✓ ✓

Table 3.1 shows all the static analyses tools and their related features. First, Gator pro-
duces Window Transition Graphs, which contains GUI hierarchy information and transition
information. However, the transitions in Window Transition Graphs only have listeners
as the triggers, which is coarse-grained. Because a listener method can be potentially
associated with multiple widgets, and implement different conditional branches to handle
each widget differently. So that we cannot naively assume any widget associate with this
listener would be able to trigger the transition. Besides, for some complex applications,
Gator would crash during the analysis process and output no static model. ICC-Bot was
not our first choice, because it does not contain the necessary GUI hierarchy information.
In spite of its enhacement on detecting transitions between components in a fine-grained
level, the lack of GUI hierarchy information makes it difficult to fit into Ape+’s use case.
Lastly, Screen Transition Graph from GoalExplorer could have been the most promising
candidate. Nevertheless, a bug in their tool prevented us from generating any meaningful
static model out of it. After excluding the three static analyses tools, Frontmatter remains
the only candidate with all the required features. Frontmatter, besides satisfying the fea-
ture requirements, also shines with its trigger detection algorithm. It finds not only the
trigger listeners but also the specific transition triggering branches. Frontmatter then asso-
ciates each such branch with the widgets appear in the conditional statement. In this way,
it narrows down the potential trigger widgets to the one that is related to the triggering
branch. It does not solve the false positive completely, but it largely eases the problem.
Finally, Frontmatter is the most stable among all the tools. For over one-hundred appli-
cations we tested, Frontmatter faithfully produces models for all the applications without
crashes. In conclusion, Frontmatter was chosen because it is the most stable and more
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fine-grained option over all other options, which provides GUI hierarchy analysis, trigger
detection, and transition identification.

3.2.3 Frontmatter’s Static Model

A static model Frontmatter generates is hierarchical JSON file, with three parts at the top
level: packageName, activities, and transitions. The packageName section indicates
the package name belonging to the target application. The activities section is a big
map containing all the activities and their associated widgets. All the widgets, along with
their properties, are listed in a tree structure under the related activities. The transitions
section contains a list of triples, where each triple is a source activity name, target activity
name, and a list of ids of trigger widgets.

{

"packageName": "com.example.Example",

"activities": [ {

"name": "com.example.Example.IntroActivity",

"layouts": [ {

"viewClass": "android.widget.ListView",

"resourceId": "menu_drawer",

"guid": "m7QKijqLpW",

"children": [ {

"viewClass": "android.widget.Button",

"resourceId": "next_btn",

"contentDescription": "",

"text": "Next",

"guid": "PH70IVAKBf",

} ]

} ]

},

{

"name": "com.example.Example.MainActivity",

"layout": [ ]

}

],

"transitions": [ {

"scr": "com.example.Example.IntroActivity",

"tar": "com.example.Example.MainActivity",

"trigger": [ "PH70IVAKBf" ]

} ]

}

Listing 3.1: Example of Static Model

A simplified static model looks like Listing 3.1. This application has a package name
“com.example.Example”. There are two activities in this sample application. The first
activity, named com.example.Example.IntroActivity, has a button with resource id
next btn under a drawer widget with resource id menu drawer. The second activity,
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named com.example.Example.MainActivity, has no widget. Both the drawer and the
button have the field guid, that does not appear in the dynamic model. It is a globally
unique id generated in the static analyses process, but apparently it does not exist in the
actual widget, so it cannot be used to identify widgets at runtime. it also lists a pos-
sible transition in the transition section, from com.example.Example.IntroActivity

to com.example.Example.MainActivity. The trigger part includes one available trig-
ger, whose guid is “PH70IVAKBf”. If we look up this guid in the activities sec-
tion, we would find the button, with the resource id next btn. It means that this
button is the trigger for the transition from com.example.Example.IntroActivity to
com.example.Example.MainActivity.

3.2.4 Widget Matching

Widget matching is an essential but challenging step to achieve the goal of making two
models collaborate. To interact with a specific widget described in the static model, Ape+

needs to first find such widget in the dynamic model. The process of finding the widget
in the dynamic model using the information provided in the static model is called “widget
matching”. Practically, there exists no way to match two widgets with absolute confidence,
mainly because of the lack of shared information between dynamic models and static
models. Especially, there does not exist a universally unique identifier that can be used to
distinguish widgets from each other.

The current strategy for matching widgets is to calculate a confidence score based on
the similarities of multiple properties, such as “resource id” [14], “text content”, and “class
name”. A higher confidence score means a higher possiblity that the two widgets match.
For any two giving widgets, one from the static model and one from the dynamic model,
each pair of matched property values contributes certain points to the overall confidence
score. Because the likelihoods of matching properties differ, the weights assigned to the
matched properties are also different. Among all the properties shared between static
widgets and dynamic widgets, the “resource id” has the highest weight. The reason is that
“resource id” is normally unique within a certain scope [13]. Thus, matched resource ids
are often a strong indicator for matched widgets. Nonetheless, resource id is often missing
in widgets, as it is not a mandatory property. As a result, when multiple widgets exist
without resource ids, the matching process can be less precise, due to the miss of the most
important indicator.

However, the miss of resource ids can also be viewed as an opportunity to increase the
match-ability. We propose a strategy is to create and supply globally unique ids to the

18



widgets that without resource ids. Through matching on the globally unique ids, widgets
can be matched with even more confidence. Before talking about details of supplying
resource ids to the widgets, it is necessary to understand where resource ids are associated
with widgets. The first place is in XML layout resource files, where widgets are defined
with their properties, including resource ids. The second place is in source code files where
widget instances can be instantiated, then resource ids can be assigned to the newly created
instances. Our strategy handles the second scenario only based on the assumption that
most resource-id-less widgets defined in layout files are static and non-interactive, such
as FrameLayouts or ViewGroups. For non-interactive widgets, there is not much value in
matching or assigning resource ids to them.

Our solution supplies unique resource ids only to the widgets that are created through
source code. There are three possible methods to instantiate a widget instance in source
code:

1. ViewBinding.inflate [35]

2. View.findViewById

3. new WidgetClass

Method 1 inflates a widget defined in an XML layout file. It is the same as creating widgets
through layout resource files, so we decided not to handle this case. Method 2 fetches and
constructs a single widget instance based on a provided resource id. Since this widget
already has a resource id, there is no need to supply another id to it. Finally, Method 3
creates a new widget instance using a constructor of the widget class. This is the case
where our solution handles.

The process of supplying unique ids targeting method 3 is straightforward. The first
step is extracting and parsing the resource file contained in the target APK file and collect
a set of resource ids. The resource file, normally named as resources.arsc, is at the top
level of the APK file, and stores all the resource related data, including resource ids. For a
newly created resource id, it is essential to guarantee its uniqueness by checking in the set.
Then it needs to be inserted into the resource file, so that the id can be correctly read and
used in the static analyses and dynamic analyses. Next, we use FlowDroid [6] to analyze the
APK file and identify all the “new” statements that are instantiating widgets. FlowDroid is
a static analysis tool based on Soot [11] that is able to decompile the APK file into source
code in Jimple format [34]. Using the source code, it is possible to identify, find, and
modify statements and expressions. After each “new” statement, we insert a setId(int)

statement with the newly created unique resource id as the argument. As some widgets are
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created then assigned resource ids, it is important to insert our setId(id) statement right
after new statement to avoid overriding the original ids. This is necessary to avoid potential
bugs, as the original ids may be referred in other parts of the source code. Ultimately, we
update the generated resource ids to resource file, and repackage the modified content into
a new APK file.

We have also adopted a strategy used in ATUA [26], where they include the hierarchical
information between static widgets and dynamic widgets to enhance widget matching. For
example, when the two widgets match, ATUA would further recursively compare their
parent nodes to gain more confidence score. However, one problem exists as Ape’s GUI
tree is based on compressed GUI information. In compressed GUI information, nested
layouts or nested groups may be collapsed into a single layout or group. Thus, even
two widgets match, their parents do not necessarily match. With knowing the existence
of this difference, we implement the hierarchical match as a subsequence match. We
add confidence scores based on the maximal number of matched ancestor nodes in the
GUI hierarchy. Specifically, we compare the parent of a static widget to the parent of a
dynamic widget. If the two nodes match, we recursively match the grandparents, otherwise,
we compare the grandparent of the static widget to the parent of the dynamic widget.
Eventually, when either of them reach the root, the recursion ends.

3.2.5 Path Finding

Once the instrumented APK file is generated, it is fed to Frontmatter to generate a static
model and installed on a device for testing. Ape has the functionality to prioritize actions
based on different factors to maximize the opportunity of triggering bugs. Using the
similar strategy, Ape+ also prioritizes the actions whose target widgets are likely leading
the exploration process closer to the designated target.

In order to arrive at the activity of interest, Ape+ needs to find a path from the
current activity. A path is essentially a sequence of actions or static widgets that can
trigger transitions. These actions and static widgets combined should trigger transitions
eventually leading Ape+ to the destination. Our approach consists of three steps to find
the path. The first step starts with a breadth first search from the current activity using
only the dynamic model. For every activity found in the process, Ape+ saves its name
and the actions needed to reach this activity from the current activity. This step finishes
when no more activities can be found. If the target activity appears in that set, the
related sequence of actions would be returned as the path. Otherwise, the second step is
kicked off. Ape+ extends the existing paths to all the activities found in step one using
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the static model. At this phase, Ape+ initiates another breadth first search starting from
all the dynamically reachable activities. Using the static model, it attempts to find new
and unreached activities. For each such activity, the static widgets leading to it will be
appended after the sequence of actions. This phase terminates after a specified timeout or
when all paths leading to target activity are found. For every path reaching the destination,
it is a sequence of actions from the dynamic model plus a series of widgets from the static
model. If the destination activity is accessible, step three is to find the shortest and the
most reliable path among all the options. Ape+ ranks each path based on the number of
static transitions and the total number of transitions. The overall score is deducted for
each static transition, mainly because static transitions can potentially be false. Reducing
the number of static transitions would enhance the overall stability. Ape+ always chooses
the path with the highest score. However, if there are more than one path, then Ape+

prefers the shortest one which has fewer overall transitions. If the destination remains
missing after above phases, or any action is unavailable in the process, Ape+ switches
to the random exploration mode trying to either reach the next activity or enable the
unavailable action.

Input : Target, CurrentActivity, DynamicModel, StaticModel
Output: Path
DynActivities,Actions← BFS(DynamicModel,CurrentActivity);
if Target ∈ DynActivities then

return GetActions(Actions,Target);
else

StaticActivities,Widgets← BFS(StaticModel,DynActivities);
if Target ∈ StaticActivities then

return GetActions(Actions,Target) +GetTriggerWidgets(Widgets,Target);
else

RandomlyExplore(Target);
end

end
Algorithm 1: Path Finding

When a path is determined, Ape+ would explore with following its guidance. It follows
the path as described in Algorithm 2 to choose the most optimal actions to perform. At
each testing cycle, Ape+ obtains a list of possible actions from the dynamic model after
it analyzing the current GUI hierarchy. For each action, it increases the priority of each
action if it matches the transition action or its target widget matches with the transition
widget described in the path.
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Input: Path, DyanmicModel
Actions← ActionsFromModel(DynamicModel);
Transition← GetTransition(Path);
foreach Action← Actions do

if Transition is Action ∧ Transition = Action then
IncreasePriority(Action);

else
if Transition is Widget∧Match(Transition,GetTargetWidget(Action)) then

IncreasePriority(Action);
end

end

end
Algorithm 2: Priority Adjusting

3.2.6 Mitigating False Information

From the path, Ape+ is able to find the preferred action and its expected activity after
triggering. However, false information is inevitable in static models, thus Ape+ also needs
to handle situations like false triggers. Showing in Algorithm 3, Ape+ keeps track of the
expected activity before executing a selected action. Unless in the random exploration
mode, whenever after an action is executed, Ape+ checks the reached activity against the
expected activity. If the two activities match, Ape moves on to work on to the next action
until it reaches the destination. If not, Ape+ considers it a failure and decays the priority
of that action, potentially treating it as a false positive case. With the decayed priority,
such action will less likely to be chosen again. The decay is based on a modified sigmoid
function to reduce the priority gradually and smoothly. The first a few failures would only
mildly reduce the priority, and the rates for punishment keep increasing with the failures
accumulating. However, even after a tremendous amount of failures, an action would not
be blocked completely. Because the reasons of failures can be complicated, Ape+ prefers
not to assertively block any failed actions as false positive cases. Instead, the gradually
decayed priorities leave the door open for potential future retries.
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Input: Path
Procedure DecreasePriority():

Input: Action
f ← CountFailedAttempts(Action);
if f ̸= 0 then

Priority← GetPriority(Action);
Tolerance← GetFalsePositiveTolerance();
DecayedPriority← Priority/(exp(f − Tolerance) + 1);
SetPriority(DecayedPriority,Action);

end

end
Action← SelectAction();
ExpectedActivity← GetTarget(Path,Action);
ExecuteAction(Action);
Activity← GetCurrentActivity();
if Activity = ExpectedActivity then

MoveOn(Path);
else

DecreasePriority(Action);
end

Algorithm 3: Path Following
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Chapter 4

Evaluation

The proposed solution was evaluated on a Linux machine with CPU 2 x Intel(R) Xeon(R)
Gold 5217 CPU @ 3.00GHz and 384 GB RAM. All the tests were conducted on an An-
droid emulator with the default hardware configuration of Nexus 6 and SDK version 24.
After each round of testing, the emulator was cleared and restarted. Each test was carried
out sequentially to avoid potential affects between concurrent emulators. We picked our
benchmark applications from the Themis paper [31], along with randomly chosen applica-
tions from F-Droid [10]. We filtered out applications whose model has fewer than three
transitions. This left us thirty applications. Then we removed five applications that cannot
be run in the emulator. Eventually, there are twenty-five benchmark applications for the
experiments. We initially intended to evaluate Ape+ against GoalExplorer [19]. However,
due to a bug in their tool, we could not get it running. Therefore, we eventually only
tested Ape+ against UiAutomator version of Ape (referred to as “Ape” later). Since both
Apes interact with devices through UiAutomator, any difference between them should be
related to the static model.

Related experiments are designed to answer the following research questions:

• RQ1: How much efficiency improvement UiAutomator has brought to Appium-based
Ape?

• RQ2: Does informative static models enhance the efficiency of Ape+?

• RQ3: Does false information in static models diminish the efficiency of Ape+?

• RQ4: How static models changed the behaviours of Ape+?
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4.1 RQ1: How Much Efficiency Improvement UiAu-

tomator Has Brought to Appium-Based Ape?

We designed this experiment with all the target applications for measuring the efficiency
enhancement. The twenty-five testing applications cover a wide range of widgets, including
but not limited to buttons, scrollviews, texts, and a variety of layouts. We have configured
both Ape+ and Ape using Appium to test the applications. Since there is no specific
goal set for Ape+, it is essentially Ape with UiAutomator. In general, the path finding
algorithm would not cause any measurable impact upon the performance of Ape+. As
mentioned before, a cycle is the base unit to count the number of iterations Ape interacts
with the device. In each cycle, Ape requests GUI hierarchy information from the device,
refines its model, then executes an action. We set both Apes to test for thirty testing
cycles and eighty testing cycles, so that we can see the impacts of UiAutomator in shorter
term and longer term. Due to the randomness in Ape, we conduct each testing process ten
times, and measure the time consumption for both Apes. Between each iteration, we clean
and restart the emulator to completely wipe out any remaining data that may potentially
affect the outcome. Eventually, we calculate the average time consumption and a variance
for each application.

Reading the Table 4.1, for all applications, the time consumption dropped since switch-
ing to UiAutomator. However, it is also obvious that the efficiency improvement is not con-
sistent across all applications. Taking AndBible-3.0.286 as an example, the 30 cycles effi-
ciency has increased 44%, as time consumption was reduced from 70.05 seconds to 39.73 sec-
onds; and 80 cycles efficiency has increased 36%, as time consumption dropped from 148.98
seconds to 95.13 seconds. However, the same cannot be said about nextcloud-30100090,
whose improvement is quite limited. The time consumption for 30 cycles was reduced by
barely 5 seconds, which is about 11% of efficiency increase; and for 80 cycles, the time con-
sumption was reduced by 19.09 seconds, which is around 17%. Among all the applications,
the scales of such efficiency improvement vary. It is likely caused by the different testing
paths and different widget distributions.

We have also found two applications, de.hskl.contacts 1 and wpandroid-11.3, caus-
ing a bug in Appium constantly after roughly 30 seconds of execution. This bug would
crash the experiment, and that is why we do not have a precise time consumption collected
from the two applications.

In conclusion, switching to UiAutomator has been proven to enhance the performance
of Ape by simplifying the structure and reducing the overhead. Even though there are
improvements for all applications, the scales of enhancements are not identical. For all the
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Table 4.1: Average Time Comparison between Ape with UiAutomator and Ape with Ap-
pium. The Cells With N.A. Means a Bug in Appium Crashed the Experiment. The
Numbers in Parenthesis Are Variances

30 cycles 80 cycles

UiAutomator Appium UiAutomator Appium

amaze-file-manager-3-2-1 37.98 (2.80) 53.06 (2.30) 96.91 (18.08) 119.14 (9.71)

AndBible-3.0.286 39.73 (4.98) 70.50 (217.68) 95.13 (29.96) 148.98 (533.55)

AndBible-3.1.309-beta 40.07 (2.60) 59.90 (25.12) 96.91 (7.87) 144.43 (470.51)

AnkiDroid-2.6 42.98 (1.36) 62.86 (35.95) 91.35 (305.99) 140.78 (279.49)

AnkiDroid-2.7 42.79 (0.82) 65.11 (27.38) 94.49 (6.65) 140.96 (368.95)

AnkiDroid-2.9.1 36.39 (3.89) 51.09 (0.55) 97.31 (7.09) 107.23 (6.61)

AnkiDroid-2.9.4 36.59 (1.54) 50.84 (0.24) 95.58 (6.41) 106.09 (2.78)

AnkiDroid-2.9 36.11 (4.16) 52.69 (6.71) 95.00 (6.09) 105.76 (0.84)

APV APP v1.0 39.33 (2.53) 45.86 (1.64) 87.23 (32.33) 98.44 (0.91)

Barcode Scanner v4.7.8 42.30 (2.54) 56.56 (2.20) 90.10 (4.50) 125.10 (8.34)

de.hskl.contacts 1 35.84 (3.44) N.A 96.85 (17.00) N.A

My Tracks v5.6.3 36.14 (1.68) 54.46 (5.34) 82.21 (1.86) 123.16 (7.30)

nextcloud-30100090 44.08 (3.52) 49.30 (3.86) 96.40 (13.01) 115.49 (29.06)

Omni Notes v6.1.0 39.74 (1.91) 50.71 (2.40) 94.24 (14.44) 121.07 (24.94)

OpenLauncher Alpha v0.3.1 37.42 (4.05) 59.52 (0.72) 96.91 (9.71) 128.28 (27.76)

ToDont 32.54 (0.81) 50.90 (3.81) 93.52 (20.85) 121.10 (140.30)

wpandroid-11.3 40.68 (1.17) N.A 97.66 (28.94) N.A

wpandroid-12.9 38.31 (4.18) 48.36 (1.02) 94.75 (16.81) 117.12 (14.17)

wpandroid-13.1 37.69 (6.07) 49.11 (2.79) 99.09 (24.00) 116.82 (18.89)

wpandroid-13.3 36.86 (0.39) 49.85 (1.22) 97.90 (21.66) 115.33 (13.98)

wpandroid-13.6 37.23 (0.41) 49.31 (5.42) 97.70 (5.48) 115.86 (50.48)

wpandroid-13.7 37.38 (0.36) 50.51 (3.25) 96.52 (5.36) 115.62 (21.83)

wpandroid-14.9 38.05 (0.73) 50.73 (1.33) 94.84 (12.02) 118.59 (13.70)

wpandroid-8.1 39.65 (1.76) 57.84 (6.52) 96.18 (4.69) 123.15 (13.85)

wpandroid-9.2 43.76 (22.63) 57.05 (3.69) 103.49 (9.97) 122.89 (9.84)

applications tested, the improvements of efficiency roughly range from 11% to 44% for 30
cycles. For 80 cycles, the enhancements range from 9% to 36%.
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4.2 RQ2: Does Informative Static Models Enhance

the Efficiency of Ape+?

The introduction of static models to Ape is to bring in prior knowledge about the target
applications. In an ideal situation, the static models should contain all possible transitions
between activities, and it should be able to guide Ape to quickly explore every activity.
Therefore, we designed this experiment verifying wether an informative static model as
prior knowledge is actually helpful for the exploration. We define an informative static
model as one that contains mostly accurate information about the GUI hierarchy, activi-
ties, and transitions, with mimimal percent of false information. We manually inspected
all the applications along with their static models, and picked two whose static models
are informative. These two applications are rocks.poopjournal.todont (referred to as
ToDont) and de.hskl.contacts (referred to as ContactBook). ToDont has six activities,
and ContactBook has ten. We configured Ape+ to cover as many activities as possi-
ble within a thirty-minute time range. For comparison purposes, we also test Ape with
UiAutomator, referred to as Ape, for thirty minutes. The time consumption to cover all
activities will be collected. Due to the randomness, the experiment was repeated ten times,
and between each iteration, the emulator was wiped out and restarted.

As the Table 4.2 presents, Ape+ outperforms Ape on both applications. On ToDont,
Ape+ spent on average 39 seconds to discover all the activities, while Ape spent 90.9
seconds. The 90th percentile of time consumption reflects that in most cases Ape+ spent
fewer than 39.7 seconds, while Ape took roughly 131.1 seconds. It has also shown similar
results with ContactBook, where Ape+ spent 526 seconds on average to cover all activities,
while Ape spent 833 seconds. The 90th percentile of time consumption also favours Ape+,
which took 1,000.3 seconds most of the time, while Ape took 1,601.5 seconds. The tests
on both applications demonstrate that informative static models have positive impacts on
the exploration process in terms of time consumption.

However, we should also consider the time consumed in the static model generation
phase. As shown in Table 4.3, the average time to generate a static model using Frontmatter
varies across different applications. Taking ToDont as an example again, generating the
static model took 27.32 seconds on average. The time to cover all activities using Ape+

has saved 51.9 seconds on average. Effectively, the saved time is approximately to 24.58
seconds after subtracting the model generation time from the average time saved.

In conclusion, for both applications, Ape+ achieved a visible drop in time consumption,
as informative static models provide guidance in the process, and irrelevant interactions
are potentially avoided. When Ape+ is able to reach the activities of interest quicker with
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Table 4.2: Time Consumption in Seconds for Testing ToDont and Contact Book with
Informative Static Models

ToDont Contact Book

Ape+ Ape Ape+ Ape

73 231 609 198

35 52 319 1,202

35 120 309 1,553

35 36 267 207

35 89 182 531

35 52 130 678

36 53 274 185

35 110 911 227

35 53 1,804 2,038

36 113 455 1,511

Average 39 90.9 526 833

Max 73 231 1,804 2,038

Min 35 36 130 185

90 Percentile 39.7 131.1 1,000.3 1,601.5

10 Percentile 35 50.4 176.8 196.7

Median 35 71 314 604.5

less waste, it also means an increase in efficiency. On average, Ape+ saved nearly 57%
of time on exploration for ToDont, and the time consumption dropped 37% for Contact
Book, if not considering the time spent on model generation. Even considering the time
spent on model generation, the static model also provided a 27% enhancement for ToDont
and 32% enhancement for Contact Book.

4.3 RQ3: Does False Information in Static Models

Diminish the Efficiency of Ape+?

In real world scenarios, static models inevitably contain false information or miss essential
data. In order to discover the relations between the quality of static models and the
outcomes of tests, we designed another experiment.
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Table 4.3: Time Consumption for Frontmatter to Generate Static Models

Average Variance

amaze-file-manager-3-2-1 640.91 253.01

AndBible-3.0.286 499.83 369.02

AndBible-3.1.309-beta 411.26 1056.81

AnkiDroid-2.6 686.67 428.69

AnkiDroid-2.7 626.00 27345.50

AnkiDroid-2.9.1 1146.92 13939.76

AnkiDroid-2.9.4 1767.07 2211.75

AnkiDroid-2.9 824.74 8485.28

APV APP v1.0 10.83 0.74

Barcode Scanner v4.7.8 58.23 5.26

de.hskl.contacts 1 39.82 4.71

My Tracks v5.6.3 636.20 214.94

nextcloud-30100090 462.90 832.15

Omni Notes v6.1.0 109.42 20.59

OpenLauncher Alpha v0.3.1 23.53 8.69

ToDont 27.32 1.17

wpandroid-11.3 741.14 37.32

wpandroid-12.9 846.88 117.76

wpandroid-13.1 792.34 120.32

wpandroid-13.3 826.01 101.71

wpandroid-13.6 586.27 185.78

wpandroid-13.7 589.45 65.98

wpandroid-14.9 731.08 650.12

wpandroid-8.1 286.37 28.24

wpandroid-9.2 533.30 87.67

Because there is no automatic way to prove whether a transition is false information or
not, we again manually inspected one application, AnkiDroid-2.7, and its related static
model. We picked three activities as the destination for Ape+ to explore,

1. com.ichi2.anki.MyAccount (referred to as MyAccount)

2. com.ichi2.anki.FilteredDeckOption (referred to as FilteredDeckOption)

3. com.ichi2.anki.NoteEditor (referred to as NoteEditor)
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We picked MyAccount because the path leading to it has some noise. Specifically, one
transition in the path has listed five wrong trigger widgets along with a single correct
trigger widget. We expect it to confuse Ape+ when it tries to trigger a transition us-
ing the information provided by the static model, and leads Ape+ to irrelevant activities.
FilteredDeckOption was chosen because one static transition in the path is infeasible, as
every trigger listed in that transition is wrong. Even though the correct trigger remains
missing, the existence of false triggers would delay Ape+ from switching to random explo-
ration mode. We expect Ape+ to reach this activity after many false attempts. Lastly, we
chose NoteEditor as a control group, because the path to this activity does not contain
false information. We expect Ape+ to reach this activity quickly without many troubles.
Again, we test Ape+ against Ape, with a timeout limit set for thirty minutes. Because
Ape does not support exploring with a specific destination, it would be exploring in the
random exploration mode. To alleviate the potential threat of randomness, we repeated
the experiment ten times for each destination and recorded the time consumption.

Table 4.4: Comparison between Activities

NoteEditor MyAccount FilteredDeckOption

Ape+ Ape Ape+ Ape Ape+ Ape

193.71 346.45 307.00 264.52 219.81 529.15

42.84 497.90 609.40 40.69 1,013.97 150.98

625.26 375.17 531.33 101.13 882.74 562.94

102.50 496.54 228.17 462.85 1,542.30 370.54

411.57 157.49 225.11 17.54 907.06 39.67

249.93 360.49 233.71 366.56 301.07 291.97

52.33 364.98 400.65 406.17 329.74 432.49

291.41 423.29 260.47 400.46 1,172.33 438.44

381.05 325.26 379.14 183.97 863.40 207.52

460.13 422.65 567.01 86.82 742.39 160.14

Mean 281.07 377.02 374.20 233.07 797.48 318.39

Median 270.67 370.07 343.07 224.25 873.07 331.26

Max 625.26 497.90 609.40 462.85 1,542.30 562.94

Min 42.84 157.49 225.11 17.54 219.81 39.67

90th Percentile 476.64 496.68 571.25 411.84 1,209.33 532.53

10th Percentile 51.38 308.48 227.86 38.37 292.94 139.85

Table 4.4 demonstrates negative impacts that were caused by false information and
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omission of information. Ape+ took 281.07 seconds to reach NoteEdtior, as the path to
it is clear and correct, while traditional Ape spent 377.02 seconds on the road. This again
strengthens the claim that an informative static model is beneficial to the exploration.
However, The situation got worse when Apes try to reach MyAccount. Because of the
noise in the transition, Ape+ spent extra 60% of time on average compare to the time
Ape spent. The specific numbers are 374.20 seconds for Ape+, and 233.07 seconds for
Ape. As expected, Ape+ triggered lots of transitions that led it to irrelevant activities, or
activities far away from the destination before actually triggering the correct transition.
The noise had successfully slowed down Ape+ from reaching the destination. The last
activity revealed that omission of information may cause a much worse slow-down compare
to false information. During the exploration to FilteredDeckOption, due to the wrong
transition information, the time consumption for Ape+ nearly doubled that of Ape. On
average, traditional Ape took 318.39 seconds to reach FilteredDeckOption, while Ape
with static model wasted lots of time on irrelevant activities before finally crawled to the
destination after 797.48 seconds. As expected, due to the miss of correct trigger, Ape+

kept triggering wrong transitions to irrelevant activities. Because the correct trigger is
missing, Ape+ would keep trying the wrong triggers until they are considered not possible
and Ape+ switches to random exploration mode. In the random exploration mode, Ape+

has no difference from Ape, and therefore it could reach the destination after wasting all
the time on the wrong triggers.

This experiment reveals that false information and omission of information in static
models could lead the exploration process to false and unrelated activities, which eventually
causes a decline in efficiency. For MyAccount, where a correct trigger is buried by false
triggers, the efficiency dropped roughly 38%; while for FilteredDeckOption, the efficiency
dropped approximately 60%.

4.4 RQ4: Does the Static Models Change Ape’s Be-

haviours

In this section, we discuss the impact brought by static models to Ape+’s behaviours. The
experiment was set up to test each target application ten times using both Ape+ and Ape.
Each testing iteration takes up to thirty minutes. In the process, we keep track of the
activities reached, and the paths they took to reach the activities. Eventually, we analyze
the total number of unique activities and total number of unique transitions covered in all
testing iterations.
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Table 4.5: Coverage for All Applications. All the Values in Brackets Are the Numbers of
Univocally Covered Activities or Transitions

Activities Transitions

Total Ape Ape+ Ape Ape+

amaze-file-manager-3-2-1 7 3 (1) 2 (0) 343 (132) 364 (153)

AndBible-3.0.286 31 18 (3) 19 (4) 284 (121) 290 (127)

AndBible-3.1.309-beta 31 20 (2) 21 (3) 501 (201) 527 (227)

AnkiDroid-2.6 21 16 (2) 14 (0) 465 (184) 449 (168)

AnkiDroid-2.7 21 15 (0) 15 (0) 384 (145) 391 (152)

AnkiDroid-2.9.1 22 11 (1) 12 (2) 296 (121) 310 (135)

AnkiDroid-2.9.4 22 14 (1) 15 (2) 443 (172) 440 (169)

AnkiDroid-2.9 22 14 (0) 16 (2) 57 (19) 66 (28)

APV APP v1.0 11 7 (0) 7 (0) 427 (149) 461 (183)

Barcode Scanner v4.7.8 9 7 (0) 7 (0) 727 (249) 802 (324)

de.hskl.contacts 1 10 10 (0) 10 (0) 392 (148) 408 (164)

My Tracks v5.6.3 35 16 (0) 16 (0) 508 (184) 527 (203)

nextcloud-30100090 36 3 (0) 3 (0) 333 (129) 351 (147)

Omni Notes v6.1.0 14 6 (1) 7 (2) 572 (230) 632 (290)

OpenLauncher Alpha v0.3.1 8 7 (0) 7 (0) 319 (125) 338 (144)

ToDont 6 6 (0) 6 (0) 555 (219) 582 (246)

wpandroid-11.3 76 7 (1) 6 (0) 117 (42) 139 (64)

wpandroid-12.9 84 6 (0) 6 (0) 338 (130) 358 (150)

wpandroid-13.1 80 6 (0) 6 (0) 325 (128) 341 (144)

wpandroid-13.3 80 6 (0) 6 (0) 104 (33) 131 (60)

wpandroid-13.6 78 6 (0) 6 (0) 94 (29) 115 (50)

wpandroid-13.7 78 6 (0) 6 (0) 127 (41) 147 (61)

wpandroid-14.9 81 6 (0) 6 (0) 456 (174) 448 (166)

wpandroid-8.1 62 4 (0) 4 (0) 476 (192) 453 (169)

wpandroid-9.2 67 5 (0) 5 (0) 430 (170) 429 (169)

Table 4.5 shows the activity coverage and the edge coverage for all the applications.
The numbers in brackets are the numbers of univocally covered activities or transitions.
For all the applications, most activities are commonly discovered by both Ape+ and Ape,
with merely few exceptions. There are nine cases where one Ape beats another by one or
two more univocally covered activities, while most of the covered activities remain shared.
For small and simple applications, both Apes are able to discover all activities within the
limited time. For large and complicated applications, both Ape did equally poorly within
the 30 minutes time range. For example, wpandroid-13.3 has 80 activities, but both of Ape
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only covered the same 6 activities. The average numbers of univocally covered activities
show that Ape covers 0.55 unique activities and Ape+ covers 0.68 unique activities. Using
paired T test on the numbers of univocally covered activities, we can get a two-tailed P
value equals 0.3269. It demonstrates that there is not much behaviour difference between
Ape+ and Ape in terms of activity coverages. However, the path coverage tells a slightly
different story. For all the applications, both Apes have numerous transitions that are not
covered by the other. Even for small and simple applications, like ToDont, the numbers of
uniquely covered transitions are 216 (Ape) and 234 (Ape+). On average, Ape has 130.05
univocally covered transitions and Ape+ univocally covered 144.63 transitions. Again,
we applied paired T test on the numbers of univocally covered transitions, and we got a
two-tailed P value equals 0.0004. Statistically, this difference is extremely significant.

In conclusion, there is nearly no significant difference between the two Apes in terms of
activity coverages. It provides a key insight that the introduced static model and upgraded
path finding algorithm do not enahance Ape+ to discover new undiscovered activities.
However, these updates deviated Ape+ from the original search path, which resulted in the
large number of exclusively covered transitions.
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Chapter 5

Related Work

Static Model Guided Exploration. At the time of writing, we have noticed a con-
current work in guiding explorations with a predefined static model. Ngo et al. developed
ATUA [26], an update-driven testing tool. It focuses on testing updated methods between
two versions of the same application, then use a static model, Extended Window Transi-
tion Graph, to guide DroidMate2 [7] to test widgets associated with the updated methods.
Their work is more fine-grained, as it focuses on the function level, while Ape+ only tries
to reach a specified activity at this moment. Ape+ has also learned an important wid-
get matching technique from ATUA, which is matching with the hierarchical information.
Similarly, Peng et al. proposed CAT [28] which accepts user provided goals, then maps
these goals to related widgets. CAT traces back on a call graph from the provided goals to
determine the widgets of interest. It then utilizes a test generation tool, Droidbot [21], to
generate tests to targeting these widgets. CAT does not control how Droidbot generates
tests, until it reaches an activity where widgets of interest exist. It will then take over
the testing process when such activities are reached. Ape+ on the other hand, does not
rely on third party test generators, and it controls the generation of every action. Each
generated action is rearranged in the most optimal order to effectively guide the explo-
ration process to the destination. Lai et al. developed GoalExplorer [19] which builds a
highly-fine-grained static model as the sole information source to guide the exploration.
GoalExplorer emphasizes the importance of a static model that closely represents an appli-
cation. With its informative static model, GoalExplorer does not rely on a dynamic model
to do the exploration. Unlike GoalExplorer, Ape+ utilizes both models, the static and the
dynamic, to explore an application. As discussed before, static models are prone to false
positives and miss of information. Thus, we believe that exploring with the combination
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of both models is more optimal.

Static Analyses Tools. All the related static analyses tools are based on Soot[11] to
collect information from the APK files. Rountev et al. [29] developed Gator, which pro-
duces the Window Transition Graph. Window Transition Graphs contain the information
of widgets, activities, and transitions between activities. The trigger information between
widgets are listener methods, which is coarse-grained. As mentioned beofre, a listener func-
tion can internally implements multiple conditional branches, and the transition may only
be triggered by specific widgets. Thereby, listing listeners as triggers narrows down the
scope of widgets, but it is not accurate enough to avoid false trigger widgets. Ngo et al. [26]
introduced Extended Window Transition Graph. As the name suggests, it is an extended
version of the Window Transition Graph from Gator. It tracks back from listeners to wid-
gets, and includes the related widgets as part of the model. Based on ATUA’s unique use
case, information about updated methods between two versions of the same application is
also included in the model. Similarly, these trigger widgets are not accurate enough due
to the nature of listener methods. Yan et al. [37] presented ICCBot, whose model focuses
solely on transitional information. ICCBot attempts to divides activities into components,
and find relations between the components. Because it can subdivide an activity into mul-
tiple components, it will essentially find more transitions. The transitional information is
therefore more fine-grained as compare to Window Transition Graph. However, this tool
is unable to analyze UI hierarchy or widget information. Kuznetsov et al. [18] developed
Frontmatter, which provides an optimized trigger detection strategy. Frontmatter does not
naively assume any widget associated with a trigger listener would trigger the transition.
Instead, for every listener function, Frontmatter breaks it down based on the conditional
branches. Next, Frontmatter analyzes the conditions associated with each such branch.
If there is any widget is referred in the condition, Frontmatter would link the conditional
branch to that widget. Using this strategy, Frontmatter is able to narrow down the correct
trigger widgets for each transition. Lai et al. [19] proposed Screen Transition Graph, as a
fine-grained alternative to Extended Window Transition Graph. Its static model, Screen
Transition Graph, contains various node representing different screens the application has.
Each node has its unique widget arrangement. It records transitions between different
screens in hope of closely represnting the runtime behaviours of the application.

Android Testing Tools. There are also related automatic Android testing tools. Gu
et al. developed Ape [12] that is able to abstract content on screen into a model and con-
stantly refine it with a decision tree. This thesis is based on Ape, and tries to address the
drawbacks it has. Borges et al. [7] constructed a highly efficient testing generator platform,
DroidMate2, that provides out of box testing strategies and monitoring tools. DroidMate2
can also be used as a testing tool by itself to generate test inputs targeting given appli-

35



cations. ATUA is using DroidMate2 to generate test cases. Wang et al. [36] developed
ComboDroid. The corner stone of this tool is the observation that a long test input can be
decomposed into relatively independent pieces, and enumerating different small pieces can
form long and better test inputs. ComboDroid has the ability to extract the small pieces
in the testing process, and it can also accept user inputs about the small pieces. There
is also Humanoid introduced by Li et al. [22]. Humanoid uses a deep learning approach
to learn and generate actions that resemble human interactions. As a result, Humanoid
is able to put first the test inputs that users think are more important. TimeMachine [9]
developed by Dong et al. is another interesting Android testing tool. It is able to sense that
the testing process is not making progress. When it happens, TimeMachine would return
the testing process to a previous saved spot in time, and resume testing with a different
path. Each time TimeMachine chooses a different path, it tries to avoid getting stuck
and make progress in a different direction. Such time travelling functionality is achieved
by conducting the test in a virtual machine, and saving snapshots in the testing process.
Whenever it needs to go back in time, a saved snapshot is reloaded.
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Chapter 6

Discussion

6.1 Threats to Validity

This study focuses on improving the maintainability and efficiency by switching to UiAu-
tomator from Appium based Ape, and enhancing the testing effectiveness by introducing
static-model-guided exploration. The validity of the results may be affected by a number
of factors.

6.1.1 Internal Validity

Randomness. Ape’s exploration involves a lot of randomness: from randomly selecting
actions to randomly generating throttles. Therefore, the random choices may increase or
decrease the amount of time needed to complete certain tasks, e.g. discovering an activity.
This is a potential threat to the validity of our results. To mitigate this threat, we repeat
the test process multiple times. All the comparisons are conducted on the averages and
percentiles. We believe this is beneficial to make the results more reliable.

Static Models. Even though we have leveraged multiple static analyses tools, including
Gator [29], IccBot [37], and Screen Transition Graph [19], we still cannot guarantee the
models Frontmatter [18] generated describe the applications the most accurately. There
are around twenty applications that Frontmatter failed to find more than three transitions
between activities. Even for the applications where Frontmatter successfully analyzed,
there are false information existing in the models. Since there is no ground truth about the
correct number of transitions in an application, it is impossible to automatically evaluate
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the qualities of static models. For the experiments related to model qualities, we relied on
manual inspections to pick a small subset of models. Due to the lack of quality assurance
and clear selecting criteria, the manual work may affect the final results.

6.1.2 External Validity

The Benchmark Application Collection. Our benchmark applications are initially
collected from the Themis [31] paper. Even though the application collection has over fifty
applications, there were nearly half of them being filtered out. Among the remaining
applications, a few of them are different versions of the same applications. We believe the
lack of diversity would be a threat to our testing outcomes. To mitigate this threat, we
randomly explored F-Droid [10] to collect more applications. Eventually, we have in total
twenty-five benchmark applications, with eleven of them being unique applications.

Server Scheduling. All our experiments were conducted on the same Linux server in
a sequential order. These experiments were conducted over days and nights. However, the
server executes scheduled daily jobs during late midnight, which may take up to several
hours. Some of these jobs are known to be performance hungry, and it potentially affects
the overall performance of the server. During executions of the daily jobs, our experiements
may be slowed down. This is a threat to the validity of our result. If two tasks can be
executed in different conditions, then their results can never be compared directly and fairly.
To verify if the jobs actually affected our experiements, we conducted extra experiments.
We purposefully selected some tasks that were executed over the night, then executed
them again in the daytime. The results from the daytime executions were compared to the
results from the night time executions. It showed no sign of significant difference between
the two. In conclusion, the scheduled daily jobs do not visibly slow down the experiments,
as the performance affect is negligible.

6.2 Future Work

The solution we proposed is not perfect, and some future work can be done to improve it
for better testing outcomes.
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6.2.1 Static-Model-Guided Exploration

The current static-model-guided exploration finds the most optimal path to one specified
target activity. Once reaching the destination, Ape+ would continue to conduct testing to
thoroughly examine the target activity. For the future work, this can be further enhanced in
two directions. First and foremost, Ape+ should be able to support multiple destinations.
For all the destinations, Ape+ should sort them in a prioritized order and find the most
optimal testing path to cover all of them. Secondly, the exploration can be enhanced in
supporting more types of destinations. These destinations can be more fine-grained, such
as widgets or specific actions. These fine-grained destinations can be directly related to the
changed widgets or functions, which would further reduce the testing scope and increase the
overall efficiency. In conclusion, static-model-guided exploration should support multiple
destinations and each of them being more diverse and fine-grained.

6.2.2 Instrumentation

The current instrumentation for widget matching falls short for GUI widgets defined in
layout files, as the current strategy focuses solely on the widgets created through source
code. Even though most resource-id-less widgets defined in layout resource files are static,
it is still possible to have a few such widgets being interactive. Therefore, one of the future
works would be improving the instrumentation to support instrumenting widgets defined in
layout resource files. It requires the instrumentation tool to understand AXML file format
used in APKs to correctly parse and modify the resource layout files. Once every widget is
instrumented with a resource id, the widget matching process would be easier with more
confidence.

6.2.3 Static Analyses

The proposed solution adopts Frontmatter [18] as the static analyses tool. However, static
models generated by Frontmatter are far from perfect. First of all, Frontmatter falls short
on certain applications where transitions or triggers cannot be correctly detected. We have
found approximately ten such cases during our evaluation, where Frontmatter produces
a model with no transition or trigger at all. Besides, there are many false positive cases
for some complicated applications after manual inspections. As shown in the evaluation
chapter, false positives and miss of information would negatively and severely impact the
exploration. Therefore, one future work would be optimizing Frontmatter to enhance the
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transition and trigger detections. At the same time, Frontmatter should also minimize the
number of false information in the models.

Besides that, Frontmatter requires a huge amount of memory and time. The recom-
mended memory allocation for Frontmatter is 40 GB. To thoroughly analyze one applica-
tion, the time consumption ranges from 10 seconds to 30 minutes, depending on the appli-
cation complexities. This tremendous overhead shadows the efficiency benefits brought to
Ape+. Hence, it is necessary to ease the resource hunger of Frontmatter, and also accelerate
it, so that it takes a reasonable amount of time.

Moreover, the transitional information of the current static model is activity-based. It
essentially ignores any transition that happens within the same activity. Adding the miss-
ing transitions would help the navigation, as it provides more details inside each activity.
Therefore, it would be helpful in the future to extend Frontmatter support component-level
transitions, like in ICCBot, or screens, like in Screen Transition Graph.

6.2.4 Benchmark for Static Analyses Tools

We chose Frontmatter because it is the most stable tool that also provides the most accu-
rate trigger detection algorithm. However, such decision was made without any scientific
metrics, because there currently exists no systematic way to evaluate different static anal-
yses tools. The reason behind is the lack of ground truth for applications, as the exact
number of widgets, transitions, and their triggers cannot be easily obtained without human
intervention. Consequentially, decisions on static models or static analyses tools are based
on feelings instead of concrete metrics. Technically, selecting the correct static analyses
tool would dramatically benefit the test, it would be necessary to have a benchmark to
evaluate static models in the future. This benchmark should provide a group of selected
applications with the a known number of widgets, transitions, and related triggers. Any
selected static model should be evaluated against the ground truth. We can then obtain
the number of false or missing transitions, triggers, or widgets to understand the quality
of a static model.
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Chapter 7

Conclusion

Ape is a state-of-the-art automatic testing tool focusing on testing Android GUI. In this
study, we presented our solution, Ape+, to address the two main problems Ape has. The
first problem is the maintainability and efficiency problem. In order to solve Ape’s reliance
on private APIs, we introduced of Appium as the communication layer. Because of Appium,
Ape was transformed into a server-client structure, which brought in a huge overhead and
was hard to maintain. We solved it by replacing Appium with UiAutomator, and rebuilding
Ape as a fully on-device application. This approach enabled debuggers to be used on Ape,
eliminated the dependency on private APIs, and also improved the efficiency. During
the transition, we realized UiAutomator does not support scroll action out of the box,
so we simulated it with a combination of MotionEvents. In addition, retrieving current
activity name was not possible with functions provided by UiAutomator. So we adopted a
solution to find the information from a system dump generated through ADB. The second
problem is the inability to prioritize activities of interest, which made it less effective
when testing a part of an application. We attempted to solve this problem by introducing
a static model, generated by Frontmatter, as prior-knowledge and an assistant. During
explorations, the static model provides extra information about trigger widgets and their
destination activities, so that Ape+ can quickly travel to a specified activity with ease. To
make widget matching between static models and dynamic models more accurate, we have
developed an instrumentation tool that is able to assign unique resource ids to the widgets
that do not have one. For the false information potentially contained in every static model,
we have a priority decay policy to minimize its influence. Lastly, we conducted a series
of experiments to demonstrate the improvements. By comparing the time consumption
of between Ape with UiAutomator and Ape with Appium, it shows that the performance
gains are roughly between 10% to 40% among applications. In addition, using manually
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selected applications and activities to perform static-guided-explorations, we have proven
that informative static models helps applications explore faster, and false information, on
the other hand, slows down the process. Finally, we contemplated the covered activities and
transitions of Ape+ and Ape among all the testing applications. It demonstrated that the
introduction of static models does not necessarily help Ape+ discover unvisited activities,
but it changes the exploring paths. In the end, we discussed the threats to validity and
potential future work. We believe this study will be helpful for other researchers who are
trying to adopt UiAutomator or trying to guide explorations with static models.
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