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Abstract 

Recent ergonomic research suggests that individuals with low motor variability (repeaters) 

are at higher risk of developing work-related musculoskeletal disorders than individuals with high 

motor variability (replacers) when performing repetitive tasks. Importantly, the repeaters-replacers 

hypothesis is dependent on the fundamental condition that motor variability is genuinely an individual 

trait, which is currently unknown. Therefore, this dissertation aimed to examine several measures of 

whole-body kinematic variability under different task constraints during lifting, during fatigue 

development in lifting and in different occupational tasks to evaluate kinematic variability as an 

individual trait. 

Healthy females and males were recruited from the student population for two experimental 

sessions to perform self-paced repetitive lifting, carrying and simulated sawing tasks. The lifting task 

was performed four times under different task constraints of foot movement (restricted by instruction 

versus no restriction) and load weight (low versus high). For these six tasks, the total number of 

repetitions of each task was limited to 105 repetitions to avoid inducing excessive fatigue. The 

unrestricted high load lifting task was repeated in a prolonged protocol until volitional fatigue or up to 

a maximum of 1 hour. Whole-body joint angles and crate trajectories were obtained using 

optoelectronic motion capture. Kinematic variability was quantified using three different measures, a 

linear measure of joint angle mean point-by-point standard deviation, nonlinear continuous relative 

phase (CRP) variability of joint angle couplings, and nonlinear task-relevant and task-irrelevant 

variability derived from joint angles and crate trajectories. In addition, rate of perceived exertion was 

assessed as an indicator of fatigue. 

In repetitive lifting under different constraints, individual variability demonstrated strong 

consistency independent of variability measures. However, across individuals, variability increased in 
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response to removing the foot movement restriction when assessed using linear and nonlinear 

measures while task-relevant and task-irrelevant variability did not show any differences. When 

individuals were ranked on variability, strong consistency across measures was also demonstrated 

although CRP measures appeared to capture a slightly different construct than the other measures. In 

different repetitive tasks of lifting, carrying and simulated sawing, only moderate consistency was 

found in linear individual variability. Across individuals, linear variability was affected by task type 

where the order from highest to lowest variability was carrying, lifting and sawing, respectively. 

When unrestricted high load lifting was compared to three phases during prolonged unrestricted high 

load lifting, individual variability demonstrated strong consistency independent of (non)linear 

measures. In addition, across individuals no changes in variability were observed with different 

fatigue states. Variability during unrestricted high load lifting was associated with some indicators of 

fatigue. 

This work reveals strong evidence for kinematic variability as an individual trait across 

investigated task constraints, variability measures, and fatigue development in lifting; however, 

variability could be task specific. Based on the effects of foot movement and task type on kinematic 

variability, variability increased when more degrees of freedom were allowed. Also, during lifting 

kinematic variability showed different responses to task constraint depending on variability measure. 

However, kinematic variability was related to some fatigue measures. The findings of this dissertation 

provide insight into kinematic variability as an individual trait in repetitive occupational tasks and 

therefore contribute to an essential aspect of the repeaters-replacers hypothesis. If kinematic 

variability can be related to risk of work-related musculoskeletal disorders, risk of injury could be 

prevented or lowered by altering individuals’ variability through training or workplace interventions 

assuming it is possible to convert a repeater into a replacer. 
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  1 

Chapter 1: General Introduction 

Work-related musculoskeletal disorders (WRMSDs), defined as pathological impairment of 

musculoskeletal tissues, are a significant problem in society at the provincial, national, and global 

levels in terms of prevalence, incidence, treatment costs, cost associated with loss of productivity, and 

for the employee’s quality of life (Baldwin, 2004; Buckle & Devereux, 2002; Coyte et al., 1998; 

Feeney et al., 1998; Leijon et al., 1998; OHSCO, 2007; Thiehoff, 2002). In Canada, the total cost of 

WRMSDs was described as the highest in comparison to any other disease-related costs by the Public 

Health Agency of Canada (Canadian Institute for Health Information, 2013). In 2014, the total cost of 

WRMSDs was predicted at $CAD 22 billion each year between 2014 and 2018 (Institute of 

Musculoskeletal Health, 2014). Thus, WRMSDs remain as a significant problem in Canadian society. 

A proposed injury mechanism underlying WRMSDs is fatigue failure or cumulative tissue 

damage which is determined by the interaction of force and repetition (Gallagher & Heberger, 2013; 

Gallagher & Schall, 2017). Although current work demands have reduced in magnitude of force, 

moderate to high repetition remains common (e.g. assembly line manufacturing, order picking at 

distribution centers) (Kermavnar et al., 2021; Marras et al., 2009). Cumulative loading associated 

with repetitive work could be reduced by an inherent feature of repetitive human movement; the 

emergence of repetition-to-repetition motor variability (MV) (Bernstein, 1967; Latash et al., 2002; 

Newell & Corcos, 1993). An increase in MV could lead to more repetition-to-repetition distribution 

of mechanical loading and muscle activation across tissues and thus reduce the risk of cumulative 

damage (Bartlett et al., 2007; Hamill et al., 1999; Madeleine, 2010; Srinivasan & Mathiassen, 2012; 

Visser & van Dieën, 2006). 

Repetition-to-repetition or between-trial MV reflects variability in motor variables (e.g. 

kinematics, electromyography (EMG), kinetics) from repeated execution of the same task (Bernstein, 
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1967). In this context, MV arises from the degrees of freedom (DOF) problem or motor abundance. 

Traditionally, according to the DOF problem the human motor system consists of more DOF than 

conceptually necessary to complete a motor task and thus this problem needs to be solved by the 

central nervous system (Cusumano & Cesari, 2006; Latash, 2000; Latash et al., 2002; Newell & 

Corcos, 1993). More recently, the DOF problem has been revisited as motor abundance which means 

that the abundance of DOF is viewed as part of the solution to functions of motor performance such 

as flexibility (Bartlett et al., 2007; Clark, 1995; Diedrichsen et al., 2010; Latash, 2000, 2012; Latash 

et al., 2002, 2007). Thus, MV could give insight into underlying motor control or regulation (Latash 

et al., 2002; Newell & Corcos, 1993). 

The functional perspective of motor abundance has been adopted in ergonomics through the 

development of several working hypotheses on the potential for MV to modify the risk of WRMSDs 

in repetitive tasks. The overarching variability-risk hypothesis suggests that low variability is 

associated with higher risk of WRMSDs compared to high variability (Bartlett et al., 2007; Côté, 

2012; Madeleine, 2010; Mathiassen et al., 2003; Srinivasan & Mathiassen, 2012). The variability-risk 

hypothesis is based on associations between variability and measures of WRMSD risk consisting of 

variability-pain (Madeleine, Mathiassen, et al., 2008; Madeleine, Voigt, et al., 2008), variability-

experience (Granata et al., 1999; Madeleine, Voigt, et al., 2008), variability-fatigue (Côté et al., 2002, 

2008; Farina et al., 2008; Sedighi & Nussbaum, 2017; van Dieën, Oude Vrielink, & Toussaint, 1993; 

van Dieën et al., 2009; Yang et al., 2018), and variability-overuse injury hypotheses (Hamill et al., 

1999; Heiderscheit et al., 2002; James et al., 2000). More specifically, low between-trial variability of 

kinematics and EMG has been associated with pain and earlier onset or faster development of fatigue, 

whereas low between-trial variability of kinematics has been related to overuse injury while high 

kinematic and kinetic variability has been associated with more task-specific experience (Côté et al., 
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2002; Farina et al., 2008; Granata et al., 1999; Hamill et al., 1999; Heiderscheit et al., 2002; James et 

al., 2000; Lomond & Côté, 2010; Madeleine, Mathiassen, et al., 2008; Madeleine, Voigt, et al., 2008; 

Madeleine & Madsen, 2009; Sedighi & Nussbaum, 2017; van Dieën et al., 2009; van Dieën, Oude 

Vrielink, & Toussaint, 1993; Yang et al., 2018). 

A recent hypothesis that is gaining attention in ergonomics, the repeaters-replacers 

hypothesis, could change our current view on the variability-risk hypothesis. The repeaters-replacers 

hypothesis suggests that when ranking individuals from low to high variability, repeaters with low 

variability and replacers with high variability can be defined (Jackson et al., 2020; Sandlund et al., 

2017; Srinivasan & Mathiassen, 2012). Replacers exploit motor abundance by varying movement 

strategies which is reflected in high MV magnitude (Jackson et al., 2020; Sandlund et al., 2017; 

Srinivasan & Mathiassen, 2012). However, repeaters repeat the same patterns and thus exploit motor 

abundance to a lesser extent which is visible from their lower MV magnitude (Jackson et al., 2020; 

Sandlund et al., 2017; Srinivasan & Mathiassen, 2012). However, the repeaters-replacers hypothesis 

is only supported on the condition that MV is genuinely an individual trait which would require 

individual consistency in different scenarios such as different conditions of the same task and across 

different tasks (Jackson et al., 2020; Sandlund et al., 2017; Srinivasan & Mathiassen, 2012). In 

addition, there is currently no direct evidence to support the variability-risk hypothesis within the 

context of the repeaters-replacers hypothesis. The characteristic of MV as an individual trait is the 

focus of this dissertation. 

The growing body of literature on variability-risk and repeaters-replacers hypotheses in 

ergonomics has revealed a lack of consensus and standardized techniques to assess MV. However, 

when focussing on kinematics, traditional or linear measurements such as standard deviation have 

been primarily considered (Granata et al., 1999; Jackson et al., 2020; Madeleine, Mathiassen, et al., 
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2008; Madeleine, Voigt, et al., 2008; Madeleine & Madsen, 2009; Sandlund et al., 2017; Sedighi & 

Nussbaum, 2017), while nonlinear measurements are relatively understudied (Madeleine & Madsen, 

2009; Sandlund et al., 2017; Sedighi & Nussbaum, 2017). Despite the frequent use of linear 

measurements in gathering evidence on variability-risk and repeaters-replacers hypotheses, these 

measurements are derived from the traditional motor control perspective of the DOF problem. 

Therefore, the use of linear measurements does not align with the view of motor abundance from the 

functional motor control perspective even though these measurements have substantially contributed 

to the development of these hypotheses. The dependency on linear measurements and misalignment 

of these measurements based on underlying motor control perspective demonstrates the need to use 

different measurements of MV to further explore the repeaters-replacers hypothesis. 

With respect to tasks, ergonomic research on MV has been focussed on fine motor tasks 

performed with the upper extremity including simulated filleting/cutting (Madeleine, Mathiassen, et 

al., 2008; Madeleine, Voigt, et al., 2008), deboning (Madeleine & Madsen, 2009), reaching/pointing 

(Lomond & Côté, 2010; Yang et al., 2018), sawing (Côté et al., 2002), hammering (Côté et al., 2008), 

simulated assembly task (Jackson et al., 2020), and pipetting (Sandlund et al., 2017). However, only 

some work has assessed gross motor tasks performed with the whole-body such as lifting (Granata et 

al., 1999; Sedighi & Nussbaum, 2017; van Dieën et al., 2001). Gross and fine motor tasks differ in the 

amount of DOF that are involved in performing the tasks, which represents differences in opportunity 

to exploit MV in line with the view of motor abundance present in the repeaters-replacers hypothesis. 

Furthermore, fine motor tasks often require an element of precision, and increasing accuracy demands 

have been shown to reduce MV indicative of a loss in motor control flexibility (Soechting, 1984; 

Srinivasan, Mathiassen, et al., 2015; Tseng et al., 2003). The repeaters-replacers hypothesis has only 

been investigated in fine motor tasks while gross motor tasks may give different insight into MV 
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(Jackson et al., 2020; Sandlund et al., 2017). Thus, gross motor tasks such as occupational lifting have 

only received little attention in occupational MV research and have not yet been assessed in context 

of the repeaters-replacers hypothesis. Furthermore, the strongest evidence for MV as an individual 

trait would require assessment of individual consistency in MV across fine and gross motor tasks, 

which has not been performed to date.  

When considering task constraints, fine and gross motor tasks have been investigated under 

relatively constrained task conditions such as external pacing (Jackson et al., 2020; Lomond & Côté, 

2010; Madeleine, Mathiassen, et al., 2008; Madeleine, Voigt, et al., 2008; Sandlund et al., 2017; 

Sedighi & Nussbaum, 2017; Yang et al., 2018) and movement restrictions (i.e. only horizontal plane 

arm movement during reaching/pointing (Lomond & Côté, 2010; Yang et al., 2018), restrained torso 

during pipetting (Sandlund et al., 2017), and fixed foot positioning during lifting (Granata et al., 

1999; Sedighi & Nussbaum, 2017). These task constraints could restrict the amount of available DOF 

and thus limit the opportunity to exploit MV. When pacing was increased in a fine motor task, MV 

was reduced and in combination with an accuracy demand some indication of a speed-accuracy trade-

off was demonstrated (Srinivasan, Mathiassen, et al., 2015). Additionally, if constraints are not 

representative of workplace conditions, they could obscure the external validity of MV assessment. 

When specifically considering the repeaters-replacers hypothesis, individual consistency has only 

been assessed in fine motor tasks across different days and temporal task constraints (i.e. pacing and 

production process) (Jackson et al., 2020; Sandlund et al., 2017). Although task constraints could 

affect MV and individual consistency in MV has only been investigated in fine motor tasks, it 

indicates an opportunity to assess individual consistency in MV across varying task constraints of a 

gross motor task. 
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1.1 Overall thesis objective 

The overall objective of this thesis was to assess between-trial kinematic motor variability 

during repetitive manual work tasks to test the repeaters-replacers and variability-fatigue hypotheses 

from both traditional and functional motor control perspectives. 

1.2 Specific research objectives 

1. To explore the role of task constraints on between-trial motor variability and consistency in 

individual responses in repetitive lifting using traditional and functional motor variability 

measures (Study 1 & 2; Figure 1.1) 

2. To compare individual between-trial motor variability on consistency across all variability 

measures used in purpose 1, to help inform the use of variability measures in other studies of 

this dissertation (Study 3; Figure 1.1). 

3. To determine between-trial motor variability and consistency in individual responses in 

different repetitive manual work tasks (lifting, carrying, simulated sawing) using measure(s) 

informed by purpose 2 (Study 4; Figure 1.1). 

4. To determine between-trial motor variability and consistency in individual responses in 

repetitive lifting under the development of fatigue using measure(s) informed by purpose 2 

(Study 5; Figure 1.1) 

5. To determine relationships between motor variability and indicators of fatigue development 

in repetitive lifting under the development of fatigue using measure(s) informed by purpose 2 

(Study 5; Figure 1.1). 
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Figure 1.1: Flowchart of the studies for this thesis 
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Chapter 2: Literature review 

2.1 Introduction of literature review 

The hypothesized relationship between variability and risk of work-related musculoskeletal 

disorders (WRMSDs) has been quantified by a range of different motor variables (e.g. kinematics, 

electromyography (EMG), kinetics) (Madeleine, 2010; Srinivasan & Mathiassen, 2012) and different 

variability metrics (e.g. standard deviation, entropy, coordination dynamics, uncontrolled manifold 

(UCM), goal-equivalent manifold (GEM)) (Srinivasan & Mathiassen, 2012). This demonstrates the 

quantification problem within motor variability (MV), which is a significant issue because the current 

interpretation of variability with respect to WRMSD risk has been based on the results of these 

dependent variables. Therefore, the purpose of this literature review is to analyze the different 

variability-risk hypotheses with respect to the dependent variables specifically used in these studies 

and to review the chronological development of motor control theoretical frameworks that underlie 

dependent measures of MV. The lack of consensus and standardized techniques to assess MV limits 

comparison of results across studies and thus creates a barrier to a comprehensive understanding of 

the variability-risk hypothesis due to inconsistent results within and between MV metrics. Despite the 

quantification problem, the historical evolution of MV measures explains why increased MV has 

recently been considered as functional whereas traditionally it was considered as dysfunctional. This 

literature review is divided in two sections; the first section will discuss the different variability-risk 

hypotheses that are relevant for WRMSDs, and the second section will discuss the theoretical 

frameworks underlying MV metrics in chronological order of their development. 

2.2 Variability-risk hypotheses 

Four hypotheses have emerged from ergonomics and sport biomechanics that demonstrate 

that low variability is associated with higher risk of injury and high variability is associated with a 
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lower risk. Collectively, the variability-pain, variability-experience, variability-fatigue and 

variability-overuse injury hypotheses relate low variability with a higher risk on WRMSDs. In 

contrast to the variability-risk hypothesis, the repeaters-replacers hypothesis specifically prescribes 

variability to the individual. However, when combining the variability-risk and repeaters-replacers 

hypothesis individuals with low variability (repeaters) are expected to be at higher risk on WRMSDs 

than individuals with high variability (replacers). 

2.2.1 Variability-pain hypothesis 

Lower MV was found in individuals with pain compared to individuals without pain based on 

some dependent measures of MV (Lomond & Côté, 2010; Madeleine, Mathiassen, et al., 2008; 

Madeleine, Voigt, et al., 2008; Madeleine & Madsen, 2009). However, within these specific studies 

other dependent variables of MV showed evidence rejecting this statement. In particular, most studies 

except for the independent variable of experimentally-induced pain (Madeleine, Mathiassen, et al., 

2008) showed contrasting findings for different locations and/or measures of kinematic variability. 

In simulated cutting chronic neck-shoulder pain among butchers showed a reduction in arm 

and trunk kinematic variability and shoulder EMG variability, while an increase in cycle time 

variability was found when compared to healthy controls (Madeleine, Mathiassen, et al., 2008). 

Newly employed female butchers who developed sub-chronic pain in the upper extremities after six 

months of employment showed a reduction in arm kinematic variability, but an increase in trunk 

kinematic variability when performing simulated cutting compared to the same population without 

pain (Madeleine, Voigt, et al., 2008). Similar contradictions in kinematic MV between different 

locations were observed in repetitive reaching. Individuals with chronic neck-shoulder pain 

demonstrated lower relative kinematic variability of the centre of mass and lower shoulder EMG 

variability compared to healthy controls, whereas the relative shoulder variability was found to be 
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increased in the chronic pain population when compared to healthy controls (Lomond & Côté, 2010). 

In contrast to investigating individuals that suffer from pain; when pain was experimentally induced 

in the neck-shoulder region this resulted only in a reduction in shoulder EMG variability, while an 

increased cycle time variability and kinematic variability of the arm and trunk were found in 

comparison to no pain during simulated cutting (Madeleine, Mathiassen, et al., 2008). Thus, 

contrasting findings were reported for the effect of pain on kinematic variability depending on the 

type of pain (i.e. experimental versus (sub)-chronic), and depending on the body location (i.e. arm 

versus trunk or center of mass versus shoulder).  

The apparent dependency of differences in pain versus no pain on location in kinematic 

variability was maintained when different variability measures were used to characterize kinematic 

variability. Butchers with neck-shoulder discomfort in the past year showed lower cycle time 

variability, linear kinematic variability (coefficient variation of head-shoulder and shoulder-hip 

displacement) and nonlinear kinematic variability (correlation dimension of head-shoulder 

displacement), in comparison to butchers without discomfort during a deboning task (Madeleine & 

Madsen, 2009). However, the same study demonstrated an increase in linear kinematic variability 

(standard deviation of elbow-hip) and nonlinear kinematic variability (approximate entropy, sample 

entropy, and correlation dimension of elbow-hip displacement) for neck-shoulder discomfort in 

comparison to no discomfort (Madeleine & Madsen, 2009). Possibly, these contrasting findings 

indicate that the loss of variability in the body area of discomfort (i.e. head-shoulder) could be 

compensated by increasing variability in remote body regions (i.e. elbow-hip) (Madeleine & Madsen, 

2009). 
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Regardless of the controversy in findings within and between different independent variables 

of pain and different dependent variables of MV, in general the relationship between a reduction in 

kinematic and EMG variability of the affected area was associated with pain (Madeleine, 2010). 

2.2.2 Variability-experience hypothesis 

Larger MV was found with short-term experience in female butchers (i.e. 6 months of 

employment compared to 1 month of employment) during a simulated cutting task for kinematic 

variability of the arm and trunk, while cycle time variability was reduced and no change in neck-

shoulder EMG variability were found (Madeleine, Voigt, et al., 2008). In agreement with short-term 

experience in simulated cutting, long-term experience (average of 13 years) among male butchers 

resulted in an increased kinematic variability, while cycle time variability increased and shoulder 

EMG variability was reduced (Madeleine, Voigt, et al., 2008). Experienced butchers (at least 1 year) 

performing deboning showed only higher nonlinear kinematic variability of head-shoulder 

displacement (approximate entropy) in comparison to inexperienced butchers (less than 1 year 

experience) (Madeleine & Madsen, 2009). On the contrary, linear kinematic variability of head-

shoulder displacement (standard deviation) and cycle time variability were reduced among 

experienced butchers in comparison to inexperienced butchers (Madeleine & Madsen, 2009). Thus, 

inconsistent results were shown for cycle time variability in simulated cutting and deboning. 

However, long-term task-specific experience was associated with lower EMG variability. Although 

the evidence is not completely consistent for different measures of kinematic variability, task-specific 

experience was associated with higher kinematic variability.  

Furthermore, larger MV was found in trunk moments and spinal loads for experienced 

manual material handlers compared to college students during a lifting task (Granata et al., 1999). 

However, lower MV was found in trunk velocity and acceleration for experienced compared to 
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inexperienced manual material handlers during lifting (Granata et al., 1999). In addition, experienced 

workers who regularly performed occupational lifting showed an increase in kinematic task-irrelevant 

variability during middle and late phases of a fatigue developing protocol compared to university 

students, while other linear and nonlinear measures did not demonstrate differences for experience 

(Sedighi & Nussbaum, 2017). 

Experience seems to be associated with an increase in kinetic variability and a reduction in 

EMG variability, and despite inconsistencies some evidence indicates an increase in kinematic 

variability. The contradictory finding of a decrease in EMG and an increase in kinematic and kinetic 

variability with experience could be explained by motor abundance as many muscles are involved 

through muscle synergies that affect the resulting kinematics and kinetics while only a few of those 

were captured using EMG. Even though both pain and experience resulted in inconsistent findings for 

different dependent measures of MV, in general pain was associated with low variability while 

experience was associated with high variability. As a result, it was inferred that for a healthy 

individual the magnitude of MV determines the risk of developing WRMSDs with a reduction in 

variability leading to an increase in the risk (Srinivasan & Mathiassen, 2012). This also implies that 

experience was viewed as a potential protective factor from injury (Madeleine, Mathiassen, et al., 

2008; Madeleine, Voigt, et al., 2008). In general, it was suggested that MV is an important parameter 

for risk of developing WRMSDs (Côté, 2012; Madeleine, 2010; Mathiassen et al., 2003; Srinivasan & 

Mathiassen, 2012). 

2.2.3 Variability-fatigue hypothesis 

MV is possibly related to injury risk by delaying the onset of fatigue (Farina et al., 2008; van 

Dieën, Oude Vrielink, & Toussaint, 1993) and fatigue can be viewed as a precursor to 

musculoskeletal disorders (Côté, 2014; Rempel et al., 1992; Sjøgaard & Søgaard, 1998). Furthermore, 
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when tissues have already been subjected to overload, MV could modify the overuse by distributing 

loads among different tissues (Srinivasan & Mathiassen, 2012). This distribution of the loads applied 

to the body could possibly reduce the cumulative load on the tissues (Bartlett et al., 2007; Hamill et 

al., 1999), and therefore decrease injury risk (Kumar, 2001). The distribution of tissue loads (i.e. 

muscle force development) is regulated by neuromuscular activation and can therefore also be 

brought into connection with the Cinderella hypothesis. The Cinderella hypothesis can be defined as 

continuous activation of low-threshold motor units and corresponding type 1 muscle fibers (Visser & 

van Dieën, 2006). According to the size principle of motor unit recruitment, type 1 muscle fibers are 

recruited as the first fibers and remain active for the longest time period during prolonged low-effort 

activity (Henneman, 1957). Therefore, MV could possibly offload these continuously active motor 

units and fibers and thereby reduce the risk of overuse in these motor units (Srinivasan & Mathiassen, 

2012; Visser & van Dieën, 2006).  

The variability-fatigue hypothesis has previously been demonstrated by changes in muscle 

activation during fatigue. Individuals who could sustain intermittent isometric contractions of trunk 

extension for a longer time until fatigue (i.e. average of 12 minutes) showed a larger between-trial 

variation in corresponding muscle activation, compared to individuals who took a short time (i.e. 

average of 5 minutes) to fatigue indicating less development of fatigue (van Dieën, Oude Vrielink, & 

Toussaint, 1993). Also, the high endurance group showed more alternating activity between different 

parts of the trunk extensor musculature (van Dieën, Oude Vrielink, & Toussaint, 1993). Furthermore, 

less development of fatigue was observed in the right side of the trunk extensor muscle activity 

compared to the left side after the left side was targeted in the fatiguing protocol, while the right side 

showed larger variability in muscle activity compared to the left side (van Dieën et al., 2009). Spatial 

variability of muscle activity was also positively associated with time to fatigue in a static shoulder 
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abduction task (Farina et al., 2008). Thus, higher variability in both the magnitude and spatial 

distribution of muscle activation is related to higher endurance during fatigue development, which 

indicates slower fatigue development. 

Although variability in muscle activation could more directly explain the slower development 

of fatigue with higher variability, the same hypothesis holds for kinematic variability that is not 

directly reflective of task performance. Neck-shoulder fatigue during a repetitive forward pointing 

task was associated with increased shoulder-elbow coordination variability, while movement timing 

errors and spatial variability of the endpoint were predominantly maintained (Yang et al., 2018). 

When the same task and fatiguing protocol was analyzed with sex as a covariate, an increase in both 

kinematic task-relevant and task-irrelevant variability was observed for women in contrast to men 

after fatigue development (Hasanbarani et al., 2021). Task-irrelevant variability was larger than task-

relevant variability which was interpreted as control of the task goal (i.e. constant pace) by using 

flexibility in movement patterns to overcome fatigue (Hasanbarani et al., 2021). Also, task-induced 

fatigue during repetitive lifting showed an increase in center of mass path variability during late 

phases of the fatiguing protocol compared to early phases (Sedighi & Nussbaum, 2017). The same 

study also reported an increase in task-relevant and task-irrelevant variability between late and early 

fatigue phases, although task-irrelevant variability increased more substantially compared to task-

relevant variability with increasing fatigue (Sedighi & Nussbaum, 2017). However, in a repetitive 

sawing-like task using a handle, task-relevant and task-irrelevant variability of handle kinematics 

were not affected by fatigue, independent of localized or widespread fatigue development (Cowley et 

al., 2014; Gates & Dingwell, 2008). In line with previous findings, task-irrelevant variability was 

larger compared to task-relevant variability for widespread fatigue (Gates & Dingwell, 2008). Linear 

variability of handle kinematics showed a reduction in timing error and movement speed variability 
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with fatigue, while nonlinear variability (i.e. detrended fluctuation analysis) of handle kinematics 

showed an increase with local fatigue while widespread fatigue resulted in a reduction (Cowley et al., 

2014; Gates & Dingwell, 2008). Despite some inconsistencies, overall changes in movement patterns 

not related to task performance have been observed with maintenance of task performance variables 

during fatigue. Specifically for methods that quantify variability in task-relevant and task-irrelevant 

aspects, an increase in task-irrelevant variability could be a compensation mechanism to control task 

performance while fatigue develops, where the latter could be reflected by no changes in task-relevant 

variability (Bartlett et al., 2007; Button et al., 2003). 

This observation of compensation has also been indirectly demonstrated. Adaptations of 

interjoint and intermuscular coordination were shown after fatigue while main movement 

characteristics remained similar in a repetitive hammering task (Côté et al., 2008). Characteristics 

relevant to the sawing task (i.e. saw trajectory) were maintained at the cost of changes in movement 

amplitude during fatigue (Côté et al., 2002). Fatigue resulted in decreased elbow impedance, while 

the time-on-target was unaffected by fatigue in a target tracking task (Selen et al., 2007). Also, 

kinematic coordination changes evoked by an increase in work pace could have prevented the 

observation of fatigue in a repetitive pick and place task (Bosch et al., 2011). Possibly, movement 

patterns are adapted as a mechanism to ensure task continuation as reflect by no changes in task 

execution parameters during fatigue. 

2.2.4 Variability-overuse hypothesis 

The variability-overuse hypothesis is based on associations of overuse injuries with low 

variability. Individuals with patellofemoral pain showed decreased lower extremity coordination 

variability (standard deviation of continuous relative phase of knee joint couplings) compared to 

healthy controls (Hamill et al., 1999). A follow-up study that used a different coordination variability 
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measure (i.e. vector coding) showed similar results that confirmed the initial findings (Heiderscheit et 

al., 2002). Kinetic variability for injury-prone individuals, based on self-reported history of lower 

extremity overuse injuries, showed contrasting findings during vertical jump landings when compared 

to healthy or not injury-prone individuals (James et al., 2000). Injury-prone individuals showed lower 

variability in time to peak ankle moment, while a larger peak ankle moment variability was 

demonstrated compared to healthy individuals (James et al., 2000). However, no differences were 

found between the injury-prone and healthy group with respect to ankle impact impulse, in addition to 

peak joint moment, time to peak joint moment and impact impulse of the knee and hip joints. 

Therefore, overuse injury seems to be associated with a reduction in kinematic variability (Hamill et 

al., 1999; Heiderscheit et al., 2002). In contrast, it seems uncertain whether overuse injury is related 

to a difference in kinetic variability in comparison to healthy controls (James et al., 2000). In 

summary, no conclusive support of the variability-overuse hypothesis can be found. In addition, it 

must be noted that the peak kinetic variables used in James et al. (2000) are not directly related to the 

underlying cumulative load pathway that would have led to overuse injury. 

2.2.5 Repeaters-replacers hypothesis 

Recently, variability has been proposed as a consistent individual trait as part of the repeaters-

replacers hypothesis where individuals with low MV are described as repeaters while individuals with 

high MV are described as replacers (Jackson et al., 2020; Sandlund et al., 2017; Srinivasan & 

Mathiassen, 2012). When the repeaters-replacers hypothesis is contextualized within the variability-

risk hypothesis, repeaters are expected to be at higher risk for developing WRMSDs, whereas 

replacers are hypothesized to be at lower risk to develop WRMSD (Jackson et al., 2020; Sandlund et 

al., 2017; Srinivasan & Mathiassen, 2012). An experimental study has suggested that kinematic 

variability in repetitive pipetting differs consistently between individuals over time (i.e. three 
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different days) (Sandlund et al., 2017). Furthermore, individuals showed consistent kinematic and 

EMG variability across four different temporal task constraints varying in pace (self-paced and 

imposed) and production process (batch and assembly-line) for a cyclic assembly task (Jackson et al., 

2020). Thus, research on the repeaters-replacers hypothesis is still evolving and has only been 

performed on task performed with the upper extremity with different temporal conditions. More 

importantly, to date the variability-risk hypothesis has not been explicitly investigated within the 

context of repeaters-replacers hypothesis, while this connection represents a significant contribution 

to occupational biomechanics. 

2.2.6 Underlying injury pathways related to low variability 

The underlying pathway that is suggested to lead to a higher risk on WRMSDs is cumulative 

loading or fatigue failure, with higher variability leading to more distributed loads (or possibly even 

muscle activation) across multiple tissues (Bartlett et al., 2007; Hamill et al., 1999; Srinivasan & 

Mathiassen, 2012; Visser & van Dieën, 2006). This injury pathway is considered a different pathway 

from acute injury where a single load exceeds the failure tolerance of the tissue (McGill, 1997). A 

lack of variability would imply repetitive loading of tissue in terms of localization, which can result in 

concentrated stress application on the concerned tissue. If the repetitive loading continues for an 

extended time, the concentrated stress will accumulate and can lead to micro-damage in the tissue, 

even when the level of the load is below the acute failure point. Therefore, a lack of variability could 

lead to fatigue failure of tissue (Hamill et al., 1999). Similarly, for fatigue low variability would be 

associated with more continuously active motor units in repetitive movement according to the 

Cinderella hypothesis (Srinivasan & Mathiassen, 2012; Visser & van Dieën, 2006). However, the 

Cinderella hypothesis is limited to only explain continuous activation of type I motor units, whereas it 

does not provide an explanation of actual muscle fibre damage (Visser & van Dieën, 2006). 
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2.2.7 Summary of variability hypotheses 

The existing research on the variability-pain, variability-experience, and variability-overuse 

injury hypotheses demonstrates the current speculative state of these hypotheses. There is a 

quantification problem for MV because MV has been quantified using a range of measures, hence the 

lack of consensus in MV quantification could explain the inconsistent evidence for the variability-risk 

hypotheses. Also, research on independent variables of pain, experience and overuse injury is limited 

due to the cross-sectional design. Even though the MV quantification problem also holds for the 

variability-fatigue hypothesis, research on this hypothesis provides relatively more convincing 

support for kinematic variability. Furthermore, the repeaters-replacers hypothesis could strengthen the 

understanding of the variability-risk hypothesis by connecting individual consistency in MV to 

variables of risk. However, as part of this investigation the quantification problem must be addressed. 

Therefore, the quantification problem has to be considered in more detail by putting it in the context 

of the corresponding underlying theoretical frameworks of motor control. 

2.3 Historical overview of motor control perspectives in motor variability 

In this section, three different theoretical frameworks important to MV are discussed in 

chronological order of their development. Firstly, the traditional view is discussed, where MV is 

considered to be dysfunctional for performance. Secondly, two major functional views are discussed: 

dynamic systems theory (DST) and optimal feedback control (OFC), which consider MV to have a 

functional role in performance. Even though the functional view is considered as a replacement of the 

traditional view, most variability studies have used measures of the traditional view, while inferences 

have been made based on the functional view.  
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2.3.1 Traditional perspective 

Traditional framework 

The traditional perspective represents how MV has been interpreted traditionally and was 

predominantly used until the end of the 20th century after which the functional perspective gained 

interest (Robins et al., 2006). This approach is derived from the information theory’s concept of 

variability in motor output signals that is regarded as noise resulting from the transmission process 

(Slifkin & Newell, 1998). In information processing, movement is controlled by a set of instructions 

from the motor program (Clark, 1995), and MV is considered dysfunctional because variability is 

believed to reflect undesirable noise of the neuromuscular system (Newell & Corcos, 1993) or 

measurement noise (Bartlett et al., 2007). Therefore, MV was viewed as a problem for system 

control, or even as error that has to be minimized or eliminated (Newell & Corcos, 1993). 

The traditional “noise” view of variability was supported by findings of a reduction in task 

outcome kinematic variability (i.e. end-point variability) with learning or with higher skill level in 

different sporting tasks (e.g. basketball throwing and dart throwing) among healthy subjects (Button 

et al., 2003; McDonald et al., 1989). Therefore, sport biomechanists believed that skilled movement 

patterns were characterized by low between-trial kinematic variability that reflected the invariant 

movement pattern that should be strived for to obtain skilled performance (Bartlett et al., 2007; 

Brisson & Alain, 1996). Because of a lack of evidence for the existence of an invariant movement 

pattern and because training of this pattern did not lead to the hypothesized results, the main 

implications of the noise view of MV could not be fully supported (Bauer & Schöllhorn, 1997; 

Brisson & Alain, 1996; S. Miller, 2002; S. Miller & Bartlett, 1993). Interestingly, the initial support 

for a reduction in kinematic variability with practice and skill can possibly be explained by the 

location at which variability was considered; in this case the end-effector, which is directly reflective 
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of the task outcome in these accuracy tasks (e.g. basketball throwing and dart throwing). But overall, 

the invariant movement pattern model was deemed invalid, which suggested a review of the 

traditional view of variability as noise (Bartlett et al., 2007). 

Operationalization of the traditional theory 

In the traditional approach variability was considered as the amount of noise from the 

underlying information processes, and therefore variability was represented by white Gaussian noise 

superimposed on the deterministic signal (Newell & Corcos, 1993; Slifkin & Newell, 1998). The 

amount of variability can be quantified by linear metrics such as standard deviation around the mean 

of a motor variable (e.g. kinematics, kinetics etc.) (Newell & Corcos, 1993; Stergiou & Decker, 2011) 

and deviation from the mean (i.e. desirable standard movement pattern) is regarded as error that 

should be minimized (Davids et al., 2003; Stergiou & Decker, 2011). 

Because variability is assumed to be modelled as white Gaussian noise, parametric 

assumptions hold for the corresponding linear metrics (e.g. standard deviation, mean) (Slifkin & 

Newell, 1998) that consist of the normality assumption and the assumption of independence. The 

assumption that the distribution of the system parameter (i.e. motor variable) is normal (Newell & 

Corcos, 1993) generally holds after the sample size has reached N=30 and, therefore, the estimated 

parameters (i.e. mean and standard deviation) are considered to be an accurate representation if they 

are derived from a normal distribution. Furthermore, at the observational level, parametric estimates 

are valid if the observations are unrelated and random (i.e. independent) (Field, 2013). 

The use of standard deviation as an operational measure of variability assumes white 

Gaussian noise as a model of variability, which should be considered with caution. MV is not found 

to be solely random, but also contains deterministic elements, which implies that deviation from the 

mean should not always be interpreted as random noise (Dingwell & Cusumano, 2000; Harbourne & 
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Stergiou, 2003; D. J. Miller et al., 2006; Slifkin & Newell, 1998). Therefore, to characterize both 

random and deterministic elements, higher order metrics are necessary to capture the predictability of 

the signal over time (i.e. signal structure or dynamics), which can change independently of the 

magnitude of variability (Slifkin & Newell, 1998). 

Linear measures in variability-risk hypotheses 

Most researchers that provided evidence for the variability-risk hypotheses measured 

variability with linear measures (Granata et al., 1999; Lomond & Côté, 2010; Madeleine, Mathiassen, 

et al., 2008; Madeleine, Voigt, et al., 2008; Madeleine & Madsen, 2009; van Dieën et al., 2009; van 

Dieën, Oude Vrielink, & Toussaint, 1993). However, an increase in variability by these measures 

would reflect an increase in noise, which is hypothesized to be undesirable for performance, while 

these studies have been used to support the functional use of variability as a protective factor against 

injury risk. Therefore, the traditional approach does not align with the variability hypotheses and 

therefore variability measures that represent functional variability are recommended to be used when 

further investigating these hypotheses. 

Summary of traditional perspective 

Based on the limitations of both the operationalization of the measure of variability and 

theoretical constructs, the traditional dysfunctional view of variability in motor variables was re-

evaluated by also considering potential beneficial effects of variability that are reflected in the 

functional view of variability. Even though the traditional approach views MV as dysfunctional and 

more variability is suggested to be undesirable for performance, many researchers have inferred more 

variability as functional with respect to injury risk in a healthy population. Therefore, it is suggested 

that traditional quantification methods are not in line with the variability-risk hypotheses because the 

variability that is quantified is viewed as dysfunctional rather than functional for performance. 
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2.3.2 Functional perspectives 

Two functional approaches will be discussed, the dynamic system theory (DST) and optimal 

feedback control (OFC). Both functional frameworks have in common that task constraints are most 

influential for performance out of the three different constraints within the interacting constraints 

model (Clark, 1995; Newell, 1986). 

Dynamic systems theory (DST) 

DST framework 

The traditional dysfunctional approach to MV is challenged by a functional MV approach 

that considers variability to be desirable (Robins et al., 2006). One of the computational frameworks 

that regards MV as functional is DST, also known as nonlinear dynamics or chaos theory, which 

explains systems that change or evolve over time (Clark, 1995). In contrast to the information 

processing approach, in DST the control is not based on the motor program but is rather guided by the 

patterns of a complex dynamic system (Clark, 1995). Patterns emerge through preferred or attractor 

states of coordinative patterns by a self-organization process based on the inherent connectivity of the 

anatomical system that narrows down the degree of freedom (DOF) problem to one dynamic pattern 

that is determined by interacting constraints (Clark, 1995; Davids et al., 2003; Newell, 1986; Turvey, 

1990). The task is believed to be the most important constraint since it regulates the possible states 

and therefore the available patterns (Clark, 1995; Davids et al., 2003). 

The variability of the patterns reflects the stability of the system such that stable systems are 

characterized by low variability, whereas with incremental variability the system becomes more 

unstable that reflects a system in transition (Clark, 1995). Variability of coordination patterns have 

been studied as a critical property of the system to ensure flexibility and stability of movement by the 

process of exploring and abandoning coordinative structures to adapt to the unique constraints (Clark, 
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1995; Haken et al., 1985; Hamill et al., 1999; Kugler et al., 1980; Turvey, 1990). Since a pattern is the 

result of emerging constraints, these constraints can be relevant as a control parameter of the system if 

scaling of the constraints results in changes in the system (Clark, 1995). In the functional view, based 

on DST, three possible functional roles for variability are mentioned; variability can possibly induce a 

coordination change, distribute loads, and pose flexibility to facilitate adaptations to changes in the 

environment (Bartlett et al., 2007). 

In DST the previous focus of the dysfunctional approach on common optimal movement 

patterns is shifted to individual coordination profiling (Schöllhorn & Bauer, 1998), which allows for 

analysis of specific constraints that shape intrinsic movement system dynamics of the individual 

(Button & Davids, 1999). Furthermore, in DST group statistics (i.e. parametric estimates of individual 

data pooled in groups) are suggested to be invalid analyses of motor coordination as averaging across 

different individuals is undesirable because of different organismic constraints, which is supported by 

discoveries of refined individual signature movement patterns (Kelso, 1995). 

Operationalization of DST 

DST operationalization methods address the ignorance of the time domain structure and 

assumption of complete randomness of the traditional approach by using nonlinear operationalization 

methods (Davids et al., 2003; Newell & Slifkin, 1998). Even though the task constraints are 

suggested to play a major role in motor behaviour and MV (Clark, 1995; Davids et al., 2003), task 

performance is not explicitly included in DST analyses, which could be considered a limitation. 

On one side the operationalization has focused on variability of coordination patterns to 

reflect transitions in coordination that are operationalized by order parameters that can be identified 

by manipulating control parameters, for example relative phase between body segments or joints (i.e. 

coupling) (order parameter) in combination with gait speed (control parameter) (Haken et al., 1985; 
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Hamill et al., 1999; Kelso, 1984). Even though variability and stability are different properties of 

motor control and increased variability is not necessarily associated with more instability, variability 

of coordination patterns are used as a measure of stability of the patterns (Stergiou & Decker, 2011). 

With respect to inclusion of time domain structure, continuous relative phase (CRP) reflects both 

spatial and temporal information and CRP variability is reflective of transition in phase between 

coordination patterns (Hamill et al., 1999). Alternatives to CRP analysis to characterize coordination 

are cross-correlations and vector coding (Glazier et al., 2003).  

On the other side, nonlinear times series analysis is used to describe the time evolution of 

movement patterns with the goal to determine the type of the underlying control process (i.e. random, 

chaotic) and the time period (i.e. short-term or long-term). Examples of nonlinear time series 

measures are entropy, correlation dimension, local dynamic stability and fractal dynamics (Cusumano 

& Dingwell, 2013; Newell & Vaillancourt, 2001; Slifkin & Newell, 1998). Entropy is also described 

as the complexity of variability (Madeleine, 2010) and reflects the degree of disorder or randomness. 

A specific measure is approximate entropy, which determines how predictable future values are from 

previous values in a time series signal (Slifkin & Newell, 1998). Correlation dimension is a measure 

of dimensionality and reflects the number of degrees of freedom necessary for the movement pattern 

(Newell & Vaillancourt, 2001). Local dynamic stability determines the temporal stability of a 

dynamical system upon local perturbations (Cusumano & Dingwell, 2013). Local dynamic stability 

can be measured by (variations on) Lyapunov exponents, which are also known as local divergence 

exponents, and Floquet stability multipliers (Cusumano & Dingwell, 2013). Fractal dynamics reflect a 

fractal process by long-range correlations in time series, which can be assessed by detrended 

fluctuation analysis (DFA). DFA measures the statistical persistence across multiple time lags 
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(Cusumano & Dingwell, 2013). All these measures reflect the organization of the temporal structure 

of a time series. 

Nonlinear measures in variability-risk hypotheses 

In addition to linear measures, nonlinear measures have also been used to support variability 

hypotheses (Hamill et al., 1999; Heiderscheit et al., 2002; Madeleine & Madsen, 2009; Yang et al., 

2018). Based on the nonlinear DST measures, more variability would lead to less stable movement 

behaviour, which could either improve or limit task performance depending on the type of task (e.g. 

accuracy task versus locomotion) and environment (e.g. walking on (un)predictable surfaces). 

Therefore, in this literature review another functional framework will be explored that directly relates 

task performance to variability. 

Summary of DST 

In contrast to the traditional approach, DST assigns functionality to variability, DST 

addresses the DOF problem as motor abundance, and DST acknowledges the influence of task 

constraints in movement control. DST operationalization addresses limitations of the traditional 

approach, such as assumptions of linear measures, and variability is also analyzed in the time domain 

instead of only in the amplitude domain. The concept of constraints justifies the individual approach, 

however task performance is ignored in corresponding analysis techniques while task constraints are 

assumed to primarily determine motor behaviour and MV. The second functional framework is able 

to address this problem. 
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Optimal feedback control (OFC) 

OFC framework 

Optimal feedback control (OFC) is a computational framework that describes movement 

planning and execution of the motor system as a control process in which the feedback is optimized 

for successful performance of the task for the individual (Diedrichsen et al., 2010; Scott, 2004). The 

OFC loop consists of several components as depicted in Figure 2.1. 

 

Figure 2.1: Schematic depiction of optimal feedback control theory with respect to movement 

planning and execution, where MIP stands for Minimum Intervention Principle (modified from 

Scott, 2002; 2004; Todorov & Jordan, 2002; Todorov, 2004; Diedrichsen et al., 2010). 
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The current state or performance of the system is estimated by the predicted future state and 

the afferent feedback, which are both subject to signal-dependent noise in the motor commands and 

afferent feedback thus OFC is also often defined as stochastic OFC (Harris & Wolpert, 1998; 

Todorov & Jordan, 2002). The predicted future state is derived by an internal forward prediction 

based on the efferent copy of motor signals (Diedrichsen et al., 2010; Wolpert et al., 1995). 

Therefore, the current state estimation is based on properties of both the body and environment 

(Dingwell et al., 2004). As part of the state estimation the sensory feedback is weighted against the 

predicted future state to account for sensory time delays and noise, which is also explained as 

feedback gains (Diedrichsen et al., 2010). The state estimation together with the selected task is used 

in the OFC laws to determine the motor commands that drive the future limb mechanics (Scott, 

2004). 

The OFC laws are a central problem in OFC theory and a possible optimization criterion is 

minimizing the sum of squared motor commands, which has been interpreted to minimize effort and 

to minimize endpoint variance related to signal-dependent noise (Diedrichsen et al., 2010; Harris & 

Wolpert, 1998). OFC laws are selected out of feedback control laws based on the constraints of the 

task that is performed and the optimization principle of OFC (i.e. the minimum intervention principle 

(MIP)) (Diedrichsen et al., 2010; Scott, 2002; Todorov & Jordan, 2002). In MIP only deviations from 

the task-relevant goals are corrected, whereas deviations from the task-irrelevant goals are left to 

accumulate in variability (Diedrichsen et al., 2010; Todorov & Jordan, 2002). This selective 

correction feature leads to strict control of task-relevant features, whereas task-irrelevant features are 

allowed to vary (Scholz & Schöner, 1999). Therefore, MV is mostly prevalent in the task-irrelevant 

dimension because MIP only minimizes variability in the task-relevant dimension to maintain task 

performance (Franklin & Wolpert, 2011; Todorov & Jordan, 2002). 
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With respect to the DOF problem, OFC solves motor redundancy at each time step to reach 

optimal performance (Todorov & Jordan, 2002). In addition to explaining MV and addressing the 

DOF problem, OFC also provides an explanation of goal-directed corrections and motor synergies, 

and thus provides a more holistic framework that can explain multiple motor coordination 

observations compared to the traditional approach and DST (Todorov & Jordan, 2002). For different 

tasks the underlying optimality principles are the same, however the optimal feedback controller 

probably has unique characteristics that are only shown in the circumstances of the actual task 

(Todorov & Jordan, 2002). 

Operationalization of OFC 

Since the OFC law minimizes deviations from the task-relevant goals and therefore allows 

task-irrelevant goals to vary, OFC can be operationalized using methods that are able to distinguish 

task-relevant from task-irrelevant variability (Diedrichsen et al., 2010; Todorov & Jordan, 2002). 

Uncontrolled manifold (UCM) and goal-equivalent manifold (GEM) analyses separate task-relevant 

and task-irrelevant variability by decomposing task performance into elemental and performance 

variables or also described as execution and result variables (Latash, 2012; Latash et al., 2002; Müller 

& Sternad, 2009). The elemental variables are the execution or action variables, which are the 

variables used on the axes of the UCM/GEM plots (Latash, 2012; Müller & Sternad, 2009). The 

performance variable reflects task error and thus the result, where the task goal is depicted on the 

UCM/GEM plot as a line or curve (Latash, 2012; Müller & Sternad, 2009). Thus, the performance 

variable determines the task-relevant dimension since deviation away from accurate performance 

interferes with the task outcome, and the task-irrelevant dimension is defined as the dimension 

orthogonal to the task-relevant dimension. The actual data points depicted on a UCM/GEM plot are 

combinations of elemental variables for each repetition, so variability on this plot is reflective of 
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repetition-to-repetition variability. An example during repetitive pointing is shown in Figure 2.2A, 

with shoulder, elbow and wrist angles as elemental variables on the axes and the average joint 

trajectory as the performance variable represented by the dashed line Figure 2.2B. The task-irrelevant 

dimension is depicted for three time points (t1, t2, T) after the start (S) of the pointing movement, by 

the black lines orthogonal to the dashed line with two black dots at each time point representing the 

two illustrated joint configurations from repetitive execution. The black lines represent task-irrelevant 

variability that led to the same position of the pointer, representing the task-relevant dimension, at 

each time point. 
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Figure 2.2: (A) Illustrative example of thee-joint planar arm movement using a pointer from 

starting position (S) to target position (T) with two intermediate time points (t1 and t2), (B) 

corresponding depiction of UCM plot with the axes representing wrist, elbow and shoulder 

angles and the dashed line representing average joint trajectory, and for three time points after 

that start the black lines show the manifold of joint angles that lead to the same end-effector 

position of the pointer, where the black dots represent the illustrated joint configurations. 

Figure has been published as Figure 3 in Latash et al. (2007). 

Task-relevant variability is operationalized as variability away from the local curvature of the 

performance variable, and task-irrelevant variability is operationalized as variability along the 

performance variable. Because of the MIP, task-irrelevant variability is reflective of motor abundance 

in which the task goal can be met by multiple options of limb mechanics, which is described as the 

manifold or solution space in UCM or GEM (Müller & Sternad, 2009; Todorov, 2004). Therefore, 

more variability is manifested within the manifold rather than perpendicular to the manifold of 
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UCM/GEM. Transformations applied to elemental data points in solution space are suggested to be 

regulated by the control system (Müller & Sternad, 2009), and when OFC theory is applied the 

operations would be the result of the OFC laws. 

The most notable difference between UCM and GEM is the definition of the manifold. In 

UCM, the manifold is based on the collected movement patterns (e.g. subject’s average patterns) 

(Scholz & Schöner, 1999). However, in GEM the manifold is also described as the task goal or goal 

function that is defined by a mathematical relationship between elemental and performance variables, 

which is equivalent for each subject (Cusumano & Cesari, 2006). Therefore, in GEM the manifold 

does not necessarily reflect individual performance since it is not directly related to a subject’s 

movement pattern, while this is the case in UCM (Cusumano & Cesari, 2006). To establish the 

relationship between elemental and performance variables in GEM, common practice is to impose the 

task goal by using external task constraints such as constant pacing, which has been observed in work 

on variability and fatigue (Cowley et al., 2014; Gates & Dingwell, 2008; Sedighi & Nussbaum, 

2017). However, these constraints are not necessarily reflective of task performance at the workplace 

and, more relevant for MV, could reduce the use of motor abundance since the task-irrelevant 

dimension represents motor abundance (Latash et al., 2002; Todorov, 2004). For UCM, there is also 

the assumption of a mathematical relationship between elemental and performance variables that 

could be established by estimating the function by regression analysis (de Freitas & Scholz, 2010; 

Freitas et al., 2010; Greve et al., 2013; Tuitert et al., 2019) or by developing a biomechanical model 

to define this function (Hasanbarani et al., 2021; Scholz et al., 2000; Scholz & Schöner, 1999). In 

contrast to GEM, for UCM it is no necessary to explicitly define a task goal. 
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UCM and GEM measures in variability-risk hypotheses 

Only some work has used UCM/GEM methods in the context of the variability-risk 

hypotheses (Cowley et al., 2014; Gates & Dingwell, 2008; Hasanbarani et al., 2021; Sedighi & 

Nussbaum, 2017). GEM analysis has been used more often than UCM analysis although for GEM 

analysis the task was constrained by following a constant pace using a metronome, which could 

restrict MV. Therefore, UCM analysis could be considered a better alternative when studying MV in 

occupational tasks, also given that when these constraints are not reflective of the work environment 

it could improve external validity. 

Summary of OFC 

In agreement with DST, OFC addresses the DOF problem as motor abundance and OFC also 

considers the task constraints for motor performance. A shortcoming of DST that is accounted for in 

OFC is the opportunity to increase variability for a functional role (i.e. increase task-irrelevant 

variability) without interfering with task performance (i.e. without increasing task-relevant 

variability). OFC operationalization consists of methods to quantify task-relevant and task-irrelevant 

variability. UCM, in contrast to GEM, appears to be understudied in the context of variability-risk 

hypothesis while it allows for minimal constraints applied to the task that could affect MV. 

2.3.3 Summary of motor control perspectives in motor variability 

Historically, the view on MV has been re-evaluated from the traditional dysfunctional view to 

the more recent functional view. In the traditional motor control perspective, related to the view of the 

DOF problem, MV has been quantified using linear measures such as standard deviation. Although 

linear measurements have significantly contributed to the development of variability-risk hypotheses, 

the use of these measurements do not align with the view of motor abundance that has been used to 

explain these hypotheses. Functional motor control perspectives, related to the view of motor 
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abundance, have been discussed using two approaches where MV has been quantified using nonlinear 

measures. Despite that the underlying functional perspectives align with explanations of variability-

risk hypotheses, functional variability measures (i.e. nonlinear and task-irrelevant variability) are 

relatively underused. 

2.4 Conclusion of literature review 

This literature review demonstrates the need to further investigate the repeaters-replacers 

hypothesis because it could change the current view on the speculative variability-risk hypotheses. 

More specifically, the assumption of MV as an individual trait regardless of task characteristics 

requires more research. To date, evidence has been established across varying task constraints in fine 

motor tasks that only require movement of the upper extremity to complete the task. Therefore, in this 

dissertation, MV across varying task constraints in gross motor tasks that require whole-body 

movement is assessed. Furthermore, this dissertation also determines MV across both fine and gross 

motor tasks, which could provide the strongest evidence for MV as an individual trait.  

To connect the assumption of MV as an individual trait to variability-risk hypotheses, a risk 

variable needs to be included. To assess MV as an individual trait, consistency should be determined 

across the risk variable. In this dissertation, the risk variable is fatigue in context of the variability-

fatigue hypothesis, where MV is determined at different fatigue states. To relate risk to individual 

MV, individual MV should be explicitly related to the individual’s risk. In terms of the repeaters-

replacers hypothesis, relating risk to individual MV will determine whether repeaters are at higher 

risk than replacers. Thus, this dissertation relates individual MV to indicators of fatigue development 

to determine whether repeaters show faster development of fatigue than replacers. 

The literature review also shows the diversity in methods to quantify MV. In terms of motor 

variables, there is more convincing support for the variability-fatigue hypothesis with respect to 
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kinematics. Also, a range of different variability metrics can be applied to kinematics, while this is 

not applicable to other motor variables of kinetics or EMG. Thus, this justifies the focus of this 

dissertation on kinematic variability. Traditional and functional variability metrics have different 

underlying motor control perspectives, where traditional metrics formed the variability-risk 

hypotheses while functional metrics have aided in interpreting these findings. Therefore, in this 

dissertation, variability metrics from both traditional and functional motor control perspective are 

considered. Furthermore, these metrics are compared at the individual level to inform following 

studies of this dissertation. 
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Chapter 3: Exploring the role of task constraints on motor 

variability and assessing consistency in individual responses 

during repetitive lifting using linear variability of kinematics 

This chapter has been published as following: 

Oomen, N. M. C. W., Graham, R. B., & Fischer, S. L. (2022). Exploring the role of task constraints 

on motor variability and assessing consistency in individual responses during repetitive lifting 

using linear variability of kinematics. Applied Ergonomics, 100, 103668. 

https://doi.org/10.1016/j.apergo.2021.103668  

3.1 Abstract 

To better understand the assessment of motor variability (MV) in an occupational context, 

this study determined the role of task constraints on MV and consistency in individual MV responses. 

Twenty participants performed repetitive lifting under four constraints differing in restriction of foot 

movement and load weight. MV was assessed for three body regions and for the whole-body using 

linear variability of three-dimensional joint angles. Foot movement caused significant increases of 

lower body (11-17%), low back (318-439%) and a reduction in upper body variability (4%), whereas 

no effects of weight nor interaction of foot restriction and weight were found. Good individual 

consistency (ICC= 0.71 – 0.84) was demonstrated across constraints. Even though MV is affected by 

constraints, this study supports that MV is largely an individual trait independent of constraints. 

Future work should evaluate if MV remains an individual trait across different tasks, and if MV is 

confounded by other task constraints. 

https://doi.org/10.1016/j.apergo.2021.103668
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3.2 Introduction 

The human motor system consists of more degrees of freedom (DOF) than theoretically 

necessary to complete a given task (i.e. DOF problem) (Cusumano & Cesari, 2006; Latash, 2000; 

Latash et al., 2002; Newell & Corcos, 1993). Therefore, multiple attempts of the same task can be 

executed using different movement patterns or by “repetition without repetition” according to 

Bernstein (1967). Motor variability (MV) that arises from repeated execution of the same task is 

believed to reflect the inherent motor control strategy (Latash et al., 2002; Newell & Corcos, 1993). 

Interest in MV is growing within the field of ergonomics because of its potential relevance to work-

related musculoskeletal disorder (WRMSD) causation and subsequent prevention (Côté, 2012; 

Madeleine, 2010; Srinivasan & Mathiassen, 2012). 

In general, it is hypothesized that low MV is associated with increased injury risk, while high 

MV is associated with lower injury risk (Côté, 2012; Madeleine, 2010; Mathiassen et al., 2003; 

Srinivasan & Mathiassen, 2012). This variability-risk hypothesis is based on findings reporting lower 

MV in individuals with pain compared to individuals without pain (Madeleine, Mathiassen, et al., 

2008; Madeleine, Voigt, et al., 2008) and findings of high MV in individuals with task specific 

experience (i.e., healthy workers) compared to individuals without experience (Granata et al., 1999; 

Madeleine, Voigt, et al., 2008). Also, low MV has been associated with earlier onset of fatigue 

(Farina et al., 2008; van Dieën et al., 2009; van Dieën, Oude Vrielink, Housheer, et al., 1993) and, 

from a sports biomechanics perspective, low MV has been associated with overuse injury (Hamill et 

al., 1999; Heiderscheit et al., 2002; James et al., 2000). An increase in MV could lead to more trial-to-

trial distribution of muscle activation and mechanical loading across tissues, which could reduce 

cumulative loading and the risk of cumulative damage to the tissues (Bartlett et al., 2007; Hamill et 

al., 1999; Madeleine, 2010; Srinivasan & Mathiassen, 2012; Visser & van Dieën, 2006). 
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Occupationally-relevant MV research has focused on fine motor tasks, and only a few studies 

have investigated gross motor tasks. Tasks have included simulated filleting/cutting (Madeleine, 

Mathiassen, et al., 2008; Madeleine, Voigt, et al., 2008), deboning (Madeleine & Madsen, 2009), and 

reaching/pointing (Lomond & Côté, 2010; Yang et al., 2018). Few researchers have assessed MV in 

gross motor tasks such as lifting (Granata et al., 1999; Sedighi & Nussbaum, 2017; van Dieën et al., 

2001). Gross motor tasks, in contrast to fine motor tasks, involve whole-body movement and 

therefore require more DOF, which provides a greater opportunity to exploit MV. Both fine and gross 

motor tasks have been examined under fairly constrained circumstances that restrict the available 

DOF and thus lower the opportunity to exploit MV. For example, the simulated filleting/cutting task 

consisted of five time-paced consecutive hand movements that included pressing a button and 

applying 20-30 N with a force-sensitive knife to two slots (Madeleine, Mathiassen, et al., 2008; 

Madeleine, Voigt, et al., 2008). In addition, an asymmetric freestyle lifting task was also time-paced 

and participants were specifically instructed to keep their feet in a fixed position and hold the box 

continuously (Sedighi & Nussbaum, 2017). In these studies, the task constraints such as pace, spatial 

requirements and force targets could have been imposed to mimic work conditions such as an 

assembly line. Foot restriction and pace restriction may have also been required for measurement (e.g. 

force plate recording) and analysis (e.g. goal equivalent manifold analysis) purposes, respectively. 

However, it could be argued that the external validity of such experimental task constraints is low, as 

workplace tasks would likely come with less overall movement constraints. In summary, it is valuable 

to assess MV in gross motor tasks such as lifting with minimal experimental constraints to enable as 

many motor solutions (i.e. DOF) as possible and to mimic workplace constraints to enhance external 

validity of task constraints. In addition, there is also a need to compare MV in unrestricted lifting to 

lifting under different task constraints that restrict some DOF of the task to assess the effect of task 

constraints on MV. 
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Recent research on work-related MV indicated individual consistency in MV responses 

across days and task constraints; hence MV could be a consistent individual trait (Jackson et al., 

2020; Sandlund et al., 2017). Thus, MV could be considered an indicator of individual motor control. 

Generating evidence on individual consistency in MV is important to explore the repeaters-replacers 

hypothesis that describes individuals with consistently low MV as repeaters and individuals with 

consistently high MV as replacers (Jackson et al., 2020; Sandlund et al., 2017). Combining the 

repeaters-replacers hypothesis with the variability-risk hypothesis leads to the hypothesis that 

repeaters are at higher risk of developing WRMSDs than replacers (Jackson et al., 2020; Sandlund et 

al., 2017; Srinivasan & Mathiassen, 2012). Therefore, WRMSD risk may be related to how 

individuals exploit motor abundance. However, the repeaters-replacers hypothesis is only supported 

on the condition that MV is genuinely an individual trait. Therefore, an individual’s MV should be 

consistent over time and across different task constraints. In a repetitive pipetting task, repeaters were 

identified because individuals with low total average MV showed this feature consistently on three 

different days (Sandlund et al., 2017). In a cyclic assembly task, participants showed consistency of 

MV under four different temporal task constraints varying in pace (self-paced and imposed) and 

production process (batch and assembly-line) (Jackson et al., 2020). Although some supporting 

evidence was found in fine motor tasks across days and task constraints, it is unclear if the repeaters-

replacer hypothesis is supported in gross motor tasks such as lifting when repeated under different 

task constraints.  

In summary, the ergonomics literature is lacking studies on MV in gross motor tasks such as 

lifting and specifically studies assessing MV in minimally constrained lifting while comparing it to 

different task constraints that restrict some DOF of the task. Furthermore, there is a need to assess the 

consistency of individual MV responses across different task constraints to investigate if MV is an 
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individual trait, evidence necessary to support the repeaters-replacers hypothesis. Therefore, the 

objective of this study was to understand the role of task constraints on MV and assess consistency in 

individual MV responses for a repetitive lifting task. This study has two overarching research 

questions: 1) What is the effect of DOF constraint and load weight on MV? 2) Do individuals show 

consistent MV responses across different DOF constraints and load weights? It was hypothesized that 

when the DOF of the task were more constrained, MV would decrease. When load weight increased, 

greater mechanical task demands would lead to a reduction in MV (Nordin & Dufek, 2016, 2017) 

possibly by restricting DOF at low-capacity joints to minimize the development of fatigue or injury. 

In addition, it was hypothesized that individuals would show consistent MV responses across DOF 

constraints and load weights. 

3.3 Material and Methods 

3.3.1 Research design 

A cross-sectional experimental study with a two factor repeated measures design was used to 

answer the research questions. The independent variables consisted of 1) DOF constraint (i.e. 

restricted versus unrestricted foot movement) and 2) relative load weight (i.e. low versus high). The 

dependent variables consisted of three-dimensional joint angle variability determined using the 

traditional linear measure of mean standard deviation (meanSD) (Newell & Corcos, 1993; Stergiou & 

Decker, 2011). 

3.3.2 Participants 

Twenty participants (ten females and ten males; 24.3 (± 3.8) years; 169.2 (± 10.2) cm; 67.9 (± 

13.0) kg) were recruited from the student population homogeneous on known determinants of MV 

such as age and acute and chronic pain status as recommended by Sandlund et al. (2017) (Krüger et 

al., 2013; Madeleine, Mathiassen, et al., 2008; Madeleine, Voigt, et al., 2008; Madeleine & Madsen, 
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2009). Participants were excluded if they were not between 18 and 64 years, if they had acute and/or 

chronic pain that conflicted with performing prolonged lifting within the last seven days prior to 

testing based on the Nordic MSD questionnaire (Kuorinka et al., 1987) or if they indicated any 

conditions that would threaten the safety of performing physical activity based on the Get Active 

Questionnaire (GAQ) (CSEP, 2017). This study was approved by the University of Waterloo’s Office 

of Research Ethics (ORE#40762), and all participants provided informed consent prior to 

participation. 

3.3.3 Instrumentation 

A 12-camera (six Vantage v5 and six Vero 2.2) Vicon Nexus 2.6.1 motion capture system 

(Vicon, Oxford, UK) tracked 58 individual reflective markers placed over anatomical landmarks or 

tracking locations on the body as well as eight clusters of four markers and two clusters of five 

markers secured on body segments at 100 Hz (see Figure 3.1). After calibration, all calibration-only 

markers were removed as indicated in Figure 3.1. The whole-body marker setup enabled segment-

specific anatomical coordinate systems to be defined, consistent with the International Society of 

Biomechanics (ISB) recommendations (Wu et al., 2002, 2005). 
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Figure 3.1: Whole-body marker setup consisting of 58 individual markers, eight clusters of four 

markers, and two clusters of five markers (i.e. thigh clusters). 

Three milk crates (1.5 kg and 33.5 × 33.5 × 28 cm) with handles were used as the lifting 

object. Each crate had an individual reflective marker on each corner (i.e. four markers in total) of the 

posterior aspect of the crate to limit marker obstruction. 
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The experimental setup for the lifting tasks consisted of three adjacent shelves with the 

bottom shelf just above the floor and the top shelf adjusted to the individual’s stature-based shoulder 

height (see Figure 3.2). 

 

Figure 3.2: Three lifting stations with the bottom shelf just above floor height and top shelf at 

shoulder height. 

3.3.4 Procedures 

This study consisted of two data collection sessions for each participant that were 2-7 days 

apart. This timeframe was deemed appropriate to allow for enough recovery of delayed-onset muscle 

soreness from the first session and to control for history as an internal bias to the individual’s MV. 
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Session 1 

In the first session eligibility was confirmed using demographics, Nordic MSD questionnaire 

(Kuorinka et al., 1987), and GAQ (CSEP, 2017). Furthermore, the participant’s shoulder height was 

measured to adjust the shelving heights relative to the individual. 

To obtain relative weights maximum lifting capacity was assessed using the Matheson’s 

EPIC Lifting Capacity (ELC) test. The ELC test is a psychophysical test to assess functional lifting 

capacity (Matheson et al., 1995). The original ELC was slightly modified by adjusting the shelf 

height to individualized height and by only completing subtest 3 (i.e. floor to shoulder height) at 1 

cycle per minute (Matheson et al., 1995). The test started with lifting and lowering the crate with a 

4.5 kg weight once within a 1 min window, followed by 1 minute of mandatory rest. If certain 

psychophysical and safety criteria were met the test was repeated with the addition of 4.5 kg. In the 

ELC, the weight was determined as maximum lifting capacity if, heart rate > 70% of age-predicted 

maximum, rate of perceived load > 8, they could not perform this 8-12 times per day, unsafe lifting 

work style was displayed, or if they could not lift heavier (Matheson et al., 1995). The participant was 

not instructed on how to lift the crate, other than lifting it with both hands. 

After the ELC test the participants were equipped with the aforementioned motion capture 

markers for whole-body kinematic recording. Participants were deceived about the purpose of the 

study to reduce the effect of demand characteristics on participants’ movement variability behaviour 

(Nichols & Maner, 2008). Participants were informed that the study aimed to estimate the optimal and 

safe number of lifting repetitions for an 8-h workday and to understand the effect of load and foot 

movement on the number of lifts. In line with the deception, participants were asked to perform as 

many repetitions as if they were working an 8-h workday without feeling tired or experiencing strain 

at the end of the workday. However, participants were also made aware that they were performing 
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each lifting task for 30 minutes maximum. Participants were not explicitly instructed how to move, 

but the participants had to move the crate using two hands for the possibility of top-down inverse 

dynamics modelling (not reported in this study). To expose all participants to the same instructions of 

the study protocol, audio recordings and corresponding written transcripts were used (Beach et al., 

2018). 

In the first session participants only performed lifting under foot placement and foot 

movement restrictions. Participants were instructed to keep their feet flat on the floor and place their 

feet inside rectangles drawn on the floor at each shelf using tape. These rectangles were drawn after 

they practiced a couple lifts to ensure comfortable foot placement. Participants first completed the 

restricted task with the low weight (i.e. 10 % of maximum), took a 10-min rest break to limit fatigue 

development, and then repeated the task with a higher weight (i.e. 30 % of maximum). 

Each lifting task was broken down into a maximum of seven sets of five trials, with one trial 

corresponding to three repetitions of the task (one repetition at each shelf). This resulted in a 

maximum of 105 total repetitions if the participant completed all trials. Each lifting task had a 

maximum time limit of 30 minutes to ensure that other tasks that are not included in this study could 

also be completed within a 3-hr maximum window. In addition to the time limits, the maximum 

number of 105 repetitions was chosen to obtain a good estimate of variability without inducing 

excessive fatigue. Participants always lifted the crates in the same order of shelves, and research staff 

lowered the crates before the next trial was started. As part of the deception, the participants were 

asked after every set if they were able to complete another set within an 8-h workday without feeling 

tired or experiencing strain at the end of the workday. This led to some participants to stop the lifting 

task before the maximum number of 105 repetitions was reached. 
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Session 2 

In the second session eligibility was confirmed by asking the participants to indicate any 

changes on the Nordic MSD questionnaire and the GAQ that may have occurred in between session 1 

and 2. The same general instructions as session 1 including deception were given.  

In the second session participants only performed the unrestricted, free lifting task. In contrast 

to the restricted task, the free lifting task allowed participants to place and move their feet freely. To 

encourage free foot placement, participants approached the shelves by walking from a 2.5 m distance. 

Similar to session 1, participants first completed the free lifting task with the low weight (i.e. 10 % of 

maximum), then took a 10-min rest break to limit fatigue development, and then repeated the task 

with a higher weight (i.e. 30 % of maximum). Also, the maximum number of repetitions, maximum 

time per task and order of shelves was identical to session 1. 

After the completion of this session the participants were debriefed about the deception and 

the true purpose of the study was revealed by informing them that their movement variability was 

studied rather than the number of repetitions. Participants signed another consent form after deception 

was lifted.  

3.3.5 Data processing 

Whole-body and crate marker kinematics were labelled by use of a custom-made labelling 

skeleton in Vicon Nexus and subsequently gap filled using the best practice of applying cubic spline 

interpolation for gaps ≤ 200 ms and for gaps > 200 ms rigid body fill function of Vicon Nexus was 

used if three markers on the same segment were visible and otherwise pattern fill function was used 

(Howarth & Callaghan, 2010). All marker data were imported into Visual3D v6.01.03 (C-motion Inc., 

Germantown, Maryland, USA) to identify anatomical landmarks in the experimental trials based on 

the static calibration trials that were subsequently used to define local coordinate systems of the hand, 
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forearm, upper arm, torso, pelvis, thigh, shank, and foot segments according to ISB recommendations 

(Wu et al., 2002, 2005). Due to frequent marker obstructions of the shank tracking markers the shank 

segments were tracked using only two visible shank cluster markers, one virtual knee anatomical 

marker and one virtual ankle anatomical marker for each side. These virtual markers were 

representative of the lateral condyle at the knee and lateral malleolus at the ankle for each side.  

To determine joint angles, the orientation of local coordinate systems of the distal segment 

relative to proximal segment were decomposed according to the Cardan sequence of flexion-

extension, abduction-adduction, and internal-external rotation, except for the shoulder joint that was 

decomposed using the Euler sequence of plane of elevation, angle of elevation, and axial rotation (i.e. 

humerus relative to torso) in agreement with ISB recommendations (Wu et al., 2002, 2005). Joint 

angles together with crate marker trajectories were exported to Python 3.7. 

To remove high frequency noise joint angles and crate marker trajectories were filtered with a 

second order dual-pass low pass Butterworth filter with an effective cut-off frequency of 6 Hz 

(Winter, 2009). Subsequently, anterior-posterior crate marker velocity was used to segment each trial 

into three separate lifts while confirming that at least 100 padding points or 1 s before and after each 

lift were available (Howarth & Callaghan, 2008; Smith, 1989). This led to an overall average of 93 (± 

19) lifting cycles. Then, each segmented lift was normalized to 101 data points corresponding to 0 to 

100 % of the lift cycle by use of a shape-preserving cubic spline (Graham et al., 2013). The number 

of cycles was further reduced by excluding outliers in sagittal joint angles that were outside of the 

ensemble average ± 3.75 standard deviations range. Finally, an overall average of 80 (± 17) cycles 

were included for further processing. 

The resulting time-normalized joint angle cycles were used to determine the point-by-point 

standard deviation (i.e. standard deviation at each % cycle) which was averaged across the 101 time-
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normalized data points to obtain joint angle meanSD. An example of time-normalized joint angles is 

illustrated in Figure 3.3. Subsequently, joint angle meanSD of left and right ankle, knee and hip 

joints were summed for a lower extremity measure and joint angle meanSD of left and right wrist, 

elbow and shoulder joints were summed for an upper extremity measure. MeanSD of low back joint 

angle was considered separately. Lastly, meanSD of all joint angles were summed to yield a whole-

body variability measure. 

3.3.6 Statistical analysis 

All statistical analyses were conducted in R 4.0. Lower extremity, low back, upper extremity 

and whole-body variability were assessed for normality using statistics of skewness, kurtosis and 

Shapiro-Wilks test and by visual inspection of histograms, Q-Q plots and box plots. The assessment 

determined that the data violated the assumption of normality, mostly due to positive skew. To 

confirm the assumption of normality a log transform was applied to all dependent variables for 

statistical analysis. 

To determine the effect of task constraints on MV, lower extremity, low back, and upper 

extremity variability were used as the dependent variables because preliminary analysis showed that 

variability at the whole-body level canceled out regional effects. In contrast, to determine the 

consistency in individual MV responses across different task constraints whole-body variability was 

used since whole-body consistency would generate the strongest evidence for individual consistency.  

The effect of DOF constraint (restricted versus free) and weight (low versus high) on lower 

extremity, low back and upper extremity variability was examined with a two-way repeated measures 

ANOVA. If significant main effects were found the direction of the effect was determined by group 

means. Since this resulted in nine different comparisons (i.e. three body regions in three movement 
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planes) a Bonferroni correction was applied to control familywise error rate and therefore the critical 

level of significance of .006 was used. 

The consistency of whole-body joint variability across all four constraints (i.e. two DOF 

constraints by two weights) was assessed by intraclass correlation (ICC) using the two-way mixed 

model for average measures (i.e. ICC(3,k) consistency model). ICC can be used as a measure of 

dependency between observations that can be attributed to the participants by taking both within-

participant and between-participant variability into account (Field et al., 2012). To further investigate 

the consistency across constraints the correlation between weights for each DOF constraint was 

determined using Spearman’s correlation coefficient. Because a positive relationship between the 

weights was expected, a one-tailed test was used with a confidence level of 95%. 
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Figure 3.3: Time-normalized sagittal joint angles of a representative participant including the ensemble average (black line), the range of 

ensemble average ± 1 standard deviation (black dotted lines) and the corresponding meanSD values for the cycles included after removal 

of outliers of the free DOF constraint by low load weight condition. 
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3.4 Results 

DOF constraint had a significant main effect on lower extremity variability in all movement 

planes (see Table 3.1). The group means revealed that the variability in the free conditions was 15%, 

17% and 11% higher in the sagittal, frontal and transverse planes, respectively, compared to the 

restricted conditions (see Table 3.1 and Figure 3.4). The same main effect of DOF constraint was 

found on low back variability, but only in the frontal and transverse planes (see Table 3.1). Group 

means revealed that the variability in the free conditions was 318% and 439% higher in the frontal 

and transverse planes, respectively, in comparison to the restricted conditions (see Table 3.1 and 

Figure 3.4). DOF constraint also showed a significant main effect on upper extremity variability, but 

only in the frontal plane (see Table 3.1). In contrast to previous main effects of DOF constraint, 

group means revealed a 4% higher variability in the restricted conditions in comparison to the free 

conditions for the upper extremity (see Table 3.1 and Figure 3.4). Furthermore, weight did not show 

any significant main effects (see Table 3.1). Lastly, the interaction of DOF constraint and weight did 

not result in any significant effects (see Table 3.1). 
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Table 3.1: Results of two-way repeated measures ANOVA with DOF constraint and weight as factors for log transformed lower extremity 

(LE), low back (LB) and upper extremity (UE) variability in sagittal (X), frontal (Y), and transverse (Z) planes. Significant main effects 

are indicated by p-values and directions in bold, with RS indicating restricted foot movement and FR indicating free or unrestricted foot 

movement. 

  

DOF Constraint Weight DOF Constraint*Weight 

F (1,19) p ηp
2 Direction F (1,19) p ηp

2 Direction F (1,19) p ηp
2 Direction 

LE_X 15.693 <.001 0.452 FR>RS 4.261 0.053 0.183 n/a 0.190 0.668 0.010 n/a 

LE_Y 22.138 <.001 0.538 FR>RS 0.011 0.917 0.001 n/a 0.267 0.612 0.014 n/a 

LE_Z 15.804 <.001 0.454 FR>RS 0.118 0.735 0.006 n/a 0.591 0.452 0.030 n/a 

LB_X 0.189 0.669 0.010 n/a 0.718 0.407 0.036 n/a 0.005 0.942 0.000 n/a 

LB_Y 27.075 <.001 0.588 FR>RS 4.652 0.044 0.197 n/a 0.020 0.889 0.001 n/a 

LB_Z 20.422 <.001 0.518 FR>RS 9.198 0.007 0.326 n/a 0.008 0.928 0.000 n/a 

UE_X 0.172 0.683 0.009 n/a 2.188 0.156 0.103 n/a 0.002 0.964 0.000 n/a 

UE_Y 12.246 <.006 0.392 RS>FR 0.355 0.558 0.018 n/a 2.043 0.169 0.097 n/a 

UE_Z 9.022 0.007 0.322 n/a 0.005 0.942 0.000 n/a 0.787 0.386 0.040 n/a 

  



 

  52 

 

Figure 3.4: Boxplots of each movement axis (row) by body area (column) showing the quartiles (box), 1.5 interquartile range of lower and 

upper quartile (whiskers) and values outside this range (diamonds). Single plots show one boxplot for each DOF constraint (restricted, 

free) and weight (low, high). Significant main effects are indicated using brackets with asterisks (*). 
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Significant ICCs were found for whole-body variability across all movement planes (see 

Table 3.2 and Figure 3.5). Also, significant correlations between weights for each DOF constraint 

were found for whole-body variability across all movement planes (see Table 3.3). 

Table 3.2: Intraclass correlation (ICC) of log transformed whole-body (WB) variability in 

sagittal (X), frontal (Y), and transverse (Z) planes across all lifting constraints with 

corresponding p-value and 95% confidence interval (CI). Significant p-values are indicated in 

bold. 

  ICC p 95% CI 

WB_X 0.71 <.001 0.49 - 0.86 

WB_Y 0.84 <.001 0.72 - 0.92 

WB_Z 0.84 <.001 0.71 - 0.92 

 

Table 3.3: Spearman’s correlation coefficient (rs) of log transformed whole-body (WB) 

variability in sagittal (X), frontal (Y), and transverse (Z) planes between weights for each DOF 

constraint with corresponding p-value. Significant p-values are indicated in bold, 

  DOF constraint rs p 

WB_X Restricted 0.67 <.001 

  Free 0.88 <.001 

WB_Y Restricted 0.83 <.001 

  Free 0.82 <.001 

WB_Z Restricted 0.85 <.001 

  Free 0.83 <.001 
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Figure 3.5: Log of whole-body (WB) meanSD for each DOF constraint by weight condition with participants ranked on average meanSD 

across conditions on the abscissa with each plot showing a different movement axis.
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3.5 Discussion 

The goal of this study was to assess the impact of task constraints on MV and the consistency 

in individual MV responses across constraints. Constraining the feet in a repetitive lifting task 

reduced the amount of lower body variability in all movement planes and low back variability only in 

the frontal and transverse movement planes. On the contrary, constraining the feet increased the 

amount of upper body variability only in the frontal movement plane. The other task constraint of 

load weight did not affect variability in a repetitive lifting task. Therefore, the first hypothesis could 

only be partially confirmed for DOF constraint but not for load weight. When considering MV as a 

consistent individual trait, this study showed moderate to good consistency (Koo & Li, 2016) of 

whole-body variability responses across all task constraints in all movement planes which supports 

the notion that MV could be an individual trait. Furthermore, when looking at each DOF constraint 

separately the correlation between weights showed moderate to very strong positive correlation 

(Chan, 2003) in individual MV responses, which supports consistent individual responses between 

weights for both DOF constraints. Overall, most participants showed a reduction in whole-body 

variability (driven by reductions in lower body and low back variability) when the feet were restricted 

and taken together with the correlation results this supports consistent individual responses across all 

task constraints. As a result, the second hypothesis was confirmed, where data support that MV may 

be an individual trait. 

In line with previous work, MV can be considered an individual trait based on consistency in 

individual MV responses across task constraints, providing evidence necessary to support the 

repeaters-replacers hypothesis. MV appears to be dependent on the individual reflected by moderate 

to good consistency in individual responses across DOF constraints and weights and reflected by 

moderate to very strong correlation in individual responses between weights when each DOF 

constraint was considered separately. In agreement with a previous study, this could reflect that MV 
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responses are consistent within an individual across different task constraints (Jackson et al., 2020). 

Participants showed consistency of individual MV responses in a cyclic assembly task under different 

temporal constraints varying in pace and production process (Jackson et al., 2020). Even though the 

task and MV variables are different from this study, combining these studies supports that MV can be 

considered an individual trait which is a requirement for the repeaters-replacers hypothesis. Besides 

consistency across constraints, there should be a continuum of individual MV responses to 

demonstrate the repeaters-replacers hypothesis. Although some data points are clustered, overall a 

range of MV responses is demonstrated in Figure 3.5. Future work on the repeaters-replacers 

hypothesis is recommended to include measurements of individual MV responses rather than only 

considering group-level responses. In addition, now that some evidence exists for the repeater-

replacers hypothesis in different task constraints among fine and gross motor tasks future research 

should determine whether individual MV responses stay consistent across different tasks. 

Since DOF constraints determined the amount of MV, these constraints can confound MV 

estimates. In research, how well the task in the experiment resembles the available DOF of the task in 

the workplace could be a key factor to improve external validity in assessing the relation between MV 

and WRMSD risk. Previous occupational research on MV is based on tasks with limited or restricted 

DOF and resulted in some supporting evidence for the effect of MV on WRMSD risk (Chehrehrazi et 

al., 2017; Granata et al., 1999; Lomond & Côté, 2010; Madeleine, Mathiassen, et al., 2008; 

Madeleine, Voigt, et al., 2008; Madeleine & Madsen, 2009; Sedighi & Nussbaum, 2017; van Dieën et 

al., 2001; van Dieën, Oude Vrielink, Housheer, et al., 1993; Yang et al., 2018). However, this study 

investigated a gross motor task that offered more DOF to explore MV in contrast to previous research 

that only included fine motor tasks or restricted gross motor tasks. Across body regions and 

movement planes, the DOF constraint seemed to reduce MV. Therefore, previous studies with more 
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restricted tasks could have been underestimating the amount of MV that is possible for an individual 

to demonstrate. Thus, when studying MV it is recommended to design the experiment in such a way 

that the task would easily be translated to the workplace task in terms of DOF constraints. When 

experiments are also assessing a measure of WRMSD risk minimizing constraints could provide 

individuals with the opportunity to explore MV that could possibly be associated to a reduction in risk 

of WRMSD. Furthermore, future research could explore if other task constraints confound MV 

estimates. 

Restricting movement at one joint did not only lead to a reduction of MV in body parts close 

to the restriction but also led to a compensatory increase of MV in body parts further away from the 

restriction. Constraining the feet limited the DOF at the ankle joint which decreased lower body 

variability through dynamic coupling (Zajac et al., 2002). The reduction in low back frontal and 

transversal plane variability can also be explained by dynamic coupling (Zajac et al., 2002). In 

contrast, the increase in upper body frontal plane variability could be explained as a compensation 

mechanism where the upper body compensated for the restriction in lower body DOF (Bartlett et al., 

2007). Most importantly, in whole-body movement the body seemed to explore MV in unrestricted 

body parts despite reductions in MV in body parts that were close to the restriction. Possibly, at the 

whole-body level the upper extremities were compensating for the loss of MV in the lower body parts 

which could in agreement with MV as an individual trait promote individual consistency in MV. 

Future research could explore whether these findings for a gross motor or whole-body task can also 

be shown in fine motor tasks that are only performed with certain body parts. An important note to 

consider when interpreting the grouped variables of joint angle meanSD (i.e. lower extremity, upper 

extremity and whole-body) used in this study is the difference in range of motion between joints. 

Therefore, joints with larger range of motion could have disproportionately determined the effect of 
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DOF constraint. Future research could address this by assessing range of motion and taking this into 

account when grouping variability across body parts. 

The lack of effect of load weight on MV could be explained by small differences between the 

weights, the related perception of this difference, and that weight in comparison to DOF constraint 

possibly restricted the DOF of the task more indirectly. Even though the weight constraint was 

relative to each individual’s capacity, the difference between the 10 and 30 % weight could possibly 

not have been large enough to create considerably different mechanical task demands between the 

weights to influence MV. To illustrate, in case of the lowest 100 % capacity the difference between 

10 and 30 % weight was only 0.7 kg. Besides mechanics, the lack of an effect of load on MV could 

be explained by negligible differences in perception of these low weights following Stevens’ 

psychophysical power law (Stevens, 1970). According to this power law higher weights could have 

evoked more distinct perceptions which could have affected MV more than low weights. Therefore, 

future studies are recommended to use larger differences between load weights or higher relative load 

weights to further explore how load weight affects MV. 

3.5.1 Limitations 

The data collection of the tasks presented in this study was part of a larger study including 

other tasks and EMG measurements of a subset of tasks which were performed in the same session to 

avoid natural between-day variance in EMG signals and therefore randomization of lifting conditions 

was prevented. However, the authors have evidence to believe that the effects of lifting conditions on 

MV can most likely be prescribed to the experimental conditions rather than to presentation order 

effects. Importantly, explicit effects of presentation order on MV were prevented because participants 

were not made aware that their MV was studied due to the deception. A 52-57% increase in sagittal 

ankle joint angle variability when the free condition was compared to the restricted condition makes it 
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most likely that the effect of DOF constraint can be prescribed to the constraint rather than the 

presentation order (left ankle: F(1,19) = 29.017; p<.001; ηp
2= 0.604; right ankle: F(1,19) = 21.904; 

p<.001; ηp
2= 0.536). Furthermore, the increase of 318-439% in low back joint angle variability is of 

comparable magnitude to two previous experiments that resemble the DOF constraint. Specifically, a 

261-306% increase in lumbar variability was found when the lifting phase of a palletizing task which 

allowed considerable foot movement was compared to a lifting task with considerable foot constraint 

(Granata et al., 1999; Plamondon et al., 2014). In addition, we have evidence that makes it most likely 

that the absence of load weight effect on MV is due to the constraint rather than presentation order 

based on similar findings reported on comparable load weights that were randomized. Specifically, no 

difference in lumbar meanSD between 0 and 10% maximum back strength load weights (Graham et 

al., 2012) and no difference in sagittal and transverse lumbar variance between 5 and 10% body 

weight loads (Norasi et al., 2019) were found when lifting with consistent foot placement comparable 

to our restricted DOF constraint condition. Moreover, the findings of this study are limited by the 

specific variables and variability measures that were used. In this study only one specific kinematic 

variable (i.e. joint angle) was used to determine variability using one measure (i.e. meanSD). For 

example, the use of another kinematic measure such as coordination patterns or the use of other 

biomechanical measurements such as kinetics or EMG to represent MV offer information on 

variability in coordination, loading or muscle activation which could provide different results and 

interpretations compared to joint angle variability. Also, the use of another variability measure for 

instance a measure of complexity such as entropy or task-(ir)relevant variability provides insight into 

the time-evolution of variability or how variability changes in task-(ir)relevant components which 

could provide different results and interpretations compared to meanSD that indicates the average 

repetition-to-repetition spread. Furthermore, the findings of this study are specific to the task 

constraints of restricting foot movement and increasing relative load weight. For example, changing 
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the origin and destination of the lifting task impose constraints that could have a different effect on 

MV. Lastly, the lab-based environment limits the external validity of the lifting task. However, the 

task constraints are believed to have considerable external validity. Notably, participants only had 

foot movement restricted in some experimental constraints, choose their own pace, and choose their 

own movement strategy in contrast to earlier studies on MV in lifting tasks (Granata et al., 1999; 

Sedighi & Nussbaum, 2017; van Dieën et al., 2001). Similarly, instructing the participants to lift the 

crate with two hands and the crate having four handles the participants could have elicited less 

externally valid movement behaviour. However, based on anecdotal evidence the handle design did 

not lead to the same hand-crate interaction across all participants. 

3.6 Conclusion 

To conclude, MV can be considered a consistent individual trait across different task 

constraints in a repetitive lifting task. This study showed consistency in individual MV responses 

across DOF constraints and weights and correlation for individual MV responses between different 

weights when separated on DOF constraint. Evidence for MV as a consistent individual trait supports 

the repeaters-replacers hypothesis which could have important implications when this hypothesis is 

considered in the context of the variability-risk hypothesis that assigns higher risk to low MV. In 

addition, MV is also determined by DOF constraint of the lifting task. Thus, MV depends on the DOF 

available in a task which implies that task constraints should be minimized when feasible both in 

future research and at the workplace. Overall, this work supports the repeaters-replacers hypothesis 

and emphasizes the effect of task constraints on MV assessment which are core aspects for future 

research in the area of variability-risk hypothesis. 
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Chapter 4: Exploring the role of task constraints on motor 

variability and assessing consistency in individual responses 

during repetitive lifting using nonlinear variability of kinematics 

4.1 Abstract 

Motor variability (MV) can be operationalized by a range of measures derived from different 

motor control perspectives. In occupational MV research on kinematics, nonlinear measures appear to 

be understudied. Following our earlier work on linear variability of lifting kinematics under different 

task constraints, in this study nonlinear measures were explored to assess the effect of constraints on 

MV and consistency in individual MV responses across different constraints. Twenty participants 

performed repetitive lifting under four constraints differing in restriction of foot movement and load 

weight while whole-body and crate kinematics were collected. MV was assessed using sagittal plane 

continuous relative phase (CRP) variability of joint angle couplings aggregated for the upper body, 

the lower body, and the whole-body. Also, MV was assessed using uncontrolled manifold analysis 

based on three-dimensional joint angles and crate trajectories which resulted in task-relevant and task-

irrelevant variability. Foot movement significantly increased lower body (55%) and upper body 

(28%) CRP variability, while task-relevant and task-irrelevant variability remained unchanged. No 

effects of load weight nor interaction of foot restriction and weight were found. Good individual 

consistency (ICC = 0.70 – 0.84) was revealed across constraints and measures where CRP variability 

showed higher consistency than task-relevant and task-irrelevant variability. Despite differences 

between nonlinear measures in the effect of constraints on absolute variability, both measures support 

MV as an individual trait independent of constraints based on considerable consistency across 

constraints for both nonlinear measures. This work demonstrates that MV can respond differently to 
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constraints based on the variability measure and thus future work should consider the interaction of 

constraints and variability measure as a determinant when assessing MV. 

4.2 Introduction 

Motor variability (MV) can be described as repeating the same task without repeating the 

same movement patterns (Bernstein, 1967). From a motor control perspective, repetition-to-repetition 

MV arises from an abundant number of degrees of freedom (DOF) available to complete a given 

motor task and thus MV reflects motor control strategy (Cusumano & Cesari, 2006; Latash, 2000; 

Latash et al., 2002; Newell & Corcos, 1993). From an ergonomics perspective, MV could have 

implications for the risk of work-related musculoskeletal disorders (WRMSDs) when performing 

repetitive work tasks (Côté, 2012; Madeleine, 2010; Srinivasan & Mathiassen, 2012). An increase in 

MV could reduce cumulative loading by increasing repetition-to-repetition distribution of muscle 

activation and mechanical loading and thus decrease the risk of WRMSDs, which is also described as 

the variability-risk hypothesis (Bartlett et al., 2007; Hamill et al., 1999; Madeleine, 2010; Srinivasan 

& Mathiassen, 2012; Visser & van Dieën, 2006). Within ergonomics, MV has been proposed as a 

consistent individual trait across days and task constraints via the repeaters-replacers hypothesis 

(Jackson et al., 2020; Sandlund et al., 2017; Srinivasan & Mathiassen, 2012). When connecting the 

variability-risk hypothesis to the repeaters-replacers hypothesis, individuals with consistently low MV 

(i.e. repeaters) could be at higher risk of WRMSDs compared to individuals with consistently high 

MV (i.e. replacers). Thus, from an ergonomics perspective, MV could improve our understanding of 

WRMSDs. To advance occupational MV research, the connection between the ergonomics and motor 

control perspectives should be further explored. 

MV can be viewed from multiple motor control theories broadly considered from the 

perspectives of traditional and functional approaches (Bartlett et al., 2007; Hamill et al., 1999). 
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Traditional approaches to study MV were grounded in information theory, where motor control is 

regulated by motor programs (Clark, 1995; Slifkin & Newell, 1998). MV is considered dysfunctional 

because variability is believed to reflect undesirable noise of the neuromuscular system or 

measurement noise that would impair performance (Bartlett et al., 2007; Newell & Corcos, 1993). 

Therefore, an increase in MV has been regarded as dysfunctional, in contrast with the variability-risk 

hypothesis. However, since the end of the 20th century, functional approaches have gained interest for 

quantifying MV among which dynamic systems theory (DST) and optimal feedback control (OFC) 

describe two major themes that assign functional characteristics to variability (Bartlett et al., 2007; 

Hamill et al., 1999; Scholz & Schöner, 1999; Todorov & Jordan, 2002). 

Functional motor control approaches regard variability as functional since an increase in 

variability would not necessarily lead to impaired performance. More specifically, in DST, desirable 

characteristics such as adaptability and load distribution are assigned to variability (Bartlett et al., 

2007) and in OFC, variability which does not interfere with task performance can be defined 

(Diedrichsen et al., 2010; Scholz & Schöner, 1999; Todorov & Jordan, 2002). In DST, motor control 

is regulated as a complex dynamic system in which an increase in MV reflects a change in 

coordination, more flexibility to adapt to changes in the environment, and load distribution (Bartlett et 

al., 2007; Clark, 1995). With respect to the variability-risk hypothesis, DST could support that 

variability facilitates load distribution by a change in coordination to lower WRMSD risk. However, 

it is unclear within DST how variability affects task performance, which could be an important 

limitation in the context of ergonomics. Another functional approach, OFC, explicitly describes the 

relationship between task performance and variability (Diedrichsen et al., 2010; Todorov & Jordan, 

2002). In OFC, motor control is regulated in a feedback control process and driven by the minimum 

intervention principle (Diedrichsen et al., 2010; Scott, 2002; Todorov & Jordan, 2002). The minimum 
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intervention principle only corrects variability in task-relevant dimensions while deviations in task-

irrelevant dimensions are not controlled and thus free to vary (Diedrichsen et al., 2010; Todorov & 

Jordan, 2002). Therefore, in OFC, MV is expected to be mostly present in task-irrelevant variability 

while task-relevant variability is minimized to control task performance (Franklin & Wolpert, 2011; 

Todorov & Jordan, 2002). When regarding OFC in the context of the variability-risk hypothesis, task-

irrelevant variability could take on the functional role of increasing variability to lower WRMSD risk 

without interfering with task performance. Since the OFC approach supports the pathway to lower 

WRMSD risk while maintaining task performance when MV is increased, this approach is another 

interesting candidate to advance occupational MV research. 

In ergonomics, MV has been operationalized by a range of measures (Srinivasan & 

Mathiassen, 2012). The operationalization of MV can be described at two levels, the first level is the 

biomechanical variable (e.g. kinematics, electromyography (EMG), or kinetics) and the second level 

is the variability metric which is derived from the underlying motor control approach (Madeleine, 

2010; Srinivasan & Mathiassen, 2012). To illustrate, the traditional motor control approach is 

characterized by use of linear variability measure (e.g. standard deviation), the DST approach is 

characterized by use of nonlinear measures (e.g. variability of coordination dynamics and entropy), 

and the OFC approach is characterized by equifinality methods (e.g. uncontrolled or goal-equivalent 

manifold (UCM or GEM)) (Srinivasan & Mathiassen, 2012). When focussing on kinematics, linear 

measures have contributed substantially to the development of the variability-risk hypothesis in 

occupational tasks despite the lack of theorical support for this hypothesis by the underlying 

traditional motor control approach (Granata et al., 1999; Huysmans et al., 2008; Madeleine, 

Mathiassen, et al., 2008; Madeleine, Voigt, et al., 2008; Madeleine & Madsen, 2009; Sedighi & 

Nussbaum, 2017). Some studies have explored DST measures of kinematic MV, with the focus on 
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nonlinear time series analysis rather than coordination pattern variability (Cowley et al., 2014; Gates 

& Dingwell, 2008; Madeleine & Madsen, 2009; Sedighi & Nussbaum, 2017). Lastly, few studies 

have performed equifinality analysis and only GEM was used to assess kinematic MV during 

ergonomic tasks (Cowley et al., 2014; Gates & Dingwell, 2008; Sedighi & Nussbaum, 2017). GEM 

analysis, in contrast to UCM analysis, requires a task goal such as external pacing, which could 

reduce the external validity of translating the task to the workplace. In addition, only two previous 

studies used both DST and equifinality measures to describe kinematic MV in ergonomic tasks; 

however, these measures consisted of nonlinear time series and GEM analysis which further 

illustrates that coordination pattern variability and UCM analysis are understudied. In occupational 

MV research, the use of different measures and motor control perspectives may indicate a lack of 

consensus. To overcome this problem, there is a need to compare interpretations based on different 

methods and specifically of understudied nonlinear methods such as coordination pattern variability 

and UCM analysis. 

In an earlier study (Oomen et al., 2022), we explored MV in a lifting task under different task 

constraints (i.e. (un)restricted foot movement, and different load weights) by operationalizing MV 

using linear measures thus following a traditional approach. Therefore, the objective of this study was 

to explore how functional approaches using nonlinear measures of coordination pattern variability 

and UCM variability affect the results and interpretation of MV under changing DOF constraints and 

load weight. Specifically, this study has two research questions: 1) What is the effect of DOF 

constraint and load weight on MV using both DST and OFC measures among healthy adults? and 2) 

Do healthy adults show consistent MV responses across different DOF constraints and load weights 

when using DST and OFC measures, in line with the repeaters-replacers hypothesis? It was 

hypothesized that when the DOF of the tasks were more constrained and when load weight was 
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increased higher mechanical task demands were imposed which resulted in a decrease of DST and 

task-irrelevant variability (Nordin & Dufek, 2016, 2017). Despite changing the task, task constraints 

are not expected to affect task-relevant variability since it reflects task performance which is not 

expected to change considerably across constraints. If the repeaters-replacers hypothesis holds, DST 

and task-irrelevant variability were hypothesized to show consistent individual MV response across 

all conditions. Within OFC measures, only task-irrelevant variability would serve a functional role in 

the repeaters-replacers hypothesis. Furthermore, task-relevant variability is not expected to show 

consistency because it represents task performance independent of task-irrelevant variability. 

4.3 Methods 

4.3.1 Research design 

The research questions were answered in a cross-sectional experimental study with a two-

factor repeated measures design similarly to our companion study that looked at linear measures 

(Oomen et al., 2022). The independent variables consisted of 1) DOF constraint (i.e. restricted foot 

movement versus unrestricted foot movement by instruction) and 2) load weight relative to maximum 

capacity (i.e. low versus high). The dependent variables consisted of two nonlinear variability 

measures: 1) sagittal plane continuous relative phase (CRP) variability (described in Section 4.3.2) 

from the DST framework based on sagittal plane whole-body joint angles and 2) task-relevant and 

task-irrelevant variability expressed in standard deviation from the OFC framework using UCM 

analysis (described in Section 4.3.2) on three-dimensional whole-body joint angles and crate 

trajectories. 

This study was completed using the same dataset and preprocessing as Oomen et al. (2022). 

This study was approved by the University of Waterloo’s Office of Research Ethics (ORE#40762), 

and all participants provided informed consent prior to participation. In brief, motion capture data 
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from twenty participants (10 females and 10 males) and three milk crates as lifting objects were 

recorded while participants performed four different lifting tasks based on the independent variables 

(i.e. restricted low load, restricted high load, unrestricted low load, and unrestricted high load) for an 

overall average of 93 (± 19) lifting cycles per task per participant. Whole-body and crate marker 

kinematics were labelled, gap filled, padded, filtered, and segmented to lifting cycles. Local 

coordinate systems of the hand, forearm, upper arm, torso, pelvis, thigh and shank and foot segments 

in agreement with ISB recommendations were derived to determine joint angles of each lifting cycle 

(Wu et al., 2002, 2005). A local coordinate system was created for each crate of which the origin 

trajectories were determined of each lifting cycle. Greater detail about the experimental procedure 

and methodology can be found in Oomen et al. (2022).  

4.3.2 Data processing 

Removal of outliers 

For the DST framework, CRP analysis of only sagittal joint angles was conducted because 

this represents the primary movement plane of the lifting task. As part of CRP analysis, amplitude 

centering appeared to be sensitive to some outliers in sagittal joint angles, which led to 

unrepresentative phase angles. Thus, cycles that were outside of the sagittal joint angle ensemble 

average ± 3.75 standard deviation range were removed from all analyses performed in this study. As a 

result, an overall average of 80 (± 17) cycles per participant for each lifting task was retained and 

further processed. 

Continuous relative phase 

CRP was determined by use of a Hilbert transformation because it is not sensitive to 

deviations from sinusoidal signals and avoids magnifying noise related to differentiation (Lamb & 

Stöckl, 2014; van Emmerik et al., 2014). To minimize data distortion related to the Hilbert transform, 
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each cycle was padded with 100 data points of collected data before and after the nearest lifting cycle 

(Ippersiel et al., 2019). First, to remove differences in angle amplitude due to the non-sinusoidal 

nature of kinematics, each joint angle xj(t) as a function of time in cycle j was centered such that zero 

reflected the middle between maximum and minimum displacement in xcent,j(t) for each participant 

and condition (Equation 1) (Lamb & Stöckl, 2014). 

𝐱cent,j(𝑡) = 𝐱j(𝑡) −  
min(𝐱(𝑡))+max(𝐱(𝑡))

2
 Equation 1 

Second, the Hilbert transform was determined of the centered angular displacement y(t) = 

H(xcent,j(t)), where y(t) is related to xcent,j(t) by a 90 degree phase shift. The Hilbert transform results in 

a complex signal ζ(t), where y(t) serves as the imaginary part of the analytic signal (Equation 2) 

(Palut & Zanone, 2005). 

𝛇(𝑡) = 𝐱cent,j(𝑡) + i𝐲(𝑡)  Equation 2 

Third, phase angle θ(ti) at any time instant i was determined using the four-quadrant 

arctangent of the transformed signal y(ti) divided by the centered angular displacement xcent,j(ti) 

(Equation 3), resulting in a range of [-180, 180] degrees (Hamill et al., 2000; Lamb & Stöckl, 2014). 

𝛉(𝑡𝑖) =  tan−1 𝐲(𝑡𝑖)

𝐱cent,j(𝑡𝑖)
   Equation 3 

Fourth, CRP(ti) at any time instant i was defined as the absolute relative phase angle of two 

joints after subtracting the proximal joint from the distal joint (Equation 4). 

𝐂𝐑𝐏(𝑡𝑖) = |𝛉dist(𝑡𝑖) − 𝛉prox(𝑡𝑖)| Equation 4 

After CRP was determined for each cycle, the padding points were removed. To prevent 

discontinuities from affecting cycle-to-cycle CRP variability, CRP was corrected by subtracting any 

value greater than 180 degrees from 360 degrees (Seay et al., 2011; van Emmerik et al., 2014). This 
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calculation resulted in a CRP range of [0, 180] degrees (Lamb & Stöckl, 2014). Subsequently, CRP 

was time normalized to 101 data points (i.e. 0 to 100% lifting cycle). Cycle-to-cycle CRP variability 

was determined as the point-by-point standard deviation, which was subsequently averaged across all 

101 data points to obtain average cycle-to-cycle CRP variability (Hamill et al., 2000). In total, 

average cycle-to-cycle CRP variability of 12 joint couplings were obtained, and left and right ankle-

knee, knee-hip, and hip-low back couplings were summed for a lower extremity measure, and left and 

right wrist-elbow, elbow-shoulder, and shoulder-low back couplings were summed for an upper 

extremity measure. Finally, average cycle-to-cycle CRP variability of all joint couplings were 

summed to obtain a whole-body measure. 

Uncontrolled manifold 

In the lifting tasks, the elemental variables consisted of whole-body three-dimensional joint 

angles of 13 joints (i.e. low back and left and right ankle, knee, hip, wrist, elbow, and shoulder joints), 

that resulted in a total of 39 DOF. The performance variables consisted of three-dimensional position 

of the origin of the crate local coordination system in global space. For the performance variables, no 

distinction was made between the three different crates because preliminary analysis showed only 

small differences between task-relevant and task-irrelevant variability when separating each crate and 

when not making a distinction between crates. Thus, the performance variable consisted of 3 DOF. 

Three-dimensional joint angles and crate trajectories were time normalized to each lifting cycle of 

101 data points (i.e. 0 to 100% cycle). 

In line with previous UCM analyses, a linear approximation of the UCM was obtained at the 

average elemental and performance variables (Beerse et al., 2020; de Freitas & Scholz, 2010; Freitas 

et al., 2010; Greve et al., 2013; Scholz & Schöner, 1999). Therefore, at each time interval, the 
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deviation from the mean was determined for elemental and performance variables (respectively Δx 

and Δr) and, also at each time interval, the Jacobian matrix (J) relates the two variables (Equation 5). 

∆𝐫3×1 =  𝐉3×39 ∙ ∆𝐱39×1   Equation 5 

Although typically a forward kinematics geometric model has been used to analytically 

determine the Jacobian matrix, it is analytically complex to determine this model when the number of 

DOF is large and when participants are subjected to constraints or interact with objects that limit their 

range of motion (de Freitas & Scholz, 2010; Freitas et al., 2010). Since this study involved whole-

body movement, interaction with the crate and instruction of restricted foot movement, determining a 

geometric model is complex and thus another approach was used. Hence, the Jacobian matrix was 

determined by the coefficients of multiple linear regression, which has been presented as an accurate 

alternative that may even provide a better description of the actual movement data than the geometric 

model (de Freitas & Scholz, 2010; Freitas et al., 2010; Greve et al., 2013; Tuitert et al., 2019). In this 

study, three separate multiple linear regressions were performed for each dimension of crate position 

(i.e. X, Y, Z) and were combined to obtain the Jacobian. The Jacobian consisted of a 3 × 39 matrix 

for each time interval (i.e. for 101 data points representing 0 to 100% lifting cycle), with each row 

representing regression coefficients of one performance variable as the dependent variable and each 

column representing elemental variables as independent variables. Subsequently, the UCM is linearly 

approximated by the null space of the Jacobian matrix that consisted of the orthonormal basis vectors 

ε (Equation 6). 

0 =  𝐉 ∙ 𝛆    Equation 6 

The null space spanned by basis vectors ε consisted of a 39 × 36 matrix with each column 

representing one basis vector, with the total number of basis vectors defined as the elemental DOF 

minus performance DOF (i.e. 39 – 3 = 36). Then, cycle-to-cycle deviations from the mean were 
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projected into two subspaces, task-irrelevant (i.e. null space or xUCM) and task-relevant (i.e. 

orthogonal to the null space or xORT) space (Equations 7 and 8). With d indicating the DOF of the 

performance variables (d = 3) and n indicating the DOF of the elemental variables (n = 39). 

𝐱UCM = ∑ 𝛆𝛆T∆𝐱 𝑛−𝑑
𝑖=1    Equation 7 

𝐱ORT =  ∆𝐱 − 𝐱UCM   Equation 8 

Then, cycle-to-cycle variability was defined as the point-by-point standard deviation per DOF 

of each subspace (Equations 9 and 10). Cycle-to-cycle variability along the UCM subspace xUCM and 

along the orthogonal subspace xORT were defined as task-irrelevant variability σUCM and task-relevant 

variability σORT, respectively. 

𝛔UCM = √
∑ ‖𝐱UCM‖2

𝑁cycles
𝑖=1

(𝑛−𝑑)∙𝑁cycles
  Equation 9 

𝛔ORT = √
∑ ‖𝐱ORT‖2

𝑁cycles
𝑖=1

𝑑∙𝑁cycles
  Equation 10 

Finally, task-irrelevant and task-relevant variability were averaged across all 101 data points 

to obtain average cycle-to-cycle task-irrelevant and task-relevant variability. 

4.3.3 Statistical analysis 

All statistical analyses were conducted in R 4.0. Lower extremity CRP variability, upper 

extremity CRP variability, whole-body CRP variability, task-relevant, and task-irrelevant variability 

were assessed for normality using statistics of skewness, kurtosis, and Shapiro-Wilks test and by 

visual inspection of histograms, Q-Q plots, and box plots. The assessment determined that task-

relevant and task-irrelevant variability violated the assumption of normality due to positive skew (i.e. 

visible from box plots, significant positive skewness (Skew2SE > 1 and p < .05) and significant 
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Shapiro-Wilks test (p < .05)). To confirm the assumption of normality a log transform was applied to 

only these variables for statistical analysis.  

To determine how DST and OFC variability affected the results and interpretation of MV 

under changing task constraints, the effect of DOF constraint and load weight on MV and consistency 

in individual MV responses across task constraints were determined for each measurement approach 

separately. For the effect of task constraints on MV using the DST approach, regional effects in the 

lower and upper extremities were studied since the effect of DOF constraint on linear joint angle 

variability appeared to depend on the body region (Oomen et al., 2022). For the effect of task 

constraints on MV using the OFC approach, task-relevant and task-irrelevant variability were 

analyzed in the same comparison. Therefore, both DST and OFC approaches included two measures 

each, that resulted in two comparisons within each analysis. The effect of DOF constraint (restricted 

versus free) and weight (low versus high) on variability within each approach was determined with a 

two-way repeated measures ANOVA. To control familywise error rate related to conducting two 

comparisons within each approach a Bonferroni correction was applied, which led to the critical level 

of significance of α = .025. For consistency in individual MV responses, the DST approach was 

represented by whole-body CRP variability since whole-body consistency would generate the 

strongest evidence for individual consistency. For OFC variability, both task-relevant and task-

irrelevant variability reflect whole-body variability relative to different aspects of task performance 

thus these measures remained the same for consistency analysis. The consistency of each 

measurement across all four constraints (i.e. 2 DOF constraints by 2 weights) was examined by 

intraclass correlation (ICC) using the two-way mixed model for average measures (i.e. ICC(3,k) 

consistency model). To further investigate the consistency across constraints, the correlation between 

weights for each DOF constraint was determined using Spearman’s correlation coefficient. Because a 
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positive relationship between the weights was expected, a one-tailed test was used with a confidence 

level of 95%. 

4.4 Results 

For DST coordination variability, both lower and upper extremity sagittal variability showed 

main effects of DOF constraint (see Table 4.1 and Figure 4.1). When the feet were allowed to move 

freely lower extremity sagittal CRP variability increased on average by 46.0 degrees, which 

represents an increase of 55% compared to when the feet were restricted. Similarly, upper extremity 

sagittal CRP variability increased on average by 35.6 degrees, which represents an increase of 28% 

when the feet were allowed to move freely in comparison to when the feet were restricted. No main 

effect of weight or interaction effects were found. Sagittal plane whole-body CRP variability showed 

significant ICC (see Table 4.2 and Figure 4.2). Moreover, significant correlations between weights 

for each DOF constraint were found for whole-body CRP variability (see Table 4.3). 
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Table 4.1: Results of two-way repeated measures ANOVA with DOF constraint and load weight as factors for lower extremity (LE) and 

upper extremity (UE) CRP variability in the sagittal plane. Significant main effects are indicated by p-values and directions in bold, with 

RS indicating restricted foot movement and FR indicating free or unrestricted foot movement. 

  

DOF Constraint Weight DOF Constraint*Weight 

F p ηp
2 Direction F p ηp

2 Direction F p ηp
2 Direction 

LE 25.800 <.001 0.576 FR>RS 4.140 0.056 0.179 n/a 1.007 0.328 0.050 n/a 

UE 20.484 <.001 0.519 FR>RS 2.669 0.119 0.123 n/a 0.102 0.753 0.005 n/a 
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Figure 4.1: Boxplot of lower and upper extremity CRP variability showing the quartiles (box), 

1.5 interquartile range of lower and upper quartile (whiskers) and values outside this range 

(diamonds). Each extremity shows one boxplot for each DOF constraint (restricted, free) and 

weight (low, high). Significant main effects are indicated using brackets with asterisks (*). 

 

Table 4.2: Intraclass correlation of sagittal whole-body (WB) CRP variability across all lifting 

constraints with corresponding p-value and 95% confidence interval. Significant p-values are 

indicated in bold. 

  ICC p 95% CI 

WB 0.84 <.001 0.71 - 0.92 
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Figure 4.2: Whole-body (WB) sagittal CRP variability for each DOF constraint by weight condition with each participant ranked on 

average variability across condition on the abscissa.
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Table 4.3: Spearman’s correlation coefficient (rs) of sagittal whole-body (WB) CRP variability 

between weights for each DOF constraint with corresponding p-values. Significant p-values are 

indicated in bold. 

  DOF constraint rs p 

WB Restricted 0.88 <.001 

  Free 0.88 <.001 

For OFC measures, neither task-irrelevant nor task-relevant variability showed effects of 

DOF constraints, load weight, or interaction effects (see Table 4.4 and Figure 4.3). However, task-

irrelevant variability showed a trend for increased variability when foot movement was allowed (ηp
2 = 

0.133) (see Table 4.4 and Figure 4.3). Furthermore, significant ICCs were found for both task-

irrelevant and task-relevant variability (see Table 4.5 and Figure 4.4). Moreover, significant 

correlations between weights for each DOF constraint were found for task-irrelevant variability while 

only a significant correlation between weights for the restricted feet condition was found for task-

relevant variability (see Table 4.6). Task-irrelevant variability showed considerably higher 

correlation coefficients in comparison to task-relevant variability. 
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Table 4.4: Results of two-way repeated measures ANOVA with DOF constraint and weight as factors for log transformed variability 

along the UCM (task-irrelevant variability) and orthogonal to the UCM (ORT or task-irrelevant variability). 

  

DOF Constraint Weight DOF Constraint*Weight 

F p ηp
2 Direction F p ηp

2 Direction F p ηp
2 Direction 

UCM 2.920 0.104 0.133 n/a 1.505 0.235 0.073 n/a 0.001 0.977 0.000 n/a 

ORT 0.395 0.537 0.020 n/a 0.001 0.976 0.000 n/a 0.002 0.969 0.000 n/a 

 



  79 

 

Figure 4.3: Boxplot of log-transformed variability along the UCM and orthogonal to the UCM 

(ORT) showing the quartiles (box), 1.5 interquartile range of lower and upper quartile 

(whiskers) and values outside this range (diamonds). Each variability component shows one 

boxplot for each DOF constraint (restricted, free) and weight (low, high). 

 

Table 4.5: Intraclass correlation (ICC) of log-transformed variability along the UCM (task-

irrelevant variability) and orthogonal to the UCM (ORT or task-irrelevant variability) across 

all lifting constraints with corresponding p-value and 95% confidence interval. Significant p-

values are indicated in bold. 

  ICC p 95% CI 

UCM 0.76 <.001 0.58 - 0.88 

ORT 0.70 <.001 0.47 - 0.85 
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Figure 4.4: Log of variability along the UCM (top) and orthogonal to the UCM (ORT) (bottom) for each DOF constraint by weight 

condition with each participant ranked on average variability across conditions for each measure on the abscissa. 



  81 

Table 4.6: Spearman’s correlation coefficient (rs) of log-transformed variability along the UCM 

(task-irrelevant variability) and orthogonal to the UCM (ORT or task-irrelevant variability) 

between weights for each DOF constraint with corresponding p-values. Significant p-values are 

indicated in bold. 

  DOF constraint rs p 

UCM Restricted 0.73 <.001 

  Free 0.82 <.001 

ORT Restricted 0.59 <.01 

  Free 0.20 0.19 

4.5 Discussion 

The objective of this study was to explore how nonlinear variability measures affect the 

results and interpretation of constraints on MV and of consistency in individual MV responses. 

Restricting foot movement only led to changes in coordination variability and not in task-relevant and 

task-irrelevant variability. More specifically, sagittal lower and upper extremity coordination 

variability increased when foot movement was allowed. Although no significant difference was 

found, task-irrelevant variability showed a trend similar to DST variability where foot movement 

tended to increase task-irrelevant variability. Thus, the first hypothesis can only be confirmed for 

DST measures and task-relevant variability but not for task-irrelevant variability. With respect to 

individual consistency, good consistency (Koo & Li, 2016) was found for all nonlinear variability 

measures, although whole-body coordination variability demonstrated higher consistency than task-

relevant and task-irrelevant variability. Furthermore, the correlation between weights of each DOF 

constraint resulted in a very strong positive correlation for coordination variability and a wide range 

of poor to very strong positive correlation for task-relevant and task-irrelevant variability, where 

correlations were interpreted as per definitions provided by Chan (2003). More specifically, task-

irrelevant variability showed moderate to very strong correlation while task-relevant variability 

showed poor to fair correlation (Chan, 2003). Combining outcomes of consistency and correlation, 

whole-body coordination variability demonstrated a high degree of consistency while task-irrelevant 
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variability also showed consistency but to a lower extent. In addition, task-relevant variability showed 

the lowest consistency and correlation of which only the correlation between weights within the 

restricted condition was significant. Therefore, the second hypothesis was confirmed for all measures 

since a strong indication for consistency was found for DST and task-irrelevant variability while only 

some indication for consistency was found for task-relevant variability. 

With respect to the effect of task constraint on DST variability, DST measures appeared 

responsive to DOF constraints. The effect of DOF constraints on DST variability reflects an increase 

in phase transitions between coordination patterns (Hamill et al., 1999). When the feet were not 

constrained and more DOF were allowed, dynamic coupling could have facilitated more variable 

phase relationships within lower and upper extremity joint angle couplings (Zajac et al., 2002). 

Higher coordination variability indicates less stable coordination patterns, which could imply 

flexibility to adapt to changing environments and to facilitate load distribution (Bartlett et al., 2007; 

Stergiou & Decker, 2011). 

In contrast to DST variability, OFC variability was unaffected by task constraints which can 

be interpreted in their respective aspects. The absence of an effect of constraints on task-irrelevant 

variability can be interpreted using the elemental variables of the UCM analysis (i.e. joint angles). In 

our previous study, linear joint angle variability showed an overall increase with foot movement 

(Oomen et al., 2022). Therefore, transforming elemental variables into task-irrelevant variability 

could have considerably lowered the responsiveness to constraints. Possibly, relating joint angle 

variability to task performance based on crate trajectories and the involved mathematical operations 

removes responsiveness to constraints present in the original joint angle variability. Since the effect of 

foot movement on task-irrelevant variability followed a hypothesized trend, it is possible that future 

work with a larger sample size will be able to find differences due to higher statistical power. 
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Possibly, the hypothesized trend can be explained by underlying differences in sex, since previous 

work on repetitive pointing only showed differences in task-irrelevant variability during neck-

shoulder fatigue when sex was included as a covariate (Hasanbarani et al., 2021). The absence of an 

effect of constraints on task-relevant variability could be explained as similar task performance across 

constraints. Across task constraints, task-relevant variability was lower than task-irrelevant variability 

which is in agreement with the minimum intervention principle and therefore crate trajectory can be 

confirmed as a control variable that indicates motor synergy (Scholz & Schöner, 1999). Since task-

irrelevant variability was deemed higher than task-relevant variability, task-irrelevant variability 

could fulfill a functional role. 

In line with the repeaters-replacers hypothesis, DST and task-irrelevant variability 

demonstrated good consistency in individual MV responses. Therefore, this study presents evidence 

for MV as a consistent individual trait independent of nonlinear MV measures. In the context of other 

research on the repeaters-replacer hypothesis, MV could not only be an individual trait across days 

and task constraints (Jackson et al., 2020; Sandlund et al., 2017; Srinivasan & Mathiassen, 2012) but 

also across nonlinear MV measures. Good consistency was also found for task-relevant variability 

which could reflect similar task performance across constraints or even tight control of task-relevant 

variability based on minimum intervention principle within OFC theory (Diedrichsen et al., 2010; 

Todorov & Jordan, 2002). Interestingly, while DST measures were affected by task constraints, they 

showed stronger consistency and correlation than OFC measures. Possibly, the use of a regression 

model and its related fit for each task constraint within the same individual could have reduced the 

consistency in its outcome measures of task-relevant and task-irrelevant variability in contrast to 

coordination variability. Overall, MV appears to be an individual trait independent of nonlinear MV 

measure and consistent responses in task performance were demonstrated. 
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Several observations can be made when comparing the results and interpretation of two 

nonlinear measures to linear measures of our companion study based on the same dataset (Oomen et 

al., 2022). Although overall an increase in linear variability was observed with more DOF, this was 

not consistent across planes and body regions as demonstrated in Table 4.7. Linear MV showed 

exactly the same ICC values in the frontal and transverse plane as DST variability (ICC = 0.84), 

whereas slightly lower ICC values were found in the sagittal plane for linear MV (ICC = 0.71) 

comparable to the lowest ICC of OFC measures. Linear measures in the frontal and transverse plane 

showed similar correlation to DST variability (rs = 0.82 – 0.85), while in the sagittal plane a wider 

range in correlation values was found (rs = 0.67 – 0.88) comparable to task-irrelevant variability. 

Therefore, DST variability appeared most consistent and responsive to changing task constraints. In 

addition, linear variability showed slightly lower consistency and less consistent responsiveness while 

OFC variability showed the lowest consistency and appeared to be unresponsive to changing task 

constraints. Based on consistency, DST variability provides the strongest support for the repeaters-

replacers hypothesis followed by linear variability whereas OFC variability showed considerably 

lower support. Following motor control theory, increased linear variability would indicate worsening 

of task performance. Although not grounded in the original theory, linear variability in kinematics 

could lead to kinetic variability in support of load distribution to lower the risk of cumulative loading. 

According to DST, increased coordination variability could lead to higher load distribution which 

could reduce cumulative loading and could help explain the variability-risk hypothesis if a 

measurement of risk is included. Based on the criteria of constraint effects and consistency, DST 

variability seems the best candidate to explore variability-risk hypotheses in lifting tasks, although 

linear measures could also be a good candidate in case less complex analytics are more feasible. 
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Table 4.7: Summary of main effects of DOF constraint on linear joint variability for lower 

extremity (LE), low back (LB) and upper extremity (UE) in sagittal (X), frontal (Y) and 

transverse (Z) movement planes. FR represents the free DOF constraint while RS represents 

the restricted DOF constraint. 

  X Y Z 

LE FR>RS FR>RS FR>RS 

LB n/a FR>RS FR>RS 

UE n/a RS>FR n/a 

The findings of this study should be interpreted within the context of the following 

limitations. The tasks presented in this study were part of a larger study in which randomization was 

prevented due to EMG measurements which were only of interest in a subset of tasks, and to avoid 

natural between-day variance in these signals relevant tasks were collected in the same session. 

However, the authors provided evidence which supports that the effects of lifting conditions on MV 

are most likely because of the experimental conditions rather than presentation order effects due to 

not randomizing (for details see Oomen et al. (2022)). With respect to the UCM analysis, the use of a 

multiple linear regression model without validation of a forward kinematics geometric model could 

be considered a limitation. Research investigating both models revealed no differences and near-

perfect agreement (Freitas et al., 2010; Greve et al., 2013) and when discrepancies were found 

between the methods it was explained by geometric approximations of performance variables rather 

than by use of a regression model (de Freitas & Scholz, 2010). Most importantly, not the absolute 

values of task-relevant and task-irrelevant variability but the relative responses of these variables on 

different constraints were of main interest which reduces the importance of this limitation. In 

addition, the overall R2 of the regression models was 0.85, which indicates that 85% of the variance in 

crate trajectory was shared by the joint angles and thus reflects a good model fit. Therefore, using the 

geometric approach rather than the regression approach is not believed to affect the results of this 

study. Lastly, this study was conducted in a lab environment which could limit the external validity of 
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the lifting task. However, the task constraints are believed to have elicited externally valid lifting 

movement behaviour in the condition where participants were free to move their feet and across all 

conditions with respect to pace. 

4.6 Conclusion 

In conclusion, foot movement only affected variability when assessed with DST measures in 

contrast to OFC measures. Allowing foot movement increased coordination variability while task-

irrelevant variability did not show any differences, which implies that task-irrelevant variability 

considerably reduced existing spatiotemporal variability when expressing variability independent of 

task performance. Individual consistency in MV appeared independent of measure although stronger 

consistency was found using the DST measure. Both nonlinear measures support MV as an individual 

trait which is a crucial condition for the repeaters-replacer hypothesis. Based on the hypothesized 

responsiveness to constraints and individual consistency, DST variability seems better suited than 

OFC variability for future work on repeaters-replacers and variability-risk hypothesis when assessing 

lifting tasks. 
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Chapter 5: In-depth comparison of different variability measures at 

the individual level 

5.1 Introduction 

The goal of this chapter is to more thoroughly examine the different variability measures that 

were used in Chapters 3 and 4 at the individual level. The previous chapters only assessed individual 

consistency within each measure. However, a question remains as to what is the degree of individual 

consistency across different measures? Without answering this question, it is unclear in the context of 

the repeaters-replacers hypothesis whether individuals have similar ranking across measures and can 

be considered as repeaters or replacers independent of the chosen measure. If one measure strongly 

differs from the others it could indicate that an individual assessed as a repeater using one measure 

could be assessed as a replacer using another measure and thus different measures could be assessing 

different constructs of individual motor variability (MV) ranking. A secondary goal of this chapter is 

to justify the choice of measure(s) to assess MV in upcoming studies. 

5.2 Data selected for comparison of different measures 

The data analysed in this chapter were extracted from the lifting task of Chapters 3 and 4, and 

the specific lifting task that was selected was performed without restricting foot movement and using 

a load weight of 30% maximum capacity, where maximum capacity was based on a modified version 

of the Matheson’s EPIC lifting capacity test (Matheson et al., 1995; Oomen et al., 2022). This task 

was also described as the free DOF constraint and high weight load condition in Chapters 3 and 4. 

The rationale for selecting this specific lifting task is to further investigate the task that is the most 

similar to the prolonged repetitive lifting task that is the focus of Chapter 7. MV was characterised at 

the whole-body level by using the linear and continuous relative phase (CRP) measures and by using 

the optimal feedback control measures. However, when considering optimal feedback control, only 
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the uncontrolled manifold (UCM) or task-irrelevant measure was extracted for use in this chapter as 

task-relevant variability does not represent motor variability, but rather task performance. In addition, 

only the sagittal plane was selected for linear variability since the lifting task requires primary 

movement in the sagittal plane and selecting one plane for the three-dimensional linear measure 

further facilitates comparison of different measurements. 

5.3 Individual consistency across different measures 

A correlation analysis was conducted to analyze individual consistency between different 

measures. More specifically, non-parametric Spearman’s correlation coefficients were calculated 

since whole-body linear variability and task-irrelevant variability violated assumptions of normality 

(see Chapter 3 and 4).  

To put this into context of the repeaters-replacers hypothesis, the non-parametric correlation 

allows assessment of the consistency of individuals’ MV rank between different measures and thus 

helps to determine if individuals are consistently repeaters or replacers across measures. Since 

positive relationships between measures were expected, a one-tailed test was used with a confidence 

level of 95%. 

All combinations of different measures demonstrated very strong positive correlation (all p < 

.001) following interpretation by Chan (2003) (Table 5.1). The strongest correlation was found 

between linear and task-irrelevant variability, followed by the correlation between CRP and task-

irrelevant variability and the weakest correlation was found between linear and CRP variability. 

Noticeably, the correlation between CRP and task-irrelevant variability and the correlation between 

linear and CRP variability was of comparable magnitude. To support the findings of very strong 

positive correlation between measures, raw data points and the best line of fit are displayed in Figure 

5.1. Overall, the results support that task-irrelevant variability measures a similar construct of 
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individual MV as linear measures, whereas CRP variability seems to indicate a slightly different 

construct of individual MV compared to the two other measures. 

Table 5.1: Correlation matrix of Spearman’s correlation coefficients for correlation between 

sagittal (X) linear whole-body joint angle variability, sagittal (X) continuous relative phase 

(CRP) whole-body variability and uncontrolled manifold (UCM) or task-irrelevant variability. 

All coefficients were significant (p < .001). All variability measures were extracted from the 

unrestricted, high load weight, lifting task as presented in Chapters 3 and 4. 

  linear X CRP X UCM 

linear X 1  x  x 

CRP X 0.87 1  X 

UCM 0.97 0.89 1 
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Figure 5.1: Scatterplots of A) whole-body sagittal linear variability and CRP variability, B) 

whole-body sagittal linear variability and uncontrolled manifold (UCM) or task-irrelevant 

variability, and C) whole-body sagittal whole-body continuous relative phase (CRP) variability 

and uncontrolled manifold (UCM) or task-irrelevant variability. One circle represents a single 

participant, and the line represents the best line of fit. 

5.4 Consistency in ranking of individuals across different measures 

In this section the ranking of individuals was further explored by converting the values within 

each variability measure to a ranking (see Table 5.2 for the ranking results). First, an assessment of 

overall consistency in individual ranking was conducted. Second, a more pragmatic approach was 

taken to explore differences in ranking across measures in a pairwise fashion. 
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Table 5.2: Ranking of participants on sagittal plane (X) linear, sagittal plane (X) continuous 

relative phase (CRP) and uncontrolled manifold (UCM) or task-irrelevant variability and the 

change (Δ) in rank between the two measures. 

  linear X CRP X UCM range in Δ-rank 

P01 19 18 20 2 

P02 14 15 16 2 

P03 4 4 4 0 

P04 6 6 6 0 

P05 13 12 13 1 

P06 9 7 9 2 

P07 17 11 18 7 

P08 3 8 3 5 

P09 1 2 1 1 

P10 7 9 8 2 

P11 12 16 12 4 

P12 18 17 15 3 

P13 10 5 7 5 

P14 5 1 5 4 

P15 15 19 17 4 

P16 16 14 14 2 

P17 20 20 19 1 

P18 8 13 10 5 

P19 11 10 11 1 

P20 2 3 2 1 

 

Consistency across individual ranks of different measures was determined by use of intraclass 

correlation coefficient (ICC). Specifically, a two-way mixed model for average measures (i.e. 

ICC(3,k) consistency model) was used. This resulted in an ICC of 0.97, 95% CI [0.94 – 0.99], p < 

.001. 

When the ranking of individuals was explored in more detail, very similar ranking on MV 

was found for linear and UCM measures in agreement with strongest correlation (Table 5.2). The 

change in rank between these two measures showed a range between 0 and 3 ranks. The small range 
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in change of rank further supports that linear and UCM measures assess a similar construct of MV. In 

contrast, linear and CRP variability showed the weakest relationship based on correlation coefficients. 

In agreement with the correlation analysis, the individual ranking showed the largest differences 

between linear and CRP variability (Table 5.2). The change in rank between these two measures 

showed a range between 0 and 6 ranks. Furthermore, CRP and UCM variability showed a comparable 

weak relationship to linear and CRP variability based on similar correlation coefficients. When 

considering differences in ranking on individual MV a large range of a change of 0 and 7 ranks was 

demonstrated (Table 5.2). The larger range in change of rank when comparing CRP variability to the 

other two measures supports that CRP variability may capture a slightly different construct of MV. 

Across the three different measures, CRP variability seems the most deviating in terms of rank 

compared to the other two measures. 

Across the three measures, the mode of the range in rank change is 2, which indicates that 

most participants changed 2 ranks across different measures and is in line with the high ICC value 

across all measures. At the extremes, two participants have consistent ranking across all measures 

(i.e. no change in rank), while one participant changed 7 ranks followed by three participants 

changing 5 ranks across measures. Therefore, the consistency in ranking across measures 

demonstrates diversity for individual participants.  

5.5 Consistency in individuals categorized as repeaters and replacers across 

different measures 

To incorporate the repeaters-replacers hypothesis in assessing consistency across measures, 

individuals could be categorized as repeaters or replacers. Therefore, the entire range of participants 

was used to determine the terciles that divide the range in MV into three cut offs (i.e. one-third each). 

This approach was chosen over dichotomization to guarantee enough difference between the two 
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extreme groups that make up the repeaters (first one-third) and replacers (last one-third) which 

represent low and high MV groups, respectively. In addition, the middle one-third group is considered 

as the “not-categorized” group, not fitting into the description of either low or high MV. In addition, 

using terciles two-third of the original sample size is maintained when only considering repeaters and 

replacers. 

When this approach was applied to each measure, this resulted in a group of seven 

individuals in the repeaters group, seven individuals in the replacers group and six individuals in the 

not-categorized group for each measurement. Subsequently, a crosstab was used to determine the 

classification accuracy of each combination of measures. As a result, the accuracy of each group was 

demonstrated in Table 5.3, Table 5.4 & Table 5.5. Across categorizations, replacers showed the 

highest accuracy of 0.86 – 1, followed by repeaters with an accuracy of 0.71 – 0.86, and the not-

categorized group showed the lowest accuracy of 0.50 – 0.83. In line with previous results of 

correlation coefficients and change in ranks, sagittal linear and UCM variability showed the highest 

accuracy across groups of 0.83 – 1, followed by sagittal CRP and UCM variability with an accuracy 

of 0.67 – 0.86, while sagittal linear and CRP variability showed the lowest accuracy of 0.50 – 0.86. 

Only perfect accuracy was observed using sagittal linear and UCM measures when assessing 

replacers. Other measurement combinations and groups indicated only few individuals being 

classified differently when using different measures, which seemed to be the case when comparing 

linear and CRP variability and when assessing not-categorized individuals. Overall, assessing 

repeaters and replacers was relatively robust and showed better performance in comparison to the not-

categorized group. Therefore, most individuals were mostly consistent deemed repeaters and 

replacers across measures. 
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Table 5.3: Accuracy of repeater categorization between different measures of sagittal plane (X) 

linear, sagittal plane (X) continuous relative phase (CRP) and uncontrolled manifold (UCM) or 

task-irrelevant variability. 

  linear X CRP X UCM 

linear X x x x 

CRP X 0.71 x x 

UCM 0.86 0.86 x 

 

Table 5.4: Accuracy of replacer categorization between different measures sagittal plane (X) 

linear, sagittal plane (X) continuous relative phase (CRP) and uncontrolled manifold (UCM) or 

task-irrelevant variability. 

  linear X CRP X UCM 

linear X x x x 

CRP X 0.86 x x 

UCM 1 0.86 x 

 

Table 5.5: Accuracy of the not-categorized group between different measures sagittal plane (X) 

linear, sagittal plane (X) continuous relative phase (CRP) and uncontrolled manifold (UCM) or 

task-irrelevant variability. 

  linear X CRP X UCM  

linear X x x x 

CRP X 0.50 x x 

UCM 0.83 0.67 x 

 

5.6 Discussion of assessment across measures 

In general, very strong (as interpreted using Chan (2003)) correlations across measures 

indicated a high degree of consistency in individual MV, which was also confirmed by excellent 

consistency (as interpreted using Koo & Li (2016)) across measures when MV was ranked across 

individuals. Despite diversity in individual MV ranking across measures, most participants changed 2 

ranks. In addition, individuals who were deemed repeaters and replacers showed sufficiently accurate 
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classification across different measures. Linear and task-irrelevant variability showed the highest 

consistency, lowest range in change of rank, and highest accuracy of repeaters-replacers 

categorization and thus seems to capture very similar construct. In contrast, CRP variability with the 

two other variability measures showed slightly lower consistency, larger range in change of rank, and 

lower accuracy of repeaters-replacer categorization. Thus, CRP variability seems to capture a slightly 

different construct than the other measures. The inconsistency between CRP and the other methods 

could be explained by the CRP method capturing spatiotemporal or coordination aspects of MV 

between adjacent unilateral joints (i.e. left-left or right-right), while the linear and UCM method 

capture spatial MV magnitude which is affected by the range in bilateral movement strategies (i.e. 

left-right). 

To conclude, different variability measures assess overall the same construct of individual 

MV ranking. Even though DST variability was considered a slightly better candidate than linear 

variability in Chapter 4, this chapter demonstrates that these measures could rank some individuals 

differently. Thus, for lifting tasks, it is recommended that future work uses both measures to assess 

MV. However, it is unknown how this finding applies to tasks other than lifting and for ease of 

implementation and interpretation linear variability measures could be preferred over DST variability. 
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Chapter 6: Exploring the role of task on kinematic variability and 

assessing consistency in individual responses across repetitive 

manual tasks 

This chapter has been submitted for publication as following: 

Oomen, N. M. C. W., Graham, R. B., & Fischer, S. L. (under revision). Exploring the role of task on 

kinematic variability and assessing consistency in individual responses across repetitive manual 

tasks. Ergonomics, TERG-2022-0146. 

6.1 Abstract 

To gain a greater understanding of motor variability (MV) as an individual trait, the effect of 

task type on MV and individual consistency in MV across three tasks was investigated. Twenty 

participants performed repetitive carrying, lifting and simulated sawing tasks. MV was assessed using 

the linear measure of mean point-by-point standard deviation in three-dimensional upper body joint 

angles. Task type affected MV, where carrying showed higher MV compared to sawing (23-29%) and 

lifting (12-19%). Furthermore, MV was higher in lifting compared to sawing (12-25%). Poor to 

moderate individual consistency (ICC=0.42–0.63) was found across tasks. Task type determined MV 

and only some support for MV as an individual trait across tasks was found. Based on this work, the 

task influences the amount of MV an individual can exploit, and possibly consistency in MV 

magnitude is specific to the degrees of freedom afforded by the task. 

6.2 Introduction 

Motor variability (MV) may influence the risk of work-related musculoskeletal disorders 

(WRMSDs) in repetitive tasks. The link between MV and WRMSD risk is described by the 

variability-risk hypothesis. The variability-risk hypothesis assumes a negative relationship between 
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variability and risk (i.e., higher variability comes with lower risk) (Côté, 2012; Madeleine, 2010; 

Srinivasan & Mathiassen, 2012). MV arises because of the abundance of degrees of freedom (DOF) 

in the human movement system (Latash, 2000; Latash et al., 2002). Exploiting MV offers an 

opportunity to repeat the same task without repeating the same movement patterns (Bernstein, 1967; 

Latash, 2000, 2012). An increase in MV could lead to larger repetition-to-repetition distribution of 

loads and thus could reduce cumulative loading and the risk of WRMSDs (Bartlett et al., 2007; 

Hamill et al., 1999; Madeleine, 2010; Srinivasan & Mathiassen, 2012; Visser & van Dieën, 2006). 

When assessing MV the task could be an important variable to consider since it determines 

how many body regions and DOF are required to complete the task. Previous work-related MV 

research has investigated different tasks such as cutting, deboning, reaching/pointing, and lifting 

(Granata et al., 1999; Lomond & Côté, 2010; Madeleine, Mathiassen, et al., 2008; Madeleine, Voigt, 

et al., 2008; Madeleine & Madsen, 2009; Sedighi & Nussbaum, 2017; van Dieën et al., 2001; Yang et 

al., 2018). Of these tasks, fine motor tasks only require movement of the upper extremity, while gross 

motor tasks require whole-body movement. Therefore, more DOFs are involved in performing gross 

motor tasks, which could provide more options to perform the same task with varying movement 

patterns and thus offer greater opportunity to explore MV. In support of this reasoning, we have 

demonstrated that task constraints that allow more DOF do indeed evoke higher MV responses 

(Oomen et al., 2022). However, fine and gross motor tasks have not been compared within the same 

study population to date, which is required to further test this reasoning.  

An additional hypothesis on MV has been proposed that can be connected to the variability-

risk hypothesis. The repeaters-replacers hypothesis suggests that MV is an individual trait based on 

observations of consistent individual MV responses across different days and task constraints of fine 

motor tasks and across task constraints of a gross motor task (Jackson et al., 2020; Oomen et al., 
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2022; Sandlund et al., 2017; Srinivasan & Mathiassen, 2012). Repeaters represent individuals with 

low MV and replacers represent individuals with high MV (Jackson et al., 2020; Sandlund et al., 

2017; Srinivasan & Mathiassen, 2012). When the repeater-replacers hypothesis is combined with the 

variability-risk hypothesis it follows that repeaters are at higher risk of WRMSDs compared to 

replacers (Jackson et al., 2020; Sandlund et al., 2017; Srinivasan & Mathiassen, 2012), and that 

variability-related WRMSD risk could be an individual trait. Therefore, the repeaters-replacers 

hypothesis has the potential to contribute to our understanding of variability-risk by assigning risk to 

the individual, in addition to the task. However, individual consistency has only been investigated 

within fine and gross motor tasks separately, which raises the question if consistency can be 

generalized to a combination of fine and gross motor tasks within the same study population, as 

similar questions were raised in previous occupational work (Jackson et al., 2020; Sandlund et al., 

2017; Srinivasan & Mathiassen, 2012). 

To further advance our understanding of MV and its potential link to WRMSDs the purpose 

of this study was to identify if the repeater-replacer hypothesis holds across fine and gross motor 

tasks. Specifically, this work aims to answer the following research questions: 1) what is the effect of 

tasks with different amounts of DOF on MV among healthy adults? and 2) do healthy adults show 

consistent MV responses across tasks with different amount of DOFs? It was hypothesized that: 1) 

tasks with greater DOFs would result in higher MV, where the order from highest to lowest MV 

would be carrying, lifting and simulated sawing, respectively, 2) despite the expected effect of task, 

individuals would show consistent MV responses in line with the repeaters-replacers hypothesis. 
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6.3 Methods 

6.3.1 Research design 

The research questions were answered using a cross-sectional experimental study with a one 

factor (task) repeated measures design. The independent variable was task with three levels of 

carrying, lifting, and simulated sawing. The dependent variable was MV and consisted of three-

dimensional joint angle variability determined using the linear measure of mean standard deviation 

(meanSD) (Newell & Corcos, 1993; Stergiou & Decker, 2011). In the context of lifting, similar 

results of joint angle meanSD and more analytically complex dynamic systems theory measures of 

joint coupling continuous relative phase variability were found (Oomen et al., 2022; Chapter 4; 

Chapter 5). Therefore, in assessing different tasks, joint angle meanSD was selected to facilitate 

implementation and interpretation of MV. 

6.3.2 Participants 

This study was part of the same data collection as Oomen et al. (2022). Briefly, twenty 

healthy participants (ten females and ten males; 24.3 (± 3.8) years; 169.2 (± 10.2) cm; 67.9 (± 13.0) 

kg) were recruited to volunteer for two data collection sessions 2-7 days apart which was deemed 

sufficient to recover from any delayed-onset muscle soreness from the first session and to control for 

history as an internal bias to the individual’s MV. This study was approved by the University of 

Waterloo’s Office of Research Ethics (ORE#40762), and all participants provided informed consent 

prior to participation. 

6.3.3 Instrumentation 

Briefly, motion capture data of the whole body and of three milk crates, used for carrying and 

lifting, were recorded. The experimental setup for carrying and lifting consisted of the three-shelf 

setup with the bottom shelf just above floor height and the top shelf at stature-based shoulder height 
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as previously used in Oomen et al. (2022) (see Figure 6.1). The simulated sawing setup consisted of a 

vertically oriented handle that could slide on a horizontal track, that was mounted on a stationary 

vertical frame (see Figure 6.1). The horizontal track only allowed anterior-posterior push and pull 

handle movement. The vertical handle was set at a height such that the participant’s elbow angle was 

90 degrees while grasping the handle in start position (i.e. end of the track away from frame) when 

standing upright (for start position see Figure 6.1). To prevent the handle from hitting the ends of the 

track two end ranges were visually marked on the track (which marked a horizontal distance of 

approximately 20 cm). Greater detail about the instrumentation can be found in Oomen et al. (2022). 

 

Figure 6.1: Experimental setup consisting of the simulated sawing setup on the left and carrying 

and lifting tasks setup on the right. The carrying and lifting tasks consisted of the three-shelf 

setup with the bottom shelf just above floor height and top shelf at shoulder height and a line 

parallel to the shelves at 2.5 m distance from the shelves. 
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6.3.4 Procedures 

The carrying and simulated sawing tasks were performed in the first session while the lifting 

task was performed in the second session. The carrying and lifting tasks were performed for 30 

minutes each and the sawing task was performed for 8 minutes to obtain approximately 100 cycles to 

avoid inducing excessive fatigue, and to complete each data collection session including other tasks 

within a 3-hour maximum window. The lifting task corresponds to one of the four lifting tasks 

previously presented in Oomen et al. (2022). The lifting task selected for this study was performed 

without any restrictions to foot placement and movement using the lowest weight and thus 

corresponds to the free low load lifting task included in previous studies. 

To reduce the likelihood of participants displaying movement variability behaviour in a 

desirable manner based on the study purpose, participants were deceived about the true purpose of the 

study (Nichols & Maner, 2008). Participants were informed that the study aimed to estimate the 

optimal and safe number of repetitions for carrying, lifting and sawing for an 8-hour workday, rather 

than revealing the true purpose which was to study their movement variability. While participants 

were made aware of the maximum time limits of each task, they were asked to perform as many 

repetitions as if they were working an 8-hour workday. Participants were instructed to move the crate 

using two hands for the carrying and lifting tasks, but no other instructions were given. Lastly, audio 

recordings and corresponding written transcript were provided to ensure that all participants were 

exposed to the same instructions (Beach et al., 2018). 

6.3.5 Carrying task 

Participants started 2.5 meters away and parallel to the shelves and walked towards the shelf 

to carry the crate from the bottom shelf, just above floor height, to the 2.5-meter line from and vice 

versa to minimize interruptions during the task (see Figure 6.1). This resulted in two different 
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sequences (i.e., from shelf to line and from line to shelf). The carrying task was performed with a 

weight that corresponded with 10% of their maximum lifting capacity based on a modified version of 

the Matheson’s EPIC Lifting Capacity test (Matheson et al., 1995), for more details see Oomen et al. 

(2022). The carrying task was broken down into a maximum of seven sets of five trials, with one trial 

corresponding to three repetitions of the task (one repetition at each shelf position). This resulted in a 

maximum of 105 total repetitions if the participant completed all trials. As part of the deception, after 

every set participants were asked if they were able to complete another set within an 8-hour workday 

without feeling tired or experiencing strain at the end of the workday. Therefore, some participants 

ended the lifting task before the maximum number of 105 repetitions was reached. 

6.3.6 Simulated sawing task 

After the carrying and before the sawing task a 5-minute rest break was taken to limit fatigue 

development. Following rest participants performed the simulated sawing task (see Figure 6.1). The 

participants were asked to push and pull the handle at a self-selected pace with their preferred hand 

while standing. The participants were instructed to only move the handle between the two visually 

marked targets in one fluid motion as accurately possible (i.e., within the two targets). The sawing 

task was broken down into a maximum of six trials of 20 repetitions, with one repetition 

corresponding to one complete cycle of both a push and pull movement. This resulted in a maximum 

of 120 total repetitions if the participant completed all trials. Similar to the carrying task, participants 

were asked if they could continue under the given conditions after every set. 

6.3.7 Lifting task 

The lifting task was performed in the second session in contrast to the carrying and sawing 

tasks. Participants approached each shelf by walking from the 2.5-meter line to allow voluntary foot 

placement before lifting the crate from bottom to top shelf (see Figure 6.1). The load weight and 
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maximum number of repetitions was identical to the carrying task of session 1. Participants always 

lifted the crates in the same order of shelves, and research staff lowered the crates before the next trial 

was started. Similar to the other tasks, participants were asked if they could continue under the given 

conditions after every set. 

After the completion of this session participants were debriefed about the deception and the 

true purpose of the study was revealed by informing that their movement variability was studied 

rather than the number of repetitions. Participants signed another consent form after deception was 

lifted. 

6.4 Data processing 

Consistent with Oomen et al. (2022), whole-body and crate marker kinematics were 

processed using best practices for gap filling (Howarth & Callaghan, 2010), padding and filtering 

(Howarth & Callaghan, 2008; Smith, 1989; Winter, 2009) and ISB recommendations were followed 

to create local coordinate systems which were used to derive three-dimensional joint angles (Wu et 

al., 2002, 2005). Subsequently, joint angles were segmented to task cycles based on the anterior-

posterior crate marker velocity for lifting. For carrying, task cycles were defined from when the crate 

was rotated 160 degrees in transverse plane relative to the origin, reflecting when the participant 

turned around facing the destination after lifting of the crate from the origin, to 90% of maximal cycle 

vertical crate position, reflecting when the participant started lowering the crate before disposing it at 

the destination. For simulated sawing, segmentation to task cycles was based on anterior-posterior 

hand marker velocity, with one cycle consisting of one push and pull motion. This led to an overall 

average of 92 (± 17) carrying cycles, 104 (± 9) sawing cycles, and 95 (± 18) lifting cycles per 

participant.  



 

  104 

Segmented cycles were time-normalized to 101 data points corresponding to 0 to 100% of the 

task cycle (Graham et al., 2013). In agreement with Oomen et al. (2022), the number of cycles was 

further reduced by excluding outliers in sagittal joint angles that were outside of the ensemble average 

± 3.75 standard deviations range. This resulted in an overall average of 86 (± 17) carrying cycles, 97 

(± 10) sawing cycles, and 83 (± 16) lifting cycles per participant for final inclusion in data analysis. 

The magnitude of cycle-to-cycle variability was defined as the mean standard deviation (meanSD) by 

determining the standard deviation between cycles at each normalized time point (i.e. point-by-point 

standard deviation) and then calculating the mean of the point-by-point standard deviation values. 

Subsequently, meanSD was summed across left and right wrist, elbow and shoulder joints as a 

measure of upper extremity variability. Since the lower body was not involved in the sawing task in 

contrast to the carrying and lifting tasks, upper extremity variability was used to represent MV in the 

execution of all three tasks. 

6.5 Statistical analysis 

All statistical analyses were conducted in R 4.0. When the different tasks were assessed for 

normality, the assumption of normality could not be confirmed visible from histograms, Q-Q plots 

and box plots, and demonstrated by significant positive skewness and kurtosis (Skew2SE > 1, Kurt2SE > 

1, p < .05) and significant Shapiro-Wilks test (p < .05)). To confirm the assumption of normality a log 

transform was applied for all statistical analyses. 

The effect of task (carrying, lifting, sawing) on upper extremity variability was examined 

with a one-way repeated measures ANOVA. Since this resulted in 3 different comparisons (i.e., 3 

movement planes) a Bonferroni correction was applied to control for familywise error rate and 

therefore α = .016 was used. The assumption of sphericity was checked according to Girden (1992), if 

the Greenhouse-Geisser epsilon ≥ 0.75, the Huynh-Feldt correction was used, otherwise the 
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Greenhouse-Geisser correction was used. If significant main effects occurred, pairwise dependent t-

tests with Bonferroni correction were executed to determine where differences occurred between the 

three tasks. Also, the direction of differences were determined by group means. 

The consistency of upper extremity variability across all three tasks (carrying, lifting, and 

sawing) was assessed by intraclass correlation (ICC) using the two-way mixed model for average 

measures (i.e. ICC(3,k) consistency model). 

6.6 Results 

One participant did not have enough visible markers on certain segments during the sawing 

task and thus not all gaps could be filled. Therefore, only 19 participants were used in the statistical 

analysis.  

Specifically for the carrying task, the data of the two different sequences was collapsed after 

we established that sequence did not affect upper extremity variability (see Appendix A). Task had a 

significant main effect on upper extremity variability in all movement planes (Table 6.1). Pairwise 

dependent t-tests revealed significant differences between all tasks in each movement plane, except 

between carrying and lifting in the frontal plane and between lifting and sawing in the transverse 

plane. Variability in carrying was 23-29% higher than variability in sawing across all movement 

planes (all comparisons p<.001), and 12-19% higher than variability in lifting in only the sagittal and 

transverse planes (p<.001) (Figure 6.2). In addition, variability in lifting was 12-25% higher than 

variability in sawing for only the sagittal and frontal movement planes (p<.001) (Figure 6.2).  
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Table 6.1: Result of one-way repeated measures ANOVA with task as factor for log 

transformed upper extremity (UE) variability in the sagittal (X), frontal (Y), and transverse (Z) 

movement planes. The first column shows the corrected degrees of freedom (df) due to 

sphericity corrections. Significant main effects are indicated by p-values in bold. 

  df F p  ηp
2 

UE_X (1.63,29.41) 60.697 <.001 0.77 

UE_Y (1.39,25.06) 66.432 <.001 0.79 

UE_Z (2.10,37.75) 41.244 <.001 0.70 
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Figure 6.2: Boxplots of log transformed upper extremity (UE) meanSD across tasks for each movement plane. Each individual graph 

shows the quartiles (box), 1.5 interquartile range of lower and upper quartile (whiskers) and values outside this range (diamonds). Single 

boxplots show one boxplot for each task. Significant differences between tasks were based on pairwise dependent t-tests and are indicated 

using the first letter of the task (i.e. L: Lifting; C: Carrying; S: Sawing). 
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Significant ICCs were only found in sagittal and transverse planes in contrast to the frontal 

plane (Table 6.2 and Figure 6.3). In addition, similar ICC values and confidence intervals were 

observed when comparing between sagittal and transverse planes (Table 6.2). 

Table 6.2: Intraclass correlation (ICC) of log transformed upper extremity (UE) variability in 

sagittal (X), frontal (Y), and transverse (Z) planes across all tasks with corresponding p-value 

and 95% confidence interval (CI). Significant p-values are indicated in bold. 

  ICC p 95% CI 

UE_X 0.63 <.01  0.20 - 0.84 

UE_Y 0.42 0.08 -0.25 - 0.76 

UE_Z 0.59 <.05  0.13 - 0.83 
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Figure 6.3: Log of upper extremity (UE) variability for each task with each participant ranked on average variability across tasks on the 

abscissa. 
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6.7 Discussion 

The goal of this study was to assess the influence of task type on MV, and to determine the 

consistency in individual MV responses across these tasks to test the generalizability of the repeater-

replacer hypothesis. Altering task type affected upper extremity kinematic variability in all movement 

planes, with carrying showing the highest variability compared to simulated sawing across all 

movement planes. In addition, carrying only showed higher variability compared to lifting in sagittal 

and transverse plane. Furthermore, differences between lifting and sawing were only detected in the 

sagittal and frontal movement planes where lifting showed higher variability in comparison to 

sawing. Overall, the results support the first hypothesis that task, and specifically the DOF afforded 

by a task, affects MV although not uniformly between pairs of tasks in all planes. Consistency in 

individual MV responses across tasks showed poor to moderate consistency based on definitions 

provided by Koo & Li (2016). More specifically, significant moderate consistency was demonstrated 

in the sagittal and transverse plane, while poor consistency in the frontal plane did not reach 

significance. Therefore, only moderate support was found for the second hypothesis and for MV as an 

individual trait independent of task. 

Individual consistency across tasks differing in DOF could only be supported to some extent. 

In comparison to previous work on consistency in MV, our results showed relatively low individual 

consistency. Despite different MV measures and a different ICC model, ICCs between 0.48 and 0.78 

were reported for a repetitive pipetting task performed on three different days (Sandlund et al., 2017). 

In addition, our earlier work on the same participant sample as present study using comparable MV 

measures and the same ICC model, reported ICCs between 0.71 and 0.84 for repetitive lifting where 

the constraints were manipulated (Oomen et al., 2022). Therefore, ICCs across different tasks were 

noticeably lower by approximately 11-32% compared to ICCs across different days and task 

constraints. Although sagittal and transverse plane ICCs of this study could be classified as moderate, 
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with values of 0.59-0.63, these values are at the lower end of this definition (Koo & Li, 2016). Thus, 

this study suggests that the repeaters-replacers hypothesis is task specific rather than generalizable 

across different tasks. Possibly, an individual deemed a repeater in for example lifting, might not also 

be a repeater in the sawing task while within different lifting tasks an individual is consistently a 

repeater. Since investigation of individual consistency in MV has thus far been focused on 

consistency across days or different task constraints (Jackson et al., 2020; Oomen et al., 2022; 

Sandlund et al., 2017), future endeavors to assess consistency across different tasks are needed to 

validate our findings. 

The relatively low individual consistency across tasks could have been driven by the large 

difference in task DOF of sawing compared to lifting and carrying. Simulated sawing only required 

movement of the upper body to complete the task, while lifting and carrying required whole-body 

movement. In addition, simulated sawing imposed a constrained movement trajectory for task 

execution while lifting and carrying allowed considerably larger freedom in movement trajectory for 

task execution. To test whether MV is specific to the DOF level of the task rather than completely 

task specific, ICCs were determined of only carrying and lifting which are assumed to have a similar 

level of DOF for previously mentioned reasons. The results showed significant ICCs classified as 

moderate to good consistency (Table 6.3) (Koo & Li, 2016). Sagittal and frontal plane ICCs 

increased (21-83%), while the transverse plane ICC was reduced (2%) compared to the consistency 

across all tasks. Therefore, MV as individual trait could be specific to tasks with comparable levels of 

DOFs. Thus, it seems more likely that the repeater-replacers hypothesis holds for tasks with similar 

levels of DOF than for tasks with considerably different levels of DOF. Future work is recommended 

to determine individual consistency of MV of upper extremity versus whole-body movement tasks 



 

  112 

with more versus less trajectory restriction to distinguish how these two task characteristics affect 

possible DOF specificity of repeater-replacers hypothesis. 

Table 6.3: Intraclass correlation (ICC) of log transformed upper extremity (UE) variability of 

only the carrying and lifting tasks in sagittal (X), frontal (Y), and transverse (Z) planes across 

all tasks with corresponding p-value and 95% confidence interval (CI). Significant p-values are 

indicated in bold. 

  ICC p 95% CI 

UE_X 0.76 <.01  0.37 - 0.91 

UE_Y 0.76 <.01  0.39 - 0.91 

UE_Z 0.58 <.05 -0.09 - 0.84 

Another alternative explanation for task-specificity in consistency of individual MV could lie 

in differences between individuals in their task-specific experience. Experience has been found to 

increase kinematic MV (Madeleine, Voigt, et al., 2008; Madeleine & Madsen, 2009; Sedighi & 

Nussbaum, 2017), and could be considered a confounder of individual MV as a trait variable 

(Sandlund et al., 2017). As part of the experiment, participants were asked to report their work 

experience. With respect to sawing, all participants lacked experience except one. However, half of 

the participants reported experience with lifting and just below half of the participants reported 

experience with carrying. Experience in only lifting or carrying could be viewed as similar experience 

since these tasks are rarely executed in isolation when performing manual material handling (MMH) 

of objects in the workplace. Therefore, participants with MMH experience (i.e. either lifting or 

carrying) but without sawing experience (i.e. all but one participant) could have demonstrated 

relatively consistent large MV for MMH tasks. However, they could have showed relatively low MV 

during sawing due to lack of experience, which could have confounded individual MV consistency by 

experience. This reasoning would be supported by individuals with MMH experience showing 

relatively large difference in MV between sawing versus MMH tasks. Although most participants 

show the highest values for carrying, followed by lifting and sawing, the pattern of a lower sawing 
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variability compared to MMH tasks could not be supported (see Figure 6.3), for both participants 

with and without MMH experience. Possibly, since our study population was predominantly made up 

of students, their MMH experience is likely to be for shorter time periods than of professionals and 

thus could have prevented the expected patterns. Future research is recommended to address 

experience when investigating different tasks to establish MV as an individual trait.  

In agreement with our earlier work, MV increased with tasks that have more available DOF 

(Oomen et al., 2022). The carrying and lifting tasks offered the largest amount of DOF because many 

trajectories were possible to move the crate between the origin and destination. However, carrying 

was expected to offer a higher amount of DOF since the task allowed participants to select the height 

at which the crate was carried whereas in lifting less freedom of crate trajectory was anticipated due 

to closer proximity of origin and destination. In contrast, simulated sawing only allowed one 

movement trajectory of the handle between the origin and destination and only upper extremity 

movement rather than whole-body movement was necessary to complete the task. Therefore, tasks 

with different DOF determined the amount of MV, in addition to task constraints that imposed DOF 

restrictions as we showed in lifting (Oomen et al., 2022). Since low MV has been associated with a 

higher risk on WRMSDs in repetitive tasks (Côté, 2012; Madeleine, 2010; Srinivasan & Mathiassen, 

2012), in agreement with Oomen et al. (2022) DOFs of the task could be important to consider at the 

workplace although direct evidence is needed by including a measure of WRMSD risk. For example, 

rotation schedules may be recommended to consider task DOF to ensure that workers are also 

executing tasks where they can explore variability. 

The findings of this study should be interpreted within the context of the following 

limitations. The tasks presented in this study were part of a larger study and only a subset of tasks 

required EMG measurements which prevented randomization of tasks to avoid natural between-day 
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variance in EMG signals. Importantly, explicit effects of presentation order on MV were prevented 

because participants were not made aware that their MV was studied due to the deception. In 

addition, carrying and sawing were always the first tasks in the first session just as lifting was always 

the first task in the second session which minimizes potential effect of fatigue development related to 

presentation order effects. Thus, the authors believe the effects of task conditions on MV can most 

likely be prescribed to the experimental conditions rather than to presentation order effects. 

Operationalizing MV by only upper extremity variability rather than whole-body variability could be 

interpreted as a limitation. The different tasks in this study imposed the challenge of MV being 

influenced by the amount of movement in terms of body regions required to complete the task. 

Although we attempted to normalize the point-by-point standard deviation of each joint to the range 

of motion, this actually removed differences between point-by-point standard deviation of joints since 

the standard deviation represents a statistical property (i.e. % of surface area following the normal 

distribution) of the entire range. Therefore, using upper extremity variability was considered the best 

solution to remove differences due to different amount of body region movement with these tasks. 

6.8 Conclusion 

Evidence from this study supports the repeaters-replacers hypothesis, but with the following 

caveats. Across all tasks only moderate support was found, whereas for only carrying and lifting 

stronger support was found. Therefore, the repeaters-replacers hypothesis could be specific to gross 

motor tasks offering similar DOF and less generalizable to simulated sawing as a fine motor task 

offering less DOF. Furthermore, tasks with more DOF resulted in higher MV. There is an opportunity 

to further explore how different determinants of task DOF such as gross versus fine motor tasks and 

restricted versus unrestricted movement trajectory contribute to changes in MV. If the variability-risk 

hypothesis holds, risk of WRMSDs could be managed by taking an individual approach by limiting 
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tasks in which a worker shows low MV and incorporate tasks that evoke high MV for the worker 

wherever feasible.  
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6.9 Appendix A: Comparison of two different sequences of carrying task 

The effect of two different sequences (i.e. from shelf to line and from line to shelf) on three-

dimensional upper extremity variability was statistically tested. After confirmation of the assumption 

of normality through statistics of skewness, kurtosis and Shapiro-Wilks test and by visual inspection 

of histograms, Q-Q plots and box plots a dependent t-test was performed. The two different sequences 

of the carrying task did not reveal any differences in upper extremity variability across movement 

planes (sagittal: t(19)=0.27, p=0.79; frontal: t(19)=1.10, p=0.29; transverse: t(19)=0.58, p=0.57). 

Thus, subsequent analysis on the collapsed data set of the carrying task was justified. 
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Chapter 7: Exploring the relationship between kinematic variability 

and fatigue development during repetitive lifting 

This chapter has been submitted for publication as following: 

Chapter 7: Oomen, N. M. C. W., Graham, R. B., & Fischer, S. L. (under revision). Exploring the 

relationship between kinematic variability and fatigue development during repetitive lifting. 

Applied Ergonomics, JERG-D-22-00341. 

7.1 Abstract 

To investigate the variability-fatigue and repeaters-replacers hypotheses, motor variability 

(MV) and indicators of fatigue were assessed during repetitive lifting. Eighteen participants 

performed sequential repetitive bouts of lifting divided into a short bout, and three phases of a 

prolonged bout until volitional fatigue (or until a 1-hour time limit). Whole-body kinematics were 

collected to calculate variability in three-dimensional joint angles and in continuous relative phase of 

sagittal joint angle couplings, which were summed for the upper and lower body, and whole-body. 

Excellent individual consistency (ICC=0.95–0.97) was demonstrated across lifting bouts as fatigue 

developed. Therefore, strong evidence was obtained for MV as an individual trait in support of the 

repeaters-replacers hypothesis. Associations were found for endurance and initial fatigue with lower 

body variability, while no associations were found for rate of fatigue. Thus, some support was found 

for the variability-fatigue hypothesis which suggests that repeaters are less fatigue-resistant than 

replacers. 

7.2 Introduction 

Work-related musculoskeletal disorders (WRMSDs), defined as pathological impairment of 

musculoskeletal tissues, are a significant worldwide problem in terms of prevalence, incidence, 
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treatment costs, costs associated with loss of productivity, and for the employee’s quality of life 

(Baldwin, 2004; Buckle & Devereux, 2002; Canadian Institute for Health Information, 2013; Coyte et 

al., 1998; Feeney et al., 1998; Institute of Musculoskeletal Health, 2014; Leijon et al., 1998; OHSCO, 

2007; Thiehoff, 2002). Two commonly described aspects of work that contribute to the development 

of WRMSDs are force and repetition (da Costa & Vieira, 2010). Although traditional work demands 

in developed countries are characterized by high force and moderate levels of repetition such as 

assembly line manufacturing, the introduction of assistive devices such as exoskeletons and e-

commerce has shifted these demands to low force but possibly higher repetition (e.g. order picking at 

distribution centres) (Kermavnar et al., 2021; Marras et al., 2009). Combined low force, high 

repetition loading can lead to cumulative tissue damage through fatigue failure, which is one of the 

proposed injury mechanisms underlying WRMSDs (Gallagher & Heberger, 2013; Gallagher & 

Schall, 2017). As a result of this altered work landscape more research is required to understand and 

mitigate the effects of repetition on WRMSD risk. 

Repetitive work as a risk factor for cumulative loading could be modulated by motor 

variability (MV), defined as repetition-to-repetition variation in human movement when performing 

the same task (Bernstein, 1967). MV present in execution of repetitive tasks arises from an abundant 

number of degrees of freedom and thus reflects how an individual exploits MV as part of their motor 

control strategy (Bernstein, 1967; Latash, 2000; Latash et al., 2002; Newell & Corcos, 1993). In 

repetitive tasks, occupational health researchers have associated elevated WRMSD risk with low MV 

and reduced WRMSD risk with high MV by measures of WRMSD risk such as fatigue, pain and 

injury in the variability-risk hypothesis (Côté, 2012; Granata et al., 1999; Madeleine, 2010; 

Madeleine, Mathiassen, et al., 2008; Madeleine, Voigt, et al., 2008; Mathiassen et al., 2003; Sedighi 

& Nussbaum, 2017; Srinivasan & Mathiassen, 2012; Yang et al., 2018). This hypothesis implies that 
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repetition-to-repetition distribution of muscle activation and mechanical loading could be increased 

with higher MV; while concurrently reducing cumulative loading and related risk of cumulative 

damage (Bartlett et al., 2007; Hamill et al., 1999; Madeleine, 2010; Srinivasan & Mathiassen, 2012). 

Furthermore, WRMSD risk could be of concern for individuals consistently showing low MV 

independent of contextual factors such as task constraints and days (Jackson et al., 2020; Oomen et 

al., 2022; Sandlund et al., 2017). These individuals would be classified as repeaters in the repeaters-

replacers hypothesis, while replacers would show consistently high MV. However, the repeaters-

replacers hypothesis can only be supported under the condition of consistency in individual MV and it 

is unknown whether consistency remains present among variables of WRMSD risk such as fatigue.  

In a healthy population, the variability-risk hypothesis can be investigated by using fatigue as 

a surrogate measure for risk of WRMSD. Fatigue, defined as an activity-related reduction in muscle 

force generating capacity (Bigland‐Ritchie & Woods, 1984), can be viewed as a precursor to 

WRMSD (Rempel et al., 1992; Sjøgaard & Søgaard, 1998). Fatigue development revealed an increase 

in both the magnitude and spatial distribution of variability in muscle activation (Farina et al., 2008; 

van Dieën et al., 2009; van Dieën, Oude Vrielink, & Toussaint, 1993). Also, higher variability was 

associated with longer endurance and less development of fatigue (Farina et al., 2008; van Dieën et 

al., 2009; van Dieën, Oude Vrielink, & Toussaint, 1993). Therefore, the variability-fatigue hypothesis 

indicates a negative relationship between variability and fatigue development which implies that 

individuals with low MV (‘repeaters’) should fatigue quicker compared to individuals with high MV 

(‘replacers’). 

Contemporary research on the relationship between variability and fatigue has focused on 

comparing kinematic MV between different stages of fatigue development. In line with previous 

work on variability in muscle activation, an increase in kinematic MV with fatigue development has 
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been reported (Sedighi & Nussbaum, 2017; Yang et al., 2018). More specifically, joint angle 

variability and continuous relative phase variability of joint couplings increased after a fatiguing 

repetitive pointing task (Yang et al., 2018). Also, center of mass path length variability and goal-

irrelevant variability of center of mass path and velocity increased with fatigue development during a 

repetitive lifting and lowering task (Sedighi & Nussbaum, 2017). In the context of variability-fatigue 

hypothesis, an increase in MV with fatigue development could indicate a response to impede further 

fatigue development (Farina et al., 2008; van Dieën, Oude Vrielink, & Toussaint, 1993). Although 

some research has been carried out on kinematic variability and fatigue, it remains unclear how 

variability affects indicators of fatigue which would provide more direct evidence for the variability-

fatigue hypothesis. In addition, the repeaters-replacers hypothesis has not yet been explored in the 

context of variability-fatigue and thus presents an opportunity to investigate individual variability 

during the development of fatigue. 

To advance the variability-fatigue and repeaters-replacers hypotheses, the purpose of this 

study was to assess MV and individual consistency of MV across repetitive lifting bouts during 

development of fatigue, and to explore relationships between MV and indicators of fatigue during 

prolonged lifting. Specifically, this work aimed to answer the following research questions: 1) Do 

lifting bouts with different levels of fatigue development affect MV?, 2) Do individuals show 

consistent MV across lifting bouts with different levels of fatigue development?, and 3) Do 

relationships exists between MV at baseline and indicators of fatigue development? It was 

hypothesized that 1) lifting bouts with greater development of fatigue resulted in higher MV (i.e., 

lifters exploit MV to continue task execution as fatigue develops), 2) in line with the repeaters-

replacers hypothesis individuals will show consistent MV across bouts of different levels of fatigue 

development, and 3) negative relationships exists between baseline MV and indicators of fatigue 
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response, such that higher MV demonstrated slower development of fatigue (i.e., repeaters will 

demonstrate an earlier increase in fatigue responses than replacers). 

7.3 Material and Methods 

7.3.1 Research design 

This cross-sectional experimental study used a one-factor within-subject design and a 

correlational analysis to answer the research questions. The independent variable consisted of lifting 

bout with four levels (one short bout and a prolonged lifting protocol that was split into an early, 

middle and late phase). This independent variable was assessed on two kinematic MV measures, 1) 

three-dimensional joint angle variability determined using the linear measure of mean standard 

deviation (meanSD), and 2) nonlinear sagittal plane continuous relative phase (CRP) variability based 

on joint angle couplings. These two MV measures were selected based on demonstrating slightly 

different construct when assessed on MV ranking within the specific lifting task in Chapter 5. Lastly, 

for correlational analysis both MV measures of only the short bout were selected as the independent 

variables and RPE as the dependent variables serving as an indicator of fatigue. 

7.3.2 Participants 

In brief, twenty healthy participants (ten females and ten males; 24.3 (± 3.8) years; 169.2 (± 

10.2) cm; 67.9 (± 13.0) kg) were recruited from the student population, representing the same study 

population as in Oomen et al. (2022). This study was approved by the University of Waterloo’s 

Office of Research Ethics (ORE#40762), and all participants provided informed consent prior to 

participation. However, one participant did not perform the prolonged task thus only nineteen 

participants (ten females and nine males) were included in the analyses.  
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7.3.3 Instrumentation 

Briefly, motion capture data of the whole body and of three milk crates used as lifting objects 

were recorded. Also, rate of perceived exertion (RPE) was assessed using Borg’s 6-20 scale (Borg, 

1982). In agreement with our previous work, participants lifted crates using the three-shelf setup from 

the bottom shelf just above floor height to the top shelf at stature-based shoulder height (Oomen et al., 

2022) (see Figure 7.1). More detail about the instrumentation can be found in Oomen et al. (2022). 

 

Figure 7.1: Three-shelf setup with the bottom shelf just above floor height and top shelf at 

shoulder height. 

7.3.4 Procedures 

Participants completed two data collection sessions 2-7 days apart which was deemed 

sufficient to recover any delayed-onset muscle soreness from the first session and to control for 

history as an internal bias to the individual’s MV. In the first session participants completed a 

modified version of the Matheson’s EPIC lifting capacity test (Matheson et al., 1995), to establish 
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their maximum lifting capacity (Oomen et al., 2022). In the second session participants completed 

self-paced lifting for one short bout of 105 lifting cycles maximum (16 ± 4 minutes), using a load 

weight corresponding to 30% maximum capacity, and a prolonged bout until volutional fatigue or up 

to a maximum of 60 minutes (48 ± 19 minutes) using the same load mass (30% of maximum 

capacity). The 30% weight was justified for the prolonged lifting bout by the lifting duty cycle 

equation (Potvin, 2012). The duty cycle of this task was estimated at 31%, including estimates of time 

between trials. Based on a duty cycle of 31%, a maximal acceptable effort of 25% was estimated by 

use of the lifting duty cycle equation (Potvin, 2012). This equation is based on a duty cycle of an 8-h 

workday; however, this lifting protocol only took up to 1 hour. Therefore, the maximal acceptable 

effort for an hour protocol is probably closer to 30% and therefore was acceptable. 

For both sessions, the possibility that participants were influencing their movement 

variability in a desirable manner based on the study purpose was prevented by deceiving participants 

about the true study purpose (Nichols & Maner, 2008). Participants were informed that the study 

aimed to estimate the optimal and safe number of repetitions during lifting in two scenarios. For the 

short lifting bout, participants were asked to perform as many repetitions as possible without inducing 

tiredness or strain at the end of the workday based on a 8-h workday. For prolonged lifting 

participants were also asked to perform as many repetitions as possible; however, they were expected 

to become tired and continue until they could no longer lift any crates. Although participants were 

aware of maximum time limits (i.e. 30 minutes for short bout and 60 minutes for prolonged bout) in 

each scenario, they were asked to perform as many repetitions as they could given the scenarios. 

More specifically, participants were not instructed on lifting technique, except for using both hands. 

Audio recordings and corresponding written transcripts were provided to ensure that all participants 

were exposed to the same instructions (Beach et al., 2018).  
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In the short lifting bout, participants approached each shelf of the three-shelf setup (see 

Figure 7.1) by walking from the 2.5-meter line to allow voluntary foot placement before lifting each 

crate. This lifting bout, which corresponds to the free high load lifting of Oomen et al. (2022), was 

performed for a maximum of seven sets of five trials, with one trial corresponding to three repetitions 

of the task (i.e. one repetition at each shelf). This lifting bout resulted in a maximum of 105 total 

repetitions each, if the participants completed all trials. After every set, participants were asked to 

report their RPE and, as part of the deception, asked if they could perform another set within an 8-h 

workday without feeling tired or experiencing strain at the end of the workday. Thus, some 

participants ended the short bout before the maximum amount of 105 repetitions was reached. The 

data from this bout represented lifting with only minimal development of fatigue, in contrast to 

prolonged lifting. 

Before the prolonged lifting protocol participants were offered a 15-minute optional rest 

break. In agreement with the short lifting bout, participants were allowed voluntary foot placement 

and sets of five trials were performed after which RPE was reported. Also, in agreement with the 

short lifting bout, participants approached the first shelf by walking from the 2.5-meter line and after 

completing the lift at the third shelf walked back to the line. However, for prolonged lifting, 

participants were allowed to directly move to the next shelf in between shelf 1 and 2 and shelf 2 and 3 

without walking back and forth between the line in between each lift. This removed four occasions of 

walking between the shelf and line when compared to the short bout, to increase the amount of active 

work relative to total time, which increased the duty cycle and thus would evoke fatigue mainly due 

to lifting rather than also walking. Participants were asked to perform as many sets as possible until 

volitional fatigue up to a maximum duration of 1 hour. The protocol was terminated if participants 

were unable to continue the protocol or if they completed 1 hour of lifting.  
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After completion of this session the participants were debriefed about the deception and the 

true purpose of the study was revealed by informing that their movement variability was studied 

rather than the number of repetitions. Participants signed another consent form after deception was 

lifted. 

7.3.5 Data processing 

Similarly, to Oomen et al. (2022), whole-body and crate kinematics were processed using 

best practices for gap filling (Howarth & Callaghan, 2010), padding and filtering (Howarth & 

Callaghan, 2008; Smith, 1989; Winter, 2009) and ISB recommendations were followed to create local 

coordinate systems that were used to derive three-dimensional joint angles (Wu et al., 2002, 2005). 

Then, the joint angles were segmented to lifting cycles based on the anterior-posterior crate marker 

velocity. This resulted in an average of 90 (± 21) and 333 (± 146) lifting cycles per participant for the 

short and prolonged lifting bouts, respectively. 

Segmented lifting cycles were time-normalized to 101 data points corresponding to 0 to 

100% of the task cycle (Graham et al., 2013). In agreement with Oomen et al. (2022), the number of 

cycles was further reduced by excluding outliers in sagittal joint angles that were outside of the 

ensemble average ± 3.75 standard deviations range. This resulted in an average of 79 (± 20) and 296 

(± 127) lifting cycles per participant for the short and prolonged lifting bouts, respectively. Finally, 

the cycles of prolonged lifting were split into three equal parts to represent an early, middle and late 

phase, which resulted in 99 (± 42) lifting cycles per participants for each section. 

The linear measure of cycle-to-cycle variability was determined as the standard deviation 

between cycles at each normalized time point (i.e. point-by-point standard deviation), and the mean of 

the point-by-point standard deviation values was calculated resulting in meanSD. MeanSD was 

summed for left and right ankle, knee, and hip joints for a lower extremity measure, and for left and 
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right wrist, elbow and shoulder joints for an upper extremity measure, while low back meanSD was 

considered separately. Also, meanSD was summed across all joints for a linear whole-body variability 

measure. 

Nonlinear CRP was determined using a Hilbert approach applied to time-normalized joint 

angle couplings in the sagittal plane in agreement with Chapter 4. This resulted in 12 joint couplings, 

left and right ankle-knee, knee-hip, and hip-low back, and left and right wrist-elbow, elbow-shoulder 

and shoulder-low back couplings. Cycle-to-cycle variability of time-normalized CRP was defined 

similarly to meanSD of joint angles. The point-by-point standard deviation was determined and 

averaged across all 101 data points to obtain average cycle-to-cycle CRP variability (Hamill et al., 

2000). Then, CRP variability was summed for left and right ankle-knee, knee-hip and hip-low back 

couplings for a lower extremity measure, for left and right wrist-elbow, elbow-shoulder and shoulder-

low back couplings for an upper extremity measure. In addition, all joint couplings were summed to 

obtain a nonlinear whole-body variability measure. 

Three measures based on RPE were defined as indicators of fatigue. First, the number of sets 

completed in the prolonged protocol until a RPE of 15 was reached for the first time, as a measure of 

endurance. This boundary of RPE was based on the average RPE at the end of a prolonged lifting 

protocol that also demonstrated expected reductions in isometric force indicative of fatigue 

development (Fischer et al., 2015). For the other two measures, a linear regression line was 

determined between RPE and number of sets for each individual throughout the prolonged lifting 

bout. Then, the second indicator of fatigue was defined as the slope of the regression line as a 

measure of the rate of fatigue development. Lastly, the third indicator of fatigue was defined as the 

intercept of the regression line which reflects initial differences in fatigue development. Using 
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regression line characteristics of fatigue measure over time is similar to common practice in mean 

power frequency analysis of EMG as fatigue indicator (Falla et al., 2006, 2007; Falla & Farina, 2005). 

7.3.6 Statistical analysis 

All statistical analyses were conducted in R 4.0. Assessment of normality was performed 

using statistics of skewness, kurtosis and Shapiro-Wilks test and by visual inspection of histograms, 

Q-Q plots and box plots. The assumption of normality could not be confirmed for RPE values of the 

last set of each lifting bout, for linear variability of each body region, and for the three indicators of 

fatigue and thus nonparametric tests were performed. 

To confirm the assumption of fatigue development with subsequent lifting bouts as part of 

research question 1 and 2, the effect of lifting bout on RPE indicated in the last set of each bout were 

compared using one-way Friedman’s ANOVA. If a significant main effect was found, pairwise 

Wilcoxon signed-rank tests with Bonferroni corrections for the number of comparisons were 

performed. The direction of the differences were determined using group medians of each bout. 

For body-region specific linear variability, differences between lifting bouts were assessed 

using a one-way Friedman’s ANOVA. Since this resulted in nine different comparisons (i.e. 3 body 

regions by 3 movement planes), a Bonferroni correction was applied to control for familywise error 

rate and thus a critical significance level of α = .006 was used. If significant main effects were found, 

to determine where differences between specific lifting bouts occurred Wilcoxon signed-rank tests 

with Bonferroni corrections were performed with the short lifting bout as a reference condition. Also, 

the direction of differences were determined by group medians. 

For body-region specific nonlinear variability, differences between lifting bouts were 

assessed using a one-way repeated measures ANOVA. A Bonferroni correction resulting from two 

body regions imposed a critical level of significance of α = .025. The assumption of sphericity was 
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checked according to Girden (1992), if the Greenhouse-Geisser epsilon ≥ 0.75, the Huynh-Feldt 

correction was used, otherwise the Greenhouse-Geisser correction was used. If significant main 

effects were found, differences between lifting bouts were determined using dependent t-tests with 

Bonferroni corrections between the short lifting bout as a reference condition. Also, the direction of 

differences were determined by group means. 

The consistency of whole-body linear and nonlinear variability across the four lifting bouts 

(one short and three sections of prolonged bout) was assessed using intraclass correlation (ICC) using 

a two-way mixed model for average measures (i.e. ICC(3,k) consistency model). 

Association between body-region specific linear and nonlinear variability during the short 

bout with the three indicators of fatigue was determined by spearman’s correlation coefficient for 

each indicator and variability measure. Since specific relationships between variability and fatigue 

indicators were expected, one-tailed tests were used with a confidence level of 95%. Specifically, a 

positive relationship was expected between variability and endurance; while, negative relationships 

between variability and the rate of fatigue and initial fatigue were expected. 

7.4 Results 

One participant was removed from the analysis as they were unable to follow lifting 

instructions, which resulted in final analyses with 10 females and 8 males. 

A main effect of lifting bout was found in RPE of the last set (χ2(3)= 39.5, p<.001, W= 

0.731). Post hoc analysis indicated significant differences for each pairwise comparison of lifting bout 

(all p<.05), except for the short lifting bout and the early phase of the prolonged lifting bout (p=0.07) 

(Figure 7.2). Overall, group medians indicated an increase in RPE with subsequent lifting bout 

(short: Mdn=13, prolonged early: Mdn =14.5, prolonged middle: Mdn =16, prolonged late: Mdn =17). 
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Figure 7.2: Boxplots of RPE of the last set for each lifting bout. S: short; P-E: prolonged early; 

P-M: prolonged middle; P-L: prolonged late. Each individual boxplot shows the quartiles (box), 

1.5 interquartile range (whiskers) and values outside this range (diamonds). Significant 

differences between lifting bouts were based on Wilcoxon signed-rank tests and are indicated 

using abbreviations of lifting bouts. 

No main effects of lifting bout were found across body regions and movement planes for 

linear variability (Table 7.1). However, sagittal lower extremity variability showed a trend for a main 

effect of lifting bout (W=0.223) (Figure 7.3). Possibly, this trend can be explained by a higher 

median in the early lifting phase (Mdn =48.12°) compared to the other lifting bouts (short: Mdn 

=39.62°, prolonged middle: Mdn =37.87°, prolonged late: Mdn =39.79°). 

Table 7.1: Results of Friedman’s ANOVA for linear variability of three body regions in three 

movement planes with lifting bout as within-subjects factor. 

  Lifting bout 

Body region Plane χ2(3) p W 

Lower 
extremity 

Sagittal 12.100 0.007 0.223 

Frontal 0.333 0.954 0.006 

Transverse 2.070 0.559 0.038 

Low back 

Sagittal 4.070 0.254 0.075 

Frontal 8.270 0.041 0.153 

Transverse 2.200 0.532 0.041 

Upper 
extremity 

Sagittal 1.870 0.601 0.035 

Frontal 4.870 0.182 0.090 

Transverse 9.530 0.023 0.177 
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Figure 7.3: Boxplots of meanSD for each lifting bout in each movement plane (row) and for body area (column). S: short bout; P-E: 

prolonged early bout; P-M: prolonged middle bout; P-L: prolonged late bout. Each individual boxplot shows the quartiles (box), 1.5 

interquartile range (whiskers) and values outside this range (diamonds). 
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Also, no main effect of lifting bout was shown for nonlinear sagittal CRP variability (Table 

7.2). Although, sagittal upper extremity variability showed a trend for a main effect of lifting bout 

(ηp
2 = 0.139). When reviewing the corresponding graph (Figure 7.4), the median appeared to 

decrease with each subsequent lifting bout until the middle phase, while the late phase showed a 

slight increase relative to the middle phase (short: Mdn=160.08°, prolonged early: Mdn =157.51°, 

prolonged middle: Mdn =142.44°, prolonged late: Mdn =143.87°). 

Table 7.2: Results of one-way repeated measures ANOVA for nonlinear continuous relative 

phase variability of sagittal plane lower and upper extremity variability with lifting bout as 

within-subjects factor. 

  Lifting bout 

Body region Plane F df p ηp
2 

Lower extremity Sagittal 1.223 1.65, 28.04 0.303 0.067 

Upper extremity Sagittal 2.751 1.81, 30.69 0.085 0.139 

 

 

Figure 7.4: Boxplots of sagittal continuous relative phase (CRP) variability for each lifting bout 

and body area (column). S: short bout; P-E: prolonged early bout; P-M: prolonged middle 

bout; P-L: prolonged late bout. Each individual boxplot shows the quartiles (box), 1.5 

interquartile range (whiskers) and values outside this range (diamonds). 

Across lifting bouts significant ICCs (p < .001) were found for linear whole-body variability 

and for nonlinear whole-body CRP variability (Table 7.3). Across measures and movement planes, 

ICCs were reported between 0.95–0.97. These findings are supported by very similar individual 

variability across lifting bouts (Figure 7.5 and Figure 7.6). 
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Table 7.3: Intraclass correlation (ICC) of whole-body variability using meanSD and continuous 

relative phase (CRP) as different measures in the listed planes across lifting bouts with 

corresponding p-value and 95% confidence interval (CI). Significant p-values are indicated in 

bold. 

Measure Plane ICC p 95% CI 

MeanSD 

Sagittal 0.97 <.001 0.95 - 0.98 

Frontal 0.95 <.001 0.91 - 0.98 

Transverse 0.96 <.001 0.93 - 0.98 

CRP Sagittal 0.96 <.001 0.92 - 0.98 
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Figure 7.5: Whole-body (WB) meanSD for each lifting block with each participant ranked on average variability across lifting bouts on 

the abscissa with each plot showing a different movement axis. S: short bout; P-E: prolonged early bout; P-M: prolonged middle bout; P-

L: prolonged late bout. 
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Figure 7.6: Whole-body (WB) sagittal continuous relative phase (CRP) variability for each lifting block with each participant ranked on 

average variability across lifting blocks on the abscissa. S: short bout; P-E: prolonged early bout; P-M: prolonged middle bout; P-L: 

prolonged late bout. 
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Correlations between short bout linear variability and indicators of fatigue derived from RPE 

showed significant correlations for low back sagittal plane variability with endurance and initial 

fatigue (Table 7.4). With respect to nonlinear variability, only lower extremity variability showed a 

significant correlation with initial fatigue (Table 7.5). Both linear and nonlinear variability 

demonstrated consistent negative coefficients for initial fatigue, while for other fatigue indicators both 

positive and negative coefficients were reported. An exemplar scatter plot of each fatigue indicator 

with low back sagittal plane linear variability is demonstrated in Figure 7.7. 

Table 7.4: Spearman’s correlation coefficient (rs) of linear variability in three body regions and 

three movement planes during the short bout with endurance based on the number of sets 

performed until a RPE of 15, rate of fatigue and initial fatigue based on the slope and intercept 

from regression of RPE across sets respectively. Significant p-values are indicated in bold. 

  Endurance Rate of fatigue Initial fatigue 

Body region Plane rs p rs p rs p 

Lower 
extremity 

Sagittal -0.03 0.55 -0.15 0.28 -0.05 0.43 

Frontal 0.11 0.34 -0.01 0.48 -0.15 0.27 

Transverse 0.08 0.38 0.23 0.82 -0.25 0.16 

Low back 

Sagittal 0.46 0.03 0.18 0.76 -0.51 0.02 

Frontal 0.04 0.44 -0.31 0.10 -0.12 0.32 

Transverse -0.09 0.64 -0.14 0.29 -0.14 0.29 

Upper 
extremity 

Sagittal 0.06 0.40 -0.22 0.19 -0.05 0.42 

Frontal 0.33 0.09 0.18 0.77 -0.40 0.05 

Transverse 0.23 0.18 0.19 0.78 -0.09 0.36 
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Table 7.5: Spearman’s correlation coefficient (rs) of continuous relative phase variability in 

sagittal movement plane of lower and upper extremity during the short bout with endurance 

based on the number of sets performed until a RPE of 15, rate of fatigue and initial fatigue 

based on the slope and intercept from regression of RPE across sets respectively. Significant p-

values are indicated in bold. 

  Endurance Rate of fatigue Initial fatigue 

Body region Plane rs p rs p rs p 

Lower extremity Sagittal -0.09 0.64 0.00 0.50 -0.48 0.02 

Upper extremity Sagittal 0.07 0.39 0.10 0.65 -0.10 0.35 

 

 

Figure 7.7: Scatter plots of each fatigue indicator with sagittal plane low back linear variability. 

7.5 Discussion 

The purpose of this study was to assess differences in MV and individual MV consistency 

across lifting bouts as fatigue developed, and to investigate if lower between-trial variability at 

baseline was associated with increased fatigue. Self-reported fatigue increased with subsequent lifting 

bouts, confirming that fatigue was developed during the protocol, while no significant effect of lifting 

bout was found on variability in different body regions and planes when assessed with linear and CRP 

variability measures. For linear measures, a trend was found in sagittal lower extremity variability; 

although, this trend does not agree with the expected effect of an increase in variability with 

subsequent lifting bouts. Nonlinear CRP measures also showed a trend in sagittal upper extremity 
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variability which demonstrated a decrease in variability with subsequent lifting bouts, opposite of the 

expected effect. Therefore, the first hypothesis could not be supported. Results for individual 

consistency showed excellent consistency (Koo & Li, 2016) across lifting bouts for each whole-body 

MV measure and movement plane. The consistency values across MV measures and movement 

planes were very similar. Therefore, the second hypothesis was supported. When three indicators of 

self-reported fatigue were related to baseline MV, some relationships between MV and fatigue 

development were found. Although the relationship was not observed for all body regions, this 

suggests some evidence for the third hypothesis specifically for the lower body in the sagittal plane. 

Collectively, we interpret these findings as strong support for the repeaters-replacers hypothesis and 

some support for the variability-risk hypothesis, at least when considering self-reported fatigue as a 

surrogate measure for WRMSD risk when specifically considering sagittal plane lower body MV. 

In contrast to previous occupational research on fatigue development and kinematic 

variability, this study did not demonstrate differences in linear and nonlinear MV with fatigue 

development. With respect to linear MV and fatigue development, our results disagree with previous 

findings on occupational lifting and a pointing task. These previous studies indicated that linear MV 

increased with fatigue across the body parts involved in the task (i.e. for lifting at the whole-body 

level while for pointing only at measured shoulder and elbow joints) (Sedighi & Nussbaum, 2017; 

Yang et al., 2018). With respect to nonlinear MV and fatigue, our results agree with previous studies 

on lifting, while our results differ from evidence based on a pointing task (Sedighi & Nussbaum, 

2017; Yang et al., 2018). In lifting no change was observed in whole-body movement complexity, 

while in pointing an increase in flexibility in shoulder-elbow coordination was observed with fatigue 

(Sedighi & Nussbaum, 2017; Yang et al., 2018). Possibly, our study does not indicate a similar 

finding because more freedom in task execution could have given participants more opportunity to 
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exploit motor abundance and thus explore variability regardless of fatigue, while in restricted tasks 

variability may only increase during fatigue development to preserve task continuation. In previous 

lifting, task execution was constrained by external pacing, fixed foot placement and continuous 

holding of the lifting object (Sedighi & Nussbaum, 2017). In addition, in contrast to the previous 

pointing task performed with only the upper extremity specifically in one plane, whole-body 

movement in three planes during lifting could have further facilitated exploring different movement 

strategies to exploit motor abundance (Yang et al., 2018). Therefore, our lifting task may not have 

been sensitive enough to additional exploration of variability as a compensation strategy to limit 

further fatigue development that was found in restricted tasks (Farina et al., 2008; van Dieën, Oude 

Vrielink, & Toussaint, 1993; Yang et al., 2018) because possibly participants were already using 

motor abundance in completing the task. Furthermore, restricting tasks to improve internal validity 

could confound our understanding of MV during fatigue in less restricted tasks which could be more 

externally valid of performance in daily life. 

In agreement with other occupational studies, this study supports MV as an individual trait 

which is an essential condition of the repeaters-replacers hypothesis (Jackson et al., 2020; Oomen et 

al., 2022; Sandlund et al., 2017). Until now, evidence demonstrated individual consistency when 

performing a fine motor task (Jackson et al., 2020), or gross motor lifting task (Oomen et al., 2022) 

across different task constraints, and also across different days when performing a fine motor task 

(Sandlund et al., 2017). This study adds evidence for individual consistency during fatigue 

development in a gross motor lifting task. Our previous work on individual consistency within 

occupational lifting across different task constraints using the same linear and nonlinear measures 

revealed ICCs of 0.71-0.84 and 0.88, respectively (Oomen et al., 2022; Chapter 4). In comparison, we 

observed ICCs of 0.95-0.97 while also performing lifting under one task constraint condition (i.e. 
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unrestricted foot movement, high load) of previous work, but when assessed across different levels of 

fatigue development in occupational lifting. Therefore, across different experimental conditions and 

variability measures, fatigue development represents the condition for which the highest consistency 

was demonstrated. This indicates that fatigue does not confound the assessment of individual MV 

magnitude relative to other individuals. In agreement with no differences in MV between lifting bouts 

during fatigue development, it is possible that repeaters and replacers respond to fatigue similarly by 

mostly maintaining their magnitude of MV. 

In line with the variability-fatigue hypothesis, sagittal plane lower body MV was associated 

with some indicators of fatigue response. Thus, this study provides some support that repeaters are at 

higher risk than replacers based on self-reported RPE as a surrogate risk factor for WRMSD 

development in a repetitive lifting task. Possibly, only MV in the sagittal plane was related to the 

fatigue response because the sagittal plane represents the primary movement plane of the lifting task. 

In addition, only a relationship was found for variability at the low back and lower extremity 

indicating that potentially individuals can use lower body MV to mitigate fatigue development in the 

lifting task, rather than upper body MV. Across all fatigue indicators, two relationships were observed 

for initial fatigue, one relationship for endurance, and none for the rate of fatigue. Initial fatigue 

reflects an indicator of fatigue at the start of the prolonged protocol, which was performed shortly 

after the short bout. Possibly, fatigue experienced during the short bout remained present at the start 

of the prolonged protocol since fatigue can be considered a continuous process (Cowley & Gates, 

2017). This idea could be supported by our average RPE intercept of 12.4 which is a bit higher than 

average RPE of 8.5 (Fischer et al., 2015) and 10 (Lotz et al., 2009) of previous work on prolonged 

repetitive lifting. More importantly, findings of relationships between MV and initial fatigue could be 

explained by the fact that initial fatigue represents a closer point in time to the MV it was related to at 
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baseline. Similarly, the rate of fatigue could also be confounded by fatigue build up from the short 

bout and explain why no relationship with rate of fatigue was found. Although our average slope of 

RPE per set of 15 cycles was 0.32, while we determined a comparable value of 0.25 (Fischer et al., 

2015) and 0.22 (Lotz et al., 2009) of previous work on prolonged repetitive lifting. Possibly, the 

collected rate of fatigue only represents a later part of the fatigue development process. For 

endurance, previous support for the variability-fatigue hypothesis was found for temporal and spatial 

EMG variability with endurance time in isometric tasks (Farina et al., 2008; van Dieën, Oude 

Vrielink, & Toussaint, 1993). Despite a different definition of endurance, another important 

difference to note with previous work is task type and related biomechanical variables. Isometric 

tasks do not provide muscle abundance and thus EMG variability is possibly more closely related to 

endurance of specific fatiguing musculature. However, dynamic tasks such as whole-body lifting 

offer muscle abundance that could help to sustain the task for longer since many muscles are involved 

with different levels of fatigue (Ferber & Pohl, 2011; Latash, 2012). Thus, endurance could be 

confounded by motor abundance at different levels of neuromuscular and musculoskeletal processes 

that result in the observed kinematics, and therefore only show a relationship with one of the eleven 

variability measures that were used in this study. In summary, the variability-fatigue hypothesis could 

only be supported for some kinematic MV measures and some fatigue indicators. The findings 

suggest that in our study variability is related to early perceptions of fatigue. Although a relationship 

was found with endurance for one variability measure, the relationship between variability and 

endurance may be limited to restricted tasks that have limited kinematic compensation due to motor 

abundance (Ferber & Pohl, 2011; Latash, 2012). Future research is recommended to also tease out if 

the variability-endurance relationship is only limited to EMG variability and does not translate to 

kinematic variability. 
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7.5.1 Limitations 

The findings of this study should be considered within the following limitations. In this study 

fatigue was determined based on RPE and number of completed sets. It could be argued that assessing 

fatigue using more objective measures such as median power frequency of EMG or isometric force 

measurements could improve the determination of fatigue, despite strong relations of RPE with the 

perception of fatigue (Bonato et al., 2003; Enoka, 2012; Vøllestad, 1997). However, in agreement 

with previous studies on variability-fatigue our RPE measurements demonstrated that participants 

reached volitional fatigue. Previous work in motor variability used the criteria of reaching 8 or 9 out 

of 10 on the Borg CR-10 scale to define volitional fatigue (Cowley et al., 2014; Gates & Dingwell, 

2008; Yang et al., 2018). When converting this finding to the Borg 6-20 scale, the criteria would be 

equivalent to 17-18 out of 20 (Borg, 1998). In our study sample thirteen out of eighteen participants 

reported at least 17 out of 20 on the RPE scale, three participants reported very close values of 15-16, 

while two participants reported lower values of 9 and 13. Therefore, most participants demonstrated 

volitional fatigue. In addition, previous work that used Borg CR-10 criteria also demonstrated 

changes in EMG related to volitional fatigue (Cowley et al., 2014; Gates & Dingwell, 2008; Yang et 

al., 2018) which makes it likely that similar changes occurred in our study based on the Borg scale 

alone. 

7.6 Conclusion 

When performing a repetitive lifting task, participants reported an increase in RPE over time, 

a surrogate measure of fatigue. However, MV did not change over time, regardless of MV measure 

and body region. Therefore, our results disagree with the consensus that MV increases with fatigue 

development. Perhaps, enhancing internal validity by imposing task restrictions confounds the 

understanding of MV and fatigue since it decreases the opportunity to exploit motor abundance as a 
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compensation mechanism for task continuation during fatigue. At the individual level, consistent 

whole-body MV was shown across different lifting bouts with varying levels of fatigue. Thus, MV 

can be considered as an individual trait independent of the level of fatigue development, which 

provides an important piece of evidence in understanding the repeaters-replacers hypothesis. For the 

variability-fatigue hypothesis as part of the variability-risk hypothesis, some associations were found 

between baseline variability and indicators of fatigue. Possibly, our findings are mostly driven by 

early perceptions of fatigue development and earlier findings supporting relationships with endurance 

cannot be fully translated to a task performed with the whole-body and when characterizing MV 

using kinematics. Importantly, the findings for relationships between variability and fatigue in this 

study are affected by the preceding short bouts which could have led to higher initial fatigue and 

confounded rate of fatigue. Taking some support for the variability-fatigue hypothesis together with 

strong support for the repeaters-replacers hypothesis, this could suggest that for some fatigue and 

variability parameters repeaters have a higher early state of fatigue and less endurance compared to 

replacers. 
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Chapter 8: General Discussion 

8.1 Summary of key findings 

This dissertation aimed to assess between-trial kinematic motor variability (MV) during 

repetitive manual work tasks to test the repeaters-replacers and variability-fatigue hypotheses from 

both traditional and functional motor control perspectives. This collection of manuscripts provided 

quantitative evidence to support MV as an individual trait independent of task constraints, variability 

measures, and fatigue development in repetitive lifting. However, limited support was found for MV 

as an individual trait independent of task type. Thus, the fundamental condition that MV is genuinely 

an individual trait, underlying the repeaters-replacers hypothesis, is suggested to be task-specific 

rather than generalizable across tasks. Furthermore, some evidence indicated that baseline MV could 

be related to indicators of fatigue during fatigue development in repetitive lifting, which reflects some 

support for the variability-fatigue hypothesis. 

8.2 Kinematic variability as an individual trait (repeaters-replacers hypothesis) 

Evidence gathered in this dissertation supports that kinematic variability is an individual trait, 

as inferred by the repeaters-replacers hypothesis. In repetitive lifting, strong evidence was provided 

for whole-body kinematic variability as an individual trait independent of task constraints and fatigue 

development. However, in different tasks of carrying, lifting and simulated sawing, only moderate 

evidence was presented for upper body kinematic variability as an individual trait. Thus, findings of 

this dissertation support kinematic variability as an individual trait only within the context of the same 

task. Therefore, it is suggested that the repeaters-replacers hypothesis is task dependent. 

Findings of this dissertation support earlier work on MV as an individual trait independent of 

task constraints, with novel contributions in investigating a gross motor task and physical task 

constraints. Previous work has presented evidence for MV as an individual trait in fine motor tasks 
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performed with only the upper body (Jackson et al., 2020; Sandlund et al., 2017). Findings reported in 

this dissertation extends this existing evidence to gross motor tasks executed by whole-body 

movements. In the context of motor abundance, whole-body movement provides more opportunity to 

exploit MV and thus presents different task demands than fine motor tasks. Besides a different 

amount of degrees of freedom, gross motor tasks can differ from fine motor task in terms of scale of 

precision needed to complete the task and thus also reflect different task demands than fine motor 

tasks. Also, previous work investigated MV as an individual trait in four different temporal task 

constraints varying in pace (self-paced and imposed) and production process (batch and assembly-

line), and on different measurement days (Jackson et al., 2020; Sandlund et al., 2017). Thus, the work 

presented in this dissertation contributes to the current body of literature by exploring physical task 

constraints as a different type of constraint. The physical task constraints used this dissertation 

restricted movement of the feet and changed the load weight of the crate in the lifting task. Compared 

to the physical task constraints, changing the pace and production process could increase task 

complexity, and could lead to dual tasking and different cognitive loads (Koch et al., 2018; Liu & Li, 

2012). Both types of constraints affect mechanical task demands although temporal task constraints 

affected speed while physical task constraints affected range of motion and load and could therefore 

provoke different responses in MV. Thus, the evidence reported in this dissertation contributes to MV 

as an individual trait in a gross motor task which have different task characteristics than previous 

work focused on fine motor tasks in terms of motor abundance and precision. Also, the constraints 

investigated in this dissertation represent different types of constraints than earlier work that can 

affect how MV changes with constraints. Therefore, the findings of this dissertation further developed 

MV as an individual trait in terms of different type of constraints in a gross motor task. 
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More specifically, the findings of this dissertation on task constraints and MV showed a 

possible paradox. Task constraints that change the DOF of the task (i.e. restricting foot movement) 

affected how much MV an individual can exploit, and thus task DOF can be considered a determinant 

of MV. However, highly consistent MV across task constraints was observed for individuals, which 

suggests that MV of an individual relative to the study sample is not affected by constraints. 

Therefore, when comparing MV of different experiments it is important to consider task constraints 

because they could partially explain differences in MV. With respect to the repeaters-replacer 

hypothesis, the task constraints may not matter because a repeater in a highly constrained task is most 

likely also a repeater in a less constrained task due to findings of high consistency, despite possible 

absolute differences in MV in response to constraints. 

One of the novel contributions of this dissertation is the investigation of MV as an individual 

trait during fatigue development. The body of literature on MV and fatigue has focused on exploring 

how fatigue affects MV (Farina et al., 2008; Sedighi & Nussbaum, 2017; van Dieën et al., 2009; van 

Dieën, Oude Vrielink, & Toussaint, 1993; Yang et al., 2018). Fatigue is an important variable of 

interest for injury risk because it can serve as a surrogate risk factor for WRMSDs in healthy 

populations (Rempel et al., 1992; Sjøgaard & Søgaard, 1998). Therefore, fatigue also contributes to 

investigation of the variability-risk hypothesis (Côté, 2012; Madeleine, 2010; Mathiassen et al., 2003; 

Srinivasan & Mathiassen, 2012). However, until this dissertation, the repeaters-replacers hypothesis 

has not been connected to findings on MV and fatigue. Therefore, the evidence gathered in this 

dissertation provides the first piece of evidence on MV as an individual trait independent of fatigue, 

which is an important variable in the context of variability-risk hypotheses. 

Furthermore, by exploring MV as an individual trait independent of tasks in this dissertation 

present a significant and novel contribution. The current body of literature on MV as an individual 
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trait has only explored different task constraints and different measurement days within fine motor 

tasks (Jackson et al., 2020; Sandlund et al., 2017). Also, evidence provided in this dissertation 

supports MV as an individual trait across different task constraints within a gross motor task (Oomen 

et al., 2022). To investigate if previous finding can be generalized, the next step was to assess MV as 

an individual trait across both fine and gross motor tasks. This line of investigation has also been 

recommended as a future direction in previous work on MV as an individual trait and can be viewed 

as an extension of studying different constraints within the same task (Jackson et al., 2020; Sandlund 

et al., 2017). Despite promising results for different task constraints in repetitive lifting, only 

moderate support was established for MV as an individual trait across different tasks investigated in 

this work. 

Now that more evidence has been added to support that hypothesis of MV as an individual 

trait, the question remains what determines whether an individual shows consistently low or high 

MV. In repetitive tasks, MV is a reflection of motor control (Latash et al., 2002; Newell & Corcos, 

1993). From the perspective of motor abundance, individuals with higher MV could use a repertoire 

of task-specific synergies while individuals with lower MV could have limited task-specific synergies 

(Latash, 2008). An individual’s movement repertoire is likely determined by individual-specific 

characteristics of their neuromusculoskeletal system such as sensory sensitivity or in cost functions of 

movement that could drive task execution, or even by differences in in cocontraction (Latash, 2008; 

Selen et al., 2007; Todorov & Jordan, 2002). Evidence in this dissertation demonstrated task-specific 

consistency in kinematic variability which reflects variability in task-specific movement repertoires. 

Thus, this work would support explanations that agree with task-specificity of MV as an individual 

trait, for example differences in optimal control laws where variability is regulated in a task specific 

manner (Todorov & Jordan, 2002). 
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8.3 Variability-fatigue hypothesis 

In line with the variability-fatigue hypothesis, some associations between baseline MV and 

indicators of fatigue were found in this dissertation. Based on this investigation, some evidence was 

provided that baseline MV can predict characteristics of fatigue development. Furthermore, when 

fatigue is considered as a risk factor for WRMSDs, this work provides some support to the 

variability-risk hypothesis that repeaters are at higher risk than replacers. 

The results of the dissertation contribute to the existing body of literature by showing some 

agreement with the variability-fatigue hypothesis. The variability-fatigue hypothesis has been 

supported in isometric tasks based on positive relationships between EMG variability and endurance 

time (Farina et al., 2008; van Dieën, Oude Vrielink, & Toussaint, 1993). The measure of endurance as 

defined using RPE in this dissertation could only be related to one kinematic variability measure 

during lifting as a dynamic task. Therefore, the relationship between variability and endurance is 

possibly affected by the combination of task and related motor variable used to assess MV (Fischer et 

al., 2015; Lotz et al., 2009). A lifting task involves whole-body movement, and when considering 

motor abundance, offers more opportunities to exploit variability as a compensation mechanism to 

sustain a fatiguing task (Ferber & Pohl, 2011; Latash, 2012). Since variability was assessed using 

kinematics of each body region in the lifting task and EMG of specifically fatiguing musculature in 

the isometric task, EMG of the specific muscle is more closely related to fatigue development than 

kinematics of body regions during whole-body fatigue and could thus explain why not more 

relationships in terms of body regions and movement planes were found for endurance in this 

dissertation. At a higher level, this highlights that studying the variability-fatigue hypothesis in a very 

controlled setting to increase internal validity could confound our understanding of variability and 

fatigue in more externally valid functional tasks that are present at the workplace. 
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Furthermore, this work presents a novel contribution in investigating the variability-fatigue 

hypothesis by exploring associations between individual MV and fatigue responses. To date, only one 

study has explicitly tested relationships between variability and fatigue (Farina et al., 2008) rather 

than inferred from effects of fatigue development on MV (Sedighi & Nussbaum, 2017; van Dieën et 

al., 2009; van Dieën, Oude Vrielink, & Toussaint, 1993; Yang et al., 2018). When comparing MV at 

different levels of fatigue, the outcomes reflect group averages and thus relationships between MV 

and fatigue at the individual level could be obscured when individuals have considerably different 

responses (i.e. both increase and decrease in MV which cancel out when averaging). Therefore, the 

approach of this dissertation offered a more robust investigation of the variability-fatigue hypothesis 

by relating changes in MV to change in fatigue indicators. 

8.4 Assessment of kinematic variability using measures from different 

perspectives 

For the three variability measures selected in this dissertation, linear, CRP and task-irrelevant 

variability, several important observations were made. The ability to detect changes in MV in 

response to changes in task constraints during lifting was only present in linear and CRP measures. 

However, detection of similar ranking of individual MV values within the study sample was 

confirmed for all measures. Furthermore, a more focused analysis across all measures within the same 

task condition of a lifting task revealed overall consistency across measures. However, linear and 

task-irrelevant measures showed the highest consistency, while CRP measures showed lower 

consistency with the other two measures. Therefore, future research could consider using both linear 

and CRP variability as a starting point when studying between-trial kinematic variability of repetitive 

lifting. 
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One of the major contributions of this dissertation is to compare different (sub)categories of 

between-trial kinematic MV measurements to address the lack of standardized techniques to assess 

MV, which exposes a larger problem in biomechanical waveform analysis (Deluzio et al., 2014). 

Specifically, the categories of measurements were chosen based on different underlying motor control 

perspectives, rather than following current practice of mostly focusing on the traditional perspective 

within ergonomics (Granata et al., 1999; Huysmans et al., 2008; Madeleine, Mathiassen, et al., 2008; 

Madeleine, Voigt, et al., 2008; Madeleine & Madsen, 2009; Sedighi & Nussbaum, 2017). 

Furthermore, the functional perspectives were chosen based on their potential to connect variability to 

injury mechanisms in support of the variability-risk hypothesis, which has not received much 

attention in occupational MV research. The findings of this dissertation showed discrepancies 

between the different measures based on several criteria. The criterion of responsiveness to changing 

task constraints informed if the measurement was able to detect changes in DOF constraint and load 

weight. Since the DOF constraint reduced the amount of DOF available to perform the task, 

appropriate measurement of MV was assumed to decrease, which was only observed for linear and 

CRP variability. Furthermore, individual consistency across task constraints would indicate the 

repeaters-replacers hypothesis, and considerable evidence was found for this in all measurements. In 

addition, within a task constraint consistency between different measurements would indicate that 

measurements reflect the same construct of MV, which resulted in similarities between linear and 

task-irrelevant variability while CRP variability showed some difference. Thus, this work contributes 

to the larger body of MV literature in demonstrating that the choice of MV measurement can affect 

the findings of the experiment and thus support for variability-risk hypothesis. More generally, the 

approach of this dissertation challenges the status quo in ergonomics of describing MV by use of 

several measurements without considering underlying motor control theories and their potential to 

explain the underlying injury mechanism in variability-risk hypothesis. Currently, work on the 
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variability-risk hypothesis has focused on the use of linear measurements, while nonlinear 

measurements of CRP and task-irrelevant variability are relatively understudied despite providing 

stronger rational on injury risk without sacrificing task performance. A possible disadvantage of using 

nonlinear measurements is that they are more analytically complex and therefore are hard to 

interpreter compared to linear measurements, which could be helpful to consider when having limited 

collection and processing resources. 

In this dissertation a novel approach is presented in quantifying whole-body MV. For 

describing MV in lifting tasks, this work presents one of a few works that use whole-body 

measurements (Sedighi & Nussbaum, 2017). Although lifting is a whole-body task, previous work 

has focused on the low back and/or lower body (Granata et al., 1999; van Dieën et al., 1996). In this 

dissertation, MV was summed at the levels of upper or lower body regions and at the whole-body 

level. Thus, aggregate measures were chosen over detailed measures at joints, which makes our 

findings have lower resolution than previous work in lifting. However, the use of body regions still 

gives indication of regional effects. Furthermore, in studying MV as an individual trait during lifting 

local (i.e. joint) or regional (i.e. body region) variables of MV do not give a complete representation 

of consistency in MV due to the common phenomenon of MV compensation between body locations 

(Bartlett et al., 2007; Button et al., 2003). Therefore, whole-body summation of MV was used when 

investigating MV as an individual trait.  

Another novel aspect of this dissertation is the quantification of individual consistency in 

MV. More broadly, by assessing individual consistency this work contributes to the larger 

biomechanics community by studying individual patterns rather than group averages that can obscure 

these individual patterns (Bartlett et al., 2007). Specifically, the approach of this dissertation was to 

quantify individual consistency in MV using ICC, while no consensus exists in the repeaters-replacers 
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literature (Jackson et al., 2020; Sandlund et al., 2017). Furthermore, in determining consistency across 

different measures of MV, individuals were also ranked on MV. This approach of ranking individual 

on their MV follows the idea that individuals should rank consistently as an important element of the 

repeaters-replacers hypothesis (Sandlund et al., 2017). The findings of this work also confirm this 

idea. 

A focused contribution is related to the broad use of CRP. Despite the fact that CRP 

variability is a frequently used variability measurement, we discovered that this method was not 

always feasible due to strong deviations from sinusoidal patterns (van Emmerik et al., 2014). In our 

case, carrying led to constant joint angles in the upper extremity and thus construction of the phase 

plane led to many zero crossings, which can be related to spurious oscillation as previously described 

(van Emmerik et al., 2014). Furthermore, since tasks were performed for many repetitions, the 

magnitude normalization was affected by the most extreme cycles, which should be avoided if these 

cycles deviated from the majority of cycles and therefore can also lead many zero crossings in the 

phase plane (van Emmerik et al., 2014). Therefore, we applied a method to remove the most extreme 

outliers. Thus, CRP should be used with caution when signals differ strongly from sinusoidal signals 

and when extreme cycles are present, where the latter is more likely with a large number of 

repetitions. 

8.5 Limitations and future directions 

The sample size of the data collection in this dissertation was slightly lower than what was 

recommended for a within-subject design (i.e. 25 participants) (Srinivasan, Rudolfsson, et al., 2015). 

Several results of this work showed trends with considerable effect sizes and thus it is possible that 

future work with larger sample size could find additional differences due to higher statistical power. 

However, these trends were observed for effects of task constraints on different MV measurements 
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and for the effect of lifting bout on MV, which do not change the main findings of this dissertations 

and thus do not change the overall interpretation and main conclusions. Furthermore, our study 

population was relatively homogenous in terms of age and main occupation. Since individuals were 

recruited from the student population the age range was fairly narrow (18-32 years) and studying was 

their main occupation. Thus, this exposes an opportunity for future work to extend our findings to 

more heterogenous population that better reflects the total population of manual material handling 

employees, for example by recruiting workers with manual material handling as main occupation and 

a broader age range. Lastly, a limitation specific to this work is lack of randomization. Since this 

work had multiple purposes, although not all of those were presented in this dissertation, 

randomization was not feasible. Possible negative consequences are most relevant to work on lifting 

constraints. However, in these studies participants were deceived to the study purpose which prevents 

explicit effects of presentation order on MV. In addition, the difference in MV between DOF 

constraints and load weight are most likely reflective of the constraints rather than presentation order 

or related learning effects due to the large magnitude of difference where for some variables 

comparison could be made with values previously reported in the literature (Graham et al., 2012; 

Granata et al., 1999; Norasi et al., 2019; Plamondon et al., 2014). Future work is recommended to 

randomize conditions to confirm our findings. 

In studying MV as an individual trait, the approach of this dissertation relies heavily on the 

use of intraclass correlation (ICC). ICC consists of a ratio of between- and within-subject variance 

(McGraw & Wong, 1996; Shrout & Fleiss, 1979). Sandlund et al. (2017) critically reflected on this 

measurement by indicating that it does not share information on which subjects differ consistently 

due to the use of within-subject variance in ICC. However, in this dissertation a slightly different 

approach was followed, where the main interest was to quantify how consistently individuals 
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performed in terms of MV across different task conditions, which was also raised as a future direction 

(Sandlund et al., 2017). This would support the necessary condition of the repeaters-replacer 

hypothesis where individuals are assumed to show consistent MV independent of task factors. 

Although the application of ICC in investigating MV as an individual trait does not follow the 

traditional use of ICCs for inter-rater reliability (Field et al., 2012). ICC can be defined as the 

proportion of a variance that is attributed to the objects of measurements (in this dissertation the 

participants) (McGraw & Wong, 1996). This definition justifies our use of ICC to quantify how 

consistent subjects’ MV was shown across different task conditions and other variables. However, the 

ICC is limited by the between-individual variability which depends on the sample size. Since the 

investigation of MV as an individual trait is quite recent, future research could take up the challenge 

of exploring other measures to quantify the consistency aspect of individual MV. For example, new 

approaches could also try to quantify consistent ranking of individuals in a more direct or explicit 

way than by ICCs. 

Another related limitation of this dissertation is the definition that was used for MV as an 

individual trait. The approach in this dissertation defined a trait as consistency in individual MV 

across different task constraints, tasks and fatigue states. However, to further distinguish between a 

trait and a state, evidence will have to be gathered for MV as a phenotype to be fully considered a 

trait. For example, by assessing MV across a long time interval, of a larger sample size and across a 

larger range of tasks.  

Another future direction that this dissertation exposes is to connect findings of kinematic 

variability to non-kinematic variability, where non-kinematic variability is important to further 

understand the variability-risk hypothesis. More concretely, a hypothesis that can be pursued is 

whether an increase in kinematic MV translates to an increase in kinetic MV and/or MV in muscle 
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activation. Higher kinematic variability could reflect the use of different movement strategies. 

Kinematic variability could be related to kinetic variability, where an increase in variability reflective 

of more distributed loads across multiple tissues that are subject to cumulative loading in repetitive 

tasks would agree with the variability-risk hypothesis (Bartlett et al., 2007; Hamill et al., 1999; 

Srinivasan & Mathiassen, 2012). Furthermore, kinematic variability could be related to muscle 

activation variability, where an increase in variability reflective of less continuously active motor 

units following the Cinderella hypothesis could provide evidence for the variability-risk hypothesis 

(Srinivasan & Mathiassen, 2012; Visser & van Dieën, 2006). Although this work does not support 

associations between variability and fatigue as a precursor for risk on WRMSDs among healthy 

individuals, the body of literature does support the variability-risk hypothesis. Therefore, future 

research could more directly investigate the relationship of distribution of muscle activation and 

kinematic MV and distribution of loading and kinematic MV by use of EMG and kinetics besides 

kinematics. 

The assessment of between-trial kinematic variability is limited by the specific choices made 

in the analysis strategy of between-trial kinematic MV. An important element to consider as a 

limitation of this work is that between-trial kinematic MV is not only determined by the range of 

movement strategies, but also by initial and end positioning of both the body and the object, which 

can influence the chosen movement strategy on their own. Therefore, between-trial kinematic MV 

could be entangled with the effect of these initial and end states. This represents an important problem 

as it may not be possible to keep these states constant, although future research could develop a way 

to normalize for differences in these states. Furthermore, future work could also assess how much 

these states alone determine MV of the entire cycle, as initial and end states only represent the start 

and end of the cycle (i.e. at 0 and 100% cycle). Another limitation of this work is possible 
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confounding effects of skill acquisition due to performing approximately 100 cycles of each task. It is 

possible that some training or learning effects occurred because of the amount of repetitions. Future 

work could check for these effects by comparing variability at the beginning and end of a protocol. 

However, MV is likely also a function of the number of cycles as with more cycles individuals have 

more opportunity to increase MV. Possibly, time evolution measures of MV such as detrended 

fluctuation analysis could quantify differences between groups of cycles without excluding cycles of 

the whole recording. Lastly, the results presented in this dissertation rely heavily on the use of 

meanSD as variability metric. The point-by-point standard deviation, as part of determining meanSD, 

is limited by the assumption of a normal distribution of cycles around the average cycle. Possibly, if 

this assumption is not met, point-by-point standard deviation could be driven by extreme cycles. 

Also, it is possible that similar values can be found for constant or regular exploration of variability 

throughout the protocol and intermittent exploration of variability, where few deviating cycles could 

drive the resulting point-by-point standard deviation. 

Several limitations and future directions are to be reported around the use of variability 

measurements. A general future recommendation is to provide standardization of MV measurements 

based on study purposes. In line with the dissertation purpose, the work presented in this dissertation 

only investigated one measurement of three different concepts that indicate different meanings of 

variability. Although occupational MV research has created interesting evidence for several 

variability hypotheses, the approach of this dissertation contrasts the current practice of using many 

different variability measurements. Therefore, from the findings of this dissertation it is 

recommended to consider the underlying concept and thus potential meaning of variability. In 

addition, the specific measurements used in this work are aggregate measurements to reflect 

variability across multiple joints, which assume that the joints within each body region do not show 
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any differences and thereby could have reduced the ability to detect differences. Eventually, each 

measurement was reduced to a discrete measurement for statistical analysis, and thereby information 

on specific phases of task execution is ignored which also could have reduced the ability to detect 

differences. Thus, future work could use a higher resolution by focusing on finding differences at the 

joint level that determine individuals’ MV level at higher levels and potentially separate task phases 

to gain more resolution in the time domain of task execution. Also, future research could improve 

assessment of joint angle MV by assessing differences in range of motion and finding effective ways 

to take this into account, since joints with larger range of motion have a higher contribution to 

aggregate measures of MV. Future work on MV could consider maintaining temporal information of 

the kinematic waveforms, for example to explore which parts of the task cycle determine where an 

individual is positioned on the MV continuum (e.g. Yang et al. (2018)). 

For an ergonomics standpoint, this work contributed from a more fundamental level and thus 

it has little contribution from an application perspective. However, a main barrier is to provide 

evidence that repeaters are at higher risk of WRMSDs than replacers, which is necessary before steps 

in more applied research can be undertaken. Thus, more work on variability-risk hypotheses is 

recommended, where there is currently a relative lack of longitudinal studies and based on the 

evidence presented in this dissertation the repeaters-replacers hypothesis should be considered. 

8.6 Overall Conclusion 

The finding of this dissertation demonstrated evidence for MV as an individual trait across 

different task constraint and different levels of fatigue development in repetitive lifting, in addition to 

several variability measurements from different motor control perspectives. Since this finding could 

not be extended to different tasks of lifting, carrying and simulated sawing, it was concluded that the 

repeaters-replacer hypothesis is task-specific. In investigating different task constraints and tasks, MV 
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increased when the task allowed for more degrees of freedom which reflects exploitation of 

variability when more movement solutions are available. When MV was assessed using 

measurements of different perspectives, differences were found for the responsiveness to task 

constraints and fatigue development. This finding exemplifies that different variables expose different 

aspects of MV. When MV was related to indicators of fatigue, a few relationships were found 

between MV and fatigue development. Thus, this work provides some support for the variability-

fatigue hypothesis as part of the general variability-risk hypothesis where a negative relationship is 

proposed between variability magnitude and risk of WRMSDs.
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