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Abbreviations: IARC, international agency for research on 
cancer; UV, ultraviolet; QD, quantum dot; ROS, reactive oxygen 
species; PBS, phosphate buffered saline; CB, conduction band

Introduction
The properties of materials change as their size approaches the 

nano particle scale, which is generally considered to be that with at 
least one dimension of 100nm or less. The toxicity of nanoparticles has 
been linked to such characteristics as elemental composition, charge, 
shape, Crystallinity, surface area, solubility and surface chemistry/
derivatization.1–6 Understanding the nano particle-cell interaction is 
thought to be critical for the safe development of nano materials.7 
It seems unlikely that the potential toxicity of nanoparticles and the 
underlying mechanisms can be predicted or explained by any single 
unifying concept. 

This review is focused on Titania (TiO2) for which there is substantial 
interest in the chemical, biological, and industrial worlds because 
of its fascinating and useful physicochemical properties. Currently, 
information describing the relative health and environmental risks 
associated with nano-TiO2 is severely lacking. Only recently, critical 
questions regarding the potential human health and environmental 
impact of nano-TiO2 have been raised.8–11 TiO2 particles have long 
been considered to pose little risk to respiratory health because they 
are both chemically and thermally stable.12 However, TiO2 is classified 
as a Group 2B carcinogen by the International Agency for Research 
on Cancer (IARC) based on the findings of lung tumor induction in 
female rats.13,14

Nano-TiO2 is attractive for use in a large number of applications 
based on its unique optical and photo catalytic properties, tunable 
band gap, thermal stability, chemical resistance and hardness.15 

Because of the relatively large band-gap, the particles absorb the 
higher-energy (shorter wavelength) ultraviolet radiation making it 
a useful constituent in sunscreen products. TiO2 photo catalysis is 
widely used in the fields of wastewater treatment,16 sterilization,17 
self-cleaning,18 hydrogen evolution,19 and photoelectron chemical 
conversion.20 Normally, TiO2 can only be excited with ultraviolet 
(UV) light because of its wide band gap,21 although this is considered 
a drawback when photo catalytic conversion is desired under visible 
light. The crystalline structure is the major factor determining the 
band gap, but secondary factors include the particle size and the 
presence of defects (physical or chemical).22,23 A large surface-to-
mass ratio of the nanoparticles helps to promote catalytic reactions, 
and increases their ability to absorb and carry other compounds. Their 
surface reactivity originates from quantum phenomena that can make 
nano-TiO2 seemingly unpredictable.24 

Engineered nano-TiO2 is designed to impart specific characteristics 
that vary according to their use. Aside from unique nanoscale 
properties (size, Crystallinity, reactivity, and thermodynamics), nano-
TiO2 may be functionalized,25 doped26 and coated to control photo 
catalytic activity. The differences between the applications of nano-
TiO2 in water remediation technologies versus consumer products are 
important, but the currently available information does not allow the 
suited differentiation. The purpose of this review is to highlight the 
informational gaps and to describe the physical and chemical features 
that may be important when performing nano toxicological studies on 
nano-TiO2. 

Nano-TiO2 in remediation technologies versus 
sunscreen

Photo catalytic nano-TiO2 is in demand for remediation, 
sterilization and sanitation, whereas photos table nano-TiO2 is 
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Abstract

The increasing number of applications using titanium dioxide nanoparticles (nano-TiO2) 
highlights the need to continuously and systematically investigate its toxicity. Particle size, 
surface area and dose are the classical parameters considered when performing toxicity 
studies. However, consideration of the size-related properties and altered reactivity can 
unveil complex and unexpected phenomena arising from the interplay of the different 
factors. In addition to particle size, altered reactivity can be induced by intentional or 
unintentional modifications of the nanoparticles by their surrounding matrix. This effect 
could potentially influence the nanoparticles’ band gap, surface reactivity, agglomeration, 
mobility and photo catalytic behavior. The remarkable ability to absorb impurities from the 
surrounding medium could transform nano-TiO2 into a surrogate carrier of trace elements 
(e.g., heavy metal ions), which heightens their transportation and intracellular accumulation. 
This review outlines the different characteristics and interactions that may contribute to the 
underlying mechanisms of health and environmental toxicity of nano-TiO2, and identifies 
gaps in current understanding.
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recommended for sunscreen use. A way to enhance or attenuate nano-
TiO2 photo activity is to manipulate the surface chemistry. Anatase 
is a particularly photoactive form of TiO2 and is used for photo 
oxidation reactions.27 The development of photo catalysts exhibiting 
high reactivity under visible light allows for a greater fraction of the 
solar spectrum to be used, which would be an advantage in both water 
and air treatment technologies. The visible light-activated TiO2 can be 
prepared by dye sensitization,28 external surface modifications,29,30 or 
band gap tailoring by doping.26,31 

Nano-TiO2 acts as a sunscreen in two ways, namely absorption and 
scattering, which are dependent on the light wavelength. In the past, 
sunscreens containing metal-oxide particles appeared as opaque, white 
topical creams that were considered to be “unattractive”. However, 
more transparent preparations are now available from a number of 
manufacturers, which has led to the use of nanoparticles in cosmetic 
formulations. Metal oxide particles used in such formulations span a 
wide range of sizes, shapes, and surface coatings. Because of the high 
reactivity of anatase, the rutile form of TiO2 is preferred for sunscreen 
use to minimize the photo catalytic effects,32 although some sunscreens 
still contain photo reactive nano-TiO2. TiO2 particles are typically 
formulated in skin lotions as oil/water emulsions. Concerns have been 
raised about the product labeling issues33 and the role of the regulatory 
authorities in the process of identifying environmental health and 
safety risks related to nano-TiO2 modifications.11,34 Manufacturing 
technologies can produce nanometer-sized particles, but once they are 
formulated into a lotion agglomeration and aggregation may occur. 
Coatings and surfactants are used to aid in the dispersal of metal 
oxides; however, measuring particle size in the formulation is difficult 
using standard methods.35 This is particularly true after application 
to the skin, where surface pH, salts, and oil may affect the coatings’ 
dispersion and size. These issues are rarely addressed in the literature.

From conventional to nano

The term “conventional” is used to make an explicit distinction 
between the nanoscale material and other forms of TiO2 not having 
the special characteristics of nano-TiO2. Nanoparticles have a high 
surface are a per unit mass resulting in a high excess free energy 
per unit mass. This may partially explain why unique properties can 
be observed at the nanoscale level that are not present in the same 
coarse material, such as the size-dependent fluorescence emission 
frequency of semiconductor quantum dot (QD) nano materials. These 
are characterized by a high excess of energy at their surface and are 
thermodynamically unstable.3,4,36–38 Crystallographic changes, such 
as lattice contraction or deformation, the appearance of defects, or 
rearrangements of the surface atoms or changes in morphology 
may occur to stabilize the nanoparticles. These unique nanoscale 
features affect the interfacial reactivity and the intrinsic properties 
of the nanoparticles. Research programs need to focus on size-
related properties rather than on size alone to evaluate the safety of 
engineered inorganic nanoparticles. Ignoring the differences between 
small and truly “nano” particles may lead to inadequate interpretations 
of experimental results.38 

Physicochemical properties of Nano-TiO2

The physicochemical properties of nano materials that have 
been identified as important factors in uptake and toxicity include 
crystal structure, size, surface charge, surface energy, and chemical 
composition. For human health and environmental risk evaluation, 
consideration of multiple aspects is required. 

Crystal structure

TiO2 has three main crystalline structures: anatase (tetragonal), 
brookite (orthorhombic), and rutile (tetragonal). Different structures 
lead to different physical properties, which leads to their usage in a 
variety of applications. For example, anatase is employed for photo 
catalysis because of its high photo reactivity, while rutile’s good 
light scattering makes it useful for pigments.39 Because anatase is 
more photoactive than rutile, free radical formation potential is likely 
higher for anatase. Regardless of the crystal form, nano-TiO2 is used 
in commercial sunscreen formulation. Furthermore, an anatase-
rutile mixture is more effective than each phase separately in photo 
catalysis, which is dependent on the electron-hole recombination rate, 
crystallinity, adsorptive affinity and particle interconnection.40

Early nano toxicity studies have yielded conflicting data identifying 
either the size or the crystal structure as the mediating property 
for nano-TiO2 toxicity.41–43 Some recent studies44–47 emphasize the 
contribution of the crystalline structure of nano-TiO2 to the toxicity. 
In these studies, anatase TiO2 was found to be more potent than 
the rutile form of the material. Jiang et al.46 used a cell-free assay 
to determine the ability of nanoparticles to generate reactive oxygen 
species (ROS), finding a significant dependence between particle 
size and capacity to generate ROS. There was a clear transition in 
behaviour with anatase nanoparticles between ~10 and 40nm, with the 
smallest particles demonstrating a reduced capacity to generate ROS. 
Since it is known that the surface structure of materials can change 
at very small sizes,48 it is still uncertain whether this transition was 
size or surface chemistry mediated. The findings might be related to 
the density of defects on the surface of the particles, which could be 
another physicochemical parameter of interest in understanding the 
toxicity of nano materials, as suggested by the authors.

Size

The size of the particles is generally used to define materials as 
“nano-sized.” This definition appears straight forward; however it is 
subject to several difficulties. First, discrepancies can arise due to the 
different methods and calculations used to measure particle size. Size 
measurements are usually based on a distribution of nanoparticles 
and the estimated size can be averaged by volume, weight, or area. 
The measurement devices use a specific environment, such as in 
hydrodynamic or aerodynamic sizing, and they require pre-treatment 
methods before measurement that can lead to discrepancies with the 
actual size of the nanoparticles (as determined by imaging techniques) 
in some circumstances.

The size, surface charge and morphology of nanoparticles exert 
a significant influence on the physical and chemical properties that 
influence their interactions with biological systems. For example, the 
hydrodynamic size and surface charge of nano particle dispersions 
can have an effect on the way in which an organism responds to 
exposure. The above issues have not been properly characterized in 
the past. This influence includes absorption, distribution, metabolism, 
and excretion.49–51 The size dependency of TiO2 toxicity has been 
demonstrated,41,52–55 appears to be applicable to a variety of TiO2 
forms, and occurs regardless of the experimental settings. However, 
the results are based on a limited number of studies that focused on 
TiO2 and carbon black particles, and have fostered the perception 
that all nanoparticles are likely to be more toxic than larger-sized 
particulates.42,56 However, additional factors such as differences in 
the TiO2 form, particle aggregation/disaggregation potential, surface 
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coatings and/or surface charge and the method of particle synthesis 
(i.e. whether the particle was generated in the gas or liquid phase) may 
be important variables influencing toxicity.57,58 Furthermore, a high 
degree of particle aggregation is associated with TiO2 administration 
such that exposure to mono disperse particles is unlikely to occur.59

Agglomeration

The terms “agglomeration” and “aggregation” are often used 
interchangeably in the field of nano toxicology. However, some authors 
have suggested that nano particle aggregation and agglomeration are 
distinct phenomena, whereby agglomerates are formed by clusters 
of particles that are held together by electrostatic interactions, while 
aggregates are formed by covalently fused or sintered particles that are 
not easily separated.60 TiO2 nanoparticles have a large specific surface 
area but can easily form agglomerates in suspension depending on 
the strength of the particle-particle and particle-media interactions.61 
Important parameters governing the state and stability of nano particle 
dispersions in water (Figure 1) include solution ionic strength, pH, 
surface charge (zeta potential), and surface coating (hydrophobic/
hydrophilic). The degree of agglomeration is determined by the 
magnitude of the zeta potential in aqueous media.When nanoparticles 
are dispersed in an aqueous medium, surface ionization and the 

adsorption of cations or anions results in the generation of surface 
charge, resulting in the development of an electric potential between 
the particle surface and the medium.When the zeta potential is close 
to zero (isoelectric point), particles tend to agglomerate, butat highly 
negative (high pH) or positive (low pH) zeta potentials, particles in 
dispersions tend to repel each other such that no agglomeration occurs. 

Important factors that affect zeta potential include pH, ionic 
strength, and additive concentration. Ionic strength influences 
the nano particle’s dispersion stability by changing the electrical 
double-layer around the particle. The electrostatic double-layer 
(Figure 1) (Figure 2) decreases with increasing ionic strength and 
consequently, weak repulsive forces result in agglomeration with 
large hydrodynamic diameters. At any given pH, an increase in ionic 
strength generally results in increased agglomeration (Figure 2). 
An increase of the ionic strength diminishes the magnitude of the 
electrostatic repulsion, thereby resulting in an intensification of the 
agglomeration phenomena. Particle agglomeration is minimized by 
increasing surface charge, due to enhanced electrostatic repulsions 
between nanoparticles. The surface charge is controlled by several 
mechanisms, including surface ionization, ion adsorption, and lattice 
ion dissolution. Generally, particles have a positive surface charge at 
a low pH and a negative surface charge at a high pH.

Figure 1 Effect of zeta potential and pH on the degree of agglomeration of nano-TiO2 in an aqueous solution. The pH value at point of zero charge is referred 
to as “pzc”.

Toxicity studies have demonstrated that the hydrodynamic 
diameters of nano-TiO2 are significantly greater in phosphate 
buffered saline (PBS) than in water and that their observed sizes are 
often significantly larger compared to the quoted particle size. The 
agglomerate size is generally more than 100nm and is occasionally 
even more than 1µm.7 It has been observed that both adsorbing 
multiply-charged ions (e.g. pyrophosphate ions) onto the TiO2 
nano particle surface and coating nano crystals with polymers (e.g. 

polyethylene glycol) suppressed agglomeration and stabilized the 
dispersions. However the breakage of agglomerates into singles 
might not happen during real exposure scenarios.53 The behavior 
of nanoparticles is dependent on their solubility, susceptibility to 
degradation, and the fact that neither the chemical composition nor 
the effective particle size of the nano particle will necessarily remain 
constant over time. This makes it difficult to study and understand the 
biological Cytotoxicity of any nano particle. 
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Figure 2 Generalized relationship between the ionic strength and zeta potential with the hydrodynamic diameters of TiO2 nanoparticles in an aqueous medium.

Surface chemistry

Surface chemistry is used to tailor engineered nano particle 
properties according to their utility. A prerequisite for many 
applications is the addition of the proper surface coating and 
functionalization of the nanoparticles to control their environmental 
interactions. Coatings for nano-TiO2 particles are generally designed 
to reduce agglomeration/aggregation, target specific cells, modify 
photo catalytic properties, or improve cosmetic formulations. The 
coating of nano-TiO2 with polymers (e.g., polyethylene glycol) 
suppresses agglomeration and stabilizes the dispersion. However, a 
number of recent studies demonstrated that whatever the size of the 
nanostructures, they do not freely enter all biological systems. Their 
behaviour is governed by the functional molecules added to their 
surface.62 In an aqueous environment, low-surface-energy coatings 
(hydrophobic) are particularly prone to nonspecific adsorption, such 

as when proteins denature to expose their hydrophobic core. 
Hydrophilic coatings (i.e. high surface energy), especially those 
resulting in a weakly negative or neutral surface charge, are ideal for 
resisting protein adsorption and cell uptake.63,64 The positively charged 
surfaces have been shown to engage in strong ionic interactions with 
the negatively charged cell membrane, which facilitates particle 
uptake into the phagosomes. Toxicity of TiO2 may be influenced by 

surface chemistry, but this property is likely to be dependent on the 
combination of surface modification and cell type.

Adsorption of ions

Most nano particle atoms are on the surface of the particle itself. 
The surface atoms are unsaturated, can easily bind or interact with 
other atoms, and possess a high chemical activity. The pH value 
plays an important role in the adsorption of different ions on oxide 
surfaces (Figure 3). Solution pH influences the surface active site 
distribution on metal oxides such as TiO2, and the surface hydroxyl 
group provides the ability to bind metal ions.65 It is well known that 
the surface of TiO2 is readily hydroxylated in aqueous solution. When 
H2O dissociates on a pure TiO2 surface, two distinctive hydroxyl 
groups are formed.66 The amphoteric surface will be formed because 
of the acid-base equilibria as shown in equation (1) and (2). Therefore, 
there are three kinds of surface species, TiOH2 +, TiOH, and TiO-, and 
their proportion depends on the solution pH and the pzc (pH at point 
of zero charge) of TiO2.

67–69

2 ......(1)TiOH TiOH H+ ++  

.......(2)TiOH TiO H− ++

https://doi.org/10.15406/mojt.2015.01.00011


Toxicity associated with the photo catalytic and photo stable forms of titanium dioxide nanoparticles 
used in sunscreen

82
Copyright:

©2015 Tanvir et al.

Citation: Tanvir S, Pulvin S, Anderson WA. Toxicity associated with the photo catalytic and photo stable forms of titanium dioxide nanoparticles used in 
sunscreen. MOJ Toxicol. 2015;1(3):78‒94. DOI: 10.15406/mojt.2015.01.00011

At a low pH (below the isoelectric point), both As(V) and Cr(VI) 
take the anionic form,70–72 however the TiO2 surface is positively 
charged, which increases the extent of anionic adsorption on TiO2 . 
The nanoparticles at a pH above the isoelectric point adsorb cations 
(Figure 3) (e.g. Mn(II), As(III), As(V), Fe(III), Cu(II), Cd(II), Ni(II), 
Zn(II), Pb(II), Cr(VI), Hg(II)).73–79 However, adsorption of ions on 
the TiO2 surface is not limited to the mentioned examples. These 
examples were noted because of their possible presence in the effluent 
discharged from industrial sources. Even at low-level concentrations, 
the co-existence of nanoparticles with metal ions raises concerns for 
their enhanced bio toxicity. TiO2-facilitated transportation of Cu, 
Cd, and As has been reported in carp and Daphnia.80–83 Facilitated 
transport of adsorbed metals probably occurs when TiO2 nanoparticles 
enter from the water onto the gill surface and during the consumption 

of contaminated food sources. Tissues and cellular organelles with 
a low pH, such as the stomach and the lysosome, may promote the 
release of such ions. Unfortunately, there is little data explaining the 
mechanism and extent that the nanoparticles may enable the transport 
of heavy metals into the environment.

This capability to adsorb trace amounts of chemicals (e.g. Fe) may 
initiate reactions (e.g. Fenton reactions) and alter the electronic state 
of the particle’s subsequent catalytic reactions.84 Titanium dioxide is a 
widely used inorganic component in formulations of stay-on cosmetics, 
including lipstick, sunscreen and face powder. The potential hazard of 
trace metal impurities in this matrix should be addressed, since the 
possible presence of metals raises the issue of nano-TiO2 acting as a 
magnifier for heavy metal (cations or complexes) pollution.

Figure 3 Influence of pH and surface charge on the adsorption of different ions and molecules.

Solubility and surface impurities

Enhanced photo catalysis cannot always be associated with toxicity. 
For example, it has been shown that the release of free cadmium from 
Cd Se nanoparticles is responsible for cytotoxicity in vitro85 rather than 
the photo activity or nanoscale. Similarly, Brunner et al.86 observed a 
relationship between material solubility and the cytotoxic response 
to a range of oxide nanoparticles, with more soluble compounds 
like ZnO showing greater acute toxicity than those with much lower 
solubility such as TiO2. The main toxicity of these nanoparticles was 
shown to be due to surface impurities,87 which often occur as a result 
of the synthesis process. The use of titanium alkoxides as synthesis 
precursors,88–91 as well as the use of acetic acid,89 alcohol,92 oils,93 and 
other organic solvents88,91,92 as reaction media are examples of such 
sources. Post-synthetic stabilization of nanoparticles through the use 
of surfactants also introduces extraneous material which may interfere 
with the accurate observation of the toxicity phenomenon. 

Radical formation

Because TiO2 is an efficient photo catalyst in the presence of water, 
ROS (reactive oxygen species) or “free radicals” are produced as a 
consequence of UV light exposure. Quantitative studies for OH radical 
formation have been performed.94 The formation of OH radicals from 
TiO2 varied according to crystal size and form. Irradiation of anatase 
produced large numbers of OH radicals in TiO2 in a dose-dependent 
response to UV, but rutile (90nm) showed less OH radical generation. 
OH radical generation was significantly influenced by crystal size, but 
the optimum size was different between both TiO2 forms. Non-UV-
induced free radical formation at the surface of nano-TiO2 has been 
reported by Fenoglio et al.95 Although free radicals were not detected 
in solution, anatase and rutile-generated carbon center free radicals 
were found by the cleavage of sodium formate in the presence of 
H2O2. The presence of trace iron at the surface of TiO2 was cited as a 
possible cause for the generation of certain kinds of free radicals via 
a Fenton reaction.
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Photo catalysis

In a photo catalytic system, a photo-induced molecular 
transformation or reaction takes place at the surface of the catalyst. 
The photo catalytic reaction is initiated when a photo excited electron 
is promoted from the filled valence band (VB) of the semiconductor 
photo catalyst to the empty conduction band (CB), where the energy 
between the two bands is called the “band gap.” The absorbed photon 
energy (hv), must or exceed the band gap of the semiconductor, to 
promote the electron and leave behind a positively charged hole in 
the valence band. Thus both the electron and whole pair (e−+ h+) are 
generated (equation 3). 

( )2 2 .......(3)CB VBTiO h e h TiOν − ++ → +

The photo generated electrons and holes that do not immediately 
recombine can migrate to the particle surface and participate in 
reduction and oxidation processes. Such reactions might include 
oxidation of adsorbed compounds, oxidative damage to cells, 
modification of enzymes and sensitive thiols, or transformation of 
metal ions to a higher or lower oxidation state (Figure 4). To achieve 
a higher photo activity, it is necessary to minimize the rate of the 
recombination process which will increase the lifetime of separated 
electron-hole pairs, such that more electron transfer can occur from 
the surface to the adsorbed species.96,97

Figure 4 Photo catalytic transformation of different metal ions and molecules.

Photo activity is affected by a number of factors such as particle 
size, crystal structure, incident light intensity, solution pH, and the 
particle preparation method. Crystal structure and particle size are 
considered to be the more important factors that determine photo 
activity. Many researchers have reported that anatase nanoparticles 
have a higher photo activity than rutile.27,98–100 Others have reported 
that anatase with a small amount of rutile has a higher photo activity 
than that of the pure anatase.101 It is interesting to note that size-
dependent photo catalytic activity does not increase monotonically 
with decreasing size but rather passes through a maximum 
significantly below 100 nm. Optimum sizes are thought to result 
from competing effects of the particle size on light absorption and 
scattering efficiency. However, as the particle size is lowered below 
a certain limit, surface recombination processes become dominant 
because most of the electrons and holes are generated close to the 

surface, and surface recombination is faster than the interfacial charge 
carrier transfer processes. This finding is probably why there exists an 
optimum particle size for maximum photo catalytic efficiency.38,96,101

Photo catalytic transformation of organic compounds

Photo catalytic decomposition of toxic and non-biodegradable 
organic compounds using TiO2 as a photo catalyst is an important 
component in the field of advanced oxidation technologies.96,102–104 
Many publications report that test compounds are mineralized into 
harmless byproducts, but the measurement of compound disappearance 
is not sufficient to ensure the absence of by-products. The generation 
of a variety of organic intermediates (in some cases more toxic and 
persistent than the starting substrate) during heterogeneous photo 
catalysis has been noted if the treatment is not continued to complete 
mineralization. For example, increased toxicity of the byproduct 
has been observed for melamine, diclofenac, azo dyes, and other 
compounds during TiO2 photo catalysis.105–108 

Photo catalytic transformation of metal ions

Photo catalysis can convert the ionic species into metals and 
deposit them over a semiconductor surface, or transform them into 
soluble species under thermodynamically favorable conditions.109–111 
Metal ions can be reduced or oxidized by the photo catalytic activities 
of TiO2 (Figure 4).

If the solution contains a metal ion (e.g. Hg(II), Cu(II), Cd (II)) of 
appropriate redox potential, the conduction band electrons can reduce 
the species to a lower oxidation state (Equation 4). Alternatively, 
metal ions (e.g. Pb(II), Mn(II), TI(I) , Cr(VI)) can be oxidized by 
holes or hydroxyl radicals to a higher oxidation state (Equation 5).

( )1
........(5)

n nVBh
M M

HO

+
+ + ++ →

( )1
........(5)

n nVBh
M M

HO

+
+ + ++ →

The adsorption, desorption and photo catalytic transformation of 
toxic heavy metals by TiO2 may dramatically affect the facilitated 
transport ability of nanoparticles in different compartments of the 
environment. This ability of TiO2 has been exploited for the removal 
of heavy metals from wastewater, for example. 

Photocatalysis versus photostability

Researchers have been interested in the modification of the 
electronic and optical properties of nano-TiO2 for its efficient use in 
water and air treatment and cosmetic formulations. Some researchers 
have attempted to enhance photo catalysis to decompose organic 
substances, solar cell production and hydrogen synthesis under visible 
light. Others have attempted to develop techniques to minimize the 
photo catalysis of nano-TiO2 without altering its UV screening ability 
for its use in cosmetics. 

Approaches to improve photo catalysis

Surface spots on TiO2 nanoparticles can act as electrodes with both 
oxidation and reduction processes occurring on them. The surface 
states and the electron-hole pair recombination of TiO2 determine the 
overall quantum efficiency for interfacial charge transfer. The balance 
between the recombination and the trapping of charge carriers, 
followed by the competition between the recombination of the trapped 
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carriers and the interfacial charge transfer96 are major factors in the 
efficiency. Therefore, improved charge separation and inhibition of 
charge carrier recombination is key to improving the overall quantum 
efficiency for interfacial charge transfer.112 Modification of particle 
properties by selective surface treatment96 is a common route to this 
goal.

The foremost limitation of TiO2 as a photo catalyst is the fact that 
it requires UV irradiation to function. The band gap (i.e. the amount 
of energy required to free the outer shell electron to become a mobile 
charge carrier) of anatase TiO2 is 3.2eV (equivalent to 387nm and 
lower wavelengths), which makes the utilization of solar and indoor 
light inefficient for photo catalysis because only a small percentage of 
the available radiation can be used.

Visible light activity has been induced in TiO2 by surface 
modification using sensitization by dye, polymer, semiconductor 
particle coupling (Bi2S3, CdS, CdSe, V2O5), and band gap modification 

by doping (intentionally introducing impurities) with a transition 
metal (Fe, V, Cr, Mn, Co, Ni and Cu) and nonmetals (halogen, N, 
, S, B and C).26 Band gap tailoring by doping has been one of the 
most efficient and frequently used approaches. These modifications of 
TiO2 decrease the band gap energy or create new energy levels in the 
band gap (Figure 5A). An appropriate dopant metal (e.g. Mn and Fe 
ions) causes the absorption edge of the TiO2-based nano-composite to 
“red-shift” (i.e. to longer wavelengths) (Figure 5B), which makes the 
materials catalytically active in the visible light spectrum. When metal 
ion dopants are used, the modification does not depend solely on the 
type of dopant but also on its concentration and distribution within the 
particle. The visible light-sensitized nano-TiO2 particles are widely 
used in research on environmental cleanup technologies. It is quite 
reasonable to assume that loading nano-TiO2 with different chemical 
species may produce a completely different eco toxicological impact 
compared to unmodified particles.

Figure 5A Photo catalysis under visible light Doping-induced intermediate band states in TiO2; hv1: pure TiO2; hv2: metal-doped TiO2, and hv3: non-metal-doped 
TiO2. 

Figure 5B Metal ion-doped nano-TiO2 photo catalyst.

In addition to UV light, visible light was shown to increase the 
toxicity of nano-TiO2 (carbon-doped TiO2 and TiO2 modified with 
platinum [IV] chloride complexes) towards bacteria and fungi.113 
Independent of light, copper-doped nano-TiO2 particles are able to 
significantly reduce the growth of certain bacteria compared to copper 
ions alone. This may be the result of the particles penetrating the cell 
membrane and releasing copper ions inside the cell.114–117 

Approaches to reducing photo activity of nano-TiO2

Because photo catalytic activity is one of the mechanisms 
for toxicity, it has been proposed to eliminate it by blocking the 
availability of reactive surface species. Much effort has been made to 
prepare titanium dioxide samples that are photo chemically inactive 
but still capable of protecting against UV radiation. Some sunscreens 
have used titanium dioxide particles that have been modified with inert 
coatings or doped with certain ions, presumably in an effort to prevent 
free radical damage to skin. However, current FDA regulations of 
TiO2 in topical sunscreens do not specify the crystalline form and do 
not require proof of photo stability (or lack of photo reactivity).118

Surface coatings

TiO2 adsorbs and scatters UV radiation,119 making it a desirable 
active ingredient in sunscreens where transparency, good dispersibility, 

and low photochemical and catalytic activities are the desired features. 
These qualities are acquired by modifying cosmetic-grade nano-
TiO2 particles in various ways without disturbing the sunscreen’s 
ultraviolet-light ray-shielding properties. These modifications include 
organic (alkoxytitanates, silanes, and methyl polysiloxanes) and 
inorganic (alumina, silica, and zirconia) surface coatings.120–125 These 
modifications aim to minimize or eliminate the potential reactivity 
of photo activated TiO2 particles by quenching and/or reducing the 
reactive species generated before they can interact with the other 
ingredients in a formulation or with the skin itself. The labels on 
sunscreens generally do not indicate which crystal forms of titanium 
dioxide are present or what types of coating are used. The material 
used for the surface coatings, its thickness, its chemical purity, or the 
use of multiple coatings further increases the heterogeneity of the 
utilized TiO2 nanoparticles,126,127 The matrix in which the nano-sized 
TiO2 particle resides contributes another factor. The nanoparticles 
can, for example, be fixed in a matrix, such as the silica beads with 
nano-sized TiO2 particles from the Sunjin Chemical Corporation, or 
be bonded together via a surface coating.126 

The presence of coatings also adds to the uncertainty about the 
effectiveness of efforts to reduce unwanted photo activity, and the 
durability of the coating layer during its life-cycle.128 Some researchers 
have characterized silica, zircon and alumina as charge transfer 
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catalysts,129 which are solids that have the ability to trap reactive 
electrons (e−) and electropositive holes (h+),130 and their porous 
structures facilitate the access of reactant molecules to active surface 
sites.131 The researchers prepared nano composites of SiO2, ZrO2 and 
Al2O3 in TiO2,

132–135 which displayed improved photo catalytic activity 
versus pure TiO2.

135–139 The factors described above lead to a large 
diversity in nano-sized TiO2 particles used in cosmetic sunscreens. 
We must recognize that while many coatings are labeled as being 
environmentally labile or degradable,16 the partial or complete 
collapse of the coated material may modify the electronic properties 
of TiO2 and an initially nontoxic material may become hazardous after 
shedding its coat.

Metal-doped TiO2

The properties of the nano-TiO2 can be changed as a consequence 
of production methods or by intentionally contaminating (doping) 
the crystal structure with other metals.140 For example, manganese 
doping is used by Oxonica- Croda to reduce the unwanted photo 
activity of the nano-sized TiO2 marketed under the name Optisol.141 
Optisol is composed of ultrafine titanium dioxide-doped manganese 
(0.7%).142 It is not clearly defined whether this is given in atomic or 
weight percentage. On the other hand, many researchers reported 
that manganese-doped nano-TiO2 is able to absorb visible light and 
operate as a photo catalyst, even under visible light irradiation.143,144 

The presence of metals may have the ability to modify the 
electronic state of TiO2. A metal particle on the surface may act as 
an electron trap, increasing the separation between the electron and 
whole and delaying recombination. A metal dopant may also increase 
whole mobility, which also diminishes the recombination rate.145 Iron 
oxide (Fe2O3) pigments are added occasionally to give the cosmetic 
a brown tint to improve the appearance of the sun-care product.146,147 
However, one should better understand the events occurring at the 
nanoscale when adding metals and their oxides to cosmetics that 
also contain semiconductor nanoparticles. Overall, studies show that 
modified TiO2 particles that are specifically developed and marketed 
for sun care, skin care, and color cosmetic formulations still retain 
photo catalytic activity.148–150 Coatings with alumina and doping 
with manganese have been suggested to be safe alternatives to other 
forms of modifications.148,151 Whether photo catalytic activity is still 
present during user application (i.e., inside a cosmetic formulation 
in the presence of other ingredients and applied to skin) is open to 
question. This results in more uncertainty, which forms a barrier to the 
assessment and management of the risks of nano materials.

Interactions among bio-physicochemical variables

Nanoparticles may undergo surface modification immediately 
after synthesis.152 The studies using only pristine nano-TiO2 particles 
may not be relevant for assessing the mechanism of toxicity and 
predicting behavior. In fact, proper attention needs to be given to 
the physicochemical properties, modifications and events occurring 
at the boundaries as a result of interactions (Figure 6).These events 
are determined by the physicochemical properties like size, shape, 
impurities, agglomeration, pH, surface chemistry, coating, photo 
activity, and formation of reactive species (both ex-vivo and in vivo) 
by nano-TiO2. The release of adsorbed substances and change in the 
agglomeration state of the nano-TiO2 inside the cell could initiate 
cytotoxicity and immune responses of varying degrees. Reactive 
oxygen species products, whether inside or outside the cell, can be key 
factors in nano-TiO2 toxicological effects. Before the internalization 

of the nano-TiO2 by a cell, photo catalytic activities may transform 
the initially harmless compounds into carbon-centered radicals (R*, 
RO*, ROO*). Photo activation of certain biomolecules may contribute 
to nano-TiO2-mediated toxicity.153 Most reactions yielding adverse 
responses or inhibiting toxicity take place at the nano-biointerface 
where the particle surface, including all adsorbed matter, is in contact 
with the cell and tissue. 

Proteins are viewed as the primary and most important player 
in mediating solid organism interactions. The proteins and salts 
which are included in the biological medium will be adsorbed onto 
nanoparticles,87 within a brief period of time.154 The adsorption of 
proteins onto nanoparticles is important for understanding their 
cytotoxicity. A full characterization of protein adsorption on a 
nano structured surface should consist of a controlled variation 
of the following parameters: nanoscale morphology,155 pH and 
ionic composition of the surrounding medium, protein type and 
concentration. Curved nano particle surfaces provide extra flexibility 
and enhanced surface area for the adsorbed protein molecules 
compared to planar surfaces.156–158 When dispersed in culture medium, 
some metal oxide nanoparticles can absorb proteins such as serum 
albumin, in a manner referred to as a “protein corona”.159–161 Moreover, 
the pre-treatment of TiO2 particles at pH 7 with divalent ions such as 
Ca2+ and Mg2+ increased the adsorption significantly.162 The possible 
explanation could be the presence a negative charge on serum albumin 
at a neutral pH163 and the presence of a calcium binding site, with the 
albumin bound to TiO2 through Ca2+. The adsorption could be particle 
size and time dependent.164,165 

When biomolecules such as albumin are adsorbed onto the 
surface of nano particles, there is an increased chance that a cell will 
not recognize them as foreign particles, and as a result they may be 
taken up into the cells in what is called the “Trojan horse” effect.166 
However, the effects of the nano particle-adsorbed materials on 
toxicity are unclear. A number of studies focusing on heavy metal ion 
adsorption at the TiO2-H2O interface showed that adsorption depends 
on such parameters as the system pH, the initial metal concentration, 
temperature, and both the phase and amount of nano-TiO2. Generally, 
the adsorption of most metal ions by TiO2 could also happen at 
physiological pH and temperature.167–171 Metal-loaded nanoparticles 
may enhance the intracellular trafficking of adsorbed metal ions, 
through take up and localization in the lysosomes. The low pH in the 
lysomes may cause the release of adsorbed metal ions resulting in 
the otherwise rare transport of metal ions in the cytosol. pH-triggered 
modification also includes destabilization of large agglomerates into 
smaller ones, and rupturing of the lysosome releases the nanoparticles 
into the cytosol. Additional interactions include mitochondrial 
effects, Genotoxicity, and apoptosis. These effects are more relevant 
to environmental toxicology where organism is directly exposed to 
these particles 

Nano-bio interface

Transport of the nano materials to the cells precedes the materials’ 
uptake, and can be modeled by convection, sedimentation and 
diffusion mechanisms. Transport is strongly influenced by the intrinsic 
physical factors like size, shape, surface charge, agglomeration and 
factors related to exposure like number concentration and time. Most 
of the reactions yielding adverse responses or inhibiting toxicity start 
at the nano-bio interface (i.e. where the particle surface, including 
all adsorbed matter, contacts the cells and tissues).7 The uptake 
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mechanism is not well understood at present. Nanoparticles have been 
found within cells, either free-floating in the cytoplasm or enclosed by 
a membrane.172–174 The precise mechanism by which TiO2 crosses the 
selectively permeable barrier of the plasma membrane is a question 
that must be considered on an individual basis because different cells 
utilize different nanoparticles uptake pathways depending on variations 
in size, charge, and surface reactivity. Also, different uptake pathways 
are associated with different intracellular fates of the internalized nano 

materials. Phagocytosis is the predominant method of internalization 
employed by immune cells, such as macrophages and neutrophils. 
Endocytosis is present in almost every cell type and can proceed 
through four distinct pathways: (i) clathrin-mediated endocytosis, 
(ii) caveolin-mediated endocytosis, (iii) macropinocytosis, and (iv) 
theclathrin/caveolin-independent pathway.175 Not every cell possesses 
all mechanisms. In addition, passive uptakeis a possible mechanism 
of cellular entry for some small molecules.

Figure 6 Schematic representation of complex dynamics of nano particle physicochemical properties may cause eco/cytotoxicity.

The predominant endocytic pathway in cells is clathrin-mediated 
endocytosis, which proceeds via the formation of clathrin-coated 
membrane invaginations that are eventually closed off to form 
clathrin-coated vesicles and endosomes. Endosomes formed in the 
clathrin pathway undergo acidification and are eventually destined 
for lysosomal degradation. The pathways of caveolin-mediated 
endocytosis and macropinocytosis have slower kinetics than the 
clathrin-mediated pathway, but the endosomes formed by these two 
pathways are not directed to the lysosomes. The fourth pathway 
is not well characterized and is known simply as the clathrin/
caveolin-independent pathway.176,177 Phagocytosis is apparently not a 
major contributor to nano particle uptake because the inhibition of 
phagocytosis using cytochalasin D (cytD) in macrophages abolished 
the uptake of micrometer-sized particles, but not of 0.2μm and 0.1μm 
sized particles. Geiser et al.178 noted that the intracellular nanoparticles 

were not membrane-enclosed and concluded that non-phagocytic and 
non-endocytic mechanisms might also be responsible for their uptake. 
Other reports have proposed that nanoparticles may be sequestered 
in endosomes, which could be the result of all three major pathways 
of endocytosis.179,180 In these studies, as in other nanoparticle uptake 
studies, there was a clear correlation between the nanoparticle 
localization in the cell, the “availability” of uptake pathways, and the 
cell type. 

Early endosomes formed by the clathrin, caveolin, and 
macropinocytic processes pursue a defined pathway that leads to the 
formation of late endosomes. This formation is followed by sorting 
within multi vesicular bodies and, finally, fusion with degradative 
lysosomes.181,182 Notably, TiO2 nanoparticles have been localized in 
endosomes as well as to multi vesicular bodies.179 Several in vitro 
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examinations concerning cellular responses induced by ultrafine TiO2 
particles have been reported and mainly involve oxidative stress. 
These studies suggest that ROS are involved in the cytotoxic effects of 
TiO2 with two mechanisms, namely extra cellular ROS generation and 
intracellular ROS induction. Compared to photo excited TiO2particles, 
the cytotoxic effect of non-photo excited TiO2 particles was lower.47,183 
However, a change in certain physical and chemical properties led to 
a change in biological activity.3 

Influence of interactions with other materials

Ex vivo testing determined that sunscreen nanoparticles remain on 
the surface of the skin in the stratum corneum among keratinized cells 
and do not reach the underlying viable cells. Moreover, the issue of 
the ROS generated by nanoparticles in sunscreens interacting with 

other materials has also been raised, including the unattractive hand- 
and finger-shaped blemishes seen on coatings of pre-painted steel 
roofing sheets after they have been handled by workers wearing nano 
particle-containing sunscreens.149 Despite it is widely investigated 
photo catalytic properties, which indicate that large numbers of redox 
reactions can occur on the surface during UV exposure, titanium 
dioxide has always been considered to be a harmless and innocuous 
ingredient when added as a filter to sunscreen preparations or added 
as a whitener to many food and cosmetic products.184–186 A number of 
recent studies have revealed that under UVA irradiation, TiO2 may 
catalyze the degradation of biomolecules (Table 1). Additionally, 
they have the potential to destroy peroxidase enzymatic activity187 
and cause in vitro photo toxicity.188,189 Several studies indicate that 
titanium dioxide extracted from commercial sunscreens is equally 
effective in causing DNA damage (Table 1). 

Table 1  Nano-TiO2 stimulated degradation of biomolecules

TiO2 particle Experiment Outcomes

0.45μ 
Manatase

Irradiation of solutions containing calf thymus 
DNA and RNA isolated from human skin 
fibroblast cells.

Significant levels of photo oxidation of nucleic acids were measured.164

Extracted 
From 
Commercially 
Available 
Sunscreens

Oxidation of organic material (phenol), DNA 
plasmid and in vivo DNA tested. All experiments 
conducted in sunlight-illuminated conditions.

TiO2 stimulates oxidation of organic materials (due to production of 
hydroxyl radicals) and induces strand breaks in plasmid DNA and in 
vivo (human fibroblasts). DNA damage decreased with the addition of 
radical quenchers (mannitol and DMSO), illustrating oxidant-driven DNA 
damage.162

P25

The fate of nitrogen in various amino acids was 
examined following their photo oxidative (and/
or reductive) transformation catalyzed by UV-A 
and UV-B illuminated aqueous TiO2 dispersions.

Nitrogen in the amino acids are photo converted predominantly into NH3 
(analyzed as NH4

+), and to a lesser extent into NO3
− ions.100

Anatase or 
Rutile

Bovine serum albumin (BSA) protein nitration 
(detected spectro photometrically and by 
western blotting). Experiments conducted with 
UV irradiation.

Protein nitration was observed and identified as being in the crystal form 
and light dependent.163

TiO2 can interact with organic compounds that are present in their 
vicinity; for example, reactive carbon-centered radicals are generated 
during the mineralization of organic sunscreen components.190,191 
In light of these results, it is somewhat surprising that the possible 
interaction between sunscreen organic components and titanium 
dioxide has not been studied with the same enthusiasm as was done 
for the skin penetration studies. In order to properly investigate the 
photo toxicity of sun protection products, not only should the filters 
be considered but also the other components that despite being 
photo chemically inactive, may participate in the generation of 
harmful species, such as preservatives (isothiazoline family, parabens 
mixtures, and formaldehyde donors), anionic surfactants, oils, water 
or alcohol based gels, or antioxidants, which are all widely used in 
sunscreen preparation. 

Skin penetration

Dermal absorption of chemicals must be considered during 
risk evaluation.192–194 The skin is the largest organ of the body and 
accounts for over 10% of the body’s mass, and plays an important 
role as a barrier against the external environment. The skin functions 
in protection, maintaining homeostasis and metabolism. Four 
mechanisms of penetration across the skin have been identified and 

are dependent on the physicochemical properties of the compound. 
These mechanisms include an intercellular, a transcellular, and two 
trans appendageal (hair follicles and sweat glands) mechanisms. 
Several recently published reviews provide excellent overviews of 
the diffusion of micro- and nano sized ZnO and TiO2 through the 
skin.195–198 A large number of studies suggest that these particles do 
not penetrate human skin beyond the superficial layers of the stratum 
corneum.3,195–200 Skin exposure to nano particle-containing sunscreens 
leads to incorporation of TiO2 and ZnO in the stratum corneum, which 
may alter certain properties due to particle-particle, particle-skin, and 
skin-particle-light physicochemical interactions.195 Overall, the weight 
of scientific evidence suggests that insoluble nanoparticles used 
in sunscreens pose no or negligible risk to human health196,197,201–210 
however there are some discrepancies in the results probably related 
to differences in techniques and methods, laboratory conditions, and 
the absence of standardized evaluation protocols.

The reason for these results is unclear based on the observation 
that most other nano particle types (polymers, metals and carbon nano 
tubes) permeate the skin. The answer may be that it is possible that 
the particle agglomeration,211,212 when combined with the particles’ 
intrinsic hydrophobicity, allows particles to become trapped in the 
lipid lamella and remain until desquamation or sebaceous secretion 
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removes them from follicles. Efficient transdermal drug delivery 
has been correlated with skin hydration.213,214 This finding indirectly 
suggests the importance of accessing the polar pathway in penetrating 
the skin barrier, which hinders hydrophobic particle penetration. 
There may be physicochemical factors other than size, surface 
charge, and surface energy that are important when evaluating nano 
material penetration (e.g. the nano particle mechanical properties). 
For example, recent findings in studies that measured the distribution 
profile of elastic and rigid vesicles (115nm diameter) in human 
skin identified that elastic particles penetrate deeper under identical 
conditions.215 Perhaps the particles must be able to fit through 
the stratum corneum, and metal oxide nanoparticles may be less 
compliant than metals of semiconductor QDs. Research findings 
demonstrate that the penetration of TiO2 is negligible in healthy skin. 
This is important, as nanoparticles appear to be unable to reach the 
living cells present within the deeper skin layers, and therefore their 
propensity for toxicity is anticipated to be minimal. Future studies 
should consider the fate of particles in skin models, taking into 
consideration that sunscreens are often applied to burnt, damaged, or 
diseased skin where the barrier function of the stratum corneum may 
be impaired.49,208 More research is needed to resolve this issue and to 
gain a quantitative understanding of the extent and mechanisms of 
nano particle skin penetration.

Conclusion
Most of the adverse effects, including inflammatory response, 

Genotoxicity, lipid peroxidation, oxidative stress and changes 
in enzyme activity have been attributed to the small size of TiO2 
particles. Particle size does play a contributing role in toxicity, 
because reduced size corresponds to increased particle numbers 
and enhanced surface area for a given particle mass. However, the 
reactivity of the particle surface and interactions with the surrounding 
matrix can also lead to complex and unexpected phenomena arising 
from the interplay of many factors. Particle-cellular interactions and 
particle-environmental interactions can have a significant influence 
on reactivity modifications generating toxic species, with their 
subsequent impact on health and the environment. The large specific 
surface area of the nanoparticles is very effective for capturing low 
concentration chemical species such as metals. The presence of 
impurities not only influences the photo catalytic properties of TiO2, 
but may be helpful in the transportation and accumulation of trace 
elements in both cellular- and environmental-related studiesin which 
pH could play a very important role by the change of agglomerate size, 
and by adsorption and release of trace metals. The interaction between 
nano-TiO2 and a biological system and its surroundings are based on 
their inherent physicochemical properties and the modifications made 
to the nano-TiO2. A largely ignored aspect in the literature is the photo 
catalytic ability of nano-TiO2 to mineralize organic components and, 
in the case of partial decomposition, to form reactive intermediates. 
These reactive species have the potential to cause oxidative injury ex 
vivo or in environmental-related scenarios. It becomes a considerable 
challenge for nanotoxicologists to determine whether this toxicity 
is due simply to size or to the reactivity of nanoparticles with the 
surrounding medium. Alternatively, the nanoparticles may only 
be playing a role in the transportation and accumulation of certain 
chemical species, or the toxicity may be the combination of different 
processes. The challenge for toxicologists is to identify key factors or 
tests by which nano particle toxicity can be measured or predicted, and 
these data must be reproducible in other laboratories. Multidisciplinary 
efforts will be required to fully understand the underlying mechanism 
of nano material toxicity.

Careful examination of the classical (particle size, surface area 
and dose) and non-classical interactions (size-related properties and 
altered reactivity) of nano-TiO2 may be helpful in developing safer 
consumer goods, such as sunscreen. Nano-based sunscreens contain 
particles in the range of 10 to 100nm200 and contain both anatase 
and rutile crystals, either alone or in combination.216 Most studies 
have revealed the absence of cutaneous penetration. Smaller, doped, 
coated, and more dispersed TiO2 particles were demonstrated to have 
superior UV attenuation, due to enhanced UV scattering. The problem 
of undesirable photo catalysis is addressed by applying surface 
treatments to the crystals, selecting a less photo reactive form (rutile), 
or adding antioxidant ingredients to the formula. Recent research has 
identified that the surface coatings on nano-TiO2 in many sunscreens 
may be unstable or ineffective.149 However, doping rutile nano-TiO2 
with manganese was reported to increase UV absorption, reduce 
free radical generation, and increase its free radical-scavenging 
behavior.142,151 Perhaps an important question is whether regulatory 
authorities should be discriminating between anatase and rutile 
titanium dioxide particles, or between doped and un-doped particles, 
in sunscreens. There is an urgent need for an international consensus 
for determining the status and safety requirements of these products 
and their ingredients.
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