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Abstract

Quantum query complexity measures the minimum number of queries a quantum algorithm
needs to make to some input string to compute a function of that input. Query complexity
models are widely used throughout quantum computing, from setting limits on quantum
algorithms to analyzing post-quantum cryptography.

This thesis studies quantum adversary methods, a group of mathematical tools that prove
lower bounds on quantum query complexity. I introduce a new general-purpose framework
for adversary methods that generalizes over both the negative weight and multiplicative
adversary methods. This framework unifies the lower bound proofs of both methods, even
in the general case of quantum state conversion.

This generalized method also gives a new formula for the multiplicative adversary method
based on max-relative entropy. This new definition is more concise and easier to reason
about than existing definitions in the literature. I verify this by reproving several known
results about the multiplicative adversary method. I also use this to reprove the strong
direct product theorem for quantum query complexity.
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Chapter 1

Introduction

When can a quantum computer outperform a classical computer? This question is the key
to understanding the power and limitations of the entire field of quantum computing. The
study of quantum complexity theory attempts to answer this question by comparing the
optimal complexity of solving various problems on classical computers versus on quantum
computers. By proving inequalities or bounds on the complexity of a problem, we prove
whether it can be solved more efficiently on a quantum computer or not.

Query problems are one of the most-studied classes of problems within complexity theory.
A query problem asks the following: given some function f and an input string x to
that function, how many characters of x do I need to query to compute the value of f(x)?
Many real-world algorithms can be modeled as query problems: database search is a famous
example. The required number of queries depends on whether we have access to a classical
computer or to a quantum computer. If we can only query one character at a time, we
have classical query complexity. If we can query multiple characters in superposition, we
have quantum query complexity. Proving separations between these two quantities is the
main goal of the study of quantum query complexity.

Quantum query complexity is often analyzed through a group of tools called adversary
methods. All adversary methods provide lower bounds on query complexity, and these
lower bounds are even known to be tight in some cases. The study of adversary methods is a
recent and evolving field. Early papers on adversary bounds presented several disconnected
techniques [Zha05, BSS01, Amb06]. Then, [ŠS05] proved that all three methods were
equivalent to a method now known as the positive weight adversary. Later, [HLS07] found
an even stronger method (the negative weight adversary), and proved it was optimal for
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constant-error quantum query complexity [LMRŠ10]. Most recently, [Špa08] found an
even stronger method (the multiplicative adversary). While initially very complex, the
multiplicative adversary has been simplified over time [AMRR11, MR15] and has been
used to prove several important results in quantum query complexity, most notably the
strong direct product theorem [LR12].

Each of three major adversary methods (positive weight, negative weight, and multiplica-
tive) has strengths and weaknesses. The positive weight adversary is the easiest to use by
far, and it has been used for most of the known practical bounds on actual query problems.
The negative weight adversary is slightly more complex, but it has the major advantage
of being a tight bound for constant-error query complexity. However, the negative weight
adversary is not optimal for non-constant-error regimes. The multiplicative adversary is
even more complex, but it produces a stronger bound than the negative weight adversary
for these error regimes.

1.1 Goals

This thesis has three main goals:

1. To serve as an introduction to the field of quantum query complexity and adversary
methods. This introduction is meant for readers who are familiar with quantum
computing, but who are new to complexity theory. I focus on rigorously defining all
the relevant terms from quantum information and query complexity, but I also try
to motivate and give intuition behind those definitions.

2. To present a generalized adversary method that simplifies and unifies the correct-
ness proofs of all existing adversary methods. This generalized method also gives
us a framework for constructing new adversary methods. I show how we can use
this framework to construct both the negative weight and multiplicative adversary
methods.

3. To give an updated guide to the multiplicative adversary method. Using the gener-
alized adversary method, I give a new formula for the multiplicative adversary based
on max-relative entropy. I claim this new definition is simpler to work with than the
standard definition. I verify this by collecting and reproving many existing results
about the multiplicative adversary, including the strong direct product theorem for
quantum query complexity.
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1.2 Outline

The first half of this thesis covers background information necessary for the study of adver-
sary methods. The material should be accessible to readers with a background in quantum
computing. In Chapter 2, I present background information from quantum information
that is necessary for the formal proofs in the rest of this thesis. In Chapter 3, I formally
define all common forms of query complexity, both classical and quantum. In Chapter 4,
I give background on the most important adversary methods used to prove lower bounds
on query complexity.

In Chapter 5, I present a new generalized adversary method. This method generalizes over
the concept of a progress function, such that each way of measuring the distance between
two matrices yields a new lower bound for quantum query complexity. The negative weight
adversary and the multiplicative adversary are just special cases of this generalized method.
I also prove some lemmas that give further ways to construct special cases of this method.

In Chapter 6, I focus on the new form of the multiplicative adversary method given by this
generalized method. This form is equal to the standard form used in the literature, but it
is much simpler to express and to reason about. I reprove several simple results about the
multiplicative adversary. In Chapter 7, I use this new form to reprove the strong direct
product theorem for quantum query complexity.
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Chapter 2

Overview of Quantum Information

Before formally defining query complexity and adversary methods, I give an overview
of the relevant mathematical concepts from quantum information. The first half of this
chapter reviews common terms in quantum information, such as positive matrices and
Gram matrices. The second half of this chapter introduces less common definitions, many
of which are specific to the study of particular adversary methods. Readers who are
less familiar with quantum information are encouraged to read the whole chapter, while
experienced readers may want to skip to Section 2.5.

I assume that readers have studied quantum computing before. This thesis makes heavy
use of common terms such as mixed states or Hilbert spaces. I encourage readers who are
unfamiliar with these terms to read an introduction to quantum computing, such as the
excellent textbook by Nielsen and Chuang [NC10], before continuing.

2.1 Notation

I start by defining all the common notation I use in the rest of this thesis.

We work primarily on a register of n qubits. LetH be a complex Hilbert space of dimension
N = 2n, whose basis states are indexed by the bit strings of length n. For the rest of this
thesis, I assume that all matrices and vectors are in H unless stated otherwise. Let D(H)
denote the set of mixed states on H.

Since all of the proofs in this thesis make heavy use of matrices, I present my preferred
notation for matrix norms and eigenvalues.
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For any matrix X with real eigenvalues, let λ(X) denote the vector of eigenvalues of X,
sorted from largest to smallest. Let λmax(X) denote the largest eigenvalue of X, and let
λmin(X) denote the smallest eigenvalue of X.

For any matrix X, let ∥X∥ denote the spectral norm of X (the largest absolute value of
any eigenvalue of X). Let ∥X∥tr denote the trace norm of X (the sum of the absolute
values of the eigenvalues of X).

For any matrices X, Y , I use the following notation:

• X ◦Y denotes the Hadamard product of X and Y (also called the entrywise product
or Schur product).

• ⟨X, Y ⟩ denotes the Frobenius inner product (also called the entrywise inner product,
equivalent to flatteningX and Y to vectors and then taking the vector inner product).

• X ≥ Y means that X − Y is a positive matrix (see below for a discussion of positive
matrices).

2.2 Positive matrices

Positive matrices are fundamental to most of the proofs in this thesis. I first give the exact
definitions I use, then give proofs of many of the basic properties satisfied by positive
matrices.

Definition 2.1 (positive matrix). A matrix is positive (also called positive semi-definite)
if it is Hermitian and all of its eigenvalues are non-negative.

Definition 2.2 (positive cone). Pos(H) is the set of all positive matrices on the space H.

Definition 2.3 (positive map). A linear function Φ on the set of matrices is a positive
map if it maps positive matrices to positive matrices.

In general, I allow positive matrices to have eigenvalues equal to 0. If having a zero
eigenvalue would cause issues, such as when taking inverses, assume that the matrix has
no zero eigenvalues. For the rest of this thesis, I ignore this special case for brevity.

There are several equivalent ways to define positive matrices.

Proposition 2.4. The following statements are equivalent:

1. X is a positive matrix
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2. X = UDU∗ for some unitary matrix U and some real diagonal matrix D with non-
negative entries

3. X = B∗B for some matrix B

4. X is Hermitian and v∗Xv ≥ 0 for all vectors v

Proof. (1) implies (2) by the spectral theorem. The diagonal elements of D are exactly
the eigenvalues of X.

(2) implies (3), as we can let B = D1/2U∗.

(3) implies (4), as B∗B is always Hermitian, and v∗B∗Bv = (Bv)∗Bv = ∥Bv∥2 is always
non-negative.

(4) implies (1) by way of contradiction: ifX had a negative eigenvalue λ, then its associated
unit eigenvector would satisfy v∗Xv = −λ, contradicting (4).

There are a myriad of ways to construct positive matrices:

• If X, Y are positive, then X + Y is positive

• If X is positive and c is a non-negative real, then c ·X is positive

• If X is positive and α is real, then Xα is positive

• If v is a vector, then vv∗ is positive

• If X is Hermitian, then exp(X) is positive

• If X is positive and A is any matrix, then AXA∗ is positive

Proposition 2.5 (Schur product theorem). If X, Y are positive matrices, then their
Hadamard product X ◦ Y is also positive.

Proof. By the spectral theorem, we can write X =
∑

i viv
∗
i and Y =

∑
j uju

∗
j , where vi

and uj are arbitrary vectors. Then we have

X ◦ Y = (
∑
i

viv
∗
i ) ◦ (

∑
j

uju
∗
j) =

∑
ij

viv
∗
i ◦ uju∗j =

∑
ij

(vi ◦ uj)(vi ◦ uj)∗

Since each (vi ◦ uj)(vi ◦ uj)∗ is positive, we know that X ◦ Y is a sum of positive matrices,
so it is positive.
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Proposition 2.6. If X, Y are positive matrices, then the product XY has all non-negative
eigenvalues.

Proof. We know that Y 1/2XY 1/2 is positive, so in particular, it has all non-negative eigen-
values. Since AB and BA share the same eigenvalues for any matrices A,B, we know that
XY 1/2Y 1/2 = XY must have all non-negative eigenvalues as well.

Note that XY is not necessarily positive, as it may not be Hermitian.

2.3 Gram matrices

One important special type of positive matrix is the set of Gram matrices. The definition
of Gram matrices I use here differs slightly from the standard definition in the literature,
I add the requirement that we have only unit vectors.

Definition 2.7 (Gram matrix). Let {vi} be a list of N unit vectors, that are indexed by
the bit strings of length n (just like the basis states of H). Then the Gram matrix of {vi}
is the matrix X defined by ⟨i|X|j⟩ = ⟨vi|vj⟩, where |i⟩ and |j⟩ are basis states of H.

In addition, I say that X is a Gram matrix if there exists any set of unit vectors {vi} whose
Gram matrix is X.

The above definition motivates the use of Gram matrices for many cases. The definition
below is equivalent and is often mathematically simpler to work with.

Proposition 2.8. X is a Gram matrix if and only if X is a positive matrix with 1s along
the diagonal.

Proof. Let X be the Gram matrix of {vi}. Let B be the (possibly not square) matrix
whose ith column is the vector vi. Then we have X = B∗B, so X is positive. In addition,
we have ⟨i|X|i⟩ = ⟨vi|vi⟩ = ∥vi∥2 = 1, so X has 1s along the diagonal.

For the converse, let X be a positive matrix with 1s along the diagonal. Let B be a
square matrix such that X = B∗B. Then let vi be the ith column of B. This implies that
⟨i|X|j⟩ = ⟨Bi|Bj⟩ = ⟨vi|vj⟩. In addition, we have 1 = ⟨i|X|i⟩ = ⟨vi|vi⟩ = ∥vi∥2, so each vi
is a unit vector.

Many common matrices are examples of Gram matrices. For instance:

• I, the identity matrix, is a Gram matrix
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• J , the all 1s matrix, is a Gram matrix

• If v is a vector whose entries all have magnitude 1, then vv∗ is a Gram matrix

The set of Gram matrices is also closed under convex combinations and under Hadamard
products:

• If X, Y are Gram matrices and c ∈ [0, 1], then cX + (1− c)Y is a Gram matrix

• If X, Y are Gram matrices, then X ◦ Y is a Gram matrix

Also note that if ρ is a mixed state and X is a Gram matrix, then ρ ◦X is a mixed state.

2.4 Fidelity

Fidelity is a common tool for measuring the similarity between a pair of mixed states. Fol-
lowing [MR15], I also define the Hadamard product fidelity, which measures the similarity
between a pair of Gram matrices. Hadamard product fidelity is used as part of the output
condition for ϵ-error query complexity.

I use the standard definition of quantum fidelity. This is the square of the fidelity used in
[NC10], [LR12], [MR15], and others, which I refer to as square-root fidelity.

Definition 2.9 (fidelity). For any mixed states ρ, σ ∈ D(H), define

F (ρ, σ) =
∥∥ρ1/2σ1/2

∥∥2
tr

Definition 2.10 (Hadamard product fidelity). For any Gram matrices ρ, σ, define

FH(ρ, σ) = min
A∈D(H)

F (ρ ◦ A, σ ◦ A)

Note that both fidelity and Hadamard product fidelity always return values in the range
[0, 1]. Both functions return 1 only when the two inputs are equal.

2.5 Max-relative entropy

Max-relative entropy is another way to measure the distance between a pair of matrices.
It is not a metric, and it is not even symmetric. However, it satisfies a number of useful
properties when applied to positive matrices.
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Max-relative entropy is not the same thing as relative entropy. As a side note, the two
quantities are connected: if you generalize relative entropy to the order-α Renyi divergence,
then you get max-relative entropy as you take the limit α → ∞ [MLDS+13]. This thesis
doesn’t use normal relative entropy or Renyi entropy.

Definition 2.11 (max-relative entropy). Let X, Y be positive matrices. Then the max-
relative entropy of X relative to Y is

Dmax(X∥Y ) = inf{λ ∈ R : X ≤ exp(λ)Y }

Since we’re taking an infimum, if there is no λ for which X ≤ exp(λ)Y , then we define
Dmax(X∥Y ) = ∞. If X ≤ exp(λ)Y for all λ ∈ R, then we define Dmax(X∥Y ) = −∞.

Furthermore, in some cases, it is useful to extend the domain of Dmax to the case where X
is not a positive matrix. All the properties below will still hold so long as X has at least
one non-negative eigenvalue.

There are a number of equivalent definitions of the max-relative entropy:

1. Dmax(X∥Y ) = log inf{λ ∈ R+ : X ≤ λY }

2. Dmax(X∥Y ) = log
∥∥Y −1/2XY −1/2

∥∥
3. Dmax(X∥Y ) = log λmax(XY

−1)

4. Dmax(X∥Y ) = log supZ≥0
⟨X,Z⟩
⟨Y,Z⟩

Most of these definitions are rearrangements of the terms. Item (4) in the list is slightly
more complex to prove: it can be derived by noting that X ≤ λY if and only if ⟨X,Z⟩ ≤
λ⟨Y, Z⟩ for all Z ∈ Pos(X).

I define two more quantities that are closely related to Dmax and that are used by several
proofs later in this thesis.

Definition 2.12. Let X, Y be positive matrices. Then I define

R(X∥Y ) = exp(Dmax(X∥Y )) = inf{λ ∈ R+ : X ≤ λY }

δ∞(X, Y ) = max{Dmax(X∥Y ),Dmax(Y ∥X)}

The quantity R gets rid of an extra log, which simplifies some of the proofs. The quantity
δ∞ represents a symmetrized Dmax, and it turns out to be a valid metric on Pos(H).

Max-relative entropy satisfies the following properties for all positive X, Y :
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• Dmax(X∥Y ) ≤ 0 if and only if X ≤ Y (follows from definition 1)

• If TrX = TrY (such as when X, Y are both mixed states or both Gram matrices),
then Dmax(X∥Y ) ≥ 0 (follows from the above property)

• If vv∗, uu∗ are distinct pure states, then Dmax(vv
∗∥uu∗) = ∞ (follows from definition

4, letting Z be orthogonal to uu∗)

• Dmax(X∥Y ) = Dmax(Y
−1∥X−1) (follows from definition 3)

• Dmax(X∥I) = log ∥X∥ (follows from definition 2)

I give proofs of several interesting and useful properties of Dmax.

Proposition 2.13 (quasiconvexity). If Xi, Yi are all positive, then

Dmax(
∑
i

Xi∥
∑
i

Yi) ≤ max
i

Dmax(Xi∥Yi)

Proof. I show an equivalent result, that R(
∑

iXi∥
∑

i Yi) ≤ maxiR(Xi∥Yi). This implies
the desired result if you take the log of both sides.

Let M = maxiR(Xi∥Yi). Then we know that Xi ≤ MYi for all i. This implies that∑
iXi ≤

∑
iMYi =M

∑
i Yi. Therefore R(

∑
iXi∥

∑
i Yi) ≤M .

Proposition 2.14. If X, Y are positive and Φ is a positive map, then Dmax(Φ(X)∥Φ(Y )) ≤
Dmax(X∥Y )

Proof. Let λ be the smallest real such that X ≤ exp(λ)Y . Then we know that exp(λ)Y −
X ≥ 0, and since Φ maps positive matrices to positive matrices, we have Φ(exp(λ)Y −X) ≥
0. Since Φ is linear, we have exp(λ)Φ(Y ) − Φ(X) ≥ 0, so Φ(X) ≤ exp(λ)Φ(Y ). Thus λ
is also a valid solution to Dmax(Φ(X)∥Φ(Y )), so we conclude that Dmax(Φ(X)∥Φ(Y )) ≤
Dmax(X∥Y ).

Corollary 2.15. If X, Y, Z are positive, then Dmax(X ◦ Z∥Y ◦ Z) ≤ Dmax(X∥Y ).

Proof. We know by Proposition 2.5 that Φ(ρ) = ρ ◦ Z is a positive map. Therefore
Proposition 2.14 applies and gives us the desired result.

Proposition 2.16. If X, Y are positive and A is invertible, then Dmax(AXA
∗∥AY A∗) =

Dmax(X∥Y ).
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Proof. We know that Φ(ρ) = AρA∗ is a positive map. By Proposition 2.14, we have

Dmax(AXA
∗∥AY A∗) ≤ Dmax(X∥Y )

The same argument works for A−1, giving us

Dmax(A
−1X ′A−1∗∥A−1Y ′A−1∗) ≤ Dmax(X

′∥Y ′)

Substituting X ′ = AXA∗ and Y ′ = AY A∗ gives Dmax(X∥Y ) ≤ Dmax(AXA
∗∥AY A∗).

Combining this with the above completes the theorem.

Proposition 2.17. If X, Y, Z are positive, then Dmax(X∥Z) ≤ Dmax(X∥Y )+Dmax(Y ∥Z).

Proof. I show an equivalent result, that R(X∥Z) ≤ R(X∥Y ) · R(Y ∥Z). This implies the
desired result if you take the log of both sides.

Let λ1 = R(X∥Y ) and λ2 = R(Y ∥Z). Then we have X ≤ λ1Y and Y ≤ λ2Z, and
combining these gives X ≤ λ1λ2Z. Therefore R(X∥Z) ≤ λ1λ2, completing the proof.

Proposition 2.18. If X, Y, Z,W are positive, then Dmax(X⊗Y ∥Z⊗W ) = Dmax(X∥Z)+
Dmax(Y ∥W ).

Proof. By definition 3, we have

Dmax(X ⊗ Y ∥Z ⊗W ) = log λmax((X ⊗ Y )(Z ⊗W )−1) = log λmax(XZ
−1 ⊗ YW−1)

Since the eigenvalues of a tensor product are the products of the eigenvalues, this equals

log
(
λmax(XZ

−1) · λmax(YW
−1)
)
= log λmax(XZ

−1) + log λmax(YW
−1)

which is exactly equal to Dmax(X∥Z) + Dmax(Y ∥W ).

2.6 Factorization norm

For one of the proofs in Chapter 7, I use a somewhat obscure quantity called the factor-
ization norm or the γ2 norm. This norm was originally introduced to quantum complexity
theory by [LMSS07], which related it to several existing measures in complexity theory.
The γ2 norm can be defined as follows.
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Definition 2.19 (factorization norm). Let A be a matrix. Let c(Y ) denote the largest L2

norm of a column of Y . Then define

γ2(A) = min
X,Y :X∗Y=A

c(X)c(Y )

[LSŠ08] is a good reference for properties of the γ2 norm. This thesis only uses a couple
of those properties. First, that the term factorization norm is justified, as γ2 is a norm on
the set of matrices. Second, that for any matrix A, we have

γ2(A) = max
Q̸=0

∥A ◦Q∥
∥Q∥

= max
Q ̸=0

∥A ◦Q∥tr
∥Q∥tr

I prove one additional property of the γ2 norm, that it returns 1 for all Gram matrices.

Proposition 2.20. If σ is a Gram matrix, then γ2(σ) = 1.

Proof. Since σ is a Gram matrix, we can write σ = B∗B, where each of the columns of B
has norm 1. Plugging this into Definition 2.19, we get that γ2(σ) ≤ 1.

Let Q be an arbitary mixed state. Note that ∥Q∥tr = 1, and σ ◦ Q is also a mixed state,
so ∥σ ◦Q∥tr = 1 as well. Then by the property above, we have γ2(σ) ≥ 1.
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Chapter 3

Overview of Query Complexity

This chapter introduces classical and quantum query complexity. While parts of this
chapter are intended for readers who are new to quantum complexity theory, even readers
familiar with the field may want to read through the notation and precise definitions, as I
make heavy use of them in my later proofs.

3.1 Motivation

Query problems are an important type of problem in complexity theory. In a query prob-
lem, the algorithm is given a hidden input string, and it can only read the values of this
string by querying one position at a time. The goal of the algorithm is to compute some
function of the input string while making as few queries as possible. The query complexity
of the problem measures the minimum number of queries required to exactly compute the
desired function for any input string.

Note that query complexity is not the same as time complexity, the number of elementary
operations it takes to run an algorithm. While time complexity is arguably more useful
in practice, it depends significantly on the set of elementary operations available to the
system, and it can be almost impossible to compute theoretically. Query complexity can
act as a good proxy for time complexity: it often relates closely to time complexity, while
being much simpler to compute.

Query problems occur naturally in a variety of settings. For example, searching an unsorted
array is a query problem. The input string is the array to search, and each query checks
whether one element in the array matches the desired element. It is well-known that the
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classical query complexity of searching an unsorted array of length n is O(n), as in the
worst case, you need to check every element of the array in order to find the desired element.
A quantum computer can solve this problem faster with Grover’s algorithm, which only
requires O(

√
n) queries to the input [NC10].

Query complexity has many applications throughout quantum computing, to list a few:

1. Shor’s algorithm depends on the order finding subproblem, which can be naturally
expressed as a query problem [Amb18].

2. Quantum walk algorithms are often used to solve query problems, so bounding query
complexity also bounds quantum walks [San08].

3. Communication complexity can be reduced to query complexity, giving a simple way
to prove bounds in that field [BCW98].

4. Oracles in complexity theory are just a type of query problem, so query complexity
can be used to prove oracle separations, such as the one between BQP and PH [RT19].

5. Post-quantum cryptography uses quantum oracles as a hardness model, so it uses
results from query complexity [BDF+11].

To find the query complexity of a problem, we need to prove matching upper and lower
bounds for query complexity. It is generally easy to find upper bounds for query complexity:
any algorithm that solves the problem is an upper bound on the query complexity. Thus,
the study of query complexity usually focuses on techniques that prove lower bounds for
query complexity, such as the adversary methods discussed in the next chapter.

3.2 Classical query complexity

I formalize the notion of query complexity motivated above. Recall that the goal of a query
problem is to compute the output of some function f while making as few queries to the
input of f as possible. Let f be a function Xn → Y , where X and Y are arbitrary finite
sets. We often use X = {0, 1}, so that the input is a bit string of length n. In this thesis,
I assume f is a total function (that is, f is defined on its entire domain). Other papers on
query complexity often allow f to be a partial function, where the query problem assumes
the input is in a given subset of the domain.

Let x ∈ Xn be the input to f . The queries to x take the form of an oracle Ox : [n] → X
that returns the ith element of x. In other words, Ox is defined by Ox(i) = xi. We want
to write an algorithm A that computes f(x) while making as few calls to Ox as possible.
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Our algorithm is not allowed to access the input x directly, but it may perform any other
operations it wants.

Definition 3.1 (deterministic query complexity). The deterministic query complexity
D(f) is the minimum number of calls to Ox that the best deterministic algorithm A must
make to be guaranteed to solve the problem on any input x.

Definition 3.2 (randomized query complexity). The randomized query complexity R(f)
is the minimum expected number of calls to Ox that the best randomized algorithm A
must make to solve the problem on any input x.

Since randomized algorithms are a superset of deterministic algorithms, we know that
R(f) ≤ D(f) for all f . For total functions, it is known that D(f) ≤ O(R(f)2) [Amb18].

3.3 Quantum query complexity

Quantum query complexity is defined similarly to classical query complexity. The key
difference is that we can now query the input in superposition: Ox changes from a classical
query function to a quantum oracle unitary.

For simplicity, I assume that X = {0, 1}, so our input is a bit string. Then Ox is an
operator on a Hilbert space Hquery with basis states indexed by i ∈ [n]. The action of Ox

is defined by Ox |i⟩ = (−1)xi |i⟩. Since xi ∈ {0, 1}, Ox either flips the phase or has no effect
on the state. Assuming we are able to perform controlled Ox gates (such as by adding an
extra index i′ such that xi′ is always 0), we can transform this phase flip into a bit flip and
determine the value of xi. Ox could equivalently be defined through a bit flip instead of a
phase flip; I choose this definition because it doesn’t require us to add an extra register.
The generalization to X ̸= {0, 1} would require we add this extra register, as a phase flip
can’t represent more than a bit of information.

As before, we want to write an algorithm A that computes f(x) while making as few calls
to Ox as possible. Unlike before, A is now a quantum circuit. Our circuit is not allowed
to access the input x directly, but it may perform any other unitary operations it wants.
We can assume without loss of generality that A has no measurements (as we can always
delay measurements until the end). All the registers of A are assumed to start in the |0⟩
state.

The output of A is stored in a register Hans with basis states indexed by Y . There are two
ways to define whether A yields the correct output, which give two different definitions for
quantum query complexity:
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Definition 3.3 (quantum query complexity). The (exact) quantum query complexityQ(f)
is the minimum number of calls to Ox that the best quantum algorithm A must make to
be guaranteed to solve the problem on any input x, with no chance of error. We say that
A is correct if the register Hans ends in the basis state |f(x)⟩ (after we trace out all the
other registers).

Definition 3.4 (coherent quantum query complexity). The coherent quantum query com-
plexity Qc(f) is the same as Q(f), except that we say that A is correct if the register Hans

ends in the basis state |f(x)⟩ and all the other registers end in the |0⟩ state.

Coherent quantum query complexity is stricter than non-coherent quantum query com-
plexity, so we know that Q(f) ≤ Qc(f). It is known that Qc(f) ≤ 2Q(f) [LR12], as we
can run the algorithm twice to uncompute any non-zero values in the ancillary registers.
Coherent quantum query complexity is useful when we need to guarantee that our algo-
rithm won’t collapse the state, such as if we are using the algorithm as a subroutine for a
larger quantum algorithm. The stricter output condition can also make it easier to reason
about.

Since quantum algorithms are a superset of randomized algorithms, we know that Q(f) ≤
R(f) for all f . Surprisingly, for total functions, it is known that R(f) ≤ O(Q(f)3) [Amb18].
Thus, for total functions, quantum computers can never achieve more than a polynomial
speedup over classical computers.

For the proofs in Chapter 5, it is helpful to have a standard mathematical representation
of quantum query algorithms. A query algorithm A is allowed to perform two types of
operations: it can call unitary gates and it can call the query oracle. Since any composition
of unitaries yields another unitary, we can assume without loss of generality that A calls
exactly one unitary in between every pair of calls to the query oracle. Thus, if A calls Ox

a total of T times, A takes the form

A = UTOxUT−1 . . . U1OxU0

where each Ut is an arbitrary unitary operator on some Hilbert space H. We know that H
must contain Hquery and Hans, but it may also contain any number of ancillary registers.

3.4 Quantum state generation and conversion

The previous section generalized query complexity to allow querying bits in superposition.
The natural next step is to generalize query complexity to allow quantum outputs. This
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means that Y no longer represents a set of classical outputs, but Y represents a set of
quantum states.

Let Y be a set of pure states on a Hilbert space Hans. Let f(x) = |ψx⟩ ∈ Hans be the
desired output state on an input x. The definitions from the section above still apply to
this case, except that instead of trying to output a basis state of Hans, we want to output
|ψx⟩.

Definition 3.5 (quantum query complexity of state generation). The quantum query
complexity of state generation Q(f) is identical to the quantum query complexity, except
that the output condition checks for the pure state f(x) instead of the basis state |f(x)⟩.

It can be difficult to directly reason about a function that outputs pure states. We can
simplify the problem by observing that the query complexity of f is entirely determined
by the inner products ⟨ψx|ψy⟩ for each x, y ∈ Xn. This means that we only need to know
the Gram matrix of {|ψx⟩}x, we don’t need to know the exact values of each |ψx⟩.

Proposition 3.6. Let f1, f2 be functions X
n → Hans, and let f1(x) = |ψx⟩ and f2(x) = |ϕx⟩

be pure states. Assume that the Gram matrix of {|ψx⟩}x is σ and the Gram matrix of
{|ϕx⟩}x is also σ. Then we have Q(f1) = Q(f2).

Proof. I claim there is a unitary U such that U |ψx⟩ = |ϕx⟩ for all x. This follows from the
fact that if B1B

∗
1 = B2B

∗
2 , then there exists a unitary U such that UB1 = B2.

Let A1 be the best algorithm that solves the query problem for f1, so that A1 makes Q(f1)
calls to Ox. Then, let A2 = UA1. A2 is a valid quantum circuit, and it solves the query
problem for f2 in Q(f1) queries, so we conclude that Q(f2) ≤ Q(f1). By a symmetric
argument, we have Q(f1) ≤ Q(f2), so we must have Q(f1) = Q(f2).

If f(x) = |ψx⟩ and the Gram matrix of {|ψx⟩}x is σ, then I define Q(σ) = Q(f) and
Qc(σ) = Qc(f). We know that Q(σ) and Qc(σ) are well-defined by the proposition above.
Since Gram matrices are often very easy to work with, I primarily use this Gram matrix
notation for the rest of this thesis.

Note that this Gram matrix notation applies whether f outputs a quantum state or a
classical value (as in the section above). If f outputs a classical value, then we take the
Gram matrix of the associated basis states. Since the inner product of two distinct basis
states is always 0, we know that ⟨x|σ|y⟩ = 0 whenever f(x) ̸= f(y), and ⟨x|σ|y⟩ = 1
whenever f(x) = f(y).
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As another generalization to quantum query complexity, I consider the case where our
register doesn’t necessarily start in the |0⟩ state for every input x. Instead, we have a
function f1 : Xn → Hans that specifies the initial state of our register given an input x,
alongside the function f2 that specifies the desired final state of the register.

Definition 3.7 (quantum query complexity of state conversion). The quantum query
complexity of state conversion Q(f1, f2) is identical to the quantum query complexity of
state generation, except that the register Hans starts in the state f1(x) on an input x.

As above, the query complexity only depends on Gram matrices associated with f1 and
f2, and it’s easier to work with Gram matrices than with functions. If the Gram matrix of
{f1(x)}x is σ1 and the Gram matrix of {f2(x)}x is σ2, then I define Q(σ1, σ2) = Q(f1, f2).

Note that state conversion is a generalization of state generation. In state generation, the
register Hans starts in the |0⟩ state regardless of the input x, which means that f1(x) = |0⟩,
so we have σ1 = J . Thus we have Q(σ) = Q(J, σ).

3.5 ϵ-error query complexity

The above sections all assumed that we wanted to exactly compute the output of a function,
with no chance of outputting an incorrect result. In practice, a small amount of error is
often acceptable, and can make the problem much easier to solve. All of the above notions
of query complexity (except deterministic query complexity) can be generalized to accept
algorithms that return incorrect results with probability ϵ.

Definition 3.8 (ϵ-error randomized query complexity). The ϵ-error randomized query
complexity Rϵ(f) is the minimum expected number of calls to Ox that the best randomized
algorithm A must make to solve the problem on any input x with probability at least 1− ϵ.

For quantum query complexity, we output a mixed state, so we can’t check if it matches
a given pure state with some probability. Instead, we check that the fidelity of our output
state with our goal state is at least some threshold.

Definition 3.9 (ϵ-error quantum query complexity). The ϵ-error quantum query complex-
ity Qϵ(f) is the minimum number of calls to Ox that the best quantum algorithm A must
make to be guaranteed to solve the problem on any input x. We say that A is correct if
the register Hans ends in a state ρ (after we trace out all the other registers) such that
F (ρ, |f(x)⟩ ⟨f(x)|) ≥ 1− ϵ.

ϵ-error versions of the other forms of quantum query complexity (coherent, state generation,
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and state conversion) are defined analogously.

We can simplify the definition of ϵ-error quantum query complexity with the following
trick. First, note that any quantum algorithm A will always produce the same output
mixed state ρx for the same input x. Thus, A solves the exact state generation problem
given by f ′(x) = ρx (where we generalize state generation to allow mixed states, redefining
the resulting Gram matrix as σ[x, y] =

√
F (ρx, ρy)). This means that we can express

ϵ-error quantum query complexity in terms of exact quantum query complexity just by
expressing the output condition as a relationship between f ′ and f .

Proposition 3.10. For any Gram matrix σ, we have

Qϵ(σ) = min
ρ
Q(ρ)

where ρ ranges over all Gram matrices with FH(ρ, σ) ≤ 1− ϵ.

Proof. This result is shown in [MR15, LR12]. Note that those papers use square-root
fidelity, so their statement different slightly from the one above.

The other forms of quantum query complexity (coherent, state generation, and state con-
version) satisfy analogous properties.

Finally, note that if ϵ is a positive constant, then the exact value of ϵ is often not very
important. In many cases, we can run the algorithm multiple times and collect the outputs
together to reduce error. For example, for randomized query complexity, we can simply
run the algorithm k times and take the majority output to reduce the error to roughly ϵk.
Similar procedures exist for the quantum query complexity of a classical function (though
not for arbitrary state generation problems). These procedures let us decrease ϵ to any
desired constant value with only a constant factor of overhead. Therefore, ignoring constant
factors, the query complexity is the same for any constant value of ϵ. This quantity is called
constant-error or bounded-error query complexity.
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Chapter 4

Overview of Adversary Methods

As discussed above, the main goal of the study of query complexity is to prove lower
bounds for query complexity. This chapter introduces adversary methods, which are a
class of techniques that prove lower bounds for quantum query complexity.

All adversary methods share a similar form: they let Γ be a special type of matrix, called an
adversary matrix, and they maximize over some function of Γ. The set of valid adversary
matrices changes for each method, as does the function being maximized.

4.1 Positive weight adversary method

Quantum adversary methods were first introduced in [Amb02]. This paper proved lower
bounds on quantum query complexity by imagining an adversary that tries to trick the
algorithm into producing the wrong solution. Roughly, this works by first picking some
input to the problem, then changing the input slightly in a way that changes the desired
output. Since the algorithm is limited in the number of bits it can query, it is limited in
its ability to detect the small change in the input, so it must produce similar outputs on
both inputs. Since the two inputs have different desired outputs, the algorithm must be
wrong on one of them, completing the lower bound. I encourage readers to refer to the
original paper for details.

This method was generalized in [Amb06] to allow for weighted connections between pairs
of inputs. Very roughly, a single weight corresponds to the probability that the adversary
changes the first input to the second input. Since there are N possible inputs, the weights
form a matrix of dimension N ×N , called the adversary matrix.
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As a followup, [ŠS05] proved this method was equivalent to a number of other lower bound
techniques known in the literature. The two most important equivalent forms in that paper
are the spectral adversary and weighted adversary, which are defined below.

The following matrices are used in the definition of the adversaries below.

Definition 4.1 (special matrices). For i ∈ [n], define matrices Di and Si by

Di[x, y] =

{
0 xi = yi

1 xi ̸= yi
Si[x, y] =

{
1 xi = yi

−1 xi ̸= yi

Note that Di = (J − Si)/2 and that Si is a rank 1 Gram matrix, as Si = viv
∗
i where

vi[x] = (−1)xi . While many of the existing definitions in the literature use Di, I find that
Si is more elegant to use in my generalized theorems.

Definition 4.2 (spectral adversary). Let f be a classical function with Gram matrix F .
Let Γ be a real symmetric matrix with non-negative entries such that Γ ◦ F = 0. Then
define

SA(f) = sup
Γ

∥Γ∥
maxi ∥Γ ◦Di∥

Definition 4.3 (weighted adversary). Let f be a classical function. Let w : Xn×Xn → R
and w′ : Xn ×Xn × [n] → R+ be functions that satisfy the following properties:

• w(x, y) = w(y, x)

• If f(x) = f(y), then w(x, y) = 0

• If xi = yi or f(x) = f(y), then w′(x, y, i) = 0

• If xi ̸= yi and f(x) ̸= f(y), then w′(x, y, i)w′(y, x, i) ≥ w2(x, y)

Then define wt(x) =
∑

y w(x, y) and v(x, i) =
∑

y w
′(x, y, i), and finally define

WA(f) = max
w,w′

min
x,y,i,j

√
wt(x)wt(y)

v(x, i)v(y, j)

subject to f(x) ̸= f(y)

v(x, i)v(y, j) > 0

Theorem 4.4. Let f be a classical function. Then SA(f) = WA(f).
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Proof. See Theorem 3.1 of [ŠS05].

In recent literature, this quantity is usually referred to as the positive weight adversary, to
distinguish it from the negative weight adversary below. For the rest of this thesis, I mostly
use the spectral adversary definition, as it’s shorter and it uses adversary matrices in the
same way as the other adversary methods. In practice many people prefer the weighted
adversary definition, as it’s usually easier to find weight schemes w,w′ than it is to compute
the spectral norm of an adversary matrix Γ.

4.2 Negative weight adversary method

While the positive weight adversary is relatively intuitive and easy to use, it is not a tight
lower bound on quantum query complexity. The first step in strengthening that bound was
in [HLS07], which generalized the spectral adversary above to allow the adversary matrix
to have positive or negative entries.

Definition 4.5 (negative weight adversary). Let f be a classical function with Gram
matrix F . Let Γ be a real symmetric matrix such that Γ ◦ F = 0. Then define

Adv±(f) = sup
Γ

∥Γ∥
maxi ∥Γ ◦Di∥

The only difference between Adv± and SA is that we remove the restriction that all the
entries of Γ are non-negative. Since we are taking a supremum over Γ, we immediately get
Adv±(f) ≥ SA(f).

The same paper proved Q(f) ≥ 1
2
Adv±(f), so the negative weight adversary is a lower

bound for zero-error quantum query complexity. Similar results are known for ϵ-error
quantum query complexity, though the constant factor depends on the value of ϵ [HLS07].
By the inequality above, these lower bounds also hold for the positive weight adversary.

Surprisingly, this stronger adversary method turns out to be a tight bound for constant-
error quantum query complexity.

Theorem 4.6. Let f be a classical function. Then

Q1/3(f) = Θ(Adv±(f))

The choice of the constant 1
3
is arbitrary, the theorem holds for any other constant in (0, 1

2
).
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Proof. See Theorem 1.1 of [LMRŠ10].

The negative weight adversary thus gives us the exact value of the bounded-error quantum
query complexity of any function (up to a constant factor). Since bounded-error quantum
query complexity is the most practically useful form of query complexity, the negative
weight adversary is ideal for most cases. However, the negative weight adversary is not
tight for all forms of quantum query complexity. For zero-error quantum query complexity,
or if the error ϵ approaches 0 or 1

2
in the limit, the negative weight adversary is only a

lower bound. It has been shown that the negative weight adversary is not always tight (up
to a constant factor) in those error regimes. Thus, we may be able to find even stronger
adversary methods that outperform the negative weight adversary method in those cases.

4.3 Multiplicative adversary method

One adversary method that can outperform the negative weight adversary method in these
non-constant-error regimes is the multiplicative adversary method. First introduced in
[Špa08], this method works by bounding a multiplicative error between subsequent calls
to the oracle as opposed to an additive error between subsequent calls to the oracle, as in
the negative weight adversary. For this reason, the negative weight adversary is sometimes
called the additive adversary, to distinguish it from the multiplicative adversary.

The multiplicative adversary method is usually defined as an optimization problem that
almost takes the form of a semi-definite program. Different papers give slightly different
definitions, I present the definition given in [MR15].

Definition 4.7 (multiplicative adversary). Let σ be a Gram matrix. Then define

Madv(σ) = sup
c>1

1

log c
max

Γ∈Pos(H)
log Tr(Γσ)

subject to Tr(ΓJ) = 1

Γ ◦ Si ≤ cΓ for all i ∈ [n]

The multiplicative adversary is a lower bound on quantum query complexity of state gen-
eration, we know that Qc(σ) ≥ Madv(σ) [LR12]. We also know that for a classical function
f with Gram matrix F , Madv(F ) = Ω(Adv±(f)) (see [AMRR11] or Theorem 6.4), so the
multiplicative adversary is strictly stronger than the negative weight adversary. Unlike the
negative weight adversary, it might not be the case that Q1/3(σ) = Θ(Madv(σ)), as the
multiplicative adversary might be larger than the ϵ-error query complexity.
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There is a natural extension of the multiplicative adversary that does act as a bound to
ϵ-error quantum query complexity.

Definition 4.8. Let σ be a Gram matrix and ϵ > 0. Then define

Madvϵ(σ) = min
ρ

Madv(ρ)

where ρ ranges over all Gram matrices with FH(ρ, σ) ≥ 1− ϵ.

By Proposition 3.10, we have that Qc
ϵ(σ) ≥ Madvϵ(σ). Thus, while the multiplicative

adversary does not bound ϵ-error query complexity directly, we can still use it to get
interesting bounds for the ϵ-error case.

4.4 Comparing adversary methods

Each of the three adversary methods above has advantages and disadvantages. While
the negative weight adversary is always stronger than the positive weight adversary, and
the multiplicative adversary is stronger than both, there are still good reasons to use the
weaker adversary methods.

The positive weight adversary, in particular the form of the weighted adversary of Definition
4.3, is relatively easy to apply to real world query problems. In many cases, one can assume
the weights are 0 or 1 and that only adjacent inputs have nonzero weights. The objective
function is then very easy to evaluate for a given weight scheme, making it very easy to
show basic lower bounds. While this doesn’t work for all query problems, it works for
enough that the positive weight adversary is still the most popular technique for proving
real-world adversary bounds. However, the positive weight adversary is weaker than the
negative weight adversary and isn’t mathematically simpler, so it has no advantages over
the negative weight adversary when it comes to theory work.

The negative weight adversary is tight for constant-error query complexity. This makes it
the method of choice for bounding that quantity. The spectral norm is well-understood,
which makes it relatively easy to work with theoretically as well. While this may seem like
it makes the negative weight adversary ideal for every case, there are some applications
where the negative weight adversary isn’t perfect. The negative weight adversary is not
tight for zero-error query complexity, or for cases where the error ϵ approaches 0 or 1

2
in

the limit. Thus the negative weight adversary is not useful for analyzing settings with a
very large chance of error, including the strong direct product theorem.
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The multiplicative adversary is the strongest adversary method, but it is also the hardest
to use. Thus, the multiplicative adversary is only used in the non-constant error regimes
where the negative weight adversary is not tight. For example, the multiplicative adversary
was used to prove the strong direct product theorem for quantum query complexity [LR12].
However, the multiplicative adversary is very difficult to use. It is challenging to compute
numerically (as it doesn’t take the form of a semi-definite program), it doesn’t connect in
an obvious way to any well-known quantities in quantum information, and there is little
existing work to suggest good forms for the adversary matrix. It is not known whether the
multiplicative adversary method is tight for any error regime.

In Chapter 6, I present a new formula for the multiplicative adversary that attempts to fix
the problems listed above. I express the bound in terms of the max-relative entropy, which
has been studied by a good amount of prior work in quantum information. I simplify the
complex optimization problem by removing one of the variables, leaving only a maximiza-
tion over Γ. Finally, in Theorem 6.4, I give a simple construction for Γ from any negative
weight adversary matrix, which could give intuition for what kinds of adversary matrices
are effective in optimizing the multiplicative adversary.
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Chapter 5

Generalized Adversary Method

The lower bound proofs of the negative weight adversary and of the multiplicative adversary
both make use of a construct called a progress function, which represents a kind of distance
between two Gram matrices. The proofs rely on showing that the distance between the
initial and final Gram matrices is very large, while performing a single query can only
change the distance by a small amount, thus the number of queries must be very large.

The core difference between the negative weight adversary and the multiplicative adversary
is the use of the progress function. In [Špa08], the progress function is always defined as
W t = ⟨Γ, ρtI⟩ where Γ is the adversary matrix and ρ is the Gram matrix after t steps.
The paper uses this adversary differently in each method: the negative weight adversary
bounds the difference W t − W t+1, while the multiplicative adversary bounds the ratio
W t/W t+1. This approach is extended in [AMRR11], which uses the same definition of
progress function, but adds more conditions on the valid adversary matrices for the negative
weight and multiplicative adversary methods.

Since changing the analysis of the progress function slightly from the negative weight
adversary yields the multiplicative adversary, one can imagine that another change could
yield a new adversary method, possibly one even stronger than the multiplicative adversary.
In order to search for new ways to analyze progress functions, it is helpful to generalize
away the specific choice of progress function above, and to keep only the essential conditions
needed to complete the proofs. Note that bounding the ratio W t/W t+1 is equivalent to
bounding the difference logW t − logW t+1. In general, instead of analyzing different ways
to measure the change in the progress function, it is simpler to vary the progress function
and to always consider the additive distance.
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5.1 Progress functions

I generalize the notion of a progress function to any asymmetric distance function on the
set of positive matrices. Formally, I define a progress function as follows.

Definition 5.1 (progress function). A progress function is a function d : Pos(H) ×
Pos(H) → R≥0 that represents a distance between matrices: d(X → Y ) represents the
distance starting from X and going to Y . We require that d satisfies the following proper-
ties for all X, Y, Z ∈ Pos(H):

1. Triangle: d(X → Z) ≤ d(X → Y ) + d(Y → Z)

2. Mixing: d(
∑

iXi ◦ Zi →
∑

i Yi ◦ Zi) ≤ maxi d(Xi → Yi), where
∑

i Zi is a Gram
matrix

The triangle property is fairly intuitive: if we want the progress function to represent a
distance between positive matrices, then it should satisfy the basic property of a distance.
The mixing property is less intuitive, but it is extremely useful when combined with Lemma
5.2. Similarly, in many of the proofs below, it is straightforward to show the triangle
property, but more complex to show the mixing property. These suggest that the mixing
property may not be the fundamentally correct property to use in the definition of progress
functions. I leave the question of finding replacement properties as a topic for future work.

I now move onto the main result, a proof that progress functions give us a lower bound on
quantum query complexity. Before I give that proof, I first show the following technical
lemma. This lemma is not specific to progress functions, but it is extremely helpful for
analyzing query algorithms.

Lemma 5.2. Let A be the Gram matrix of the set of states {|ψx⟩}x, and let B be the Gram
matrix of the set of states {Ox |ψx⟩}x, where Ox is the query oracle. Then there exists a
set of positive matrices {Zi} such that A =

∑
i J ◦ Zi and B =

∑
i Si ◦ Zi.

Proof. Let i ∈ [n] be an index into the bit string x, let |i⟩ be the corresponding basis state
of Hquery, and let |ψx,i⟩ denote the projection ⟨i|ψx⟩. Note that |ψx⟩ =

∑
i |ψx,i⟩. Let Zi be

the matrix given by ⟨x|Zi|y⟩ = ⟨ψx,i|ψy,i⟩. Zi is almost a Gram matrix (except that each
|ψx,i⟩ might not be a unit vector), so it is positive. Now, we need to check each of the sum
conditions.

To show the first condition, I show that ⟨x|A|y⟩ = ⟨x|
∑

i Zi|y⟩. We can compute

⟨x|A|y⟩ = ⟨ψx|ψy⟩ =
∑
i

∑
j

⟨ψx,i|ψy,j⟩
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Since |i⟩ and |j⟩ are orthogonal when i ̸= j, we know that |ψx,i⟩ and |ψy,j⟩ are orthogonal
when i ̸= j, so we can replace the double sum with a single sum to get

⟨x|A|y⟩ =
∑
i

⟨ψx,i|ψy,i⟩ =
∑
i

⟨x|Zi|y⟩ = ⟨x|
∑
i

Zi|y⟩

which completes the proof of the first condition.

To show the second condition, I show that ⟨x|B|y⟩ = ⟨x|
∑

i Si ◦ Zi|y⟩. We can compute

⟨x|B|y⟩ = ⟨Oxψx|Oxψy⟩ =
∑
i

∑
j

⟨Oxψx,i|Oxψy,j⟩

Note that Ox flips the sign when xi = 1 and does nothing otherwise, so we have Ox |ψx,i⟩ =
(−1)xi |ψx,i⟩. Then by a similar argument as above, we have

⟨x|B|y⟩ =
∑
i

(−1)xi(−1)yi ⟨ψx,i|ψy,i⟩ =
∑
i

(−1)xi(−1)yi ⟨x|Zi|y⟩

Note that (−1)xi(−1)yi = ⟨x|Si|y⟩, so the above equation simplifies to

⟨x|B|y⟩ =
∑
i

⟨x|Si|y⟩ ⟨x|Zi|y⟩ =
∑
i

⟨x|Si ◦ Zi|y⟩ = ⟨x|
∑
i

Si ◦ Zi|y⟩

which completes the proof of the second condition.

With this lemma, it is straightforward to prove that any progress function gives us a lower
bound on quantum query complexity.

Theorem 5.3. Let σ1, σ2 be Gram matrices, and let d be a progress function. Then we
have

Qc(σ1, σ2) ≥
d(σ1 → σ2)

maxi d(J → Si)

In the case of a classical function f with Gram matrix F , the above result simplifies to

Qc(f) ≥ d(J → F )

maxi d(J → Si)

Proof. Assume that Qc(σ1, σ2) = T , so we can find a query algorithm that runs for exactly
T steps. Recall that this query algorithm takes the form UTOxUT−1...U1OxU0. If the input
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bit string is x, let |ψt
x⟩ denote the state of the system immediately after we run the unitary

Ut. Let σ
(t) denote the Gram matrix of {|ψt

x⟩}x.

Since the Gram matrix of a set of vectors is unchanged by applying a unitary to each vector,
we know that the Gram matrix of {Ox |ψt

x⟩}x is exactly σ(t+1). Then by Lemma 5.2, we can
find a set {Zi} such that σ(t) =

∑
i J ◦ Zi and σ

(t+1) =
∑

i Si ◦ Zi. Since
∑

i Zi = σ(t) is a
Gram matrix, we know by the mixing property of d that d(σ(t) → σ(t+1)) ≤ maxi d(J → Si).

Again, since Gram matrices are unchanged by unitaries, we know that σ(0) = σ1 and
σ(T ) = σ2. Then by the triangle property of d, we know that

d(σ1 → σ2) = d(σ(0) → σ(T )) ≤
∑
t

d(σ(t) → σ(t+1))

Combining this with the above result gives

d(σ1 → σ2) ≤
∑
t

max
i
d(J → Si) = T ·max

i
d(J → Si)

Rearranging terms, we have

d(σ1 → σ2)

maxi d(J → Si)
≤ T = Qc(σ1, σ2)

which concludes the proof.

The above theorem gives us a huge set of lower bounds for quantum query complexity:
any progress function gives us a new bound, so we are only limited by the number of
progress functions we can invent. For the remainder of this chapter, I construct examples
of progress functions.

5.2 Adversary matrices

The reader might notice that the bound on quantum query complexity above does not
include any reference to an adversary matrix Γ, so the progress function does not appear to
give us a new adversary method. In the following theorem, I show that adversary matrices
let us transform each progress function info an infinite family of progress functions.

Theorem 5.4. Let d be a progress function and Γ be any positive matrix. Then the function
d′(X → Y ) = d(Γ ◦X → Γ ◦ Y ) is also a progress function.
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Proof. First, note that d′ is well-defined: since the Hadamard product of two positive
matrices is always positive, we know that Γ ◦X and Γ ◦ Y are always in the domain of d.
I now verify d′ satisfies each of the conditions of progress functions.

1. Triangle: d′(X → Z) ≤ d′(X → Y ) + d′(Y → Z). This is equivalent to d(Γ ◦X →
Γ ◦ Z) ≤ d(Γ ◦ X → Γ ◦ Y ) + d(Γ ◦ Y → Γ ◦ Z), which follows directly from the
triangle property of d.

2. Mixing: d′(
∑

iXi ◦ Zi →
∑

i Yi ◦ Zi) ≤ maxi d
′(Xi → Yi), where

∑
i Zi is a Gram

matrix. This is equivalent to d(
∑

i Γ◦Xi◦Zi →
∑

i Γ◦Yi◦Zi) ≤ maxi d(Γ◦Xi → Γ◦Yi),
which follows directly from the mixing property of d.

Therefore, d′ is a progress function.

Corollary 5.5. Let σ1, σ2 be Gram matrices, and let d be a progress function. Then we
have

Qc(σ1, σ2) ≥ sup
Γ∈Pos(H)

d(Γ ◦ σ1 → Γ ◦ σ2)
maxi d(Γ → Γ ◦ Si)

In the case of a classical function f with Gram matrix F , the above result simplifies to

Qc(f) ≥ sup
Γ∈Pos(H)

d(Γ → Γ ◦ F )
maxi d(Γ → Γ ◦ Si)

Proof. Combine Theorem 5.3 and Theorem 5.4.

Thus each progress function does give us an adversary method, as we are maximizing over
a set of adversary matrices. Now, all we need to do is find examples of progress functions,
and each example will give us a new adversary method.

5.3 Additive adversary method

Theorem 5.6. The function d(X → Y ) = ∥X − Y ∥ is a progress function.

Proof. I show that d satisfies each of the properties of a progress function.

1. Triangle: This follows immediately from the triangle property of the spectral norm.

2. Mixing: We want to show that ∥
∑

i(Xi − Yi) ◦ Zi∥ ≤ maxi ∥Xi − Yi∥. This follows
from the following chain of equations:
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∥∥∥∥∥∑
i

(Xi − Yi) ◦ Zi

∥∥∥∥∥ = sup
v
⟨vv∗,

∑
i

(Xi − Yi) ◦ Zi⟩

= sup
v

∑
i

⟨vv∗ ◦ Zi, Xi − Yi⟩

≤ sup
v

∑
i

∥vv∗ ◦ Zi∥tr ∥Xi − Yi∥

≤ max
i

∥Xi − Yi∥ sup
v

∑
i

∥vv∗ ◦ Zi∥tr

= max
i

∥Xi − Yi∥

For the last step, I claim that supv

∑
i ∥vv∗ ◦ Zi∥tr = 1. To prove this, first note that vv∗◦Zi

is a Hadamard product of positive matrices, so it is positive, so we can replace the trace
norm with a trace. Then we can move the sum inside the trace to get supv Tr(vv

∗ ◦
∑

i Zi).
Finally, since

∑
i Zi is a Gram matrix, taking a Hadamard product by it doesn’t affect the

trace, so we are left with supv Tr(vv
∗) = 1.

Since the spectral norm is a progress function, it gives us an adversary method:

Definition 5.7 (additive adversary). For any Gram matrices σ1, σ2, define

Aadv(σ1, σ2) = sup
Γ∈Pos(H)

∥Γ ◦ (σ1 − σ2)∥
maxi ∥Γ ◦ (J − Si)∥

To simplify the usual case of quantum state generation, also define Aadv(σ) = Aadv(J, σ).

It turns out that the requirement that the adversary matrix Γ be positive is unimportant.
By Lemma A.1, we can equivalently define Aadv as maximizing Γ over all Hermitian
matrices or over all real symmetric matrices.

We know by Corollary 5.5 that Qc(σ1, σ2) ≥ Aadv(σ1, σ2), so we have a new lower bound
for quantum query complexity. I claim this additive adversary method is equivalent to the
negative weight adversary method of Definition 4.5.

Theorem 5.8. For any classical function f with Gram matrix F , we have Aadv(F ) =
Θ(Adv±(f)). More precisely, we have Aadv(F ) ≤ Adv±(f) ≤ 2Aadv(F ).

Proof. I first claim that any solution to Aadv(F ) yields a solution to Adv±(f). By Lemma
A.1, let Γ be a real symmetric matrix that maximizes Aadv(F ), so that Aadv(F ) =

∥Γ◦(J−F )∥
maxi∥Γ◦(J−Si)∥ . Let Γ

′ = Γ ◦ (J − F ).
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I claim that Γ′ is a valid solution to Adv±(f). To see this, note that Γ′ is real symmetric
by definition, and that Γ′ ◦ F = Γ ◦ (F − F ◦ F ) = Γ ◦ (F − F ) = 0. Also recall that
Di = (J − Si)/2. Then we can bound the objective value by

Adv±(f) ≥ ∥Γ′∥
maxi ∥Γ′ ◦Di∥

=
2 ∥Γ ◦ (J − F )∥

maxi ∥Γ′ ◦ (J − Si)∥

≥ 2 ∥Γ ◦ (J − F )∥
maxi γ2(J − F ) ∥Γ ◦ (J − Si)∥

≥ ∥Γ ◦ (J − F )∥
maxi ∥Γ ◦ (J − Si)∥

= Aadv(J, F )

Next, I claim that any solution to Adv±(f) yields a solution to Aadv(F ). Let Γ maximize

Adv±(f), so that Adv±(f) = ∥Γ∥
maxi∥Γ◦Di∥ and Γ ◦ F = 0. This implies that Γ ◦ (J − F ) =

Γ ◦ J = Γ.

Consider Γ as a solution to Aadv(F ). We can bound the objective value by

Aadv(F ) ≥ ∥Γ ◦ (J − F )∥
maxi ∥Γ ◦ (J − Si)∥

=
∥Γ ◦ (J − F )∥
2maxi ∥Γ ◦Di∥

=
∥Γ∥

2maxi ∥Γ ◦Di∥

=
Adv±(f)

2

Combining both inequalities completes the theorem.
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Chapter 6

Multiplicative Adversary Method

The previous chapter gives us a simple framework for constructing new adversary methods.
I use this framework to present a new formulation of the multiplicative adversary method
that is both simpler and easier to work with than the existing formulations.

To create a new adversary method, we need to find a new progress function. The core idea
of this chapter is that Dmax is a progress function, and that the adversary method it gives
us is exactly the multiplicative adversary method.

6.1 Redefining the multiplicative adversary

Theorem 6.1. The function d(X → Y ) = Dmax(Y ∥X) is a progress function.

Proof. I show that d satisfies each of the properties of a progress function.

1. Triangle: This follows immediately from the triangle property of Dmax.

2. Mixing: By quasiconvexity of Dmax (Proposition 2.13), we have

d(
∑
i

Xi ◦ Zi →
∑
i

Yi ◦ Zi) = Dmax(
∑
i

Yi ◦ Zi∥
∑
i

Xi ◦ Zi) ≤ max
i

Dmax(Yi ◦ Zi∥Xi ◦ Zi)

Then, Hadamard product only decreases Dmax, so we have

max
i

Dmax(Yi ◦ Zi∥Xi ◦ Zi) ≤ max
i

Dmax(Yi∥Xi) = max
i
d(Xi → Yi)

Combining these chains of equations finishes the proof.
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By Corollary 5.5, this immediately gives us a new adversary method:

Qc(σ1, σ2) ≥ Madv(σ1, σ2) = sup
Γ∈Pos(H)

Dmax(Γ ◦ σ2∥Γ ◦ σ1)
maxiDmax(Γ ◦ Si∥Γ)

I claim that this adversary method is exactly equal to the multiplicative adversary method
of Definition 4.7.

Theorem 6.2. For any Gram matrix σ, we have Madv(J, σ) = Madv(σ).

Proof. I first prove that any solution to Madv(J, σ) yields a solution to Madv(σ). Let Γ

maximize Madv(J, σ), so that Madv(J, σ) = Dmax(Γ◦σ∥Γ)
maxi Dmax(Γ◦Si∥Γ) . Let Z ∈ Pos(H) maximize

⟨Γ◦σ,Z⟩
⟨Γ,Z⟩ , so that Dmax(Γ ◦ σ∥Γ) = log ⟨Γ◦σ,Z⟩

⟨Γ,Z⟩ . Finally, define c = maxiR(Γ ◦ Si∥Γ), and let

Γ′ = Γ ◦ Z.

Assume without loss of generality that Z is scaled such that Tr(Γ′J) = 1. This implies
that ⟨Γ, Z⟩ = 1, so Dmax(Γ ◦ σ∥Γ) = log⟨Γ ◦ σ, Z⟩.

I claim that c,Γ′ is a valid solution to Madv(σ). We have c > 1 by a property of R, and
Γ′ is positive since Γ and Z are both positive. We clearly have Tr(Γ′J) = 1, and we also
know that Γ′ ◦Si ≤ R(Γ′ ◦Si∥Γ′) ·Γ′ ≤ R(Γ ◦Si∥Γ) ·Γ′ ≤ cΓ′, so both conditions hold, and
the solution is valid.

Then we can bound the objective value of Madv(σ) as

Madv(σ) ≥ log Tr(Γ′σ)

log c

=
log⟨Γ ◦ Z, σ⟩

maxi Dmax(Γ ◦ Si∥Γ)

=
Dmax(Γ ◦ σ∥Γ)

maxi Dmax(Γ ◦ Si∥Γ)
= Madv(J, σ)

Next, I prove that any solution to Madv(σ) yields a solution to Madv(J, σ). Let c > 1,

Γ ∈ Pos(H) maximize Madv(σ), so that Madv(σ) = log Tr(Γσ)
log c

and Tr(ΓJ) = 1 and Γ ◦Si ≤
cΓ for all i.
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Consider Γ as a solution to Madv(J, σ). Note that Γ◦Si ≤ cΓ implies that R(Γ◦Si∥Γ) ≤ c.
Then we can bound the objective value of Madv(J, σ) as

Madv(J, σ) ≥ Dmax(Γ ◦ σ∥Γ)
maxi Dmax(Γ ◦ Si∥Γ)

≥ Dmax(Γ ◦ σ∥Γ)
log c

=
maxZ∈Pos(H) log

⟨Γ◦σ,Z⟩
⟨Γ,Z⟩

log c

≥
log ⟨Γ◦σ,J⟩

⟨Γ,J⟩

log c

=
logTr(Γσ)

log c

= Madv(σ)

Since we have Madv(σ) ≥ Madv(J, σ) and Madv(J, σ) ≥ Madv(σ), I conclude that
Madv(J, σ) = Madv(σ).

For the remainder of this chapter and the next chapter, I use this new definition of the
multiplicative adversary to reprove known results about the method. I claim these new
proofs are simpler than the original proofs, suggesting this new definition is the right one
to use in future work.

6.2 Madv is greater than Aadv

In this section, I prove that for any σ1, σ2, we have Madv(σ1, σ2) ≥ Aadv(σ1, σ2). This
proof is based on the proof of Lemma 19 in [AMRR11].

I first prove a lemma that relates the spectral norm and max-relative entropy.

Lemma 6.3. Fix some matrix Γ ∈ Pos(H). Then define a function f : R × Pos(H) ×
Pos(H) → R by

f(α, σ1, σ2) = Dmax(exp(αΓ) ◦ σ2∥ exp(αΓ) ◦ σ1)
Then for any pair of Gram matrices σ1, σ2, we have

∥Γ ◦ (σ1 − σ2)∥ = max

{
lim
α→0+

f(α, σ1, σ2)

|α|
, lim
α→0−

f(α, σ1, σ2)

|α|

}
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Proof. First, note that f is well-defined because exp always outputs a positive matrix
for any input, and the Hadamard product of two positive matrices is positive, so both
arguments to Dmax must be positive. Next, note that for any Hermitian matrix X, we
have ∥X∥ = max{λmax(X), λmax(−X)}.

I start by simplifying the expression for f(α, σ1, σ2) when α is small. Since we are taking
the limit α → 0, we can discard all terms that are O(α2) or smaller. Thus we can compute

f(α, σ1, σ2) = Dmax(exp(αΓ) ◦ σ2∥ exp(αΓ) ◦ σ1)
= log λmax((exp(αΓ) ◦ σ2)(exp(αΓ) ◦ σ1)−1)

≈ log λmax(((I+ αΓ) ◦ σ2)((I+ αΓ) ◦ σ1)−1)

= log λmax((I+ αΓ ◦ σ2)(I+ αΓ ◦ σ1)−1)

≈ log λmax((I+ αΓ ◦ σ2)(I− αΓ ◦ σ1))
≈ log λmax(I+ αΓ ◦ (σ2 − σ1))

= log(1 + λmax(αΓ ◦ (σ2 − σ1)))

≈ λmax(αΓ ◦ (σ2 − σ1))

= |α|λmax(sign(α) · Γ ◦ (σ2 − σ1))

Then we have

max

{
lim
α→0+

f(α, σ1, σ2)

|α|
, lim
α→0−

f(α, σ1, σ2)

|α|

}
= max

{
lim

α→0+
λmax(sign(α) · Γ ◦ (σ2 − σ1)), lim

α→0−
λmax(sign(α) · Γ ◦ (σ2 − σ1))

}
= max {λmax(Γ ◦ (σ2 − σ1)), λmax(−Γ ◦ (σ2 − σ1))}
= ∥Γ ◦ (σ1 − σ2)∥

which concludes the proof.

Theorem 6.4. For any Gram matrices σ1, σ2, we have Madv(σ1, σ2) ≥ Aadv(σ1, σ2).
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Proof. Let Γ maximize Aadv(σ1, σ2). Then we have

Aadv(σ1, σ2)

=
∥Γ ◦ (σ1 − σ2)∥

maxi ∥Γ ◦ (J − Si)∥

=
max

{
limα→0+

f(α,σ1,σ2)
|α| , limα→0−

f(α,σ1,σ2)
|α|

}
maxi ∥Γ ◦ (J − Si)∥

= max

{
lim

α→0+

1

|α|
f(α, σ1, σ2)

maxi ∥Γ ◦ (J − Si)∥
, lim
α→0−

1

|α|
f(α, σ1, σ2)

maxi ∥Γ ◦ (J − Si)∥

}
≤ max

{
lim

α→0+

f(α, σ1, σ2)

maxi f(α, J, Si)
, lim
α→0−

f(α, σ1, σ2)

maxi f(α, J, Si)

}
≤ Madv(σ1, σ2)

where the last line follows from noting that f(α,σ1,σ2)
maxi f(α,J,Si)

is exactly the formula you get from

considering exp(αΓ) as a possible solution to Madv(σ1, σ2).

As a side note, we can show that d(X → Y ) = max{Dmax(X∥Y ),Dmax(Y ∥X)} = δ∞(X, Y )
is a progress function, so it yields an adversary method. It turns out that this adversary
method is at least as strong as Dmax, and using it instead of Madv happens to eliminate
the complex max cases in the above proof.

6.3 The direct sum theorem

The direct sum theorem states that the query complexity of solving a problem k times is
at least k times the complexity of solving it once. In this section, I give a simple proof of
this theorem for Madv.

I first prove a lemma that describes the behavior of the denominator of Madv under tensor
products. This lemma will also be useful in the proof of the strong direct product theorem
in the next section.

Lemma 6.5. For any Γ ∈ Pos(H) and any positive integer k, we have

max
j∈[kn]

Dmax(Γ
⊗k ◦ Sj∥Γ⊗k) = max

i∈[n]
Dmax(Γ ◦ Si∥Γ)
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Proof. Let j = mn+ r, where r ∈ [n]. Then we have

max
j∈[kn]

Dmax(Γ
⊗k ◦ Sj∥Γ⊗k) = max

j∈[kn]
Dmax(Γ

⊗k ◦ (J⊗m ⊗ Sr ⊗ J⊗(k−m−1))∥Γ⊗k)

= max
j∈[kn]

Dmax((Γ ◦ J)⊗m ⊗ (Γ ◦ Sr)⊗ (Γ ◦ J)⊗(k−m−1)∥Γ⊗k)

= max
j∈[kn]

Dmax(Γ ◦ Sr∥Γ) + (k − 1)Dmax(Γ ◦ J∥Γ)

= max
j∈[kn]

Dmax(Γ ◦ Sr∥Γ)

= max
i∈[n]

Dmax(Γ ◦ Si∥Γ)

Note that Sj is an operator on H⊗k, while Si and Sr are operators on H.

The direct sum theorem then follows trivially from the tensor property of Dmax.

Theorem 6.6 (direct sum theorem). For any Gram matrices σ1, σ2 and any positive integer
k, we have Madv(σ⊗k

1 , σ⊗k
2 ) ≥ k ·Madv(σ1, σ2).

Proof. Let Γ maximize Madv(σ1, σ2). Then we have

Madv(σ⊗k
1 , σ⊗k

2 ) = max
Γ′∈Pos(H⊗k)

Dmax(Γ
′ ◦ σ⊗k

2 ∥Γ′ ◦ σ⊗k
1 )

maxj∈[kn] Dmax(Γ′ ◦ Sj∥Γ′)

≥ Dmax(Γ
⊗k ◦ σ⊗k

2 ∥Γ⊗k ◦ σ⊗k
1 )

maxj∈[kn]Dmax(Γ⊗k ◦ Sj∥Γ⊗k)

=
kDmax(Γ ◦ σ2∥Γ ◦ σ1)

maxj∈[kn] Dmax(Γ⊗k ◦ Sj∥Γ⊗k)

=
kDmax(Γ ◦ σ2∥Γ ◦ σ1)
maxi∈[n] Dmax(Γ ◦ Si∥Γ)

= k ·Madv(σ1, σ2)

If no Γ attains the maximum of Madv(σ1, σ2), then the same proof works by letting Γ
approach arbitrarily close to the value of the supremum.

I conjecture that this proof can be extended to show that for any list of query problems,
the complexity of solving all the problems at once is at least equal to the sum of the
complexities of each problem. Proving this would require a guarantee that we can always
find a Γ that maximizes Madv with a particular value in the denominator.
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Chapter 7

Strong Direct Product Theorem

In this chapter, I reprove a result known as the strong direct product theorem. This
theorem states that the quantum query complexity of solving k copies of a problem is at
least k times the query complexity of solving one copy of the problem. This differs from the
direct sum theorem above in that it also accounts for error. The direct product theorem
says that any algorithm that uses fewer than the minimum number of queries will have an
exponential decay in its success probability.

The proof in this section is based on the proof of the strong direct product theorem in
[LR12]. I believe that my proof is easier to follow, as while I don’t change the overall proof
structure, I start from a simpler formula for Madv.

7.1 Other direct product theorems

The notion of a direct product theorem is not unique to quantum query complexity. Sim-
ilar direct product theorems are known for other domains within query complexity and
communication complexity:

• In randomized query complexity, [Dru12] proved that any randomized algorithm
that attempts to solve f⊗k with O(γ3kRϵ(f)) queries (where ϵ is a fixed constant)
has success probability at most (1/2 + γ)k.

• In quantum communication complexity, [She12] proved a slightly weaker result: that
solving a quantum communication problem f⊗k with success probability at least
2−Ω(k) requires Ω(k) qubits of communication.
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• Similar results have been shown for classical communication complexity [BRWY13],
for multi-party classical communication complexity [BPSW06], and for multi-party
quantum communication complexity [JK22].

The strong direct product theorem is only known for query complexity and approximate
degree problems. The direct product theorems for other models, such as communication
complexity, are usually weaker.

In this thesis, I focus only on the case of quantum query complexity, though I generalize
over both classical functions and state generation problems. I hypothesize that the strong
direct product theorem also holds for state conversion, though I don’t prove this result.

7.2 Lemmas

Before I prove the direct product theorem, I first need to prove several lemmas:

1. Lemma 7.1 relates fidelity and the eigenvalues of the adversary

2. Lemma 7.2 gives a formula for Dmax on linear combinations

3. Lemma 7.3 gives a specific solution to Madv from Aadv

I first prove a lemma that connects fidelity and matrix inner products. This will be used
to connect the Hadamard product fidelity output condition with the supremum over inner
products definition of Dmax.

Lemma 7.1. If ρ, σ are mixed states and Γ is positive, then

⟨Γ⊗k, ρ⟩ ≥ F (ρ, σ⊗k)

(
λmin(Γ)λmax(Γ)

λmin(Γ) + λmax(Γ)− ⟨Γ, σ⟩

)k

Proof. Note that this lemma is not specific to quantum query complexity, so its proof is
not the main focus of this thesis. As such, I start from a known related result instead of
proving it from scratch. Corollary 3.13 of [LR12] states that for any a1 ≥ a0 > 0, if p
is a distribution for a random variable A taking values in [a0, a1], if Ep[A] = ā, if q is a
distribution over (R+)k, and if F (p⊗k, q) ≥ δk, then

Eq

[
k∏

l=1

Al

]
≥
(

δa0a1
a0 + a1 − ā

)k

Note that this statement is slightly different from the one in [LR12]: the paper uses square-
root fidelity, while I use normal fidelity.
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This lemma follows directly from the above result. Let p be a measurement of Γ on σ
and q be a measurement of Γ⊗k on ρ. In both cases, the range of the measurement is the
same as the range of the eigenvalues of Γ, so we have a0 = λmin(Γ) and a1 = λmax(Γ).
The expected value of a measurement is just the inner product, so we have ā = ⟨Γ, σ⟩.
Finally, we know that F (ρ, σ⊗k) ≤ F (p⊗k, q), since measuring a pair of mixed states can
only increase their fidelity. Combining all of the above results completes the proof.

Next, I prove a lemma that exactly characterizes the behavior of Dmax on particular linear
inputs. This lets us compute properties of Dmax that we need for the final lemma.

Lemma 7.2. Let ρ,X be Hermitian operators that aren’t negative semi-definite. Let c1, c2
be real numbers with c1 > c2, and assume ρ+ c2X is positive. Then

R(ρ+ c1X∥ρ+ c2X) =
1 + c1R(X∥ρ)
1 + c2R(X∥ρ)

Dmax(ρ+ c1X∥ρ+ c2X) = log

(
1 + c1 exp(Dmax(X∥ρ))
1 + c2 exp(Dmax(X∥ρ))

)
Proof. First, since X is not negative, we have (c1 − c2)X ̸⪯ 0, so ρ + c1X ̸⪯ ρ + c2X, so
we know that R(ρ + c1X∥ρ + c2X) ≥ 1. Second, since ρ + c2X is positive, we know that
R(ρ+ c2X∥ρ) = 1 + c2R(X∥ρ) is also positive. Then we can compute

R(ρ+ c1X∥ρ+ c2X) = min{λ ≥ 1 : c1X + ρ ⪯ λ(c2X + ρ)}
= min{λ ≥ 1 : (c1 − c2λ)X ⪯ (λ− 1)ρ}
= min{λ ≥ 1 : (c1 − c2λ)R(X∥ρ) ≤ λ− 1}
= min{λ ≥ 1 : 1 + c1R(X∥ρ) ≤ λ(1 + c2R(X∥ρ))}

=
1 + c1R(X∥ρ)
1 + c2R(X∥ρ)

The other result follows immediately from the definition of R.

In particular, note that the above lemma always applies when ρ is a Gram matrix and X
is a Hermitian operator with zeros on the diagonal.

Finally, I prove a lemma that guarantees we can find a nice solution for Madv given any
solution to Aadv. The adversary matrix is guaranteed to have several useful properties
that simultaneously bound the value of Madv and let us apply Lemma 7.1 above. This
lemma requires an unusual condition, namely that (J − σ) ◦ (J − σ) = λ(J − σ). This
condition is always true with λ = 1 for classical functions.
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Lemma 7.3. Let σ be a Gram matrix and γ > 0. Assume that (J−σ)◦(J−σ) = λ(J−σ)
for some λ ∈ [0, 2]. Then there exists a matrix Γm and a unit vector v satisfying:

1. λmin(Γm) = 1

2. λmax(Γm) ≤ 1 + 2γ Aadv(σ)

3. maxi Dmax(Γm ◦ Si∥Γm) ≤ log(1 + 2γ)

4. v∗(Γm ◦ σ)v = 1 + λγ Aadv(σ)

5. v∗Γmv = 1

Proof. Let Γ maximize Aadv(σ), so that

Aadv(σ) =
∥Γ ◦ (J − σ)∥

maxi ∥Γ ◦ (J − Si)∥

Assume without loss of generality that λmax(Γ ◦ (J − σ)) = ∥Γ ◦ (J − σ)∥ = 1. If this
equation doesn’t hold, then we can simply scale Γ by the appropriate (positive or negative)
real constant without changing Aadv.

To simplify the notation, I define A = Aadv(σ) and Γ′ = Γ ◦ (J − σ).

Let Γm = (1 + γA) · I− γA · Γ′, and let v be the principal eigenvector of Γ′.

I verify each condition in order:

λmin(Γm) = 1 + γA− γA · λmax(Γ
′) = 1 + γA− γA = 1

λmax(Γm) = 1 + γA− γA · λmin(Γ
′) ≤ 1 + γA+ γA ∥Γ′∥ = 1 + 2γA
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max
i

Dmax(Γm ◦ Si∥Γm) = max
i

Dmax(((1 + γA) · I− γA · Γ′) ◦ Si∥(1 + γA) · I− γA · Γ′)

= max
i

Dmax((1 + γA) · I− γA · Γ′ ◦ Si∥(1 + γA) · I− γA · Γ′)

= max
i

log(1 +R(γA · Γ′ ◦ (J − Si)∥(1 + γA) · I− γA · Γ′))

≤ max
i

log(1 +R(γA · Γ′ ◦ (J − Si)∥(1 + γA) · I− γA ∥Γ′∥ · I))

= max
i

log(1 +R(γA · Γ′ ◦ (J − Si)∥I))

= max
i

log(1 + λmax(γA · Γ′ ◦ (J − Si)))

≤ max
i

log(1 + γA · ∥Γ′ ◦ (J − Si)∥)

= max
i

log

(
1 + γ · ∥Γ ◦ (J − Si) ◦ (J − σ)∥

∥Γ ◦ (J − Si)∥

)
≤ max

i
log(1 + γ · γ2(J − σ))

≤ max
i

log(1 + 2γ)

v∗(Γm ◦ σ)v = v∗((1 + γA) · I ◦ σ − γA · Γ′ ◦ σ)v
= (1 + γA) · v∗Iv − γA · v∗(Γ′ ◦ σ)v
= 1 + γA− γA · v∗((1− λ)Γ′)v

= 1 + γA− (1− λ)γA

= 1 + λγA

v∗Γmv = v∗((1 + γA) · I− γA · Γ′)v

= (1 + γA) · v∗Iv − γA · v∗Γ′v

= 1 + γA− γA

= 1

7.3 Main result

I now prove the main result of this section, a strong direct product theorem for quantum
query complexity.
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Theorem 7.4. Let σ be a Gram matrix, k be a positive integer, δ ∈ [0, 1], and β > 0.
Assume that (J − σ) ◦ (J − σ) = λ(J − σ). Then

Madv1−δk(σ
⊗k) ≥

k log(δ 1+2β
1+(2−λ)β

)

2β
Aadv(σ)

For instance, if the condition holds for λ = 1, we can pick β = 1 to get

Madv1−δk(σ
⊗k) ≥ k log(δ · 3/2)

2
Aadv(σ)

Proof. For an arbitrary γ > 0, let Γm and v be given by Lemma 7.3. Let ρ vary over all
Gram matrices that satisfy FH(ρ, σ

⊗k) ≥ δk. Then we have

Madv1−δk(σ
⊗k) = min

ρ
Madv(ρ)

= min
ρ

max
Γ∈Pos(H⊗k)

Dmax(Γ ◦ ρ∥Γ)
maxj∈[kn] Dmax(Γ ◦ Sj∥Γ)

≥ min
ρ

Dmax(Γ
⊗k
m ◦ ρ∥Γ⊗k

m )

maxj∈[kn] Dmax(Γ⊗k
m ◦ Sj∥Γ⊗k

m )

= min
ρ

Dmax(Γ
⊗k
m ◦ ρ∥Γ⊗k

m )

maxi∈[n] Dmax(Γm ◦ Si∥Γm)

≥ 1

log(1 + 2γ)
min
ρ

Dmax(Γ
⊗k
m ◦ ρ∥Γ⊗k

m )

Next, I use the supremum definition of Dmax(Γ
⊗k
m ◦ ρ∥Γ⊗k

m ) and Lemma 7.1 to get

Dmax(Γ
⊗k
m ◦ ρ∥Γ⊗k

m )

= sup
A∈D(H⊗k)

log
⟨A,Γ⊗k

m ◦ ρ⟩
⟨A,Γ⊗k

m ⟩

≥ log
⟨(vv∗)⊗k,Γ⊗k

m ◦ ρ⟩
⟨(vv∗)⊗k,Γ⊗k

m ⟩
= log⟨Γ⊗k

m , (vv∗)⊗k ◦ ρ⟩

≥ logF ((vv∗)⊗k ◦ ρ, (vv∗)⊗k ◦ σ⊗k)

(
λmin(Γm)λmax(Γm)

λmin(Γm) + λmax(Γm)− ⟨Γm, (vv∗) ◦ σ⟩

)k
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Since ρ varies over all Gram matrices with FH(ρ, σ
⊗k) ≥ δk, we know that minρ F ((vv

∗)⊗k◦
ρ, (vv∗)⊗k ◦ σ⊗k) ≥ δk. Combining this with the first chain of equations yields

Madv1−δk(σ
⊗k) ≥ 1

log(1 + 2γ)
log δk

(
λmin(Γm)λmax(Γm)

λmin(Γm) + λmax(Γm)− ⟨Γm, (vv∗) ◦ σ⟩

)k

≥ k

log(1 + 2γ)
log

(
δ

1 + 2γ Aadv(σ)

1 + 2γ Aadv(σ)− λγ Aadv(σ)

)

=
k log

(
δ 1+2γAadv(σ)
1+γAadv(σ)(2−λ)

)
log(1 + 2γ)

Then substitute γ = β/Aadv(σ) to get

Madv1−δk(σ) ≥
k log(δ 1+2β

1+(2−λ)β
)

log(1 + 2β/Aadv(σ))

≥ Aadv(σ)

2β
k log(δ

1 + 2β

1 + (2− λ)β
)

=
k log(δ 1+2β

1+(2−λ)β
)

2β
Aadv(σ)

Corollary 7.5. Let f be a classical function with Gram matrix F , k be a positive integer,
and δ ∈ (2/3, 1]. Then

Qc
1−δk(f

⊗k) ≥ k log(δ · 3/2)
2

Aadv(F )

Q1−δk/2(f
⊗k) ≥ k log(δ · 3/2)

4
Aadv(F )

Proof. Note that F is a 0-1 matrix, so (J − F ) ◦ (J − F ) = (J − F ). Therefore we can
apply Theorem 7.4 with λ = β = 1 to get the first result. The second result follows from
the fact that Qc

ϵ(F ) ≤ 2Q1−
√
1−ϵ(F ), which is proved as Claim 2.5 in [LR12].

Note that Corollary 7.5 is exactly equivalent to Theorem 4.2 of [LR12].
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Chapter 8

Conclusion and Future Work

I presented a generalized adversary method that unifies and simplifies the proofs of both
the negative weight adversary and multiplicative adversary. This led to a new formula for
the multiplicative adversary in terms of max-relative entropy. I used this new formula to
reprove existing results on the multiplicative adversary, including the strong direct product
theorem for quantum query complexity.

In the near term, the most useful of these results is likely the new formula for the multi-
plicative adversary. Max-relative entropy is much easier to work with than the complex
optimization programs used to define the multiplicative adversary thus far. This could
lead to the multiplicative adversary being used to prove lower bounds on a much wider
variety of query problems.

There are many open questions regarding this new generalized method. The most impor-
tant such question is whether we can use this generalization to construct a new adversary
method that lets us prove new lower bounds for query problems. Constructing a new adver-
sary method requires two steps. First, we need to find a new way to measure the distance
between two Gram matrices, and we need to prove this measure satisfies the definition of
a progress function. Second, we need to show that the new adversary method is stronger
or simpler than the existing methods for some real query problem.

8.1 Other progress functions

There are two natural classes of functions that are candidates to be progress functions.
First, any matrix norm ∥X∥ naturally corresponds to a potential progress function d by
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letting d(X → Y ) = ∥X − Y ∥. The negative weight adversary is constructed in this way
from the spectral norm. Second, any way to measure the divergence or entropy between
pairs of matrices might give another progress function, like how the multiplicative adversary
comes from the max-relative entropy.

I have a few initial results towards finding useful new progress functions. I wrote code to
evaluate a variety of matrix norms and divergences, and I found numerical counterexamples
that suggest that the following quantities do not yield progress functions:

• The Schatten p-norm for p <∞, including the trace norm and the Frobenius norm

• The vector p-norm for p <∞

• The quantum Renyi divergence D̃α when α < ∞ (defined in [MLDS+13]), including
the relative entropy

I have also found proofs that the following quantities do yield progress functions (see
Theorem A.2 and Theorem A.3 for details):

• The vector ∞-norm (also called the max norm)

• The γ2 norm

Unfortunately, neither yields an interesting new adversary method. The max norm adver-
sary always returns 1, while the γ2 norm adversary is strictly weaker than the negative
weight adversary.

I was not able to find conclusive results either way for several other matrix norms, including
the entrywise (2,∞)-norm and most operator norms.

8.2 Geodesic distances

One interesting potential progress function comes from the study of Riemannian geom-
etry. If you give Pos(H) a Riemannian metric tensor, then you can define the distance
between pairs of positive matrices as the length of the geodesic connecting those matrices.
This quantity is called the geodesic distance or the Fisher metric [LSY19], and it can be
computed by

δ2(X, Y ) =
∥∥log(λ(XY −1))

∥∥
2

where λ returns the vector of eigenvalues, and log is a vector function that acts on each
entry independently. This definition is quite similar to max-relative entropy, in particular
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its symmetrized form, which equals

δ∞(X, Y ) = max{Dmax(X∥Y ),Dmax(Y ∥X)} =
∥∥log(λ(XY −1))

∥∥
∞

I define a generalization of the above two distances, which I call the order-p geodesic
distance. For p ∈ [1,∞], the order-p geodesic distance from X to Y is given by

δp(X, Y ) =
∥∥log(λ(XY −1))

∥∥
p

The order-p geodesic distance satisfies a number of elegant properties. It is affine-invariant,
meaning that δp(X, Y ) = δp(AXA

∗, AY A∗) for any A. It can be reduced to a metric
on the set of positive matrices that measures their distance to the identity, by defining
δp(X, Y ) = δp(XY

−1, I) := δp(XY
−1). Finally, δp approaches infinity as X or Y approaches

the boundary of Pos(H), so it’s a good representation of the geometry of the space.

I hypothesize that δp is a progress function. I have a proof that δp satisfies the triangle
property (see Theorem A.5), but I have not been able to prove that it satisfies the mixing
property. I have performed extensive numerical experiments and I have not yet found a
counterexample to show that δp does not satisfy the mixing property for any p, so this line
of research seems very promising for future work.

If δ2 is indeed a progress function, then the corresponding adversary method may be useful
in practice for proving lower bounds. For one, the new adversary method would be strongly
theoretically motivated through the connection with Riemannian geometry. In addition,
we know that δ∞ gives a variant of the multiplicative adversary, so we already know that
a closely related adversary method is very useful in practice. I conjecture that δ2 will yield
a useful new adversary method.
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Appendix A

Additional Proofs

This appendix gives the proofs of various technical lemmas and claims that were omitted
from the main body of this thesis.

Lemma A.1. For any Gram matrices σ1, σ2, we have

Aadv(σ1, σ2) = max
Γ∈Pos(H)

∥Γ ◦ (σ1 − σ2)∥
maxi ∥Γ ◦ (J − Si)∥

= max
Γ∈Herm(H)

∥Γ ◦ (σ1 − σ2)∥
maxi ∥Γ ◦ (J − Si)∥

where Herm(H) is the set of all Hermitian matrices on H. Furthermore, if σ1 and σ2 are
both real symmetric, then we also have

Aadv(σ1, σ2) = max
Γ∈Sym(H)

∥Γ ◦ (σ1 − σ2)∥
maxi ∥Γ ◦ (J − Si)∥

where Sym(H) is the set of all real symmetric matrices on H. Note that the supremum
in the original definition of Aadv has been replaced by a maximum, which means that the
maximum Γ is attained in every case.

Proof. I first show that the maximum is attained in the case where Γ ∈ Pos(H). The
general proof strategy is to reduce the optimization problem to optimizing a continuous
function over a compact domain. Then by the extreme value theorem, we can conclude
the maximum is indeed attained.
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Let Γ be a candidate solution to Aadv(σ1, σ2). We can assume without loss of generality
that maxi ∥Γ ◦ (J − Si)∥ = 1, as we can scale Γ by any constant without affecting the
objective value. This eliminates the case where the denominator goes to 0, which guarantees
we are optimizing a continuous function. We can also assume that the diagonal elements
of Γ are all 0, as the diagonal elements of σ1 − σ2 and J − Si are all 0, so the diagonal
elements of Γ are destroyed by the Hadamard product regardless. Finally, note that for
any non-diagonal entry, there is some i for which J −Si is equal to 2 on that entry (as any
distinct bit strings x, y must disagree on some bit i). Since the spectral norm is at least
the max norm, we have maxi ∥Γ ◦ (J − Si)∥ ≥ 2 ·∥Γ∥max, so ∥Γ∥max ≤ 1

2
. Note that the set

of matrices Γ satisfying ∥Γ∥max ≤ 1
2
is a compact ball. Together with the other conditions

on Γ, we are optimizing Γ over an intersection of several closed and compact sets, so Γ is
optimized over a compact set, so the maximum is attained. Thus, we have

Aadv(σ1, σ2) = max
Γ∈Pos(H)

∥Γ ◦ (σ1 − σ2)∥
maxi ∥Γ ◦ (J − Si)∥

Next, I show that we can relax the condition Γ ∈ Pos(H) to Γ ∈ Herm(H) without affecting
the objective value. We know that Pos(H) ⊂ Herm(H), so we clearly have

sup
Γ∈Pos(H)

∥Γ ◦ (σ1 − σ2)∥
maxi ∥Γ ◦ (J − Si)∥

≤ sup
Γ∈Herm(H)

∥Γ ◦ (σ1 − σ2)∥
maxi ∥Γ ◦ (J − Si)∥

We just need to prove the other direction of the inequality. Let Γ ∈ Herm(H) be a
candidate matrix for the right hand side. Then let Γ′ = Γ − λmin(Γ) · I. Note that
λmin(Γ

′) = λmin(Γ) − λmin(Γ) · 1 = 0, so all the eigenvalues of Γ′ are non-negative, so
Γ′ ∈ Pos(H). Then, note that Γ and Γ′ only differ on their diagonal entries, which are
discarded by the Hadamard products with σ1−σ2 and J−Si. Thus we have Γ◦(σ1−σ2) =
Γ′ ◦ (σ1 − σ2) and Γ ◦ (J − Si) = Γ′ ◦ (J − Si), so Γ′ attains the same objective value as Γ.
This proves that optimizing over Pos(H) is at least as strong as optimizing over Herm(H),
so we have

sup
Γ∈Pos(H)

∥Γ ◦ (σ1 − σ2)∥
maxi ∥Γ ◦ (J − Si)∥

≥ sup
Γ∈Herm(H)

∥Γ ◦ (σ1 − σ2)∥
maxi ∥Γ ◦ (J − Si)∥

Combining this with the above inequality proves the two sides are equal. Since we have
already proved the maximum is attained for the left side, the maximum must also be
attained for the right side, so we have

max
Γ∈Pos(H)

∥Γ ◦ (σ1 − σ2)∥
maxi ∥Γ ◦ (J − Si)∥

= max
Γ∈Herm(H)

∥Γ ◦ (σ1 − σ2)∥
maxi ∥Γ ◦ (J − Si)∥
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I now prove the final claim in the lemma. The general strategy is to write Aadv as a semi-
definite program with entirely real constraints and only one complex matrix variable. Then
we replace this complex matrix with a real symmetric matrix and construct an equivalent
solution to the original problem.

Assume σ1 and σ2 are both real symmetric. We can assume without loss of generality that
maxi ∥Γ ◦ (J − Si)∥ ≤ 1, as we can scale Γ by any constant without affecting the objective
value. We can replace the denominator of our objective value with this condition to rewrite
our optimization problem as the following:

Aadv(σ1, σ2) = max
Γ∈Herm(H)

∥Γ ◦ (σ1 − σ2)∥

subject to ∥Γ ◦ (J − Si)∥ ≤ 1 for all i ∈ [n]

We can assume without loss of generality that the primary eigenvalue of Γ◦(σ1−σ2) is pos-
itive, as we can simply negate Γ otherwise. Then we have ∥Γ ◦ (σ1 − σ2)∥ = maxδ⟨δδ∗,Γ ◦
(σ1 − σ2)⟩, where δ is a unit vector. We also know that ∥Γ ◦ (J − Si)∥ ≤ 1 if and only if
−I ≤ Γ ◦ (J − Si) ≤ I. Using these, we can replace the above problem with

Aadv(σ1, σ2) = max
Γ∈Herm(H)

max
δ

⟨δδ∗,Γ ◦ (σ1 − σ2)⟩

subject to −I ≤ Γ ◦ (J − Si) ≤ I for all i ∈ [n]

If we replace the maximum over δ with a supremum, we can also assume that δ has no
zero entries, as the supremum lets us get arbitrary close to zero entries. Then note that
δδ∗ is positive, so by the Schur product theorem 0 ≤ X − Y iff 0 ≤ (X − Y ) ◦ δδ∗, so the
above is equivalent to

Aadv(σ1, σ2) = max
Γ∈Herm(H)

sup
δ

⟨δδ∗ ◦ Γ, σ1 − σ2⟩

subject to −δδ∗ ◦ I ≤ δδ∗ ◦ Γ ◦ (J − Si) ≤ δδ∗ ◦ I for all i ∈ [n]

Then let Z = δδ∗ ◦ Γ and ∆ = δδ∗ ◦ I. We can change variables by optimizing over all
Z ∈ Herm(H) instead of over all Γ ∈ Herm(H). Then ∆ can be set to any real diagonal
matrix with positive entries, so we get

Aadv(σ1, σ2) = max
Z∈Herm(H)

sup
∆

⟨Z, σ1 − σ2⟩

subject to −∆ ≤ Z ◦ (J − Si) ≤ ∆ for all i ∈ [n]
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We have finally reduced the problem to a semi-definite program with entirely real con-
straints and only a single complex variable. Now, since all the matrices except Z are real
symmetric, we can replace Z with ZT to get another valid solution with the same objec-
tive value. In fact, any convex combination of Z and ZT yields a valid solution with the
same objective value, as both the objective value and the constraints are entirely linear.
Thus Z ′ = Z+ZT

2
is real symmetric and achieves at least the same objective value as Z,

so we can constrain the problem to only optimize over real symmetric matrices without
decreasing the objective function. This change also can’t increase the objective function
(as Sym(H) ⊂ Herm(H)), so we have

Aadv(σ1, σ2) = max
Z∈Sym(H)

sup
∆

⟨Z, σ1 − σ2⟩

subject to −∆ ≤ Z ◦ (J − Si) ≤ ∆ for all i ∈ [n]

Then, we perform the chain of equivalences in reverse order to return to the original
problem. We pick some real unit vector δ such that δδ∗ = ∆, then change variables back
to Γ, δ, where Γ is the unique matrix with Γ ◦ δδ∗ = Z (which must exist as δ has entirely
nonzero entries). We then convert the inner product and positivity conditions back into
spectral norms, and finally relax the bound on the denominator to get

Aadv(σ1, σ2) = max
Γ∈Sym(H)

∥Γ ◦ (σ1 − σ2)∥
maxi ∥Γ ◦ (J − Si)∥

This finally completes the proof of the lemma.

Theorem A.2. The function d(X → Y ) = ∥X − Y ∥max is a progress function, but the
adversary method Advmax it generates is not very useful, as Advmax(σ1, σ2) ≤ 1.

Proof. I show that d satisfies each of the properties of a progress function.

1. Triangle: This follows immediately from the triangle property of the max norm.

2. Mixing: We have
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d(
∑
i

Xi ◦ Zi →
∑
i

Yi ◦ Zi) =

∥∥∥∥∥∑
i

(Xi − Yi) ◦ Zi

∥∥∥∥∥
max

= max
x,y

∣∣∣∣∣∑
i

(Xi − Yi)[x, y] · Zi[x, y]

∣∣∣∣∣
≤ max

x,y

∑
i

|(Xi − Yi)[x, y] · Zi[x, y]|

≤ max
x,y

max
i

|(Xi − Yi)[x, y]| ·
∑
i

|Zi[x, y]|

≤ max
x,y

max
i

|(Xi − Yi)[x, y]| ·max
x,y

∑
i

|Zi[x, y]|

= max
i

∥Xi − Yi∥max ·max
x,y

∑
i

|Zi[x, y]|

≤ max
i

∥Xi − Yi∥max

= max
i
d(Xi → Yi)

where we know that maxx,y
∑

i |Zi[x, y]| ≤ 1 because we can assume Zi[x, y] is positive (as
we can Hadamard it by the appropriate Sj otherwise), and since

∑
i Zi is a Gram matrix,

we have ∥
∑

i Zi∥max ≤ 1.

Since the max norm is a progress function, it gives us a new adversary method

Advmax(σ1, σ2) = sup
Γ∈Pos(H)

∥Γ ◦ (σ1 − σ2)∥max

maxi ∥Γ ◦ (J − Si)∥max

Note that maxi ∥Γ ◦ (J − Si)∥max = 2 ∥Γ ◦ (J − I)∥max, as for every nondiagonal entry of
Γ, there is always some i for which J − Si has a 2 in that entry. We also know that

∥Γ ◦ (σ1 − σ2)∥max ≤ ∥Γ ◦ (J − I)∥max · ∥σ1 − σ2∥max ≤ 2 ∥Γ ◦ (J − I)∥max

Therefore, we have

Advmax(σ1, σ2) ≤ sup
Γ∈Pos(H)

2 ∥Γ ◦ (J − I)∥max

2 ∥Γ ◦ (J − I)∥max

= 1

Since we trivially have Qc(σ1, σ2) ≥ 1 whenever σ1 ̸= σ2, this bound is useless.

Theorem A.3. The function d(X → Y ) = γ2(X − Y ) is a progress function, but the
adversary method Advγ2 it generates is not very useful, as Advγ2(σ1, σ2) ≤ Aadv(σ1, σ2).
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Proof. I show that d satisfies each of the properties of a progress function.

1. Triangle: This follows immediately from the triangle property of the γ2 norm.

2. Mixing: We have

d(
∑
i

Xi ◦ Zi →
∑
i

Yi ◦ Zi) = γ2

(∑
i

(Xi − Yi) ◦ Zi

)
= max

Q:∥Q∥≤1

∥∥∥∥∥∑
i

Q ◦ (Xi − Yi) ◦ Zi

∥∥∥∥∥
By the mixing property of the spectral norm, this spectral norm is smaller than

max
Q:∥Q∥≤1

∥∥∥∥∥∑
i

Q ◦ (Xi − Yi) ◦ Zi

∥∥∥∥∥ ≤ max
Q:∥Q∥≤1

max
i

∥Q ◦ (Xi − Yi)∥ = max
i
γ2(Xi − Yi)

Thus the γ2 norm is also a progress function. This proof can be viewed as an alternate
version of Theorem 5.4, as the argument above generalizes to show that if d is a progress
function, then d′(X → Y ) = maxQ:∥Q∥≤1 d(Q ◦X → Q ◦ Y ) is also a progress function.

Since the γ2 norm is a progress function, it gives us a new adversary method

Advγ2(σ1, σ2) = sup
Γ∈Pos(H)

γ2(Γ ◦ (σ1 − σ2))

maxi γ2(Γ ◦ (J − Si))

However, this adversary method is weaker than the additive adversary. Using the definition
of the γ2 norm in terms of the spectral norm, we have

Advγ2(σ1, σ2) = sup
Γ∈Pos(H)

maxQ:∥Q∥=1 ∥Q ◦ Γ ◦ (σ1 − σ2)∥
maxi maxQ:∥Q∥=1 ∥Q ◦ Γ ◦ (J − Si)∥

≤ sup
Γ∈Pos(H)

max
Q:∥Q∥=1

∥Q ◦ Γ ◦ (σ1 − σ2)∥
maxi ∥Q ◦ Γ ◦ (J − Si)∥

≤ sup
Γ∈Herm(H)

∥Γ ◦ (σ1 − σ2)∥
maxi ∥Γ ◦ (J − Si)∥

= Aadv(σ1, σ2)

Since this method is both weaker and more complicated than the additive adversary
method, I expect that it will not have any uses.

To prove the following theorem, I need a small lemma related to majorization of vectors.
As a reminder, majorization is defined as follows: let v, u be vectors in Rn whose entries are
sorted in descending order. We say that v majorizes u (written v ≻ u) if

∑k
i=1 vi ≥

∑k
i=1 ui

for all k ∈ 1 . . . n and
∑n

i=1 vi =
∑n

i=1 ui.

57



Lemma A.4. If X, Y are positive, then log(λ(X) · λ(Y )) ≻ log(λ(XY )), where λ re-
turns the vector of eigenvalues, and log and · are vector functions that act on each entry
independently.

Proof. See equation (5.12) of [And94].

Theorem A.5. For any p ∈ [1,∞] and any positive matrices X, Y, Z, the order-p geodesic
distance satisfies δp(X,Z) ≤ δp(X, Y ) + δp(Y, Z).

Proof. Recall that δp(X, Y ) = ∥log(λ(XY −1))∥p. Also recall that for any A,B, we have
λ(AB) = λ(BA). From this equation, we can show several basic properties of δp:

1. δp(X, Y ) = ∥log(λ(XY −1))∥p = ∥log(λ(Y −1X))∥p = δp(Y
−1, X−1)

2. δp(X, Y ) = ∥log(λ(XY −1))∥p =
∥∥log(λ(Y −1/2XY −1/2))

∥∥
p
= δp(Y

−1/2XY −1/2, I)

3. δp(AXA
∗, AY A∗) =

∥∥log(λ(AXA∗A∗−1Y −1A−1))
∥∥
p
= ∥log(λ(XY −1))∥p = δp(X, Y )

Let X, Y be arbitrary positive matrices. Since the vector p-norm is Schur convex, Lemma
A.4 implies that ∥log(λ(X) · λ(Y ))∥p ≥ ∥log(λ(XY ))∥p. By the triangle inequality, we
have ∥log(λ(X))∥p + ∥log(λ(Y ))∥p ≥ ∥log(λ(XY ))∥p. Applying the definition of δp, we

conclude that δp(X, I) + δp(Y, I) ≥ δp(X, Y
−1).

Then, we use all the properties above to prove that

δp(X, Y ) + δp(Y, Z) = δp(X, Y ) + δp(Z
−1, Y −1)

= δp(Y
−1/2XY −1/2, I) + δp(Y

1/2Z−1Y 1/2, I)
≥ δp(Y

−1/2XY −1/2, (Y 1/2Z−1Y 1/2)−1)

= δp(Y
−1/2XY −1/2, Y −1/2ZY −1/2)

= δp(X,Z)

Therefore δp satisfies the triangle property.
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