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Abstract

We propose a novel encoding called guard-value encoding for the ternary domain {0, 1,X}.
Among the advantages it has over the more conventional dual-rail encoding, the flexibil-
ity of representing X with either of 〈0, 0〉 or 〈0, 1〉 is especially important. We develop
data abstraction and memory abstraction techniques based on the guard-value encoding.
Our data abstraction reduces much more of the state space than conventional ternary ab-
straction’s approach of over-approximating a set of Boolean values with a smaller set of
ternary values. We also show how our data abstraction can enable bit-width reduction
which helps further simplify verification problems. Our memory abstraction is applicable
to any array of elements which makes it much more general than the existing memory
abstraction techniques. We show how our memory abstraction can effectively reduce an
array to just a few elements even when existing approaches are not applicable. We make
extensive use of symbolic indexing to construct symbolic ternary values which are used in
symbolic simulation. Lastly, we give a new perspective on refinement for ternary abstrac-
tion. Refinement is needed when too much information is lost due to use of the ternary
domain such that the property is evaluated to the unknown X. We present a collection of
new refinement approaches that distinguish themselves from existing ones by modifying the
transition function instead of the initial ternary state and ternary stimulus. This way, our
refinement either preserves the abstraction level or only degrades it slightly. We demon-
strate our proposed techniques with a wide range of designs and properties. With data
abstraction, we usually observe at least 10× improvement in verification time compared to
Boolean verification algorithms such as Boolean Bounded Model Checking (BMC), as well
as usually at least 2× and often 10× improvement over conventional ternary abstraction.
Our memory abstraction significantly improves how the verification time scales with the
design parameters and the depth (the number of cycles) of the verification. Our refinement
approaches are also demonstrated to be much better than existing ones most of the time.
For example, when verifying a property of a synthetic example based on a superscalar
microprocessor’s bypass paths, with our data abstraction, it takes 505 seconds while both
of ternary abstraction and BMC time out at 1800 seconds. The bit-width reduction can
further save 44 seconds and our memory abstraction can save 237 seconds. This verification
problem requires refinement. If we substitute our refinement with an existing approach,
the verification time with the data abstraction doubles.
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Chapter 1

Introduction

Abstraction has been a successful technique in tackling the “state space explosion” problem
of formal verification. Among the extensive literature on abstraction, we are particularly
interested in ternary abstraction because of its ease of constructing the abstracted model,
and memory abstraction which represents the techniques that target hardware structures
based on arrays. In general, abstraction reduces the state space and thus helps hardware
verification run faster.

In ternary abstraction, the abstraction of a hardware design can be simply constructed
by substituting the Boolean gates with corresponding ternary ones. The ternary domain
extends the Boolean domain with the unknown value X to abstract away unnecessary
information for verification. With ternary domain, a set of Boolean states can be abstracted
with ternary states: (0,X,X) abstracts {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)}. Abstraction is
done by using X, rather than a Boolean variable, on selected signals in the stimulus for
verification. The state space reduction achieved with ternary states explains how ternary
abstraction can speed up verification. With ternary abstraction, it is the abstracted design
that is checked to see whether the property is satisfied. If the ternary design satisfies the
property, it is implied that the original hardware design is correct. Symbolic Trajectory
Evaluation (STE) has been a successful model checking technique for hardware verification
that utilizes a ternary abstraction. Note that to be precise, STE uses a quaternary domain
which has a fourth value representing conflict. A conflict value indicates problems in the
STE property. We propose a novel data abstraction technique based on ternary abstraction
that can reduce significantly more state space than STE. Our data abstraction reduces the
state space in a way that is only made possible by our novel guard-value (GV) encoding
of the ternary domain. We will describe it more in detail soon. But on the surface, it
is already very different from STE. Our data abstraction uses a ternary domain instead
of a quaternary domain which enables an optimization of choosing between two different
encodings of X. Additionally, we do not limit ourselves to a particular property specification
language like STE. Instead, we assume that the property is compiled into the design as a
primary output and the task is to verify that the primary output is always 1. This setup is
adopted widely in model checking literature. In this thesis, because we only introduce X at
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the inputs and initial states, it is impossible for a signal to have a conflict value1. Therefore,
from a practical point of view, we can consider STE uses ternary domain as well, which
allows us to compare our techniques against STE. Because the unique property language
STE uses, we need to take extra steps in order for STE to solve the same verification
problem as our techniques. We will detail these steps in the benchmark chapter.

Memory abstraction can also be achieved using ternary abstraction, as demonstrated by
STE. Additionally, there is a Boolean approach such as the work done by Bjesse in [6]. The
Boolean memory abstraction reduces the memory to just a few memory cells whose ad-
dresses are symbolic constants. These cells store all the information needed for verification.
If reading from a location that is not equal to one of the symbolic constants, the abstracted
memory returns an arbitrary value. In some cases, Boolean memory abstraction can reduce
an enormous memory to just a few cells. However, it also has limitations, for example,
it cannot abstract certain memories such as content-addressable-memory (CAM). In this
thesis, we propose a new technique for memory abstraction based on ternary abstraction
and made possible by GV encoding. When compared to Boolean memory abstraction,
our memory abstraction is much more general and widely applicable. In theory, it can
be applied to any array of elements. We show that for any memory the existing Boolean
technique can abstract, our technique can achieve the same effect. When compared with
memory abstraction using a conventional ternary domain in STE, our memory abstraction
is more powerful and can achieve significantly more state space reduction.

New techniques for data abstraction and memory abstraction are two of the main contri-
bution of this thesis. They significantly extend the existing work on ternary abstraction.
In the implementation of these two techniques, we use off-the-shelve logic optimizations to
simplify the SAT problem represented as an And-Inverter-Graph (AIG) before translating
it to a conjunctive-normal-form (CNF) formula and giving it SAT solvers. With this ap-
proach, we demonstrate that there is great synergy between our abstraction techniques and
logic optimizations: the time invested in the logic optimization procedures is far exceeded
by the savings in SAT solving time.

Refinement is needed when too much information is lost such that the property evaluates
to X. Another major contribution is to propose a novel refinement framework that does
refinement by modifying the design. It is a completely different approach of refinement
from the existing ones which modifies the input stimulus and initial state to make them
have less X.

We benchmark our techniques against BMC, conventional STE and STE with Roorda’s
encodings. We use 6 complex circuits with a total of 8 properties, inspired by real world
examples. The examples range from a buffer design that is needed for processing traffic
from real-world bus protocols to a synthetic design based on a superscalar microprocessor’s
bypass path. Such designs have considerable complexity and are not the typical data-path
designs where people apply STE.

1Assuming the stimulus has been checked for consistency.
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We now provide a high-level description of each of our contributions with focus on how the
GV encoding plays a key role to enable our abstraction techniques.

Guard-value (GV) encoding The critical role GV encoding plays in our data abstrac-
tion and memory abstraction stems from in its ability of dividing a ternary verification into
two Boolean verification problems and its flexibility in encoding X. In the GV encoding, X
can be encoded by either 〈0, 0〉 or 〈0, 1〉. The two Boolean values encoding a ternary value
are called guard (field) and value (field) respectively. The GV encoding indicates that the
guard is the condition under which we care about the value field, i.e., when the guard is 0,
we don’t care about the value field. This immediately inspires the use of don’t-care based
optimizations to simplify the value field. Using the GV encoding, the ternary transition
function for a signal is encoded by two Boolean transition functions that compute the guard
and value field of the signal’s value in the next state. A signal’s guard transition function
is usually larger than its original transition function in terms of the number of and gates
in the AIG representation. A signal’s value transition function has the same size as the
original transition function. In fact, they are identical after substituting the inputs of the
original transition function with signals denoting their value fields. For example, consider
the transition function for an and gate, o = a∧b. We use av to denote signal a’s value field.
Then, by replacing a with av and b with bv, we can derive the output’s value transition
function ov = av ∧ bv. A ternary verification is divided into 1) checking that the guard of
the primary output is 1 (guard verification) which essentially verifies that X cannot prop-
agate to the primary output representing the property and 2) checking that the primary
output’s value field is 1 (value verification) which essentially checks that the Boolean tran-
sition system satisfies the property when its input stimulus and initial state are the value
fields of their ternary abstraction. The guard verification as an X propagation problem
intuitively is simpler to solve considering majority of the signals’ values are usually not
X, which makes it invite tailored/specialized algorithms to solve it. We demonstrate that
off-the-shelf logic optimizations work well in simplifying and often even solving it directly,
meaning SAT solvers are not needed. As for the value verification, because it is identical to
the original verification problem except that the input and initial state space of the value
verification is the value field of the ternary abstraction of the Boolean input and initial
state space of the original verification, a natural idea is to have as many X as possible in the
ternary abstraction and use the don’t-care optimizations to further reduce the cardinality
of the state space’s value field. This is exactly the main goal of our data abstraction and
memory abstraction: they are applied to reduce the state space of the value verification
so that it can outperform the original Boolean verification with the margin that must be
more than enough to offset the time spent for the guard verification. This in turn provides
us with a criteria to decide whether a verification problem is suitable for our abstraction
techniques: can our abstraction techniques reduce enough of the value field of the input
and initial state space to make the value verification significantly outperforms the Boolean
verification approaches?

Data abstraction Our data abstraction uses user-provided hints regarding the least
information about some input signals or registers’ values needed for verification to abstract
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their state space with ternary states. Then, don’t-care optimizations are used to reduce
the cardinality of these signals’ value field state space while balancing the size of value
state space’s symbolic representation as an AIG. The data abstraction is applied to the
input stimulus and initial states which will result in reduced state space for other signals
at their fan-out. In Chapter 5, we will formalize aforementioned process and state the
priority of the optimization goals. Additionally, to make it easier to use, we will show how
our data abstraction works for a variety of common scenarios, such as when we only care
about 1) whether a vector of signals is equal to a certain (symbolic) value; 2) whether a
vector of signals is smaller (or larger) than a certain (symbolic) value, and 3) whether a
vector of signals is equal to one of the few (symbolic) values. In these scenarios, our data
abstraction is able to reduce the domain cardinality exponentially. Lastly, we will also
demonstrate cases where our abstraction paves the way for other verification techniques
such as bit-width reduction.

Memory abstraction Just like the data abstraction, our memory abstraction also aims
at reducing the value field of the state space and utilizing the GV encoding’s flexibility in
encoding X to achieve that. However, it exclusively focuses on the memory signals and it
simplifies the value transition function for a signal instead of the expression of its value
field. The key goal of our memory abstraction is that in the value verification, irrelevant
elements always have the same value as one of the care elements. To achieve this, it utilizes
user-provided hints about what makes a memory element irrelevant to the verification to
identify such elements and modifying their value transition functions. Therefore, though
our memory abstraction does not actually reduces the number of memory elements, it
achieves that in essence by making sure that in every cycle the irrelevant elements always
have the same value as one of the care elements. To prove that ours is more powerful than
the existing approach, we will show how the existing memory abstraction can be achieved
with ours and how ours can be applied to memories such as CAM that the existing approach
cannot handle. Lastly, we will provide templates of how to use it.

Refinement Recall that a ternary transition function abstracting a Boolean transition
function is constructed by replacing the Boolean operators with the ternary ones. A key
implication of this construction method is that the ternary transition function is dependent
on the Boolean transition function in the sense that for two ternary transition functions
constructed using different implementations of the same Boolean transition function, given
the same ternary assignment to the inputs, they may return different ternary values that
can be ordered by the abstraction relation defined by 0 ≤X, 1 ≤X. For example, a multi-
plexer can be implemented by o = (sel∧ a)∨ (¬sel∧ b) or o = (sel∧ a)∨ (¬sel∧ b)∨ (a∧ b).
But given the ternary assignment (a = 1, b = 1, sel =X) the first ternary multiplexer re-
turns X while the second one returns 1. Our refinement framework extends this idea and
modifies the design in a way that increases the precision of its ternary abstraction. The
refinement framework includes three approaches that trade off between completeness and
ease of use. Fundamentally, our refinement methods and existing approaches that modify
the ternary input stimulus and initial state all eliminate spurous counter-examples (CEXs)
by partitioning them into more informative ones such that the property doesn’t evaluate
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to X. However, the key difference is that our approaches partition exactly at the parts of
the traces where the information is lost while the existing approaches affect much more
logic than needed. In other words, our refinement preserves the abstraction level better,
which translates to better verification performance. Several of the designs we verify in the
benchmarking require refinement, where we demonstrate the effectiveness of our refinement
approaches.

Implementation and benchmarking We use symbolic indexing to construct a ternary
functional vector which is a vector of ternary expressions to symbolically represent a set
of ternary states. Symbolic simulation is used to compute reachable states of each cycle
and AIG is used as the data structure for Boolean expressions. The SAT solver we use
is the built-in Minisat [47] of ABC [11]. ABC is an academic open-source logic synthesis
and verification suite. We demonstrate the data abstraction and memory abstraction by
using them in bounded model checking (BMC) and k-induction. Our benchmarks include
6 varying designs and 8 properties and they differ in complexities, functionality and etc.
We usually observe at least 10× improvement over the state-of-art implementation of BMC
in ABC (bmc3) due to our abstraction techniques especially as the verification problems
are made more difficult by the increasing time bound and design parameters. We use off-
the-shelf logic optimization algorithms to simplify the AIGs representing the verification
problems. Our results show that the guard verification is simple enough such that it can
be solved by the logic optimizations directly most of the time. The value verification is
also consistently made simple enough by the logic optimizations such that the speedup in
the SAT solving time is more than enough to cover the optimization time. These results
demonstrate the great synergy between our data abstraction, memory abstraction and logic
optimizations.

The rest of the thesis is organized as follows. Chapter 2 present the needed background
knowledge and related work. Chapter 3 presents the guard-value encoding and compares
it against the most widely used dual-rail encoding. This chapter explains what makes the
guard-value encoding critical to our data abstraction (Chapter 5) and memory abstraction
(Chapter 6). Chapter 4 analyzes what could make ternary verification better than the
Boolean verification. It also compares ternary verification based on different encodings.
The analysis and comparison are done using the bounded model checking as an example.
Our refinement framework is presented in Chapter 7. Section 8.1 describes the designs and
properties we use as benchmarks for our proposed techniques. The results are provided in
Section 8.2. Lastly, Chapter 9 is the conclusion and future work.
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Chapter 2

Background and Related Work

In this chapter, we provide the basis that our work builds on and describe related work. We
first formalize the verification problems by describing our transition system that models
hardware designs, and defining the satisfiability relation between a property and a tran-
sition system. As in done in STE, we represent a set of states as a Boolean or ternary
functional vector, which is called symbolic indexing. For sets of Boolean states, this rep-
resentation is also known as Boolean functional vector in the literature. We extend BMC
and induction to ternary domain. Later, we present the abstraction relation between a
set of Boolean states and a set of ternary states, which will be lifted to the abstraction
relation between a Boolean transition system and a ternary transition system. This pro-
vides the foundation for the soundness of our verification approach. Next, we will discuss
the implementation of ternary domain and ternary transition system, specifically we will
talk about the encoding of the ternary domain, which in turn decides how to reduce the
simulation/unrolling of a ternary transition system to simulating/unrolling two Boolean
transition systems. Lastly, we conclude this chapter with related work.

2.1 Signals and States

A Boolean domain {0, 1} is denoted by B and a ternary domain {0, 1,X} is denoted by T.
We will use S to denote the set of signals of the design. There are 4 types of signals of a
hardware design, which are primary inputs, primary outputs, registers and combinational
signals 1. The set of primary inputs is denoted as SI while the set of the remaining signals
is denoted as SR. Signals may change values from cycle to cycle. A Boolean (ternary) state
is a Boolean (ternary) assignment to signals in S, denoted as q : S 7→ B (q̂ : S 7→ T).
When there is no ambiguity, we may use q also to denote a ternary state. The state for
primary inputs is denoted by qI , while for the remaining signals, it is denoted by qR. We

1Combinational signals are the outputs of internal gates.
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use Q (Q̂) for a set of (ternary) states and Q (Q̂) for the set of all possible (ternary) states,
i.e., : Q = {q : S 7→ B} (Ŝ = {q̂ : S 7→ T}).

A set of states is usually characterized by a predicate in terms of the design signals.
Alternatively, we can represent a set of Boolean (or ternary) states with a symbolic Boolean
(or ternary) state. We define a symbolic Boolean state as a mapping from S to symbolic
values (i.e., Boolean expressions), which also include 0 and 1. The idea of using a symbolic
ternary state to represent a set of ternary states can be found in STE [46], referred to as
symbolic indexing. In STE, a symbolic ternary state maps a signal from S to an expression
of the form (eguard ? evalue : X ), where eguard and evalue can be any Boolean expressions.
Since eguard is called “guard” in STE, we will refer to such expression as guard expression
hereafter. A guard expression maps an assignment to the Boolean variables to a ternary
value. Note that a guard expression reduces to a Boolean expression if eguard is 1. The
expression eg1 ? 1 : (eg0 ? 0 : X ) is also a guard expression since it can be rewritten to
(eg1 ∨ eg0) ? eg1 : X .

The Boolean variables that appear in Boolean expressions and guard expressions are de-
noted as V . In contrary to signals from S, variables in V do not change their values from
cycle to cycle. An assignment to variables in V is called an environment assignment de-
noted as env : V 7→ B. We will use a symbolic state to represent a set of states for the rest
of the paper. Given the symbolic values for the primary inputs and the initial symbolic
values of the registers, using symbolic simulation, we can compute the symbolic state in
any clock cycle.

Example 2.1.1 and Example 2.3.1 show how to construct the symbolic state for inputs
when they are unconstrained and constrained respectively. Given an environment env,
a symbolic state evaluates to a concrete state, denoted as Q|env. Therefore, the set of
concrete states represented by a symbolic state (Q) is generated by evaluating Q over all
environments, i.e., {Q|env : env ∈ (V 7→ B)}. If we decide an order for the signals in S,
states can be represented as vectors. A symbolic Boolean (ternary) state then becomes a
vector of Boolean (ternary) expressions.

Example 2.1.1 (Unconstrained inputs). Consider a design with 2 inputs that are uncon-
strained in every clock cycle. Because they are unconstrained, the set of states for the
inputs includes every assignment to the inputs {(0, 0), (0, 1), (1, 0), (1, 1)}, which can be
represented by the symbolic state (v0, v1), where v0 and v1 are fresh Boolean variables.

The representation we use here for a set of concrete Boolean states is also known as
functional vector in the literature, for example [21, 27]. Parametric representation [1] is a
technique to construct a symbolic Boolean state from a set of Boolean states characterized
by a predicate.
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2.2 Symbolic Indexing

Symbolic indexing (SI) represents multiple ternary states with a symbolic ternary state that
maps each signal to a guard expression. In STE, it is used as part of STE’s specification
language. The term, “symbolic indexing”, is perhaps due to one particular way to construct
the symbolic ternary state. In this construction, a vector of Boolean variables, interpreted
as a binary representation for a bounded integer, is used as an index into an array of
ternary states. This construction method is illustrated in Example 2.2.1.

Example 2.2.1. Consider the set of ternary states for design signals a, b and c:

{(1,X,X), (X, 1,X), (X,X, 1), (0, 0, 0)}

Using symbolic indexing to represent the set as a symbolic state, we need 2 fresh Boolean
variables, i0 and i1, because there are 4 concrete states. We use (i1, i0) to select among the
array of 4 states. For example, a is assigned 0 in the first assignment, assigned 1 in the
3rd assignment and assigned X for the rest. Therefore, the symbolic ternary state Q̂ is:

Q̂(a) = ¬i1 ∧ ¬i0 ? 1 : (i1 ∧ i0 ? 0 : X )

Q̂(b) = ¬i1 ∧ i0 ? 1 : (i1 ∧ i0 ? 0 : X )

Q̂(c) = i1 ∧ ¬i0 ? 1 : (i1 ∧ i0 ? 0 : X )

In fact, this method can be easily adapted to constructing a symbolic Boolean state to
represent a set of Boolean states. However, note that to use this method, a set of ternary
states has to be provided. [36] and [2] present a method for SI that avoids this requirement.

2.3 Transition System

A Boolean transition system (M = (Q̊R,Tr,ΣI)) has three components:

� Q̊R: the set of initial states

� Tr : QR × QI 7→ QR: the transition function. In a hardware design, each gate’s
output is the result of the Boolean function the gate represents with the gate’s inputs
as arguments. A register’s output is its input’s value from the previous cycle.

� ΣI = Σ0
I ,Σ

1
I , . . .: the set of stimulus, which is a set of sequences of input signals’

state. Σi
I is an input state at the i-th cycle.

Example 2.3.1 represents a set of sequences of input states with a sequence of symbolic
states, i.e., symbolic stimulus.
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Example 2.3.1. Consider a design where the input signals n0 and n1 have the following
relation: n1 cannot be 1 unless n0 has been 1 in one of the previous cycles. In other
words, n0 and n1 both are unconstrained in the current cycle if n0 is assigned 1 in one of
the previous cycles. Otherwise, n0 is unconstrained but n1 is forced to be 0. The set of
satisfying concrete stimulus for n0 and n1 is:

� (0, 0), (0, 0), . . .

� (0, 0), (1, 0), . . .

� (1, 0), (0, 0), . . .

� (1, 0), (0, 1), . . .

� (1, 0), (1, 0), . . .

� (1, 0), (1, 1), . . .

� . . . , . . .

This set of concrete stimulus can be symbolically represented by: (Σ0
I ,Σ

1
I , . . .), where

Σt
I(n0) = vt0,

Σt
I(n1) = (

∨
j<t

vj0) ? v
t
1 : 0 .

For any t, vt0 and vt1 are fresh Boolean variables from V .

Definition 1 (Traces, language). A sequence of concrete states (denoted by π) is a trace
of M = (Q̊R,Tr,ΣI) iff π0

R ∈ Q̊R, πI ∈ ΣI and πt
R = Tr(πt−1

R , πt−1
I ) for any cycle t that is

not longer than the length of the sequence. Traces of M are denoted by Σ. The language
of M, denoted by L(M) is the set of all traces of M.

For example, consider a timer (t) that starts from 0 and the input toggles (in) whether to
pause the timer. A trace of length 3 without pause is (in = 0, t = 0), (in = 0, t = 1), (in =
0, t = 2). Traces in the language of the timer have the first three states as:

� (in = 0, t = 0), (in = 0, t = 1), (in = 0, t = 2)

� (in = 1, t = 0), (in = 0, t = 0), (in = 0, t = 0)

� (in = 1, t = 0), (in = 1, t = 0), (in = 0, t = 1)

� (in = 1, t = 0), (in = 1, t = 0), (in = 1, t = 1)

� (in = 0, t = 0), (in = 1, t = 1), (in = 0, t = 1)
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� (in = 0, t = 0), (in = 1, t = 1), (in = 1, t = 1)

� (in = 0, t = 0), (in = 0, t = 1), (in = 0, t = 2)

� (in = 0, t = 0), (in = 0, t = 1), (in = 1, t = 2)

For simplicity, we use Trt(Q̊R,ΣI) to denote the set of reachable states for signals in R in
cycle t, which can be iteratively computed:

Tr(Q̊R,ΣI) = Tr(Q̊R,Σ
0
I)

Trt(Q̊R,ΣI) = Tr(Trt−1(Q̊R,ΣI),Σ
t−1
I ) for any t ≥ 2 (2.1)

This iterative computation is also called symbolic simulation. We sometimes refer to Trt

as unrolled transition function. If Q̊R and ΣI are represented symbolically, the language
of the design can be generated by the following symbolic trace:(

Q̊R, Tr(Q̊R,ΣI), Tr2(Q̊R,ΣI), Tr3(Q̊R,ΣI), . . .
)

(2.2)

It is straightforward to extend the definition of Boolean transition system and traces to

the ternary domain, denoted by M̂ = (
ˆ̊Q, T̂r, Σ̂I), and π̂ respectively.

If Tr is represented using an And-Inverter-Graph (AIG). The ternary transition function
T̂r can be derived from Tr by replacing the Boolean and gate and not gate with the
corresponding ternary ones. The semantics of the ternary gates are described in Table 2.1.

Table 2.1: Ternary and (∧̂) and not (¬̂)
∧̂ 0 1 X

0 0 0 0
1 0 1 X
X 0 X X

¬̂ 0 1 X

1 0 X

2.4 BMC and Inductive Proof in Ternary Domain

Let φ be a predicate over signals (φ: Q 7→ B). A predicate maps an assignment to the
signals to a Boolean value. We verify that for every clock cycle φ should be 1 for the design
under verification, i.e., φ is an invariant of the design. We discuss two common techniques
to verify such safety properties, which are BMC and induction. BMC is commonly used as
a bug hunting technique because the diameter of a practical design is usually formidable
for BMC. Induction is the simplest yet very useful proof technique. For each technique,
we will first describe how to verify a Boolean transition system. Then we will extend it to
ternary transition system.
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2.4.1 Bounded Model Checking

In order to use BMC to check the correctness in cycle t, we need to compute the set of
reachable states for the signals in R in cycle t, denoted by Σt

R. Recall that as shown in
(2.2), it is computed by symbolically simulating the design for t clock cycles starting from
the symbolic initial state Q̊R and using the input stimulus ΣI .

When there are two functions with different domains, such as f : A 7→ C and g : B 7→ C,
then we use f ∪ g : A ∪B 7→ C to denote:

(f ∪ g)(n) =

{
f(n) if n ∈ A
g(n) if n ∈ B

Definition 2. M satisfies φ in cycle t, denoted by M |=t φ, iff the formula ¬φ(Σt
R ∪ Σt

I)
is unsatisfiable.

Computing the reachable ternary states in the cycle t is the same process:

Σ̂t
R = T̂r

t
(

ˆ̊QR, Σ̂I)

Naturally, we extend the domain of a predicate φ to accommodate the ternary assignments
(Definition 3).

Definition 3 (Ternary predicate). A ternary predicate maps a ternary assignment to a
value from ternary domain: φ̂ : Q̂ 7→ T. For any predicate φ, its corresponding ternary
predicate φ̂ is constructed by interpreting the logic operators inside φ with ternary logic.
and and not make up a complete set of logic operators. Their interpretation in ternary
logic has been given in Table 2.1.

Note that over a ternary assignment, a ternary predicate can be evaluated to X, which
indicates the assignment lacks information to decide whether it satisfies the predicate. In
other words, there are two different Boolean assignments from the ternary assignment’s
MRS, such that the predicate evaluates to different values. Definition 4 defines ternary
bounded satisfiability. Note that here we explicitly compares the ternary predicate with 1
because it could evaluate to X.

Definition 4. M̂ |=t φ̂ iff φ̂(Σ̂t
R ∪ Σ̂t

I) = 1 is unsatisfiable.

2.4.2 Induction

Induction works in two steps: the base step and the induction step. In the base step, it
checks whether there is a counter-example (CEX) of length 1 from an initial state from
Q̊R, which is BMC at bound 1 for M = (Q̊R,Tr,ΣI). In the induction step, we check
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whether for any state that satisfies φ, its next state also satisfies φ. Effectively, it amounts
to bounded model checking the modified transition system M′ = (Q̊free,Tr,ΣI) at bound

1 under the condition that its initial states satisfy φ (i.e., Formula 2.3). Q̊free is a symbolic
state that maps all signals from SR to fresh Boolean variables.

φ(Q̊free ∪ Σ0
I) =⇒ φ(Tr(Q̊free,Σ

0
I) ∧ Σ1

I) (2.3)

If Formula 2.3 is unsatisfiable, φ is inductive. If φ is inductive and the base step passes,
we have a proof that the design always satisfies φ.

As discussed, an induction proof is reduced to two BMCs on the original transition sys-
tem and the transition system with modified initial state respectively. As a result, it is
straightforward to extend induction to the ternary domain. In the base step, we check
satisfiability of

φ̂(
ˆ̊QR ∪ Σ̂0

I) = 1

In the induction step, we check the satisfiability of(
φ̂(Q̊free ∪ Σ̂0

I) = 1
)

=⇒
(
φ̂(T̂r(Q̊free, Σ̂

0
I) ∪ Σ̂1

I) = 1
)

Note that here in the modified ternary transition system, its initial state also maps state
variables to fresh Boolean variables. Therefore, we keep using the notation Q̊free.

k-induction can be reduced to multiple BMCs. Extending k-induction to ternary transition
systems can be done similarly. IC3 [9] has many queries that check whether a formula is
inductive and safe. It could be interesting to replace it with ternary induction. However,
it will not be straightforward because one ternary abstraction (to be described in the next
section) may not be accurate enough for every query of inductive checks.

2.5 Ternary Abstraction

We define the abstraction relation as a partial order and denote it with ≤. Among the
values from the ternary domain, X abstracts both of 0 and 1 because it has the least
amount of information (Definition 5). A signal with the value X implies that we do not
know whether it has value 0 or 1.

Definition 5. 1) 0≤X, 2) 1≤X, 3) 0≤0, 1≤1, X≤X

In the following definition, we define operators t which computes the value that is the least
upper bound of the operands: the least abstracted one among the values that abstract both
operands. We also define u which is the greatest lower bound of the operands: the most
abstracted one among the values that are abstracted by both operands.

Definition 6.
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� 0 t 0=0, 0 t 1=X, 0 t X=X

� 1 t 1=1, 1 t X=X, X t X=X

� 0 u 0=0, 0 u 1= ⊥, 0 u X=0

� 1 u 1=1, 1 u X=1, X u X=X

⊥ is a special value used to indicate the there is no value that is abstracted by both operands.

Next, we extend this definition to states. A state is an abstraction of another state, iff for
any signal, it is assigned a more abstracted value in the abstraction state (Definition 7).

Definition 7. q ≤ q′ iff ∀ n ∈ S . q(n) ≤ q′(n).

A ternary state could abstract multiple Boolean states. Let us call the set of all Boolean
states that are abstracted by a ternary state “maximum representable set” (MRS) of the
ternary state. A ternary state has a unique MRS and a MRS corresponds to a unique
ternary state. For example, {(0, 0, 1), (1, 1, 1)} and {(0, 1, 1), (1, 0, 1)} are both abstracted
by (X,X, 1). The MRS for (X,X, 1) is {(0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 1)}.

Definition 8.

� q t q′ = λn : q(n) t q′(n)

� q u q′ = λn : q(n) u q′(n).

q u q′ = ⊥ iff there exists a signal n such that q(n) u q′(n) = ⊥.

A set of states is an abstraction of another set of states iff for all states in the other
set, there exists one state that is more abstracted from the abstraction set of the states
(Definition 9).

Definition 9. Q ≤ Q′ iff ∀ q ∈ Q . ∃ q′ ∈ Q′ . q ≤ q′

For a set of ternary states, its MRS is defined as the union of the MRSs for each ternary
state. As shown in the following example, different ternary sets may share the same
maximum representable set.

Example 2.5.1.

� {(0, 1, 1), (0, 0, 1)} ≤ {(X,X, 1)} because (0, 1, 1) ≤ (X,X, 1) and (0, 0, 1) ≤ (X,X, 1).

� {(0,X, 1), (1,X, 1)} ≤ {(X,X, 1)} because (0,X, 1) ≤ (X,X, 1) and (1,X, 1) ≤ (X,X, 1).
{(0,X, 1), (1,X, 1)} and {(X,X, 1)} share the same maximum representable set, that
is {(0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 1)}.
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In Definition 3, we define ternary functions. Let f̂ be a ternary function and f be the
Boolean function that interpret operators in f̂ using Boolean logic. The domains for f̂ and
f are denoted by D and D̂ respectively. Ternary functions have the following properties.

Proposition 1 (Properties of ternary functions).

� f̂ agrees with f on Boolean inputs: f̂(y) = f(y), if y ∈ D

� f̂ is monotone with regard to the abstraction relation: ŷ ≤ ŷ′ =⇒ f̂(ŷ) ≤ f̂(ŷ′).

For every signal n ∈ SR, its ternary transition function denoted by T̂r(n) is a ternary
function. Thus, it has the monotonicity:

QR ≤ Q′R ∧QI ≤ Q′I =⇒ T̂r(n)(QR,QI) ≤ T̂r(n)(Q′R,Q′I)

A ternary transition system is an abstraction of another Boolean or ternary transition
system iff for any trace of the original transition systems, there is an abstracted trace in
the abstraction transition system (Definition 10).

Definition 10. M≤ M̂′ iff ∀ σR ∈ L(M) . ∃ σ̂′R ∈ L(M′) . σR ≤ σ̂′R. Similarly, between
two ternary transition systems, M̂ ≤ M̂′ iff ∀ σ̂R ∈ L(M̂) . ∃ σ̂′R ∈ L(M̂′) . σ̂R ≤ σ̂′R.

Lemma 1 states that abstraction is achieved by manipulating the initial states and the
stimulus. Lemma 2 shows that our ternary transition function is just as precise as the
original Boolean transition function. Furthermore, it shows that the abstracted transition
systems are ordered by the initial states and the stimulus. In Example 2.5.2, you can
find concrete examples of a Boolean transition system, a ternary transition system that
abstracts it and a ternary transition system that is equivalent to it.

Lemma 1. M̂ = (
ˆ̊QR, T̂r, Σ̂I) is an abstraction of M = (Q̊R,Tr,ΣI) iff Q̊R ≤ ˆ̊QR and

ΣI ≤ Σ̂I . Similarly, M̂′ = (
ˆ̊Q′R, T̂r, Σ̂′I) is an abstraction of M̂ = (

ˆ̊QR, T̂r, Σ̂I) iff
ˆ̊QR ≤ ˆ̊Q′R

and Σ̂I ≤ Σ̂′I .

Lemma 2. M̂⊥ = (Q̊R, T̂r,ΣI) is equivalent to M = (Q̊R,Tr,ΣI).

Example 2.5.2 (Abstraction with ternary transition system). Let us consider M =
(Q̊R,Tr,ΣI), where the transition function is Tr(a, b, c) = c ? a : b . Figure 2.1 shows an
AIG implementation of Tr, where the solid dot represents a not gate. Assume that, for
each cycle, the input state maps a and b to 1, and c to a fresh Boolean variable v. After
symbolic simulation, QR(d) = 1 for any cycle t.

The first ternary transition system we consider is M̂ = (Q̊R, T̂r, Σ̂I), where Σ̂I maps a
and b to 1 and c to X for each cycle. As a result, ΣI ≤ Σ̂I and M ≤ M̂. After ternary
symbolic simulation, Q̂R(d) =X for any cycle t, which indeed is an abstraction of QR.

Lastly, let us consider the most accurate ternary transition system from Lemma 2, where
we use the same stimulus as from M. After ternary symbolic simulation, Q̂R(d) = 1 for
any cycle t. This demonstrates that the abstraction level of the ternary transition system

solely depends on
ˆ̊Q and Σ̂I , instead of T̂r.
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Figure 2.1: An AIG representation of a multiplexer

Theorem 1 is the basis for the correctness of our approach. Its proof directly follows the
definition of transition system abstraction in Definition 10.

Theorem 1. Let M̂ be a ternary abstraction of M.

1. if there is no CEX within bound k of M̂, there is no CEX within bound k of M, i.e.,
M̂ |=k φ̂ =⇒M |=k φ

2. if M̂ is inductive, M is inductive

Proof. To prove 1, let’s prove that if M 6|= φ then M̂ 6|= φ̂. Let there be a trace σ from
L(M) such that it fails φ in the cycle k, i.e., φ(σk) = 0 . According to Definition 10 and
because of M ≤ M̂, there exists σ̂ that abstracts σ: σ ≤ σ̂. Because φ̂ is monotone in
terms of the abstraction relation and φ̂(σ) = 0, we have φ̂(σ̂) = 0 or φ̂(σ̂) =X, i.e., M̂ 6|= φ̂.

The proof of 2 will be similar.

2.6 Ternary Encoding

Recall that transition functions and predicates are represented in AIGs. We will show
how to represent a ternary and and not gate with Boolean gates. This way, we reduce a
ternary symbolic simulation to two Boolean symbolic simulations.

First, let us use a pair of Boolean values to encode a ternary value from T. The most
widely used encoding is called dual-rail encoding (Definition 11), where the left of the pair
is called “high rail” and the right one is called “low rail”. Intuitively, the high rail indicates
whether the ternary value could be 1 and the low rail indicates whether the ternary value
could be 0. X could be either 1 or 0. As a result, it is represented by 〈1, 1〉.

Definition 11. In dual-rail encoding, 〈1, 0〉 represents 1. 〈0, 1〉 represents 0 and 〈1, 1〉
represents X.
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A symbolic ternary value can be represented by a pair of Boolean functions. Thus, a sym-
bolic ternary state can be represented by a vector of pairs of Boolean functions. However,
for the ease of reading, we prefer to use two vectors of Boolean functions for the high
rails and low rails. We will refer to them high rail state/vector and low rail state/vec-
tor. There is a straightforward translation between the notations. We illustrate it here.
Let there be k state variables and the symbolic state be (〈h0, l0〉, 〈h1, l1〉, . . . , 〈hk−1, lk−1〉),
where h0, h1, . . . , hk−1 and l0, l1, . . . , lk−1 are Boolean functions. Then, the two vectors we
prefer to use are (h0, h1, . . . , hk−1) and (l0, l1, . . . , lk−1). We now show a concrete example
of using high rail state and low rail state to represent a ternary symbolic state.

Example 2.6.1. Let us consider the symbolic state for signals a, b and c from Exam-
ple 2.2.1, which is

(¬i1 ∧ ¬i0 ? 1 : (i1 ∧ i0 ? 0 : X ) ,

¬i1 ∧ i0 ? 1 : (i1 ∧ i0 ? 0 : X ) ,

i1 ∧ ¬i0 ? 1 : (i1 ∧ i0 ? 0 : X ) )

The low rail state is (¬(¬i1 ∧¬i0), ¬(¬i1 ∧ i0), ¬(i1 ∧¬i0)) because signals a, b and c are
1 iff ¬i1 ∧ ¬i0, ¬i1 ∧ i0 and ¬(i1 ∧ ¬i0) are 1 respectively. Similarly, the high rail state is
(¬(i1 ∧ i0), ¬(i1 ∧ i0), ¬(i1 ∧ i0)).

Based on the Table 2.1, the truth tables for the high rail and low rail of the output of
ternary and is shown in Table 2.2. Table 2.3 shows the two rails of the output of a ternary
not gate.

Table 2.2: The high rail and low rail of the output of a ternary and (∧̂)
∧̂ 〈high rail, low rail〉 〈0, 1〉 〈1, 0〉 〈1, 1〉

〈0, 1〉 〈0, 1〉 〈0, 1〉 〈0, 1〉
〈1, 0〉 〈0, 1〉 〈1, 0〉 〈1, 1〉
〈1, 1〉 〈0, 1〉 〈1, 1〉 〈1, 1〉

Table 2.3: The high rail and low rail of the output of a ternary not (¬̂)
¬̂ 〈high rail, low rail〉 〈0, 1〉 〈1, 0〉 〈1, 1〉

〈1, 0〉 〈0, 1〉 〈1, 1〉

Let the inputs to a ternary and have values 〈ah, al〉 and 〈bh, bl〉. Then based on Table 2.2,
the output’s value, denoted as 〈oh, ol〉 are:

oh = ah ∧ bh

ol = al ∨ bl (2.4)
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Similarly, the output’s value of a ternary not gate can be computed in terms of its input’s
value, denoted as 〈ah, al〉:

oh = al

ol = ah (2.5)

According to Equation 2.4 and Equation 2.5, symbolically simulating a ternary and/not
gate is reduced to Boolean symbolic simulation to compute the high-rail and the low-rail
of the output. Notably, the output of the ternary not swaps the rails of its input value.
As a result, for both rails of any signal from SR, its current value will depend on both rails
of the registers’ values in the previous cycle and both rails of the primary inputs’ values in
the current cycle. We now show how to construct a Boolean transition systemMdr which

can be used to compute both rails of a signal’s value, from M̂ = (
ˆ̊QR, T̂r, Σ̂I).

Firstly,Mdr doubles the number of signals in M̂ to incorporate both rails of the signals: for

each signal n ∈ S, nh and nl are the signals in Mdr. Let
ˆ̊QRh

: SR 7→ B and
ˆ̊QRl

: SR 7→ B
be the high rail and low rail component of

ˆ̊QR respectively, i.e.,

∀ n ∈ SR . (
ˆ̊QRh

(n),
ˆ̊QRl

(n)) =
ˆ̊QR(n)

Similarly, ΣIh and ΣIl are the high rail and low rail components of Σ̂I . Recall that we use

‘∪’ to combine functions with distinct domains. Mdr = (
ˆ̊QRh
∪ ˆ̊QRh

,Trdr,ΣIh ∪ ΣIl) is

the Boolean transition system where for each signal n of M̂, nh and nl are mapped to the
high rail and low rail of q̂R(n), i.e., 〈qdr(nh), qdr(nl)〉 = q̂R(n)). Trdr is constructed from T̂r
by replacing its ternary and and not gates with their Boolean representations, which are
shown in Formula 2.4 and Formula 2.5 if the encoding is dual rail encoding. We provide a
concrete example of Trdr.

Example 2.6.2 (Boolean representation of a ternary multiplexer using dual-rail encoding).
Figure 2.1 is a multiplexer’s AIG. Figure 2.2 shows the result after we substitute the ternary
and and not in the AIG with the Boolean gates based on Formula 2.4 and Formula 2.5.
In each circle in Figure 2.2, there are two and gates that generate the high rail and low
rail of the original ternary and.

Using dual-rail encoding, for any signal n ∈ SR, the number of and gates in its transition
function Trdr(nh) is the same as Trdr(nl) and it is equal to the number of ternary and
gates in T̂r(n). Therefore, as shown in Equation 2.6, for any cycle t and any signal n ∈ S,
the number of and to represent both rails are the same and in total, there are twice as
many as and as in Σt

R(n) (Lemma 3). Recall that Σt
R is the state of the original Boolean

transition system at cycle t. In the next section, we will present a new ternary encoding
and show its advantages over the dual-rail encoding.

Lemma 3.

|Σt
dr(nh)| = |Σt

dr(nl)| = |Σt
R(n)|, where | · | is the number of and in a Boolean expression.

(2.6)
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Figure 2.2: An AIG representation of a ternary multiplexer using dual-rail encoding

2.7 Related Work

The guard-value encoding was first used by Chakraborty et al. in [13] where a word-level
STE was proposed. However, it only focused on its advantages of compactly representing
the guard of a vector with just 1 bit if all bits of the vector are either X or none-X at the
same time.

There is a body of work on symbolic simulation and using symbolic simulation with model
checking. Function vector representation goes hand in hand with symbolic simulation be-
cause for symbolic simulation to compute the next-state value for a signal n, it needs to
know the current values of the signals in n’s support, which are conveniently stored as
elements in the function vector representing the current state. Characteristic function is
the dominant representation for lots of model checking algorithms, e.g., symbolic model
checking [12], Interpolation Based Model Checking [35], PDR/IC3 [9][22]. Still there are
several papers which worked on using functional vector representation instead. It is well
known that BDD representation for functional vector can be exponentially more compact
than the characteristic function representation [1]. Algorithms for applying set operations
on Boolean functional vectors were given in [27], which enabled the integration of symbolic
simulation into reachability analysis. Goel et al. [28] extends Boolean functional vector
with partial order and showed that partially ordered BFVs can serve as abstractions for
bit vector sets and can be used to compute over-approximations in reachability analysis.
[15] gave a symbolic simulation based BMC that outperformed plain BMC. The key was to
apply their efficient SAT-based reparameterization to the BFV when it becomes too com-
plex during simulation. Later, [14] showed results of replacing plain BMC with symbolic
simulation based BMC to compute abstract circuit model. And-Inverter-Graph (AIG) is
a non-canonical representation, but the size of BFV represented in AIG increases linearly
as clock cycles increase. Besides, nodes hashing and graph reduction methods can further
reduce the size of the AIG, [26] showed the efficiency of BMC implemented with sym-
bolic simulation where the Boolean expressions are represented in AIG and satisfiability
is checked with SAT solver. State of art BMC implementations use AIG as intermediate
representation before getting translated to CNF, because it has been shown that circuit-
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based simplifications, such as SAT sweeping [32] [41], rewriting [7] [40], cut-based CNF
translation from AIG [23], can significantly improve BMC performance. Constraints in-
dicate care-set on the inputs. They can be combined with SAT-sweep to help simplify
problem AIG [33]. In this thesis, we use ternary function vector as representations for
sets of ternary states and ternary symbolic simulation to compute the reachable states in
each cycle. A signal’s value is represented using AIG. The logic optimizations are able to
simplify the verification problem because of the data abstraction and memory abstraction.

The existing data abstraction methods most closely related to our work are predicate
abstraction [29] and Symbolic Trajectory Evaluation (STE) [46]. STE achieves data ab-
straction by representing a set of Boolean states with a smaller set of ternary states. Our
data abstraction improves on STE and leverages the guard-value encoding’s flexibility in
encoding X to further reduce the state space in value verification. STE has its own prop-
erty specification language that has restrictive syntax that makes it less friendly than other
property specification languages. In our presentation of data abstraction, the safety prop-
erty to verify is implemented as a monitor circuit and combined with the design, which
makes our data abstraction independent of the property specification language. In our
data abstraction, logic optimizations play an important role which has not been discussed
in STE. Predicate abstraction uses a set of predicates to partition the entire state space:
an assignment to the set of predicates represents an abstract state and different concrete
states that evaluate the predicates to the same value are mapped to the same abstract
state. On the other hand, in our data abstraction, the predicates we use only partition
the state space for a small number of selected signals while the other signals’ state space
remains the same. This way, two different concrete states that evaluate the predicates to
the same value but assigns different values to the signals, whose state space is not meant
to be abstracted by the predicates, are mapped to two different abstract states. It is easier
to come up with a set of predicates that captures enough information about the states to
avoid spurious CEX for a subset of signals than for all of the signals. We believe it makes
our data abstraction easier and more flexible to use than the predicate abstraction. In
predicate abstraction, for each cycle, to compute the reachable abstract states, predicate
abstraction has to solve satisfiability problems. In our data abstraction, because it relies on
ternary logic to achieve abstraction, the set of values of the set of signals characterized by
an assignments to the predicates has to be approximated by a set of ternary assignments.
Each ternary assignment has to be accurate enough such that the predicates evaluate to a
non-X value. In our data abstraction, computing the next cycle reachable states is just as
efficient as in the concrete system and it is purely syntactically. But our data abstraction
cannot handle infinite state systems like predicate abstraction.

In our data abstraction, to abstract the input state space or initial state space, users need
to manually construct the set of ternary states abstracting the original state space. We
provide guidelines for the construction and also present some exemplary data abstraction
that can be adapted for a range of verification problems. Related work was done by Adams
et al. in [2] and Melham et al. in [36]. Melham et al. in [36] defined the notion of indexing
relations and given an indexing relation, authors proposed a method using strong preimage
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to compute a set of ternary states abstracting a set of Boolean states. Adams et al. [2]
developed an algorithm to compute an indexing relation automatically. Their automatic
approach solely aims at reducing the number of ternary states which means fewer fresh
variables are needed in the symbolic representation. However, our data abstraction stresses
the importance of cardinality of the set of values states instead of the ternary states and
also cares about the size of the AIG representation, which is not a factor considered in
their automatic approach.

Similar to our data abstraction, symmetry reduction ([19, 25, 31]) also reduces the state
space. But there are key differences. In symmetry reduction, two states are considered
“equivalent” (belonging to the same class) if there exists a graph automorphism in the sys-
tem’s transition graph and the bijection mapping associated with the automorphism maps
these two states to one another. On the other hand, in our data abstraction, two Boolean
states are considered “equivalent” if they are represented by the same ternary state. The
equivalent states are not differentiated in the verification. For symmetry reduction, it is
the quotient system, where equivalent states correspond to 1 state, that is verified. For our
data abstraction, equivalent states have the same value field in their ternary representation.
Therefore, they are essentially 1 state in the value verification. The guard verification can
be regarded as checking that our state space reduction in the value field is correct. The
other differences include that our techniques are based on symbolic simulation and utilize
logic optimization algorithms to make guard and value verification efficient. The efficiency
of our abstraction also requires that the correctness of a property can be defined with a
small set of symbolic variables, i.e., the property uses (or can be rewritten into a property
that uses) symbolic variables. On the other hand, symmetry reduction is a property of the
system’s transition graph.

Memory abstraction [6] can be very effective for verifying memory or data intensive hard-
ware designs. It replaces a full memory with only a few memory slots when they are all we
need to reason the correctness of the property to verify. For example, when we verify that
the read data is the last written data to the read address for a memory implementation,
we only need one slot, whose address matches the read address. In details, the method
proposed [6] traverses a word-level network to find memory that can be abstracted, which
is then reduced to only a few slots that are addressed by symbolic constants. If a read
operation whose address is not equal to one of the symbolic constants, the read data is
arbitrary. Otherwise, the read data is what is stored in the slot whose address matches
the read address. Our memory abstraction does not reduce the number of memory slots
directly, instead it modifies each memory slot’s value transition function such that the ir-
relevant memory slots share the same value transition function, which essentially reducing
the number of memory slots for value verification. Furthermore, our memory abstraction
is more powerful than [6] because it can apply to memory such as CAM’s memory that
cannot be done using the existing method.

Compositional model checking ([20, 34]), also known as assume-guarantee, decomposes the
property to easier-to-verify local properties. Our data abstraction and memory abstraction
are orthogonal to compositional model checking.
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There are several papers about refinement in STE. Roorda et al. [44] presented methods to
compute the weakest satisfying trace or unsatisfying trace of an STE property, which can
aid users to refine STE properties. Automatic refinement approaches were presented by
Tzoref et al. [48] and Chockler [17]. When encountering a spurious CEX, they both pick
the signal that is in the consequent, contains X in the CEX, and has the least number of
inputs in its support. In order to eliminate the X on the target signal, both papers pick the
inputs that are assigned X in the CEX and are the likely cause of X on the target signal.
The selected inputs will be assigned fresh symbolic variables in the refined STE property.
[48] uses a heuristic that prefers the inputs affecting control to those affecting data. [17],
instead, computes a metric called ‘degree of responsibility’ (DoR) for each input. Then
the inputs with the highest degree of responsibility are picked. Degree of responsibility for
a signal is the inversion of how many other inputs have to change values in order for X to
occur on that signal. The exact DoR is expensive to compute. A method to approximate
DoR was proposed in [17]. It showed better performance, e.g, fewer refinement iterations,
than [48] for the tested designs. The idea of using DoR for STE refinement was further
extended by Adams in [3]. Adams showed how to compute DoR for STE property with
symbolic indexing, and for arbitrary gates. Adams also explored alternatives to refining
inputs by assigning variables. For example, we can introduce guards so that we drive the
input with a variable only when the spurious counterexample happens. The results of
using alternatives are mixed and the authors stressed the importance to keep the guard
logic simple. All existing methods refine the abstraction by adding new variables to the
antecedent. Each time a variable is added, the size of the set of input sequences doubles and
the STE run is made closer to a full-scale costly binary symbolic simulation. In summary,
aforementioned refinement approaches all modify the ternary stimulus for some signals
to replace some X assignments with Boolean variables assignments. On the other hand,
our refinement methods never modify the ternary stimulus. They modify the (unrolled)
Boolean transition function instead.

Two existing SAT-implementations of STE were proposed by Roorda et al. [43] and
Bjesse [8]. [43] does not use symbolic simulation as in [8]. Instead, it translates each
ternary gate to constraints of inputs and output of the ternary gate. The authors showed
that [43] is faster than [8] because it generates fewer clauses. We showed that our SAT
based implementation of STE outperforms the implementation in [43] significantly.

CAMs have been extensively used as an example in related work about STE ([42, 43, 44,
48]). However, the CAMs verified are substantially different from ours, for example, tag
and data pair is updated differently, and our CAM can delete a tag while theirs can’t. The
property we verify is intuitive to write but challenging to verify because it covers both of
the logic involved in writing/updating/deleting tag data and reading the data associated
with the read tag. Their properties are small and inductive, and can be thought as a
decomposition of our property. However, decomposition is well-known to be difficult, and
making them inductive is often challenging. [42] used BDD to check satisfiability while
we use SAT solvers. Moreover, the designs we use for evaluating our techniques go way
beyond the conventional data-path designs used to study STE. The designs range from
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a buffer design that is needed for processing traffic from real-world bus protocols to a
synthetic design based on a superscalar microprocessor’s bypass path. Such designs have
considerable complexity and we observe significant and sometimes orders of magnitudes
improvement with our abstraction techniques.

The use of ternary domain and ternary abstraction of circuits can be viewed as a special
case of multi-value model checking. Refer to Chechik and Gurfinkel et al. [16, 30] for
theories and implementations of general multi-value model checking.
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Chapter 3

Guard-value Encoding

In this chapter, we present our first contribution of the thesis, which is the guard-value en-
coding. In Section 3.1, we define the guard-value encoding and describe how it implements
a ternary transition function with two Boolean transition functions called guard transi-
tion function and value transition. More importantly, in this section, we also present two
properties of the guard-value encoding, which will be leveraged to make the guard-value
encoding based ternary verification much faster than Boolean verification and ternary ver-
ification based on the dual-rail encoding. The key to achieve it is shown in Section 3.3
and 3.4, where we present optimizations. When it comes to symbolically representing a
set of ternary states with a set of pairs of Boolean states, our optimizations help reduce
the cardinality of the set of pairs of Boolean states as well as the AIG-size of the Boolean
states’ symbolic representation (Section 3.3). For a ternary transition function, our opti-
mizations can reduce the cardinality of the set encoding the ternary states reachable in
the next cycle and they can also reduce the AIG-size of the value transition function. We
present its first application, which is memory abstraction. Lastly, this chapter is concluded
with a summary.

3.1 Guard-value Encoding

With the guard-value encoding, a value from the ternary domain is represented as a pair
of Boolean values (Definition 12). We will refer to the left of the pair as the “guard”, and
the right of the pair as the “value”. The ternary value is X as long as its guard is 0: both
〈0, 0〉 and 〈0, 1〉 represent X.

Definition 12 (Guard-value encoding). In guard-value encoding, 〈1, 1〉 represents 1. 〈1, 0〉
represents 0. 〈0, 0〉 and 〈0, 1〉 both represent X.

As shown in Definition 12, both 〈0, 0〉 and 〈0, 1〉 encodes X, which illustrates the flexibility
in representing X.
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A ternary transition function T̂r can be implemented with a pair of Boolean transition
functions using guard-value encoding. The Boolean transition function computing the
next state for signals’ guard field is called the guard transition function (denoted by Trg)
while the value transition function (denoted by Trv) computes the next state for signals’
value field. Because we assume a hardware design to verify is represented as an AIG,
ternary transition functions only involve ternary and and not and it suffices to show how
ternary and and not translate to Boolean gates.

Table 3.1 and Table 3.2 show the guard and value of the output of a ternary and and a
ternary not respectively, where ‘-’ could be either 0 or 1.

Table 3.1: The guard and value of the output of a ternary and (∧̂)
∧̂ 〈1, 0〉 〈1, 1〉 〈0, -〉
〈1, 0〉 〈1, 0〉 〈1, 0〉 〈1, 0〉
〈1, 1〉 〈1, 0〉 〈1, 1〉 〈0, -〉
〈0, -〉 〈1, 0〉 〈0, -〉 〈0, -〉

Table 3.2: The guard and value of the output of a ternary not (¬̂)
¬̂ 〈1, 0〉 〈1, 1〉 〈0, -〉
〈1, 1〉 〈1, 0〉 〈0, -〉

Let the inputs to a ternary and have values 〈ag, av〉 and 〈bg, bv〉. Then based on Table 3.1,
the output’s value, denoted as 〈og, ov〉 are:

og = (ag ∧ bg) ∨ (ag ∧ ¬av) ∨ (bg ∧ ¬bv)
ov = av ∧ bv (3.1)

Similarly, the output’s value of a ternary not gate can be computed in terms of its input’s
value, denoted as 〈ag, av〉:

og = ag

ov = ¬av (3.2)

Just like dual-rail encoding, with Equation 3.1 and Equation 3.2, we also reduce symboli-
cally simulating a ternary and/not gate to Boolean symbolic simulations.

By using what we have so far, we can construct Mgv that encodes M̂ using guard-value

encoding. This way, verifying M̂ can be reduced to verifying the Boolean transition func-
tion Mgv. The number of signals in Mgv is twice as many as the number of signals in
M because for any signal n from M, its guard signal ng and value signal nv are in Mgv:
Sgv = {ng, nv : n ∈ S}.

Mgv = (Q̊Rgv ,Trgv,ΣIgv), where
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� The set of initial states Q̊Rgv encodes
ˆ̊Q using guard-value encoding: for any ternary

initial state q̂ from
ˆ̊Q, there is a corresponding Boolean initial state q from Q̊Rgv that

encodes q̂ and for any Boolean state in Q̊Rgv there is a ternary state in
ˆ̊Q that is

encoded by it.

We decompose Q̊Rgv with regard to its domain into Q̊Rg and Q̊Rv , which are the
initial states for only the guard signals and value signals respectively. That is, for
any q ∈ Q̊Rgv , there is qg ∈ Q̊Rg and qv ∈ Q̊Rv such that ∀ n ∈ SR . q(ng) =
qg(ng) and q(nv) = qv(nv). We call qg guard state and qv value state.

� Transition function Trgv is constructed by composing the Boolean implementations

of ternary and and not found in T̂r. We discuss it more in the next section.

� Stimulus ΣIgv encodes Σ̂I : for any ternary stimulus, there is a Boolean stimulus
from ΣIgv encoding it and for any Boolean stimulus, there is a ternary stimulus from

Σ̂I encoded by it. A Boolean stimulus πI ∈ ΣIgv encodes a ternary stimulus π̂I iff
∀ t . ∀ n ∈ SI . 〈πt

I(ng), π
t
I(nv)〉 = π̂t

I(n).

ΣIg and ΣIv to denote the stimulus for only the guard signals and value signals
respectively.

Lemma 4. Every trace of Mgv encodes a ternary trace from M̂. As a result, Mgv |=
(og ∧ ov) =⇒ M̂ |= (o = 1). Recall that it is assumed that the property to verify is
represented as a primary output o of the design.

In the next section, we study the guard-value encoding of a ternary transition function
in details and compare it with the dual-rail encoding of a ternary transition function
comprehensively.

3.2 Comparing the Guard-value and Dual-rail Imple-

mentations of Ternary Transition Functions

The dual-rail transition function Trdr and Trgv are compared in terms of their AIG-size,
the number of inputs and some other characteristics.

Both Trdr and Trgv are constructed by replacing the ternary and and not with their

corresponding ternary encodings in T̂r. The AIG-size of a transition function is the number
of and gates. Based on 2.4 and Formula 2.5 on page 24, using structural induction on the
AIG, we can conclude the following facts about Trdr:

� For each signal, the transition functions for its high rail and low rail have the same
size and it is equal to the original transition function: ∀ n ∈ SR . |Trdr(nh)| =
|Trdr(nl)| = |Tr(n)|.
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� Let signal m be a signal among the inputs of Tr(n). Then, m’s high rail (low rail)
is among the inputs of Trdr(nh) if there is a path between m and n and there are an
even (odd) number of not gates on that path. Similarly, Signal m’s high rail (low
rail) is among the inputs of Trdr(nl) if there is a path between m and n and there
are odd (even) number of not gates on that path. Therefore, the number of inputs
for Trdr(nh) and Trdr(nl), denoted by |supp(Trdr(nh))| and |supp(Trdr(nl))| is between
|supp(Tr(n))| and 2× |supp(Tr(n))|, where supp abbreviates “support”.

� For any signal n, neither of Trdr(nh) and Trdr(nl) is likely to be equivalent to Tr,
regardless of the mapping of the inputs. For example, Figure 2.2 from page 18 shows
that neither of the high rail and low rail for a ternary multiplexer is a multiplexer.

Based on 3.1 and Formula 3.2, using structural induction on the AIG, we can conclude the
following facts about Trgv:

� For each signal, the value transition function has the same size as the original tran-
sition function. Because ∨ translates to 1 and gate and 2 not gates, the guard
transition function has 4 times more and gates than the original transition function:
∀ n ∈ SR . |Trv(n)| = |Tr(n)| and |Trg(n)| = 5× |Tr(n)|.

� The transition function for a signal’s value only depends on the value of its inputs,
while the transition function for a signal’s guard depends on both of the value and
guard of its inputs. Therefore,

– |supp(Trg(n))| ≥ |supp(Trdr(nh))|,
– |supp(Trg(n))| ≥ |supp(Trdr(nl))|,
– |supp(Trv(n))| ≤ |supp(Trdr(nh)| and

– |supp(Trv(n))| ≤ |supp(Trdr(nl)|.

� The transition function for a signal’s value in the guard-value encoding is identical to
the original transition function except the inputs. Mathematically, it is captured in
Lemma 5. The guard transition function computes the care condition for that signal
and it is unlikely to be the same as the original function.

Lemma 5. ∀n ∈ S . Trv(n) = Tr(n)(mv/m), where we use Tr(n)(mv/m) to denote replacing
every input of Tr(n), m, with its corresponding value signal mv.

Corollary 1 is derived from Lemma 5. The corollary shows that when computing the value
field of ternary traces, the guard field of the initial states and stimulus are not involved.

Corollary 1. Let Mv be (QRv ,Tr(mv/m),ΣIv). The set of signals in Mv is {nv : n ∈ S}.
Then, L(Mv) includes exactly the value fields of the traces in L(Mgv). That is

1. ∀ σv ∈ L(Mv) . ∃ σgv ∈ L(Mgv) . ∀ n ∈ S . ∀ t . σt
v(nv) = σt

gv(nv) and
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2. ∀ σgv ∈ L(Mgv) . ∃ σv ∈ L(Mv) . ∀ n ∈ S . ∀ t . σt
v(nv) = σt

gv(nv)

The main disadvantage of guard value encoding is the size of guard transition functions.
Fortunately, in practice, there often exists a great amount of logic redundancy, which
presents opportunities for logic optimizations. We work on two toy examples (Exam-
ple 3.2.1 and Example 3.2.2) to show the logic redundancy as well as how we can sig-
nificantly simplify the guard transition functions. The logic redundancy comes from the
way we construct guard transition functions and the fact that in practice, many signals
cannot be X. Manual simplifications are powerful but not practical. Instead, we find that
off-the-shelve logic optimizations [39, 41]. work very well at simplifying guard transition
functions and signals’ guard values. The empirical results can be found in Section 8.2.

Example 3.2.1. In this example, we simplify the guard of a multiplexer with y and z as
inputs and s as the select line. The step by step simplification is described below. First, we
use Boolean and and not to implement the ternary ones based on 3.1 and Formula 3.2.
Next we do case-splitting on whether the select line has don’t-care value and then simplify
the if branch and else branch. In the 3rd step, we use Boolean gates to implement the
ternary or. In the end, we use if-then-else operator for brevity.

guard of (y∧̂s)∨̂(z∧̂¬̂s) ≡ guard of
( 〈

(yg ∧ sg) ∨ (yg ∧ ¬yv) ∨ (sg ∧ ¬sv), yv ∧ sv
〉
∨̂

〈(zg ∧ sg) ∨ (zg ∧ ¬zv) ∨ (sg ∧ sv), zv ∧ ¬sv〉 )

≡ sg ? guard of
(〈
yg ∨ ¬sv, yv ∧ sv

〉
∨̂ 〈zg ∨ sv, zv ∧ ¬sv〉

)
:

guard of
(〈
yg ∧ ¬yv, yv ∧ sv

〉
∨̂ 〈zg ∧ ¬zv, zv ∧ ¬sv〉

)
≡ sg ?

(
(yg ∧ sv) ∨ (zg ∧ ¬sv)

)
:

(¬yv ∧ yg ∧ ¬zv ∧ zg)

≡ sg ? (sv ? yg : zg ) :

(¬yv ∧ yg ∧ ¬zv ∧ zg) (3.3)

After simplification, there are 9 ands in the guard because besides 3 ands, there are two
if-then-else and an if-then-else is implemented using 3 ands. Without any simplification,
there would have been 3× 5 = 15 ands.

Example 3.2.2. Let a = (a[0], a[1], . . .) be a vector of signals, where the signal selected
by a vector of k signals d is denoted by a[d]. The guard and value field of the vector a is
denoted by ag = (ag[0], ag[1], . . .) and av = (av[0], av[1], . . .)) respectively. In this example,
we show how the guard of a[d], denoted by adg , can be significantly simplified when the
signals in the vector d cannot have value X, i.e., their guards cannot be 0. We implement
a[d] with a chain of multiplexers:

a[d] = d = 0 ? a[0] : (d = 1 ? a[1] : (d = 2 ? a[2] : . . . ) )

As shown below, we iteratively use Formula 3.3 to compute the guard. Note that dg is a
vector of 1s, therefore we use the if-branch in Formula 3.3. After we complete computing
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the guard for every branch, it becomes dv selecting among ag, i.e., ag[dv].

guard of a[d] ≡ (dv = 0) ? ag[0] : guard of {(dv = 1) ? a[1] : [(dv = 2) ? a[2] : . . . ] }
≡ (dv = 0) ? ag[0] : {(dv = 1) ? ag[1] : guard of ((dv = 2) ? a[2] : . . . ) }
≡ . . .

≡ ag[dv] (3.4)

The guard-value encoding’s flexibility in encoding X and its property described in Lemma 5
are the most important advantages over the dual-rail encoding. In the next two sections,
we develop techniques to simplify symbolic states and ternary transition functions based
on these two properties.

3.3 Value States Simplification using the Care Set

A pair of Boolean expressions 〈eg, ev〉 in the guard-value encoding represents the symbolic
ternary value eg ? ev : X , which is X when eg is 0. Therefore, ev’s value only matters
if eg = 1. In other words, eg characterizes the set of input assignments where we care
about ev’s value. Such a set is often referred to as the care set for a Boolean function,
which has been extensively studied and used in logic optimization (e.g., [45, 38, 51]). It
can be extended to simplifying a symbolic ternary state by simplifying the values that the
state maps the signals to. Example 3.3.1 illustrates how we can use the care-set to either
optimizes the number of logic operators or the size of the state space.

Example 3.3.1. Let us again consider the set of ternary states from Example 2.2.1: {(1,X
,X), (X, 1,X), (X,X, 1), (0, 0, 0)}, which is symbolically represented by the ternary function
vector:

(¬i1 ∧ ¬i0 ? 1 : (i1 ∧ i0 ? 0 : X ) ,

¬i1 ∧ i0 ? 1 : (i1 ∧ i0 ? 0 : X ) ,

i1 ∧ ¬i0 ? 1 : (i1 ∧ i0 ? 0 : X ) ) (3.5)

In Table 3.3, we use different encodings to represent the set of 4 ternary states and to
represent the symbolic ternary state. For each encoding, the first row lists the high rails (or
guards) while the second row lists the low rails (or values). As already shown in Section 2.6,
using dual-rail encoding, a symbolic ternary state is represented by two symbolic Boolean
states, which are the high rail state and the low rail state, as shown in the 3rd column.
Similarly, using guard-value encoding, a symbolic ternary state can be represented by two
symbolic Boolean states, which will be called the guard state and the value state. They
generate the set of guards and values respectively.

The symbolic high rail state (guard state) and symbolic low rail state (value state) are
constructed from the concrete set of states in the same way as we construct the Formula 3.5
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in Example 2.2.1. Let us construct the symbolic high rail state as an example. (i1, i0) is the
indexing vectors we use to select among the array of 4 concrete high rail states. Signal a, b
and c’s high rails are 1 for all of the 4 states’ high rails except the last state. The last state’s
index is i1 ∧ i0. Therefore, the symbolic high rail state is (¬(i1 ∧ i0), ¬(i1 ∧ i0), ¬(i1 ∧ i0))

For the guard-value encoding, by choosing between 〈0, 0〉 and 〈0, 1〉 for the encoding of X,
there could be numerous different sets of value states. We demonstrate it in Table 3.3,
where we show 3 different sets of value states and label them with v, v*, v** respectively.

1. v is the baseline that is compared to v* and v**. We choose to use 〈0, 0〉 uniformly
for encoding X.

2. we use v* to demonstrate that we can carefully choose the encoding for X to optimize
the state space for the value state. In this example, it happens to be uniformly using
〈0, 1〉 to represent X. The value state space is {(1, 1, 1), (0, 0, 0)}, which is the smallest
among all possibilities.

3. we use v** to demonstrate that, alternatively, we can minimizes the number of logic
operators in the symbolic value state. To minimize the number of and for this exam-
ple, we need to use 〈0, 1〉 and 〈0, 0〉 alternatively to encode X appearing within the set
of value states. For example, to minimize the size of the symbolic value for signal a,
we use 〈0, 1〉 to represent X in the 2nd state for a and 〈0, 0〉 to represent X in the 3rd
state for a. As a result, the symbolic value uses 0 and which is not only the smallest
among all possibilities for guard-value encoding, but also smaller than the high-rail
and low-rail state in dual-rail encoding.

As demonstrated in the above example, the simplification can achieve value state space
reduction or reduction in terms of the AIG-size of value states’ symbolic representation.
Even though it is often the case that smaller state space yields simpler symbolic repre-
sentation, these two goals are orthogonal. It is important to consider both simplifications
goals for the simplification to be effective for SAT-based formal verification.

Given a set of ternary states, we can compute the theoretical maximum value state space
reduction as follows. The procedure shown in Listing 3.1 returns a set of ternary states,
where for any pair of ternary states, there exists at least one signal that’s assigned conflict-
ing values (i.e., assigned 0 by one state and 1 by the other). Let the size of the returned
set of ternary states be m. Then m is the bound of the max value state space reduction
that the guard-value encoding can achieve (Lemma 6): no matter how use encode X, the
number of value states is always m. The pseudo-code has a complexity of O(n2), where n
is the number of ternary states, which makes it usually impractical in practice.

Listing 3.1: Maximum value state space reduction

valueStateSpaceRed ( q̂0, q̂1, . . . , q̂n−1 )
proce s sed = {}
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Table 3.3: Comparison of encodings
Concrete states

Index ¬i1 ∧ ¬i0 ¬i1 ∧ i0 i1 ∧ ¬i0 i1 ∧ i0
Variables (a, b, c) (a,b, c) (a, b, c) (a,b, c)
State {(1,X,X), (X,1,X), (X,X,1), (0,0,0)}

DR
h {(1,1, 1), (1,1,1), (1, 1, 1) (0,0,0)}
l {(0,1, 1), (1,0,1), (1, 1, 0) (1,1,1)}

GV

g {(1,0, 0), (0,1,0), (0, 0,1), (1,1,1)}
v {(1,0 ,0 ), (0 ,1,0 ), (0 ,0 ,1), (0,0,0)}
v* {(1,1 ,1 ), (1 ,1,1 ), (1 ,1 ,1), (0,0,0)}
v** {(1,1 ,1 ), (1 ,1,0 ), (0 ,0 ,1), (0,0,0)}

Symbolic state
a b c

DR
h ¬(i1 ∧ i0) ¬(i1 ∧ i0) ¬(i1 ∧ i0)
l ¬(¬i1 ∧ ¬i0) ¬(¬i1 ∧ i0) ¬(i1 ∧ ¬i0))

GV

g (¬i1 ∧ ¬i0) ∨ (i1 ∧ i0) i0 i1
v ¬i1 ∧ ¬i0 ¬i1 ∧ i0 i1 ∧ ¬i0
v* ¬(i1 ∧ i0) ¬(i1 ∧ i0) ¬(i1 ∧ i0)
v** ¬i1 ¬i1 ¬i0

30



unprocessed = {q̂0, q̂1, . . . , q̂n−1}
reducedStates = {}
f o r q̂i in unprocessed :

move q̂i from unprocessed to proce s s ed
f o r q̂j in unprocessed :

i f q̂i u q̂j 6= ⊥ :
q̂i = q̂i u q̂j
move q̂j from unprocessed to proce s s ed

add q̂i to reducedStates
re turn reducedStates

Lemma 6. For the set of ternary states {q̂0, q̂1, . . . , q̂n−1}, the minimum number of value
states is the number of ternary states in valueStateSpaceRed(q̂0, q̂1, . . . , q̂n−1).

Proof. Two ternary states, q̂0 and q̂1, can share the same value state iff they don’t have
conflicting assignment, i.e., q̂0 u q̂1 6= ⊥. The function valueStateSpaceRed combines all
ternary states that are not conflicted with qi into 1 ternary state and adds it to the set of
ternary states to return. Let us assume that there exists smaller set of value states. Then
there must be two ternary states that are not conflicted with each other but not combined
in valueStateSpaceRed, which is not possible.

The value state simplification using the care-set will be further developed in Section 5,
where it is used to reduce formal verification complexity: provided human’s knowledge of
when an input or register signal’s value becomes irrelevant to the verification problem, this
technique is used to simplify the stimuli and initial state.

3.4 Value Transition Function Simplification using the

Care Set

When a signal’s relevancy to the verification result is dependent on other signals’ val-
ues and/or Boolean variables, we can leverage it to simplify the signal’s value transition
function. We use ĝ to denote a ternary expression that takes signals and Boolean vari-
ables as inputs and represents the condition under which signal n’s value is relevant to the

verification. We can construct a new ternary transition function for n (denoted by ˆ̃Tr(n)):

ˆ̃Tr(n) = ĝ ? T̂r(n) : X (3.6)

It is easy to see that ˆ̃Tr(n) is an abstraction of n’s original ternary transition function T̂r(n)

because given the same current state, ˆ̃Tr(n) maps n to the same value as ˆ̃Tr(n) when ĝ = 1
and otherwise, n is mapped to X in the next state.
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Using the guard-value encoding, ˆ̃Tr(n)’s corresponding value and guard transition function
are:

T̃rv(nv) ≡ gv ? Trv(nv) : Tr′ , where Tr′ can be any Boolean function. (3.7)

T̃rg(ng) ≡ ¬gg ? 0 : (gv ∧ gg ? Trg(ng) : 0 )

≡ gg ∧ gv ∧ Trg(ng) (3.8)

(3.7) is the result of applying Lemma 5 and encoding X with 〈0,Tr′〉. (3.8) is the result of
applying Formual (3.3). The goal of this simplification is to make T̃rv(nv) simpler in terms
of the number of reachable states in the next cycle or/and T̃rv(nv)’s AIG-size. To achieve
these goals,

1. we need to construct Tr’ carefully and

2. we also need to come up with ĝ such that Trv(n) can be greatly simplified by re-
stricting its domain based on ĝ = 1

In practice, we usually construct ĝ in such a way such that it can never be X. In such
scenario, we may also denote it as g instead ĝ. One application of the value transition
function simplification is memory abstraction. We will show a basic memory abstraction
in the next section and a more advanced one in Section 6.

3.4.1 Memory Abstraction by Value Transition Function Simpli-
fication

In memory intensive hardware designs, the sheer number of memory slots could be over-
whelming for formal verification. Fortunately, usually only a small number of memory
slots affect the truth of the property to verify. For example, when we verify that a read
operation returns the data in the memory at the read address, we only care about that one
slot whose address matches the read address. Let the cared slot have an arbitrary address
that is equal to

#»

d , which is a vector of Boolean variables. Then, a better way to state
the same property is that reading from the address

#»

d returns the data in the memory at
address

#»

d . This way of rewriting a property has been discussed in details as a part of the
memory abstraction in [6]. In this thesis, we assume that the property is already written
in a way that facilitates our memory abstraction and we focus on how to modify the value
transition functions for reading and writing to the memory to reduce the state space of
the memory. Our technique utilizes ternary domain, the guard-value encoding and the
value transition function simplification introduced before. In this section, we deal with the
memories that have a small number of memory slots that matter to the verification and
these memory slots can be identified by addresses. These memories are exactly the ones
that can be abstracted by the technique from [6]. Besides, our technique works in ternary
domain while theirs works in the Boolean domain. Another interesting distinction is that
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we achieve the state space reduction without actually reducing the number of memory slots
as in [6]. In Chapter 6, we will generalize our technique to make it applicable to virtually
any array of elements, which is a significant improvement over the existing work.

For simplicity of introducing our technique, let us consider a memory that can be reduced
to just 1 slot and its address be

#»

d .

Memory write

We use wr to denote write operation and its value field is wrv. The write address signal is
waddr and the write data is wdata. The signal mem[i] is the data in the i-th slot. Then,
the transition function of the write operation, i.e., Tr(mem[i]), is:

(wr ∧ waddr = i) ? wdata : mem[i] .

Based on Lemma 5, mem[i]’s value transition function is simply:

(wrv ∧ waddrv = i) ? wdatav : memv[i] .

Recall that to use value transition function simplification, we need to construct ĝ and Tr′.
For signal memv[i], ĝ is i =

#»

d because we care about the value of the slot iff its address

matches
#»

d . We abstract the original transition function for mem[i] (i.e., Tr(mem[i])) with
the following ternary transition function

i =
#»

d ? T̂r(mem[i]) : X

We will construct Tr′ as we simplify the value transition function with ĝ in steps from (3.9)

to (3.12). In the first step, we are able to replace i with
#»

d in the if-branch because i =
#»

d . In
the second step, we use the if-branch operand to instantiate Tr′. In the end, the new value
transition function for the i-th slot becomes (wrv ∧ waddrv =

#»

d ) ? wdatav : memv[
#»

d ] ,
which is independent of i. In conclusion, every memory slot shares the same transition
function for its value field. As a result, effectively, the memory is reduced to just 1 slot in
Mv.

T̃rv(mem[i]) =(i =
#»

d ) ? ((wrv ∧ waddrv = i) ? wdatav : memv[i] ) : Tr′ (3.9)

≡ (i =
#»

d ) ? ((wrv ∧ waddrv =
#»

d ) ? wdatav : memv[
#»

d ] ) : Tr′ (3.10)

≡ (i =
#»

d ) ? ((wrv ∧ waddrv =
#»

d ) ? wdatav : memv[
#»

d ] ) :

((wrv ∧ waddrv =
#»

d ) ? wdatav : memv[
#»

d ] ) (3.11)

≡ (wrv ∧ waddrv =
#»

d ) ? wdatav : memv[
#»

d ] (3.12)

Based on (3.8), the new guard transition function for mem[i] becomes (3.13) and it can be
simplified to (3.14).

T̃rg(mem[i]) ≡ i =
#»

d ∧ Trg(memg[i]) (3.13)

≡ i =
#»

d ∧ Trg(memg[
#»

d ]) (3.14)
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Let cg and cv denote the guard and value of wr∧̂(waddr=̂
#»

d ) respectively. Usually, the
guards of the input signals wr, waddr and wdata are 1s, therefore cg = 1. Then, based on

our previous result on the guard of a mux (3.3), we can expand Trg(memg[
#»

d ]) as

Trg(memg[
#»

d ])) = cv ? wdatag : memg[i]

= cv ? 1 : memg[i]

If initially mem[
#»

d ] has non-X values, then based on the above formula, it’s easy to see

that it will have Boolean value in every cycle, i.e., Trg(memg[
#»

d ]) = 1. This way, (3.14) is

further simplified to just i =
#»

d .

Memory read

Let raddr be the read address. The original transition function of rdata (read data) is
mem[raddr] (i.e., Tr(rdata) = mem[raddr]). Because we are only interested in the read data

if the read address matches
#»

d , we can construct ĝ as raddr=̂
#»

d to use in the new ternary
transition function of rdata:

(raddr=̂
#»

d ) ? T̂r(rdata) : X

The corresponding new value transition function is:

(raddrv =
#»

d ) ? memv[raddrv] : Tr′

We simplify it in a similar fashion as the write operation and use memv[
#»

d ] as Tr’

T̃rv(rdatav) ≡ (raddrv =
#»

d ) ? mem[raddr] : Tr′

≡ (raddrv =
#»

d ) ? memv[
#»

d ] : memv[
#»

d ]

≡ memv[
#»

d ]

The simplified value transition function for rdata becomes independent of raddr.

Same as waddr, the input signal raddr is not assigned X in practice. This way, based on
(3.8), the new guard transition function for rdata becomes

(raddrv =
#»

d ) ∧ Trg(rdata), where Trg(rdata) is the old guard transition funciton.

Also because raddr cannot be X, Trg(rdata) is just memg[raddrv] (recall (3.4)), which sim-
plifies rdata’s new guard transition function to:

(raddrv =
#»

d ) ∧memg[
#»

d ]

Furthermore, recall that Trg(memg) = 1 when the guards of the input signals wr, waddr

and wdata are 1s and initially mem[
#»

d ] have Boolean values. This way, the new guard
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transition function for rdata is simply raddrv =
#»

d , which can be interpreted as when the
read address is not equal to

#»

d , the read data is X and otherwise, it is the data that is
written to the memory at location

#»

d .

We have shown that the value transition functions of both memory read and write are
identical among the memory slots, which effectively reduces the number of memory slots
to 1. Our memory abstraction makes the new guard transition functions more complicated
because of the inclusion of ĝ. But we have shown that the new guard transition functions
can be greatly simplified in practice. This technique can be easily extended to cases where
the memory slots of more than 1 address matter to the verification result. Beyond that,
there are more advanced application of value transition function simplification in memory
abstraction, which we will show in Section 6.

3.5 Summary

In this chapter, we introduce the guard-value encoding and present how it can encode
ternary states, ternary transition function and eventually ternary transition systems. We
study and compare the AIG-size, the number of supports and other characteristics of
ternary transition functions implemented with the guard-value encoding and the dual-rail
encoding. More importantly, we show that the guard-value encoding has two desirable
properties that include the flexibility in encoding X and that its value transition function
is identical to the original Boolean transition function. We leverage these two properties
to develop the techniques that can simplify value states and value transition functions. As
an application of the value transition function simplification, we show how to use it to
achieve memory abstraction. These two techniques will be further developed in Chapter 5
and Chapter 6. But first, let us analyze and present the advantages of the guard-value
encoding over the dual-rail encoding in the context of formal verification of a transition
system in the next chapter.
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Chapter 4

Effective Verification with Ternary
Domain

In this chapter, we explain why verifying a ternary abstraction of a Boolean transition
system with the guard-value encoding is faster than using the dual-rail encoding or verifying
the Boolean transition system directly in the Boolean domain. This chapter will be divided
into 4 sections. We first introduce how we compare them and the measures we consider.
We assume SAT solves are used. Then, we show that intuitively these three approaches
are solving the same problem differently. Next, we explain why the ternary verification
with the guard-value encoding is faster than using the dual-rail encoding and the Boolean
verification respectively. Lastly, we present other useful advantages of ternary verification
with the guard-value encoding.

4.1 Introduction

For the ease of discussion, we assume that the design and the property to verify are
combined into an AIG with a single primary output. This way, the design satisfies the
property iff the output is 1 for any clock cycle (i.e., constant 1). For anything that needs
to check the satisfiability during verification, we will loosely refer to it as a verification
problem. For example, BMC generates a verification problem for each cycle and induction
generates two verification problems, which are for base step and inductive step respectively.
One benefit of using the AIG as data structure is that there is a wide range existing AIG-
based logic optimization techniques available. AIGs are translated to Conjunctive Normal
Form (CNF) using efficient methods such as [23], which will then be solved by SAT solvers.
Because induction can also be reduced to BMC as we have shown in Section 2.4.2, we will
only discuss ternary BMC and regular BMC.

Firstly, ternary BMC based on dual-rail encoding (BMC-DR) and guard-value encoding
(BMC-GV) as well as Boolean BMC can be regarded as 3 distinct encodings of the same
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verification problem:

� BMC checks that the output is always 1 in the k-th cycle.

� Ternary simulation using dual-rail encoding computes the “may be 1” condition
(high rail) and “may be 0” (low rail) condition for each signal. BMC-DR checks
that the output may not be 0 (low rail is 0) in the k-th cycle. Unless there could
be over-constrained, the high rail need not be checked (same as Symbolic Trajec-
tory Evaluation [46]). When over-constraints happen, symbolic simulation is usually
stopped.

� Ternary simulation using guard-value encoding complements Boolean simulation: it
not only computes the value for each signal but also the care condition (i.e., guard),
which indicates the condition when the change of value at this signal affects the pri-
mary output (i.e., the verification property). BMC-GV verifies the guard and value
of the primary output: 1) guard verification: checking that X cannot propagate to
the output, that is the primary output’s guard must be 1 and, 2) value verifica-
tion: checking that BMC with modified stimulus and initial state (recall Mv from
Corollary 1) passes for the cycle k.

In order for the comparison to be fair, we use BMC, BMC-DR and BMC-GV to verify the
same property, and use the same transition function1 except that the gates are given ternary
semantics for BMC-DR and BMC-GV. In order for the comparison to be meaningful, we
use different initial state and stimulus for ternary BMC and BMC because as stated in
Lemma 1, the initial state and stimulus define the abstraction level for ternary BMC. For
example, if we use the same initial state and stimulus as BMC, ternary BMC behaves
exactly the same as BMC, i.e., it will generate the same verification problem to SAT
solvers. In order to attain soundness, the initial state and stimulus of ternary BMC are
required to be an abstraction of BMC’s, i.e.,

Q̊R ≤ ˆ̊QR, and ΣI ≤ Σ̂I

In Section 8.2, experimental results will show that BMC-GV is better than BMC-DR
and BMC. In this section, we will make effort to explain the concepts behind empirical
results. Most of the presentations will be argumentative and about our intuitions. The
quantitative measures we use to compare BMC, BMC-DR and BMC-GV are the size of
AIGs and the state space. The size of AIG will affect the size of CNF given to SAT
solvers. Note that by no means we imply that the size of AIGs and the state space can
reliably predict the hardness of a SAT problem. But these are useful measures that have
been used and discussed in literature. For example, Roorda [43] compares the proposed
SAT based STE implementation with existing ones in terms of the size of CNF. Een,
Mishchenko et al. [23, 40] show circuit-based approaches to reduce the size of CNF which

1We may need to modify it slightly for refinement for ternary BMC.
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leads to improving SAT solving performance. As for a smaller state space, it not only
improves the worst-case performance, but also often significantly accelerates the verification
in practice, as seen with many successful techniques that are able to reduce state space,
such as symmetry reduction, partial order reduction and abstraction.

The comparisons among BMC, BMC-DR and BMC-GV are summarized in Table 4.1.
They are compared in terms of:

� size before logic opt: it is the size of the verification problem before any logic
optimization. Therefore, this measure only depends on the size of stimulus and the
size of the transition functions.

� state space: input state space and reachable states

� amenable to logic opt: the more a verification problem is amenable to logic op-
timization, the less time logic optimization takes and the more logic optimization
accelerates the verification.

� comments: it is where to write down any other important differences.

A set of Boolean states can be compactly abstracted by a set of ternary states. For example,
a set of 4 Boolean states {(0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 1)} can be abstracted by a set of
just 1 ternary state {(X,X, 1)}. The lower bound of the number of variables needed to
symbolically represent a set of k elements is dlog (k)e. Therefore, using ternary domain
has the advantage of using fewer variables, which is a key driver for BDD-based STE’s
success.

4.2 BMC-DR and BMC-GV

Before we compare the size of verification problems for BMC-DR and BMC-GV, let us
compare the sizes of the initial state and stimulus for DR and GV, since the gates used to
represent the initial state and stimulus are most likely to be part of the verification problem.
We only compare the size of the initial state here, since the comparison for stimulus can be
done very similarly. Let us assume that in the initial state, the most compact representation
for signal n’s value using dual-rail encoding is 〈fh, fl〉. Then using guard-value encoding
and by leveraging the flexibility provided by the guard, n’s value can be encoded in GV
with any pair of Boolean functions 〈¬(fh ∧ fl), f〉 as long as ¬(fh ∧ fl) =⇒ (f = fh). fh
and ¬fl are the 2 straightforward candidates for f 2. As a conclusion, the initial state in
guard-value encoding is at least as compact as in the dual rail encoding and potentially
can be significantly smaller through simplification with care-set.

2Here we assume that there is no over-constraints, i.e., fh and fl cannot both be 0
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Besides the size of the initial state and stimulus, the size of verification problem is also
determined by the size of the transition function as well as the inputs of the transition
function. We will show that the differences in the inputs of the transition functions between
two encodings make value verification problem much smaller than the verification problem
of BMC-DR in practice.

For each non-input signal n, its value transition function Trv(n) has the same size as its
low rail transition function Trdr(nl) and its high rail transition function Trdr(nh). Let the

inputs of the original transition for n be
#»

in and #»r , i.e., Tr(n)(
#»

in, #»r ), where
#»

in ⊆ SI is a
vector of some input signals and #»r ⊆ SR is a vector of some non-input signals. Recall
that in Section 3.2, we show that the inputs of Trv(n) are the value fields of the original

inputs, i.e., Trv(n)(
#»

inv,
#»r v), while the inputs of Trdr(nl) (or Trdr(nh)) could include both

rails. Specifically, both rails of signal m from
#»

in or #»r will appear in Trdr(nl) if there are
at least two different paths between n and m in the AIG of Tr(n) such that there are even
number of not on one path and odd number on another.

Let n be the primary output. Then, the value verification problem at cycle t is

Trv(n)
(

Σt−1
Iv

(
#»

in),Σt−1
Rv

( #»r v)
)

(4.1)

Σt−1
Iv

(
#»

in) is the value field of the symbolic stimulus for the input vector in cycle t− 1 and
Σt−1

Rv
( #»r ) is the value field of the symbolic state of registers in cycle t − 1, which can be

computed with symbolic simulation (2.1).

In order to describe the inputs to the BMC-DR verification problem, which is Trdr(nl), let

us first partition
#»

in into
#   »

inbr and
#   »

insr, where
#   »

inbr includes the signals, whose both of high
and low rails appear in the inputs and

#   »

insr includes the signals, whose single rail appears
in the inputs. Without loss of generality, we assume that it is the low rail. Similarly, #»r is

partitioned into
# »

rbr and
# »
rsr. Then, The verification problem for BMC-DR at cycle t is

Trdr(nl)( Σt−1
Idr

(
#   »

insrl ), Σt−1
Rdr

(
# »

rsrl ),

Σt−1
Idr

(
#   »

inbrh ), Σt−1
Idr

(
#   »

inbrl ),

Σt−1
Rdr

(
# »

rbrh ), Σt−1
Rdr

(
# »

rbrl ) ) (4.2)

Formula (4.2) can be simplified by replacing Σt−1
Idr

(
#   »

insrl ) and Σt−1
Idr

(
#   »

inbrl ) with Σt−1
Idr

(
#»

inl) because
#    »

inbr ∪ #   »

insr =
#»

in. Similarly, Σt−1
Rdr

(
# »
rsrl ) and Σt−1

Rdr
(

# »

rbrl ) are replaced with Σt−1
Rdr

( #»rl ). After
simplification, the formula becomes:

Trdr(nl)
(

Σt−1
Idr

(
#»

inl), Σt−1
Rdr

( #»rl ), Σt−1
Idr

(
#   »

inbrh ), Σt−1
Rdr

(
# »

rbrh )
)

(4.3)

Comparing Formula (4.1) for GV and Formula (4.3) for DR, though both encodings’ tran-
sition functions have the same size, i.e., |Trv(n)| = |Trdr(nl)|, it is clear that there are more
gates in the expression for a node at time t in DR (Formula (4.3)) than that in GV because:
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1.
#   »

inbr or
# »

rbr is rarely empty, i.e., there exists at least one signal whose both rails are
among the inputs of Trdr(nl). Or

2. there exists a signal in #»r , let it be m, such that i) mh (or ml) is among the inputs
of Trdr(nl), and ii) the inputs of Trdr(mh) (or Trdr(ml)) include both rails of a signal.
Therefore, the size of the symbolic value for ml is larger than that of mv for any
cycle. When there are many signals that are like m among the inputs of Trdr(nl), it
will result in the size of the state of the support signals in cycle (t− 1) being much

larger than those in GV, i.e., (|Σt−1
Rdr

( #»rl )|+ |Σt−1
Rdr

(
# »

rbrh )|)� (|Σt−1
Rv

( #»r )|+ |Σt−1
Rv

(
# »

rbr)|).

In practice, 1) and 2) are extremely common, which makes the size of the value verification
problem much smaller than BMC-DR. Furthermore, by using value simplification on the
stimulus and initial state of BMC-DR, the value verification problem can be made even
smaller. Some experimental results can be found in Section 8.2.

BMC-GV additionally has to check that X cannot propagate to the output (guard veri-
fication), which is a bigger verification problem than BMC-DR verifying that the output
may not be 0, because Trg(n) has more and gates than Trdr(nl). Luckily, as discussed in
Section 3.2, guards are amenable to logic optimizations. Besides, here we argue that intu-
itively, verifying that X cannot propagate to the output is an easier problem than verifying
that the output cannot be 0, because in practice, most input signals’ guards are 1s (i.e.,
they cannot be X). Our experimental results support our intuition because most of the
time, the guards are readily solved by logic optimizations.

In terms of state space, the value verification of BMC-GV could also be significantly smaller
than verifying the low rail in BMC-DR. Example 3.3.1 demonstrates it well. According
to the 3rd row in Table 3.3, the input space for the value component is {(1, 1, 1), (0, 0, 0)}
while the input space for the low rail verification is {(0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)},
if we assume the best case for BMC-DR where only the low rails of the inputs are used.
In Section 5, we will further elaborate this idea. A welcoming side effect of reduction in
the input state space is that it also makes value verification problem amenable to logic
optimizations, that is, the value verification can be significantly accelerated by spending a
relatively small amount of time for logic optimizations. Besides the state space reduction
at the initial state and stimulus, we have also seen how BMC-GV can reduce the state
space by memory abstraction in Section 3.4.1.

Lastly, for guard-value encoding, the value transition function is identical to the original
transition function except the inputs, which is another advantage BMC-GV has over BMC-
DR (Section 3.2).

4.3 BMC-GV and BMC

Ternary abstraction naturally enables us to compactly abstract a set of Boolean states with
a set of ternary states regardless of the encoding used. For example, a set of 4 Boolean
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Table 4.1: Comparing the value verification and guard verification of BMC-GV against
BMC-DR and BMC

BMC-GV criteria BMC-DR BMC

value
verification

size before logic opt ++ ≈
state space ++ ++
amenable to logic opt ++ ++
comments (1)

guard
verification

size before logic opt − −−
state space ≈ ≈
logic opt ++ ++
comments (2) (3)

� ++: much better. −: worse. −−: much worse. ≈: similar. For example, the
first row reads “value verification is much better than BMC-DR in terms of the size
before logic optimizations. Value verification has similar size as BMC before logic
optimizations.”

� (1): value transition function is identical to the original transition function except
the inputs.

� (2): guard verification verifies that X cannot propagation to the output and BMC-
DR verifies that the primary output may not be 0. These are distinct verification
problems. We argue that it is often easier to verify the X propagation problem in
this paper.

� (3): BMC verifies that the primary output must be 1. It is a distinct verification
problem from guard verification.

states {(0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 1)} can be abstracted by a set of just 1 ternary state
{(X,X, 1)}. The lower bound of the number of variables needed to symbolically represent a
set of k elements is dlog (k)e. Therefore, using ternary domain has the advantage of using
fewer variables, which is a key driver for BDD-based STE’s success. This section explains
in details why BMC-GV can outperform BMC.

The value verification of BMC-GV is essentially BMC on the value transition system
Mv = (Q̊Rv , T r(mv/m),ΣIv) which is defined in Corollary 1. Mv and M share the
same transition function Tr. Therefore, before any logic optimization, the size of value
verification (i.e., BMC on Mv) and BMC are similar in sizes. In order to make BMC
faster on Mv than M, we use the flexibility provided by don’t-care to

1. make Q̊Rv and ΣIv have smaller state space than Q̊R and ΣI and/or

2. make Q̊Rv and ΣIv have smaller size than Q̊R and ΣI and/or
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3. apply memory abstractions.

2 and 3 make Mv contains fewer traces than M: L(Mv) ⊂M.

In Example 3.3.1, {(1,X,X), (X, 1,X), (X,X, 1), (0, 0, 0)} abstracts the set of all Boolean
states. If the Boolean domain is used, (v2, v1, v0) is the symbolic Boolean state represent-
ing the state space, which is the set of every possible Boolean assignment to 3 signals.
Example 3.3.1 uses GV* to reduce the input state space from 23 to just 2 states, which are
{(1, 1, 1), (0, 0, 0)} and symbolically represented by (¬(i0∧ i1), (i0∧¬i1), ¬(i0∧ i1)). How-
ever, in this case, the reduction in state space comes at a small cost: its uses 3 more and
gates than (v2, v1, v0). GV**, on the other hand, focuses on reducing the size: (¬i1,¬i1,¬i0)
represents the value input state space with 0 and gates. The value input state space is
{(1, 1, 1), (1, 1, 0), (0, 0, 1), (0, 0, 0)}, which is still smaller than the state space represented
by (v2, v1, v0).

For many designs and properties, we are able to use guard-value encoding to dramatically
reduce the input state space and the size of the memories, which results in value verification
significantly outperforms BMC. To preserve the soundness of input space reduction and
memory abstraction in the value field, we need to:

1. assign values to the guards of the inputs and memory signals appropriately, such that
the guard-value pair of the stimulus of these input signals and traces of the memory
signals are abstractions of the original ones in M.

2. do guard verification, which verifies that X cannot propagate to the output. In other
words, it checks whether there is a trace that is not in L(Mv) but abstracted by
a trace in L(M̂) such that it fails the property. The cost of guard verification is
the price we have to pay in return of the effectiveness in Mv which is used in value
verification.

Remark 1. The value verification of BMC-GV accurately checks a small subset of traces
of M using BMC. In other words, the value verification of BMC-GV verifies an under-
approximation of M. The guard verification coarsely checks the rest of the traces by veri-
fying whether X at the inputs and the initial state can propagate the output.

4.4 Other Advantages of the Ternary Verification Based

on the Guard-value Encoding

In Chapter 5 and Chapter 6, we show how to leverage the guard-value encoding to achieve
data abstraction and memory abstraction, which could be time-consuming tasks. There-
fore, it is very important to be able to estimate how much the data abstraction and memory
abstraction could benefit the verification. Fortunately, for the guard-value based ternary
verification, we can use the performance of the value verification to gauge how well the
ternary verification could perform because:
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� how much the value verification is faster than the Boolean verification decides the
upper bound of how much the ternary verification could improve over the Boolean
verification.

� ease of use: as stated in Remarks 1, the value verification is simply the Boolean
verification but with reduced state space, which makes it easy to run and test the
value verification. In practice, to estimate how much the value verification improves
the Boolean verification, we usually sketch how the input value state space is approx-
imately reduced by the data abstraction and what the value transition functions of
memory signals approximately become after the memory abstraction without worry-
ing how the guard field is affected.

Another advantage is also associated with Remarks 1. Because the value verification checks
an under-approximation of the original design, the bugs it finds are always real bugs while
for the ternary verification based on other encodings, additional steps have to be taken
to determine whether the bugs found are real or due to too much abstraction. Besides,
because the reduced state space of the value verification, it can often find bugs faster than
the Boolean verification. In summary, the guard-value encoding based ternary verification
is also good at finding bugs in design.
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Chapter 5

Data Abstraction

We present a novel data abstraction technique that reduces much more of the state space
than conventional ternary abstraction’s approach of over-approximating a set of Boolean
values with a smaller set of ternary values. We first illustrate the main idea of our data
abstraction with a realistic CAM verification in Section 5.1. Next, we formalize our data
abstraction in Section 5.2 and demonstrate how to use it in practice with general examples.
We also show how our data abstraction can enable bit-width reduction which helps further
simplify verification problems.

5.1 A Motivating Example

In this section, we verify a realistic hardware design of a content-addressable-memory
(CAM). To improve the verification, we incrementally introduce the ternary domain, guard-
value encoding and symbolic indexing, which altogether reduce the input state space. We
will formalize and expand this idea in Section 5.2 and call it data abstraction with the
guard-value encoding.

CAM is parameterized by the number of memory slots D, the width of the tag TW and
the width of the data DW. Figure 5.1 shows the CAM’s interface and that in each memory
slot, there are tag, data and valid flag, which indicates whether the slot is used. Our CAM
has 3 operations and each one takes 1 clock cycle: 1) write wdata by asserting the input
signal wr to the slot whose tag matches the write tag input wtag. If wtag doesn’t already
exist in the CAM, the first unused slot will be filled with wtag and wdata; 2) read (by
de-asserting the input wr) from the slot whose tag matches the read tag input rtag; and
present the data at the output rdata; 3) delete (by asserting the input signal del) the slots
whose tags match the delete tag input deltag by clearing the valid flags of the matching
slots.

We verify the data correctness property which states that reading based on a tag
#      »
vtag

should return the last data written with that tag, where
#      »
vtag = (vtag(TW−1), . . . , vtag1, vtag0)
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Figure 5.1: Content-addressable memory
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CAM

is a vector of TW Boolean variables from V .

When verifying the data correctness property, we do not care about the exact values
of rtag, wtag and the tags of memory slots. Instead, we only care about whether they
are equal to

#      »
vtag. With the ternary domain, we can use X to abstract away the infor-

mation that is unnecessary to determine whether a value is equal to
#      »
vtag. For exam-

ple, (¬vtag(TW−1), vTW−2, . . . , v0), where #»v is a vector of TW Boolean variables, is not

equal to
#      »
vtag regardless of the values for #»v . Therefore, we can abstract them with X:

(¬vtag(TW−1),X, . . . ,X). This way, we can abstract the set of every possible vector that is

not equal to
#      »
vtag with

{(¬vtag(TW−1),X, . . . ,X), (X,¬vtag(TW−2),X, . . . ,X), . . . , (X, . . . ,X,¬vtag0)}

For each vector from the above set, all but 1 bit are X, which provides great flexibility if we
use the guard-value encoding. By using (0,¬vtagi) to represent X at the i-th location of a
vector, the value component for each vector all becomes (¬vtag(TW−1), . . . , ¬vtag1, ¬vtag0),
which is a bit-wise negation of

#      »
vtag. Therefore, in Mv, which is the Boolean transition

system we use for value verification of BMC-GV, the domain for wtag, rtag and the mem-
ory tags is reduced to just 2 symbolic values { #      »

vtag,¬ #      »
vtag}, where we use ¬ #      »

vtag to denote
bit-wise negation of

#      »
vtag. In the guard verification of BMC-GV, we also need to know the

guard values for these signals. To construct a Boolean function vector such that it generates
the set of the guard fields of the vectors, we use symbolic indexing. Firstly, we label vectors
from the set by TW− 1 downto 0 and create a vector of dlog (TW)e of fresh Boolean vari-

ables,
#   »

idx, to index among TW−1, . . . , 1, 0. This way, for the vector labeled with i, only its
i-th bit is non-X. Therefore, the vector of guards is (

#   »

idx = TW− 1, . . . ,
#   »

idx = 1,
#   »

idx = 0)1.

1Here we assume that TW is a power of 2.
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Without using ternary domain and guard-value encoding, the domain will include TW
symbolic values and there will be TW2 fresh Boolean variables used (see Formula 5.1). In
comparison, { #      »

vtag,¬ #      »
vtag} has 2 symbolic values and uses TW fresh Boolean variables.

Below shows the set of all symbolic values that are not equal to
#      »
vtag. In the formula,

#»v 0, #»v 1, . . . , and #»v TW−1 are different vectors of TW Boolean variables.

{(¬vtag(TW−1), vTW−1TW−2, . . . , v
TW−1
0 ),

(. . . , . . . , . . . , )

(v1(TW−1), v
1
(TW−2), . . . , ¬vtag1, v10),

(v0(TW−1), v
0
(TW−2), . . . , v

0
1, ¬vtag0)} (5.1)

5.2 Data Abstraction with the Guard-value Encoding

When verifying a hardware design, it is common that for some signals, we do not care about
their exact values. Instead, we only care about whether their values have the characteristics
described by some predicates. In the motivating example,

#      »
wtag,

#    »
rtag,

#         »

deltag and the tags
of the CAM memory slots are vectors of signals and we care about whether their values are
equal to

#      »
vtag. The corresponding predicate is p( #»n ,

#      »
vtag) ≡ #»n =

#      »
vtag, where #»n is a vector

of | #      »
vtag| signals. The predicates partition the domain of relevant signals. For example,

p( #»n ,
#      »
vtag) partitions the domain into 2 for any assignment to

#      »
vtag, where 1 partition has

all values that are not equal to
#      »
vtag while the other has

#      »
vtag. For all states belonging to

the same partition, every predicate is evaluated to the same value. Thus, the states in a
partition are indistinguishable by the predicates. Ternary abstraction uses ternary values
to compactly represent each partition. The ternary values representing a partition will also
be called ternary representatives. In many cases, the number of ternary representatives of
a partition can be exponentially smaller than the number of elements in the partition. For
example, there are 2n − 1 Boolean states that are not equal to all 1s. But this partition
can be represented with just n ternary states

{(0,X, . . .), (X, 0,X, . . .), . . . , (X, . . . , 0)} (5.2)

The guard-value encoding can help further reduce the size of the domain for the value
verification using the flexibility in encoding X. Recall that in the value verification, a
signal’s domain is Boolean instead of ternary. The reduced domain used in the value
verification is composed of Boolean representatives which are members of the original
domain of the signals. To demonstrate the power of the data abstraction aided by the
guard-value encoding, let use use 〈0, 0〉 to encode X in (5.2). Then its value field becomes
just {(0, . . . , 0)}. Our data abstraction is a significant improvement on the existing data
abstraction using ternary logic and we will formalize it in the next section. To make
our data abstraction practical and useful, we will summarize common predicates used to
capture needed information for verification, which include “equal to a symbolic vector ”,
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“less than a symbolic vector” and “equal to either of the symbolic vectors”. For each
predicate, we will show how to apply our data abstraction to exponentially reduce the size
of the value domain. For predicates such as “equal to a symbolic vector”, the values in the
reduced domain satisfy the conditions that enable bit-width reduction, which helps further
simplify the verification problem.

The data abstraction technique in this paper is usually applied to the input signals’ state
space and the initial state space of register signals, which are also called “domain” of these
signals. There are 3 use cases because the domain could be a subset of every possible
value. But we show that they can all be reduced to the basic first case. Therefore, we will
describe our data abstraction assuming the first use case.

1. Case 1: the domain of k signals includes every possible value, i.e., the domain is
Bk. We have identified a set of predicates that describes the needed information
for verification. In this case, the data abstraction reduces the domain to a union of
representatives from each partition for the value verification.

2. Case 2: the domain of k signals is a subset of Bk characterized by p and p captures
all of the information we need of the values from the domain. It can be reduced to
case 1 by discarding the partition not satisfying p. Therefore, our data abstraction
reduces the domain to a set of representatives that satisfy p.

3. Case 3: similar to Case 2, the domain of k signals is a subset of Bk characterized
by p. However, besides p, we need more predicates to fully capture the information
needed for verification. This case can be reduced to the first case by considering all
of the predicates including p when partitioning the domain but discarding any subset
where p is not satisfied.

5.2.1 Formalization

Let us consider the domain for a set of k signals. The characteristics we care about for the
values from the domain are described by m predicates, denoted by p0, p1, . . . , pm−1. We
will first consider the cases where the characteristics are independent of the environment
variables, i.e., the inputs to the predicates are just the k signals. Later, we will extend it
to the general cases, where the characteristics are dependent on some Boolean variables
such as p( #»n ,

#      »
vtag).

Definition 13 (Distinguishable values). Two values q0 and q1 from the domain Bk are
distinguishable by the set of predicates, p0, p1, . . . , pm−1, iff ∃ i < m . pi(q0) 6= pi(q1).

m predicates partition the domain into 2m subsets. Each subset comprises of the values
that cannot be distinguished by the set of predicates. We define the i-th subset as

Di = {q : (pm−1(q), . . . , p1(q), p0(q)) is a Boolean string representing the integer i}
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For each subset, using ternary logic, we can abstract it with a set of vectors of ternary
values, where we retain just enough information to satisfy of the subset’s predicate. Using
symbolic indexing, the abstraction set is represented as a vector of symbolic ternary values,
which is encoded by a vector of two symbolic Boolean values in guard-value encoding, i.e.,
the guard and value. By leveraging the flexibility in guard-value encoding, we can achieve
different optimization goals. For data abstraction, it is most important to reduce the size
of the domain for the value field.

Definition 14 (Data abstraction with the guard-value encoding).

� A vector of k symbolic ternary values,
#            »

〈fg, fv〉 = (〈fgk−1
, fvk−1

〉, . . . , 〈fg1 , fv1〉, 〈fg0 , fv0〉)
is a data abstraction of Di if the following requirements are satisfied:

1. correctness requirement: Let F̂ be the set of ternary values generated by
#            »

〈fg, fv〉,
i.e., F̂ = {q̂ : ∃ env . q̂ =

#                                        »

〈fg(env), fv(env)〉}. The correctness requirement is
that 1) for any value from the subset Di, it is abstracted by a ternary value from
F̂ and 2) for any ternary value q̂ from F̂ , all Boolean values q′ abstracted by it
belong to Di:

( pm−1(q
′), . . . , p1(q), p0(q) ) = i.

2. effectiveness requirement: the domain of the value field of
#            »

〈fg, fv〉, i.e., the do-

main for
#»

fv = (fvk−1
, . . . , fv1 , fv0), must be smaller than the size of Di:

|{q : ∃ env . q =
#»

fv(env)}| < |Di|

In fact, the smaller |{q : ∃ env . q =
#»

fv(env)}| is , the more effective the data
abstraction becomes.

� For a domain Bk partitioned by m predicates, the data abstraction with the guard-
value encoding is achieved by representing each one of the 2m partition with a vector
of k symbolic ternary values that it is a data abstraction of the partition.

Remark 2.

� Let we construct p̂m−1, . . . , p̂1 and p̂0 from pm−1, . . . , p1 and p0 respectively by re-
placing the Boolean operators with ternary ones. Because p̂m−1, . . . , p̂1 and p̂0 are
monotonic with regard to the abstraction relation based on Proposition 1, a sufficient
condition for the second requirement of the correctness is:

( p̂m−1(q̂), . . . , p̂1(q̂), p̂0(q̂) ) = i.

� Satisfying the correctness requirement implies that Di is the maximum representable

set (MRS) of
#            »

〈fg, fv〉 (Lemma 7).
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Lemma 7. If
#            »

〈fg, fv〉 = (〈fgk−1
, fvk−1

〉, . . . , 〈fg1 , fv1〉, 〈fg0 , fv0〉) is a data abstraction of the

i-th subset (Di) of Bk, then Di is the MRS of
#            »

〈fg, fv〉.

Proof. Recall that a subset of Boolean values is the MRS of a symbolic ternary value iff
1) for any value from the subset, it can be abstracted by a ternary value generated by the
symbolic ternary value and 2) for any Boolean value that can be abstracted by a ternary
value generated by the symbolic ternary value, it must also be in the subset. The first
requirement is trivially satisfied for Di by definition. For the second requirement, let us
assume that there is a Boolean value q that is not in Di, but it can be abstracted by a

ternary value q̂ generated by
#            »

〈fg, fv〉. Then according to the definition:

( p̂m−1(q̂), . . . , p̂1(q̂), p̂0(q̂) ) = i.

Because ternary interpretations of Boolean functions are monotonic and they are as if
Boolean functions when their inputs are Boolean, we have

( pm−1(q), . . . , p1(q), p0(q) ) = i.

q must belong to Di, which contradicts our assumption. Therefore, the second requirement
is also satisfied.

Because of the inherent advantage of ternary domain to represent a set of Boolean values
compactly and the flexibility in guard-value encoding, in practice, we can often significantly
reduce the size of the domain for the value field of some signals, which will dramatically
accelerate the value verification.

Example 5.2.1. The predicate f(n2, n1, n0) ≡ (n2, n1, n0) = (1, 0, 1) partitions the domain
for (n2, n1, n0) into 2, which are {(1, 0, 1)} and {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0),
(1, 1, 0), (1, 1, 1)}. The first partition has just one element and in our data abstraction it is
trivially abstracted by itself. The guard-value encoding encodes it with (〈1, 1〉, 〈1, 0〉, 〈1, 1〉).
The other partition is abstracted with {(0,X,X), (X, 0,X), (X,X, 0)}. By using 〈0, 0〉 to
encode X, the partition’s guard value encoding is

{(〈1, 0〉 , 〈0, 0〉 , 〈0, 0〉),
(〈0, 0〉 , 〈1, 0〉 , 〈0, 0〉),
(〈0, 0〉 , 〈0, 0〉 , 〈1, 0〉)}

It is easy to see that for any ternary value from the partition, its value field is always
(0, 0, 0), which is key to make our data abstraction effective (see Definition 14). With sym-
bolic indexing, the partition can be represented by using 2 Boolean variables: (〈v1, 0〉, 〈¬v1∧
v0, 0〉, 〈¬v1∧¬v0, 0〉). It takes 3 Boolean variables to represent the domain Bk for (n2, n1, n0).
This example is extended in Example 5.2.2 and generalized for any number of signals in
Section 5.2.2, where we will show the reduction in the number of Boolean variables needed
to symbolic represent the domain is exponential.
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In practice, the partition of a domain is often dependent on some Boolean variables, as
shown in the motivating example (Section 5.1). We use the vector #»c to denote these
Boolean variables. In this case, the inputs to the characteristic predicates not only in-
clude signals but also variables from #»c . Each assignment to #»c determines a partition,
which causes that a concrete value may belong to different subsets for different assign-
ments to #»c . Therefore, in order to represent the values that are in the same subset
regardless of the assignment to #»c , we extends the domain Bk to include vectors of k
Boolean expressions in terms of the variables from #»c . The extended domain is denoted by
B+k

= {(ek−1, . . . , e1, e0) : ei is a Boolean expression in terms of #»c }.

Definition 15 (Distinguishable symbolic values). Two symbolic values q0 and q1 from the

domain B+k
are distinguishable by the set of predicates, p0, p1, . . . , pn−1, iff ∃ i < n . ∀ env .

pi (q0(env), env) 6= pi (q1(env), env), where env represents an assignment to #»c and recall
that #»c are also among the inputs of pi.

The key of extending the definition of data abstraction to accommodate predicates with
Boolean variables is to realize that there are now two types of Boolean variables used in
the vector of symbolic ternary values abstracting a subset. The two types of variables are
the ones used in the predicates (i.e., #»c ) and the variables created by symbolic indexing.
We denote the symbolic indexing variables by #»v . Accordingly, envc is an assignment to #»c
and envv is an assignment to #»v . Given envv, a vector of symbolic ternary values evaluates
to a set of vectors of symbolic ternary values in terms of variables from #»c .

Definition 16 (Parameterized Data abstraction with the guard-value encoding). A vector

of k symbolic ternary values, denoted by
#            »

〈fg, fv〉 = (〈fgk−1
, fvk−1

〉, . . . , 〈fg1 , fv1〉, 〈fg0 , fv0〉),
is a parameterized data abstraction of a domain that is a subset of Bk, characterized by the

predicate p1(
#»n , #»c ), iff for any assignment to #»c , denoted by envc,

#            »

〈fg, fv〉(envc) is a data
abstraction of the domain.

The parameterized data abstraction for the domain Bk partitioned by m characteristic
predicates p0(

#»n , #»c ), p1(
#»n , #»c ), . . . , pm−1(

#»n , #»c ) is achieved iff for any envc, and for each
partitioned subset evaluated with envc, its corresponding vector of symbolic values after
evaluation with envc is a data abstraction of the subset.

Example 5.2.2. This example builds on Example 5.2.1 by comparing to a vector of vari-
ables rather than the concrete vector (1, 0, 1). The predicate f(n2, n1, n0, c2, c1, c0) ≡
(n2, n1, n0) = (c2, c1, c0) partitions the domain for (n2, n1, n0) into 2 subsets, which are
{(q2, q1, q0) : (q2, q1, q0) = (c2, c1, c0)} and {(q2, q1, q0) : (q2, q1, q0) 6= (c2, c1, c0)}. When
(c2, c1, c0) = (1, 0, 1), this example is reduced to Example 5.2.1. Data abstraction with
the guard-value encoding abstracts the first subset with {(c2, c1, c0)}, which is encoded
by (〈1, c2〉, 〈1, c1〉, 〈1, c0〉) using guard-value encoding. The 2nd subset is abstracted with
{(¬c2,X,X), (X,¬c1,X), (X,X,¬c0)}, which is represented by the symbolic guard-value pair
(〈v1,¬c2〉, 〈¬v1∧v0,¬c1〉, 〈¬v1∧¬v0,¬c0〉) using symbolic indexing with the goal of optimiz-
ing the size of the domain for the value field. The domain for the value field of (n2, n1, n0)
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is just {(¬c2,¬c1,¬c0)}, thus achieving a significant reduction from the second subset. The
domain for the guard field of (n2, n1, n0) is {(v1,¬v1 ∧ v0,¬v1 ∧ ¬v0)}.

It is important to note that our data abstraction is not suitable for all hardware verification
problems. Especially when there are too many predicates and/or each predicate is complex,
the effectiveness requirement would become difficult to achieve. For this reason, in general,
arithmetic designs are not a good candidate to apply our data abstraction.

Nonetheless, there are plenty of hardware designs where our data abstraction is very ef-
fective. In Section 5.2.2 - 5.2.4, we demonstrate the idea of data abstraction with the
guard-value encoding by manually implementing the data abstraction for a selection of
predicates that are very useful to partition the domain for a range of hardware designs and
properties to verify.

5.2.2 Equal to a Vector of Boolean Variables

Just like verifying properties of a CAM in Section 5.1, for many cases, it is sufficient to know
whether a vector of signals is equal to a vector of Boolean variables. Let us assume that
the width of the vector is k and the domain is Bk. The predicate is eq( #»n , #»c ) ≡ #»n = #»c ,
where #»c is a vector of k Boolean variables and #»n is a vector of k signals. The predicate
divides Bk into two subsets. The first subset’s size is 1 and it includes the value that is
equal to #»c while the other subset’s size is 2k − 1 and it includes values that are not equal
to #»c . The exact values in either of the subset obviously depend on the assignment to #»c .

We have used this predicate to partition a domain in the motivation example and Exam-
ple 5.2.2. We will first generalize it for any width of the vector. When there are spurious
CEXs, a common reason is due to the unknown results (i.e., X) when comparing two values

that neither is equal to the vector of Boolean variables: if #»a 6= #»c and
#»

b 6= #»c , we do not
know whether #»a =

#»

b . Around the end of Section 7.5 shows how to eliminate such spurious
CEXs. In this section, we will also show how our data abstraction enables reducing the
bit-width of vectors.

Data Abstraction

With data abstraction, the partitions for eq( #»n , #»c ) are generated by the following 2 symbolic
ternary vectors respectively, where #»v is a vector of dlog (k)e Boolean variables needed by
symbolic indexing.

= #»c : ( 〈1, ck−1〉, 〈1, ck−2〉, . . . , 〈1, c0〉 ) and

6= #»c : ( 〈 #»v ≥ k − 1,¬ck−1〉, 〈 #»v = k − 2,¬ck−2〉, . . . , 〈 #»v = 0,¬c0〉 ) (5.3)

The guard for the partition 6= #»c selects a signal from #»n whose value is different from the
corresponding bit of #»c . Because the range of #»v is from 0 to 2dlog (k)e which is larger than k
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when k is not a power of 2, we make k ≥ k−1 index the signal at the highest location, i.e.,
n(k−1). The value field is #»c for the first subset and ¬ #»c for the second subset. Therefore,
the domain for the value field is just { #»c ,¬ #»c }. Recall that ¬ #»c is a bit-wise negation of
#»c . For any envc, the size of the domain for value field is 2, which is exponentially smaller
than the size of Bk.

Lemma 8. Formula (5.3) is a data abstraction for Bk given the predicate eq( #»n , #»c ) ≡
#»n = #»c

Proof. Formula (5.3) satisfies the effectiveness requirement because it reduces the domain
size exponentially. Let us show that it also satisfies the correctness requirement. We specif-
ically look at the abstraction for the second subset because the first one is straightforward.

According to Formula (5.3), for any 2 signals from #»n , their guards can not be 1 at the
same time and for any assignment envv, one of the signals’ guards must be 1. Therefore,
by enumerating envv, the generated ternary vectors are:

( 〈1,¬ck−1〉, 〈0,¬ck−2〉, . . . , 〈0,¬c0〉 )

( 〈0,¬ck−1〉, 〈1,¬ck−2〉, . . . , 〈0,¬c0〉 )

. . .

( 〈0,¬ck−1〉, 〈0,¬ck−2〉, . . . , 〈1,¬c0〉 )

Encoding the vectors of ternary values:

T #»n = {( ¬ck−1,X, . . . ,X ),

( X,¬ck−2,X, . . . ,X ),

. . . ,

( X,X, . . . ,¬c0 )}

For any value q ∈ Bk that is not equal to #»c , at least 1 bit is different. Let it be the i-th
bit, then q is abstracted by (. . . ,X,¬ci,X, . . .) from T #»n . Besides, it is easy to verify that
for any ternary value q̂ ∈ T #»n , êq(q̂, #»c ) = 0 for any assignment to #»c . As a conclusion, the
correctness requirement is satisfied.

When verifying hardware designs, it is often the case that we verify a property for all
possible requests, responses, processes, memory accesses and resources by verifying for an
arbitrary one that is identified by a symbolic “identifier”. The identifier could be implicit
in the design. For example, a memory access can be identified by the address of the access.
Let the symbolic identifier be #»c . Then eq( #»n , #»c ) ≡ #»n = #»c is the predicate we use to
partition the domain of the signals relevant to the IDs.
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Bit-width Reduction

Let #»a and
#»

b be 2 vectors of signals whose domain in value verification is reduced to
{ #»c ,¬ #»c } using data abstraction with the predicate eq( #»n , #»c ) = #»n 6= #»c . Then, #»a =

#»

b and
#»a 6= #»

b can be simplified to a0 = b0 and a0 6= b0 respectively, because of Lemma 9.

Lemma 9. ∀ i < | #»a | . #»a =
#»

b iff ai = bi. Equivalently, ∀ i < | #»a | . #»a 6= #»

b iff ai 6= bi.

Proof. For any two values from the domain { #»c ,¬ #»c }, they are either equal to each other for
every bit or not equal to each other for every bit. Therefore, we can decide their equality
relationship by just looking at any bit.

In practice, for signals whose domain are reduced to { #»c ,¬ #»c } for value verification, they
are usually only used as operands for the operators {=, 6=}. Therefore, we are able to
replace every occurrence of the signals with the 0-th bit, i.e., reducing the bit-width of
these signals to just 1 bit. We demonstrate its effectiveness in Figure 8.8 and tables such
as 8.4.

5.2.3 Equal to Either of Two Vectors of Boolean Variables

In this section, we show how to construct data abstraction when it is not sufficient to only
know whether a vector of signals is equal to a vector of Boolean variables, but we also need
to know its equality relationship with another vector of Boolean variables. For example,
our CAM (Section 5.1) supports delete and write at the same cycle, we need to know the
equality relationship between the tags of the existing CAM entries with both of the delete
tag and write tag. Consider the case where we only know that the tags of the existing
CAM entries are not equal to the write tag, but do not know whether they are equal to
the delete tag. In the ternary verification, this implies that they could all be equal to the
delete tag, thus all getting deleted and updated with the same write tags at the same cycle,
which is a spurious CEX to the uniqueness property.

The corresponding predicate we use to partition a domain (Bk) is

eq2(
#»n , #»c ,

#»

d ) = ( #»n = #»c ) ∨ ( #»n =
#»

d ), where #»c and
#»

d are vectors of k Boolean variables
and #»n is a vector of k signals. The predicate partitions Bk into two subsets. The first
subset is { #»c ,

#»

d } and when #»c =
#»

d , it is reduced to { #»c }. Accordingly, the other subset’s
size is either 2k − 1 or 2k − 2, and it includes every value that is not equal to either of #»c
or

#»

d . The exact values in either of the subsets obviously depend on the assignment to #»c
and

#»

d .

The first subset is straightforwardly generated by the following symbolic ternary vector:

( 〈1, v0 ? ck−1 : dk−1 〉, 〈1, v0 ? ck−2 : dk−2 〉, . . . , 〈1, v0 ? c0 : d0 〉 ) (5.4)

sel is an indexing variable that is introduced to arbitrarily select #»c or
#»

d whose guard
value encodings are ( 〈1, ck−1〉, 〈1, ck−2〉, . . . , 〈1, c0〉 ) and ( 〈1, dk−1〉, 〈1, dk−2〉, . . . , 〈1, d0〉 ).

53



As for the other subset, it is an intersection of

D0
#»n = {q( #»n ) : q( #»n ) 6= #»c }

D1
#»n = {q( #»n ) : q( #»n ) 6= #»

d },

where q( #»n ) denotes an assignment to the signals in #»n . Recall that as shown in the previous
section, D0

#»n and D1
#»n are abstracted with two sets of ternary values respectively, which are

T0
#»n = {(¬ck−1,X, . . . ,X), (X,¬ck−2,X, . . . ,X), . . . , (X,X, . . . ,¬c0} and

T1
#»n = {(¬dk−1,X, . . . ,X), (X,¬dk−2,X, . . . ,X), . . . , (X,X, . . . ,¬d0}

To compute a set of ternary values abstracting the second subset, i.e., D0
#»n ∩D1

#»n , we apply
intersection on T0

#»n and T1
#»n . Because a ternary value abstracts a set of Boolean values, we

can apply intersection on two ternary values, which returns the ternary value abstracting
the intersection of the sets of Boolean values, that are abstracted by the two ternary values
(Definition 17). For example,

(¬ck−1,X, . . . ,X) ∩ (X,¬dk−1,X, . . . ,X) = (¬ck−1,¬dk−1,X, . . . ,X)

Definition 17 (Intersection of 2 ternary vectors). Let #̂»a and
#̂»

b be two ternary vectors of

the same length k. The intersection of #̂»a and
#̂»

b , denoted by #̂»o = #̂»a ∩ #̂»

b , can be computed
bit-wise:

∀ i < k . ôi =


âi, if b̂i =X or b̂i = âi

b̂i, if âi =X

⊥, otherwise, i.e., if âi 6=X, b̂i 6=X and âi 6= b̂i

#̂»o is “empty” if at least one of its bits is ⊥.

Let f i
j = ci = di ? X : ¬cj , then the result of T0

#»n ∩ T1
#»n is k2 ternary vectors. We put

them into a k × k grid.

k − 1 k − 2 . . . 0

k − 1 {(¬dk−1, fk−1
k−2 , . . . , f

k−1
0 ), (¬ck−1,¬dk−2,X, . . . ,X), . . . , (¬ck−1,X, . . . ,X,¬d0)

k − 2 (¬dk−1,¬ck−2,X, . . . ,X), (fk−2
k−1 ,¬dk−2, f

k−2
k−3 , . . . , f

k−1
0 ), . . . , (X,¬ck−1, . . . ,X,¬d0)

. . . . . .

0 (¬dk−1,X, . . . ,X,¬c0), (X,¬dk−2,X, . . . ,X,¬c0), . . . , (f 0
k−1, . . . , f

0
1 ,¬d0)}

We label each value from the set with (row, column) coordinates in preparation to show
how to construct a symbolic ternary vector to represent the set with symbolic indexing. We
create two vectors of indexing variables

#  »

col and #    »row to index a column and row respectively.
The vector at the location (i, i) for all i ≤ k− 1 is the result of (. . . ,X,¬ci,X, . . .)∩ (. . . ,X

54



,¬di,X, . . .). Depending on whether ci = di, the result is either (X,¬ci,X, . . . ,X) or empty.
Because the result is the union of k × k symbolic ternary vectors, it is correct to replace
empty with any of the k×k symbolic ternary vectors that is not empty. To make it easier for
applying symbolic indexing, as shown above, we use (¬ck−1,¬ck−2, . . . ,¬di,¬ci−1, . . . ,¬c0)
instead of empty. It is trivial to see that this vector is not equal to either of #»c and

#»

d ,
i.e., belong to the set T0

#»n ∩ T1
#»n . Therefore, it is ok to include it in the set. For any other

vector, whose column and row coordinates are not equal, its i-th bit is ¬ci if it is in the
i-th row, ¬di if in the i-th column, and X otherwise. Therefore, the guard of the i-th bit
of the symbolic ternary vector should #    »row = i ∨ #  »

col = i ∨ (crow 6= dcol ∧ col = row).

In order to reduce the domain size for the value field, we use 〈0,¬ci〉 to encode X at the

i-th bit. This way, the value of the i-th bit in a ternary vector is ¬di iff
#  »

col = i. Otherwise,
it is ¬ci. In summary, the symbolic ternary vector we use to abstract the set of values that
are not equal to either of #»c and

#»

d is:

( 〈( #  »

col = k − 1 ∨ #    »row = k − 1 ∨ (c #    »row 6= d #  »
col ∧

#  »

col = #    »row)), (
#  »

col = k − 1 ? ¬dk−1 : ¬ck−1 )〉,
〈( #  »

col = k − 2 ∨ #    »row = k − 2 ∨ (c #    »row 6= d #  »
col ∧

#  »

col = #    »row)), (
#  »

col = k − 2 ? ¬dk−2 : ¬ck−2 )〉,
. . . ,

〈( #  »

col = 0 ∨ #    »row = 0 ∨ (c #    »row 6= d #  »
col ∧

#  »

col = #    »row)), (
#  »

col = 0 ? ¬d0 : ¬c0 )〉 ) (5.5)

Example 5.2.3. The set of ternary vectors abstracting the Boolean vectors that are not
equal to either of (0, 0, 1, 1) and (1, 0, 1, 0) is the result of

{(1,X,X,X), (X, 1,X,X), (X,X, 0,X), (X,X,X, 0)} ∩
{(0,X,X,X), (X, 1,X,X), (X,X, 0,X), (X,X,X, 1)}

It is:

3 2 1 0

3 {(0, 1, 0, 0), (1, 1,X,X), (1,X, 0,X), (1,X,X, 1)

2 (0, 1,X,X), (X, 1,X,X), (X, 1, 0,X), (X, 1,X, 1)

1 (0,X, 0,X), (X, 1, 0,X), (X,X, 0,X), (X,X, 0, 1)

0 (0,X,X, 0), (X, 1,X, 0), (X,X, 0, 0), (1, 1, 0, 1)}

Each #    »row and
#  »

col we need has 2 variables. The symbolic ternary vector is:

(
#  »

col = 3 ? 0 : ( #    »row = 3 ∨ (c #    »row 6= d #  »
col ∧

#  »

col = #    »row) ? 1 : X ) ,
#  »

col = 2 ? 1 : ( #    »row = 2 ∨ (c #    »row 6= d #  »
col ∧

#  »

col = #    »row) ? 1 : X ) ,
#  »

col = 1 ? 0 : ( #    »row = 1 ∨ (c #    »row 6= d #  »
col ∧

#  »

col = #    »row) ? 0 : X ) ,
#  »

col = 0 ? 1 : ( #    »row = 0 ∨ (c #    »row 6= d #  »
col ∧

#  »

col = #    »row) ? 0 : X ) )
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With the guard value encoding and using 〈0,¬ci〉 to encode X at the i-th bit, the symbolic
ternary vector is encoded by:

(
〈

#  »

col = 3 ∨ #    »row = 3 ∨ (c #    »row 6= d #  »
col ∧

#  »

col = #    »row),
#  »

col = 3 ? 0 : 1
〉
,〈

#  »

col = 2 ∨ #    »row = 2 ∨ (c #    »row 6= d #  »
col ∧

#  »

col = #    »row),
#  »

col = 2 ? 1 : 1
〉
,〈

#  »

col = 1 ∨ #    »row = 1 ∨ (c #    »row 6= d #  »
col ∧

#  »

col = #    »row),
#  »

col = 1 ? 0 : 0
〉
,〈

#  »

col = 0 ∨ #    »row = 0 ∨ (c #    »row 6= d #  »
col ∧

#  »

col = #    »row),
#  »

col = 0 ? 1 : 0
〉

)

The domain for the value field is:

{(0, 1, 0, 0), (1, 1, 0, 0), (1, 1, 0, 1)}

Based on the symbolic ternary vector shown in Formula (5.5), the value field of the gener-

ated symbolic ternary vectors in terms of #»c and
#»

d , after enumerating assignments to col
and row is

{(¬dk−1,¬ck−2, . . . ,¬c0),
(¬ck−1,¬dk−2,¬ck−3, . . . ,¬c0),
. . . ,

(¬ck−1,¬ck−2, . . . ,¬c1,¬d0)}

There are in total at most k vectors in the set, which is an exponential reduction from the
subset’s original size which is 2k − 1 or 2k − 2.

Lemma 10. Formula (5.4) and (5.5) together implement a data abstraction for Bk given

the predicate eq2(
#»n , #»c ,

#»

d ) ≡ ( #»n = #»c ) ∨ ( #»n =
#»

d )

Proof. The proof is similar to that of Lemma 7.

5.2.4 Less Than a Vector of Boolean Variables

Another common relationship we can leverage for data abstraction when verifying a design
is the comparison between vectors of signals in terms of which is larger. For example, an
age-based scheduler (details in Section 8.1.2) selects the oldest request to execute. There-
fore, we only care about the ‘<’ relationship among the ages of the requests, instead their
exact values. We will use the predicate lt( #»n , #»c ) = #»n < #»c to describe this relationship.

It is again assumed that the domain to partition is Bk. The partitions by the predicate
are characterized by #»n < #»c and #»n ≥ #»c and whose size are #»c and 2k − #»c respectively.
To construct the data abstraction for each partition, we first abstract each with a set of
ternary values, and use appropriate value bit to encode each X, with the goal to best satisfy
the effectiveness requirement of the data abstraction.
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Example 5.2.4. {(0, 0, 0), (0, 0, 1), (0, 1, 0)} characterized by lt( #»n ) = #»n < (0, 1, 1), can be
abstracted by both of {(0, 0,X), (0,X, 0)} and {(0, 0,X), (0, 1, 0)}. Both have the same size.
However, {(0, 0,X), (0,X, 0)} is preferred because after using 〈0, 0〉 to encode X, the set is
encoded by

{(〈1, 0〉 , 〈1, 0〉 , 〈0, 0〉)
(〈1, 0〉 , 〈0, 0〉 , 〈1, 0〉)}

Therefore, the value field of the set has just one vector which is {(0, 0, 0)}. Note that for
the other abstract ternary set, no matter how we encode X, the value field always has 2
vectors.

We abstract {q( #»n ) : q( #»n ) < #»c }2 with the set of symbolic ternary vectors in terms of #»c
shown in Table 5.1. Its correctness is proven in Lemma 11. There are k ternary vectors in
the set and we label them from k − 1 downto 0. In the i-th vector, its i-th bit is 0. If ci
is 1, then all bits that are lower than i are X. Otherwise, they are all 0s. The upper bits
are X if the corresponding bits in #»c are 1 and ci is 1. They are 0s otherwise. Therefore,
when ci is 1, the i-th vector abstracts the set of Boolean vectors that are smaller than #»c
due to their i-th bits being 0 and the upper bits are either smaller than or equal to the
corresponding bits of #»c . When ci is 0, the i-th vector is all 0s.

2Assume that #»c is non-zero, otherwise, it is an empty set.
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In order to use symbolic indexing to represent the above set with a single symbolic ternary
vector, we create a vector of Boolean variables

#»
i to index from 0 to k − 1. Based on the

set shown in Table 5.1, we observe that for the vector labeled with i, its i-th bit is always
0 and for the higher bits, they are 0 iff the corresponding bit in #»c is 0 or ci is 0. As for the

lower bits, they are 0 iff ci is 0. Let us denote the symbolic ternary vector by #̂»r
<

. Then,
its guard field can be calculated as below, where

#»
i is a vector of Boolean variables created

to index from k − 1 to 0:

∀ j < k . r̂<gj ≡ (
#»
i = j) ∨

(
(j >

#»
i ) ∧ (¬cj ∨ ¬c #»

i )
)
∨
(

(j <
#»
i ) ∧ ¬c #»

i

)
To reduce the size of the domain for the value field, here we use 〈0, 0〉 to encode X. This

way, the value field of every vector from the set is (0, . . . , 0). Therefore, #̂»r
<

v = (0, . . . , 0).

We proceed to construct the data abstraction for the other partition, i.e., {q( #»n ) : #»n ≥ #»c }.
The idea is very similar. We will skip some steps. We use the following set of ternary
vectors shown in Table 5.2 to abstract this partition.

Let us denote the symbolic ternary vector representing this set of ternary vectors by #̂»r
≥

.
sel is a Boolean variable created to symbolically represent the union of the vector labeled

with k, i.e., #»c , and the rest of the set. #̂»r
≥

’s guard can be computed by:

∀ j < k . r̂≥gj ≡ sel ? 0 :
(

(
#»
i = j) ∨

(
(j >

#»
i ) ∧ cj

)
∨
(

(j <
#»
i ) ∧ c #»

i

))
To reduce the size of the domain for the value field, here we use 〈0, 1〉 to encode every X.
This way,

#̂»r
≥
v = sel ? #»c : (1, . . . , 1)

In conclusion, we successfully reduced the value domain size from 2k to at most 1 + 2 = 3
(1 for the < partition and 2 for the ≥ partition). The size of the value domain is at most
3 because there could be simplifications for some values of #»c (see the example below).

Example 5.2.5. lt( #»n , (1, 0, 1, 0)) = #»n < (1, 0, 1, 0) partitions B4 into

1.

{(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0),

(0, 0, 1, 1), (0, 1, 0, 0), (0, 1, 0, 1),

(0, 1, 1, 0), (0, 1, 1, 1), (1, 0, 0, 0),

(1, 0, 0, 1), (1, 0, 1, 0)}

2.

{(1, 0, 1, 0), (1, 0, 1, 1),

(1, 1, 0, 0), (1, 1, 0, 1),

(1, 1, 1, 0), (1, 1, 1, 1)}
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Based on Table 5.1 and Table 5.2, they are abstracted by the following ternary sets respec-
tively:

1.

{(0,X,X,X), (0, 0, 0, 0),

(X, 0, 0, 0), (0, 0, 0, 0)}

2.

{(1, 0, 1, 0), (1,X, 1,X),

(1,X,X,X), (1,X, 1,X),

(1,X, 1, 1)}

The first ternary set can be simplified to {(0,X,X,X), (X, 0, 0, 0)} because (0, 0, 0, 0) is ab-
stracted by (0,X,X,X). The second ternary set can be simplified to {(1,X,X,X)} because all
other ternary vectors are abstracted by (1,X,X,X). By using 〈0, 0〉 to encode X in the first
ternary set and 〈0, 1〉 to encode X in the second set, the value field becomes {(0, 0, 0, 0)}
and {(1, 1, 1, 1)}.

Lemma 11. #̂»r
<

and #̂»r
≥

together make up a data abstraction for Bk given the predicate
lt( #»n , #»c ) = #»n < #»c .

Proof. #̂»r
<

and #̂»r
≥

satisfy the effectiveness requirement because the size of the union of
their domain is exponentially smaller than the original domain. Let us show that it also
satisfies the correctness requirement. Let us work on the first partition as an example.

For any value #»a from q ∈ Bk that is less than #»c , there is at least 1 position (let it be #»m)
such that ai is 0, ci is 1 and at any location that is higher than #»m, #»a is no larger than
the corresponding bit in #»c . Such value #»a is abstracted by the ternary vector generated by
#̂»r

<
when

#»
i = #»m. Besides, it is easy to verify that given any assignment to

#»
i (env #»

i ), the

ternary vector generated by #̂»r
<

is smaller than #»c : l̂t( #̂»r
<

(env #»
i ), #»c ) = 1 . As a conclusion,

the correctness requirement is also satisfied.

5.3 Summary

In this chapter, we first introduce our ternary abstraction based data abstraction with a
realistic CAM verification. With the example, we illustrate the intuitions behind our data
abstraction. Next we formalize our data abstraction: it uses guard-value encoding and
symbolic indexing to abstract a set of Boolean values with a symbolic ternary vector that
must satisfy both of the effectiveness and correctness requirement. Lastly, we show how to
use our data abstraction in common scenarios.
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Chapter 6

Guard-value Memory Abstraction

In this chapter, we present our memory abstraction based on the guard-value encoding.
We first introduce it with the CAM example. Then we formalize this idea as a form of the
value transition function simplification that has been presented in Section 3.4, and show
that it is more general than existing memory abstraction approaches. Last but not least,
we provide guidelines and templates to make it easier to apply our memory abstraction.

6.1 A Motivating Example

In Section 5.1, we show how to use data abstraction to reduce the input state space for
wtag, rtag and deltag based on the fact that we only care about whether their values are
equal to

#      »
vtag instead of the exact value. In this section, we make a new observations that

for each slot of the CAM, we only care about the data field if its associated tag’s value
is

#      »
vtag. We show how to utilize this new observation to simplify the verification problem

even more.

Considering that a typical CAM may have hundreds and even thousands of memory slots,
we will reduce the state space considerably if for all slots, their data’s value fields are made
the same. We can achieve this with the help of the value transition function simplification
from Section 3.4.

The value transition function for the i-th slot’s data (data[i]), i.e., Trv(data[i]), is shown in
Listing 6.1. It is identical to the original transition function of data[i] except that it uses
the corresponding value signals. For our CAM design, there are 3 cases for when the data
field of the i-th slot is updated with wdata:

1. the slot’s tag matches the write operation’s tag (wtag);

2. the write operation’s tag is absent in the CAM and the slot is the first available slot.
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3. the write operation and delete operation happen at the same time. wtag is absent in
the CAM and there is no available slot. The delete tag matches the slot’s tag.

However, for simplicity, we neglect the details here and instead use write to slot[i] to denote
the disjunction of the 3 cases.

Listing 6.1: The original value transition function for data in the i-th slot

1 if write_to_slotv[i] // original Tr

2 datav[i] = wdatav // original Tr

3 else // original Tr

4 datav[i] = datav[i] // original Tr

According to the value transition function simplification, we need to construct ĝ and Tr′

for each slot i, denoted by ĝ[i] and Tr′[i], to abstract T̂r(data[i]) with

ĝ[i] ? T̂r(data[i]) : Tr′[i]

The corresponding value transition function for data[i] is:

gv[i] ? Trv(data[i]) : Tr′[i]

Because we only care about the data of a CAM slot if its tag matches
#      »
vtag, we can use

T̂r(tag[i])=̂
#      »
vtag for ĝ[i] . As for Tr′, per our earlier analysis, we want to craft it in a way

such that every CAM slot has the same data in the value verification. Provided that the
1) every slot’s data is initialized to the same value and 2) there is at most 1 slot whose tag
matches

#      »
vtag, we can achieve this by requiring that the data in each slot has the identical

value transition function. Therefore, Tr′[i] is∨
i

(gv[i] ∧ write to slotv[i]) ? wdatav : datav[i]

gv[i] ∧ write to slotv[i] is the condition for the slot whose tag is
#      »
vtag to update its data

with wdatav in the new transition function for datav[i]. The new guard transition function
is gv[i] ∧ Trg(data[i]). A better illustration of the new value transition function can be
found in Listing 6.2. The new value transition function guarantees that each slot’s data
has identical value field. Its proof can be found in the next section, where we will also
generalize this idea.

Listing 6.2: The new value transition function for data in the i-th slot

1 if Trv(tag[i]) =
#      »
vtag // gv

2 if write_to_slotv[i] // line 2-5: original Tr

3 datav[i] = wdatav //

4 else //

5 datav[i] = datav[i] //

6 else
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7 if
∨

i(Trv(tag[i]) =
#      »
vtag ∧ write_to_slotv[i]) // line 7-10: Tr’

8 datav[i] = wdatav //

9 else //

10 datav[i] = datav[i] //

In Table 8.3, it shows that memory abstraction helps the value verification so much that
the value verification can be solved just by logic simplifications thus avoiding the costly
SAT solving part of the verification. The memory abstraction becomes more effective for
the CAM with larger data width parameter. For example, when the data width is set to
32, memory abstraction accelerates the verification 20×. As a result, using the memory
abstraction, the verification time scales much better with the data width parameter of the
CAM.

6.2 Formalization

Our memory abstraction is an application of the value transition function simplification.
The main idea is to modify the data’s value transition function such that every slot of the
memory always has the same value. To use our memory abstraction, users need to have a
modest understanding of the design and the property to verify to identify the memory that
can be abstracted and provide ĝ and Tr′ for each memory slot. In Section 3.4.1, ĝ for each
memory slot is solely dependent on its location while in the previous section, ĝ becomes
more complicated as it depends on other signals’ values. Our memory abstraction is more
powerful than the existing approach such as [6] because it can abstract the memory such
as CAM that cannot be done using the existing method.

From a correctness point of view, there is no requirement on ĝ and Tr′ because the next state
of a slot computed using its new ternary transition function (3.6) is always an abstraction of
the one using its original guard and value transition functions. However, in order to make
our memory abstraction effective, g must be strong enough such that the memory slots
satisfying their corresponding ĝ are indispensable for the verification. The user-provided
ĝ for each slot could be dependent on any design signals, the slot’s location, and Boolean
variables from V . Our main contribution in this section to provide a construction for a
strong candidate for Tr′, which potentially saves users’ effort in crafting their own.

Any array of elements is considered as a memory. An element is also called a slot. Memories
are structurally repetitive by nature and their sheer sizes cause state spaces to explode and
make verification problem unsolvable sometimes. Without loss of generality, we assume
that the transition function for a slot is in the form of “if, else if, else if, . . ., else”. In the
else-branch, the slot keeps its current value in the next cycle. A memory’s repetitiveness
implies that every slot’s transition function has the same number of branches. For our
convenience, we will represent a slot’s transition function with 1) an array of conditions of
the branches and 2) an array of expressions of signals that get assigned to the slots under
the branches. For example, the i-th slot’s transition function Tr(data[i]) = c0[i] ? e0[i] :
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c1[i] ? e1[i] : c2[i] ? e2[i] : . . . can be represented by (c0[i], c1[i] . . . , ck−2[i], 1) (the last
branch’s condition is 1 because it is the else branch) and (e0[i], . . . , ek−2[i], data[i]).

Our candidates of Tr′ are constructed in such a way that whenever a slot’s value field
satisfying its gv changes its value in the next cycle, all slots not satisfying their respective
gv will be updated with that same value in the next cycle. Our candidates work best if at
most one slot satisfies gv in any cycle, in which case, using the provided Tr′ will guarantee
that every slot of the memory is equal to each other, effectively reducing the value field of
the memory to just 1 slot. Tr′ has the same structure as the memory’s transition function,
i.e., it also has k branches. We present two candidates for Tr′. They share the same array
of branch conditions and differ in the array of assignments. The first (Section 6.2.1) is
simple and has some strict restrictions on the memory it can handle but it is still powerful
enough that it can be used for CAM. The other one (Section 6.2.2) relaxes the restrictions.
Together, they are sufficient for the memory abstraction in all of our benchmark designs.
They do not need a lot of gates to implement, therefore do not cause significant overhead
in the problem size before logic optimizations.

6.2.1 A Candidate for Tr′

Let us consider a memory whose transition function satisfies the requirement that for any
l ≤ k−2, every slot’s l-th assignment are the same, i.e., for any i and j, el[i] is the same as
el[j]. For example, in Listing 6.1, there are two branches. For the if-branch of every slot,
it is assigned wdata. For the else-branch of every slot, it keeps its old value. Therefore,
the CAM satisfies our requirement. We now present our construction of Tr′[i] for the i-th
slot, represented by two arrays:(∨

j

(gv[j] ∧ cv0 [j]), . . . ,
∨
j

(gv[j] ∧ cvk−2
[j]), 1

)
, and (ev0 [i], . . . , evk−2

[i], datav[i]) (6.1)

Tr′[i] defined in (6.1) has the following property.

Lemma 12. If at most one slot’s value field satisfies its corresponding gv in any cycle, and
the memory slots are initialized with the same value, then with the new value transition
function based on Tr′ specified in (6.1), the value field of every slot is equal to each other
for every cycle.

Proof. We prove it by induction. Let us assume that in the current cycle, every slot’s value
field is the same. We divide the proof into 2 cases. In the first case, no slot satisfies its
g, therefore, i-th slot’s value transition function gv[i] ? Trv(data[i]) : Tr′[i] is reduced
to Tr′[i] and the else-branch of Tr′[i] is taken. Therefore, the value field of i-th slot keeps
its old value. and the lemma is also correct in the next cycle because of our inductive
assumption that in the current cycle, every slot has the same value field.
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In the other case, let us consider that 1 slot satisfies gv and it is the i-th slot. Then, this
slot’s value transition function is reduced to its original one. Let us assume that the l-th
branch is taken, therefore, the slot’s value field in the next is el[i]. For any other slot, let
it be j and j 6= i. Its value transition function is reduced to Tr′[j]. It is easy to see that
in the transition function of the j-th slot, it is also the l-th branch that is taken. If the
l-th branch is not the else-branch, slot j’s value field becomes el[j] in the next cycle, which
is equal to slot i’s value field el[i] in the next cycle according to the requirement of using
(eq:mem-abst-tr-basic) as Tr′. If the l-th branch is the else-branch, both of slot i and j will
keep their current value in the next cycle. Based on the inductive assumption, it means
that they will stay equal to each other in the next cycle.

6.2.2 A More General Candidate for Tr′

The requirements to use the Tr′ candidate introduced in Section 6.2.1 could be too re-
strictive for some practical designs. For example, in the bypass design described in Sec-
tion 8.1.6, the array of “number to add” (incr) has the transition function where there are
branches under which the assignments (such as incr[i] + lkup val[tag[i]]) involve not only
the slot itself (incr[i]) but also other signals that have dependency on the slot’s location i,
i.e., lkup val[tag[i]]. The signal lkup val is a lookup table and lkup val[tag[i]] is the number
found at location tag[i] in the lookup table. Because we care about the assignment only
if it is part of the transition function of the slot that satisfies ĝ, we propose a candidate
of Tr′ that utilizes ĝ[i](q̂) = 1 as a fact to simplify/transform the assignment in order to
remove its dependency on i. For example, in the bypass example, if slot i satisfies ĝ[i],
then tag[i] has Boolean values and is equal to

#      »
vtag. Thus, the assignment can be simplified

to incr[i] + lkup val[
#      »
vtag], which no longer depends on i.

Let us denote an operation ↓ (evj [i], gv[i]) which simplifies evj [i] using the fact gv[i] = 1
into a new value whose only dependency on i is via the slot i itself. If it can be done for
every assignment in the transition function, then Tr′ described in (6.2) can be used in the
memory abstraction. Then, Tr′[i] is(∨

j

(gv[j] ∧ cv0 [j]), . . . ,
∨
j

(gv[j] ∧ cvk−2
[j]), 1

)
, and(

↓ (ev0 [i], gv[i]), . . . , ↓ (evk−2
[i], gv[i]), datav[i]

)
(6.2)

Tr′[i] defined in (6.2) has the following property.

Lemma 13. If at most one slot satisfies its corresponding g in any cycle, and the memory
slots are initialized with the same value, then with the new value transition function based
on Tr′ specified in (6.2), the value field of every slot is equal to each other for every cycle.
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6.3 Summary

In this chapter, we introduce our memory abstraction and formalize it as a simplification
of the memory’s value transition function. The simplification for the memory write can
be stated in the general form: the new value transition function of i-th slot becomes
gv[i] ? Trv(data[i]) : Tr′[i] . The key to successfully using our memory abstraction is
to properly construct ĝ[i] and Tr′[i] for each slot i. We provide templates and guidelines
for constructing Tr′[i]. Lastly, just like data abstraction, it is important to note that
our memory abstraction does not always work well. Particularly, there are designs and
properties whose correctness in each cycle involves a large number of memory slots. For
such memory, using our technique could be detrimental because of the overhead caused by
the ternary verification and the extra logic we would introduce with Tr’ and gv.

66



Chapter 7

Refinement

We present a framework for refinement in ternary verification. Since the monitor circuit
for the property is combined with the design as a primary output, a ternary CEX is a
ternary trace where the primary output is either 0 (strong ternary CEX) or X (weak
ternary CEX). A strong CEX is spurious if it is because of illegal stimulus, i.e., the design
is under-constrained. A weak CEX is spurious if the property passes for all Boolean
stimuli that are abstracted by the weak CEX. A weak CEX is real if there exists a Boolean
stimulus abstracted by the weak CEX that fails the property. Our framework is focused on
weak CEXs. Spurious strong CEXs can be addressed by conventional Boolean refinement
techniques. We will refer to spurious weak CEXs as spurious CEXs. The goal of the
refinement is to eliminate spurious CEXs. Existing refinement approaches achieves this
by increasing the precision of the ternary initial state and stimulus while we present a
refinement framework that increases the precision of the unrolled implementation of the
ternary transition function, which makes up the majority of a bounded model checking
problem. In the next section, we will explain the differences in detail.

The most important part of the framework is to understand, from a novel point of view, why
we encounter spurious CEXs in ternary verification: while existing approaches attribute the
cause of the CEX be an insufficiently precise stimulus and/or initial state, we instead will
show an alternative explanation, which is that the unrolled ternary implementation (short
for “unrolled implementation of a ternary transition function”) for the primary output is
not precise enough. Our refinement framework is built around this understanding of the
spurious CEXs.

Recall that same as the existing work, we efficiently implement a ternary transition function
by substituting each Boolean gate with its equivalent ternary gate (the “transform” step
shown in Figure 7.1). The ternary verification problem can be viewed as checking whether
the unrolled ternary implementation for the primary output is guaranteed to be 1. Instead
of unrolling the ternary implementation, we equivalently unroll a Boolean implementation
and replace the Boolean gates with the corresponding ternary ones. We prefer the con-
struction of the unrolled ternary implementation this way (labeled with A in Figure 7.1)

67



because it helps us explain the differences between different refinement approaches within
our framework later.

An unrolled ternary implementation is dependent on the unrolled Boolean implementation
in the sense that for two unrolled ternary implementations defined using different unrolled
Boolean implementations of the same Boolean transition function, they may return differ-
ent values given the same ternary assignment to the inputs. In contrast, different unrolled
Boolean implementations always return the same value given the same assignment to the
inputs. In other words, for every unrolled Boolean implementation for the primary out-
put, a corresponding unrolled ternary implementation is defined. The set of all unrolled
ternary implementations is in fact a complete partially ordered set, ordered by the abstrac-
tion relation (Theorem 14). The bottom of the partially ordered set is the most precise
implementation for which no spurious CEXs exist. Therefore, spurious CEXs are encoun-
tered because we choose a unrolled Boolean implementation whose corresponding unrolled
ternary implementation is too abstracted. For example, Figure 2.1 and Figure 7.2 are dif-
ferent Boolean implementations of a multiplexer, but the ternary implementation defined
using Figure 2.1 is an abstraction of the one using Figure 7.2 (compare the output using
the stimulus a = 1, b = 1, c =X). The refinement approaches in our framework modify

Figure 7.1: Conventional (path ‘B’) and our way (path ‘A’) of constructing an unrolled
ternary implementation from a Boolean transition function

A
B

the unrolled Boolean implementation. They are differentiated based on the scope of the
modification and the type of the modification.

In the rest of the chapter, we will first differentiate our refinement from the existing ones in
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Section 7.1. The basis of our refinement framework is presented in Section 7.2. Lastly, we
will describe three different refinement methods within the framework in Section 7.3, 7.4
and 7.5. The first method straightforwardly follows Lemma 14. It modifies an unrolled
Boolean implementation and is able to eliminate any spurious CEX. However, we believe it
is challenging to use and prove the equivalence between before and after the modification
due to the sheer size of the unrolled implementation. Our second method alleviates some
of the challenges but focuses on only modifying a Boolean implementation (short for an
implementation of the Boolean transition function), i.e., limiting ourselves to modifying the
gates that are within the boundary of a design and the modification is repeatedly applied for
every cycle. However, the efficiency comes at a cost of the completeness: there are spurious
CEX that it cannot eliminate (discussed in Section 7.4.2). Our last method modifies the
Boolean implementation in order to over-approximate as a means to partition the traces
of the design. This method will introduce more Boolean variables in the verification but
in return, it allows us to remove the spurious CEXs that the second method cannot.

7.1 Comparison with Existing Refinement Approaches

A spurious weak CEX is caused by a stimulus that assigns X to some input signals in some
cycles and/or X to some registers in the first cycle (i.e., initial state). In their simplest
form, existing refinement approaches (such as [44, 48]) use various ways to automatically or
manually analyze a spurious weak CEX in order to find a small subset of such X assignments
(will be denoted by signal-cycle pairs (n, c) in the thesis) that are responsible for the
spurious CEX. In other words, if the X assignments in the subset are replaced with Boolean
assignments, the spurious CEX would not occur. Some approaches are more careful and
they also consider other signals’ assignment and use it to qualify when the X assignments
in the selected subset actually lead to spurious CEXs. They extend the signal-cycle pair to
signal-cycle-Boolean condition triplet (n, c, p). For example, consider a spurious CEX that
assigns 1 and 0 to input signals a and b respectively in cycle 2, and X to the input signal d
and f in cycle 3. After analyzing the spurious CEX, users figure out that assigning X to d in
cycle 3 (i.e., the pair (d, 3)) causes the spurious CEX. Therefore, to fix it, the new stimulus
will assign fresh Boolean variable to d in cycle 3. As for more careful approaches, let us
consider that users further derive that only when a and b are assigned opposite values in
cycle 2, assigning X to d in cycle 3 leads to spurious CEX, i.e., the triplet is (d, 3, a2 6= b2),
if the original stimulus assigns the variable a2 to a and b2 to b in cycle 2. The new stimulus
now will assign (a2 6= b2 ? v : X ) to d in cycle 3, where v is a fresh Boolean variable.
In general, a list of triplets could be needed for a refinement iteration, which will be used
to assign symbolic values to different inputs or the same inputs but in different cycles or
registers in the initial state.

Existing refinement approaches increase the precision of a ternary transition system by
strengthening its ternary stimulus and initial state via replacing some X assignments with
fresh Boolean variable assignments, which amounts to using symbolic variables to further
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partitioning the input and initial state space. Let us consider the refinement triplets
(n0, c0, p0), . . . , (nk−1, ck−1, pk−1), let the number of ternary stimulus satisfying the condition
in every refinement triplet (

∧
i<k pi) be m and the number of X assignments replaced be l.

Then, the refinement partitions m ternary stimuli into m× 2l ternary stimuli. Therefore,
with each refinement iteration, the ternary verification is brought closer to the full-scale
Boolean verification and the verification becomes more difficult. There are also some
benefits for existing approaches. For example, they do not modify implementations of
the transition function, and the stimulus and initial state are usually irrelevant to the
exact implementation details of the transition function. It is useful in practice because
hardware designs could be constantly evolving to fix bugs or implement new features.
For the verification based on the guard-value encoding, existing approaches also make the
guard verification simpler, however it is not enough to offset the significantly more time
spent for the value verification (see Chapter 8.2).

Our refinement framework modifies the (unrolled) Boolean implementation instead of the
ternary stimulus and initial state. It includes three methods that differ in the scope of the
modification as well as the type of the modifications. We will use “re-implementation” to
refer to modifying the implementation of a Boolean function without changing the function-
ality. The first method re-implements the unrolled Boolean transition function while the
second re-implements the Boolean transition function. They will be presented in detail in
the next few sections. Their most important benefit is that they do not partition the input
stimuli nor the initial state thus retaining the same ternary input state space. But compar-
ing with the existing approaches, they additionally need to check that the modifications
are indeed re-implementations, which are not difficult especially for the second method
because the modifications are incremental and local for each refinement iteration. The
last method within the framework is more flexible by requiring that the modified Boolean
implementation being an over-approximation instead of strictly re-implementation. The
over-approximation partitions the traces by introducing primary inputs to some sub-circuits
of the Boolean implementation, which are driven by Boolean variables in the ternary veri-
fication. The following example illustrates the third method.

Example 7.1.1. Consider a sub-circuit implementing o = a 6= b ? a : b , where, with the
data abstraction, the domain for a and b is {X1, 1X, 00}. The ternary domain has enough
information to decide whether the signals’ values are equal to 00. Without refinement, by
assigning any value from the ternary domain that is not 00 to a and b, the select condition
of the circuit (a 6= b) is X, which causes the sub-circuit’s output to become XX. To preserve
the information needed for distinguishing from 00 at the output, our refinement method
introduces a new primary input (let it be pi) and over-approximates the sub-circuit with
[(a 6=00 ∧b 6=00) ? pi : a 6= b ] ? a : b . This way, whenever the values of a and b do
not have enough information to decided whether they are equal, we replace a 6= b with the
primary input pi that is driven with a Boolean variables in the ternary verification, which
essentially partitions the traces that assign XX to o:

� (a =1X, a =X1, o =XX) is partitioned into {(a =1X, a =X1, o =1X), (a =1X, a =X1,
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o =X1)}

� (a =X1, a =X1, o =XX) is partitioned into {(a =X1, a =X1, o =X1)}

� (a =1X, a =1X, o =XX) is partitioned into {(a =1X, a =1X, o =1X)}

Existing approaches partition traces of a ternary transition system by partitioning the
input stimulus and initial state while our method partitions exactly at the parts of the
traces where the information is lost. Existing approaches’ partitioning affects much more
logic than needed. Our refinement needs fewer Boolean variables thus has fewer partitions.
In this thesis, we have not automated our refinement methods. However, as will become
clear, provided the data abstraction, it is intuitive to locate the sub-circuits to modify.

7.2 A Complete Partially Ordered Set of Ternary Func-

tions

The unrolled Boolean (ternary) transition function for the primary output is a Boolean
(ternary) function. For each signal, its Boolean (ternary) transition function is also a
Boolean (ternary) function. Therefore, we will discuss in terms of ternary functions. A cir-
cuit implementation of a Boolean function is decided by the library of basic gates and the
interconnections of the gates. When a ternary function, as an abstraction of a Boolean func-
tion, is defined by substituting Boolean gates in a circuit implementation of the Boolean
function with the ternary ones, as shown in the following example, different implementa-
tions of the Boolean function will lead to different ternary functions. Lemma 14 shows
that they can be partially ordered by the abstraction relation.

Example 7.2.1 (Different ternary MUX using different Boolean MUX implementations).
Figure 2.1 is the common implementation of a multiplexer. For this simple example, it is
easy to find out the information is unnecessarily lost when the select line is X while the
other inputs are both 1, in which case the ternary MUX based on Figure 2.1 outputs X
instead 1.

Figure 7.2 demonstrates an alternative Boolean implementation of a MUX whose corre-
sponding ternary MUX outputs correct values when the select line is X and all other inputs
are 1. It implements the formula d = (a∧ b) ? 1 : (c ? a : b ) , which is easy to prove the
equivalence with c ? a : b .

The least abstract ternary function is given in Definition 18. The most abstract one
is constructed in the proof of Lemma 14. By definition, for the least abstract ternary
function, there is no spurious weak input assignment. An input assignment is spurious if
the ternary function’s output is X and after replacing X in the input assignment with fresh
Boolean variables, the output of the ternary function always is the same Boolean value
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Figure 7.2: A different AIG implementation of a multiplexer for abstraction refinement

regardless of the assignment to the fresh Boolean variables. We apply this result to the
unrolled ternary transition function: the least abstract unrolled ternary transition function
cannot have spurious CEXs.

Definition 18 (The least abstract ternary function). The ternary function f̂ ∗ abstracting
the Boolean function f is the least abstract iff for any ternary assignment to its input q̂,

� f̂ ∗(q̂) = 1 iff for any Boolean input assignment that is abstracted by q̂, the Boolean
function returns 1, i.e., ∀ q ≤ q̂ . f(q) = 1.

� f̂ ∗(q̂) = 0 iff for any Boolean input assignment that is abstracted by q̂, the Boolean
function returns 0, i.e., ∀ q ≤ q̂ . f(q) = 0.

� f ∗(q̂) =X iff there exist two Boolean input assignments that are abstracted by q̂, such
that the Boolean function returns different values, i.e., ∃q ≤ q̂ . ∃q′ ≤ q̂ . f(q) 6= f(q′).

Lemma 14. Let F = {f0, f1, . . .} be the set of all possible circuit implementations of a
Boolean function f , and let f̂i be the ternary function that is defined using the implemen-
tation fi. Then, the set of all ternary functions F̂ = {f̂0, f̂1, . . .} is a complete partially
ordered set, ordered by the abstraction relation. f̂ ∗ (Definition 18) is the least abstract one.
The most abstract one returns X for any ternary input assignment where at least one input
is assigned X.

Proof. The proof is divided into 3 parts:

1. f̂ ∗ is the least abstracted.

2. there exists an implementation of the Boolean function whose corresponding ternary
function is the most abstracted.
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3. there exists an implementation of the Boolean function whose corresponding ternary
function is the least abstracted, i.e., equivalent to f̂ ∗.

1. It is proved by contradiction. Assume that there is one ternary function f̂ ? from F̂
that is less abstracted than f̂ ∗, i.e., there is a ternary assignment where f̂ ∗ returns X
and f̂ ? returns a concrete Boolean value. Recall that f̂ ∗ only returns X for the ternary
assignment where there exist two Boolean assignments that are abstracted by it and f
returns different Boolean values for the Boolean assignments. Hence, f̂ ? cannot be an
abstraction of f , which contradicts with the assumption that that f̂ ? is in the partially
ordered set.

2. We construct an implementation of Boolean function, denoted by f>, that leads to
the most abstracted ternary function. We construct f> as a disjunction of all complete
assignments to the inputs that make f output 1, i.e.., a disjunction of minterms of f . f> is
obviously an implementation of f and for any ternary assignment where at least one input
is assigned X, its corresponding ternary function f̂> outputs X.

3. We construct an implementation of Boolean function, denoted by f⊥, that leads to
the least abstracted ternary function. Let ⊥+

· denote a min-DNF (Disjunctive Normal
Form) for f . Since, a min-DNF is not unique, we differentiate them with the subscript,
i.e., ⊥+

0 ,⊥+
1 , . . .. The implementation of the disjunction of all possible min-DNFs for f is

denoted as ⊥+
∗ : ⊥+

∗ =
∨
⊥+

i . Then, f⊥ implements ⊥+
∗ . For any ternary assignment q̂

such that f̂ ∗(q̂) outputs 1. There must exists a ternary term within a ternary min-DNF for
f that evaluates to 1 for the ternary assignment. Therefore, f̂⊥(q̂) = ⊥̂+

∗ (q̂) = 1. For any
ternary assignment q̂ such that f̂ ∗(q̂) outputs 1, there must exists an input whose assigned
value makes a ternary term outputs 0 for any ternary term and any ternary min-DNF.
Therefore, f̂⊥(q̂) = ⊥̂+

∗ (q̂) = 0. In conclusion, ⊥+
∗ is an implementation of f such that its

corresponding ternary function is equivalent to f̂ ∗.

7.3 Refinement by Re-implementing the Unrolled Boolean

Transition Function

Illustrated in Figure 7.3, this refinement approach modifies the whole implementation of an
unrolled Boolean transition function. It is a direct application of Lemma 14, which ensures
that every spurious CEX can be removed eventually if each refinement iteration increases
the precision of the corresponding unrolled ternary transition function. The following
example will be used as running example to explain three refinement methods with regard
to the completeness. A refinement method is considered complete if after finite refinement
iterations, all spurious CEXs can be eliminated.

Example 7.3.1. Let us consider a design with a vector of inputs ( #»a ), 2 vectors of registers

(
#»

b and #»c ) and a primary output (o). As convention, we use n′ to denote the next-state
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value of the signal n. The definition of the transition functions for the system is:

#»

b′ =
#»

b 6= #»a ? #»a :
#»

b , // register
#»

c′ = (
#»

b = #»a ∧ #»c 6= #»a ) ? #»a : #»c , // register

o =
#»

b ≤ 5 ∧ #»c ≤ 5, // combinational

We verify the property that if #»a is no larger than 5 for 2 consecutive cycles, then the output
must be 1 in the third cycle. Assume that we observe the following 3-cycle spurious CEX:

( #»a =00X,
#»

b =0XX, #»c =0XX, o =1),

( #»a =X00,
#»

b =0XX, #»c =0XX, o =1),

( #»a =000,
#»

b =XXX, #»c =XXX, o =X)

Based on the spurious CEX,
#»

b 6= #»a and
#»

b = #»a evaluate to X in the first cycle,
#»

b and #»c ’s
values in the second cycle are both 0XX abstracting its if-branch and else-branch assigned
values 00X and 0XX. In the second cycle,

#»

b 6= #»a and
#»

b = #»a also evaluate to X. Therefore,
#»

b and #»c ’s value in the third cycle is XXX abstracting its if-branch and else-branch assigned
values X00 and 0XX. Neither of

#»

b and #»c ’s values in the third cycle has enough information
to determine whether it is no larger than 5. Therefore, the output is X in the third cycle.

The refinement by modifying the unrolled Boolean transition function is challenging for this
example. But on the other hand, it is a great example to demonstrate that if this refinement
method is not done properly, checking the equivalence could be almost as difficult as verifying
the property in the Boolean domain. Because the design is unrolled 3 times in this example,

there 3 copies of #»a . Let them be
#»

a0,
#»

a1 and
#»

a2. Similarly, the 3 copies of o are denoted by
o0, o1 and o2. The unrolled transition function for o is:

o2 =
#»

b2 ≤ 5 ∧
#»

c2 ≤ 5,
#»

b2 =
#»

b1 6=
#»

a1 ?
#»

a1 :
#»

b1 ,
#»

c2 = (
#»

b1 =
#»

a1 ∧
#»

c1 6=
#»

a1) ?
#»

a1 :
#»

c1 ,
#»

b1 =
#»

b0 6=
#»

a0 ?
#»

a0 :
#»

b0 ,
#»

c1 = (
#»

b0 =
#»

a0 ∧
#»

c0 6=
#»

a0) ?
#»

a0 :
#»

c0

Based on the spurious CEX, we notice that in the first cycle both
#»

b and #»c ’s values are no
larger than 5. For this small design, the input #»a is the only source where new data arrives,
therefore it is straightforward to see that if initially

#»

b and #»c are no larger than 5 and #»a
is no larger than 5 for 2 consecutive cycles, then in the third cycle, o is also no larger than
5. This way, we modify the unrolled Boolean transition function for o to (7.1) which can
eliminate the observed spurious weak CEX.

o2 = (
#»

b0 ≤ 5 ∧
#»

c0 ≤ 5 ∧
#»

a0 ≤ 5 ∧
#»

a1 ≤ 5) ∨ o2 (7.1)
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Proving that (7.1) is equivalent to the original unrolled Boolean transition function is es-

sentially proving the original property under the condition that initially
#»

b and #»c are no
larger than 5. Furthermore, the new unrolled Boolean transition function implementation
cannot eliminate all spurious CEXs, as we will encounter the ones where initially one of
the

#»

b and #»c is larger than 5.

In Section 7.5, we will show how our third refinement method can tackle it effectively and
properly.

Figure 7.3: Refinement by re-implementing the unrolled Boolean transition function

In practice, the unrolled transition function could be quite large especially as the bound
increases, which we believe that it makes it more challenging to find the proper modifi-
cations that eliminate many spurious CEXs and remain easy to prove the equivalence (as
demonstrated in Example 7.3.1). In the next section, we will restrict ourselves to only
modify the implementation of the Boolean transition function. This way, it becomes easier
to analyze the structure of the implementation that causes the spurious CEXs and it also
becomes easier to prove the equivalence.

7.4 Refinement by Re-implementing the Boolean Tran-

sition Function

Illustrated in Figure 7.4, this refinement method re-implements the Boolean transition
function. It improves the ease of use as well as alleviates the difficulty of the equivalence
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checking of the re-implementation over the first method, but at the cost of completeness.
In this section, we will first show how we use it to refine the data abstraction for the
predicate lt() from Section 5.2.4. Next, we will discuss about the completeness limitation:
the spurious CEXs that this method intrinsically cannot eliminate.

Figure 7.4: Refinement by re-implementing the Boolean transition function

7.4.1 Refinement for the Less-than Data Abstraction

During our experiments, we found out that the implementation of a comparison between
two numbers that use our data abstraction for lt() is not precise enough. For example,
the output of the implementation for a <101 outputs X instead 1 for a =X00. A typical
implementation for a < b outputs 1 if there exists a location i such that ai =0 , bi =1 and
for every index that is above i, a and b have the same value, i.e.,

a < b =
∨
i

(
¬ai ∧ bi ∧ (

∧
j>i

aj = bj)

)

By analyzing the implementation for <, it is clear that X00<101 outputs X because the
highest bits of the two vectors, which are X and 1, do not have enough information to
decide whether they are equal. We can modify the implementation for a < b by realizing
that it is only required that aj and bj cannot be 1 and 0 respectively. Therefore, our new
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implementation of a < b is:

a < b =
∨
i

(
¬ai ∧ bi ∧ (

∧
j>i

¬aj ∨ bj)

)
(7.2)

It is easy to verify that with the new implementation, X00<101 outputs 1 as expected.

7.4.2 Discussion of the Completeness

Per Lemma 14, refinement by re-implementing a Boolean transition function can only
guarantee that there is no loss of information for a s ingle signal’s value and it cannot
ensures the same for relations among multiple signals. In Example 7.3.1, there is no re-
implementation such that

#»

b ’s value in the third cycle has enough information to compare it
with 5 because its value XXX is already the most precise abstraction of the set {X00, 0XX}.

Therefore, when the X appearing at the output of the unrolled Boolean transition function
can only be explained by the loss of information in the relation among multiple signals
instead of them individually, re-implementing the Boolean transition function will not be
able to resolve the spurious CEX. A feasible solution involves adding variables as described
in the next section.

7.5 Refinement by Over-approximating the Boolean

Transition Function

It is well known that the ternary abstraction loses information about the relation among
signals when abstracting a set of states. For example, let us consider a set of Boolean states
that map a and b to opposite values, i.e., {(1, 0), (0, 1}. If we abstract this set with one
ternary state, it maps a and b to (X,X). When the relation among the signals is important
to prove the property, we may need to further partition the ternary states, i.e., abstracting
the set of Boolean states with more ternary states. In the above example, a proper partition
to preserve the information is {(1, 0), (0, 1)}. As discussed in Section 7.1, the existing
refinement approaches eliminate spurious CEXs by partitioning the input states and initial
state for registers, which partitions the states of the other signals through simulation. In
Section 7.4, we present how the refinement can be done more effectively by re-implementing
the Boolean transition function when the spurious CEXs are caused by imprecision for
individual signals’ values. In this section, we consider the cases where ternary states
partitioning is necessary and we show how to improve the existing approaches.

Instead of partitioning the input states and initial states, our approach partitions the states
for the signals that explain the loss of information about the relations among the signals
that are essential to prove the property. In Example 7.3.1, X at the output in the third cycle
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is directly caused by the values of
#»

b and #»c not having enough information to determine
whether they are no larger than 5, which can be explained by

#»

b 6= #»a and #»c 6= #»a being
X in the previous cycle. Therefore, we partition the ternary state for

#»

b 6= #»a and #»c = #»a
from {(X,X)} to {(0, 0), (0, 1), (1, 0), (1, 1)}, which can be symbolically represented with

two fresh Boolean variables. This way, in the third cycle,
#»

b and #»c ’s value can be either
the if-branch value (0XX) or the else-branch value (X0X), both of which can be compared
with 5.

The partitioning of the ternary states for internal signals is done by modifying their tran-
sition functions and creating new primary inputs in order to index the enlarged set of
ternary states. In Example 7.3.1,

#»

b 6= #»a only evaluates to X when both of
#»

b and #»a are
no larger than 5 or both are larger than 5. But because the property to verify states that
#»a is no larger than 5, we only need to consider the first case. Let p0 and p1 be 2 newly
created primary inputs and they are driven with fresh Boolean variables in the stimulus.
The modified

#»

b 6= #»a is:
(

#»

b ≤ 5 ∧ #»a ≤ 5) ? p0 :
#»

b 6= #»a

Similarly, the modified #»c = #»a is:

( #»c ≤ 5 ∧ #»a ≤ 5) ? p1 : #»c = #»a

In summary, in this refinement approach (illustrated in Figure 7.5), we first locate the
signals ( #»n ) whose state needs partitioning to eliminate spurious CEXs. This is done by
analyzing the spurious CEXs backward from observed X. In our experiments, these signals
are often part of the control logic. The partitioning is done by modifying their transition
functions and creating new primary inputs, which are driven with fresh Boolean variables
in the stimulus. Let the set of new primary inputs be U. For our refinement method to be
sound, the modified Boolean transition functions Tr′ need to be an over-approximation:

∀ q . ∃ q′ ∈ U 7→ B . (Tr(n0)(q),Tr(n1)(q), . . .) = (Tr′(n0)(q, q
′),Tr′(n1)(q, q

′), . . .)

Lastly, we will show where we used this refinement when verifying the benchmark designs.

� If the data abstraction eq( #»v ) is applied to reduce the domain of #»a and
#»

b , we partition

the state space for #»a =
#»

b when both are not equal to #»v :

refeq : ( #»a 6= #»v ∧ #»

b 6= #»v ) ? pi : #»a =
#»

b , pi ∈ U

� If the data abstraction lt( #»v ) is applied to reduce the domain of #»a and
#»

b , we partition

the state space for #»a <
#»

b when both are less than #»v :

reflt : ( #»a < #»v ∧ #»

b < #»v ) ? pi : #»a <
#»

b , pi ∈ U
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Figure 7.5: Refinement by over-approximating the Boolean transition function

7.6 Summary

We present 3 refinement methods that increases the precision of the ternary transition
function by modifying Boolean functions instead of the ternary stimulus. This way, we
show that they are able to retain more efficiency provided by the ternary abstraction than
the existing approaches. The first two methods re-implement Boolean functions within
the unrolled Boolean transition function and the Boolean transition function respectively.
The last method over-approximates the Boolean functions within the Boolean transition
function which effectively partitions the ternary states in the next cycle. We also explain
how we use them in the verification of benchmark designs. Section 8.1.2 and 8.1.3 illustrate
use of these techniques in case studies.
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Chapter 8

Benchmarks and Results

In this chapter, we first describe 6 diverse designs and 8 properties that are used to bench-
mark our verification techniques. Then, we present the results and our analysis in details.
Different techniques are compared in terms of the verification time and the size of the SAT
problems generated. The results demonstrate the effectiveness of our techniques and back
up our theories.

8.1 Benchmarks

We used the following circuits and properties to benchmark our verification techniques.
The circuits cover a wide range of functionality. They imitate real-world circuits that are
common for building a system yet challenging for existing formal verification techniques.
The properties we verify are safety properties that describe the most important aspects
of the circuits’ respective functionality For each property, its correctness requires almost
every part of the circuit to work and interact with each other as intended. The properties
are described in plain English for readability. In the implementation, each property is
transformed into a monitor circuit that checks the signals of the design that are mentioned
in the property. The monitor circuit’s output is made a primary output of the design. A
property is satisfied in the current cycle iff its monitor circuit’s output is 1. Most of the
designs in our benchmarks make extensive use of arrays that add considerable complexity
to the formal verification. For each circuit and property, we provide the intuition behind
how we were able to use data abstraction and/or memory abstraction.

The designs in our benchmarks are:

� CAM: a special type of memory where data is located by a tag instead of an address.

� Scheduler: an arbitration where the oldest one wins.
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� Response buffer: using CAM to handle interleaved and out-of-order responses for
each request.

� Shared resource manager: manage a collection resources identified by ID that can be
shared by multiple consumers.

� Floating-point subtraction.

� Bypass: a synthetic example based on a superscalar microprocessor’s bypass paths.

Our data abstraction and memory abstraction are most applicable to circuits and prop-
erties where much of the complexity comes from the interaction of arrays and counters.
Circuits without extensive use of arrays and counters might not benefit from our techniques.
Fortunately, we have a method (Section 4.4) to inexpensively estimate the effectiveness
of our techniques. We chose to create our own benchmark circuits, rather than using the
verification problems from Hardware Model Checking Competition (HWMCC) [5], because
the designs and properties in HWMCC are combined and represented as AIGs. This makes
it impossible to understand the designs and properties, which is required to use our data
abstraction and memory abstraction.

8.1.1 Content Addressable Memory

Refer to Section 5.1 for the description of our CAM design. Besides verifying the data
correctness property of the CAM, we also verify its tag uniqueness property which states
there are no two memory slots that are both valid and have the same tag. The verification
of our CAM is more comprehensive and significantly more challenging than existing works
that verify CAM using STE, e.g., [42, 44, 48], where the properties verified are inductive
and the tag management logic is either irrelevant to the property or uses a simpler policy
of inserting and deleting tags ([48]). Our verification covers more of the behaviour of the
system and/or tackles more complicated CAM designs.

8.1.2 Scheduler

We implemented a scheduler based on Adams [2], where the oldest ready process gets to
execute. Each process has an age register. The design is parameterized by age register
width (OW) and the address width (AW). The number of processes is 2AW. Te property
we verify states that the chosen process must be ready and older than all other ready
processes. The property is inductive. We will use induction to fully verify it.

When verifying it, we arbitrarily pick a number by using symbolic variables #»a to be the
largest age among the ready processes. For every ready process, we only care whether
its age is smaller or equal to #»a , which can be leveraged for data abstraction (see data
abstraction for lt() in Section 5.2.4).
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As explained in Section 7.4.1, using the data abstraction for lt() causes spurious CEXs.
Our refinement modifies the implementation of the less-than comparison operation of the
design to Formula 7.2. The existing refinement approaches, on the other hand, modify
the data abstraction for lt() to make it less abstract. We will provide more details in
Section 8.2.4, where our refinement is compared with existing ones that are labelled with
“alt data abst” in Table 8.7.

8.1.3 Response Buffer

The response buffer (RBuf) mimics practical designs where the responses to requests take
unpredictable number of cycles and for each request, its response data is divided into a few
fragments. RBuf temporarily stores the received data for each request until all fragments
are received. Each request has a unique ID and it is recycled once all responses to the
request has been received.

The response buffer is parameterized by ID WIDTH which is the bit-width of requests’ IDs,
DATA WIDTH which is the total length in bits of a response data, RESP DATA WIDTH
which is the bit-width for a response fragment and TBL SIZE which is the number of
DATA WIDTH-bit wide memory slots the design has to buffer responses. The request ID
ranges from 0 to 2ID WIDTH − 1. A request is in-flight if it is accepted by RBuf but has not
been responded. TBL SIZE decides the maximum number of in-flight requests.

The schematic of RBuf is shown in Figure 8.1. The requestor sends a request id (req id)
to the RBuf. Response module divides the response into 4 fragments and sends them back
at unpredictable time. A response fragment is valid if int resp is 1, and it includes data
(int resp data), its identifying ID (int resp id) and a flag (int resp last) indicating whether
it is the last response fragment. There are other important interface and internal signals
that we describe as follows. req rdy indicates that RBuf has available memory to store
the response data. Requests and responses are recorded in a table with 3 fields, which
are request id, valid flag and response data. RBuf sends out responses together with the
ID of the associated request (resp id) when it has received all of the responses for the
request, indicated by int last resp of the response module. The response module models
the unpredictable delay to process and respond to each request. Besides, fragments of the
responses to different requests can be interleaved. The two properties we verify are:

1. data correctness: for each request, the response data must be correct, i.e., it is a
concatenation of the fragments sent by the response module for that request.

2. ID uniqueness: no in-flight requests can share the same ID.

Data Abstraction and Memory Abstraction

When verifying both properties, we arbitrarily pick an ID with symbolic variables #»a . For
the data correctness property, #»a is the ID of the request whose response data is to be
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Figure 8.1: Response buffer
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checked. For the ID uniqueness property, we verify that #»a is the ID of at most one in-
flight request. For each request, we only care about whether its ID is equal to #»a , which
is an observation that can be leveraged for data abstraction to reduce the state space of
the signals relevant to request/respond IDs. However, unlike the data abstraction in the
CAM design, the signals here are not inputs. As a result, we need to manually modify
the transition function for the signals such that its domain becomes { #»a , ¬̂ #»a }, where ¬̂ #»a
denotes the symbolic ternary vector that generates every Boolean vector that is not equal
to #»a . The transformation may require some human expertise. In RBuf, the transition
function for the request ID is described in the Listing 8.1 assuming ID WIDTH=2. The
transformed transition function is described in Listing 8.2. We construct the new transition
function by syntactically constructing the condition for the request ID to be equal to #»a .
We leave out showing how to modify the transition function for the response ID because
it is done similarly.

Listing 8.1: The original value transition function for req id

1 req_id = 0

2 for (i=1; i<4; i++):

3 if req_id_avail[i] && !req_id_avail[i−1:0]
4 req_id = i

Listing 8.2: The new transition function for req id

1 if (! verif_id && (! req_id_avail || req_id_avail[0])) ||

2 (verif_id && req_id_avail[verif_id] &&

3 !req_id_avail[verif_id−1:0])
4 req_id = verif_id # verif_id is assigned #»a in the stimulus

5 else

6 req_id = ne_verif_id # ne_verif_id is assigned ¬̂ #»a in the stimulus

83



Along with the data abstraction, we can also use bit-width reduction for the value verifi-
cation of both properties.

Furthermore, we do not care about the table entries whose request IDs are not equal to
#»a . As a result, we can apply memory abstraction for the valid flag field as well as the
response data field of the table. But note that unlike the response data field, the valid flag
field cannot be abstracted with X to prevent spurious CEXs. We also do not care about
how the data is produced in the response module to respond to the requests whose IDs are
not equal to #»a , which allows us to apply memory abstraction to the relevant array in the
response module.

Refinement

We need to apply the refinement for “equal to a vector” refeq introduced in Section 7.5
when comparing req id, resp id with the ID number ranging from 0 to 2ID WIDTH − 1 and
comparing the request ID in the table of RBuf with resp id. req id and resp id are the
signals where we directly apply the data abstraction while the request IDs in the table
are data-abstracted implicitly because their values are decided by logics that use req id
and resp id and their domain is also the abstracted data domain. If we use the existing
refinement approaches that are restricted to modifying the antecedent, req id and resp id
must always have Boolean values because, otherwise, the signals that track whether the
request IDs that are not equal to #»a are available or not have the value X, which leads to the
smallest available request ID being all Xs. With the existing refinement approaches, the
ternary verification is reduced to Boolean verification. As a result, the guard verification
becomes trivial, as shown in Table 8.14.

8.1.4 Shared Resource Manager

Resources such as memory can be shared by multiple consumers. The basic operations
of the shared resource manager include handling the requests for resource allocation from
the consumers and reclaiming the resources returned. The manager should also indicate to
the consumers whether it has any resource left to allocate. The property we verify states
that each resource cannot be given to more than 1 consumer. The policy for allocation
and reclaiming is highly customizable and can be very complex. We implement a simple
manager where we assume that only one consumer can request or return resources in
each cycle and each consumer returns the resource that is least recently requested by that
consumer.

Data Abstraction

When verifying the property, we arbitrarily pick a resource identified by #»a , then we use data
abstraction based on the predicate eq( #»n , #»a ) ≡ #»n = #»a to abstract away the information
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only needed to distinguish among resources that are not #»a . For the design, available
resources are stored in a FIFO. Initially, every resource (0, 1, . . . , k− 1) is available. Thus,
the initial states of the memory in the FIFO before and after data abstraction are shown
in Figure 8.2. Recall that 6= #»a is a symbolic ternary vector that compactly abstracts the
set of Boolean vectors that are not equal to #»a as shown in Formula 5.3.

Figure 8.2: Initial state of the FIFO storing available resources

8.1.5 Floating Point Subtraction

A floating point number can be represented by 1.mantissa× 2exponent, where mantissa and
exponent are Boolean vectors. In our design, the inputs are aligned, i.e., they have the
same exponent, which is usually the first step in floating point subtraction algorithm. The
result of 1.m1 × 2e − 1.m2 × 2e is computed by shifting the result of (m1 −m2) to the left
until there is no more leading zeros and the exponent of the result is decreased accordingly.
For example, 1101× 211 − 1010× 211 = 0011× 211 = 1100× 201. Our design is optimized
for performance by using pipeline to implement the left-shift of m1 − m2. Our property
checks that the mantissa of the subtraction is correct. The property is inductive and we
fully verify the property using induction.

For the convenience of applying the data abstraction, we decompose verifying the design
into verifying the gates computing m1 −m2 and verifying the gates shifting m1 −m2 to
the left until the leading 0s are gone, which is the main complexity of the design. The
control logic of our design only cares about the number of leading 0s. Therefore, we
make 2 copies of (m1 − m2). One copy is used in the data path while the other copy
is used for control logic. For the copy used for the control logic, we can abstract it by
{(1,X, . . . ,X), (0, 1,X, . . . ,X), . . . , (0, . . . , 0, 1)}, which can be represented by (

〈
agj , avj

〉
:

agj ≡ #»v ≥ j and avj ≡ #»v = j) using the guard-value encoding, where #»v is a vector
of Boolean variables used as the indexing variables from 0 to k − 1, and k is the length of
m1−m2. The ternary vectors in the set abstracts the Boolean vectors with 0, 1, and k− 1
leading 0s. Our two copies of (m1 −m2) and the additional gates used to process them in
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the pipeline explains why in Table 8.22, Roorda has a lot more clauses than the BMC. No
refinement is needed.

8.1.6 Bypass

Bypassing is an optimization technique that is commonly used in microprocessors to reduce
the latency of executing instructions. With bypassing, one instruction can directly get the
latest values of its operands from the previous instruction that modifies the operands but
is still in the pipeline, instead of waiting for the previous instruction to exit the pipeline
and write the data to the memory so that latest value can be read from the memory for
the instruction to be executed. Bypassing is one of the micro-architectural features that is
particularly challenging to verify.

Our bypass design (shown in Figure 8.3) implements the same idea but with some simplifi-
cations and modifications. The purpose of the modifications is to increase the verification
complexity. The “instructions” to our design only has one field which is the address where
it updates the data in the memory and the only operation it has is to add the data at
the address of the memory with the symbolic value that is looked up based on the last
3 bits of the instruction address. The design has 5 stages. Depending on the last 3 bits
of the instruction address, the addition could happen in one of the stages. Furthermore,
bypassing can happen even before the addition is executed. As a result, there is a table
that keeps record of how much to add for each instruction when it reaches the execution
stage. The memory is dual-port supporting concurrent read and write. If reading from the
same address as the write, the write data is to be read.

Figure 8.4 shows two snapshots of the pipeline and the table’s states in cycle 0 and cycle
3. Two instructions with the same address 0XF3 arrive 3 cycles apart. The instructions’
execution stage is 4th stage and the number to add is 0X02. When the second instruct
enters the pipeline at cycle 0, the earlier instruction is yet to exit its execution stage,
where the operands are 0XB0 and 0X02. 0XB0 is the data read from the memory at the
location 0XF3 when the earlier instruction enters the pipeline. Because the addition is
yet to happen, 0XB0 is bypassed to the first stage and accordingly, in the table, the entry
for the instruction is updated to 0X02 + 0X02 = 0X04. In cycle 3, the operands to the
execution stage becomes 0XB0 and 0X04. When the second instruction exits the pipeline,
it will write 0XB4 to the memory.

8.2 Results

In this section, we demonstrate the effectiveness of the data abstraction, the SAT-based
implementation of STE using guard-value encoding and logic optimization, the guard-value
memory abstraction and our refinement approach by presenting the results when verifying
properties of the benchmarks introduced in the previous section. We will first discuss about
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Figure 8.3: Bypass design
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Figure 8.4: A run of the bypass
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the design of the experiments. Then, an overview of the results is provided. Lastly, details
results are given for each benchmark design.

8.2.1 Experiments Setup

In this thesis, we focus on verifying safety properties. If they are not k-inductive, we will
verify that they are correct up to a certain bound. As mentioned in the previous section, a
safety property is compiled into a circuit whose primary output is o. This way, any safety
property is transformed to that o is always 1. Because our definition of a ternary transition

system (M̂) includes the symbolic ternary initial state (
˚̂QR) and symbolic ternary stimulus

(σ̂I), there is a straightforward way to construct an antecedent to convert a safety property
G (o = 1) to an STE property while preserving the bounded semantics (let the bound be
k): ∧

n∈SR

n is
˚̂QR(n) ∧

∧
n∈SI

n is σ̂0
I (n) ∧ . . .

∧
n∈SI

Nk−1 n is σ̂k−1
I (n) =⇒ Nk−1 (o is 1) (8.1)

Checking this STE property (8.1) is equivalent to verifying the safety property (G (o = 1))
using a ternary BMC. Both algorithms use ternary symbolic simulation to compute the
reachable states for o in cycle k based on the same initial state and stimulus. In other words,
in the settings of this thesis, for any particular ternary encoding, ternary BMC is equivalent
to STE. For example, BMC-GV is equivalent to STE-GV. As a result, by comparing the
effectiveness of ternary BMC based on different encodings (BMC-GV, BMC-DR and BMC-
Roorda), we are also comparing STE-GV, STE-DR and STE-Roorda. Because of the dual
purposes of the experiments of BMC-GV, BMC-DR, and BMC-Roorda, we label them
with GV, DR and Roorda respectively in this section.

Recall that data abstraction modifies the stimulus and initial states of M̂ for some signals.
When we compare GV, DR and Roorda, they always verify the same M̂. If memory
abstraction that can be implemented in the Boolean domain is used (e.g. in the Bypass
verification), we will implement it in both of M and M̂ the same way in order to be fair
to BMC. Logic optimizations are used right before translating AIGs to CNF and calling
miniSAT [24] for GV and DR most of the times. Exceptions will be noted. Our logic
optimizations are composed of 3 ABC functions that are the cores of their respective ABC
command wrappers drwsat, dfraig and &dc2. The parameters of the logic optimization
algorithms are static and no effort was put into adjusting the parameters to achieve best
performance. We use the state of art implementation of BMC (command bmc3) in ABC.
Because BMC and Roorda do not use symbolic simulation and their verification problem
is never represented as an AIG, logic optimizations are not applicable.

For every design, we use GV, DR, Roorda and BMC to verify the properties. GV, DR and
Roorda all implements the same data abstraction, but extra care is taken into optimizing
the value field as part of the data abstraction for GV. The properties we verify for each
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design are high-level properties that specify the most important aspect of their functional
correctness. For the properties to be satisfied, all major logics of the design need to behave
correctly. These properties are challenging for existing verification techniques as will be-
come clear. We insert bugs that are difficult to find into the shared resource manager and
the bypass in order to test GV’s ability of catching bugs. Particularly, the bug in SRM
can only be detected by GV and all other techniques (DR, Roorda and BMC) timed out.
For CAM, bypass and RBuf, GV memory abstraction is applicable. We will compare the
performance of GV with and without using GV memory abstraction. The bit-width reduc-
tion enabled by the guard-value encoding is applicable for CAM, RBuf, SRM and bypass.
Scheduler, RBuf and bypass are the designs where we tried existing ternary refinement
approaches and compared with our approach.

We use the following abbreviations when reporting results in the tables:

� cl: clause.

� v cl#, g cl#: the number of clauses in the value verification and guard verification
respectively.

� vand, gand: and in the value verification and in the guard verification respectively.

� oTime, sTime, vtime and time represent optimization time, SAT solving time, value
verification time and the total time respectively.

For BMC and the ternary verification using Roorda’s implementation, only the number
of clauses is available. Therefore, when comparing against these two techniques, we will
compare the problem’s size in terms of the number of clauses instead of the ands in the
AIG. There is a tight correlation between the number of ands and the number of clauses
they translate to. Bit-width reduction is only possible with the guard-value encoding and
it only simplifies the value verification while leaving the guard verification unaffected. As
a result, we only report the value verification time when we study the effect of the bit-
width reduction. When studying the gv memory abstraction, we observe that the memory
abstraction usually causes slight increase in the problem size before the logic optimization.
However, the memory abstraction provides more optimization opportunities, which enables
the logic optimization to reduce the verification problem much more than without the
memory abstraction. To show this phenomenon, we provide the number of ands for both
before and after logic optimization.

We use Yosys [50] to compile Verilog. For BMC, safety properties are written as Sys-
temVerilog assertions and we use SymbiYosys [49] to compile the design and assertions,
and call bmc3 to check the assertions. We set time-out limit to be 1800 seconds for each
verification. The experiments were done using AMD Ryzen 7 3700X and 16 GB RAM.
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8.2.2 Overview of Results

Figures 8.5 - 8.9 aggregate the experimental results in terms of the verification time and
plot them against verification problems, which are determined by the design, parameters
of the design, the property to verify and the bound (as well as the verification technique
for Figure 8.9). The verification problems are mapped to numbers which are used to label
x-axis in the figures. The details of this mapping can be found in Table 8.1. Note that
Figure 8.7 and Figure 8.8 are meant to show the effectiveness of the techniques that are
unique to GV, therefore the performance of DR, Roorda and BMC are not included. We
make the following observations.

1. From Figure 8.5 and 8.6, GV significantly outperforms BMC in orders of magnitudes
when verifying designs with or without bugs, because of the data abstraction and
the guard-value encoding. Details of the outliers can be found in Table 8.10 and
Table 8.7. In Table 8.10, it is shown that as soon as the bound increases, GV start to
dramatically outperform again. In Table 8.7, GV performs worse than others only for
the smallest bound where the verification problems are simple enough to be solved
in seconds. GV is almost always faster than DR also in a few orders of magnitudes
sometimes, because of the guard-value encoding and the extra don’t-care optimiza-
tions for the value field. DR is dramatically better than Roorda likely because of
the logic optimizations. Roorda lags behind BMC likely because of the considerable
overhead in the extra clauses representing the ternary stimulus, where data abstrac-
tion is specified (see Table 8.2, 8.5, 8.6, 8.10, 8.15, 8.17, 8.20, 8.18, 8.22, 8.23 and
8.26 to compare the problem size for Roorda and BMC). More importantly, for many
verification problems, GV is the only technique that can solve them without time-out.

2. From Figure 8.7, we observe that the GV memory abstraction is very effective. The
speed up can be more than 8×. Besides, there is a verification problem that GV can
only solve with the GV memory abstraction.

3. From Figure 8.8, we observe that the bit-width reduction consistently improves GV
upto 4×.

4. From Figure 8.9, we can see that our refinement is better than the existing refinement
approaches most of the time. Majority of the outliers are for DR and Roorda, which
is not of main concern. The 2 outliers for GV will be explained in Section 8.2.4 and
Section 8.2.5.

There are 5 types of tables, which provide more details to the results of our experiments
and will be presented from Section 8.2.3 to 8.2.8.

1. The tables that compare GV, DR, Roorda and BMC. In these tables, the number of
clauses and the verification time are reported. For GV, we only list the number of
clauses of the value verification because it is the most relevant and important when
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comparing with other techniques especially BMC. The number of clauses for GV and
DR are acquired after the logic optimizations.

2. The tables that show the effect of using the GV memory abstraction. The sizes
of the AIGs for both of the guard verification and value verification are compared
between using and not using GV memory abstraction. The total verification time is
also compared.

3. The tables that show the effect of using the bit-width reduction. The size of the AIG
before logic optimization for value verification is compared between using and not
using the bit-width reduction. The value verification time is also compared. Because
the bit-width reduction does not modify the guard verification in any way, statistics
relevant to the guard verification are not reported.

4. The tables that compare our refinement approach with the existing ones. The sizes
of the verification problem before and after logic optimizations are provided for us-
ing our refinement approach and existing refinement approaches. The size of the
verification problem for different techniques are measured differently. For GV, it
is 〈 # of g cl,# of v and〉. It is # of and for DR, and # of cl for Roorda. The
verification time is also provided.

5. The tables whose purpose are not listed above. For example, there are tables which
have results that we use to discuss the performance of adapting data abstraction to
BMC.

These tables can be used with the figures to locate the outliers as we have shown. More
importantly, we can use them to make further observations and conclusions.

1. Table 8.10, 8.15, 8.17, 8.18 and 8.23 show that GV scales significantly better than
the other techniques (DR, Roorda, BMC) in terms of the clock-cycle bound. Ta-
ble 8.5, 8.6 and comparing Table 8.17 with Table 8.18 unveil that GV scales dra-
matically better in terms of the design parameters as well. Recall that based on our
analysis, the size of the value verification is smaller than the rest of the techniques.
The results shown in the above tables and Table 8.2 align with our analysis and fur-
thermore, we can see that logic optimizations can make the value verification become
even smaller and sometimes solve it directly.

2. Table 8.3, 8.13 and 8.25 show that GV memory abstraction can further improve
GV’s scaling with the bound and the parameters. In Table 8.3, the verification time
scales approximately linearly with the data width parameter. In these tables, we
also provide the size of the guard verification before and after logic optimizations,
after examining which, we can see that the size of the guard verification before logic
optimization is much larger than the corresponding value verification but gets greatly
simplified by logic optimizations and even solved in many cases. This supports our
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analysis in Section 3.2 that the guard verification exhibits significant redundancy in
logics and is a much simpler verification problem than the value verification. Besides,
looking at the size of guard verifications in the tables, we can see that even though
GV memory abstraction increases the size of verification before logic optimizations
because of extra logic used to implement it in the design, GV memory abstraction
brings additional logic optimization opportunities that can be utilized by off-the-
shelve logic optimizations such that they become much smaller than without GV
memory abstraction after logic optimizations.

3. Table 8.4, 8.16, 8.19 and 8.24 show that the bit-width reduction effectively reduces
value verification’s size after logic optimizations, which indicates the bit-width re-
duction we use is sophisticated enough that the logic optimization algorithms are
incapable to achieve. The improvement in size of the value verification and verifica-
tion time is most significant for SRM design.

4. Table 8.9, 8.14 and 8.27 show that our refinement method works better than exist-
ing ones not only for GV but also for DR and Roorda most of the time. Existing
approaches modify the stimulus to remove X, and sometimes remove X completely
(e.g., RBuf). Therefore it is expected that the guard verification can be simpler with
existing refinement approaches: it can be observed in the results that it takes longer
for the logic optimizations and SAT solvers to simplify/solve the guard verification.
This disadvantage of our refinement approach usually is more than overcame by the
much simpler value verification of our refinement, maybe except for simple verifica-
tions. Based on our experiments, in almost all cases, the guard verification is simpler
than the value verification and the guard verification scales better than the value
verification in terms of bounds and design parameters. From the tables, we can also
observe that using existing refinement, the size of the value verification as well as the
size of the verification problem for DR and Roorda can become smaller due to the
simpler stimulus that uses fewer gates. But in the meantime, it also operates at a less
abstracted level than using our refinement, which turned out to be a more important
factor than sizes when it comes to determining the verification time. From the re-
sults, we can see that both logic optimizations and SAT solvers can utilize the higher
abstraction levels brought by our refinement to accelerate the verification, especially
for GV and DR.
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Table 8.1: The mapping from x-axis’ labels to verification problems
# circuit parameter property bound

0 CAM DW=2, TWIDTH=8 data correctness 18
1 CAM DW=16, TWIDTH=8 data correctness 18
2 CAM DW=32, TWIDTH=8 data correctness 18
3 CAM DW=2, TWIDTH=8 tag uniqueness 2
4 CAM DW=2, TWIDTH=16 tag uniqueness 2
5 CAM DW=2, TWIDTH=32 tag uniqueness 2
6 Scheduler AGE WIDTH=8 2
7 Scheduler AGE WIDTH=16 2
8 Scheduler AGE WIDTH=32 2
9 RBuf data correctness 6
10 RBuf data correctness 8
11 RBuf data correctness 10
12 RBuf data correctness 12
13 RBuf tag uniqueness 6
14 RBuf tag uniqueness 8
15 RBuf tag uniqueness 10
16 RBuf tag uniqueness 12
17 SRM consumer number=2 6
18 SRM consumer number=2 8
19 SRM consumer number=2 10
20 SRM consumer number=2 18
21 SRM consumer number=4 6
22 SRM consumer number=4 8
23 SRM consumer number=4 10
24 FPSub
25 Bypass 11
26 Bypass 15

A number in the format of n.m can be found in Figure 8.9. The verification problem it
refers to is n. The interpretation of m is:

� .0: guard-value encoding.

� .1: guard-value encoding and encX 0, which is explained in Section 8.2.4.

� .2: guard-value encoding and encX symb, which is explained in Section 8.2.4.

� .3: dual-rail encoding.

� .4: Roorda’s encoding of ternary circuits.
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Figure 8.5: GV is faster than DR, Roorda and BMC at proof
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Figure 8.6: GV is faster than DR, Roorda and BMC at finding corner-case bugs
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Figure 8.7: Effectiveness of GV memory abstraction
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Figure 8.8: Effectiveness of GV bit-width reduction
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Figure 8.9: Effectiveness of ternary refinement
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8.2.3 CAM

With the default parameters, CAM has 32 entries and each entry’s tag is 8-bit wide
(TWIDTH=8) and each entry’s data is 2-bit wide (DW = 2). It takes 390 registers and
10870 and gates to implement. The data correctness property is checked in cycle 18. The
uniqueness property is inductive and proved by induction.

Data Correctness

Table 8.2 lists the number of clauses and verification time for various techniques. All
techniques timed out except GV, which only needs 32.6 seconds. The number of clauses
generated by Roorda being much larger than BMC indicates the overhead in encoding the
data abstraction.

Table 8.2: CAM (data correctness): comparison of GV, DR, Roorda and BMC

GV DR Roorda BMC

v cl# time cl# time cl# time cl# time

DW = 2 11585 32.6 53131 TO 276560 TO 172447 TO

Table 8.3 shows the results of applying GV memory abstraction. With GV memory ab-
straction, GV becomes much less sensitive to the increasing DW.

Table 8.3: CAM (data correctness): effective GV memory abstraction

# of and before simp # of and after simp total time
(seconds)

value verif guard verif value verif guard verif

DW = 2 36219 (33975) 183765 (171701) 7129 (0) 0 (0) 32.6 (26.7)
DW = 16 62301 (55563) 318277 (302475) 35540 (0) 0 (0) 335.5 (41.8)
DW = 32 92109 (80235) 472005 (451931) 42425 (0) 0 (0) 1225.0 (60.5)

Results without memory abstraction are outside parentheses while results with memory
abstraction are inside.

Table 8.4 shows that the bit-width reduction halves the verification time of GV. The bit-
width reduction effectively reduces the tag width to 2.
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Table 8.4: CAM (data correctness): effective bit-width reduction

with bit-width reduction without bit-width reduction

v and before logic opt vTime v and before logic opt# vTime

DW = 2 10739 3.5 36219 7.5
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Tag Uniqueness

Table 8.5 lists the number of clauses and verification time for various techniques. They are
compared for increasing TWIDTH. GV easily outperforms the other techniques. In fact,
GV can be done by just logic optimizations even for the largest TWIDTH we experimented
with. The verification takes more time for Roorda than BMC stresses the importance of
how to implement and utilize the data abstraction.

Table 8.5: CAM (tag uniqueness): comparison of GV, DR, Roorda and BMC

GV DR Roorda BMC

v cl# time cl# time cl# time cl# time

TWIDTH = 8 0 13.0 0 25.4 20557 TO 17858 593.69
TWIDTH = 16 0 38.8 0 65.3 35513 TO 29803 1644.3
TWIDTH = 32 0 172.6 125665 TO 65437 TO 53491 TO
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8.2.4 Scheduler

With the default parameters, the scheduler chooses the oldest ready process to execute
from 16 ones. Each process’ age is a 8-bit number. It costs 3214 and gates and 128
registers to implement.

Table 8.6 lists the number of clauses and verification time for various techniques. They are
compared for increasing AGE WIDTH. As we can see, the value verification can be done
using just the logic optimization even for the largest AGE WIDTH. Because of the space
limitation, we will use AW instead of AGE WIDTH in the tables.

Table 8.6: Scheduler: comparison of GV, DR, Roorda and BMC

GV DR Roorda BMC

v cl# time cl# time cl# time cl# time

AW = 8 0 3.6 6355 2.8 14264 131.0 4047 8.5
AW = 16 0 15.6 12734 TO 31207 TO 7973 TO
AW = 32 0 59.7 25586 TO 70510 TO 15866 TO

Recall that for our data abstraction for lt() to work (i.e., not generating spurious CEXs), we
need to refine it by modifying the implementation of < (Section 7.4.1). Here, we introduce
an alternative data abstraction, which is less abstracted but do not require modifying the
implementation of <. Using such data abstraction is what existing refinement approach
would do to refine our original data abstraction. The alternative data abstraction only
uses X for the lower bits of the vector. For example, { #»a : #»a < 101} is abstracted by
{(0,X,X), (1, 0, 0)} in the alternative data abstraction instead of {(0,X,X), (X, 0, 0)}.

We can abstract a process age with Xs when it is not ready. For both data abstractions,
we have a choice between using (〈0, 0〉, . . . , 〈0, 0〉) or (〈0, vagek−1〉, . . . , 〈0, vage0〉) for ab-
stracting a process’ age in this scenario, which are labelled with “encX 0” and “encX symb”
respectively. Recall that #      »vage is a vector of Boolean variables and is assumed to be the
largest age among the entries of the scheduler. The 2 choices are equal if considered from
the state space point of view. Table 8.7 compares the data abstraction using encX 0 and
encX symb. We can see that when encX 0 is used, because of the value verification is too
simple, our data abstraction is only slightly faster than the alternative data abstraction for
the value verification. More importantly, the results show that our data abstraction is more
robust because unlike the alternative data abstraction, less fluctuation in the verification
time is observed for our data abstraction when using encX symb.

1Using the Glucose SAT solver, it takes 1.4 seconds to solve for AGE WIDTH = 32 and 1.1 seconds for
AGE WIDTH = 16 under the configuration of encX symb and alternative data abstraction. Therefore, the
dramatic reduction (from 1326.4 s to 136.5) in the SAT time when the design parameter is increased is
most likely to be due to the specifics of the miniSAT.
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Table 8.7: Scheduler: comparison of the value verification using different combinations of
data abstraction and encX 0 and encX symb

GV
data abst (alt data abst)

encX 0 encX symb
v and opt v and vTime v and opt v and vTime

AW=8 3978(5592) 0(0) 0.2(0.3) 4234(5848) 0(2328) 0.5(6.8)
AW=16 8386(10940) 0(0) 0.6(0.8) 8898(11452) 0(4521) 1.5(1326.4)
AW=32 18178(21776) 0(0) 2.0(2.1) 19202(22800) 0(8819) 5.0 (136.5) 1

Table 8.8 and Table 8.9 compare our refinement with existing refinement approaches that
use the alternative data abstraction instead of modifying the design. When encX 0 is
used, the existing refinement approaches are faster for GV because the value verification
is much simpler than the guard verification in this case. Therefore, the reduction in time
by our refinement for the value verification does not offset the increase in time by our
refinement for the guard verification. When encX symb is used, the value verification
becomes sufficiently more difficult than the guard verification for the existing refinement
approaches which use the alternative data abstraction. Therefore, our refinement turns out
better in this case. Existing refinement works better for DR and Roorda, likely because
existing refinement’s data abstraction uses fewer gates and it leads to smaller verification
problems. When AGE WIDTH≥ 16, it always times out for DR and Roorda no matter
which refinement method is used. Therefore, we did not record the size information.

Table 8.8: Scheduler: refinement comparison, encX 0
with existing ref
(with our ref)

size before opt size after opt oTime time

AW=8
GV

〈22155, 5592〉
(〈23045, 3978〉)

〈0, 0〉
(〈0, 0〉)

〈1.9, 0.3〉
(〈3.6, 0.2〉) 1.9 (3.8)

DR 10784 (8707) 0 (3314) 1.6 (2.0) 1.6 (4.7)
Roorda 11793 (14264) - - 60.3 (131.0)

AW=16
GV

〈43103, 10940〉
(〈50504, 8386〉)

〈0, 0〉
(〈0, 0〉)

〈6.45, 0.8〉
(〈15.31, 0.6〉) 7.3 (15.4)

DR - (-) - (-) - (-) TO (TO)
Roorda - (-) - - TO (TO)

AW=32
GV

〈84854, 21776〉
(〈111336, 18178〉)

〈0, 0〉
(〈0, 0〉)

〈25.2, 2.2〉
(〈57.7, 2.0〉) 27.4 (59.7)

DR - (-) - (-) - (-) TO (TO)
Roorda - (-) - - TO (TO)
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Table 8.9: Scheduler: refinement comparison, encX symb
with existing ref
(with our ref)

size before opt size after opt oTime time

AW=8
GV

〈22381, 5848〉
(〈23285, 4234〉)

〈0, 2328〉
(〈0, 0〉)

〈3.1, 1.0〉
(〈5.6, 0.5〉) 10.0 (6.1)

DR 11056 (8963) 0 (3549) 1.3 (2.0) 1.3 (8.6)
Roorda 11809 (14264) - - 58.9 (108.0)

AW=16
GV

〈43577, 11452〉
(〈50984, 8898〉)

〈0, 4521〉
(〈0, 0〉)

〈14.5, 1.9〉
(〈24.6, 1.6〉) 1538.8 (26.1)

DR - (-) - (-) -(-) TO (TO)
Roorda - (-) - - TO (TO)

AW=32
GV

〈85824, 22800〉
(〈112296, 19202〉)

〈0, 8819〉
(〈0, 0〉)

〈48.1, 4.6〉
(〈151.2, 5.1〉) 200.4 (156.3)

DR - (-) - (-) -(-) TO (TO)
Roorda - (-) - - TO (TO)
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8.2.5 Response Buffer

With the default parameters, RBuff has 17531 and gates and 1423 registers. In the
initial state, any request ID could be unavailable and any table entry could be used. When
verifying RBuf, we write lemmas about controls signals being non-X to simplify the guard
verification. The time used to verify the lemmas is added into the total verification time.

Data Correctness

Table 8.10 lists the number of clauses and the verification time for various techniques.
They are compared for increasing bounds. GV always has smaller value verification than
the others. The verification time for GV scales better than the others. Roorda is faster
than BMC in the table while having more clauses demonstrates the power of the state
space reduction.

Table 8.10: RBuf (data correctness): comparison of GV, DR, Roorda and BMC

data correctness
GV DR Roorda BMC

v cl# time cl# time cl# time cl# time

cycle 6 0 64.7 0 38.7 303058 25.9 167868 39.5
cycle 8 101144 153.5 110752 294.5 401948 612.4 222318 TO
cycle 10 144264 805.8 155191 TO 501009 TO 276768 TO

One may ask whether it is possible to adapt the idea of data abstraction to BMC. This
way, we can get rid of the ternary logic and all the complexities associated with it, such
as the extra guard verification, refinement and etc. In order to best implement the data
abstraction in the Boolean domain for experiments here, for each subset that is created
by partitioning the domain with predicates we choose to represent it with a symbolic
value for every cycle and add constraints for the symbolic value. The constraints are the
characteristic predicate for the subsets. In the RBuf example, the subsets are { #»v : #»v = #»a }
and { #»v : #»v 6= #»a }, where #»a is the arbitrarily picked request ID whose response data will
be checked. To implement the data abstraction with BMC, we represent the subsets with
#»

b
i

and #»c i respectively for cycle i and add constraints that
#»

b
i

= #»a and #»c i 6= #»a for every
cycle upto the bound. In Table 8.11, BMC-DA denotes BMC with the data abstraction. In
this example, the data abstraction is shown to be beneficial though still significantly slower
than GV and DR. However, we believe the improvement in the verification time is likely
due to the special transformation that is done to the design as explained in Section 8.1.3
because in another example (Table 8.21), the data abstraction is a considerable overhead
to BMC and dramatically harms its performance.

In Table 8.12, we implement a memory abstraction that is applicable to all of GV, DR,
Roorda and BMC. This forms a competitive baseline to demonstrate the effectiveness of
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Table 8.11: RBuf (data correctness): adapting the data abstraction to BMC

BMC BMC-DA

v cl# time cl# time

cycle 6 167868 39.5 187158 18.1
cycle 8 222318 TO 247772 446.2
cycle 10 276768 TO 307972 TO

GV memory abstraction that is shown in Table 8.13. GV memory abstraction makes big
differences for deeper bound and larger parameters. In Table 8.13, RBUf’s number of
table entries is increased to 32 from 8. GV memory abstraction increases the complexity
of the guard verification (increased size) because of it introducing more X, but as shown
in Table 8.13 it is less significant than the improvement in the value verification.

Table 8.12: RBuf (data correctness): effective simple memory abstraction

# of and before simp # of and after simp total time
(seconds)

value verif guard verif value verif guard verif

cycle 6 51414 (52028) 117246 (63027) 0 (0) 0 (0) 64.7 (25.7)
cycle 8 84166 (71746) 217740 (100448) 50911 (38171) 0 (0) 153.5 (66.3)
cycle 10 118198 (91464) 337194 (137874) 73555 (48856) 0 (0) 805.8 (131.5)

Results without memory abstraction are outside parentheses while results with memory
abstraction are inside.

Table 8.13: RBuf (data correctness): effective GV memory abstraction

# of and before simp # of and after simp total time
(seconds)

value verif guard verif value verif guard verif

cycle 10 118980 (129292) 185910 (228208) 58384 (0) 0 (0) 360.4 (296.1)
cycle 12 144354 (157292) 234704 (288896) 70924 (0) 0 (0) TO (428.3)

Results without memory abstraction are outside parentheses while results with memory
abstraction are inside.

Table 8.14 compares our refinement with existing ones. It shows that our refinement
benefits all of GV, DR and Roorda except when the bound is shallow and the verification
problem is too simple.

104



Table 8.14: RBuf (data correctness): refinement comparison
with existing ref
(with our ref)

size before opt size after opt oTime time

cycle 6
GV

〈0, 43419〉
(〈117246, 51414〉)

〈0, 26253〉
(〈0, 0〉)

〈0, 17.9〉
(〈34.8, 19.0〉) 23.2 (64.7)

DR 43419 (96667) 26253 (0) 18.2(38.7) 23.6 (38.7)
Roorda 247561 (303058) - - 30.8 (25.9)

cycle 8
GV

〈0, 71631〉
(〈217740, 84166〉)

〈0, 46366〉
(〈0, 50911〉)

〈0, 40.8〉
(〈86.4, 46.5〉) 483.2 (153.5)

DR 71631 (160395) 46366 (56844) 41.6(115.4) 506.0 (294.5)
Roorda 328471 (401948) - - 1505.7 (612.4)

cycle 10
GV

〈0, 100659〉
(〈337194, 118198〉)

〈0, 66351〉
(〈0, 73555〉)

〈0, 85.2〉
(〈198.2, 78.6〉) TO (805.8)

DR 100659 (226427) 66351 (81322) 83.0(212.0) TO (TO)
Roorda 409392 (501009) - - TO (TO)

ID Uniqueness

Table 8.15 lists the number of clauses and verification time for various techniques. They
are compared for increasing bounds. As we can see, the value verification and DR can
be done using just logic optimizations even for the deepest bound we tested. The logic
optimizations for DR takes more time than GV. Roorda outperforms BMC because of the
data abstraction.

Table 8.15: RBuf (ID uniqueness): comparison of GV, DR, Roorda and BMC

STE-GV STE-DR Roorda BMC

v cl# time cl# time cl# time cl# time

cycle 6 0 19.6 0 23.7 169804 235.5 157730 TO
cycle 8 0 46.6 0 68.3 225220 846.4 214476 TO
cycle 10 0 81.5 0 116.3 280796 TO 271222 TO

Table 8.16 shows that the bit-width reduction enabled by GV and data abstraction is
effective and helps the verification time scales better with the bound.
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Table 8.16: RBuf (ID uniqueness): effective bit-width reduction

with bit-width reduction without bit-width reduction

v and before logic opt vTime v and before logic opt vTime

cycle 6 41714 9.1 45648 15.2
cycle 8 59676 15.1 65038 38.4
cycle 10 77640 23.1 84430 67.7
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8.2.6 Shared Resource Manager

With the default parameters, the shared resource manager has 32 distinct resources that
are available to 2 consumers. It takes 19910 ands, 519 registers to implement.

Table 8.17 lists the number of clauses and the verification time for various techniques.
Table 8.18 increases the design parameter that specifies the number of consumers from 2
to 4. Various techniques are compared for increasing bounds. Comparing with the others,
the size reduction by data abstraction and logic optimizations in the value verification is
significant. For DR, time-out happens during the logic optimizations. Thus, we were not
able to provide the number of clauses in the tables for some bounds. Roorda is slower than
BMC even with data abstraction and a smaller size, which demonstrates the difficulties in
correctly using the data abstraction.

Table 8.17: SRM: comparison of GV, DR, Roorda and BMC

2 consumers
GV DR Roorda BMC

v cl# time cl# time cl# time cl# time

cycle 6 0 9.1 0 18.1 144021 29.4 165295 10.0
cycle 8 10021 48.2 22876 316.7 179655 1030.4 212555 360.6
cycle 10 18115 272.2 -2 TO 215300 TO 260473 TO

Table 8.18: SRM: comparison of GV, DR, Roorda and BMC

4 consumers
GV DR Roorda BMC

v cl# time cl# time cl# time cl# time

cycle 6 9705 28.5 20300 95.4 233881 519.2 268930 76.6
cycle 8 17909 148.5 -3 TO 292938 TO 346038 TO
cycle 10 27935 1029.3 -4 TO 351988 TO 422956 TO

Table 8.19 provides the results for using bit-width reduction when the number of consumers
is 2 and 4. It shows that the bit-width reduction enabled by GV and data abstraction is
very effective for verifying SRM and helps the verification time scales better with the
bound.

In order to test GV’s performance when a design has bugs. We introduce a bug which
makes it possible for a consumer to acquire resources even if none is available. This bug
can only occur after every resource is allocated which can happen only after 17 clock

2Simplification time-out, therefore no clauses number after simplification.
4Simplification time-out, therefore no clauses number after simplification.
4Simplification time-out, therefore no clauses number after simplification.
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Table 8.19: SRM: effective bit-width reduction

with bit-width reduction without bit-width reduction

v and before logic opt vTime v and before logic opt vTime

cycle 6 21493 (31335) 1.1 (3.6) 34477 (51607) 4.5 (10.6)
cycle 8 26603 (39921) 7.3 (31.9) 48763 (75513) 37.7 (88.5)
cycle 10 31713 (48507) 56.1 (302.8) 63049 (99419) 253.7 (898.9)

Results with 2 consumers are outside parentheses while results with 4 consumers are
inside.

cycles. Table 8.20 shows that GV can find the bug within 37.9 seconds while all other
techniques time-out. Note that we did not apply logic optimizations for GV or DR because
experiments show that they are usually detrimental for SAT solvers to find bugs.

Table 8.20: SRM: comparison of GV, DR, Roorda and BMC for buggy designs

2 consumers
GV DR Roorda BMC

v cl# time cl# time cl# time cl# time

cycle 18 61322 37.9 102637 TO 153093 TO 182705 TO

For SRM, as in Table 8.11, we also adapted data abstraction to BMC, which harms the
performance in this case.

Table 8.21: SRM: adapting the data abstraction to BMC

2 consumers
BMC BMC-DA

v cl# time cl# time

cycle 6 165295 10.0 223561 28.7
cycle 8 212555 360.6 289221 1404.0
cycle 10 260473 TO 354464 TO
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8.2.7 Floating Point Subtraction

With the default parameters, the floating point subtraction’s mantissa’s width is 512, the
exponent’s width is 9 and the pipeline is 11 stages deep. It takes 54300 ands and 10895
registers to implement.

Table 8.22 lists the number of clauses and the verification time for various techniques. The
property to verify is inductive. Both GV and DR can solve the verification problem purely
by logic optimizations. But it takes less than half time of DR for GV. The number of
clauses for Roorda is more than twice as many as BMC because of the modifications we
did to the design to enable data abstraction described in Section 8.1.5.

Table 8.22: FPSub: comparison of GV, DR, Roorda and BMC

GV DR Roorda BMC

v cl# time cl# time cl# time cl# time

0 68.9 0 162.4 256899 1229.6 96109 271.4

8.2.8 Bypass

With the default parameters, bypass has a 5-stage pipeline and each instruction read and
write 64-bit data using 8-bit address. It takes 120787 and gates and 17774 registers to
implement. Because BMC cannot solve it even for the smallest bound we verify, we apply
the “simple” memory abstraction to all of the techniques. The memory abstraction reduce
the memory of 28 cells to just one cell. With the memory abstraction, it takes 22800 and
gates and 1454 registers to implement.

Table 8.23 lists the number of clauses and the verification time for various techniques. GV
outperforms the others especially as we increase the bound.

Table 8.23: Bypass: comparison of GV, DR, Roorda and BMC

GV DR Roorda BMC

v cl# time cl# time cl# time cl# time

Cycle 11 11109 30.0 20903 37.5 491868 209.0 359579 179.6
Cycle 15 29447 504.7 59807 TO 691760 TO 500111 TO

Table 8.24 provides the results for using bit-width reduction with GV. It clearly reduces
the verification time even though not as much as in other examples.

Shown in Table 8.25, GV memory abstraction simplifies the value verification and makes
bigger difference as the bound increases.
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Table 8.24: Bypass: effective bit-width reduction

with bit-width reduction without bit-width reduction

v and before logic opt vTime v and before logic opt vTime

cycle 11 12723 8.5 18421 10.7
cycle 15 26513 397.1 37099 441.8

Table 8.25: Bypass: effective GV memory abstraction

# of and before simp # of and after simp total time
(seconds)

value verif guard verif value verif guard verif

cycle 11 18421 (24379) 106621 (131609) 5935 (0) 0 (0) 30.0 (20.6)
cycle 15 37099 (48190) 220664 (290852) 29447 (9655) 0 (0) 504.7 (267.6)

Results without memory abstraction are outside parentheses while results with memory
abstraction are inside.

To demonstrate GV’s effectiveness for verifying designs with bugs. We insert a bug that
results in the table not updating the number to add correctly. The bug occurs after 12
cycles. Again, we disabled logic optimizations for GV and DR. Results can be found in
Table 8.26. GV outperforms the others in finding bugs in the bypass design in orders of
magnitudes. This experiment also shows that GV memory abstraction also benefits bug
hunting in the bypass.

Table 8.26: Bypass: comparison of GV, DR, Roorda and BMC for the buggy bypass

GV GV+mem abst DR Roorda BMC

v cl# time v cl# time cl# time cl# time cl# time

cycle 15 52236 0.25 67634 0.06 160383 44.4 691052 14.9 499845 1.8

Table 8.27 shows that our refinement approach benefits both of GV and DR for the bypass.
It is not helpful for Roorda possibly because the performance of Roorda technique is more
sensitive to the size of the verification problem.
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Table 8.27: Bypass: refinement comparison
with existing ref
(with our ref)

size before opt size after opt oTime time

GV
〈96140, 18025〉
(〈106621, 18421〉)

〈0, 11244〉
(〈0, 5935〉)

〈17.3, 20.0〉
(〈18.6, 9.0〉) 67.9 (30.0)

DR 39470 (42018) 14426 (11087) 36.1(28.6) 57.8 (37.5)
Roorda 470422 (491868) - - 153.7 (209.0)
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Chapter 9

Conclusion

In this thesis, we presented data abstraction and memory abstraction techniques that
are based on ternary abstraction and only made possible by the guard-value encoding.
Our data abstraction needs predicates to abstract states similar to predicate abstraction.
But there are some key differences which make our data abstraction more attractive and
practical to use for hardware verification. In our data abstraction, the predicates we use
only partition the state space for a small number of selected signals while the other signals’
state space remains the same. However, predicate abstraction uses a set of predicates
to partition the entire state space. It is easier to come up with a set of predicates that
captures enough information about the states to avoid spurious CEX for a subset of signals
than for all of the signals. Besides, in predicate abstraction, for each cycle, to compute the
reachable abstract states, predicate abstraction has to solve satisfiability problems, which
could be expensive.

Besides data abstraction and memory abstraction, we presented distinctive refinement ap-
proaches for ternary abstraction that increase the precision of a ternary transition system
by modifying the (unrolled) Boolean transition function instead of substituting X with fresh
Boolean variables in the ternary stimulus and initial states. Existing approaches, which
substitute variables, tend to significantly degrade the effectiveness of the ternary abstrac-
tion. We formalized each technique, presented theories, provided guidelines or templates
for how to use it effectively and presented use cases that can be adapted for a wide range
of designs and properties to verify. Our data abstraction and memory abstraction produce
great synergy with off-the-shelve logic optimizations, i.e., applying logic simplifications to
the AIGs before translating to CNF formulas greatly improves the time spent in SAT solv-
ing. We also showed how data abstraction can sometimes enable bit-width reduction that
reduces a vector of signals to just 1 bit.

We demonstrated the effectiveness of data abstraction, the SAT-based implementation
of STE using guard-value encoding and logic optimization, the guard-value memory ab-
straction and our refinement approach by experimenting with them on 6 complex designs
ranging from a buffer design that is needed for processing traffic from real-world bus pro-
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tocols to a synthetic design based on a superscalar microprocessor’s bypass path. In the
results, we usually observed at least 2× and often 10× improvement for each of data ab-
straction and memory abstraction and more importantly, they can improve the scalability
of the BMC with regard to the time bound as well as design parameters. It was also
demonstrated that our value verification not only has smaller state space but also much
smaller size in AIG representation than the corresponding Boolean verification. We also
observed that our techniques work equally well for correct designs and designs with bugs.
As for the refinement methods, it was observed that ours are better than the existing
ones most of the time. For designs where bit-width reduction is possible because of our
data abstraction, we observed that it consistently improved the verification time upto 4×.
These results back up our theory of that our data abstraction and memory abstraction can
significantly reduce the input state space and memory state space respectively in the value
verification. The dramatic reduction in overall verification time is also owed to the fact
that the reduction in the states space can be recognized by the logic optimizations to sim-
plify the verification problem making it much smaller than BMC. Recall that comparing
with other encodings, the guard-value encoding does not use the least number of Boolean
gates to encode a ternary circuit. As a result, the size of the guard verification could be
disconcerting on the surface, but the results showed that the guard verification problem
is filled with logic redundancy because logic optimizations reduced it to a fraction of its
original size and often even solved it directly. The improvement in overall verification time
clearly tells that the cost of guard verification is not meaningful for complex designs and
is more than offset by the time saved in value verification.

As future work, we plan to improve and extend our work. Improvement will include
enhancing logic optimizations that we use to simplify verification problems generated by our
abstraction techniques, and the automation of data abstraction, memory abstraction and
refinement. Our logic optimizations are off-the-shelve and we have put little effort to tailor
them for our need. Therefore, it is promising to study how to use the existing optimization
algorithms more effectively or even creating new logic optimization algorithms that can
better take advantage of the optimization opportunities provided by our data abstraction
and memory abstraction. Automating the these techniques is important to make them
accessible to more users. Extending our work includes extending data abstraction to handle
more general set of predicates and extending our techniques to IC3 ([9, 10]). Extending to
IC3 is likely to be not straightforward. IC3 maintains a trace of set of states (F0, F1, . . . , Fk),
where Fi is an over-approximation of the states reachable within i steps. To use our
techniques, Fi would be abstracted with F̂i and represented as a vector of symbolic ternary
values. As part of the algorithm of IC3, it is needed to check whether F̂i is inductive,
which poses challenges because of the nested quantifiers involved when F̂i is represented as
a vector of symbolic ternary values: checking whether F̂i is inductive is to check that for
any state generated by T̂r(F̂i, Σ̂I), where Σ̂I is a stimulus that assigns inputs to symbolic
values, there exists a state generated by F̂i abstracting it.
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speeding up sat. In International Conference on Theory and Applications of Satisfia-
bility Testing, pages 272–286. Springer, 2007.
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Appendix A

Memory Abstraction Implementation
for Benchmark Designs

A.1 CAM

1

2 logic [DWIDTH -1:0] cam_data [DEPTH -1:0]; // data array

3 generate

4 for (I =0; I<DEPTH; I++) begin

5 always_ff @(posedge clk)

6 if (rst)

7 cam_data[I] <= ’0;

8 else if (wr_to_del[I] || wr_update[I] || wr_avail[I])

9 cam_data[I] <= wdata;

10 end

11 endgenerate

Listing A.1: Without GV memory abstraction

1

2 generate

3 for (I =0; I<DEPTH; I++) begin

4 always_ff @(posedge clk) begin

5 if (rst)

6 cam_data[I] <= ’0;

7 else if (cared_entry[I]) begin

8 if (wr_to_del[I] || wr_update[I] || wr_avail[I])

9 cam_data[I] <= wdata;

10 end

11 else if (( wr_to_del | wr_update | wr_avail) &

12 cared_entry )
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13 cam_data[I] <= wdata;

14 end

15 end

16 endgenerate

Listing A.2: With GV memory abstraction

A.2 RBuf

1 // abstract this array

2 logic [2** ID_WIDTH -1:0] req_id_avail;

3 generate

4 for (I=0; I<2** ID_WIDTH; I++)

5 always_ff @(posedge clk)

6 if (insert && req_id == I)

7 req_id_avail[I] <= 1’b0;

8 else if (resp_last && resp_id == I)

9 req_id_avail[I] <= 1’b1;

10 endgenerate

Listing A.3: Without Boolean memory abstraction

1 logic verif_id_avail;

2 // rnd_req_id_avail is assigned fresh Boolean variables

3 // in the stimulus in every cycle

4 input [2** ID_WIDTH -1:0] rnd_req_id_avail;

5 // init_req_id_avail is assigned fresh Boolean variables

6 // in the stimulus in every cycle

7 input init_req_id_avail;

8 // verif_id is the arbitrarily picked ID to verify

9 logic [ID_WIDTH -1:0] verif_id;

10 always_ff @(posedge clk)

11 if (rst)

12 verif_id_avail <= init_req_id_avail;

13 else if (insert && req_id == I && I == verif_id)

14 verif_id_avail <= 1’b0;

15 else if (resp_last && resp_id == I && I == verif_id)

16 verif_id_avail <= 1’b1;

17

18 generate

19 for (I=0; I<2** ID_WIDTH; I++) begin

20 assign req_id_avail[I] = I == verif_id ? verif_id_avail :

21 rnd_req_id_avail[I];

22 end
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23 endgenerate

Listing A.4: With Boolean memory abstraction

1 // abstract this array

2 logic [DATA_WIDTH -1:0] tbl_data [TBL_SIZE -1:0];

3 generate

4 for (I=0; I<TBL_SIZE; I++) begin

5 always_ff @(posedge clk)

6 if (rst)

7 tbl_data[I] <= ’0;

8 else

9 if (resp_per_entry[I])

10 tbl_data[I] <= {resp_data ,

11 tbl_data[I][DATA_WIDTH -1:RESP_DATA_WIDTH]};

12 end

13 endgenerate

Listing A.5: Without GV memory abstraction

1 generate

2 for (I=0; I<TBL_SIZE; I++) begin

3 always_ff @(posedge clk)

4 if (rst)

5 tbl_data[I] <= ’0;

6 else if (cared_entry[I]) begin

7 if (resp_per_entry[I])

8 tbl_data[I] <= {resp_data ,

9 tbl_data[I][DATA_WIDTH -1:RESP_DATA_WIDTH]};

10 end

11 else if (cared_entry & resp_per_entry)

12 tbl_data[I] <= {resp_data ,

13 tbl_data[I][DATA_WIDTH -1:RESP_DATA_WIDTH]};

14 endgenerate

Listing A.6: With GV memory abstraction

A.3 Bypass

1 mem_dp #(. data_width (DATA_WIDTH),

2 .addr_width (ADDR_WIDTH ))

3 u_mem (.clock (clk),

4 .wr_en (mem_wr_en),

5 .wr_address (wr_mem_address),

6 .rd_address (rd_mem_address),
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7 .i_data (o_stage_val [NUM_STAGES -1]),

8 .o_data (mem_o_data ));

9 // dual -port memory

10 module mem_dp (/* AUTOARG */

11 // Outputs

12 o_data ,

13 // Inputs

14 clock , wr_en , wr_address , rd_address , i_data

15 );

16 parameter data_width = 8;

17 parameter addr_width = 4;

18 input clock;

19 input wr_en;

20 input [addr_width -1:0] wr_address;

21 input [addr_width -1:0] rd_address;

22 input [data_width -1:0] i_data;

23 output [data_width -1:0] o_data;

24 logic [data_width -1:0] mem [2** addr_width -1:0];

25 logic [data_width -1:0] mem_output;

26

27 always_ff @(posedge clock) begin

28 if (wr_en)

29 mem[ wr_address ] <= i_data ;

30 mem_output <= rd_address == wr_address && wr_en? i_data :

31 mem[rd_address];

32 end

33

34 assign o_data = mem_output;

35

36

37 endmodule // mem

Listing A.7: Without Boolean memory abstraction

1 reg [DATA_WIDTH -1:0] mem_data;

2 // match_idx is the arbitrarily picked address to verify

3 logic [ADDR_WIDTH -1:0] match_idx;

4 // rnd_mem_output is assigned fresh Boolean variables

5 // in the stimulus in every cycle

6 input [DATA_WIDTH -1:0] rnd_mem_output;

7

8 // memory write

9 always_ff @(posedge clk) begin

10 if (reset)

11 mem_data <= init_data;

12 else if (mem_wr_en && (wr_mem_address == match_idx ))
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13 mem_data <= o_stage_val [NUM_STAGES -1];

14 end

15

16 // memory read

17 always_ff @(posedge clk) begin

18 if (mem_wr_en && (wr_mem_address == rd_mem_address) &&

19 (rd_mem_address == match_idx ))

20 mem_o_data <= o_stage_val [NUM_STAGES -1];

21 else if (rd_mem_address == match_idx)

22 mem_o_data <= mem_data;

23 else

24 mem_o_data <= rnd_mem_output;

25

26 end

Listing A.8: With Boolean memory abstraction

1 // data array to abstract

2 logic [DATA_WIDTH -1:0] val_incr [NUM_STAGES -1:0];

3 generate

4 for (I=0; I<= NUM_STAGES -1; I++) begin

5 always_ff @(posedge clk) begin

6 if (reset)

7 val_incr[I] <= 0;

8 else if (insert && valid_empty_entry[I])

9 val_incr[I] <= init_val_incr;

10 else if (incr[I])

11 val_incr[I] <= val_incr[I] + incr_based_on_tag[I];

12 else if (reset_incr[I])

13 val_incr[I] <= incr_based_on_tag[I];

14 end

15 end

16 endgenerate

Listing A.9: Without GV memory abstraction

1 generate

2 for (I=0; I<= NUM_STAGES -1; I++) begin

3 always_ff @(posedge clk) begin

4 if (reset)

5 val_incr[I] <= ’0;

6 else if (cared_entry[I]) begin

7 if (insert && valid_empty_entry[I])

8 val_incr[I] <= init_val_incr;

9 else if (incr[I])

10 val_incr[I] <= val_incr[I] + incr_based_on_tag[I];

11 else if (reset_incr[I])
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12 val_incr[I] <= incr_based_on_tag[I];

13 end

14 else if ((|( cared_entry & valid_empty_entry )) &&

15 insert)

16 val_incr[I] <= init_val_incr;

17 else if (cared_entry & incr)

18 val_incr[I] <= val_incr[I] +

19 incr_lkup_tbl[match_idx[2:0]];

20 else if (cared_entry & reset_incr)

21 val_incr[I] <= incr_lkup_tbl[match_idx[2:0]];

22 end

23

24 end

25 endgenerate

Listing A.10: With GV memory abstraction
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