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Abstract. Specht’s Theorem states that two matrices A and B in Mn(C) are uni-
tarily equivalent if and only if tr(w(A,A∗)) = tr(w(B,B∗)) for all words w(x, y) in
two non-commuting variables x and y. In this article we examine to what extent
this trace condition characterises approximate unitary equivalence in uniformly hy-
perfinite (UHF) C∗-algebras. In particular, we show that given two elements a, b of
the universal UHF-algebra Q which generate C∗-algebras satisfying the UCT, they
are approximately unitarily equivalent if and only if τ(w(a, a∗)) = τ(w(b, b∗)) for all
words w(x, y) in two non-commuting variables (where τ denotes the unique tracial
state on Q), while there exist two elements a, b in the UHF-algebra M2∞ which
fail to be approximately unitarily equivalent despite the fact that they satisfy the
trace condition. We also examine a consequence of these results for ampliations of
matrices.

1. Introduction

A standard and important strategy in mathematics is to classify the elements of a
given set up to some form of equivalence. For elements A and B of the algebra Mn(C)
of n×n complex matrices, the two most important forms of equivalence are similarity:
B = S−1AS for some invertible matrix S ∈ Mn(C), and unitary equivalence: B =
U∗AU where U ∈ Mn(C) is unitary. As is well-known, the Jordan form provides a
complete invariant for the similarity orbit S(A) := {S−1AS : S invertible in Mn(C)}
of A ∈Mn(C). For unitary equivalence, the invariant is somewhat more delicate, and
is due to Specht [30]. In particular, he shows that two matrices A and B in Mn(C) are
unitarily equivalent if and only if tr(w(A,A∗)) = tr(w(B,B∗)) for all words w(x, y) in
two non-commuting variables x and y. A result of Pearcy [20] shows that in fact one
need only consider words of length at most 2n2. A nice and complete (up to 1990)
survey of Specht-Pearcy trace invariants can be found in [27].

Our goal in the present article is to examine to what extent Specht’s trace condition
above characterises approximate unitary equivalence in C∗-algebras. Because Specht’s
trace condition requires a family of traces that separates projections, we shall focus
our attention on uniformly hyperfinite C∗-algebras (UHF-algebras), or very closely
related approximately finite C∗-algebras (AF-algebras). Recall that the universal
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UHF-algebra Q is the UHF-algebra whose supernatural number is divisible by any
positive integer – or equivalently, it is the UHF-algebra whose K0-group is divisible.
As we shall see below (Theorem 3.2), in the case of the universal UHF-algebraQ, given
two elements a, b ∈ Q, if a and b satisfy Specht’s trace condition and C∗(a) satisfies
the UCT, then a is approximately unitarily equivalent to b. We shall also see that this
fails for more general UHF-algebras (even under the assumption that both C∗(a) and
C∗(b) satisfy the UCT), and in particular for the CAR algebra M2∞ (Theorem 3.7).

The idea of characterising approximate unitary equivalence of single elements in
various C∗-algebras is not new. Of course, in B(H), this problem has a long history, of
which we cite only [13, 34], and characterising the (necessarily closed) unitary orbits
of normal elements of the Calkin algebra B(H)/K(H) is the content of the celebrated
Brown-Douglas-Fillmore Theorem [6]. Passing to approximate unitary equivalence in
subalgebras of B(H), Sherman [28] obtained a description of the norm- and strong∗-
closures of a normal operator in a von Neumann algebra, and Skoufranis [29] has
characterised approximate unitary equivalence classes of normal elements of unital,
simple, purely infinite C∗-algebras whose K1-groups are trivial. We emphasise that
while many of these results focus on approximate unitary equivalence of normal ele-
ments of the algebra under consideration, our results will apply to general elements of
Q. Having said this, it is worth noting that there is a vast and relevant literature deal-
ing with approximate unitary equivalence of ∗-homomorphisms between C∗-algebras,
led in large part by H. Lin (see [17] and its references).

In Section 4 we establish a relation, which we refer to as the approximate absolutely
value condition (AAVC), which coincides with Specht’s trace condition for UHF-
algebras, but which may be formulated in any C∗-algebra, regardless of the presence
or absence of a trace. Theorem 4.7 below shows that two bounded linear operators
A and B acting on a complex, separable Hilbert space are approximately unitarily
equivalent if and only if they satisfy the AAVC.

In Section 5, we produce an interesting consequence of our work on UHF-algebras
by demonstrating the existence of positive integers n and k, and two n× n complex
matrices A and B such that the distance between the unitary orbits of A(k) := Ik⊗A
(where Ik ∈Mk(C) is the identity matrix) and B(k) in Mnk(C) is strictly smaller than
the distance between the unitary orbits of A and B in Mn(C).

Let us now establish some definitions and notations which will be used throughout
the remainder of the paper.

Given a unital C∗-algebra A, we shall denote by U(A) the unitary group of A; that
is, U(A) = {u ∈ A : u∗u = 1 = uu∗}. If a ∈ A, the unitary orbit of a is the set
U(a) := {u∗au : u ∈ U(A)}. When A is finite-dimensional, U(A) is compact and
U(a) is necessarily closed. In general, however, U(a) is not closed. By Asa we denote
the set of all hermitian elements of A.

We denote by W2 the set of all words in two non-commuting variables x and y.
There is a natural action ofW2 on A given by [w(x, y)]•a := w(a, a∗) for all w ∈ W2,
a ∈ A. This action naturally extends to an action of the complex algebra P2 of all
polynomials in two non-commuting variables spanned by W2 on A.
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We shall assume that the reader is familiar with the notion of a UHF-algebra A as
an inductive limit of full matrix algebras Mnk

(C), k ≥ 1 and that UHF-algebras are
classified up to isometric ∗-isomorphism by their supernatural numbers s(A); equiva-
lently by their ordered K0-group K0(A). We also assume that the reader is familiar
with approximately finite, or AF-algebras as inductive limits of finite-dimensional
C∗-algebras and their classification [11] in terms of K-theory. The reader may refer
to [10] for more details if required. We shall also assume that the reader is familiar
with KK- and KL-theory as found in [17, 21].

Specht’s Theorem mentioned above says that given two matrices A and B in Mn(C),
A is unitarily equivalent to B if and only if

tr(w(A,A∗)) = tr(w(B,B∗)) for all w ∈ W2. (∗)
We shall refer to equation (∗) and its analogue for a pair of elements a, b in a general

C∗-algebra A possessing a unique tracial state τ as Specht’s trace condition.
Let us also remind the reader that if A is a C∗-algebra and τ is a tracial state on A,

then one can always extend τ to a tracial state τn on Mn(A) by setting τn := τ ⊗ tr,
i.e., τn([ai,j]) = 1

n

∑n
i=1 τ(ai,i).

We require the following definition.

Definition 1.1. Let A and B be two C∗-algebras and ϕ : A → B be a linear map.
The n-fold ampliation

ϕ(n) := idMn ⊗ϕ : Mn(A) → Mn(B)
[ai,j] 7→ [ϕ(ai,j)]

is also linear. It is well-known and easy to verify that if ϕ is a ∗-homomorphism, then
ϕ(n) is also a ∗-homomorphism.

2. Preliminary results

The principal result of this section is Theorem 2.5, which will be the key to proving
our main theorems in Section 3. Recall that given an algebra A and an invertible
element s ∈ A, we denote by ads : A → A the continuous linear map ads(a) = s−1as.

Definition 2.1. Let A be a separable, unital C∗-algebra and a, b ∈ A. We say that
a and b are

(a) unitarily equivalent, written a ' b, if adu(a) = b for some unitary u ∈ A,
and that they are

(b) approximately unitarily equivalent, in symbols a 'a b, if there is a se-
quence (un)∞n=1 of unitaries in A such that lim

n→∞
adun(a) = b.

(c) If B is another unital C∗-algebra and ϕ and ψ are two unital ∗-homorphisms
from B to A, we say that ϕ and ψ are approximately unitarily equiv-
alent if there exists a sequence (un)∞n=1 of unitaries in A such that ψ(b) =
lim
n→∞

adun(ϕ(b)) for all b ∈ B.

It is routine to verify that both unitary equivalence and approximate unitary equiv-
alance are indeed equivalence relations on A, and that two elements a, b ∈ A satisfy
a 'a b if and only if U(a) = U(b). When A is finite-dimensional, the unitary group
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of A is compact, in which case unitary equivalence and approximate unitary equiv-
alence coincide. That these concepts are in general different is demonstrated by the
following example, the existence of which is surely known to the experts in the field.
Since it is difficult to trace the origin or a reference for this example, we provide the
construction for the benefit of the reader.

Example 2.2. We shall produce two positive elements a and b of a UHF C∗-algebra
which are approximately unitarily equivalent but not unitarily equivalent.

Let (mi)i≥1 be a sequence of integers each greater than or equal to three, and define
kn :=

∏n
i=1mi, n ≥ 1. Consider the UHF C∗-algebra

A = ∪
n≥1

Mkn(C),

where Mkn(C) is identified with the subalgebra Mkn(C)⊗ Imn+1 of Mkn+1(C) for each

n ≥ 1. Let {e(n)i,j : 1 ≤ i, j ≤ kn} denote the standard matrix units of Mkn(C), and
for n ≥ 2, set

q
(n)
1 = e

(n)
kn−1,kn−1, q

(n)
2 = e

(n)
kn−2,kn−2.

Then q
(n)
1 , q

(n)
2 are projections in A – unitarily equivalent to each other via a unitary

in Mkn(C) – and

τ(q
(n)
i ) =

1

kn
, i = 1, 2.

Next, define

a =
∑
n≥2

1

2n
q
(n)
1 , b =

∑
n≥2

1

2n
q
(n)
2 .

Then a, b are positive elements in A with σ(a) = σ(b) = { 1
2n

: 2 ≤ n}∪{0}. Moreover,

q
(n)
1 (resp. q

(n)
2 ) is the spectral projection for a (resp. for b) corresponding to the

measurable set En := { 1
2n
}.

To see that a and b are approximately unitarily equivalent, we set, for each N ≥ 2,

aN =
∑N

n=2
1
2n
q
(n)
1 and bN =

∑N
n=2

1
2n
q
(n)
2 . Since tr(q

(n)
1 ) = tr(q

(n)
2 ) for all n ≥ 2, we see

that – viewing aN and bN as elements of MkN (C) – they are selfadjoint, have the same
spectrum, and each of the eigenvalues is repeated with the same multiplicity. As such,
they are unitarily equivalent in MkN (C) via a unitary element, say u∗NaNuN = bN .
It is routine to verify that a = limN→∞ aN and similarly that b = limN→∞ bN . A
standard application of the triangle inequality

‖b− u∗NauN‖ ≤ ‖b− bN‖+ ‖bN − u∗NaNuN‖+ ‖u∗N(aN − a)uN‖
then shows that a 'a b in A.

We claim that a and b are not unitarily equivalent in A. Otherwise, there exists
a unitary u ∈ U(A), such that u∗au = b. By the continuous functional calculus for
normal elements in A, it is then easy to show that

u∗q
(n)
1 u = q

(n)
2 , ∀n ∈ N.

Since u ∈ A, there exists N ∈ N, such that

dist(u,MkN (C)) <
1

2
.
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Choose such a t = [ti,j] ∈ MkN (C) ⊆ A for which ‖u − t‖ < 1
2
. As noted above, in

MkN+1
(C) ⊆ A, we identify t with [ti,j ⊗ 1mN+1

].

Now q
(N+1)
1 u = uq

(N+1)
2 , and so

1 = ‖uq(N+1)
2 ‖ = ‖(uq(N+1)

2 )q
(N+1)
2 ‖ = ‖(q(N+1)

1 u)q
(N+1)
2 ‖.

On the other hand, a simple computation reveals that

q
(N+1)
1 [ti,j ⊗ ImN+1

]q
(N+1)
2 = 0.

But then
1

2
> ‖u− t‖ ≥ ‖q(N+1)

1 (u− [ti,j ⊗ ImN+1
])q

(N+1)
2 ‖ ≥ 1− 0 = 1,

an obvious contradiction. Thus a and b are not unitarily equivalent.

Given a tracial state τ on a C∗-algebra A, a ∈ A and u ∈ U(A), we see that
τ(u∗au) = τ((au)u∗) = τ(a), so that τ is constant on unitary orbits. In fact, by
continuity, τ is constant on closures of unitary orbits. From this observation, we
obtain the following Proposition.

Proposition 2.3. Let A be a unital C∗-algebra, a, b ∈ A, and τ be a tracial state on
A. If a 'a b, then for each word w ∈ W2, we have that τ(w(a, a∗)) = τ(w(b, b∗)).

Proof. Bearing in mind the statement preceding this Proposition, we see that it
suffices to prove that if a 'a b, and if w ∈ W2, then w(a, a∗) 'a w(b, b∗). This is a
relatively simple consequence of the continuity of words as functions on A×A.

Indeed, fix w ∈ W2, and choose a sequence (un)∞n=1 ∈ U(A) such that
b = limn→∞ adun(a). As w defines a continuous function on A × A, and as b∗ =
limn→∞ adun(a∗), we see that

w(b, b∗) = lim
n→∞

w(u∗naun, u
∗
na
∗un) = lim

n→∞
u∗nw(a, a∗)un.

In other words, w(a, a∗) 'a w(b, b∗), completing the proof.

In light of the above Proposition, the best one might hope for in trying to generalise
Specht’s Theorem to the C∗-algebra setting would be to replace “unitary equivalence”
by “approximate unitary equivalence”. That is, the most straightforward conjecture
might be that the converse of Proposition 2.3 holds. As the next example shows,
however, even when the ambient C∗-algebra is simple, unital and admits a unique,
faithful tracial state τ , this generalisation of Specht’s Theorem may fail.

Example 2.4. As shown in [21, p24], there exists a simple, unital AF algebra A
with unique faithful tracial state τ , and a pair of projections p, q in A, such that
τ(p) = τ(q), and yet p and q are not unitarily equivalent. Observe that for each word
w,

τ(w(p, p∗)) = τ(p) = τ(q) = τ(w(q, q∗)).

On the other hand, it is well-known that two projections in a C∗-algebra are approx-
imately unitarily equivalent if and only if they are unitarily equivalent. Thus p and
q are not approximately unitarily equivalent either.
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The problem highlighted by the above example is that in many (simple, unital)
C∗-algebras, the tracial states (even if there happens to be only one and it is faithful)
need not distinguish inequivalent projections. Without this, a direct generalisation
of Specht’s Theorem is impossible. As we shall now see, however, Specht’s trace
condition on two elements a and b of a C∗-algebra A with a faithful tracial state is
sufficient to show that a and b are algebraically equivalent. (Recall that two elements
a and b of a C∗-algebra A are said to be algebraically equivalent if there exists a
∗-isomorphism Φ : C∗(a)→ C∗(b) satisfying Φ(a) = b.)

Theorem 2.5. Let A be a unital C∗-algebra with a faithful tracial state τ , and a, b ∈
A. Assume that for each two-variable word w ∈ W2, τ(w(a, a∗)) = τ(w(b, b∗)). For
each polynomial p ∈ P2 in two non-commuting variables, define Φ(p(a, a∗)) = p(b, b∗).
The following conclusions hold.

(a) ‖p(a, a∗)‖ = ‖p(b, b∗)‖ for all polynomials p ∈ P2.
(b) Φ is well-defined and extends in a unique way to an isomorphism from C∗(a)

onto C∗(b) which implements the algebraic equivalence of a and b.
(c) σ(a) = σ(b).
(d) If 1 ≤ k ∈ N and [ai,j] ∈Mk(C

∗(a)), then

τk([ai,j]) = τk(Φ
(k)([ai,j])).

(e) Suppose furthermore that a and b are normal and denote X := σ(a) = σ(b).
If F ∈Mk(C(X)) then

τk(ϕ
(k)(F )) = τk(ψ

(k)(F )),

where ϕ, ψ : C(X) → A are defined via ϕ(f) := f(a) and ψ(f) = f(b) for all
f ∈ C(X).

Proof. (a) Firstly, consider the case where a, b are normal elements of A. Suppose
that there exists λ ∈ σ(b) \ σ(a).

Let Y = σ(a) ∪ σ(b), and note that Y is a compact set of C. As λ /∈ σ(a), by
Urysohn’s Lemma, there exists f ∈ C(Y ), such that

f(µ) = 0, ∀µ ∈ σ(a)

and
f(λ) = 1, f(Y ) ⊂ [0, 1].

By the continuous functional calculus, f(a) = 0, while f(b) is normal with

1 ∈ σ(f(b)) = f(σ(b)) ⊂ [0, 1].

In particular, f(b) is nonzero positive element. Since τ is linear, the hypothesis that
τ(w(a, a∗)) = τ(w(b, b∗)) for all w ∈ W2 implies that τ(p(a, a∗)) = τ(p(b, b∗)) for all
p ∈ P2. Since τ is continuous on A, it follows that

τ(f(a)) = τ(f(b)).

On the other hand, clearly τ(f(a)) = τ(0) = 0, while the fact that τ is faithful and
b is a non-zero positive element implies that τ(f(b)) > 0, a contradiction. It follows
that σ(b) ⊆ σ(a). By symmetry,

σ(a) = σ(b).
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Next, given a general pair a, b ∈ A with τ(w(a, a∗)) = τ(w(b, b∗)) for each word
w ∈ W2, fix an element p ∈ P2 and define

x = p(a, a∗)∗p(a, a∗) y = p(b, b∗)∗p(b, b∗).

It follows that x and y are positive elements of A, and for each word w ∈ W2,

τ(w(x, x∗)) = τ(w(y, y∗)).

By the above argument, σ(x) = σ(y), from which it follows that ‖x‖ = ‖y‖. From
the C∗-equation we deduce that

‖p(a, a∗)‖ = ‖p(b, b∗)‖,
as required.

(b) Suppose that p(a, a∗) = q(a, a∗). Then

Φ(p(a, a∗))− Φ(q(a, a∗)) = p(b, b∗)− q(b, b∗) = (p− q)(b, b∗).
Observe that

(p− q)(a, a∗) = 0,

and
‖(p− q)(a, a∗)‖ = ‖(p− q)(b, b∗)‖,

whence
(p− q)(b, b∗) = 0.

Hence
Φ(p(a, a∗)) = Φ(q(a, a∗)).

Thus, Φ is well-defined and isometric, and as such, it extends in a unique way to an
isomorphism from C∗(a) onto C∗(b). That Φ(a) = b is clear.

(c) Note that Φ is a unital isomorphism, and unital isomorphisms always preserve
spectrum.

(d) Given [ai,j] in Mk(C
∗(a)),

τk([ai,j]) =
k∑
i=1

τ(ai,i) =
k∑
i=1

τ(Φ(ai,i)) = τk(Φ
(k)([ai,j])).

(e) Let F = [Fi,j] ∈Mk(C(X)). Then

τk(ϕ
(k)(F )) =

k∑
i=1

τ(ϕ(Fi,i)) =
k∑
i=1

τ(ψ(Fi,i)) = τk(ψ
(k)(F )).

The above Theorem yields the following mild improvement of a result of Schaf-
hauser’s [25, Corollary 6.6]. In his case, he required σ(a) = σ(b) and τ(f(a)) =
τ(f(b)) for all f ∈ C(σ(a)). These conditions follow automatically from our weaker
assumption. The hypothesis that τ is faithful is also automatic.

We recall that an abelian group (G,+) is said to be divisible if for each n ∈ N,
G = nG; i.e. given g ∈ G, there exists h ∈ G such that g = h+ h+ · · ·+ h (n times).
In the case of UHF-algebras A, K0(A) is divisible if and only if A = Q, the universal
UHF-algebra.
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Corollary 2.6. Suppose that B is a simple, unital AF-algebra with a unique trace
τ and divisible K0-group. Two normal operators a and b in B are approximately
unitarily equivalent if and only if τ(w(a, a∗)) = τ(w(b, b∗)) for all w ∈ W2, and
for every compact, open set U ⊂ σ(a), the spectral projections χU(a) and χU(b) are
unitarily equivalent.

Proof. Since B is a simple unital AF-algebra with a unique trace τ , B is both nuclear
and has stable rank one. Thus τ is faithful by [19, Theorem 5].

By Theorem 2.5, σ(a) = σ(b) and τ(f(a)) = τ(f(b)) for all f ∈ C(σ(a)). The
remainder of the proof therefore reduces to that of Schafhauser’s.

Example 2.4 shows that even in a relatively nice C∗-algebra (i.e. a simple, uni-
tal AF-algebra with a unique trace), we cannot expect Specht’s trace condition to
characterise approximate unitary equivalence, even for normal elements. If we turn
our attention to UHF C∗-algebras, however, there is still some hope. In particular,
if A is a UHF C∗-algebra with unique tracial state τ , then two projections p and q
in A are known to be unitarily equivalent in A if and only if τ(p) = τ(q). Thus,
in Corollary 2.6 above, Specht’s trace condition implies that τ(χU(a)) = τ(χU(b)),
whence χU(a) ' χU(b) for all compact, open subsets U ⊆ σ(a).

In the UHF-algebra setting, when dealing with normal elements, it turns out that
the divisibility of the K0-group is not essential, as we shall now see.

Proposition 2.7. Let A be a UHF-algebra. Suppose that m,n,∈ A, and that m is
normal. Then m 'a n if and only if τ(w(m,m∗)) = τ(w(n, n∗)) for all w ∈ W2.

Proof. That Specht’s trace condition is necessary follows from Proposition 2.3.
As for its sufficiency, by Theorem 2.5 (b), n is normal and σ(m) = σ(n). Let

X := σ(m). Observe that by Corollary 7.5.4 of [15], K0(C(X)) and K1(C(X)) are
free abelian groups. We may therefore apply Theorem 23.1.1 of [3] (the Universal
Coefficient Theorem) to conclude that (up to isomorphism),

KK∗(C(X),A) = Hom(K∗(C(X)), K∗(A)).

Note, however that since A is a UHF-algebra, K1(A) = 0 [23], and thus (up to
isomorphism)

KK(C(X),A) = Hom(K0(C(X)), K0(A)).

Define two maps ϕ and ψ from C(X) to A via

ϕ(f) = f(m), ψ(f) = f(n), f ∈ C(X).

Then ϕ and ψ are monomorphisms and by Theorem 2.5(e),

K0(ϕ) = K0(ψ) in Hom(K0(C(X), K0(A))).

We conclude that KK(ϕ) = KK(ψ). As KL(C(X),A) is a quotient of KK(C(X),A),
a fortiori, KL(ϕ) = KL(ψ). Also note that

τ(f(m)) = τ(f(n)) for all f ∈ C(X).

By [12, Theorem 2.15], ϕ 'a ψ, and in particular,

m 'a n.
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One of the keys to the proof of Proposition 2.7 is that projections in UHF-algebras
are determined (up to unitary equivalence) by their trace. If A is a simple, unital
AF-algebra with a unique tracial state τ , and if A satisfies Blackadar’s FCQ1 [4] (that
is, given two projections p and q in A, τ(p) ≤ τ(q) if and only if p � q), then this is
also the case.

As such, Proposition 2.7 extends mutatis mutandis to this setting.

3. The good, and the ugly

In trying to extend Proposition 2.7 to more general elements of a UHF-algebra, we
shall appeal to an interesting recent result of Schafhauser:

Theorem 3.1. [25, Theorem D] If A is a separable, unital, exact C∗-algebra satis-
fying the UCT and having a faithful, amenable trace, and B is a simple, unital AF-
algebra with a unique trace and divisible K0-group, then the unital, trace-preserving
∗-homomorphisms A → B are classified up to approximate unitary equivalence by
their behaviour on the K0-group.

As previously mentioned, for UHF-algebras, divisibility of the K0-group implies
that we are dealing with the universal UHF-algebra Q. The following is our main
result.

Theorem 3.2. Let a, b ∈ Q and suppose that C∗(a) satisfies the UCT. Then a 'a b
if and only if τ(w(a, a∗)) = τ(w(b, b∗)) for all w ∈ W2.

Proof. The necessity of Specht’s trace condition follows from Proposition 2.3.
Consider now the sufficiency of this condition. Since Q is a nuclear C∗-algebra,

the unique (faithful) tracial state τ on Q is amenable [7, Prop. 6.3.4]. Next, C∗(a)
is exact, being a C∗-subalgebra of a nuclear C∗-algebra, and by [7, Prop. 6.3.5 (a)],
τ |C∗(a) is amenable (and clearly faithful) as well. For each polynomial p ∈ P2, define
Φ(p(a, a∗)) = p(b, b∗). By Theorem 2.5, Φ is well-defined and extends uniquely to
an isomorphism from C∗(a) onto C∗(b). Let ι : C∗(a) → Q denote the inclusion
map. Notice that Φ and ι are trace-preserving and by Theorem 2.5(d), Φ∗ = ι∗ as
homomorphisms from K0(C

∗(a)) to K0(Q). By Theorem 3.1, ι 'a Φ. In particular,

a = ι(a) 'a Φ(a) = b.

As was the case with Proposition 2.7, the above result also extends to all simple,
unital AF-algebras satisfying Blackadar’s FCQ1, possessing a unique tracial state, and
admitting a divisible K0-group. But a result of Blackadar’s [2, Thm 3.9] shows that
a simple, unital AF-algebra A with a unique tracial state τ and a divisible K0 group
satisfies FCQ1 if and only if there exists a countable (possibly finite) set of positive
real numbers {rn}n, linearly independent over Q, such that K0(A) =< ∪nrnQ > (the
smallest additive subgroup of R containing rnQ for all n), equipped with the natural
order it inherits as a subset of R.

Unlike the case for normal elements of a UHF-algebra A, when dealing with a pair
a, b of not-necessarily normal elements of A, the divisibility of A’s K0-group now
presents a bona fide obstruction to extending Specht’s Theorem in the manner of
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Theorem 3.2. Our present goal is to exhibit, in the CAR algebra M2∞ , two elements
a and b which satisfy Specht’s trace condition but which fail to be approximately
unitarily equivalent.

Notation 3.3. We define I3 := {f ∈M3(C[0, 1],C) : f(0), f(1) ∈ CI3}. Given f ∈ I3,
there exist λ, µ ∈ C such that f(0) = λI3 and f(1) = µI3. We also define f(0) = λ,
and f(1) = µ.

As always, we denote the identity matrix in Mn(C) by In, n ≥ 1.

Theorem 3.4. There exist two injective homomorphisms Φ,Ψ : I3 →M2∞ such that

(a) for each f ∈ I3, τ(Φ(f)) = τ(Ψ(f)), although
(b) Φ,Ψ are not approximately unitarily equivalent.

Proof.

Step 1.
Let {f1, f2, · · · } be a countable dense set of the unit ball of I3. For n ∈ N,

set εn := 1
2n

. Since each fi is uniformly continuous, we may choose 2 ≤ dn ∈ N
such that for 1 ≤ i ≤ n,

‖fi(t)− fi(s)‖ < εn

whenever s, t ∈ [0, 1] and |s − t| ≤ 1
dn

. Without loss of generality, we may

assume that the sequence (dn)∞n=1 is strictly increasing.
Step 2.

Set, for each n ∈ N,

ln = 4dn−1
3

rn = 1
ln+1

= 3
4dn+2

t
(n)
j = j · rn for j = 0, 1, 2, · · · , ln mn = 4dn+1−dn ,

and observe that ln ∈ N for all n, and 0 ≤ t
(n)
j ≤ 1 for all n ≥ 1, 0 ≤ j ≤ ln.

Define ϕn : I3 →M4dn (C) by

ϕn(f) = diag(f(0); f(t
(n)
1 ), · · · , f(t

(n)
ln

)),

and αn : M4dn (C)→M4dn+1 (C) by

αn(a) = u∗n+1(Imn ⊗ a)un+1,

where un+1 is a unitary in M4dn+1 (C) such for each a ∈M4n(C) of the form

a = diag(λ; a1, a2, · · · , aln), where λ ∈ C, aj ∈M3(C), j = 1, 2, · · · , ln,

we have

u∗n+1(Imn ⊗ a)un+1 = diag(Imn ⊗ λ; Imn ⊗ a1, Imn ⊗ a2, . . . , Imn ⊗ aln).

It is easy to check that A := lim
n→∞

(M4dn (C), αn) '∗ M2∞
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Step 3.
Define sn := mn−1

3
. Observe that for f ∈ {f1, f2, · · · , fn},

‖αn ◦ ϕn(f)−ϕn+1(f)‖ =

‖ diag(f(0); f(0)⊗ Isn , f(t
(n)
1 )⊗ Imn , . . . , f(t

(n)
ln

)⊗ Imn)

− diag(f(0); f(t
(n+1)
1 ), · · · , f(t

(n+1)
ln+1

))‖.

Our immediate goal is to show that this quantity is at most εn.
The following three calculations, while tedious, are routine, and are left to

the reader.
(i) For 1 ≤ j ≤ sn, |t(n+1)

j − 0| ≤ t
(n+1)
sn < rn <

1
dn

.

(ii) For 0 ≤ j ≤ ln, t
(n)
j ≤ t

(n+1)
sn+jmn

.

(iii) For 0 ≤ j ≤ ln, t
(n+1)
sn+jmn

≤ t
(n)
j+1.

It follows from item (i) that for 1 ≤ j ≤ sn,

‖ diag(f(0); f(0)⊗ Isn)− diag(f(0); f(t
(n+1)
1 ), f(t

(n+1)
2 ), . . . , f(t(n+1)

sn ))‖ ≤ εn.

Meanwhile, from (ii) and (iii) we find that for 1 ≤ j ≤ ln,

t
(n)
j−1 ≤ t

(n+1)
sn+(j−1)mn

≤ t
(n+1)
sn+(j−1)mn+1 ≤ · · · ≤ t

(n+1)
sn+jmn

≤ t
(n)
j+1.

Since t
(n)
j−1 ≤ t

(n)
j ≤ t

(n)
j+1 and t

(n)
j+1− t

(n)
j−1 = 2rn <

1
dn

, this allows us to infer that

|t(n+1)
sn+(j−1)mn+i

− t(n)j | <
1

dn
for all 1 ≤ i ≤ mn,

whence

‖ diag(f(t
(n+1)
sn+(j−1)mn+1), · · · , f(t

(n+1)
sn+jmn

))− (f(t
(n)
j )⊗ Imn)‖ < εn.

Thus

‖αn ◦ ϕn(f)− ϕn+1(f)‖ < εn.

From this, one easily deduces that the diagram

I3
id−−−→ I3

id−−−→ I3
id−−−→ · · · −−−→ I3yϕ1

yϕ2

yϕ3

M4d1 (C)
α1−−−→ M4d2 (C)

α2−−−→ M4d3 (C)
α3−−−→ · · · −−−→ M2∞

is approximately commutative.
Now

∑∞
n=1 εn = 1 < ∞. By Theorem 1.10.14 of [17], this diagram induces

a ∗-homomorphism Φ : I3 → M2∞ . Suppose that f ∈ I3 satisfies Φ(f) = 0.
Let ε > 0. Since f is uniformly continuous on [0, 1], as before, we may find
δ > 0 such that s, t ∈ [0, 1] and |s − t| < δ implies that ‖f(s) − f(t)‖ < ε

2
.

Choose n∗ ∈ N such that
(iv) ‖ϕn∗(f)‖ < ε

2
, and

(v) [0, 1] ⊆ ∪lnj=0(t
(n∗)
j − δ, t(n

∗)
j + δ).
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If t ∈ [0, 1], say

t
(n∗)
j0
− δ < t < t

(n∗)
j0

+ δ,

then

‖f(t)− f(t
(n∗)
j0

)‖ < ε

2
,

and thus

‖f(t)‖ ≤ ‖f(t
(n∗)
j0

)‖+
ε

2
< ‖ϕn∗(f)‖+

ε

2
= ε.

Since t ∈ [0, 1] is arbitrary,

‖f‖ < ε.

But ε > 0 was also arbitrary, and so f = 0. In other words, Φ is injective.
Step 4.

Similarly, define ψn : I3 →M4dn (C) by

ψn(f) = diag(f(t
(n)
1 ), · · · , f(t

(n)
ln

); f(1)).

Define βn : M4dn (C)→M4dn+1 (C) by

βn(a) = v∗n+1 diag(Imn ⊗ a)vn+1,

where vn+1 is a unitary in M4n+1(C) such for each a ∈M4n(C) of the form

a = diag{a1, a2, · · · , aln ;λ}, where λ ∈ C, aj ∈M3(C), j = 1, 2, · · · , ln,

we have

v∗n+1 diag(Imn ⊗ a)vn+1 = diag(Imn ⊗ a1, Imn ⊗ a2, . . . , Imn ⊗ aln ; Imn ⊗ λ)

Once again, it is routine to check that lim
n→∞

(M4dn (C), βn) '∗ M2∞

Using an analogous argument to that used in Step 3 above, one constructs
the following approximately commutative diagram:

I3
id−−−→ I3

id−−−→ I3
id−−−→ · · · −−−→ I3yψ1

yψ2

yψ3

M4d1 (C)
β1−−−→ M4d2 (C)

β2−−−→ M4d3 (C)
β3−−−→ · · · −−−→ M2∞

.

As before, since
∑∞

n=1 εn = 1 < ∞, [17, Theorem 1.10.14] shows that this
diagram induces an injective ∗-homomorphism Ψ : I3 →M2∞ .

Step 5.
Note that for any unit vector f ∈ I3 (using the unique normalised trace τ

on M2∞ restricted to M4dn (C) ⊆M2∞) and any n ≥ 1,

|τ(ϕn(f))− τ(ψn(f))| ≤
|f(0)− f(1)|

4dn
≤ 2

4dn
.

Therefore

τ(Φ(f)) = τ(Ψ(f)) for all f ∈ I3.
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Step 6.
Define δj : I3 → C, δj(f) = f(j). By [8, Page 605], KK(δ0) 6= KK(δ1) in

KK(I3,C). Define θn : I3 →M4dn−1(C) by

θn(f) = diag(f(t
(n)
1 ), · · · , f(t

(n)
ln

)),

and ψ̃n : I3 →M4dn (C) by

ψ̃n(f) = δ1(f)⊕ θn(f).

Since the unitary group of Mkn(C) is path connected, it follows that ψ̃n
is homotopic to ψn, and thus KK(ψ̃n) = KK(ψn) in KK(I3,M4dn (C)) =
KK(I3,C).

Note that

ϕn = δ0 ⊕ θn, ψ̃n = δ1 ⊕ θn.
Hence KK(ϕn) 6= KK(ψ̃n) = KK(ψn) in KK(I3,M4dn (C)) = KK(I3,C).

Suppose that KK(Φ) = KK(Ψ) in KK(I3,M2∞). Noting that KK(αn) =
KK(βn) in KK(M4dn (C),M4dn+1 (C)) for all n ∈ N, we may apply [8, Propo-
sition 2.5] to obtain the existence of n∗ ∈ N such that KK(ϕn∗) = KK(ψn∗)
in KK(I3,C), a contradiction. We conclude that KK(Φ) 6= KK(Ψ) in
KK(I3,M2∞).

As K0(I3) = 0, K1(I3) = Z/3 are both finitely generated, by [9, Proposition
2.4], KK(I3,M2∞) = KL(I3,M2∞). This implies that KL(Φ) 6= KL(Ψ) in
KL(I3,C). By [22, Proposition 5.4], Φ,Ψ are not approximately unitarily
equivalent.

We wish to translate the result above to a result about singly-generated subalgebras
of M2∞ . To that end, we consider the following definition.

Definition 3.5. Let A be a C∗-algebra. We denote by gen(A) the minimal number
of self-adjoint generators of A; i.e., gen(A) the smallest number n ∈ {1, 2, · · · ,∞}
such that A contains a generating subset S ⊂ Asa of cardinality n.

Two self-adjoint elements a, b generate the same C∗-algebra as the single (non-self-
adjoint) element a+ ib. Therefore, a C∗-algebra A is said to be singly generated if
gen(A) ≤ 2.

Proposition 3.6. For n ≥ 1, M2n(I3) is singly generated.

Proof. Note that by [32, Remark 2.3], gen(C0(0, 1),C) = 2, and by [32, §2.1(4)],

gen(M3(C0(0, 1),C)) = 1.

Consider h, g ∈ M3(C[0, 1],C) defined by h(t) = (1 − t)I3, g(t) = tI3. Then, for all
f ∈ I3, we have

f ∈ span{g, h, k : k ∈M3(C0(0, 1),C)}.
Hence, gen(I3) ≤ 3. Again, by [32, §2.1(4)], for each n ≥ 1, M2n(I3) is singly
generated.



14 L.W. MARCOUX AND Y. H. ZHANG

We are now in a position to show that the generalisation of Specht’s Theorem to
the universal UHF-algebra Q which we presented in Theorem 3.2 does not extend to
all UHF-algebras. We note that M2(I3) satisfies the UCT, by virtue of the fact that
it is a type I C∗-algebra [26].

Theorem 3.7. Let τ denote the unique, faithful tracial state on M2∞. There exist
a, b ∈ M2∞ such that C∗(a) and C∗(b) both satisfy the UCT, τ(p(a, a∗)) = τ(p(b, b∗))
for each polynomial p ∈ P2, and yet a and b are not approximately unitarily equivalent
in M2∞.

Proof. By Proposition 3.6, we can choose f0 ∈ M2(I3) to be a generator and define
a = (idM2 ⊗Φ)(f0), b = (idM2 ⊗Ψ)(f0) ∈ M2(M2∞), where Φ and Ψ are the injective,
unital ∗-homomorphisms from Proposition 3.4. By that Proposition, we have the
following (recall that τ2 = tr⊗ τ):

(i) for each two variable polynomial p, τ2(p(a, a
∗)) = τ2(p(b, b

∗));
(ii) the injectivity of Φ and Ψ (and hence of idM2 ⊗Φ and of idM2 ⊗Ψ) implies that

C∗(a) ∼=∗ M2(I3) ∼=∗ C∗(b). As such, C∗(a) and C∗(b) satisfy the UCT;
(iii) a and b are not approximately unitarily equivalent in M2(M2∞).

To see this, we argue by contradiction. Suppose to the contrary that there

exists a sequence un =

[
un,1 un,2
un,3 un,4

]
∈M2(M2∞) such that b = limn→∞ u

∗
naun.

Since f0 is a generator of M2(I3), we see that for all g1, g2, g3, g4 ∈ I3,[
Ψ(g1) Ψ(g2)
Ψ(g3) Ψ(g4)

]
= lim

n→∞

[
u∗n,1 u∗n,3
u∗n,2 u∗n,4

] [
Φ(g1) Φ(g2)
Φ(g3) Φ(g4)

] [
un,1 un,2
un,3 un,4

]
.

In particular, taking g1 = 1, g2 = g3 = g4 = 0, and recalling that both Φ and
Ψ are unital, we find that[

1 0
0 0

]
= lim

n→∞

[
u∗n,1 u∗n,3
u∗n,2 u∗n,4

] [
1 0
0 0

] [
un,1 un,2
un,3 un,4

]
,

and [
0 0
0 1

]
= lim

n→∞

[
u∗n,1 u∗n,3
u∗n,2 u∗n,4

] [
0 0
0 1

] [
un,1 un,2
un,3 un,4

]
.

A routine calculation shows that this implies that limn→∞ un,2 = 0 =
limn→∞ un,3, and thus there exist unitary elements vn,1 and vn,4 of M2∞ such
that limn→∞ un,1 − vn,1 = 0 = limn→∞ un,4 − vn,4.

From this we deduce that for all g1 ∈ I3, Ψ(g1) = limn→∞ v
∗
n,1Φ(g1)vn,1,

implying that Φ and Ψ are approximately unitarily equivalent, a contradiction
of Theorem 3.4.

Of course, since M2(M2∞) '∗ M2∞ , we may view a and b as elements of M2∞ under
this identification.
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4. A non-tracial formulation of Specht’s condition

Obviously, to state Specht’s trace condition for a pair a, b of elements in a C∗-
algebra A requires that the C∗-algebra admit a tracial state. Many interesting C∗-
algebras, including the algebra B(H) of all bounded linear operators on a complex,
separable Hilbert space H, do not. We now consider the generalisation of a rela-
tion first studied in [18] which we shall demonstrate to coincide with Specht’s trace
condition for UHF-algebras, but which can be formulated in an arbitrary C∗-algebra.

Definition 4.1. Let A be a C∗ algebra and a, b ∈ A. We shall say a, b satisfy the
approximate absolute value condition (AAVC) if for any polynomial p ∈ P2,
|p(a, a∗)| is approximately unitarily equivalent to |p(b, b∗)| in A.

We emphasise the fact that in the definition of the AAVC, the sequence (un)n of
unitaries implementing the approximate unitary equivalence of a given pair |p(a, a∗)|
and |p(b, b∗)| depends upon the polynomial p.

It is routine to verify that if a, b ∈ A are approximately unitarily equivalent in A,
then a and b satisfy the AAVC.

If A is finite-dimensional, then this relation agrees with the “absolute value con-
dition” (AVC) studied in [18], which replaces approximate unitary equivalence by
unitary equivalence in the above definition. It was shown there [18, Prop. 4.2 and
Thm 4.6] that two matrices A,B ∈ Mn(C) satisfy the AVC if and only if they are
unitarily equivalent. A fortiori, two matrices A,B ∈Mn(C) satisfy the AAVC if and
only if they are unitarily equivalent.

We recall that two elements a and b of a C∗-algebra A are said to be algebraically
equivalent if there exists a ∗-isomorphism ϕ : C∗(a)→ C∗(b) satisfying ϕ(a) = b.

Proposition 4.2. Let A be a C∗ algebra, and suppose that a, b ∈ A satisfy the AAVC.
Then the well-defined map Φ : p(a, a∗) 7→ p(b, b∗) extends in a unique way to a unital
isomorphism from C∗(a) onto C∗(b) which send a to b. In other words, a and b are
algebraically equivalent.

Proof. Let p ∈ P2 be a fixed polynomial. Since |p(a, a∗)∗p(a, a∗)| and |p(b, b∗)∗p(b, b∗)|
are approximately unitarily equivalent by hypothesis, it follows that

‖p(a, a∗)‖2 = ‖
∣∣p(a, a∗)∗p(a, a∗)∣∣‖ = ‖

∣∣p(b, b∗)∗p(b, b∗)∣∣‖ = ‖p(b, b∗)‖2.
To see that Φ is well-defined, note that for general p, q ∈ P2, if p(a, a∗) = q(a, a∗), we
then have

0 = ‖p(a, a∗)− q(a, a∗)‖ = ‖(p− q)(a, a∗)‖ = ‖(p− q)(b, b∗)‖ = ‖p(b, b∗)− q(b, b∗)‖.
Hence p(b, b∗) = q(b, b∗), as required.

Clearly Φ is linear, isometric and has dense range in C∗(b), and thus Φ extends in
a unique way to a unital isomorphism from C∗(a) onto C∗(b) which send a to b.

Proposition 4.3. Let A be a C∗-algebra with a tracial state τ , and suppose that
a, b ∈ A satisfy the AAVC. Then a, b satisfy Specht’s trace condition, i.e.,

τ(p(a, a∗)) = τ(p(b, b∗)) for all p ∈ P2.
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Proof. By Proposition 4.2 above, we know that the map Φ : p(a, a∗) 7→ p(b, b∗)
extends in a unique way to a unital isomorphism from C∗(a) onto C∗(b) which sends
a to b.

Let 0 6= x = x∗ ∈ C∗(a). There exists a sequence (pn)n of polynomials in P2 such
that

x = lim
n→∞

pn(a, a∗).

Without loss of generality, we may assume that pn(a, a∗) is self-adjoint, and

‖pn(a, a∗)‖ < 2‖x‖.
(Otherwise, we replace pn(a, a∗) by Re pn(a, a∗) for all n ≥ 1 and scale as required.) It
follows that (pn(a, a∗)+2‖x‖)n is a sequence of positive elements in C∗(a). Meanwhile,

Φ(x)+2‖x‖ = Φ(x)+2‖Φ(x)‖ = Φ( lim
n→∞

pn(a, a∗))+2‖Φ(x)‖ = lim
n→∞

pn(b, b∗)+2‖Φ(x)‖.

Since a, b satisfy the AAVC,

pn(b, b∗) + 2‖x‖ = |pn(b, b∗) + 2‖x‖|
and

pn(a, a∗) + 2‖x‖ = |pn(a, a∗) + 2‖x‖|
are approximately unitarily equivalent, and so x + 2‖x‖ and Φ(x + 2‖x‖) are also
approximately unitarily equivalent. As τ is a tracial state,

τ(x+ 2‖x‖) = τ(Φ(x) + 2‖x‖),
that is,

τ(x) = τ(Φ(x)).

From this we immediately see that for arbitrary y ∈ C∗(a),

τ(y) = τ(Φ(y)).

In particular,
τ(p(a, a∗)) = τ(p(b, b∗)) for all p ∈ P2.

Corollary 4.4. Let A be a UHF-algebra, a, b ∈ A, and τ denote the unique trace of
A. The following are equivalent:

(a) a, b satisfy the AAVC; and
(b) a and b satisfy Specht’s trace condition: i.e. τ(w(a, a∗)) = τ(w(b, b∗)) for all

w ∈ W2.

Proof. That (a) implies (b) is the content of Proposition 4.3.
To see that (b) implies (a), let p ∈ P2, and define

ã := |p(a∗, a)|2, and b̃ := |p(b∗, b)|2.
Note that for any word w ∈ W2,

τ(w(a, a∗)) = τ(w(b, b∗)),

and hence it is routine to check that

τ(v(ã, ã∗)) = τ(v(b̃, b̃∗)),
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for any word v ∈ W2. By Proposition 2.7, ã 'a b̃, whence

|p(a∗, a)| 'a |p(b∗, b)|.

Corollary 4.5. There exist a pair a, b ∈M2∞ which satisfy the AAVC but which are
not approximately unitarily equivalent in M2∞. Furthermore, C∗(a) and C∗(b) satisfy
the UCT.

Proof. This follows immediately from Corollary 4.4 and Theorem 3.7.

As mentioned above, the AAVC makes sense in all C∗-algebras, including B(H),
when H is a complex, separable Hilbert space. To examine it there, it will be useful
to first recall the following result of Hadwin based on Voiculescu’s non-commutative
Weyl-von Neumann Theorem [34].

Proposition 4.6. [13, Corollary 3.7] Suppose A,B ∈ B(H). Then A 'a B if and only
if there is a representation π : C∗(A) → C∗(B) such that π(A) = B and rank(S) =
rank(π(S)) for every S ∈ C∗(A).

The following result may be viewed as a version of Specht’s Theorem for B(H).

Theorem 4.7. Let A,B ∈ B(H). Then A and B satisfy the AAVC if and only if
A,B are approximately unitarily equivalent.

Proof. As mentioned following Definition 4.1, if A and B approximately unitarily
equivalent, then they satisfy the AAVC.

Conversely, suppose that A and B satisfy the AAVC in B(H). By Proposition 4.2,
A and B are algebraically equivalent via an isomorphism Φ : C∗(A) → C∗(B) with
Φ(A) = B. There remains only to show the rank condition for elements of C∗(A).
To that end, let S ∈ C∗(A), and suppose that S = lim

n→∞
pn(A,A∗). Set T := Φ(S) =

lim
n→∞

pn(B,B∗).

It follows that

|S| = lim
n→∞
|pn(A,A∗)| and |T | = lim

n→∞
|pn(B,B∗)|.

For each n ≥ 1, since |pn(A,A∗)| 'a |pn(B,B∗)|, we can find a unitary operator
Un ∈ B(H) such that

‖ |pn(B,B∗)| − U∗n|pn(A,A∗)|Un‖ <
1

n
.

From this and an easy application of the triangle inequality we see that

lim
n→∞
‖ |T | − U∗n|S|Un‖ = 0.

Since the rank function is weakly lower semicontinuous (see [14, Appendix]),

rank(|T |) ≤ lim inf
n→∞

rank(Un|S|U∗n) = rank(|S|).

Therefore, by symmetry,
rank(|S|) = rank(|T |),
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and thus

rank(S) = rank(T ).

The theorem now follows from Proposition 4.6.

While Specht’s trace condition for two elements a and b in a UHF-algebra A is not
always sufficient to imply approximate unitary equivalence of a and b, it is strong
enough to imply approximate unitary equivalence of their images under a unital,
faithful ∗-representation of A.

Corollary 4.8. Let A be a UHF-algebra, a, b ∈ A, and denote by τ the unique trace
of A. Suppose that

τ(w(a, a∗)) = τ(w(b, b∗)) for all w ∈ W2.

If ρ : A → B(Hρ) is a unital, faithful ∗-representation of A acting on a separable
Hilbert space Hρ, then

ρ(a) 'a ρ(b).

Thus, if Φ : C∗(a) → C∗(b) implements the algebraic equivalence of a and b as in
Theorem 2.5, then ρ|C∗(a) 'a ρ ◦ Φ|C∗(a).

Proof. By Corollary 4.4, a and b satisfy the AAVC in A. It is straightforward to
check that this implies that ρ(a) and ρ(b) satisfy the AAVC in B(Hρ). The result
now follows from Theorem 4.7.

Unfortunately, the situation is not as nice in the Calkin algebra B(H)/K(H).

Example 4.9. Let π : B(H) → B(H)/K(H) denote the canonical homomorphism
from B(H) to the Calkin algebra B(H)/K(H). Consider s := π(S), and t := s⊕ s =
π(S ⊕ S), where S denotes the unilateral forward shift in B(H). Then

(a) s and t satisfy the AAVC in B(H)/K(H). Note that |p(s, s∗)| and |p(t, t∗)|
are positive elements in B(H) and that they have the same spectrum. By the
Brown-Douglas-Fillmore Theorem [6], we deduce that |p(s, s∗)| and |p(t, t∗)|
are unitarily equivalent in B(H)/K(H).

(b) s and t are not approximately unitarily equivalent in the Calkin algebra. In-
deed, suppose otherwise. Since s and t are normal elements of B(H)/K(H),
their unitary orbits are closed (again, by the BDF Theorem) and as such, s
and t must be unitarily equivalent. But then they must share the same index
function. However,

ind(s− 0) = −1 6= −2 = ind(t− 0),

a contradiction.

In the Calkin algebra, the obstruction encountered in Example 4.9 is the index,
reflected in the fact that K1(B(H)/K(H)) = Z. Note that for the Cuntz algebra O2,
we have that K0(O2) = K1(O2) = 0, which effectively removes any index obstruction.
It seems natural to ask whether the AAVC implies approximate unitary equivalence
in this setting, and indeed, it does.
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Example 4.10. Let a, b ∈ O2 be a pair which satisfies the AAVC. By Proposition
4.2, C∗(a) is isomorphic to C∗(b) via a unital ∗-isomorphism Φ which sends a to
b. Since C∗(a) is unital, separable, and exact, by [21, Theorem 6.3.8], ι and Φ are
approximately unitarily equivalent, where ι denotes the inclusion map from C∗(a) to
O2. In particular,

a = ι(a) 'a Φ(a) = b.

5. The distance between unitary orbits of ampliations of matrices

One of the more interesting and unexpected (at least to us) consequences of The-
orem 3.7 is the following result concerning distances between unitary orbits of am-
pliations of matrices. Note that for non-empty sets S and T of Mn(C) – or more
generally of B(H) for some complex Hilbert space H – the distance considered below
is the usual metric space distance

d(S, T ) := inf{‖S − T‖ : S ∈ S, T ∈ T }.
When A,B ∈ B(H), it is clear that d(U(A),U(B)) = d(A,U(B)) = d(U(A), B).

Theorem 5.1. There exist positive integers n and k, and a pair A,B ∈Mn(C) such
that

d(U(A(k)),U(B(k))) < d(U(A),U(B)).

Proof. The inequality

d(U(A(k)),U(B(k))) ≤ d(U(A),U(B))

clearly holds for all n, k ≥ 1 and pairs A,B ∈ Mn(C). To prove our result, we shall
argue by contradiction. Suppose otherwise; that is, suppose that

d(U(A(k)),U(B(k))) = d(U(A),U(B))

for all integers n, k ≥ 1 and pairs A,B ∈ Mn(C). Let Q denote the universal UHF-
algebra. It is well-known that under the standard trace preserving inclusion map ι
from M2∞ into Q, M2∞ may be viewed as a unital subalgebra of Q. Let a, b ∈M2∞ ⊆
Q be the elements in the statement of Theorem 3.7. Without loss of generality, we
may assume that ‖a‖ = 1 = ‖b‖. Since C∗(a) satisfies the UCT, we know that a
and b are approximately unitarily equivalent in Q. Let ε > 0 and choose a unitary
element u ∈ Q such that ‖b− u∗au‖ < ε.

Now a, b ∈ M2∞ implies that we can find an integer n ≥ 1 and a pair An, Bn ∈
M2n(C) ⊆M2∞ such that ‖An − a‖ < ε and ‖Bn − b‖ < ε.

Moreover, there exists a positive integer k ≥ 1 and a unitary Un,k ∈M2n·k(C) ⊆ Q
such that ‖Un,k − u‖ < ε. Note that (without loss of generality) M2n(C) embeds in
M2n·k(C) via the standard embedding X 7→ X(k).

A standard (multiple) application of the triangle inequality then shows that

‖B(k)
n − U∗n,kA(k)

n Un,k‖ < 5ε.

But then from our assumption it follows that

d(U(An),U(Bn)) = d(U(An
(k)),U(Bn

(k))) < 5ε.
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That is, we can now find a unitary Vn ∈M2n(C) ⊆M2∞ such that

‖Bn − V ∗nAnVn‖ < 5ε.

Once again, a standard application of the triangle inequality yields

‖b− V ∗n aVn‖ < 7ε.

Since ε is arbitrary, this implies that a and b are approximately unitarily equivalent
in M2∞ , a contradiction.

Unfortunately, the proof Theorem 5.1 does not give us any idea how to find the
integers n, k ≥ 1 and the pair A,B ∈ Mn(C) in the statement above. Indeed, it is
an interesting and difficult question to decide for which integers n and k and pairs
A,B ∈Mn(C) the distance remains invariant. The following two results were obtained
in conjunction with H. Radjavi, and we are grateful to him for allowing us to include
their proofs here.

Proposition 5.2. Let P be a rank one projection in M2(C), and let R ∈M2(C) be a
normal matrix with eigenvalues λ, µ. For any k ∈ N,

d(R,U(P )) = d(R(k),U(P (k))).

Proof. Since d(R,U(P )) = d(U(R),U(P )), there is no loss of generality in assuming

that R =

[
λ 0
0 µ

]
. If Q ∈ M2k(C) is any projection of rank k, then we can find an

isometry W =

[
X
Y

]
from Ck to C2k such that

Q = WW ∗ =

[
X
Y

] [
X∗ Y ∗

]
=

[
XX∗ XY ∗

Y X∗ Y Y ∗

]
.

Of course, W ∗W = X∗X + Y ∗Y = Ik. Decomposing X and Y into their polar
decompositions X = UM and Y = V N where M = |X| and N = |Y | and U, V ∈
Mk(C) are unitary, we see that M2 + N2 = Ik and in particular 0 ≤ M and 0 ≤ N
commute, since N = (Ik −M2)1/2.

Thus

Q =

[
U 0
0 V

] [
M2 MN
MN N2

] [
U∗ 0
0 V ∗

]
.

Set Z = diag(U, V ). Then Z ∈M2k(C) is unitary and Z∗R(k)Z = R(k). Thus

‖Q−R(k)‖ = ‖Z∗QZ −R(k)‖ =

∥∥∥∥[M2 − λIk MN
MN N2 − µIk

]∥∥∥∥ .
Since M,N are commuting normal matrices, we can simultaneously diagonalise them,
say M = diag(α1, α2, . . . , αk) and N = diag(β1, β2, . . . , βk).

Since M2 + N2 = Ik, each α2
i + β2

i = 1, and thus for each 1 ≤ i ≤ k,

[
α2
i αiβi

αiβi β2
i

]
is a rank one projection. Thus

‖R(k) −Q‖ = ‖
[
M2 − λIk MN
MN N2 − µIk

]
‖ = max

1≤i≤k
‖
[
α2
i − λ αiβi
αiβi β2

i − µ

]
‖ ≥ d(R,U(P )).
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Of course, any element of U(P (k)) is a projection of rank k, and so the above
argument shows that

d(R(k),U(P (k))) ≥ d(R,U(P )).

As previously mentioned, the reverse inequality is trivial.

The next result shows that the matrices A and B from Theorem 5.1 cannot be
normal matrices in M2(C).

Theorem 5.3. Let A and B be normal matrices in M2(C). For any k ∈ N,

d(A,U(B)) = d(A(k),U(B(k))).

Proof. A moment’s thought shows that it suffices to consider the case where A =
diag{α, β} and α 6= β. Then A = βI2 + (α − β)P , where P = diag{1, 0}. By the
previous proposition,

d(A,U(B)) = d((α− β)P,U(B − βI2))

= |α− β| d(P,U(
B − βI2
α− β

))

= |α− β| d(P (k),U((
B − βI2
α− β

)(k)))

= d(((α− β)P )(k),U((B − βI2)(k)))
= d(((α− β)P + βI2)

(k),U(B(k)))

= d(A(k),U(B(k))).

It would be most interesting to know if Theorem 5.3 extends to arbitrary pairs A
and B of normal matrices in Mn(C) for n ≥ 3. One of the problems with extending
such a result lies in the fact that – even in the case of normal operators A,B ∈Mn(C) –
when n ≥ 3, calculating the distance d(A,U(B)) is a highly non-trivial task. If A and
B are normal matrices in Mn(C) with eigenvalues {α1, α2, . . . , αn} and {β1, β2, . . . , βn}
respectively, we define the spectral distance between A and B to be

spd(A,B) := min
%∈Sn

(
max
1≤k≤n

|αk − β%(k)|
)
,

where Sn denotes the symmetric group of all permutations of the set {1, 2, . . . , n}. An
alternative way of viewing spd(A,B) is to first diagonalise both A and B with respect
to a fixed orthonormal basis {e1, e2, . . . , en} for Cn. The symmetric group Sn acts on
this basis in the obvious way via permutation unitaries: for % ∈ Sn, U%(ek) = e%(k),
1 ≤ k ≤ n. Then

spd(A,B) = min
%∈Sn
‖A− U∗%BU%‖.

While spd(A,B) = d(A,U(B)) when A,B ∈ M2(C) are normal, it was shown by
Holbrook [16] that there exist normal 3× 3 matrices A and B such that

d(A,U(B)) < spd(A,B).
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We remark that Bhatia, Davis, and Koosis [1] have shown that for all integers
n ≥ 2 and all A,B ∈Mn(C) normal matrices,

spd(A,B) ≤ 2.91 d(A,U(B)).

We leave the following as an open question for the interested reader.

Question 5.4. Let n ≥ 3 be an integer and A,B ∈ Mn(C) be normal matrices. If
k ≥ 2 is an integer, is

d(A,U(B)) = d(A(k),U(B(k)))?

We remark that if we set k = ℵ0, the question admits a negative answer, as is easily
seen by taking A = diag(1, 0, 0) and B = diag(1, 1, 0).

Acknowledgments. The authors would like to thank Guihua Gong, Heydar Rad-
javi and Christopher Schafhauser for several helpful suggestions regarding this work.

References

[1] R. Bhatia, C. Davis and P. Koosis, An extremal problem in Fourier analysis with applications
to operator theory, J. Funct. Anal. 82 (1989), 138–150.

[2] B. Blackadar, Traces on simple AF C∗-algebras, J. Funct. Anal. 38 (1980), 156–168.
[3] B. Blackadar, K-Theory for Operator Algebras, MSRI Monographs, vol. 5, Springer Verlag,

Berlin and New York, 1986.
[4] B. Blackadar, Comparison theory for simple C∗-algebras, in Operator Algebras and Applica-

tions, London Math. Soc. Lecture Notes Ser., vol. 1, Cambridge Univ. Press, Cambridge-New
York 1988, 21–54.

[5] S. Barlak and X. Li, Cartan subalgebras and the UCT problem, Advances in Math. 316 (2017),
748–769.

[6] L. Brown, R. Douglas and P. Fillmore, Unitary equivalence modulo the compact operators and
extensions of C∗-algebras, Lecture Notes in Mathematics 345, 58–123 (Berlin: Springer 1973).

[7] N. Brown and N. Ozawa, C∗-algebras and finite-dimensional approximations, Graduate Studies
in Mathematics 88, American Mathematical Society, Providence, Rhode Island 2008.

[8] M. Dadarlat and T.A. Loring, Classifying C∗-algebras via ordered, mod-p K-theory, Math. Ann.
305 (1996), 601–616.

[9] M. Dadarlat and T.A. Loring, A universal multicoefficient theorem for the Kasparov groups,
Duke Math. J. 84 (1996), 355–377.

[10] K.R. Davidson, C∗-algebras by example, Fields Institute Monographs 6, American Mathematical
Society, Providence, RI (1996).

[11] G.A. Elliott, On the classification of inductive limits of sequences of semisimple finite-
dimensional algebras, J. Algebra 38 (1976), 29-44.

[12] G. Gong and H. Lin, Classification of homomorphisms from C(X) to simple C∗-algebras of real
rank zero, Acta Math. Sin. (Engl. Ser.) 16 (2000), 181–206.

[13] D.W. Hadwin, An operator-valued spectrum, Indiana Univ. Math. J. 26 (1977), 329–340.
[14] P.R. Halmos, Irreducible operators, Michigan Math. J. 15 (1968), 215–223.
[15] N. Higson and J. Roe, Analytic K-theory, Oxford University Press, 2000.
[16] J.A. Holbrook, Spectral variation of normal matrices, Linear Alg. Appl. 174 (1992), 131–144.
[17] H. Lin, An introduction to the classification of amenable C∗-algebras, World Scientific Publish-

ing Co., Inc., River Edge, NJ, 2001. MR 1884366 (2002k:46141)
[18] L. W. Marcoux, M. Mastnak, and H. Radjavi, An approximate, multivariable version of Specht’s

theorem, Linear Multilinear Algebra 55 (2007), 159–173.
[19] G.J. Murphy, Uniqueness of the trace and simplicity, Proc. Amer. Math. Soc. 128 (2000),

3563–3570.



ON SPECHT’S THEOREM IN UHF-ALGEBRAS 23

[20] C. Pearcy, A complete set of unitary invariants for operators generating finite W ∗-algebras of
type I, Pacific J. Math. 12 (1962), 1405–1416.

[21] M. Rørdam, Classification of nuclear, simple C∗-algebras, Classification of nuclear C∗-algebras.
Entropy in operator algebras, Encyclopaedia Math. Sci., vol. 126, Springer, Berlin, 2002, pp. 1–
145. MR 1878882 (2003i:46060)

[22] M. Rørdam, Classification of certain infinite simple C∗-algebras, J. Funct. Anal. 131 (1995),
415–458. MR 1345038 (96e:46080a)

[23] M. Rørdam, F. Larsen and N.J. Laustsen, An introduction to K-theory for C∗-algebras, London
Mathematical Society – Student Texts, vol. 49, Cambridge University Press, Cambridge, 2000.
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