
A Sparse Random Feature Model for
Signal Decomposition

by

Nicholas Joseph Emile Richardson

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Applied Mathematics

Waterloo, Ontario, Canada, 2022

© Nicholas Joseph Emile Richardson 2022

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

Nicholas Richardson was the sole author of Chapters 1, 2, 3, 5 (excl. Section 5.2), and 6
which were written under the supervision of Dr. Giang Tran and not written for publica-
tion.

This thesis consists in part of a manuscript written for publication. Exceptions to sole
authorship of material are as follows:

Research Presented in Chapter 4 and Section 5.2:

This research was conducted at the University of Waterloo by Nicholas Richardson under
the supervision of Dr. Giang Tran. Nicholas Richardson designed the method presented
with Dr. Giang Tran, and Dr. Hayden Schaeffer. The numerical experiments, codes, and
figures were primarily developed by Nicholas Richardson with guidance and feedback from
Dr. Giang Tran and Dr. Hayden Schaeffer. Nicholas Richardson created the data for the
mathematical examples in Python, and played and recorded the music used in the musical
example.

Nicholas Richardson drafted the manuscript, and all co-authors contributed to the writ-
ing and intellectual input of the final manuscript. The submitted paper “SRMD: Sparse
Random Mode Decomposition” can be found on arXiv [62].

iii

Abstract

Signal decomposition and multiscale signal analysis provide useful tools for time-frequency
analysis. In this thesis, an overview of the signal decomposition problem is given and
popular methods are discussed. A novel signal decomposition algorithm is presented:
Sparse Random Mode Decomposition (SRMD). This method sparsely represents a signal
as a sum of random windowed-sinusoidal features before clustering the time-frequency
localized features into the constituent modes. SRMD outperforms state-of-the-art methods
on a variety of mathematical signals, and is applied to real-world astronomical and musical
examples. Finally, we discuss a neural network approach to tackle challenging musical
signals.

iv

Acknowledgements

I would like to thank everyone who made this thesis possible. This includes Prof. Rachel
Ward for her feedback refining the novel decomposition algorithm, and Prof. Hayden Scha-
effer for his constant support and humour. I also want to acknowledge Prof. Kirsten Morris
and Prof. Stephen Vavasis for their time spent on my thesis examining committee and valu-
able revisions. Finally, I want to give special thanks to my supervisor Prof. Giang Tran
for her constant encouragement and critical feedback throughout my degree.

v

Table of Contents

List of Figures ix

List of Tables xi

List of Abbreviations xii

1 Introduction 1

2 Background & Notation 2

2.1 Linear Algebra . 2

2.2 Numerical Algebra & Sparse Optimization 3

2.3 Clustering . 6

2.4 Signal Processing . 8

2.4.1 Sampling . 8

2.4.2 Sinusoids and Intrinsic Mode Functions 9

2.4.3 Time-Frequency Analysis . 11

2.5 Random Feature Models . 14

3 The Signal Decomposition Problem 15

3.1 Overview . 15

3.2 Formulating the Problem . 15

3.3 Previous Methods . 17

vi

3.3.1 Fourier Filtering and Masking . 17

3.3.2 Empirical Mode Decomposition . 17

3.3.3 Empirical Wavelet Transform . 20

3.3.4 Variational Mode Decomposition 21

3.3.5 Synchrosqueezing Transforms . 22

3.3.6 Neural Network Methods . 22

4 Sparse Random Mode Decomposition 24

4.1 Overview . 24

4.2 Motivation . 24

4.3 Method . 25

4.3.1 Sparse Random Feature Representation Algorithm 27

4.3.2 Sparse Random Mode Decomposition Algorithm 29

4.3.3 Implementation . 29

4.3.4 Hyperparameter Tuning . 31

4.4 Examples . 32

4.4.1 Discontinuous Time-Series . 34

4.4.2 Instantaneous Frequencies of Intersecting Time-Series 38

4.4.3 Overlapping Time-Series with Noise 43

4.4.4 Pure Sinusoidal Signals with Noise 47

4.5 Extensions . 49

4.5.1 Visualizing Gravitational Data . 49

4.5.2 Non-random Features . 51

4.6 Discussion . 53

5 Musical Source Separation 54

5.1 Overview . 54

5.2 Random Feature Model . 56

vii

5.2.1 Simple Musical Example . 56

5.2.2 Challenges . 57

5.3 A Neural Network Attempt . 60

5.3.1 Method . 60

5.3.2 Results . 63

6 Final Remarks 67

6.1 Conclusion . 67

6.2 Future Work . 68

References 69

Appendices 77

Appendix A Proof of Proposition 1 78

Appendix B Python Implementation of SRMD 80

viii

List of Figures

2.1 DBSCAN Definitions Example . 7

4.1 Discontinuous Example: SRMD Results . 36

4.2 Discontinuous Example: Method Comparison 37

4.3 Intersecting Example: STFT, CWT, and SST Comparison 39

4.4 Intersecting Example: SRMD, 3 Learned Modes 40

4.5 Intersecting Example: SRMD, Merged Modes Results 41

4.6 Intersecting Example: Method Comparison 42

4.7 Overlapping Example: Method Comparison with 5% Noise 44

4.8 Overlapping Example: Method Comparison with 15% Noise 45

4.9 Overlapping Example: Method Comparison with 25% Noise 45

4.10 Overlapping Example: SRMD Learned Weights and Clusters 46

4.11 Overlapping Example: Input Signal . 47

4.12 Noisy Sinusoids Example: SRMD Results 48

4.13 Astronomical Example: SRMD Visualization and Denoising 50

4.14 Deterministic Features Example: Learned Coefficients Comparison 51

4.15 Deterministic Features Example: Results 52

5.1 Guitar and Flute Example: Input Signal 57

5.2 Guitar and Flute Example: Equally vs. Randomly Sampled Results 58

5.3 Guitar and Flute Example: Randomly Sampled SRMD Results 59

5.4 Typical Song Example: Randomly Sampled SRMD Results 60

ix

5.5 Neural Network: Architecture . 62

5.6 Neural Network: Training and Validation Loss 64

5.7 Neural Network: Sample Input . 65

5.8 Neural Network: Predicted and Ideal Masks 65

5.9 Neural Network: Predicted and True Spectrograms 66

x

List of Tables

4.1 SRMD Parameters . 31

5.1 Neural Network: Layers Architecture . 62

xi

List of Abbreviations

BP basis pursuit, 5

BPDN basis pursuit denoising, 5

CEEMDAN Complete EEMD with Adaptive Noise, 20

CWT continuous wavelet transform, 13

DBSCAN Density Based Spatial Clustering of Applications with Noise, 6

EEMD Ensemble EMD, 18

EMD Empirical Mode Decomposition, 17

EWT Empirical Wavelet Transform, 20

IF instantaneous frequency, 10

IMF intrinsic mode function, 9

LASSO least absolute shrinkage and selection operator, 5

RFM random feature model, 14

SPGL1 spectral projected-gradient for sparse least squares, 5

SRMD Sparse Random Mode Decomposition, 24

SST synchrosqueezing transform, 22

STFT short-time Fourier transform, 12

VDM Variational Mode Decomposition, 21

xii

Chapter 1

Introduction

Signals can be found across a variety of academic and industrial domains such as seis-
mology, medicine, and telecommunication, and in everyday life from music to photography.
It is therefore imperative we study ways to analyze and process signals for these applica-
tions. One such analytical tool is signal decomposition which separates an input into the
sum of constituent modes. Signal decomposition may be used to identify important sources
with a signal, or as a preprocessing step before further analytical tools are applied.

In this thesis, we propose a novel decomposition algorithm: Sparse Random Mode
Decomposition (SRMD). This two stage algorithm starts with a random feature method
for analyzing time-series data by constructing a sparse approximation to the short-time
Fourier transform spectrogram. The randomization is both in the time window locations
and the frequency sampling, which lowers the overall sampling and computational cost.
The sparsification of the spectrogram leads to a sharp separation between time-frequency
clusters which makes it easier to identify intrinsic modes, and thus leads to a new data-
driven mode decomposition. The applications of this method include signal representation,
visualization, and outlier removal in addition to mode decomposition.

Background and notation on required topics including linear algebra, sparse optimiza-
tion, signal processing, and random feature models are provided in Chapter 2. This chapter
is followed by an overview of the signal decomposition problem and popular methods for
tackling the problem in Chapter 3. The proposed SRMD algorithm is detailed in Chapter
4 along with comparisons to state-of-the-art methods. Chapter 5 is dedicated to signal
decomposition in the context of musical signals where the problem is approached using
SRMD and an adapted neural network architecture. Finally, the thesis is concluded in
Chapter 6 along with related future work that may be of interest.

1

Chapter 2

Background & Notation

2.1 Linear Algebra

For clarity when discussing mathematical objects, scalar functions and elements are
kept italicized and unbolded (ex. f, x) where as vectors and matricies bolded (ex. x,A).
Vectors generally use lower-cased symbols and matricies use upper-cased symbols.

If we wish to identify the ith element of a vector x, we subscript the unbolded letter xi
or subscript parenthesis (x)i. We may then write a vector x ∈ Rm, thought of as a column
vector x ∈ Rm×1 by convention, in full as

x =

x1...
xm

 =
[
x1 . . . xm

]⊤
.

Here we use the transpose symbol ⊤ to swap the two dimensions of a matrix, or convert a
column vector to a row vector. We also use a bolded zero for a vector of all zeros 0 ∈ Rm.

We similarly use double subscripts aij, Aij or subscript parenthesis (A)ij to denote the

element in the ith row and jth column of a matrix A. For A ∈ Rm×n, we may write this in
full as

A =

a11 . . . a1n
...

. . .
...

am1 . . . amn

 = [aij].

2

When we wish to discuss a group of vectors, we maintain the bolded vector convention
while indexing a1, . . . ,aj, . . . ,an ∈ Rm or {aj}nj=1 ⊂ Rm to avoid confusion with their
entries (aj)i ∈ R. Using this convention we define the following.

Definition 1 (Linearly Dependent). A set of vectors {aj}nj=1 ⊂ Rm is linearly dependent
if there exists x1, . . . , xn ∈ R not all zero such that

n∑
j=1

xjaj = 0.

We say a set of vectors is linearly independent if they are not linearly dependent.

We also use the standard norms on Rn defined as follows.

Definition 2 (ℓ2-norm). The Euclidean or ℓ2-norm ∥·∥2 : Rn → R of a vector x ∈ Rn is
defined as

∥x∥2 =

(
n∑
i=1

x2i

) 1
2

.

Definition 3 (ℓ1-norm). The ℓ1-norm ∥·∥1 : Rn → R of a vector x ∈ Rn is defined as

∥x∥1 =
n∑
i=1

|xi|.

Definition 4 (ℓ0-norm). The ℓ0-norm ∥·∥0 : Rn → R of a vector x ∈ Rn is defined as

∥x∥0 = |{i ∈ [n] | xi ̸= 0}|.

Here, we use [n] to denote the set of positive integers {1, . . . , n}. In other words, ∥x∥0 is
the number of nonzero entries of x [23].

Remark. Although we used the word “norm” in the definition of the ℓ0-norm, it is not
formally a mathematical norm.

2.2 Numerical Algebra & Sparse Optimization

Consider the inverse problem of solving Ax = y for x where A ∈ Rm×n and y ∈ Rm

are known. This could represent some linear model where we wish to write y as a linear
combination of column vectors aj ofA with coefficients xj. There are two cases to consider.

3

Case 1: m ≥ n

If A has linearly independent columns, the unique solution is given by

x = (A⊤A)−1A⊤y

and can be solved with techniques such as QR Factorization [27]. When m = n (A is
square), this reduces to x = A−1y which can also be solved using a variety of methods
such as LU Decomposition, Cholesky Method, or Conjugate Gradient Method depending
on the structure of A [27].

When A has linearly dependent columns, there are either infinitely many solutions
when y is in the column space of A, or no solutions otherwise. In the former case, all
solutions are given by x = x̂ + z where x̂ is any one solution to Ax̂ = y and z is in the
kernel of A (Az = 0).

Case 2: m < n

In this case, A has more columns than rows and is underdetermined. This means the
columns of A are always linearly dependent and we have infinitely many solutions or no
solutions similar to the later part of Case 1. Rather than conclude the discussion, we
may impose additional constraints on the solution x to reduce the case of infinitely many
solutions to a unique solution.

One such constraint may be to minimize the ℓ2-norm of the solution

min
x∈Rn
∥x∥22 s.t. Ax = y.

This may be appropriate if we wish to find a solution that has entries xj with small
magnitude or the solution closest to 0 ∈ Rn. When the rows of A are linearly independent,
this has the closed-form solution

x = A⊤(AA⊤)−1y,

which can again be solved with techniques such as QR Factorization [27].

If we instead wish to find the sparsest solution for x, we can define the problem

min
x∈Rn
∥x∥0 s.t. Ax = y. (P0)

4

This may be desired if we would like the solutions with the most zero entries for data
compression, easier visualization, or require the least number of columns of A to represent
y. This last approach is the most relevant to Chapter 4.

The P0 problem is hard to solve in practice (specifically NP-hard) [23], so the convex
relaxation of this problem, called the basis pursuit (BP) problem, is often more practical:

min
x∈Rn
∥x∥1 s.t. Ax = y. (BP)

This recovers the solution to P0 under some assumptions which are detailed in [23]. Another
issue can now be raised. If the matrixA or vector y is subject to perturbations or noise, the
solution to the basis pursuit problem may not be stable. We adjust our original Ax = y
problem to

Ax+ ϵ = y,

where ϵ ∈ Rm represents some unknown noise in our measurement of y. This can be
implemented into our optimization problem by considering the (ℓ1) basis pursuit denoising
(BPDN) problem:

min
x∈Rn
∥x∥1 s.t. ∥Ax− y∥2 ≤ σ. (BPDN)

This can be equivalently stated, for τ = ∥xσ∥1 when xσ is a unique solution to the BPDN
problem, as the least absolute shrinkage and selection operator (LASSO) problem

min
x∈Rn
∥Ax− y∥22 s.t. ∥x∥1 ≤ τ, (LASSO)

or the penalized least-squares (QP) problem

min
x∈Rn

∥Ax− y∥22 + λ∥x∥1 (QP)

for an appropriate choice of λ [74].

Remark. We use the naming convention of these problems according to [74] rather than [23]
to match the convention used by the Python package we import to solve these problems.

The QP problem can be solved with a variety of methods like the fast iterative shrinkage-
thresholding algorithm [3] or Nesterov’s method [52]. However, the BPDN problem can be
a more natural way of expressing the problem. We often do not know a reasonable bound
τ on ∥x∥1 or a good choice of λ a priori, but can give some upper bound σ on the desired
reconstruction error ∥Ax− y∥2.

This thesis focuses on SPGL1: a spectral projected-gradient solver for sparse least
squares, designed to solve the BP, BPDN, and LASSO problems [74]. The BPDN problem

5

can be challenging to solve directly, so the SPGL1 method solves a sequence of LASSO
problems Pτk with hyperparameter τk using a spectral projected-gradient algorithm similar
to [4]. The τk are updated by Newton’s method τk+1 = τk − f(τk)/f ′(τk) in order to find
the root of f(τ) = ∥Axτ − y∥2 − σ. Here, xτ is the solution to Pτ . The solution for the
BPDN problem xσ coincides with the solution to the LASSO problem xτk once f(τk) = 0.
The SPGL1 algorithm is efficiently implemented in MATLAB [75] and Python [15].

2.3 Clustering

Clustering is the concept of finding structure within data. In density based clustering,
this typically means grouping together data points that are “close” under some notion of
distance [65]. There are many algorithms that exist such as k-means, spectral clustering,
and BIRCH, to name a few, each with their best use cases [55]. Nonnegative matrix
factorization has also been used as a clustering tool since it is shown to be equivalent to k-
means and spectral clustering under some settings [14], and another method called Density
Based Spatial Clustering of Applications with Noise (DBSCAN) also has a relationship to
matrix factorization [66].

In this thesis, we focus on DBSCAN [19]. In the context of the proposed decomposition
algorithm in Chapter 4, this method is sufficient in terms of computational efficiency
and ability to accurately identify the clusters in this setting. The main advantages of
DBSCAN—over other clustering methods like k-means for example—is its ability to cluster
arbitrary shaped regions, cluster by density of points, and identify the number of clusters.

We consider a data set of m points X = {xi}mi=1 ⊂ Rn, with the distance function
d(x,y) = ∥x− y∥2. We require the following definitions.

Definition 5 (ε-neighbourhood). Given a set X = {xi}mi=1 ⊂ Rn, and ε ∈ R>0, the
ε-neighbourhood of a point x ∈ X is the set given by

Nε(x) = {y ∈ X | ∥x− y∥2 ≤ ε}.

Definition 6 (Directly Density-Reachable). Given a set X = {xi}mi=1 ⊂ Rn, a point x ∈ X
is directly density-reachable from y ∈ X with respect to ε ∈ R>0 and min points ∈ Z>0 if
the following conditions hold:

1. x ∈ Nε(y)

2. |Nε(y)| ≥ min points.

6

Here, |Nε(y)| denotes the cardinally or the number of points in Nε(y), and examples are
given in Figure 2.1.

Definition 7 (Density-Reachable). Given a set X = {xi}mi=1 ⊂ Rn, a point x ∈ X is
density-reachable from y ∈ X with respect to ε ∈ R>0 and min points ∈ Z>0 if there
exists a chain of points z1, . . . ,zp ∈ X such that z1 = y, zp = x, and zi+1 is directly
density-reachable from zi.

Definition 8 (Cluster). The clusters C1, . . . , CK ⊆ X with respect to ε and min points

are the sets of points

Ci = {x ∈ X | x density-reachable from yi}

where |Nε(yi)| ≥ min points and yi ∈ X are not density-reachable to each other.

The DBSCAN algorithm identifies the points belonging to the clusters C1, . . . , Ck ⊆ X
defined in Definition 8, where any leftover points are labelled as noise. The algorithm is
summarized in Algorithm 1.

Figure 2.1: Example ε-neighbourhoods: Left to Right: ε-neighbourhoods around
x,y, z ∈ X shown in green. Suppose min points = 4. We can now say that x is di-
rectly density-reachable from y (see middle plot), and y is directly density-reachable from
z (see right plot). This makes x density-reachable from z by the chain z,y,x. Note y is
not directly density-reachable from x since |Nε(x)| = 3 < min points (see left plot).

7

Algorithm 1 Density Based Spatial Clustering of Applications with Noise (DBSCAN)

Input: Data points X = {xi}mi=1, ε, and min points.
Method:

let k = 1
for x ∈ X:

if x is not labelled and |Nε(x)| ≥ min points:
label all y ∈ Nε(x) to be in cluster Ck
let Y = Nε(x) \ {x}
while Y is not empty:

let y be the first point in Y
if |Nε(y)| ≥ min points:

add unlabelled z ∈ Nε(y) to Y
label all z ∈ Nε(y) to be in cluster Ck

update Y ← Y \ {y}
update k ← k + 1

Output: Clusters C1, . . . , CK

2.4 Signal Processing

2.4.1 Sampling

In the field of signal processing, we look at ways to analysis and manipulate signals.
Signals can be thought of as a continuous function in time (ex. an audio signal f : R→ R
where the input t is time and the output y is the amplitude), in space (ex. a grayscale
image f : R2 → R where the input (x, y) is a point in space and the output z is the
brightness of the pixel), or both (ex. a colour video f : R3 → R4 with input (t, x, y) and
output (r, b, g, a) corresponding the brightness of the red, green, and blue channels, and the
audio channel). Many signal processing techniques can be applied directly on these signals
on their continuous domain, but many modern techniques are applied on a discretized or
sampled version of the signal. In this thesis, we focus our attention to finite 1-dimensional
signals which take the form f : R → R where the support set of the signal is some finite
interval D = [a, b] ⊂ R.

Definition 9 (Equally-Spaced Sampling). The sampled signal y ∈ Rm of f is given by
yi = f(ti) where t1, . . . , tm ∈ D. Here, the samples are evenly spaced so that ti+1− ti = ∆t
is constant. For example, ti = a+ (i− 1) b−a

m
.

Definition 10 (Random Sampling). A (uniformly) random sampled signal y ∈ Rm on an

8

interval [a, b] is given by yi = f(ti) where t1, . . . , tm ∼ U(a, b). For convenience, we re-index
the drawn ti so that t1 ≤ · · · ≤ tm.

Definition 11 (Sample Rate). The sample rate for evenly sampled signals is s = 1
∆t

and
can be expressed in the unit of frequency hertz Hz when t is given in seconds.

Definition 12 (Nyquist Rate). The Nyquist rate is the minimum sample rate needed to
accurately reproduce an evenly sampled signal from its discrete Fourier coefficients and is
equal to twice the highest frequency in the signal. Conversely, the highest frequency that
can be reproduced from an equally sampled signal at a sample rate s is ωmax = s/2 and is
called the Nyquist frequency [6].

2.4.2 Sinusoids and Intrinsic Mode Functions

Definition 13 (Sinusoids). We often work with general sinusoidal functions of the form

g(t) = A sin(ωt+ φ)

and interchangeably call them pure tones or harmonics. We call A ∈ R>0 the amplitude,
ω ∈ R>0 the (angular) frequency, and φ ∈ [0, 2π) the phase or phase-shift.

Note. In musical applications, we use harmonics to specifically refer to the sinusoidal
functions

{An sin(ωnt+ φn)}∞n=1

where their frequency is some integer multiple (or near-integer multiple in real-world sig-
nals) ωn = (n+ 1)ω0, n ∈ Z>0 to a fundamental pure tone A0 sin(ω0t+ φ0).

Definition 14 (Units of Frequency). When t is given in the unit seconds, the angular
frequency ω is given in the units radians per second written rad

s
. This can be converted to

(ordinary) frequency in Hz by the relationship ωordinary =
ωangular

2π
.

Definition 15 (Intrinsic Mode Function). An intrinsic mode function (IMF) [13] is an
amplitude-frequency modulated sinusoidal function of the form

f(t) = a(t) sin(ϕ(t)),

where a(t), ϕ′(t) > 0 ∀t.

9

Assumption 1. Typically, we further restrict a(t) and ϕ′(t) to vary slower than ϕ(t). More
precisely, when a and ϕ have continuous second derivatives, we say a(t) varies ε slower than
ϕ(t) for some ε ∈ R>0 if ∣∣∣∣a′(t)a(t)

∣∣∣∣ < εϕ′(t) &

∣∣∣∣a′′(t)a(t)

∣∣∣∣ < εϕ′(t)2,

and ϕ′(t) varies ε slower than ϕ(t) if

|ϕ′′(t)| < εϕ′(t)2.

Using Assumption 1, we present Proposition 1 which, to the author’s knowledge, is
not found in the literature and leads to a well motivated definition for the instantaneous
frequency and amplitude of an IMF.

Proposition 1 (IMF’s Sinusoidal Approximation). Let f(t) = a(t) sin(ϕ(t)) be an IMF
where, a and ϕ have continuous second derivatives, a(t) and ϕ′(t) vary ε̃ slower than ϕ(t),
and g(t) = A sin(ωt+ φ) be a pure tone with A = a(τ), ω = ϕ′(τ), and φ = ϕ(τ)− τϕ′(τ)
for some t = τ . Then g well approximates f at t = τ . Specifically, ∀ε > 0, ∃δ > 0 such
that |t− τ | < δ implies:

|f(t)− g(t)| < ε,

|f ′(t)− g′(t)| < ε+ C1ε̃,

|f ′′(t)− g′′(t)| < ε+ C2ε̃,

where C1 = a(τ)ϕ′(τ) and C2 = 4a(τ)ϕ′(τ)2.

Proof. See Appendix A.

This lets us appropriately define the instantaneous frequency and amplitude.

Definition 16 (Instantaneous Frequency). The instantaneous frequency (IF) of an IMF is
given by the rate-of-change of the phase ωIF (t) = ϕ′(t). The instantaneous amplitude of
an IMF is simply a(t).

Definition 17 (Intersecting IMFs). Using the idea of IF, we say two IMFs f1 and f2 cross
or intersect if there exists some τ ∈ R such that their IFs are the same ϕ1

′(τ) = ϕ2
′(τ) at

t = τ .

10

2.4.3 Time-Frequency Analysis

In time-frequency analysis, we aim to calculate or visualize the frequencies within a
time-series .

Definition 18 (Lp spaces). We define the function space Lp on a set X ⊆ R as

Lp(X) = {f : X → C | ∥f∥p <∞} .

The Lp-norm of f is defined as

∥f∥p =
(∫

X

|f(x)|pdx
) 1

p

.

Definition 19 (Inner Product). The inner product ⟨·, ·⟩ : L2(R) × L2(R) → C of two
functions f, g ∈ L2(R) is

⟨f, g⟩ =
∫ ∞

−∞
f(t)g(t)dt.

We use z = x− iy to denote the complex conjugate of z = x+ iy ∈ C where x, y ∈ R.

Definition 20 (Convolution). We also define the continuous convolution ∗ : L2(R) ×
L2(R)→ L2(R) of the functions f, g ∈ L2(R) as

(f ∗ g)(t) =
∫ ∞

−∞
f(τ)g(t− τ) dτ.

Definition 21 (Fourier Transform). The Fourier transform of f ∈ L1(R) is the function

f̂(ω) =

∫ ∞

−∞
f(t)e−2πiωtdt, (2.1)

and its inverse, when f̂ ∈ L1(R), is given by

f(t) =

∫ ∞

−∞
f̂(ω)e2πiωtdω. (2.2)

On its own, |f̂(ω)| only gives the magnitude of a particular frequency ω in the entire
signal. When the input signal f has time varying frequencies like an IMF with ϕ′′(t) ̸= 0,
the Fourier transform only says how much of each frequency appears without localizing
the frequency information in time. This is where the STFT becomes helpful in analyzing
these signals.

11

Definition 22 (Short-Time Fourier Transform). The short-time Fourier transform (STFT)
[29] of a signal f ∈ L1(R)∩L2(R) with respect to the window function W ∈ L2(R) is given
by

FW (ω, τ) =

∫ ∞

−∞
f(t)W (t− τ)e−2πiωtdt (2.3)

and its inverse, when f̂ ∈ L1(R), is defined as

f(t) =

∫ ∞

−∞

∫ ∞

−∞
FW (ω, τ)e2πiωtdτdω. (2.4)

Here, we assume W has the following properties:

1.

∫ ∞

−∞
W (t)dt = 1

2. |W (t)| ≤ 1 and equal to 1 at t = 0

3. |W (t)| is close to or exactly zero outside some finite interval T = [−t0, t0] ⊂ R.

Note. To define the inverse STFT, we require W to have the above property 1. Properties
2 & 3 are for convenient analysis of f to localize the frequency information at t = τ .

Example. A Gaussian Wσ(t) = exp(−t2/2σ2) is a commonly used window function.

Definition 23 (Discrete STFT). The discrete short-time Fourier transform of a signal
y ∈ RN is given by

Yk,m =
N−1∑
n=0

ynwn−me
−2πink/N

where w ∈ RN is the sampled window function W (tn) = wn that is periodic in its index
n ∈ [N]. That is, wn = wn+N ∀n ∈ Z.

The STFT offers similar frequency analysis as the Fourier transform, but with addi-
tional time-localized information. Not only does the STFT give information about the
magnitude of a frequency ω in the input signal, it also expresses when that frequency
occurs τ . This means the STFT of an IMF can reveal its instantaneous frequency and
amplitude since a windowed IMF at τ looks like a pure tone sin(ωt + φ) as described in
Proposition 1. Loosely, we would observe |FW (ω, τ)| is large if the time-frequency pair
(τ, ω) ∈ R2 is close to (τ, ϕ′(τ)), and small otherwise.

A drawback to the STFT is that smaller window sizes T , although better for local-
izing time information, leads to poorer frequency localization. This phenomenon can be
summarized by the uncertainty principle given in Theorem (2.3.1) of [29].

12

Theorem 1 (Uncertainty Principle). Let W ∈ L2(R) be a window function and εT , εΩ ∈
R>0 be such that∫

R\T
|W (t)|2dt ≤ ε2T∥W∥22 &

∫
R\Ω
|Ŵ (ω)|2dω ≤ ε2Ω∥Ŵ∥22.

Then, |T ||Ω| ≥ (1− εT − εΩ)2, where |T |, |Ω| are the length of the intervals T,Ω ⊂ R.

The uncertainty principle states that any window which is well localized in time (small
|T | and εT), will ensure its frequencies are spread over a large frequency interval (big |Ω|
and/or εΩ) and visa versa. To circumvent the principle, wavelets can be used rather than
windowed sinusoids. This allows us to define a continuous wavelet transform, where time-
frequency pairs with lower frequency are better localized in frequency, and time-frequency
pairs with higher frequency are better localized in time.

Definition 24 (Mother Wavelet). A mother wavelet is a function ψ ∈ L1(R)∩L2(R) that
permits a family of scaled and shifted wavelets {ψa,b(t)} given by

ψa,b(t) =
1√
a∥ψ∥2

ψ

(
t− b
a

)
, a ∈ R>0 and b ∈ R,

and satisfies
∫∞
−∞ ψ(t)dt = 0 [29]. We call a the scale and b the shift.

Definition 25 (ContinuousWavelet Transform). The continuous wavelet transform (CWT)
[29] of a function f ∈ L2(R) with respect to a mother wavelet ψ is defined as

Fψ(a, b) = ⟨f, ψa,b⟩ =
∫ ∞

−∞
f(t)ψa,b(t) dt, (2.5)

and its inverse, if Cψ :=
∫∞
−∞

|ψ̂(ω)|2
ω

dω <∞, is given by

f(t) =
1

Cψ

∫ ∞

0

∫ ∞

−∞

1

a2
Fψ(a, b)ψa,b(t) db da, (2.6)

at points where f is continuous at t.

Note. The CWT’s scale a is inversely related to the STFT’s frequency ω.

Various example wavelets such as the Haar and Daubechies wavelets can be found in
[17]. The wavelet we use when we refer to the CWT is the Morlet wavelet given in the
following example. This is most similar to the STFT since it has a Gaussian window and
makes for a fair comparison between the STFT and CWT.

Example (Morlet Wavelet). The Morlet wavelet [43] with respect to β ∈ R>0 is the
function

ψβ(t) = exp(−β2t2/2)
(
cos(πt)− exp(−π2/2β2)

)
.

13

2.5 Random Feature Models

The standard random feature model (RFM) architecture consistent of a two-layer fully
connected neural network whose single hidden layer is randomized and not trained [5, 59,
60, 46, 50]. That is, we assume a function f : Rd → C can be approximated by a collection
of N functions [30] ϕj : Rd → C, j ∈ [N] where

f(x) ≈
N∑
j=1

cjϕj(x).

The only layer that is trained is the output layer, i.e. learn suitable cj, thus yielding a
linear training model. The functions ϕj(x) = g(x;θj) are parametrized by θj which are
drawn randomly from some distribution.

There is a wide range of theoretical results for RFM used for interpolation or regression
[61, 64, 42, 18, 30, 49, 2, 67]. In [60] using N random features is shown to yield a uniform

error bound of O(N− 1
2 +m− 1

2) for target functions in a certain class related which are em-
bedded within a reproducing kernel Hilbert space when the RFM is trained using Lipschitz
loss functions. For the ℓ2 loss, if the number of features scales like N ∼

√
m logm where

m is the number of data points, then the test error is bounded by O(m− 1
2) [64], see also

[42]. This result requires that the target function f is in the associated reproducing kernel
Hilbert space and some additional assumptions on the kernel. By analyzing the structure
of the RFM with respect to the dimension d and the parameters N and m, results found
in [49, 12] showed that regression using RFM often achieve their minimal risk in the over-
parameterized region, where the number of random features exceeds the number of data
samples.

14

Chapter 3

The Signal Decomposition Problem

3.1 Overview

Signal decomposition is a challenging problem and used in many fields including seis-
mology [35, 77, 82], digital audio [57, 37, 45], and medical signal processing [11, 69] to
name a few. Also called source separation, the problem involves separating an input signal
into important sources or modes to analysis the input, or as a preprocessing step before
applying further processing that is better suited to individual sources. Signal decomposi-
tion makes it easy to extract important features in a signal and can be adapted for other
subproblems such as denoising.

The problem can be be applied generally on multi-channel or multi-dimensional signals.
Examples of multi-channel separation include [76, 81, 80], and image decomposition is an
example of multi-dimensional signal separation [21]. In Section 3.2 and for the remainder
of the thesis, we formulate the problem where there is a single channel, 1-dimensional
input. This is followed by Section 3.3 which explores existing methods in the literature
that tackle this problem.

3.2 Formulating the Problem

Formulating the signal decomposition problem can be as challenging as the act of solving
it. For single channel, 1-dimensional signal decomposition, the goal is to recover a set of

15

sources or modes {sk(t)}Kk=1 from an input mixture y : R −→ R defined as

y(t) =
K∑
k=1

sk(t) + ϵ(t), (3.1)

often in the presence of noise ϵ(t). For numerical computations, this problem is discretized
by sampling the input y(t) at {ti}mi=1 ⊂ R to obtain y ∈ Rm with the goal of finding
suitable vectors {sk}Kk=1 ⊂ Rm where

y =
K∑
k=1

sk + ϵ, (3.2)

and ∥ϵ∥2 is small. Signal decomposition is an inverse problem in the sense that the “for-
ward” problem of calculating a mixture y from a set of sources {sk}Kk=1 is as straightforward
as summing the source vectors, but the “inverse” is much more challenging and ill-posed
without carefully defining the problem.

Stating this explicitly, a mixture vector y can be broken into the sum of two vectors
y = a + b in infinitely many ways. This issue is worsened if the number of sources K is
also not known. These issues are addressed in different ways depending on the method
used and domain of application. However, the notion of a “source” can change even within
a specific domain. In musical decomposition, should a source be given by an section of
similar instruments like the strings? Or a particular harmony line the violins play within
the full chord? Or a single violin playing this line? Chapter 5 explores the assumptions
used in the case of musical signals.

A popular assumption—and the assumption made in this thesis—is to assume each
source sk(t) is an intrinsic mode function (IMF) (see Definition 15). This allows methods
to take advantage of different properties these functions have such as having a single well
defined instantaneous frequency and is used in [13, 16, 34, 73, 78]. We motivate this
assumption by considering real-world signals such as seismic [77] and medical [69] which
can be well modelled by IMFs.

Assuming the sources are IMFs may not always lead to a consistent decomposition,
though. Consider the example given in Equation 1.3 of [13]:

y(t) = 0.25 cos ((ω − γ)t) + 2.5 cos (ωt) + 0.25 cos ((ω + γ)t) (3.3)

= 2 cos (ωt) + cos2
(γ
2
t
)
cos (ωt) (3.4)

=
(
2 + cos2

(γ
2
t
))

cos (ωt). (3.5)

16

If ω is much larger than γ, we may prefer the last line (3.5) and say there is only one mode
with instantaneous amplitude 2+ cos2

(
γ
2
t
)
and frequency ω. When ω and γ are of similar

scale, then the first decomposition on line 3.3 may be desired and the three frequencies
ω − γ, ω, and ω + γ identified. Different methods deal with this ambiguity differently.
Methods like EMD follow the aforementioned preference based on the relative scales of
ω and γ [13], whereas methods like STFT filtering and the novel algorithm introduced in
Chapter 4 prefer three distinct pure tones for large window sizes and a single IMF for small
window sizes.

3.3 Previous Methods

We now recall popular methods used for signal decomposition and highlight their
strengths and weaknesses.

3.3.1 Fourier Filtering and Masking

Fourier filtering considers the case where there is information known about the fre-
quency ranges of its modes. More generally when masking the STFT of a signal, the
modes must occupy distinct regions in time-frequency space. Let Y (ω, τ) be the STFT
of an input signal y(t). Through visualization, such plotting a spectrogram |Y (ω, τ)|2, or
other means, the regionsM1, . . . ,MK ⊂ R2 corresponding to each mode are identified. The
transform of the sources Sk can be constructed by zeroing the domain not part of Mk

Sk(ω, τ) =

{
Y (ω, τ), for (ω, τ) ∈Mk

0, otherwise.

The sources sk(t) are then recovered by taking the inverse STFT of SK(ω, τ). This method
can be effective for interactively identifying the regions of interest and extracting each
mode. Automating the STFT masking can be performed if the modes always fall within
the same regions. Otherwise, on its own without additional information about the sources,
the regions corresponding to each mode must be manually found.

3.3.2 Empirical Mode Decomposition

The Empirical Mode Decomposition (EMD) [34] is an adaptive time-frequency method
for analyzing and decomposing signals and has been shown to be applicable in a wide

17

range of signal processing applications. In particular, EMD decomposes a given signal into
IMFs by detecting local extrema and estimating upper and lower envelops. This effectively
partitions the spectrum into certain frequency bands, which is represented by the learned
IMFs.

It is important to note the algorithm uses a slightly less restrictive definition of IMFs
than the one given in Definition 15, however all IMFs according to Definition 15 satisfy
the following 2 criteria [13]. EMD separates a discretized signal y ∈ Rm into modes where

1. There are the same number of extrema as there are zero crossings (or they differ by
one).

2. The average of the envelopes defined by the local maximums and minimums is the
zero function.

Pseudocode for the EMD method is given in Algorithm 2. In the algorithm, we use the
definition of standard deviation between consecutive iterations:

SDk,j =
m∑
i=1

|
(
hk,(j−1)

)
i
− (hk,j)i|

2(
hk,(j−1)

)2
i

. (3.6)

Common criteria for the outer loop in the algorithm includes stopping once either ∥sk∥2 or
∥rk∥2 are below a given threshold, or until r becomes monotonic. Additionally, the final
residual rk is often given as the final mode sK+1 for completeness.

EMD suffers from some problems including “mode mixing” i.e. the appearance of similar
frequency information shared between distinct IMFs. The method is also heavily reliant on
constructing the extrema envelopes with cubic splines which leads to a high sensitivity to
noise and sampling. Improvements such as Ensemble EMD (EEMD) and Complete EEMD
with Adaptive Noise (CEEMDAN) have been developed to help alleviate these issues.

Ensemble EMD

The Ensemble EMD (EEMD) method [78] learns the IMFs using an ensemble of the
given signal perturbed by random (Gaussian) noise. This helps to mitigate the mode mixing
issue by leverage results on EMD applied to white noise [22]; however, the approximated
signals often retain aspects of the noise and the perturbations may lead to a different IMF
decomposition.

18

Algorithm 2 Empirical Mode Decomposition (EMD)

Input: y ∈ Rm, tolerance ∈ R>0

Method:
let h1,1 = y
let r1 = y
let k = 1
while not converged:

let j = 1
while SDk,j > tolerance :

find local extrema of hk,j
construct cubic splines of minimums ak,j and maximums bk,j

let hk,j+1 = hk,j −
ak,j + bk,j

2
update j ← j + 1

let sk = hk,j
let rk+1 = rk − sk
let hk+1,1 = rk+1

update k ← k + 1

Output: K modes s1, . . . , sK

19

Complete EEMD with Adaptive Noise

In [73], the Complete EEMD with Adaptive Noise (CEEMDAN) method added different
(synthetic) noise to the stages of the decomposition which lead to more stable results. Both
EEMD and CEEMDAN suffer from increased computational costs since several applications
of EMD must be performed.

3.3.3 Empirical Wavelet Transform

The Empirical Wavelet Transform (EWT) [25] combines aspects of EMD with the
CWT. The main idea behind EWT is to partition the Fourier domain and build empirical
wavelet filters from the segmented spectrum. This is done by identifying local maxima of
the amplitude in the Fourier domain and partitioning the regions to separate the maxima
[44]. The EWT is extended to two dimensions for applications in imaging and can be
related to other wavelet-like transforms [24].

We define the sources EWT extracts from the mixture y(t) by

sk+1(t) =

∫ ∞

−∞

∫ ∞

∞
y(τ ′)ψk(τ ′ − τ)ψk(τ − t)dτ ′dτ, (3.7)

where the wavelets ψk, k = 0, 1, . . . , K − 1 are defined by their Fourier transforms

ψ̂0(ω) =

1, if |ω| ≤ (1− γ)ω1

α1(ω), if (1− γ)ω1 ≤ |ω| ≤ (1 + γ)ω1

0, otherwise,

and

ψ̂k(ω) =

1, if (1 + γ)ωk ≤ |ω| ≤ (1− γ)ωk+1

αk+1(ω), if (1− γ)ωk+1≤ |ω| ≤ (1 + γ)ωk+1

α′
k(ω), if (1− γ)ωk ≤ |ω| ≤ (1 + γ)ωk

0, otherwise.

The frequencies ωk are chosen empirically, and γ < mink

(
ωk+1−ωk

ωk+1+ωk

)
. The functions αk, α

′
k

are smooth transitions connecting 0 to 1, and appropriate choices are described in [25].
These wavelets can be thought of as bandpass filters which allow only frequencies between
[ωk, ωk+1] through.

20

To select ωk, we first calculate the location of the maxima ω′
1 < · · · < ω′

M ∈ R>0,
of the Fourier transform magnitude of the signal |ŷ(ω)|. If there are too many detected
(M ≥ K), only the largest N − 1 maxima are considered. If there are not enough maxima
detected, then only K = M modes are returned. We add the points ω′

0 = 0 and the
Nyquist frequency ω′

N+1 = m
2
, where m is the sample rate, to the collection of maxima.

Finally, the cutoff frequencies {ωk}K−1
k=1 are defined as the midpoints ωk =

ω′
k−ω

′
k−1

2
.

Unlike EMD, the number of modesK must be given in advance which may not be known
in some applications. The extracted modes are also restricted to disjoint frequency ranges
that are constant across the entire signal. This means EWT would have trouble extracting
IMFs that share the same instantaneous frequency, even if this occurs at different times in
the signal and they don’t cross.

3.3.4 Variational Mode Decomposition

The Variational Mode Decomposition (VDM) method [16] decomposes the signal into
a sum of IMFs (see Definition 15) by solving the optimization problem

min
s1,...,sK
ω1,...,ωK

α
K∑
k=1

∥∥∥∥ ∂∂t
[(
δ(t) +

i

πt

)
∗ sk(t)

]
e−iωkt

∥∥∥∥2
2

+

∥∥∥∥∥y(t)−
K∑
k=1

sk(t)

∥∥∥∥∥
2

2

+

〈
λ(t), y(t)−

K∑
k=1

sk(t)

〉 (3.8)

using the split Bregman or ADMM method [26]. Here, ωk ∈ R represents the center
frequency of sk(t), α ∈ R>0 is the hyperparameter responsible for weighting the smoothness
of the modes, δ(t) is the Dirac delta function, and λ(t) is the Lagrange multiplier.

To unpack the optimization problem, the idea is to find modes sk(t) that have their
range of frequencies tightly centered around ωk. To achieve this, the convolution removes
the negative frequencies, and the complex exponential centers the frequency range around
zero. In order to have small frequency bandwidths, we would find shifted modes that are
as smooth as possible. In other words, we wish to minimize the L2-norm of the gradient.
The second and third term encourage the sum of the modes to be close to the input y(t).

Rather than decompose the input iteratively like in EMD, the IMFs are obtained si-
multaneously within the optimization process and the resulting decompositions are more
stable to noise than the standard EMD approaches. Similar to EWT, VMD requires the
number of modes to be given in advance which may not always be known.

21

3.3.5 Synchrosqueezing Transforms

The synchrosqueezing transform (SST) [13] improves the standard CWT by calculating
instantaneous frequencies and “squeezing” them through a reassigment algorithm, namely,
shift them to the center of the time-frequency region [1]. This leads to sharper time-
frequency representations than the STFT and CWT, which are often limited by the finite
sampling lengths and can create spectral smearing. In addition, the sharpening essentially
prunes the unnecessary wavelet coefficient, thus leading to a sparse representation. Other
SST based methods have been proposed using other signal transforms for example the
STFT [71], S-transform [35], and the wavelet packet transform [79].

We define the SST [13] based on the CWT by

T (ω, b) =

∫
A(b)

Fψ(a, b)a
− 3

2 δ(Ω(a, b)− ω) da, (3.9)

where A(b) = {a ∈ R>0 | |Fψ(a, b)| ≥ ϵ}, Fψ(a, b) is the CWT of our input y with respect
to the wavelet ψ, ϵ ∈ R>0 is some small noise threshold, δ(ω) is the Dirac delta function,
and the instantaneous frequency Ω(a, b) is defined by

Ω(a, b) = − i

Fψ(a, b)

∂Fψ(a, b)

∂b
. (3.10)

A similar transform can be defined by using the STFT rather than CWT [71].

To decompose a signal with syncrosqueezing, bands can extracted around the largest
instantaneous frequencies curves Ω(a, b) calculated in the transform and the masked trans-
form inverted. This is an improvement over the standard Fourier Masking technique since
the squeezing ensures most of the important information is centered around the IF curves
and making it less sensitive to the exact region selected. There are no guarantees these
regions are disjoint, in which case the sum of the extracted modes would not reconstruct
the original input signal.

3.3.6 Neural Network Methods

Neural Networks have been used in a wide variety of scientific domains and indus-
trial applications from image classification and differential equations to recommendation
systems and generative models. They have shown remarkable success as function approx-
imators and the neural network framework is well suited for the training and learning of
these functions.

22

A common way to create a neural network model involves supervised training and
some penalty or loss function to assess the performance of the model. The network’s
architecture—number of layers, hidden nodes, activation functions, and how they are
connected—is often fixed before training and parametrized by a set of learnable weights
Wl and biases bl. In supervised training, a data set of known input-output pairs for
a particular process is collected. In the case of source separation, this could look like{
(yn, {sk,n}Kn

k=1)
}N
n=1

. It is the network’s goal to be able to receive an input and reproduce
the output. The predicted output is compared to the known ground truth output. If the
model performs this task well, the loss function will be small, whereas poor performance
will yield a large value.

There are many typical architectures for neural networks. A standard fully connected
network takes the form of alternating affine and non-linear activation functions

Fθ(y) = WL

(
σ
(
· · · σ(W1y + b1) · · ·

))
+ bL, (3.11)

where L is the number of layers of the neural network, σ is the activation function, and θ =
{(Wl, bl)}Ll=1 are trainable weights and biases. Common activations include the hyperbolic
tangent tanh(x), sigmoid (1 + e−x)−1, and rectified linear unit max(0, x) functions. In
the context of source separation, the output s = Fθ(y) could represent the concatenation

of the sources s =
[
s1

⊤ | · · · | sK⊤]⊤. Convolutional networks include convolution layers
which are linear layers where the weight matrix W has a block diagonal structure.

Since neural network methods are trained on a particular data set, they are best suited
to the domain on which the specific architecture was designed and trained. To this end,
we list the popular architectures for a variety of applications. DeepDenoiser [82] used on
seismic data, U-Net for biomedical imaging [63] and vocal separation [36] all use some form
of convolutional layers to create masks on the STFT of the input automating the process
described in Section 3.3.1. These methods require a fixed sized input, so signals that are
too short must be padded or repeated, and signals that are too long must be cropped into
sub-signals of equal length. Long short-term memory networks have layers which feedback
into previous parts of the network and typically require only a small chunk of the input at
a time enabling them to be naturally applied to signals of varying length. These have been
applied on their own in musical decomposition [68] and in conjunction with non neural
network decomposition methods such as CEEMDAN in financial forecasting [10]. There
are also models that operate directly on the signal without relying on the STFT such as
TasNet for speech separation [45]. Finally, an autoencoder—a network with compressive
layers followed by expansive ones—is used for audio source separation in [37] and is adapted
for vocal separation in Section 5.3.

23

Chapter 4

Sparse Random Mode Decomposition

4.1 Overview

We now present the main contribution of the thesis: the Sparse Random Mode Decom-
position (SRMD) algorithm for the signal decomposition problem detailed in Section 3.2.
This method builds off the previous methods presented in 3.3 while introducing some novel
techniques to the decomposition problem.

High level motivation for the method is provided in Section 4.2. We present the SRMD
algorithm in Section 4.3 and apply it to a variety of mathematical examples in Section
4.4. Additional extensions and modifications of the method for different settings are high-
lighted in Section 4.5. We conclude this chapter with the method’s limitations and possible
refinement to be useful in a wider variety of applications in Section 4.6.

4.2 Motivation

This method considers the case where the composite signal can be well represented
by a sum of intrinsic mode functions (IMFs) as given in Definition 15. The instanta-
neous frequencies (IF) of these modes appear as curves ω = ϕ(τ) on a STFT spectrogram
|FW (τ, ω)|2. Unlike manually filtering and masking (see Section 3.3.1) which requires a lot
of knowledge of the signal’s modes a priori, we wish to automate this extraction for generic
IMFs.

Finding structure within data is problem that is often tackled by clustering [65]. The
issue with clustering directly on sampled time-frequency pairs (τj, ωj) in a discrete STFT is

24

that the points are dense and evenly spaced. Clustering algorithms would therefore always
identify a single cluster in the whole time-frequency plane. Clustering in R3 using a dataset
of triples (τj, ωj, cj) with cj = |FW (τj, ωj)| could be performed, but would require finding
suitable scaling factors in all three dimensions. We could throw out pairs with a small
STFT magnitude so only the large coefficients corresponding to IF curves remain. This
would involve choosing an appropriate threshold that is simultaneously above the noise
level and below the lowest-amplitude mode. Selecting this threshold may be impossible
under high levels of noise, or when the noise level is above the lowest-amplitude mode. We
also cannot guarantee the accuracy of the reconstruction if the extracted modes where to
be summed up and compared to the input signal.

To rectify these issues, we would like a sparse time-frequency representation that can
ensure some level of reconstruction accuracy. We motivate the introduction of generating
time-frequency localized features and finding a sparse representation of the input signal in
these features. These could be generated on a time-frequency grid, but we found randomly
generating the (τj, ωj) pairs allows for sparser representations, and one that is equally fair
to constant IFs as well as chirps or other changing IF curves. The effect of equally spaced
versus random features is explored in Section 4.5.2.

Armed with an appropriately sparse time-frequency representation, we can use a clus-
tering algorithm to identify these curves. We would like a method that does not rely on
knowing the number of clusters, and one that works well on arbitrarily-shaped clusters
rather than ones localized around a single point. We found DBSCAN [19] to be sufficient
but other density-related clustering methods like OPTICS or HDBSCAN could be used.
In fact, since density clustering is used, we can generalize the class of modes SRMD can
extract to any modes that are connected in their time-frequency representation and in
disjoint regions from each other.

4.3 Method

The proposed method builds from the continuous STFT, that is, we represent a signal
f ∈ L1(R) ∩ L2(R) by

f(t) =

∫ ∞

−∞
f(t)W (t− τ)dτ =

∫ ∞

−∞

∫ ∞

−∞
FW (ω, τ)W (t− τ) e2πiωt dωdτ, (4.1)

where FW is the transform function and W is a (positive) window function such that∫∞
−∞W (t − τ)dτ = 1. The assumptions are that the transform function is band-limited,

25

i.e. FW (ω, τ) = 0 for all |ω| > B and that for a fixed τ , the support of FW (ω, τ) is small.
Note that since f ∈ L1(R), the transform is bounded, i.e. there exists an M > 0 such
that |FW (ω, τ)| ≤ M for all (ω, τ). Using the RFM, we approximate the integrals using
N = N1N2 random features:

f(t) =

∫ ∞

−∞

∫ B

−B
FW (ω, τ)W (t− τ) e2πiωt dωdτ ≈

N2∑
k=1

N1∑
n=1

cn,kW (t− τk) e2πiωnt (4.2)

where {ωn}n∈[N1]
and {τk}k∈[N2]

are independent of each other and are drawn i.i.d. ωn ∼
U [0, B] and τk ∼ U [0, T]. The goal is to learn a representation of the target signal f using
m sampling points {tℓ}ℓ∈[m] ⊂ [0, T]. The sampling points can either be equally-spaced
in time or can be drawn i.i.d. from a probability measure µ(t) along the interval [0, T].
The given output measurements are yℓ = f(tℓ)+eℓ where the noise or outliers {eℓ}ℓ∈[m] are
either bounded by constant E > 0, i.e. |eℓ| ≤ E for all ℓ ∈ [m], or are random Gaussian.
Note that if eℓ ∼ N (0, σ2) and if m ≥ 2 log (δ−1), then the noise terms eℓ are bounded by
E = 2σ for all ℓ ∈ [m] with probability exceeding 1− δ.

We reindex (τn, ωk) to (τj, ωj) where j ∈ [N1N2] = [N] so that the N random feature
functions take the form

ϕj(t) := W (t− τj) e2πiωjt. (4.3)

Note this means the same value of τ ∗ could be paired with different values of ωj in the set
of all {(τj, ωj)}j∈[N] and vice versa. Thus, the approximation becomes

f(t) ≈
N∑
j=1

cj ϕj(t), (4.4)

where the coefficients cj have also been reindexed. The training problem becomes learning

coefficients cj so the approximation
∑N

j=1 cj ϕj(t) is close to the given data yℓ. Let A ∈
Cm×N be the random feature matrix whose elements are define as aℓ,j = ϕj(tℓ), c =
[c1, . . . , cN]

T and y = [y1, . . . , ym]
T . We wish to find a sparse time-frequency representation,

so we learn c by solving an ℓ1 regularized least squares problem. Following [30], a sparse
random feature model can be trained with the ℓ1 basis pursuit denoising problem [9, 8, 23]:

c♯ = min
c∈CN

∥c∥1 s.t. ∥Ac− y∥2 ≤ η
√
m, (4.5)

where η is a user-defined parameter that is related to the noise bound E. It can be shown
that certain random feature matrices are well-conditioned to sparse regression when trained
using model (4.5) [30, 12]. When the input data is contaminated by large noise where the

26

noise level is not known (such as the astronomical data in Section 4.5.1), we solve the
LASSO optimization problem [72, 31]:

c♯ = min
c∈CN

∥Ac− y∥22 s.t. ∥c∥1 ≤ τ. (4.6)

Note that the LASSO optimization problem is equivalent to the basis pursuit denoising
problem under a mapping between τ > 0 and η > 0 (see Section 2.2). The LASSO
formulation becomes favourable over BPDN if we do not know a reasonable error bound
η. Algorithms such as SPGL1 solve a series of LASSO problems to find the solution to
BPDN, so manually tuning τ is faster than η in this case.

4.3.1 Sparse Random Feature Representation Algorithm

In the algorithm, we replace the complex exponential by a sine function with a random
phase ψj and the window function is defined by the Gaussian with a fixed variance w2:

ϕj(t) = exp

(
−(t− τj)2

2w2

)
sin(2πωj t+ ψj), (4.7)

where τj ∈ U(0, T), ωj ∈ U(0, ωmax), and ψj ∈ U(0, 2π).

Given a set of time points {tℓ}ℓ∈[m], we define the random short time Fourier feature

matrix A = [aℓ,j] ∈ Rm×N as follows:

aℓ,j = ϕj(tℓ) = exp

(
−(tℓ − τj)2

2w2

)
sin(2πωjtℓ + ψj). (4.8)

While the standard approaches assume that data is obtained from an evenly spaced time-
series, we do not place any restrictions on the sampling of the time points {tℓ}ℓ∈[m] (except
that they are distinct). This is an important distinction compared to other signal decompo-
sition approaches. In particular, we optimize the coefficients c using a sparse optimization
problem, Equation (4.5), with the random short-time sinusoidal feature matrix, which
can be shown to lead to well-conditioned training even when m is small [30, 12]. As an
added benefit, the random sampling of time-points reduces the computational and storage
cost, which depend on the number of samples and number of features. The reconstruction
algorithm is summarized in Algorithm 3.

27

Algorithm 3 Sparse Random Feature Representation for a Time-Series Data

Input: Samples {(tℓ, yℓ)}mℓ=1, number of random features N , maximum frequency ωmax,
window size w, noise level r ∈ [0, 1]. Let y = [y1, . . . , ym]

T .
Method:

Draw random time shifts, frequencies, and phases:

{τj, ωj, ψj}Nj=1 ∼ U(0, T)× U(0, ωmax)× U(0, 2π)

Construct the random short time Fourier feature matrix

A = [ϕj(tℓ)] =

[
exp

(
−(tℓ − τj)2

2w2

)
sin(2πωjtℓ + ψj)

]
∈ Rm×N .

Solve: c♯ = argmin
c∈RN

∥c∥1 s.t. ∥Ac− y∥2 < σ = r∥y∥2.

Output: Coefficient vector c♯ and the sparse random feature representation for the
time-series:

f ♯(t) =
N∑
j=1

c♯jϕj(t).

Algorithm 4 Sparse Time-Frequency Decomposition for a Time-Series Data

Input: Time-Frequency pairs X = {(τj, ωj) | j ∈ [N], c♯j ̸= 0}, their corresponding

coefficients and features {(c♯j, ϕj(t)) | j ∈ [N], c♯j ̸= 0}, frq scale ∈ R>0, DBSCAN
hyperparameters ε and min samples. Let y = [y1, . . . , ym]

T .
Method:

Scale input points to obtain X̃ = {(τj, ω̃j) | j ∈ [N], c♯j ̸= 0, ω̃j = ωj(frq scale)}.
Partion X̃ into clusters C1, . . . , CK using DBSCAN. Let

Ik = {j ∈ [N] | (τj, ω̃j) ∈ Ck}, k = 1, . . . K.

Output: K modes

sk(t) :=
∑
j∈Ik

c♯jϕj(t), k = 1, . . . K.

28

4.3.2 Sparse Random Mode Decomposition Algorithm

In this section, we discuss how to utilize the learned coefficients c♯ to decompose the
signal into meaningful modes. It is based on the observation that the sparse optimization
extracts a sparse time-frequency representation, which has the added benefit of forming a
simple decomposition due to the sharpening of the spectrogram. Specifically, we first collect
all time shift-frequency pairs {τj, ωj} corresponding to the non-zero learned coefficient c♯j.
Denote

X := {(τj, ωj) | j ∈ [N], c♯j ̸= 0}. (4.9)

We partition X into clusters {Ck}Kk=1 using a popular clustering method—namely DB-
SCAN (see Section 2.3). Lastly, the learned coefficients are grouped based on those clusters
and used to define the corresponding mode. The main advantages of DBSCAN are that
we do not need to specify the number of clusters, and can cluster arbitrary shaped regions.
These properties are useful for the signal decomposition problem since we do not assume
we know the number of modes, nor how the IF curves are shaped. In Section 4.4, we discuss
how to merge modes together if the number of modes is known. While more sophisticated
clustering algorithms can be used, one of the benefits of SRMD is that it produces a sparse
spectrogram which can be more easily clustered by any algorithm provided the original sig-
nal has a sharp time-frequency separation. This decomposition algorithm is summarized
in Algorithm 4.

Finally, we combine the representation and decomposition Algorithms 3 and 4 into the
proposed SRMD method summarized in Algorithm 5.

4.3.3 Implementation

For all examples of this method shown later in this chapter and in section 5.2, a Python
implementation of SRMD is used. An example of this implementation is shown in appendix
B and the full code for these examples are available on GitHub.1

The SRMD method relies on the ability to solve the BPDN minimization problem
presented in Algorithm 3 and partition data points using DBSCAN as shown in Algorithm
4. The BPDN problem is solved using a Python port [15] of the original SPGL1 method
[74, 75]. The DBSCAN algorithm is performed by the scikit-learn’s implementation [55] of
the original method presented in [19].

1https://github.com/GiangTTran/SparseRandomModeDecomposition

29

https://github.com/GiangTTran/SparseRandomModeDecomposition

Algorithm 5 Sparse Random Mode Decomposition (SRMD) for a Time-Series Data

Input: Samples {(tℓ, yℓ)}mℓ=1, number of random features N , maximum frequency ωmax,
window size w, noise level r ∈ [0, 1], frq scale ∈ R>0, DBSCAN hyperparameters ε
and min samples. Let y = [y1, . . . , ym]

T .
Method:

Draw random time shifts, frequencies, and phases:

{τj, ωj, ψj}Nj=1 ∼ U(0, T)× U(0, ωmax)× U(0, 2π)

Construct the random short time Fourier feature matrix

A = [ϕj(tℓ)] =

[
exp

(
−(tℓ − τj)2

2w2

)
sin(2πωjtℓ + ψj)

]
∈ Rm×N .

Solve: c♯ = argmin
c∈RN

∥c∥1 s.t. ∥Ac− y∥2 < σ = r∥y∥2.

Obtain coefficient vector c♯.
Collect X = {(τj, ωj) | j ∈ [N], c♯j ̸= 0}.
Scale input points to obtain X̃ = {(τj, ω̃j) | j ∈ [N], c♯j ̸= 0, ω̃j = ωj(frq scale)}.
Partion X̃ into clusters C1, . . . , CK using DBSCAN. Let

Ik = {j ∈ [N] | (τj, ω̃j) ∈ Ck}, k = 1, . . . K.

Output: K modes

sk(t) :=
∑
j∈Ik

c♯jϕj(t), k = 1, . . . K.

30

4.3.4 Hyperparameter Tuning

We acknowledge there are many hyperparameters involved in the implementation of
SRMD. This section walks through each parameter and explains their recommended values,
as well as some justification for their existence.

Parameter Recommended Value Typical Range
N 10m 5m–50m
ωmax m/(2T) 0–m/(2T)
r 0.05 0.03–0.3
w 0.1 0.01–2
threshold 0.05 0–0.1
frq scale T/ωmax T/ωmax, 1
ε 0.1T 0.05T–2T
min samples 4 3, 4, 5

Table 4.1: Summary of SRMD parameters from Section 4.3.4. In this table, the
number of samples is given by m and the length of the sample (in seconds) is given by T .

As a quick guide, the recommended values for most parameters given in Table 5.1 can
be used in many settings. The main parameters that require tuning are the number of
features N and the feature neighbourhood radius ε. The number of features can be set to
10 times the number of samples N = 10m as a good starting point, and increased if the
representation is poor. The neighbourhood ε can be set to 0.1 and increased if there are
too many modes recovered, or decreased if there are too few.

Feature Generation. The largest possible frequency that can be generated ωmax ∈ R>0

(max frq in the code) can be typically set to the Nyquist rate ωmax = m/(2T) where
T is time length of the signal. If the maximum frequency in the signal in known, this
parameter can lowered to that frequency. The Gaussian window size w ∈ R>0 for the
generated features can be set to 0.1 s as a good starting point, with a typical range being
between 0.01–1 s. This can be made larger for better frequency localization, or smaller for
better time localization. The number of features generated N ∈ Z+ (N features in the
code) may need to be tuned. Simple signals may only need N = 5m where as complicated
signals may need N = 50m. It is best to start small, say N = 10m, and increase the
amount if the signal is not well represented. By this, we mean the SPGL1 algorithm
will fail if too few features are generated since there will be no feasible solution c to the
constraint ∥Ac− y∥2 ≤ r∥y∥2.

31

Representation. The maximum relative error desired when representing the signal is
given by r ∈ (0, 1). By default, r = 0.05 is recommended. This can be brought down to
as low as 0.01 in some settings if the signal in known to have very little noise, but may
require more features N . If the noise level in the signal is known, r can be set slightly
above this level. The parameter threshold ∈ [0, 1) performs an optional fine-pruning step
when it is bigger than 0. Features with coefficients in the bottom threshold-percentile
of nonzero-coefficients are thrown from the representation. Setting this to 0.05 can help
remove outliers and clean up the representation. In practice we find only 3–10 features are
pruned for small values of threshold which leads to a cleaner representation and an easier
time decomposing.

Decomposition. The scaling factor frq scale ∈ R>0 is applied to the frequencies of
the features before the clustering algorithm. By default, T/ωmax should be used. This
treats the time and frequency dimensions equally, and makes it easiest to perform the
decomposition and visualization of the clusters. Smaller values help isolate modes in the
time dimension, and larger values isolate modes in the frequency dimension. The clustering
algorithm used, DBSCAN, requires two hyperparameters, ε ∈ R>0 and min samples ∈ Z>0.
The first parameter ε is the radius of a feature’s neighbourhood in time-frequency space.
Appropriate values are highly dependent on the structure of the modes in time-frequency
space. Bigger ε means fewer modes are identified. When frq scale is set to the default
T/ωmax, ε = 0.2T is a good starting point. Values on the order 1–5 work better when
frq scale is set to 1. The second parameter min samples is the number of features in a
neighbourhood required to be considered a core point. 4 is a reasonable default value and
works well in most settings. This can be set to 3 if too many outliers are found, or set to
5 or larger if there are too many modes found.

4.4 Examples

In this section, we verify the applicability and consistency of our proposed SRMD
method on four decomposition and signal representation examples, including three chal-
lenging synthetic time-series from [13, 16] and an overlapping time-series. Additionally,
two real time-series are tested in later sections including a gravitational signal (Section
4.5.1) and a musical example (Section 5.2.1). In all experiments, we plot the learned co-
efficients c♯j obtained from Algorithm 3 on the time-frequency (τ, ω) space and plot the
corresponding modal decomposition from Algorithm 4 (i.e. clusters) using DBSCAN.

For the three synthetic signals, we compare our approach with some of the state-of-
the-art mode decomposition methods, including the EMD [34], Ensemble EMD (EEMD)

32

[78], Complete EEMD with Adaptive Noise (CEEMDAN) [73], Empirical Wavelet Trans-
form (EWT) [25], and Variational Mode Decomposition (VMD) [16]. Additionally, for the
examples in Section 4.4.1 and 4.4.2, we also compare our method to the spectrogram pro-
duced by the short-time Fourier transform (STFT), continuous wavelet transform (CWT),
and their Synchro-Squeezed transforms [71, 13]. We also investigate the robustness of our
method’s signal representation and its corresponding signal decomposition for time-series
with noise. Sections 4.5 and 5.2 further explore the application of this method on real
world data. All tests were performed using Python and our code is available on GitHub
(see Section 4.3.3). PyEMD [41] is used to test EMD and the related methods, while
ewtpy and vmdpy were used to test EWT and VMD, respectively [11]. The hyperparam-
eters used in all methods are choosen to optimize their resulting output and based on the
methods’ suggestion. More precisely, for EMD, EEMD, and CEEMDAN, the threshold
values on standard deviation, on energy ratio, and on scaled variance per IMF check are
std thr = 0.1, energy ratio thr = 0.1, and svar thr = 0.01, respectively. For EEMD
and CEEMDAN, the number of noise perturbed ensemble trials is set to trials = 100.
For VMD, we set the balancing parameter of the data-fidelity constraint alpha = 50,
the time-step of the dual ascent tau = 1, the convergence tolerance tol = 10−6, and all
frequencies ω are initialized randomly.

Regarding the hyperparemeters of our proposed SRMD, we need to choose (ωmax, w,N)
to generate the dictionary matrix A, the noise-level parameter σ for the SPGL1 algorithm,
and (frqscale, min samples, ε) for the DBSCAN. We use the following values, unless
stated otherwise. The maximum possible frequency ωmax is set to be the Nyquist rate,

ωmax =
m

2T
, the window size is fixed to be w = 0.1, and the number of generated features

N can range from 5m to 50m depends on the complexity of the signal. The parameter of
the SPGL1 is set to be η

√
m = 0.06∥yinput∥2, yielding at most 6% reconstruction error.

Also, since the time-points and the frequencies are at different scales, we divide all learned
frequencies by frqscale, which is set by default to be frqscale = T

ωmax
before applying

the clustering algorithm on the learned time-frequency pairs. In some experiments, we
choose frqscale = 1 to obtain better clustering by frequency. The radius of a feature’s
neighborhood in time-frequency space ε is chosen depend on the structure of the modes
in time-frequency space. A bigger ε means fewer modes are identified. When frqscale is
set to the default, ε = 0.2T is a good starting point. Values on the order 1–5 work better
when frqscale is set to 1. Finally, the number of features in a neighborhood required to
be considered a core point min samples = 4. If there are too many found modes, we can
increase min samples = 5.

In EWT, VMD, and SRMD, the number of principal modes from the input signal
are specified for each experiment. In most cases, SRMD identifies the correct number of

33

modes without this restriction. EWT and VMD require the number of extracted modes to
be given as parameters so this is expected. To force SRMD to return the desired number
of modes when there are n more learned modes than true modes, the n+1 modes with the
smallest ℓ2-norm are merged together. This is appropriate when the number of true modes
is known, in the case of our comparison, and it is expected they have similar ℓ2-norm. If
too few modes are extracted, ε is lowered until enough modes are found. To be fair to EMD
and related methods (EEMD & CEEMDAN), extra modes are merged in the order they
are extracted for these methods only. This avoids fine-tuning their hyper parameters which
would otherwise need to be tuned to ensure the correct number of modes are extracted with
their stopping criteria. This makes sense for these methods since they typically extract
modes from high to low frequency, where additional modes may be large amplitude ultra-
low frequency biases. Lastly, we plot the magnitude of the non-zero entries of the learned
coefficient vector c♯ on the time-frequency space. Note that all non-zero coefficients can be
re-assigned to the positive value after shifting the phase of the corresponding basis term.
This leads to a sparse spectrographic representation of the signal.

4.4.1 Discontinuous Time-Series

The first signal is a modified example from [13], where the input signal y(t) is a com-
position of a linear trend s1(t), a pure harmonic signal s2(t), and a harmonic signal with
a nonlinear instantaneous frequency s3(t):

s1(t) = πt 1[0,5/4)(t)

s2(t) = cos(40πt) 1[0,5/4)(t)

s3(t) = cos

(
4

3

(
(2πt− 10)3 − (2π − 10)3

)
+ 20π(t− 1)

)
1(1,2](t),

(4.10)

and y(t) = s1(t) + s2(t) + s3(t) where t ∈ [0, 2] and 1I(·) denotes the indicator function
over the interval I where

1I(t) =

{
1, for t ∈ I
0, otherwise.

(4.11)

Notice that the input signal has a sharp transition at t = 5
4
. The number of modes is fixed

to be three for this experiment. The dataset contains m = 320 equally spaced time points
from [0, 2] and the total number of random features for our algorithm is N = 50m = 16000
(overparameterized regime). When we apply the clustering algorithm DBSCAN in the
time-frequency space, we set the minimum number of core points in a cluster to be three,
and the maximum distance between any two points in a neighborhood is set to ε = 0.1.

34

Figure 4.1 shows that SRMD can decompose the discontinuous signal with minimal
mode mixing, i.e. a clear separation between the learned modes. Specifically, the three
learned modes are closest to the ground truth ones with the errors mainly appeared at
the discontinuous time-point t = 5

4
(see also Figure 4.2). Moreover, it may be possible to

achieve even better mode decomposition with a choice of basis better suited to disconti-
nuities (see Section 6.2). It is shown that the randomized Morlet like basis, whose wavelet
equivalent is not well suited to discontinuities, is still sufficient for our proposed SRMD
to outperform the existing methods. Moreover, the representation and clustering plots of
Figure 4.1 show that the sparse spectrogram and modal decomposition are indeed sharp
and well-separated. This is a better separation than the various STFT and CWT, and
their synchro-squeezed versions shown in Figures 1, 2, and 6 of [13]. Additionally, our pro-
posed SRMD has the advantage of locating the individual regions that define each mode in
the time-frequency domain. This could be done with a synchro-squeezed version of STFT
or CWT by extracting a thin region around the instantaneous frequency curves; however,
the reconstruction accuracy is not guaranteed. Specifically, using that approach, the se-
lected regions may exclude areas of the time-frequency domain that contain important
information, or double count intersecting regions like in Equation (4.12).

In Figure 4.2, the input signal and the three true instantaneous frequencies are shown
in black, while the extracted modes from our and the other five methods are shown in blue.

For comparison, EMD and CEEMDAN reconstruct the signal with machine precision
(the error is on the order of 10−16), VMD also displays a reconstruction error of only
0.4%, while EEMD and EWT have poor signal reconstruction. One possible reason that
leads to a poor reconstructed signal for EEMD and EWT is because these methods do
not guarantee the sum of reconstructed intrinsic modes equals the original signal. In
terms of signal decomposition, the VMD and EWT extract the linear trend well (the
second column of the last two rows in Figure 4.2) while their learned second and third
modes agree with the corresponding ground truth ones on the time interval t ∈ [0, 1]
but create a false oscillatory patterns on the remaining interval t ∈ [1, 2]. This indicates
that the decomposition produced by the EWT and VMD approaches experience a non-
trivial amount of mode mixing. On the other hand, the remaining methods used in this
comparison are unable to extract any modes that agree with the ground truth ones.

35

Figure 4.1: Example from Section 4.4.1: Results of our method. Top left: Magnitude
of non-zero learned coefficients. Top right: Clustering of non-zero coefficients into three
modes of different colours. Middle row from left to right: reconstructed signal (in blue)
and the three extracted modes matching the colours of the top right clusters. Last Row:
Error of the reconstruction and the three modes compared to the ground truth.

36

Figure 4.2: Example from Section 4.4.1: Comparing different methods on the dis-
continuous time-series example (Equation (4.10)). Top to bottom rows are our proposed
SRMD, EMD, EEMD, CEEMDAN, EWT, and VMD. The first column presents the noise-
less ground truth (in black) and the learned signal representation (in blue). The remaining
three columns are the first, second, and third modes where the true are plotted in black
and the learned ones are in blue.

37

4.4.2 Instantaneous Frequencies of Intersecting Time-Series

For the second example, we test another challenging signal from [13],

s1(t) = cos
(
t2 + t+ cos(t)

)
,

s2(t) = cos(8t),
(4.12)

and the true signal is
y(t) = s1(t) + s2(t), t ∈ [0, 10]. (4.13)

Notice that the instantaneous frequency trajectories of those two modes s1(t) and s2(t)
(see Definition 16), ω1(t) = (2t+ 1− sin t) and ω2(t) = 8, respectively, intersect.

We discuss the ability of revealing the instantaneous frequencies of our method, address
the issue of oversegmentation, and compare our results with the other state-of-the-art
decomposition methods. Specifically, we expect to see these instantaneous frequency curves
in our spectrogram-like plots since our method finds the magnitude A of a windowed pure
tone sin(ωt + φ) at a time-step t0 = τ . When we solve the over-complete system with
BPDN, we expect large magnitudes for the random features to be near the instantaneous
frequency curves (and in phase).

In this example, the dataset contains m = 1600 equally spaced in time points from
[0, 10]. We use N = 10m = 16000 number of random features for our algorithm. Also,
we set ωmax = 5, since all frequencies are less than 5 Hz. Note this scale is the physical
frequency in Hz whereas the formula for the modes in this example are given in the angular
frequency unit rad/s, thus we set frq scale= 2π rather than 1. Lastly, we set DBSCAN’s
neighbourhood radius to ε = 2.0.

The graph of our learned pairs {(τj, ωj)}j (with non zero coefficients c♯j) can also reveal
the physical instantaneous frequencies of the full input signal as indicated in the first row of
Figure 4.3. Moreover, our method represents the instantaneous frequencies clearer than the
STFT, CWT, synchrosqueezed transforms based on wavelets (Figure 8 in [13]), modified
STFT [71], and CWT [70] (see Figure 4.3). For the STFT and its synchrosqueezed results
(second row), a Gaussian window with standard deviation 0.75 seconds = 60 samples,
Fourier transform width of 512 samples, and hop-size of 1 as used. Note this standard
deviation is chosen to match the window size used in our method. For the continuous
wavelet transform and its synchrosqueezed version (third row), 232 scales were chosen
between 3.8 samples (≈ 21Hz) and 512 samples (≈ 0.16Hz) with the logarithmic spacing
(the default settings of the package ssqueezepy, see also [51]), and so the maximum scale
matches the Fourier transform width in the STFT used.

38

Figure 4.3: Example from Section 4.4.2: First row presents the results of our method:
plot of the magnitude of learned coefficients (left) and plot of the clustering results of
coefficients (right). Dots with a black outline indicate coefficients that DBSCAN labelled
as noise and were re-labelled with the nearest cluster (in scaled frequency space). The true
instantaneous frequencies of those two modes are solid lines in black. Second row plots
the zoomed in to the frequency range [0, 4Hz] of the absolute values of the STFT and its
synchrosqueezed version. Third row plots the zoomed-in absolute values of the continuous
wavelet transform and its synchrosqueezed version.

39

Note the formula to convert between scales and frequencies is: frequency = samplerate
scale

.
The Morlet wavelet is used since it has a Gaussian window for the most fair comparison.

In addition, applying the DBSCAN on those learned time-frequency pairs {(τj, ωj)}j
yields three clusters, green, orange circles, and orange squares (see right plot in first row
of Figure 4.3). The corresponding learned modes are plotted in Figure 4.4. If we aim
to decompose the input signal into two modes, we keep the mode with the largest ℓ2-
norm and combine the two learned modes (among three modes) with smallest ℓ2-norm to
build the second mode. The decomposition result into two modes and the errors with the
ground truth modes are shown in Figure 4.5. Our proposed SRMD provides a reasonable
extraction of modes where the errors between the extracted modes and the true ones are
almost zero everywhere, except at a time-shift region corresponding to the intersection of
instantaneous frequencies (around t ∈ [3, 5]).

As seen in Figure 4.6, all examples struggle to separate the two modes. The main
reason this example is difficult is that both modes share the same instantaneous frequency
at around t = 3.5, and the scale of the first mode sweeps a large range of frequencies above
and below the stationary frequency in the second mode. Nevertheless, our decomposition
results are much better than EMD, its derivatives, EWT, and VMD.

Figure 4.4: Example from Section 4.4.2: Decomposition results of our proposed SRMD
method into 3 modes (from left to right): orange circles, green triangles, and orange squares.

40

Figure 4.5: Example from Section 4.4.2: Decomposition results of our proposed SRMD
method into two modes. First row: The learned signal (left) of the full signal and the
two learned modes (middle & right). Last row from left to right: Errors between noiseless
ground truth and the learned representation, between the true modes and the extracted
modes.

41

Figure 4.6: Example from Section 4.4.2: Comparing different methods on the intersect-
ing time-series example (Equation (4.12)). Top to bottom rows are our proposed SRMD,
EMD, EEMD, CEEMDAN, EWT, and VMD. The first column presents the ground truth
(in black) and the learned signal representation (in blue). The remaining two columns are
the two modes, where the true are plotted in black and the learned ones are in blue.

42

4.4.3 Overlapping Time-Series with Noise

In this experiment, we investigate another interesting example, where the input signal
y(t) is the summation of two modes s1(t) and s2(t) with overlapping frequencies and is
contaminated by noise:

y(t) = ytrue(t) + ε = s1(t) + s2(t) + ε, ε ∼ N
(
0,
r∥ytrue∥2√

m

)
. (4.14)

Here the modes si are defined by their Fourier transform ŝi for i = 1, 2, where

ŝ1(k) = me−iπk
(
e−

9(k−16)2

32 − e−
9(k+16)2

32

)
,

ŝ2(k) = me−iπk
(
e−

9(k−20)2

32 − e−
9(k+20)2

32

)
,

(4.15)

for k ∈ Z and t ∈ [0, 1]. Note that the modes s1(t) and s2(t) produce Gaussians in the
Fourier domain centered at k = 16 and 20 Hz, respectively. The leading term, me−iπk,
centers the wave packets in time space to t = 0.5 s wherem = 160 is the number of samples.
For our proposed SRMD, the hyperparameters to generate the basis are ωmax = 40, the
total number of random features is N = 20m = 3200, the window size w = 0.2. The
hyperparameters for the DBSCAN algorithm is ε = 1.5 and we do not need to scale the
frequency before clustering.

The noiseless and the noisy time-series with r = 25% are shown in Figure 4.11. All
reconstruction and decomposition results are compared against the true signal (or modes)
ytrue(t), s1(t), and s2(t). We compare our results with other methods on noisy signals with
different noise ratios r = 5%, 15%, and 25%. From the results in Figures 4.7, we can see
that only VMD and SRMD can successfully decompose the noisy signal. Moreover, when
the noise level r is small (∼ 5%), the VMD approach produces comparable results with
our method. When r increases, our method is still able to capture the intrinsic modes and
denoise the input signal. On the other hand, the VMD is able to identify some parts of
those two intrinsic modes but has a hard time in denoising, see Figure 4.8 and Figure 4.9.

The clustering of non-zero coefficients of our methods on noisy signal with the noise level
r = 5%, 15%, and 25% are shown in Figure 4.10. Notice that the clusters are surrounded
the the two Gaussian peaks (16 Hz and 20 Hz) that define the true input signal in all
three cases, which explains the effectiveness of our method on working with these noisy
signals. The other functions in the representations offer slight corrects to the overall shape
to ensure the reconstruction error is below the specified upper bound. This implies one
has flexibility in choosing the width and number of the wavelets to generate since extra
wavelets are used to ensure the reconstruction is reasonable.

43

Figure 4.7: Example from Section 4.4.3: Decomposition results with r = 5% noise using
six different methods. Top to Bottom Row: Ours, EMD, EEMD, CEEMDAN, EWT,
and VMD. First column: the noiseless ground truth (black) and the learned (blue) full
signal. Middle and last columns: the first and second ground truth modes (black) with the
extracted modes (blue).

44

Figure 4.8: Example from Section 4.4.3: Decomposition results with r = 15% noise
using Ours (first row) and VMD (second row). First column: the noiseless ground truth
(black) and the learned (blue) full signal. Middle and last columns: the first and second
ground truth modes (black) with the extracted modes (blue).

Figure 4.9: Example from Section 4.4.3: Decomposition results with r = 25% noise
using Ours (first row) and VMD (second row). First column: the noiseless ground truth
(black) and the learned (blue) full signal. Middle and last columns: the first and second
ground truth modes (black) with the extracted modes (blue).

45

Figure 4.10: Example from Section 4.4.3: Results of our method. First column: Mag-
nitude of non-zero learned coefficients for noisy signal with r = 5%, 15% and 25%. Second
column: Clustering of corresponding non-zero coefficients into two modes (green and or-
ange).

46

Figure 4.11: Example from Section 4.4.3: Left: Ground truth signal. Right: Noisy
input with r = 25%.

4.4.4 Pure Sinusoidal Signals with Noise

In this example, we aim to decompose a noisy signal into three modes where the noise
level is significant in amplitude with respect to two out of three modes. Consider a noisy
signal, which is suggested in [16]:

y(t) = s1(t) + s2(t) + s3(t) + ϵ(t), ϵ(tℓ) ∼ N (0, 0.1) , (4.16)

where

s1(t) = cos(4πt), s2(t) =
1

4
cos(48πt), s3(t) =

1

16
cos(576πt).

The hyperparameters chosen are ωmax = 500, w = 2s, m = 1000, N = 50m, r = 15%,
threshold = 0, ε = 1.5 (for DBSCAN), min samples = 4, and frq scale = 1. For this
example only, the signal is extended from the domain [0, 1] to [−1, 2] by an even periodic
extension before training. This is to remove end effects that would otherwise appear in the
decomposition given the signal starts and ends far from zero. The number of data points
m and features N are thus scaled by a factor of 3 during the learning of the signal. The
results of our method are shown in Figure 4.12.

Our method can extract the first two learned modes with high accuracy. Note that
both VMD and our method have difficulty in extracting the weak and high-frequency
mode s3(t) =

1
16
cos(576πt). Nevertheless, our method can identify the frequencies of all

three modes. More precisely, the median frequencies of three learned clusters are 1.99,
24.03, and 288.02 Hz, which are very close to the ground truth frequencies 2, 24, and
288 Hz.

47

Figure 4.12: Example from Section 4.4.4: Results of our method. First row: The noisy
input signal. Second row: Magnitude of non-zero learned coefficients (left) and clustering
of non-zero coefficients into three modes represented by different colours (right). Outliers
identified by DBSCAN are circled in black and re-clustered into the nearest cluster. Third
row from left to right: reconstructed signal (in blue) and the three extracted modes (in
blue) versus the corresponding noiseless ground true signal and modes (in black). Last
row: Error of the reconstruction and the three modes compared to the ground truth.

48

4.5 Extensions

We now extend SRMD outside its original formulation. Given there are two-stages of
the method, representation and decomposition, the output of the representation can be
valuable on its own, and modifications can be made in one stage independent of the other.
The representation stage of the method is applied to astronomical data in Section 4.5.1,
and the case where the feature parameters (τ, ω, ψ) are chosen deterministic is considered
4.5.2. Extensions to music is considered in Chapter 5 and additional extensions that may
be worth exploring in future work are given in Section 6.2.

4.5.1 Visualizing Gravitational Data

As an application to real data, in the astronomical time-series example, we show that
our (semi-supervised) approach can extract a localized and noise-free representation of the
first observed gravitational wave.

In this example, we apply our method to the detected signal of the first observation
of gravitational wave, GW150914 [20]. The noisy input data is preprocessed in the same
way as in [20], which consists of whitening (ensuring the Fourier transform of the signal is
flat), filtering (remove the highest and lowest frequencies outside the calibrated range), and
downsampling steps (only keep every 16 samples to reduce memory). The preprocessing
steps are necessary in order to reveal the black hole chirp signal hidden under a layer of
biases and noise that cannot immediately seen from the data directly outputted from the
instruments. In addition, we also normalize the input data by dividing the signal by the
maximum value in order to speed up the algorithm and avoid numerical error since the
original signal is on the order of 10−19. The goal here is to visualize the black hole merger
and denoise the preprocessed signal. Specifically, we would like to automatically detect an
accurate time-frequency chirp of the signal in the spectrogram plot.

The hyperparameters for our method are m = 861 measurements, N = 20m number
of random features, window size w = 0.01, maximum possible frequency ωmax = 2048 Hz.
The parameter for LASSO is τ = 12. Due to the large amount of noise in the data, we
keep only the top 3% or 5% largest non-zero coefficients to visualize the black hole merger
in the time-frequency plane and construct the learned signals. The results are shown in
Figure 4.13.

49

Figure 4.13: Example from Section 4.5.1: Left column: The largest 3% (first row) and
5% (2nd row) learned nonzero-coefficients overlay STFT in the time-frequency domain.
Right column: Corresponding learned signals (blue) and numerical relativity data (black).
Time is given as seconds after September 14, 2015 at 09:50:45 UTC.

50

4.5.2 Non-random Features

This section explores a modification of the SRMD method where the feature parameters
(τ, ω, ψ) are chosen from a fixed grid—rather than from a uniformly random distribution—
to highlight the benefits of random features. We reuse the discontinuous example 4.4.1 to
showcase the uniform features’ behaviour on constant and changing instantaneous fre-
quency modes.

Given the number of desired features N = 50m = 16 000, length of signal T = 2 s,
and maximum frequency ωmax = m

2T
= 80 Hz, we generate all triples (τj, ωj, ψj) such that

τj ∈ [0, T], ωj ∈ [0, ωmax], and ψj ∈ {0, π/2}, and τj − τj+1 = ∆τ and ωj − ωj+1 = ∆ω
are constant. This leaves one free parameter, the ratio of time-shifts to frequencies so that
the product of the number of time-shifts, the number of frequencies, and the two possible
phases equals N . The ratio 1.25 is selected to give us 100 time-shifts and 80 frequencies
which are the pair of integer factors of N/2 = 80 000 that are as close to each other as
possible. This lets us have the most number of unique time-shifts and frequencies. We set
ε = 0.08 to ensure three modes were returned, but otherwise all parameters are identical to
example 4.4.1. The magnitude of learned coefficients are compared to the original SRMD
method in Figure 4.14 and the full results are shown in Figure 4.15.

Figure 4.14 showcases how the equally spaced features lead to a very good representation
of the instantaneous frequency curves if they are horizontal or vertical in the time-frequency
plane. The IF representation is poorer than the usual random features proposed by SRMD
when these curves are not in these directions. This can be seen by the blocky nature of
the chirped mode which is caused by the features existing only along this grid.

Figure 4.14: Example from Section 4.5.2: Left: Magnitude of non-zero learned coeffi-
cients of the SRMD method using evenly spaced feature parameters. Right: Magnitude of
non-zero learned coefficients of the standard SRMD method.

51

Figure 4.15: Example from Section 4.5.2: Results of the SRMD method using evenly
spaced feature parameters. Top left: Magnitude of non-zero learned coefficients. Top right:
Clustering of non-zero coefficients into three modes of different colours. Middle row from
left to right: reconstructed signal (in blue) and the three extracted modes matching the
colours of the top right clusters. Last Row: Error of the reconstruction and the three modes
compared to the ground truth.

52

The equally spaced features also lead to a more dense representation, requiring 283
nonzero features to achieve the same reconstruction error as the proposed SRMD which
only uses 141—about half as many. This is expected since both phases 0, π are needed to
reproduce the correct phase of the input. This denser representation leads to the horizontal
mode at 20 Hz touching the chirp at t = 1.25 s, which means DBSCAN is unable to correctly
separate these clusters. This can be seen in the green circle cluster of the top right plot
of Figure 4.15. The denser representation, and poorer visualization in the case of modes
that are not horizontal or vertical in the time-frequency plane, justifies the use of random
features in the SRMD method.

4.6 Discussion

The SRMD method makes improvements over previous methods given in Section 3.3.
Unlike the Fourier filtering and masking methods, SRMD automatically identifies and ex-
tracts the constituent modes. The time-frequency visualization is sharper and sparser than
STFT, CWT and its Synchrosqueezed version. SRMD more consistently and accurately
extracts the modes when compared to EMD and its related methods. This method also
does not require the number of modes to be known in advance, which is required by EWT
and VMD, and is able to denoise the input more aggressively than VMD in the presence
of high levels of noise.

Despite these improvements, limitation to this method should be acknowledged. SRMD
performs well if a good sparse representation can found from the generated features. The
modes need to be well connected and disjoint from each other in frequency-time space. The
number of modes needs to be known in advance if their IFs cross so that the individual
clusters can be pieced together as shown in example 4.4.2. When the number of modes
is not known, the learned coefficients and decomposition need to be observed to ensure
reasonable values for the hyperparameters are chosen, especially the number of features N
and DBSCAN’s core neighbourhood size ε. This does limit the usefulness of this method as
a blind decomposition method—one that can be used to automatically decompose a signal
without knowing additional information about the modes within the signal. Possible future
work which could lead to further improvements is explored in Section 6.2.

53

Chapter 5

Musical Source Separation

5.1 Overview

Musical source separation is an application of signal decomposition of interest to both
industry and academia [53]. In this context, a digitally recorded song is treated as the
input and, typically, individual instruments (bass, drums, vocals, etc.) are treated as
the constituent sources. Instrument duplicates, for example two singers, are combined
and treated as one source. This may be done to remove vocals for a karaoke track, or
isolate them for remixes. Other applications when the isolated instrument tracks are not
available include historical analysis of old recordings, or remastering of live recordings.
Isolating sources also enables more involved signal processing techniques to be used such
as re-pitching or re-timing, denoising sources, or transcribing each part to sheet music.

There are domain specific assumptions that distinguish musical source separation from
the signal decomposition problem SRMD is originally designed to to tackle. Modern digital
music recordings are often distributed in stereo and consist of a left and right channel: one
for each ear when wearing headphones, or for two speakers placed some distance away
from each other and the listener. Movie and video game soundtracks often contain even
more audio channels such as Dolby Digital’s 5.1 surround sound system [38]. A source
may be more present in one channel than another, and time delays or phase shifts between
channels can exist. Single channel separation can be used on multi-channel recordings by
converting the recording to a monophonic (mono) single channel. This is typically done
by averaging the channels together, however, the phases shifts can introduce artifacts in
the process. Modern recordings are also sampled at a very high rate, typically 44 100 or
48 000 Hz, to ensure the entire range of human hearing can be captured. For a 4 minute

54

song, the number of samples m required is on the order of 10 million. To follow SRMD’s
recommendation that the number of features is N = 10m, 100 million features would need
to be generated leading to a feature matrix A with 1015 entries. One way to reduce the
scale of the problem is to downsample the recording by considering only a fraction of the
samples. This removes high frequency information and can cause aliasing artifacts when
not carefully treated, but is sometimes necessary to reduce the size of the problem.

It is often the case that a recorded song has some non-linearity where the song is not a
simple sum of the sources. For example, if side-chain compression is applied, the amplitude
of a background instrument may be reduced every time the kick drum is played. A basic
model of this could be written as y(t) = sd(t) + (1− c|sd(t)|)so(t) where s(t)d is the drum
source, s(t)o are the other instruments, and c is the amount of side chain. For simplicity, we
often assume the sources are purely summed to produce the mixture since this reasonably
approximates many live recordings of western genres like jazz and rock, and older styles of
music before these modern mixing techniques were used.

SRMD is also designed with each source being represented by IMFs. This is often not
the case for musical sources, where a single note contains additional frequencies higher than
the fundamental frequency. We call these frequencies overtones, and when an overtone is
a near-integer multiple of the fundamental, we call them harmonic. Different instruments
within a recording are also highly correlated in the sense that notes will commonly start
and end at the same time, and their harmonics will overlap making it difficult to determine
which frequency belongs to which source. Percussion hits such as cymbals contain overtones
that are not integer-multiples of the fundamental pitch, and often so many that they would
appear as blurred vertical lines on a spectrogram. These complications lead to musical
signals being dense in the time-frequency domain—contrary to SRMD’s assumption that
the signal can be sparsely represented by the features it generates.

Despite these challenges, SRMD will be used to represent a simple musical example
in Section 5.2. The decomposition, however, is performed by manually identifying the
frequencies corresponding to each source. To add value to this exercise, a comparison is
made between downsampling the input with equally spaced samples and randomly chosen
samples to showcase SRMD’s ability to accurately reconstruct signals under a nonuniformly
sampled time-series.

When applying the sparse representation to a typical music clip in Section 5.2.2, it is
shown that the representation is not sparse and a standard clustering algorithm would not
be able to identify the sources contained with in it. Rather than conclude the discussion, a
preliminary neural network inspired by [37] and [63] is applied to music source separation
in Section 5.3.

55

5.2 Random Feature Model

5.2.1 Simple Musical Example

We generate a music dataset using sources (flute and guitar) and thus can compare our
method to the ground truth modes. The corresponding audio files of the extracted modes
can be found on GitHub.1

In this example, we use our method to decompose a two-second clip of a guitar and
flute playing simultaneously. The representation into sparse random features is performed
identically as before, but the clustering is performed by splitting wavelets with a frequency
above and below the frequency cutoff at 480 Hz. This cutoff is chosen because of the visual
information provided by the plot of nonzero random features’ time-shift and frequency.
Specifically, the fundamental and first 3 flute harmonics can be most clearly seen at t =
0.5 s in the top left plot of Figure 5.3, suggesting a cutoff slightly below the fundamental
frequency is most appropriate. This is similar to traditional signal processing techniques
that rely on STFT to observe and isolate regions in time-frequency space. Our method
has the advantage of finding a sparse representation so individual harmonics can be clearly
seen, like a Synchrosqueezing STFT or CWT, but with the additional advantage that the
signal is denoised in the process.

We examine the decomposition results of SRMD in two cases when the input signal is
equally-spaced downsampled and randomly downsampled. An illustration of the sampled
data in both cases are presented in Figure 5.1, where the original full signal is sampled
at 44.1 kHz, the equally-spaced downsampling is at 2.8 kHz, and the random sampling has
1/16th as many points as the original signal. This downsampling would be problematic for
songs that feature instruments with a lot of high frequency content, including drum and
cymbals, where the full range of hearing is important for high quality audio. However, for
a clip with just flute and guitar, most of the frequency content is contained below 2000 Hz
so this does not drastically effect the sound. The original and extracted audio files for this
example can be found in our repository. The hyperparameters of our method are m = 5107
samples, N = 10m random features, the window size w = 0.03, and r = 10%. For the
equally spaced downsampling, we must choose ωmax = 2.8 kHz/2 = 1 378 Hz (the Nyquist
frequency), where as the random sampling uses twice this with ωmax = 2.8 kHz.

The zoomed-in plots of the learned signals and modes from the equally-spaced and
random downsampled data are plotted in Figure 5.2. The results indicate that our method
works well even when the given data is sampled randomly. Moreover, the random sampling

1https://github.com/GiangTTran/SparseRandomModeDecomposition

56

https://github.com/GiangTTran/SparseRandomModeDecomposition

allows for higher frequencies in the flute to be captured. As demonstrated in [7, 33],
frequencies above the typical Nyquist frequency can be recovered when randomly sampling.
In this case, the maximum frequency of the features generated are twice as high as the
equally sampled, while keeping the same number of generated features. Finally, Figure 5.3
shows the results of the randomly downsampled experiment. We note the reconstruction
error plots given in the bottom row show the learned audio sources are close to the ground
truth.

Figure 5.1: Example from Section 5.2.1: Zoomed in input. Original signal is sampled at
44.1 kHz, equally-spaced downsampling is at 2.8 kHz (circles), and random downsampling
has 1/16th as many points (solid triangles). The random downsampling does not have
exactly 2 800 samples per second, but will have that many on average.

5.2.2 Challenges

We now apply the sparse representation method to the first song in the MUSDB18
music data set [58]: “A Classic Education by Night Owl”. The song is truncated to the
first 2 seconds, and otherwise all hyperparameters were kept identical to the randomly
downsampled example in Section 5.2.1.

In Figure 5.4, we can see the non-zero learned coefficients are not sparse in the time-
frequency plane. A few features such as the onset of a note at 1.5 s with frequencies
around 600 and 900Hz can be seen, but the representation is otherwise an incoherence
collection of points. DBSCAN is therefore unable to identify any meaningful clusters within
this representation and thus the decomposition cannot be performed. It is possible that
decomposition could be performed by modifying SRMD so that a suitable representation
can be found. These modifications are explored in Section 6.2, but for now, an alternate
approach is needed to decompose these types of signals.

57

Figure 5.2: Example from Section 5.2.1: Zoomed in plots of the learned signals and
modes (blue) from our method as compared to the original fully sampled ground truth
(black). Left: Results using equally-spaced data. Right: Results using random samples.
Input signal is downsampled by a factor of 16.

58

Figure 5.3: Example from Section 5.2.1: Results of our method with randomly down-
sampled input by a factor of 16. First Row: magnitude of non-zero learned coefficients
(left), clustering of coefficients into two modes (right). Second row: Learned signal (blue,
left) and the learned flute and guitar modes (middle and right). Last Row: error between
the learned signals and the downsampled input.

59

Figure 5.4: Example from Section 5.2.2: Magnitude of non-zero learned coefficients of
our method with uniformly downsampled input by a factor of 16.

5.3 A Neural Network Attempt

To be able to separate complicated signal such as digital musical recordings, we must
incorporate some element of learning. Incorporating learning or training helps our model
know where to look within the input based off prior knowledge of musical signals. This
motivates the use of a neural network which has shown success in learning complicated
audio signals [57]. The architecture is inspired by [37, 63] and combines an autoencoder
with convolutional layers, with skip connections that bridge the middle, latent space layer.

5.3.1 Method

Data Generation. To create our training set T , we start with the 7 second demo clips
from the MUSDB18 database [58] (143 songs with ground truth sources) and re-mix them
to create N = 1000, 2 second clips by augmenting the data in a variety of ways. To create
these “incoherent” clips, we can apply the following transformations to different sources
within the database:

• mix and match the vocals and instruments from different songs

• start them at different points within the 7 second clips (time-shift)

• speed them up or slow them down (speed-shift)

• scale all frequencies to change the musical key (pitch-shift).

60

To create “coherent” clips, the sources must all be from the same song and the opera-
tions like time-shift, speed-shift, and pitch-shift have to be the same. Our training set is a
combination of coherent and incoherent mixtures to encourage better generalization. We
want the network to properly learn each source separately and not, for example, predict
the bass part based on the chords in the other instruments. Our testing set contains solely
coherent mixtures since we only want to evaluate the performance based on real world-like
songs.

The database has the sources split into the 4 sources: vocals, drums, bass, and other, so
we add together the drums, bass, and other sources to create our accompaniment source.
The database also contains the songs sampled at 44 100 Hz so we evenly downsample the
clips by a factor of 4 to reduce the size of the problem.

Input Processing. We take T = 2 second single-channel clips y ∈ RsT sampled at s =
11 025 Hz. The clip is preprocessed by applying the STFT and obtaining Y = STFT(y) ∈
CΩ×H where Ω = 257 is the number of frequency bins and H = 174 is the number of hops
or time bins. We wish to decompose y as the sum of 2 sources sv, sa where sv are the vocals
and sa is the accompaniment. Since the STFT is linear, we also have Y = Sv +Sa where
the capitalization indicates the STFT. We then convert the complex STFT representation
to a real magnitude spectrogram before normalizing and rescaling the spectrograms to
exaggerate detail: (

|Y |
maxi,j(|Yij|)

) 1
2

(5.1)

where the exponent acts element-wise.

Architecture. The architecture combines convolutional layers and fully connected layers
with skip connections and an autoencoder framework. A diagram of the architecture is
provided in Figure 5.5 and the 6 layers in the network along with the number of channels
and convolution filters used are shown in Table 5.1. This architecture has been adapted
from [37] and [63]. We justify the non-square kernel shapes by first convolving all frequency
bins Ω = 257 together so the model consolidates all frequency information at that time
bin, before convolving the near-by time information in the following layer. This ensures
the two dimensions are treated differently and incorporates the domain specific assump-
tions. Specifically, that low frequencies can be correlated to harmonics across the frequency
spectrum, and that notes can change quickly in time.

After each layer, batch-normalization and a hyperbolic tangent activation is used, ex-
cept the final layer which used a sigmoid activation function and no batch-normalization.
Additionally, 2 skip connections were added from the output of the first layer (after batch-
normalization and activation) to the output of the fifth layer (before batch-normalization

61

and activation), and from the output of the second layer to the output of the fourth layer
similarly. The skip connections represent alternate paths the data can flow through and
can make the network easier to train [32]. In our case, these connections are mathemati-
cally given by the sum of matrices using the standard matrix addition. Outputs between
layers were reshaped as necessary. This gives a total of 427 573 learnable parameters.

Figure 5.5: Diagram of Neural Network from Section 5.3: A sample input STFT
magnitude in shown to the left, where a 257 × 1 kernal is shown in white atop. The skip
connections are shown with the symbol ⊕ to indicate the two matrices are summed. A
sample output soft mask is shown to the right.

Layer 1 2 3 4 5 6
Type Conv2D Conv2D Linear Linear ConvT2D ConvT2D
Input Channels 1 64 10 944 16 64 64
Output Channels 64 64 16 10 944 64 1
Kernel Shape 257× 1 1× 4 N/A N/A 1× 4 257× 1

Table 5.1: Layers used in the neural network from Section 5.3. Conv2D stands for 2
dimensional convolutions, and ConvT2D are the transposed convolutions. All convolutional
layers use the default stride of 1.

Neural Network Output. The output of the neural network is the matrix Mv ∈ CΩ×H

which has entries between 0 and 1 corresponding to the vocal mask. This is enforced by
the output layer’s sigmoid activation function which has a range between 0 and 1. The
accompaniment mask is the element-wise subtraction (Ma)ij = 1− (Mv)ij. We use these
masks to extract the source STFT as

(Sk)ij = (Mk)ij (Y)ij . (5.2)

The source in the time domain can be recovered by applying the inverse STFT.

62

This STFT masking approach assumes the source’s STFT complex phase is identical to
the input’s STFT. If the sources do not overlap in the time-frequency domain, this masking
approach does reproduce the correct phase. When sources overlap, it is possible for their
phases to be different from each other, and different from the mixture’s STFT. Attempting
to reconstruct the correct phase from an STFT is a challenging problem on its own and is
necessary for high quality signal recovery [28, 40, 56]. In most cases, this simple approach
is sufficient to extract reasonable source’s signals in the time domain [48].

Training & Implementation. The loss function used between the predicted outputs
S̃

(n)
v and S̃

(n)
a and the ground truth sources S

(n)
v and S

(n)
a is

L =
1

N

N∑
n=1

1

2

∑
k∈{v,a}

∑
ij

∣∣∣|(S(n)
k)ij|

1
2 − |(S̃(n)

k)ij|
1
2

∣∣∣2∑
ij|(S

(n)
k)ij|

(5.3)

where the superscript (n) denotes the different elements from the training set. The loss
function is minimized and network parameters trained using the ADAM Optimizer [39]
from PyTorch [54] with a learning rate of η = 5 × 10−4 and batch size 20. The Pytorch
package is also used to generate the model, and the nussl package is used to process and
handle the data [47].

5.3.2 Results

We now detail the results of training. As seen in Figure 5.6, the model is able to learn
the data set and the training loss (blue) levels out around 3000 iterations. The validation
loss (green) converges to its minimum after only 500. This highlights the difficulty the
networks has in generalizing the training set to any song.

Figure 5.8 compares the learned vs the ground truth masks for a sample song clip from
the test set. The input spectrogram is shown in Figure 5.7. Results are similar across this
set so we select this sample to showcase the general behaviour of the trained model. The
full results and code can be explored on GitHub.2

The most striking difference between the learn and ideal masks is their contrast between
low and high values. This can be interpreted as how confident the model is at labelling
a particular time-frequency bin as vocals or accompaniment. The ideal masks contain
values that mostly near-zero or near-one indicating that particular time-frequency bin
belongs to exclusively the vocals or accompaniment. The learned masks are significantly

2https://github.com/njericha/masters-thesis

63

https://github.com/njericha/masters-thesis

softer and contain few near-zero or near-one regions, and many regions closer to 0.5. The
model can confidently identify the lowest frequencies as accompaniment, as well as the first
few harmonics belonging to the vocals. It should be expected that the model identifies the
lowest frequencies as accompaniment no matter the input song since singers cannot produce
frequencies in this range. The impressive part of the learned mask is how well the network
is able to identify the harmonics of the voice, especially around the time 1 s.

We now turn our attention to the resulting spectrograms after the masks from Figure
5.8 have been applied to the input spectrogram shown in 5.7. Figure 5.9 compares these
resulting spectrograms with the ground truth sources. The bottom left figure highlights
how the model correctly reproduces the low frequency information in the accompaniment,
and the top right shows the reproduction of the lower few vocal harmonics. Figure 5.9
more clearly shows the bleeding of the vocals in the accompaniment track since the highest
vocal harmonics can be seen in the bottom left plot. This is challenging for any model
to identify for a few reasons. Both the percussion hits and highest vocal harmonics share
these frequencies, so it is difficult to identify which time-frequency bin belongs to which
source. This is made more difficult by the fact that higher harmonics tend to have a smaller
amplitude than the lower frequencies. The top right spectrogram showcases this clearly.
This means the loss function does not penalize errors in the highest frequencies as much as
lower frequency errors. We could account for this by re-scaling the STFT magnitudes based
on their frequency, but this introduces a new hyperparameter which is possibly different
for every song and could be challenging on its own to learn.

Figure 5.6: Neural Network Loss from Section 5.3: Training (blue) and validation
(green) loss from the neural network after 5000 iterations.

64

Figure 5.7: Sample Input from Section 5.3: The sample input spectrogram from the
testing set in Section 5.3. The learned and ideal source masks are shown in Figure 5.8 and
the resulting spectrograms are shown in 5.9.

Figure 5.8: Predicted and Ideal Masks from Section 5.3: Top Row: Learned vocal
mask (left) and ideal vocal mask (right). Bottom Row: Learned accompaniment mask
(left), ideal accompaniment mask (right). Brighter pixels indicate values closer to 1 and
darker pixels indicate values closer to 0.

65

Figure 5.9: Predicted and True Spectrograms from Section 5.3: Top Row: Learned
spectrogram of the vocals (left) and ground truth vocals spectrogram (right). Middle Row:
Learned spectrogram of the accompaniment (left) and ground truth accompaniment spec-
trogram (right). Bottom: Absolute difference between the learned and true spectrograms.
Note this difference is the same for the vocals and accompaniment since the learned sources
and true sources both sum to the input spectrogram. The difference plot is re-scaled to
highlight detail. Brighter pixels indicate larger values in all plots.

66

Chapter 6

Final Remarks

6.1 Conclusion

We explore the signal decomposition problem and previous methods used on one-
dimensional signals including EMD, EEMD, CEEMDAN, EWT, VMD, SST, and neural
networks. The SRMD method is proposed by combining a random feature model with
a suitable clustering algorithm. SRMD is shown to outperform popular methods on a
variety of mathematical examples from the literature. The method has many favourable
attributes from reconstruction error guarantees, efficient use of representation and decom-
position algorithms, and flexibility when side information such as maximum frequency,
noise level, or number of modes is known. The recommended hyperparameter values are
typically sufficient for representing and decomposing signals. We acknowledge the limita-
tions of the model including 1) well-separated and sparse IMF modes are needed for reliable
decomposition and 2) fine tuning of the number of features and neighbourhood radius hy-
perparameters may be required for sensible results. Extensions to real world data, such as
astronomical and musical signals, are also considered. The signal decomposition problem
in the musical setting is further discussed by examining domain specific assumptions and
challenges. Musical decomposition with SRMD is attempted on a simple song, however the
method’s limitations cause poor performance for typical songs. A neural network model
is therefore created to tackle musical decomposition, specifically the sub-problem of vocal-
accompaniment separation. The architecture is based on an autoencoder network model
with skip-connections, and is able to produce reasonable STFT vocal masks for the train-
ing set. The network shows some success in generalizing to song clips it is not trained on
but more work is needed to minimizing bleeding between the vocals and accompaniment.

67

6.2 Future Work

Future work can be done on expanding SRMD to two dimensional signals for use in
imaging applications. More attention can be given to the reconstruction stage of the
algorithm and used for compression of signals. The reconstruction error could also be
improved by adding an additional step after SPGL1 to scale the non-zero coefficients in
an effort to remove the downward bias from the BPDN problem. It would also be worth
investigating how the SRMD representation can be used to perform style transfer if the
learned non-zero features can be mapped to another set of non-zero features.

Given the modular nature of the SRMD framework, many aspects can be modified that
may be worth exploring. For example, the features can be generated using a variety of
windows other than a simple Gaussian such as the Hamming, Blackman-harries, or Flat
Top, generated from a family of wavelets where the random parameters are replaced by
the shift and scale. When working with discontinuous signals, functions such as the Haar
wavelets (i.e. square function) instead of windowed sinusoidal functions may lead to sharper
time-frequency representations with fewer artifacts. In the case of musical decomposition,
features that take into consideration the harmonics of common sources may lead to sparser
representations. For example, combining pure tones with other sinusoids at integer mul-
tiple frequencies. The appropriate linear combination could be learned by observing the
natural amplitude decay of these harmonics in the instrument we wish to extract. It is
also worth considering alternate clustering methods such as OPTICS or HDBSCAN that
may reliably identify the modes of interest on a wider range of hyperparameters. Lastly,
the decomposition stage could consider a non-zero features belongs to multiple clusters if
the modes intersect, in which case the coefficient for that feature can be split between the
modes it belongs to.

Variations with the neural network architecture and training can also be considered.
Sparse regularization could help prioritize learning important features in the song. Adding
a step to estimate the source’s phase—rather than assuming it is identical to the input’s
STFT—could also produce higher fidelity waveforms. Finally, a hybrid approach may
combine the sparse representation of the SRMD method, with the training of a neural
network to reliably identify the constituent sources for the signal decomposition problem.

68

References

[1] François Auger, Patrick Flandrin, Yu-Ting Lin, Stephen McLaughlin, Sylvain
Meignen, Thomas Oberlin, and Hau-Tieng Wu. Time-frequency reassignment and
synchrosqueezing: An overview. IEEE Signal Processing Magazine, 30(6):32–41, 2013.

[2] Francis Bach. On the equivalence between kernel quadrature rules and random feature
expansions. The Journal of Machine Learning Research, 18(1):714–751, 2017.

[3] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for
linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

[4] Ernesto G. Birgin, José Mario Mart́ınez, and Marcos Raydan. Nonmonotone spec-
tral projected gradient methods on convex sets. SIAM Journal on Optimization,
10(4):1196–1211, 2000.

[5] Hans-Dieter Block. The perceptron: A model for brain functioning. i. Reviews of
Modern Physics, 34(1):123, 1962.

[6] A. Boggess and F.J. Narcowich. A First Course in Wavelets with Fourier Analysis.
Wiley, 2011.

[7] G Larry Bretthorst. Nonuniform sampling: Bandwidth and aliasing. AIP conference
proceedings, 567(1):1–28, 2001.

[8] T Tony Cai, Guangwu Xu, and Jun Zhang. On recovery of sparse signals via ℓ1

minimization. IEEE Transactions on Information Theory, 55(7):3388–3397, 2009.

[9] Emmanuel J Candes and Terence Tao. Near-optimal signal recovery from random pro-
jections: Universal encoding strategies? IEEE Transactions on Information Theory,
52(12):5406–5425, 2006.

69

[10] Jian Cao, Zhi Li, and Jian Li. Financial time series forecasting model based on CEEM-
DAN and LSTM. Physica A: Statistical Mechanics and its Applications, 519:127–139,
2019.

[11] Vińıcius R. Carvalho, Márcio F.D. Moraes, Antônio P. Braga, and Eduardo M.A.M.
Mendes. Evaluating five different adaptive decomposition methods for EEG sig-
nal seizure detection and classification. Biomedical Signal Processing and Control,
62:102073, 2020.

[12] Zhijun Chen and Hayden Schaeffer. Conditioning of random feature matrices: Double
descent and generalization error. arXiv preprint arXiv:2110.11477, 2021.

[13] Ingrid Daubechies, Jianfeng Lu, and Hau-Tieng Wu. Synchrosqueezed wavelet trans-
forms: An empirical mode decomposition-like tool. Applied and Computational Har-
monic Analysis, 30(2):243–261, 2011.

[14] Chris Ding, Xiaofeng He, and Horst D. Simon. On the equivalence of nonnegative
matrix factorization and spectral clustering. In Proceedings of the 2005 SIAM Inter-
national Conference on Data Mining (SDM), pages 606–610, 2005.

[15] Andreas Doll, Matteo Ravasi, and David Relyea. SPGL1: A solver for large-scale
sparse reconstruction, 2019. https://pypi.org/project/spgl1/.

[16] Konstantin Dragomiretskiy and Dominique Zosso. Variational mode decomposition.
IEEE Transactions on Signal Processing, 62(3):531–544, 2013.

[17] Igor M Dremin, Oleg V Ivanov, and Vladimir A Nechitailo. Wavelets and their uses.
Physics-Uspekhi, 44(5):447–478, may 2001.

[18] Weinan E, Chao Ma, Stephan Wojtowytsch, and Lei Wu. Towards a mathematical
understanding of neural network-based machine learning: what we know and what we
don’t. arXiv preprint arXiv:2009.10713, 2020.

[19] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based
algorithm for discovering clusters in large spatial databases with noise. In Proceedings
of the Second International Conference on Knowledge Discovery and Data Mining,
KDD’96, page 226–231. AAAI Press, 1996.

[20] B. P. Abbott et. al. Observation of gravitational waves from a binary black hole
merger. Phys. Rev. Lett., 116:061102, 2 2016.

70

https://pypi.org/project/spgl1/

[21] M. Jalal Fadili, Jean-Luc Starck, Jérôme Bobin, and Yassir Moudden. Image decom-
position and separation using sparse representations: An overview. Proceedings of the
IEEE, 98(6):983–994, 2010.

[22] Patrick Flandrin, Gabriel Rilling, and Paulo Goncalves. Empirical mode decomposi-
tion as a filter bank. IEEE Signal Processing Letters, 11(2):112–114, 2004.

[23] Simon Foucart and Holger Rauhut. A mathematical introduction to compressive sens-
ing. Springer New York, 2013.

[24] Jérôme Gilles, Giang Tran, and Stanley Osher. 2D empirical transforms. wavelets,
ridgelets, and curvelets revisited. SIAM Journal on Imaging Sciences, 7(1):157–186,
2014.

[25] Jérôme Gilles. Empirical wavelet transform. IEEE Transactions on Signal Processing,
61(16):3999–4010, 2013.

[26] Tom Goldstein and Stanley Osher. The split Bregman method for L1-regularized
problems. SIAM Journal on Imaging Sciences, 2(2):323–343, 2009.

[27] Allaire Grégoire and Sidi Mahmoud Kaber. Numerical Linear Algebra. Springer, 2008.

[28] Daniel Griffin and Jae Lim. Signal estimation from modified short-time Fourier trans-
form. IEEE Transactions on Acoustics, Speech, and Signal Processing, 32(2):236–243,
1984.

[29] Karlheinz Gröchenig. Foundations of Time-Frequency Analysis. Birkhäuser Boston,
Boston, MA, 2001.

[30] Abolfazl Hashemi, Hayden Schaeffer, Robert Shi, Ufuk Topcu, Giang Tran, and Rachel
Ward. Generalization bounds for sparse random feature expansions. arXiv preprint
arXiv:2103.03191, 2021.

[31] Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical learning with
sparsity: the lasso and generalizations. Chapman and Hall/CRC, 2019.

[32] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2016.

[33] Caiyun Huang. Random sampling and signal reconstruction based on compressed
sensing. Sensors & Transducers, 170(5):48–53, 2014.

71

[34] Norden E. Huang, Zheng Shen, Steven R. Long, Manli C. Wu, Hsing H. Shih, Quanan
Zheng, Nai-Chyuan Yen, Chi Chao Tung, and Henry H. Liu. The empirical mode
decomposition and the Hilbert spectrum for nonlinear and non-stationary time series
analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical
and Engineering Sciences, 454(1971):903–995, 1998.

[35] Zhong-lai Huang, Jianzhong Zhang, Tie-hu Zhao, and Yunbao Sun. Synchrosqueezing
S-transform and its application in seismic spectral decomposition. IEEE Transactions
on Geoscience and Remote Sensing, 54(2):817–825, 2015.

[36] A. Jansson, E. Humphrey, N. Montecchio, R. Bittner, A. Kumar, and T. Weyde.
Singing voice separation with deep U-Net convolutional networks. October 2017.

[37] Ertug Karamatli, Ali Taylan Cemgil, and Serap Kirbiz. Audio source separation using
variational autoencoders and weak class supervision. IEEE Signal Processing Letters,
26(9):1349–1353, Sep 2019.

[38] Mark Kerins. Beyond Dolby (stereo): cinema in the digital sound age. Indiana Uni-
versity Press, 2010.

[39] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization,
2014.

[40] Martin Krawczyk and Timo Gerkmann. STFT phase reconstruction in voiced speech
for an improved single-channel speech enhancement. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 22(12):1931–1940, 2014.

[41] Dawid Laszuk. Python implementation of empirical mode decomposition algorithm.
https://github.com/laszukdawid/PyEMD, 2017.

[42] Zhu Li, Jean-Francois Ton, Dino Oglic, and Dino Sejdinovic. Towards a unified anal-
ysis of random Fourier features. In International Conference on Machine Learning,
pages 3905–3914. PMLR, 2019.

[43] Jing Lin and Liangsheng Qu. Feature extraction based on Morlet wavelet and its appli-
cation for mechanical fault diagnosis. Journal of Sound and Vibration, 234(1):135–148,
2000.

[44] Wei Liu and Wei Chen. Recent advancements in empirical wavelet transform and its
applications. IEEE Access, 7:103770–103780, 2019.

72

https://github.com/laszukdawid/PyEMD

[45] Yi Luo and Nima Mesgarani. Conv-TasNet: Surpassing ideal time–frequency magni-
tude masking for speech separation. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 27(8):1256–1266, aug 2019.

[46] Wolfgang Maass and Henry Markram. On the computational power of circuits of
spiking neurons. Journal of Computer and System Sciences, 69(4):593–616, 2004.

[47] Ethan Manilow, Prem Seetharaman, and Bryan Pardo. The northwestern university
source separation library. In . Proceedings of the 19th International Society of Music
Information Retrieval Conference (ISMIR 2018), Paris, France, September 23-27, 2018.

[48] Ethan Manilow, Prem Seetharman, and Justin Salamon. Open Source Tools & Data
for Music Source Separation. https://source-separation.github.io/tutorial, Oct 2020.

[49] Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Generalization error of ran-
dom features and kernel methods: hypercontractivity and kernel matrix concentration.
arXiv preprint arXiv:2101.10588, 2021.

[50] Frank Moosmann, B Triggs, and Frederic Jurie. Randomized clustering forests for
building fast and discriminative visual vocabularies. In NIPS. NIPS, 2006.

[51] John Muradeli. ssqueezepy. GitHub, 2020. https://github.com/

OverLordGoldDragon/ssqueezepy/.

[52] Yurii E Nesterov. A method for solving the convex programming problem with con-
vergence rate O(1/kˆ2). In Dokl. akad. nauk Sssr, volume 269, pages 543–547, 1983.

[53] Bryan Pardo, Zafar Rafii, and Zhiyao Duan. Audio Source Separation in a Musical
Context, pages 285–298. Springer Berlin Heidelberg, Berlin, Heidelberg, 2018.

[54] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in PyTorch. In NIPS-W, 2017.

[55] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[56] Zdeněk Pr̊uša, Peter Balazs, and Peter Lempel Søndergaard. A noniterative method
for reconstruction of phase from STFT magnitude. IEEE/ACM Transactions on Au-
dio, Speech, and Language Processing, 25(5):1154–1164, 2017.

73

https://github.com/OverLordGoldDragon/ssqueezepy/
https://github.com/OverLordGoldDragon/ssqueezepy/

[57] Hendrik Purwins, Bo Li, Tuomas Virtanen, Jan Schlüter, Shuo-Yiin Chang, and
Tara N. Sainath. Deep learning for audio signal processing. CoRR, abs/1905.00078,
2019.

[58] Zafar Rafii, Antoine Liutkus, Fabian-Robert Stöter, Stylianos Ioannis Mimilakis, and
Rachel Bittner. The MUSDB18 corpus for music separation, December 2017.

[59] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In
J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information
Processing Systems, volume 20. Curran Associates, Inc., 2007.

[60] Ali Rahimi and Benjamin Recht. Uniform approximation of functions with random
bases. In 2008 46th Annual Allerton Conference on Communication, Control, and
Computing, pages 555–561. IEEE, 2008.

[61] Ali Rahimi and Benjamin Recht. Weighted sums of random kitchen sinks: Replac-
ing minimization with randomization in learning. Advances in Neural Information
Processing Systems, 21:1313–1320, 2008.

[62] Nicholas Richardson, Hayden Schaeffer, and Giang Tran. SRMD: Sparse random
mode decomposition. Communications on Applied Mathematics and Computation,
2022. (Submitted). https://arxiv.org/abs/2204.06108.

[63] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In International Conference on Medical image
computing and computer-assisted intervention, pages 234–241. Springer, 2015.

[64] Alessandro Rudi and Lorenzo Rosasco. Generalization properties of learning with
random features. In NIPS, pages 3215–3225, 2017.

[65] Joerg Sander. Density-Based Clustering, pages 349–353. Springer US, Boston, MA,
2017.

[66] Erich Schubert, Sibylle Hess, and Katharina Morik. The relationship of dbscan to ma-
trix factorization and spectral clustering. In Lernen, Wissen, Daten, Analyse (LWDA)
2018, 2018.

[67] Bharath Kumar Sriperumbudur and Zoltan Szabo. Optimal rates for random Fourier
features. Advances in Neural Information Processing Systems, 2015:1144–1152, 2015.

74

https://arxiv.org/abs/2204.06108

[68] Fabian-Robert Stöter, Stefan Uhlich, Antoine Liutkus, and Yuki Mitsufuji. Open-
unmix-a reference implementation for music source separation. Journal of Open Source
Software, 4(41):1667, 2019.

[69] Xianlun Tang, Wei Li, Xingchen Li, Weichang Ma, and Xiaoyuan Dang. Motor im-
agery EEG recognition based on conditional optimization empirical mode decomposi-
tion and multi-scale convolutional neural network. Expert Systems with Applications,
149:113285, 2020.

[70] Gaurav Thakur, Eugene Brevdo, Neven S Fučkar, and Hau-Tieng Wu. The syn-
chrosqueezing algorithm for time-varying spectral analysis: Robustness properties and
new paleoclimate applications. Signal Processing, 93(5):1079–1094, 2013.

[71] Gaurav Thakur and Hau-Tieng Wu. Synchrosqueezing-based recovery of instanta-
neous frequency from nonuniform samples. SIAM Journal on Mathematical Analysis,
43(5):2078–2095, Jan 2011.

[72] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

[73] Maŕıa E. Torres, Marcelo A. Colominas, Gastón Schlotthauer, and Patrick Flandrin. A
complete ensemble empirical mode decomposition with adaptive noise. In 2011 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
4144–4147. IEEE, 2011.

[74] E. van den Berg and M. P. Friedlander. Probing the pareto frontier for basis pursuit
solutions. SIAM Journal on Scientific Computing, 31(2):890–912, 2008.

[75] E. van den Berg and M. P. Friedlander. SPGL1: A solver for large-scale sparse recon-
struction, December 2019. https://friedlander.io/spgl1.

[76] Ehud Weinstein, Meir Feder, and Alan V Oppenheim. Multi-channel signal separation
by decorrelation. IEEE transactions on Speech and Audio Processing, 1(4):405–413,
1993.

[77] Hao Wu, Bo Zhang, Tengfei Lin, Fangyu Li, and Naihao Liu. White noise attenuation
of seismic trace by integrating variational mode decomposition with convolutional
neural network. GEOPHYSICS, 84(5):V307–V317, 2019.

[78] Zhaohua Wu and Norden E. Huang. Ensemble empirical mode decomposition: a noise-
assisted data analysis method. Advances in Adaptive Data Analysis, 1(1):1–41, 2009.

75

https://friedlander.io/spgl1

[79] Haizhao Yang. Synchrosqueezed wave packet transforms and diffeomorphism based
spectral analysis for 1d general mode decompositions. Applied and Computational
Harmonic Analysis, 39(1):33–66, 2015.

[80] Ozgur Yilmaz and Scott Rickard. Blind separation of speech mixtures via time-
frequency masking. IEEE Transactions on Signal Processing, 52(7):1830–1847, 2004.

[81] D. Zennaro, P. Wellig, V.M. Koch, G.S. Moschytz, and T. Laubli. A software package
for the decomposition of long-term multichannel EMG signals using wavelet coeffi-
cients. IEEE Transactions on Biomedical Engineering, 50(1):58–69, 2003.

[82] Weiqiang Zhu, S. Mostafa Mousavi, and Gregory C. Beroza. Seismic signal denoising
and decomposition using deep neural networks. IEEE Transactions on Geoscience
and Remote Sensing, 57(11):9476–9488, 2019.

76

Appendices

77

Appendix A

Proof of Proposition 1

Assume f(t) = a(t) sin(ϕ(t)) is an IMF where, a and ϕ have continuous second deriva-
tives, a(t) and ϕ′(t) vary ε̃ slower than ϕ(t), τ ∈ R, and g(t) = A sin(ωt+φ) is a pure tone
with A = a(τ), ω = ϕ′(τ), and φ = ϕ(τ)− τϕ′(τ).

Let ε > 0. Since a and ϕ have continuous second derivatives, the functions g, g′, g′′

and f, f ′, f ′′ are continuous by composition of continuous functions. Let δg be such that
|t− τ | < δg implies |g(t)− g(τ)| < εg = ε/2. Similarly with δg′ , δg′′ , δf , δf ′ , and δf ′′ so that
εg′ , εg′′ , εf , εf ′ , and εf ′′ = ε/2. Finally, suppose

|t− τ | < δ = min{δg, δg′ , δg′′ , δf , δf ′ , δf ′′}.

We then have, for f and g,

|f(t)− g(t)| = |f(t)− f(τ) + f(τ)− g(t) + g(τ)− g(τ)|
≤ |f(t)− f(τ)|+ |g(t)− g(τ)|+ |f(τ)− g(τ)|
< ε/2 + ε/2 + 0

= ε,

for f ′ and g′,

|f ′(t)− g′(t)| ≤ |f ′(t)− f ′(τ)|+ |g′(t)− g′(τ)|+ |f ′(τ)− g′(τ)|
< ε/2 + ε/2 + |a′(t) sin(ϕ(t))|
= ε+ |a′(t)||sin(ϕ(t))|
< ε+ ε̃a(τ)ϕ′(τ),

78

and for f ′′ and g′′,

|f ′′(t)− g′′(t)| ≤ |f ′′(t)− f ′′(τ)|+ |g′′(t)− g′′(τ)|+ |f ′′(τ)− g′′(τ)|
< ε/2 + ε/2 + |2a′(t)ϕ′(t) cos(ϕ(t)) + a(t)ϕ′′(t) cos(ϕ(t)) + a′′(t) sin(ϕ(t))|
≤ ε+ 2|a′(t)|ϕ′(t)|cos(ϕ(t))|+ a(t)|ϕ′′(t)||cos(ϕ(t))|+ |a′′(t)||sin(ϕ(t))|
< ε+ 2ε̃a(τ)ϕ′(τ)ϕ′(τ) + ε̃a(τ)ϕ′(τ)2 + ε̃a(τ)ϕ′(τ)2

= ε+ 4ε̃a(τ)ϕ′(τ)2.

79

Appendix B

Python Implementation of SRMD

import numpy as np
from spgl1 import spg_bpdn
from sklearn.cluster import DBSCAN

twopi = 2 * np.pi

def SRMD(f, t, N_features=None , eps=None , *, max_frq=None , w=0.1, r=0.05,
threshold=None , frq_scale=None , min_samples =4, seed=None , n_modes=None):

""" Implimentation of the Sparse Random Mode Decomposition algorithm

Parameter details can be found within the thesis or in the source code on
GitHub. Note this code is compressed from the implementation used by the
srmdpy package for brevity.

Inputs

f : numpy array

The input signal.
t : numpy array

Time points the signal f was sampled on.

Returns

modes : numpy array , modes.shape == (m, n_modes_recovered)

List of modes s1, ..., sk recovered from the decomposition algorithm as
time series.

Example

>>> import numpy as np
>>> from srmdpy import SRMD
>>> t = np.linspace (0,1,num =200)
>>> f = np.cos (2*np.pi*5*t) + np.sin (2*np.pi*20*t)
>>> kwargs = {"eps":1, "frq_scale ":1, "seed ":314}
>>> modes = SRMD(f, t, ** kwargs)
>>> mode_1 , mode_2 = modes [:,1], modes [:,2]
"""

80

Define useful constants
m = len(f) # Number of data points
L = t[-1] - t[0] # Length of signal in time

Default parameter Handeling
if N_features is None: N_features = 10 * m
if max_frq is None: max_frq = 0.5 * m / L
if eps is None: eps = 0.2 * L
if frq_scale is None: frq_scale = L / max_frq

Generate random features
features , (tau , frq , phs) = generate_features(N_features , t, w=w, seed=seed ,

max_frq=max_frq)

Represent f sparsely in terms of the features
weights , _, _, _ = spg_bpdn(features , f, sigma=r*np.linalg.norm(f))
weights = weights.squeeze () # convert shape from (N,1) to (N,)

Optional thresholding step
abs_wghts = np.abs(weights)
if threshold:

gate = np.percentile(abs_wghts[abs_wghts != 0], threshold)
keep_index = abs_wghts >= gate

else:
keep_index = np.not_equal(abs_wghts , 0)

Extract desired features
tau , frq , phs = tau[keep_index], frq[keep_index], phs[keep_index]
features , weights = features[:, keep_index], weights[keep_index]

Cluster near -by features in tau -frq space
X = np.column_stack ((tau ,frq*frq_scale)) # Package into a 2 column matrix
labels = DBSCAN(eps=eps , min_samples=min_samples).fit(X). labels_

Extract modes by label
n_labels = len(set(labels)) - (1 if -1 in labels else 0)
modes = np.zeros((m, n_labels))
for i in set(labels):

if i == -1: continue # Skip features thrown out by DBSCAN
mode_index = np.equal(labels , i)
modes[:, i] = features[:, mode_index] @ weights[mode_index]

Sort modes by their norm in decreasing order
norms = np.linalg.norm(modes , axis =0)
sort_order = np.argsort(norms)[:: -1]
modes[:, sort_order]

Relabel features to match new order
re_label = {k:v for v, k in enumerate(sort_order)}
re_label [-1] = -1
labels = np.array ([re_label[l] for l in labels])

Merge (sum) extra modes
if n_modes and n_labels > n_modes:

modes = np.hstack ((modes[:,:n_modes -1],
np.sum(modes[:,n_modes -1:], axis=1,keepdims=True)))

labels = np.array ([(l if l < n_modes else n_modes - 1) for l in labels])

return modes

81

def generate_features(N, t, max_frq=None , w=default_w , seed=None):
""" Generates N random features.

Given the desired number of features N, generates windowed sinusoidal
features with random time -shifts , frequencies , and phases evaluated at the
time points t.

Inputs

N : int

The number of features to generate.
t : numpy array

The time points to compute the value of the features

Outputs

features : numpy array , features.shape == (m, N)

The value of the features at time points t.
(tau , frq , phs) : tuple of numpy arrays ,

Time -shifts , frequencies , and phases of the features used in the
representation of the input f. Arrays have shape (N,).

"""
def _window(t,w):

""" Creates a truncated gaussian window."""
Standard deviation s. Half of the window width w
s = w / 2

Zero time values outside three standard deviations
domain = (np.sign (3*s + t) + np.sign (3*s - t)) / 2

return np.exp(-0.5 * (t/s)**2) * domain

Constants and argument parsing
L = t[-1] - t[0]

if max_frq is None:
m = len(t)
max_frq = 0.5 * (m+1) / L # using m+1 to be slightly above Nyquist rate

Generate random times , frequencies , and phases
rng = np.random.default_rng(seed)
tau = rng.random ((1, N)) * L + t[0]
frq = rng.random ((1, N)) * max_frq
phs = rng.random ((1, N)) * twopi

_t = np.reshape(t, (-1, 1))

features = _window(_t - tau , w) * np.sin(twopi*frq*_t + phs)

Reshape from (1, N) to (N,)
tau = tau.squeeze ()
frq = frq.squeeze ()
phs = phs.squeeze ()

return features , (tau , frq , phs)

82

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background & Notation
	Linear Algebra
	Numerical Algebra & Sparse Optimization
	Clustering
	Signal Processing
	Sampling
	Sinusoids and Intrinsic Mode Functions
	Time-Frequency Analysis

	Random Feature Models

	The Signal Decomposition Problem
	Overview
	Formulating the Problem
	Previous Methods
	Fourier Filtering and Masking
	Empirical Mode Decomposition
	Empirical Wavelet Transform
	Variational Mode Decomposition
	Synchrosqueezing Transforms
	Neural Network Methods

	Sparse Random Mode Decomposition
	Overview
	Motivation
	Method
	Sparse Random Feature Representation Algorithm
	Sparse Random Mode Decomposition Algorithm
	Implementation
	Hyperparameter Tuning

	Examples
	Discontinuous Time-Series
	Instantaneous Frequencies of Intersecting Time-Series
	Overlapping Time-Series with Noise
	Pure Sinusoidal Signals with Noise

	Extensions
	Visualizing Gravitational Data
	Non-random Features

	Discussion

	Musical Source Separation
	Overview
	Random Feature Model
	Simple Musical Example
	Challenges

	A Neural Network Attempt
	Method
	Results

	Final Remarks
	Conclusion
	Future Work

	References
	Appendices
	Appendix Proof of Proposition 1
	Appendix Python Implementation of SRMD

